Rapid growth of seed black holes in the early universe b

Science 345, 1330-1333 DOI: 10.1126/science.1251053

Citation Report

#	Article	IF	CITATIONS
1	A Physics-Based Charge-Control Model for InP DHBT Including Current-Blocking Effect. Chinese Physics Letters, 2009, 26, 077302.	1.3	11
2	Driving the growth of the earliest supermassive black holes with major mergers of host galaxies. Classical and Quantum Gravity, 2014, 31, 244005.	1.5	22
3	Seeding high-redshift QSOs by collisional runaway in primordial star clusters. Monthly Notices of the Royal Astronomical Society, 2015, 451, 2352-2369.	1.6	114
4	THE CASE FOR SUPERCRITICAL ACCRETION ONTO MASSIVE BLACK HOLES AT HIGH REDSHIFT. Astrophysical Journal, 2015, 804, 148.	1.6	151
5	The powerful jet of an off-nuclear intermediate-mass black hole in the spiral galaxy NGC 2276. Monthly Notices of the Royal Astronomical Society, 2015, 448, 1893-1899.	1.6	78
6	The growth efficiency of high-redshift black holes. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1922-1933.	1.6	85
7	The Tidal Disruption of Stars by Supermassive Black Holes. Springer Theses, 2015, , .	0.0	3
8	The chemical evolution of self-gravitating primordial disks. Astronomy and Astrophysics, 2016, 585, A11.	2.1	5
9	Formation of Supermassive Black Hole Seeds. Publications of the Astronomical Society of Australia, 2016, 33, .	1.3	113
10	The Early Growth of the First Black Holes. Publications of the Astronomical Society of Australia, 2016, 33, .	1.3	46
11	New constraints on direct collapse black hole formation in the early Universe. Monthly Notices of the Royal Astronomical Society, 2016, 459, 4209-4217.	1.6	63
12	Dark stars: a review. Reports on Progress in Physics, 2016, 79, 066902.	8.1	39
13	First identification of direct collapse black hole candidates in the early Universe in CANDELS/GOODS-S. Monthly Notices of the Royal Astronomical Society, 2016, 459, 1432-1439.	1.6	51
14	Hyper-Eddington accretion flows on to massive black holes. Monthly Notices of the Royal Astronomical Society, 2016, 459, 3738-3755.	1.6	148
15	Hyper-Eddington mass accretion on to a black hole with super-Eddington luminosity. Monthly Notices of the Royal Astronomical Society, 2016, 461, 4496-4504.	1.6	38
16	Quasistationary solutions of scalar fields around accreting black holes. Physical Review D, 2016, 94, .	1.6	8
17	Observational Signatures of High-Redshift Quasars and Local Relics of Black Hole Seeds. Publications of the Astronomical Society of Australia, 2016, 33, .	1.3	61
18	FAINT COSMOS AGNs AT z â^1⁄4 3.3. I. BLACK HOLE PROPERTIES AND CONSTRAINTS ON EARLY BLACK HOLE GROWTH. Astrophysical Journal, 2016, 825, 4.	1.6	16

#	Article	IF	CITATIONS
19	A POPULATION OF INTERMEDIATE-MASS BLACK HOLES IN DWARF STARBURST GALAXIES UP TO REDSHIFT = 1.5. Astrophysical Journal, 2016, 817, 20.	1.6	89
20	On the physical nature of the source of ultraluminous X-ray pulsations. Astrophysics and Space Science, 2016, 361, 1.	0.5	5
21	Searching for intermediate-mass black holes in globular clusters with gravitational microlensing. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2025-2035.	1.6	22
22	Intermediate-mass black holes from Population III remnants in the first galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2016, 460, 4122-4134.	1.6	26
23	THE JET-POWERED SUPERNOVAE OF â^¼10 ⁵ M _⊙ POPULATION III STARS ARE OBSE BY EUCLID, WFIRST, WISH, AND JWST. Astrophysical Journal, 2016, 823, 83.	RVABLE	15
24	Detecting direct collapse black holes: making the case for CR7. Monthly Notices of the Royal Astronomical Society, 2016, 460, 4003-4010.	1.6	47
25	Selection bias in dynamically measured supermassive black hole samples: its consequences and the quest for the most fundamental relation. Monthly Notices of the Royal Astronomical Society, 2016, 460, 3119-3142.	1.6	198
26	BULGE-DRIVEN FUELING OF SEED BLACK HOLES. Astrophysical Journal, 2016, 818, 184.	1.6	29
27	DOES THE INTERMEDIATE-MASS BLACK HOLE IN LEDAÂ87300 (RGG 118) FOLLOW THE NEAR-QUADRATIC M _{bh} –M _{spheroid} RELATION?. Astrophysical Journal, 2016, 818, 172.	1.6	25
28	From the first stars to the first black holes. Monthly Notices of the Royal Astronomical Society, 2016, 457, 3356-3371.	1.6	96
29	Bright vigorous winds as signposts of supermassive black hole birth. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2-16.	1.6	17
30	Feedback Limits to Maximum Seed Masses of Black Holes. Astrophysical Journal Letters, 2017, 835, L36.	3.0	22
31	An intermediate-mass black hole in the centre of the globular cluster 47 Tucanae. Nature, 2017, 542, 203-205.	13.7	149
32	Unveiling the First Black Holes With JWST:Multi-wavelength Spectral Predictions. Astrophysical Journal, 2017, 838, 117.	1.6	90
33	A universal minimal mass scale for present-day central black holes. Nature Astronomy, 2017, 1, .	4.2	17
34	Physical Properties of the First Quasars. Publications of the Astronomical Society of Australia, 2017, 34, .	1.3	40
35	The first supermassive black holes. Astronomy and Geophysics, 2017, 58, 3.22-3.26.	0.1	25
36	Rapid black hole growth under anisotropic radiation feedback. Monthly Notices of the Royal Astronomical Society, 2017, 469, 62-79.	1.6	34

#	Article	IF	CITATIONS
37	Formation of Massive Black Holes in Galactic Nuclei: Runaway Tidal Encounters. Monthly Notices of the Royal Astronomical Society, 0, , stx097.	1.6	63
38	Conditions for Optimal Growth of Black Hole Seeds. Astrophysical Journal Letters, 2017, 850, L42.	3.0	60
39	On the Accretion Rates and Radiative Efficiencies of the Highest-redshift Quasars. Astrophysical Journal Letters, 2017, 836, L1.	3.0	51
40	Stellar Dynamics and Stellar Phenomena Near a Massive Black Hole. Annual Review of Astronomy and Astrophysics, 2017, 55, 17-57.	8.1	103
41	Observational evidence for intermediate-mass black holes. International Journal of Modern Physics D, 2017, 26, 1730021.	0.9	175
42	Faint progenitors of luminous <i>z</i> Ââ^¼Â6 quasars: Why do not we see them?. Monthly Notices of the Royal Astronomical Society, 2017, 466, 2131-2142.	1.6	28
43	The sustainable growth of the first black holes. Monthly Notices of the Royal Astronomical Society, 2017, 471, 589-595.	1.6	33
44	On the effect of Lyman α trapping during the initial collapse of massive black hole seeds. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2773-2786.	1.6	10
45	Imprints of the super-Eddington accretion on the quasar clustering. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 471, L21-L25.	1.2	5
46	Physical Properties of 15 Quasars at zÂ≳Â6.5. Astrophysical Journal, 2017, 849, 91.	1.6	230
47	Do stellar winds prevent the formation of supermassive stars by accretion?. Monthly Notices of the Royal Astronomical Society, 2017, 465, 5016-5025.	1.6	10
48	Metallicity evolution of direct collapse black hole hosts: CR7 as a case study. Monthly Notices of the Royal Astronomical Society, 2017, 469, 231-236.	1.6	13
49	Light or heavy supermassive black hole seeds: the role of internal rotation in the fate of supermassive stars. Monthly Notices of the Royal Astronomical Society, 2017, 464, 2259-2269.	1.6	9
50	Lyman–Werner escape fractions from the first galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 467, 2288-2300.	1.6	29
51	Chasing the observational signatures of seed black holes at zÂ>Â7: candidate statistics. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3825-3834.	1.6	22
52	SMBH Seeds: Model Discrimination with High-energy Emission Based on Scaling Relation Evolution. Astrophysical Journal, 2018, 854, 4.	1.6	6
53	An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5. Nature, 2018, 553, 473-476.	13.7	726
54	A Search for Black Hole Microlensing Signatures in Globular Cluster NGC 6656 (M22). Astrophysical Journal, 2018, 867, 37.	1.6	10

#	Article	IF	CITATIONS
55	CMB spectral distortions from black holes formed by vacuum bubbles. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 059-059.	1.9	21
56	Expected intermediate mass black holes in the Virgo cluster. II. Late-type galaxies. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	19
57	Stunted accretion growth of black holes by combined effect of the flow angular momentum and radiation feedback. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3961-3975.	1.6	30
58	Modeling the Radio Background from the First Black Holes at Cosmic Dawn: Implications for the 21 cm Absorption Amplitude. Astrophysical Journal, 2018, 868, 63.	1.6	149
59	The observational signatures of supermassive black hole seeds. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3278-3292.	1.6	92
60	Assembly of supermassive black hole seeds. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	19
61	Rapid growth of black holes accompanied with hot or warm outflows exposed to anisotropic super-Eddington radiation. Monthly Notices of the Royal Astronomical Society, 2018, 476, 673-682.	1.6	34
62	Exploring SMBH assembly with semi-analytic modelling. Monthly Notices of the Royal Astronomical Society, 2018, 474, 1995-2011.	1.6	37
63	Sowing Black Hole Seeds: Direct Collapse Black Hole Formation with Realistic Lyman–Werner Radiation in Cosmological Simulations. Astrophysical Journal, 2018, 861, 39.	1.6	21
64	Massive black hole and Population III galaxy formation in overmassive dark-matter haloes with violent merger histories. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4017-4027.	1.6	28
65	J1342+0928 supports the timeline in the <i>R</i> _h = <i>ct</i> cosmology. Astronomy and Astrophysics, 2018, 615, A113.	2.1	5
66	Growth problems of stellar black holes in early galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 480, 681-691.	1.6	2
67	Looking at cosmic near-infrared background radiation anisotropies. Reviews of Modern Physics, 2018, 90, .	16.4	45
68	Titans of the early Universe: The Prato statement on the origin of the first supermassive black holes. Publications of the Astronomical Society of Australia, 2019, 36, .	1.3	114
69	Super-Eddington growth of black holes in the early universe: effects of disc radiation spectra. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2689-2700.	1.6	17
70	Supermassive black holes in the early universe. Contemporary Physics, 2019, 60, 111-126.	0.8	27
71	The seeds of supermassive black holes and the role of local radiation and metal spreading. Publications of the Astronomical Society of Australia, 2019, 36, .	1.3	16
72	A new bright <i>z</i> Â=Â6.82 quasar discovered with VISTA: VHS J0411–0907. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5142-5154.	1.6	28

#	Article	IF	Citations
73	X-ray properties of z â‰ ³ 6.5 quasars. Monthly Notices of the Royal Astronomical Society, 2020, 491, 3884-3890.	1.6	26
74	Intermediate-Mass Black Holes. Annual Review of Astronomy and Astrophysics, 2020, 58, 257-312.	8.1	294
75	The Assembly of the First Massive Black Holes. Annual Review of Astronomy and Astrophysics, 2020, 58, 27-97.	8.1	264
76	Very high redshift quasars and the rapid emergence of super-massive black holes. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	66
77	The Role of Gravitational Recoil in the Assembly of Massive Black Hole Seeds. Astrophysical Journal, 2020, 896, 72.	1.6	6
78	Concerns regarding the use of black hole shadows as standard rulers. Classical and Quantum Gravity, 2020, 37, 087001.	1.5	91
79	The near and mid-infrared photometric properties of known redshift <i>z</i> ≥ 5 quasars. Monthly Notices of the Royal Astronomical Society, 2020, 494, 789-803.	1.6	23
80	The emergence of the first star-free atomic cooling haloes in the Universe. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3021-3031.	1.6	16
81	Refining the mass estimate for the intermediate-mass black hole candidate in NGC 3319. Publications of the Astronomical Society of Australia, 2021, 38, .	1.3	4
82	High-redshift SMBHs can grow from stellar-mass seeds via chaotic accretion. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4289-4297.	1.6	12
83	Formation of supermassive black hole seeds in nuclear star clusters via gas accretion and runaway collisions. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1051-1069.	1.6	23
84	Origins and demographics of wandering black holes. Monthly Notices of the Royal Astronomical Society, 2021, 503, 6098-6111.	1.6	35
85	Forming massive seed black holes in high-redshift quasar host progenitors. Monthly Notices of the Royal Astronomical Society, 2021, 503, 5046-5060.	1.6	31
86	Black holes, Planckian granularity, and the changing cosmological â€~constant'. General Relativity and Gravitation, 2021, 53, 1.	0.7	3
87	Effect of mass-loss due to stellar winds on the formation of supermassive black hole seeds in dense nuclear star clusters. Monthly Notices of the Royal Astronomical Society, 2021, 505, 2186-2194.	1.6	8
88	Seeding Supermassive Black Holes with Self-interacting Dark Matter: A Unified Scenario with Baryons. Astrophysical Journal Letters, 2021, 914, L26.	3.0	31
89	Objectives of the Millimetron Space Observatory science program and technical capabilities of its realization. Physics-Uspekhi, 2021, 64, 386-419.	0.8	24
90	Estimate of the gravitational-wave background from the observed cosmological distribution of quasars. Physical Review D, 2021, 104, .	1.6	2

#	Article	IF	CITATIONS
91	Unveiling the Population of Wandering Black Holes via Electromagnetic Signatures. Astrophysical Journal Letters, 2021, 916, L18.	3.0	14
92	The origins of massive black holes. Nature Reviews Physics, 2021, 3, 732-743.	11.9	85
93	Seeds don't sink: even massive black hole â€~seeds' cannot migrate to galaxy centres efficiently. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1973-1985.	1.6	34
94	Galaxy Bulges and Their Massive Black Holes: A Review. Astrophysics and Space Science Library, 2016, , 263-313.	1.0	94
95	Unveiling early black hole growth with multifrequency gravitational wave observations. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4095-4109.	1.6	24
96	Constraints on stupendously large black holes. Monthly Notices of the Royal Astronomical Society, 2021, 501, 2029-2043.	1.6	43
97	A new channel to form IMBHs throughout cosmic time. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1413-1425.	1.6	45
98	Black hole formation in the first stellar clusters. , 2019, , 125-143.		3
99	Making a Supermassive Star by Stellar Bombardment. Astrophysical Journal, 2020, 892, 36.	1.6	47
100	Biconical-dominated Accretion Flow onto Seed Black Holes in a Hyperaccretion Regime. Astrophysical Journal, 2020, 905, 92.	1.6	6
101	The Active Fraction of Massive Black Holes in Dwarf Galaxies. Astrophysical Journal, 2021, 920, 134.	1.6	14
102	The search for the farthest quasar: consequences for black hole growth and seed models. Monthly Notices of the Royal Astronomical Society, 2021, 509, 1885-1891.	1.6	20
103	Growth and feedback from the first black holes. , 2019, , 177-194.		1
104	Submillimeter Signatures from Growing Supermassive Black Holes before Reionization. Astrophysical Journal, 2019, 887, 174.	1.6	3
105	Dynamics of intermediate-mass black holes wandering in the milky way galaxy using the illustris TNG50 simulation. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2229-2238.	1.6	9
106	Central engine of the highest redshift blazar. Astronomy and Astrophysics, 0, , .	2.1	6
107	Formation of supermassive black holes in galactic nuclei – II. Retention and growth of seed intermediate-mass black holes. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2631-2647.	1.6	6
108	A measurement of the cosmic expansion within our lifetime. European Journal of Physics, 2022, 43, 035601.	0.3	6

	CITATION R	EPORT	
#	Article	IF	Citations
109	Rapid Growth of Seed Black Holes during Early Bulge Formation. Astrophysical Journal, 2022, 927, 237.	1.6	16
110	Origin of supermassive black holes in massive metal-poor protoclusters. Monthly Notices of the Royal Astronomical Society, 2022, 512, 6192-6200.	1.6	13
111	Potential Black Hole Seeding of the Spiral Galaxy NGC 4424 via an Infalling Star Cluster. Astrophysical Journal, 2021, 923, 146.	1.6	9
112	Effects of stellar-mass primordial black holes on first star formation. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2376-2396.	1.6	7
113	Detectability of wandering intermediate-mass black holes in the Milky Way galaxy from radio to x-rays. Monthly Notices of the Royal Astronomical Society, 2022, 515, 2110-2120.	1.6	7
114	Turbulent cold flows gave birth to the first quasars. Nature, 2022, 607, 48-51.	13.7	37
115	A Simple Condition for Sustained Super-Eddington Black Hole Growth. Astrophysical Journal, 2022, 934, 58.	1.6	2
116	Observational Manifestations of First Galaxies in the Far Infrared Range. Astrophysics, 2022, 65, 161-181.	0.1	2
117	ĐĐ°Đ±Đ»ÑŽĐʹаÑ,ĐμĐ»ÑŒĐ½Ñ‹Đμ Đ¿Ñ€Đ¾ÑĐ²Đ»ĐμĐ½Đ,Ñ•Đ¿ĐμÑ€Đ²Ñ‹Ñ Đ³Đ°Đ»Đ°Đ°Ñ,Đ,Đº Đ² Đʹаł	лÑ Œ₽Ð ¹∕2€	е Ð ¼ Ð,нÍ
118	Cosmological 21-cm line observations to test scenarios of super-Eddington accretion on to black holes being seeds of high-redshifted supermassive black holes. Physical Review D, 2022, 106, .	1.6	8
119	Dwarf AGNs from variability for the origins of seeds (DAVOS): Intermediate-mass black hole demographics from optical synoptic surveys. Monthly Notices of the Royal Astronomical Society, 2022, 518, 1880-1904.	1.6	8
120	Accelerated Growth of Seed Black Holes by Dust in the Early Universe. Astrophysical Journal, 2022, 936, 116.	1.6	2

	550,110.		
121	Observational signatures of massive black hole progenitor pathways: could Leo I be a smoking gun?. Monthly Notices of the Royal Astronomical Society, 2022, 518, 5997-6003.	1.6	4
122	How long do high redshift massive black hole seeds remain outliers in black hole versus host galaxy relations?. Monthly Notices of the Royal Astronomical Society, 2022, 519, 2155-2168.	1.6	2
123	A Candid Assessment of Standard Cosmology. Publications of the Astronomical Society of the Pacific, 2022, 134, 121001.	1.0	14
124	Astrophysics with the Laser Interferometer Space Antenna. Living Reviews in Relativity, 2023, 26, .	8.2	107