Complete Field Guide to Asymmetric BINOL-Phosphate Catalysis: History and Classification by Mode of Activat Bonding, Ion Pairing, and Metal Phosphates

Chemical Reviews 114, 9047-9153 DOI: 10.1021/cr5001496

Citation Report

#	ARTICLE Highly Enantioselective Synthesis of	IF	CITATIONS
4	2,3-Dihydro-1 <i>H</i> i>imidazo[2,1- <i>a</i>]isoindol-5(9b <i>H</i>)-ones via Catalytic Asymmetric Intramolecular Cascade Imidization–Nucleophilic Addition–Lactamization. Organic Letters, 2014, 16, 6366-6369.	2.4	32
5	Organocatalytic Arylation of 3-Indolylmethanols via Chemo- and Regiospecific C6-Functionalization of Indoles. Journal of Organic Chemistry, 2014, 79, 10390-10398.	1.7	66
6	Asymmetric Dearomatization of βâ€Naphthols through an Amination Reaction Catalyzed by a Chiral Phosphoric Acid. Angewandte Chemie - International Edition, 2015, 54, 647-650.	7.2	100
7	H ₈ -BINOL Chiral Imidodiphosphoric Acids Catalyzed Enantioselective Synthesis of Dihydroindolo-/-pyrrolo[1,2- <i>a</i>]quinoxalines. Organic Letters, 2014, 16, 6112-6115.	2.4	67
8	Asymmetric Transfer Hydrogenation of Ketimines by Indoline as Recyclable Hydrogen Donor. Organic Letters, 2014, 16, 5312-5315.	2.4	37
9	Highly diastereo- and enantioselective construction of a spiro[cyclopenta[b]indole-1,3′-oxindole] scaffold via catalytic asymmetric formal [3+2] cycloadditions. Chemical Communications, 2014, 50, 15901-15904.	2.2	139
11	Catalytic Asymmetric Reactions of 4‣ubstituted Indoles with Nitroethene: A Direct Entry to Ergot Alkaloid Structures. Chemistry - A European Journal, 2015, 21, 17578-17582.	1.7	46
14	Experimentelle und theoretische Untersuchungen zur katalytischen asymmetrischen 4ï€â€Elektrocyclisierung von Nâ€Heterocyclen. Angewandte Chemie, 2015, 127, 2801-2804.	1.6	15
15	BrÃ,nsted Acid Catalyzed Asymmetric Hydroamination of Alkenes: Synthesis of Pyrrolidines Bearing a Tetrasubstituted Carbon Stereocenter. Angewandte Chemie, 2015, 127, 7958-7962.	1.6	18
17	Stereoselective [3+2] Carbocyclization of Indoleâ€Derived Imines and Electronâ€Rich Alkenes: A Divergent Synthesis of Cyclopenta[<i>b</i>]indole or Tetrahydroquinoline Derivatives. Chemistry - A European Journal, 2015, 21, 16769-16774.	1.7	16
19	BrÃ,nsted Acid Catalyzed Asymmetric Hydroamination of Alkenes: Synthesis of Pyrrolidines Bearing a Tetrasubstituted Carbon Stereocenter. Angewandte Chemie - International Edition, 2015, 54, 7847-7851.	7.2	66
20	Asymmetric Synthesis of Axially Chiral Isoquinolones: Nickelâ€Catalyzed Denitrogenative Transannulation. Angewandte Chemie - International Edition, 2015, 54, 9528-9532.	7.2	83
21	Enantioselective Construction of the Biologically Important Cyclopenta[1,4]diazepine Framework Enabled by Asymmetric Catalysis by Chiral Spiroâ€Phosphoric Acid. European Journal of Organic Chemistry, 2015, 2015, 7926-7934.	1.2	10
24	Development of <scp>A</scp> râ€ <scp>BINMOL</scp> â€Derived Atropisomeric Ligands with Matched Axial and sp ³ Central Chirality for Catalytic Asymmetric Transformations. Chemical Record, 2015, 15, 925-948.	2.9	22
27	Organocatalytic Activation of the Leaving Group in the Intramolecular Asymmetric S _N 2′ Reaction. Angewandte Chemie - International Edition, 2015, 54, 8263-8266.	7.2	31
28	Trifunctional Organocatalysts: Catalytic Proficiency by Cooperative Activation. European Journal of Organic Chemistry, 2015, 2015, 5304-5319.	1.2	20
29	Catalytic Enantioselective Arylative Dearomatization of 3â€Methylâ€2â€vinylindoles Enabled by Reactivity Switch. Advanced Synthesis and Catalysis, 2015, 357, 4031-4040.	2.1	34
30	Phosphothreonine as a Catalytic Residue in Peptideâ€Mediated Asymmetric Transfer Hydrogenations of 8â€Aminoquinolines. Angewandte Chemie - International Edition, 2015, 54, 11173-11176.	7.2	59

#	Article	IF	CITATIONS
32	Organocatalytic Activation of the Leaving Group in the Intramolecular Asymmetric S _N 2′ Reaction. Angewandte Chemie, 2015, 127, 8381-8384.	1.6	11
34	A Fourâ€Component Reaction for the Synthesis of Dioxadiazaborocines. Angewandte Chemie - International Edition, 2015, 54, 8395-8397.	7.2	29
35	Iron/BrÃ,nsted Acid Catalyzed Asymmetric Hydrogenation: Mechanism and Selectivityâ€Determining Interactions. Chemistry - A European Journal, 2015, 21, 10020-10030.	1.7	28
36	Synthesis, Characterization and Application of Some Axially Chiral Binaphthyl Phosphoric Acids in Asymmetric Mannich Reaction. Chinese Journal of Chemistry, 2015, 33, 601-609.	2.6	12
37	Asymmetric BrÃ,nsted Acid Catalyzed Synthesis of Triarylmethanes—Construction of Communesin and Spiroindoline Scaffolds. Angewandte Chemie - International Edition, 2015, 54, 15540-15544.	7.2	125
38	Kinetic Resolution of Azomethine Imines by BrĄ̃nsted Acid Catalyzed Enantioselective Reduction. Angewandte Chemie - International Edition, 2015, 54, 15516-15519.	7.2	17
39	Enantioselective Cycloaddition Reactions Catalyzed by BINOL-Derived Phosphoric Acids and N-Triflyl Phosphoramides: Recent Advances. Molecules, 2015, 20, 16103-16126.	1.7	66
40	Enantioselectivity in Catalytic Asymmetric Fischer Indolizations Hinges on the Competition of Ï€-Stacking and CH/Ï€ Interactions. Organic Letters, 2015, 17, 3066-3069.	2.4	72
41	Organocatalytic asymmetric reaction of indol-2-yl carbinols with enamides: synthesis of chiral 2-indole-substituted 1,1-diarylalkanes. Chemical Communications, 2015, 51, 11844-11847.	2.2	52
42	Enantioselective cooperative catalysis. Organic and Biomolecular Chemistry, 2015, 13, 8116-8162.	1.5	181
44	Efficient Asymmetric Synthesis of Structurally Diverse P‣tereogenic Phosphinamides for Catalyst Design. Angewandte Chemie - International Edition, 2015, 54, 5474-5477.	7.2	71
45	Catalytic Asymmetric Synthesis of Enantioenriched Heterocycles Bearing a CCF ₃ Stereogenic Center. Chemistry - A European Journal, 2015, 21, 8664-8684.	1.7	129
46	Synthetic Method for 2,2'â€Disubstituted Fluorinated Binaphthyl Derivatives and Application as Chiral Source in Design of Chiral Monoâ€Phosphoric Acid Catalyst. Chirality, 2015, 27, 464-475.	1.3	16
47	Enantioselective Synthesis of β-Arylamines via Chiral Phosphoric Acid-Catalyzed Asymmetric Reductive Amination. Journal of Organic Chemistry, 2015, 80, 6367-6374.	1.7	35
48	Chiral BrÃ,nsted Acid as a True Catalyst: Asymmetric Mukaiyama Aldol and Hosomi–Sakurai Allylation Reactions. Journal of the American Chemical Society, 2015, 137, 7091-7094.	6.6	57
40	A Nucleophilic Strategy for Enantioselective Intermolecular α-Amination: Access to Enantioenriched		63
49	α-Arylamino Ketones. Journal of the American Chemical Society, 2015, 137, 7632-7635.	6.6	03
49 51	α-Arylamino Ketones. Journal of the American Chemical Society, 2015, 137, 7632-7635. Organocatalytic Asymmetric Nucleophilic Addition to <i>o</i> Organic Letters, 2015, 17, 6058-6061.	2.4	106

#	ARTICLE	IF	CITATIONS
53	Pd-Catalyzed Cross-Coupling of Aryllithium Reagents with 2-Alkoxy-Substituted Aryl Chlorides: Mild and Efficient Synthesis of 3,3′-Diaryl BINOLs. Organic Letters, 2015, 17, 62-65.	2.4	35
54	A data-intensive approach to mechanistic elucidation applied to chiral anion catalysis. Science, 2015, 347, 737-743.	6.0	185
55	Light-induced superconductivity using a photoactive electric double layer. Science, 2015, 347, 743-746.	6.0	82
56	Counterion Effects in Homogeneous Gold Catalysis. ACS Catalysis, 2015, 5, 1638-1652.	5.5	315
57	Cooperative Catalysis: Enantioselective Propargylic Alkylation of Propargylic Alcohols with Enecarbamates Using Ruthenium/Phosphoramide Hybrid Catalysts. Angewandte Chemie - International Edition, 2015, 54, 4060-4064.	7.2	51
59	BrÃ,nsted Acidâ€Catalyzed Enantioselective Synthesis of Isatin―Derived <i>N</i> , <i>S</i> â€Acetals. Advanced Synthesis and Catalysis, 2015, 357, 672-676.	2.1	52
60	Organocatalytic asymmetric hydroarylation of o-hydroxyl styrenes via remote activation of phenylhydrazones. Tetrahedron: Asymmetry, 2015, 26, 109-117.	1.8	18
62	Catalyst-Controlled Chemoselective Reaction of 3-Indolylmethanols with Cyclic Enaminones Leading to C2-Functionalized Indoles. Journal of Organic Chemistry, 2015, 80, 1841-1848.	1.7	24
63	Organocatalytic enantioselective Friedel–Crafts reaction: an efficient access to chiral isoindolo-β-carboline derivatives. Organic and Biomolecular Chemistry, 2015, 13, 4395-4398.	1.5	41
64	Organocatalysis on Tap: Enantioselective Continuous Flow Processes Mediated by Solidâ€Supported Chiral Organocatalysts. European Journal of Organic Chemistry, 2015, 2015, 1173-1188.	1.2	105
65	Bifunctional Amine‣quaramides: Powerful Hydrogenâ€Bonding Organocatalysts for Asymmetric Domino/Cascade Reactions. Advanced Synthesis and Catalysis, 2015, 357, 253-281.	2.1	469
66	Pd(II)-Catalyzed Enantioselective Synthesis of P-Stereogenic Phosphinamides via Desymmetric C–H Arylation. Journal of the American Chemical Society, 2015, 137, 632-635.	6.6	183
67	Organocatalytic Asymmetric Cascade Reactions of 7â€Vinylindoles: Diastereo―and Enantioselective Synthesis of C7â€Functionalized Indoles. Chemistry - A European Journal, 2015, 21, 3465-3471.	1.7	90
68	Kinetic Resolution of Racemic Amino Alcohols through Intermolecular Acetalization Catalyzed by a Chiral BrÃ,nsted Acid. Journal of the American Chemical Society, 2015, 137, 1048-1051.	6.6	60
69	Benzothiazoline: Versatile Hydrogen Donor for Organocatalytic Transfer Hydrogenation. Accounts of Chemical Research, 2015, 48, 388-398.	7.6	146
70	Directing Group Assisted Nucleophilic Substitution of Propargylic Alcohols via o-Quinone Methide Intermediates: BrĀˌnsted Acid Catalyzed, Highly Enantio- and Diastereoselective Synthesis of 7-Alkynyl-12a-acetamido-Substituted Benzoxanthenes. Organic Letters, 2015, 17, 648-651.	2.4	166
71	Robustness Screen in Enantioselective Catalysis Enabled Generation of Enantioenriched Heterocyclic Scaffolds in One Pot. Chemistry - A European Journal, 2015, 21, 3580-3584.	1.7	7
73	Catalytic Asymmetric Inverseâ€Electronâ€Demand Oxaâ€Diels–Alder Reaction of Inâ€Situ Generated <i>ortho</i> â€Quinone Methides with 3â€Methylâ€2â€Vinylindoles. Angewandte Chemie - International Edition, 2015, 54, 5460-5464.	7.2	305

#	ARTICLE Design and Synthesis of Chiral Binaphtholâ€Derived Bisphosphoric Acids and Their Application in the	IF	CITATIONS
74	Catalytic Enantioselective Hydrogenation of Quinolines. Asian Journal of Organic Chemistry, 2015, 4, 430-433.	1.3	9
75	Enantioselective Catalysis of Photochemical Reactions. Angewandte Chemie - International Edition, 2015, 54, 3872-3890.	7.2	534
76	BrÃ,nsted Acid Catalyzed Asymmetric Diels–Alder Reactions: Stereoselective Construction of Spiro[tetrahydrocarbazole-3,3â€2-oxindole] Framework. Journal of Organic Chemistry, 2015, 80, 3223-3232.	1.7	97
77	Enantioselective synthesis of 4,5,6,7-tetrahydroindoles via olefin cross-metathesis/intramolecular Friedel–Crafts alkylation reaction of pyrroles. Organic Chemistry Frontiers, 2015, 2, 476-480.	2.3	22
78	Enantioselective construction of a 2,2′-bisindolylmethane scaffold via catalytic asymmetric reactions of 2-indolylmethanols with 3-alkylindoles. Organic and Biomolecular Chemistry, 2015, 13, 7993-8000.	1.5	37
79	Double-Stereodifferentiation in Rhodium-Catalyzed [2 + 2 + 2] Cycloaddition: Chiral Ligand/Chiral Counterion Matched Pair. Organic Letters, 2015, 17, 3754-3757.	2.4	45
80	Silver-catalysed reactions of alkynes: recent advances. Chemical Society Reviews, 2015, 44, 8124-8173.	18.7	464
81	Development and Applications of Disulfonimides in Enantioselective Organocatalysis. Chemical Reviews, 2015, 115, 9388-9409.	23.0	256
82	Design of Modified Amine Transfer Reagents Allows the Synthesis of α-Chiral Secondary Amines via CuH-Catalyzed Hydroamination. Journal of the American Chemical Society, 2015, 137, 9716-9721.	6.6	123
83	Silver(I)-Catalyzed Regioselective Construction of Highly Substituted α-Naphthols and Its Application toward Expeditious Synthesis of Lignan Natural Products. Organic Letters, 2015, 17, 3446-3449.	2.4	68
84	A Synthesis of Dihydrofuran-3(2 <i>H</i>)-ones. Journal of Organic Chemistry, 2015, 80, 6839-6845.	1.7	10
85	Chiral Phosphoric Acid Catalyzed Asymmetric Synthesis of 2-Substituted 2,3-Dihydro-4-quinolones by a Protecting-Group-Free Approach. Organic Letters, 2015, 17, 3202-3205.	2.4	50
86	Direct Interconversion of BINOL and H8-BINOL-Based Chiral BrÃ,nsted Acids Using Single-Step Red/Ox Manipulations. Organic Letters, 2015, 17, 3774-3777.	2.4	22
87	Stronger BrÃ,nsted Acids: Recent Progress. Chemical Reviews, 2015, 115, 9277-9306.	23.0	570
88	Joint Experimental, in Silico, and NMR Studies toward the Rational Design of Iminium-Based Organocatalyst Derived from Renewable Sources. Journal of Organic Chemistry, 2015, 80, 7626-7634.	1.7	28
89	Organocatalytic Asymmetric Tandem Nazarov Cyclization/Semipinacol Rearrangement: Rapid Construction of Chiral Spiro[4.4]nonane-1,6-diones. Journal of the American Chemical Society, 2015, 137, 8344-8347.	6.6	85
90	Dynamic covalent binding and chirality sensing of mono secondary amines with a metal-templated assembly. Tetrahedron, 2015, 71, 3515-3521.	1.0	25
91	Catalytic Enantioselective Intermolecular Desymmetrization of Azetidines. Journal of the American Chemical Society, 2015, 137, 5895-5898.	6.6	56

#	Article	IF	CITATIONS
93	Formal Asymmetric Organocatalytic [3+2] Cyclization between Enecarbamates and 3â€Indolylmethanols: Rapid Access to 3â€Aminocyclopenta[<i>b</i>]indoles. Chemistry - A European Journal, 2015, 21, 8399-8402.	1.7	46
94	Enantioselective synthesis of chiral heterocycles containing both chroman and pyrazolone derivatives catalysed by a chiral squaramide. Organic and Biomolecular Chemistry, 2015, 13, 5636-5645.	1.5	34
95	Catalytic Asymmetric Arylation of 3â€indolylmethanols: Enantioselective Synthesis of 3,3′â€Bis(indolyl)oxindoles with High Atom Economy. ChemCatChem, 2015, 7, 1211-1221.	1.8	69
96	Conformational Switching of a Foldamer in a Multicomponent System by pH-Filtered Selection between Competing Noncovalent Interactions. Journal of the American Chemical Society, 2015, 137, 6680-6691.	6.6	60
97	Triply Hydrogenâ€Bondâ€Directed Enantioselective Assembly of Pyrrolobenzoâ€1,4â€diazine Skeletons with Quaternary Stereocenters. Chemistry - A European Journal, 2015, 21, 9039-9043.	1.7	35
98	Enantioselective synthesis of bicyclo[3.n.1]alkanes by chiral phosphoric acid-catalyzed desymmetrizing Michael cyclizations. Chemical Science, 2015, 6, 3550-3555.	3.7	30
99	Diastereo- and Enantioselective Construction of 3,3′-Pyrrolidinyldispirooxindole Framework via Catalytic Asymmetric 1,3-Dipolar Cycloadditions. Journal of Organic Chemistry, 2015, 80, 5737-5744.	1.7	163
100	Palladium(II)/BrÃ,nsted Acidâ€Catalyzed Enantioselective Oxidative Carbocyclization–Borylation of Enallenes. Angewandte Chemie - International Edition, 2015, 54, 6024-6027.	7.2	72
101	Organocatalytic Reactions of Indoles with Quinone Imine Ketals: An Alternative Metalâ€Free Approach to Bioactive <i>meta</i> â€Indolylanilines. Advanced Synthesis and Catalysis, 2015, 357, 1283-1292.	2.1	13
102	Design, synthesis and applications of new families of chiral sulfonic acids. Tetrahedron: Asymmetry, 2015, 26, 251-261.	1.8	8
103	<i>Orthoâ€</i> Quinone Methides as Reactive Intermediates in Asymmetric BrÃ,nsted Acid Catalyzed Cycloadditions with Unactivated Alkenes by Exclusive Activation of the Electrophile. Angewandte Chemie - International Edition, 2015, 54, 5762-5765.	7.2	200
104	Enantioselective A ³ Reactions of Secondary Amines with a Cu(I)/Acid–Thiourea Catalyst Combination. Journal of the American Chemical Society, 2015, 137, 4650-4653.	6.6	98
105	Asymmetric Synthesis of 1,3â€Butadienylâ€2â€carbinols by the Homoallenylboration of Aldehydes with a Chiral Phosphoric Acid Catalyst. Angewandte Chemie - International Edition, 2015, 54, 7299-7302.	7.2	49
106	Highly Enantioselective SPINOLâ€Derived Phosphoric Acid Catalyzed Transfer Hydrogenation of Diverse C=N ontaining Heterocycles. European Journal of Organic Chemistry, 2015, 2015, 3344-3351.	1.2	46
107	Characterization of BrÃ,nsted Acid–Base Complexes by ¹⁹ F DOSY. Organic Letters, 2015, 17, 1429-1432.	2.4	15
108	Palladium-Catalyzed Asymmetric Arylation of C(sp ³)–H Bonds of Aliphatic Amides: Controlling Enantioselectivity Using Chiral Phosphoric Amides/Acids. Organic Letters, 2015, 17, 2458-2461.	2.4	167
109	Chiral Gold Phosphate Catalyzed Tandem Hydroamination/Asymmetric Transfer Hydrogenation Enables Access to Chiral Tetrahydroquinolines. Journal of Organic Chemistry, 2015, 80, 4754-4759.	1.7	43
110	Theoretical studies on the activation mechanism involving bifunctional tertiary amine–thioureas and isatylidene malononitriles. RSC Advances, 2015, 5, 34314-34318.	1.7	6

#	Article	IF	CITATIONS
111	Catalytic Enantioselective Intramolecular Azaâ€Điels–Alder Reactions. Angewandte Chemie - International Edition, 2015, 54, 6608-6612.	7.2	61
112	Charge-Enhanced Acidity and Catalyst Activation. Journal of the American Chemical Society, 2015, 137, 4678-4680.	6.6	37
113	H8-BINOL chiral imidodiphosphoric acid catalyzed highly enantioselective aza-Friedel–Crafts reactions of pyrroles and enamides/imines. Chemical Communications, 2015, 51, 8054-8057.	2.2	35
114	Synthesis and Evaluation of 5,5′-Bitetralone-Based Chiral Phosphoric Acids. Organic Letters, 2015, 17, 4976-4979.	2.4	18
115	Role of Ion-Pairs in BrÃ,nsted Acid Catalysis. ACS Catalysis, 2015, 5, 6630-6633.	5.5	21
116	Chiral phosphoric acid catalyzed oxidative kinetic resolution of cyclic secondary amine derivatives including tetrahydroquinolines by hydrogen transfer to imines. Chemical Communications, 2015, 51, 16648-16651.	2.2	35
117	2,6â€Bis(amido)benzoic Acid with Internal Hydrogen Bond as BrÃ,nsted Acid Catalyst for Friedel–Crafts Reaction of Indoles. Advanced Synthesis and Catalysis, 2015, 357, 2143-2149.	2.1	15
118	Synthesis and structures of a chiral phosphine–phosphoric acid ligand and its rhodium(I) complexes. Tetrahedron: Asymmetry, 2015, 26, 1245-1250.	1.8	6
119	Phosphoric Acid-Catalyzed Asymmetric Classic Passerini Reaction. Journal of the American Chemical Society, 2015, 137, 14039-14042.	6.6	74
120	Catalytic Kinetic Resolution of Biaryl Compounds. Chemistry - A European Journal, 2015, 21, 11644-11657.	1.7	166
121	Confined Acid-Catalyzed Asymmetric Carbonyl–Ene Cyclization. Journal of the American Chemical Society, 2015, 137, 13268-13271.	6.6	79
122	<i>Cinchona</i> Alkaloid Catalyzed Sulfa-Michael Addition Reactions Leading to Enantiopure β-Functionalized Cysteines. Journal of Organic Chemistry, 2015, 80, 10561-10574.	1.7	20
123	Boron Tribromide-Assisted Chiral Phosphoric Acid Catalyst for a Highly Enantioselective Diels–Alder Reaction of 1,2-Dihydropyridines. Journal of the American Chemical Society, 2015, 137, 13472-13475.	6.6	80
124	Enantioselective Organocatalytic Transfer Hydrogenation of 1,2-Dihydroquinoline through Formation of Aza- <i>o</i> -xylylene. Organic Letters, 2015, 17, 4125-4127.	2.4	57
125	The Future of Catalysis by Chiral Lewis Acids. Topics in Organometallic Chemistry, 2015, , 1-25.	0.7	2
126	Modular <i>P</i> -Chirogenic Phosphine-Sulfide Ligands: Clear Evidence for Both Electronic Effect and <i>P</i> -Chirality Driving Enantioselectivity in Palladium-Catalyzed Allylations. Organometallics, 2015, 34, 4340-4358.	1.1	25
127	Regio-, Diastereo-, and Enantioselective Nitroso-Diels–Alder Reaction of 1,3-Diene-1-carbamates Catalyzed by Chiral Phosphoric Acids. Journal of the American Chemical Society, 2015, 137, 11950-11953.	6.6	79
128	Enantioselective synthesis of fused heterocycles with contiguous stereogenic centers by chiral phosphoric acid catalyzed symmetry breaking. Chemical Communications, 2015, 51, 16107-16110.	2.2	16

#	Article	IF	CITATIONS
129	Diastereo- and enantioselective direct vinylogous Michael addition of γ-substituted butenolides to 2-enoylpyridines catalyzed by chiral bifunctional amine-squaramides. Chemical Communications, 2015, 51, 15835-15838.	2.2	60
130	Catalytic Chemo-, E/Z-, and Enantioselective Cyclizations of o-Hydroxybenzyl Alcohols with Dimedone-Derived Enaminones. Journal of Organic Chemistry, 2015, 80, 10016-10024.	1.7	64
131	Asymmetric Latent Carbocation Catalysis with Chiral Trityl Phosphate. Journal of the American Chemical Society, 2015, 137, 15576-15583.	6.6	67
132	More than just a game. Nature Chemistry, 2015, 7, 950-951.	6.6	16
133	Atroposelective Synthesis of Axially Chiral Biaryldiols via Organocatalytic Arylation of 2-Naphthols. Journal of the American Chemical Society, 2015, 137, 15062-15065.	6.6	242
134	Experimental and Computational Study of the Catalytic Asymmetric 4Ï€â€Electrocyclization of Nâ€Heterocycles. Angewandte Chemie - International Edition, 2015, 54, 2762-2765.	7.2	50
135	Mechanistic Insights on Cooperative Catalysis through Computational Quantum Chemical Methods. ACS Catalysis, 2015, 5, 480-503.	5.5	88
136	Enantioselective Construction of Spiro[indoline-3,2′-pyrrole] Framework via Catalytic Asymmetric 1,3-Dipolar Cycloadditions Using Allenes as Equivalents of Alkynes. Journal of Organic Chemistry, 2015, 80, 512-520.	1.7	126
137	Silica gel-supported BrÃ,nsted acid: reactions in the column system. Tetrahedron Letters, 2015, 56, 3090-3092.	0.7	13
138	Chiral BrÃ,nsted Acid-Catalyzed Stereoselective Mannich-Type Reaction of Azlactones with Aldimines. Journal of Organic Chemistry, 2015, 80, 590-594.	1.7	48
139	Catalytic, highly enantioselective, direct amination of enecarbamates. Chemical Communications, 2015, 51, 5383-5386.	2.2	28
140	γ-Silylboronates in the chiral BrÃ,nsted acid-catalysed allylboration of aldehydes. Chemical Communications, 2015, 51, 5246-5249.	2.2	41
141	Chiral Calcium–BINOL Phosphate Catalyzed Diastereo―and Enantioselective Synthesis of <i>syn</i> â€1,2â€Disubstituted 1,2â€Diamines: Scope and Mechanistic Studies. Chemistry - A European Journal, 2015, 21, 1704-1712.	1.7	34
142	Recent Advances in Dynamic Kinetic Resolution by Chiral Bifunctional (Thio)urea- and Squaramide-Based Organocatalysts. Molecules, 2016, 21, 1327.	1.7	22
143	New approaches to organocatalysis based on C–H and C–X bonding for electrophilic substrate activation. Beilstein Journal of Organic Chemistry, 2016, 12, 2834-2848.	1.3	53
144	BrÃˌnsted Acid-Catalyzed Cyanotritylation of Aldehydes by Trityl Isocyanide. Organic Letters, 2016, 18, 3562-3565.	2.4	15
145	Chiral BrÃ,nsted Acid Catalyzed Kinetic Resolutions. Asian Journal of Organic Chemistry, 2016, 5, 308-320.	1.3	42
146	Die Kationâ€Ï€â€Wechselwirkung in der Katalyse mit niedermolekularen Verbindungen. Angewandte Chemie, 2016, 128, 12784-12814.	1.6	49

#	Article	IF	CITATIONS
147	Asymmetric BrÃnsted Acid Catalyzed Substitution of Diaryl Methanols with Thiols and Alcohols for the Synthesis of Chiral Thioethers and Ethers. Angewandte Chemie - International Edition, 2016, 55, 4803-4807.	7.2	65
148	A Powerful Chiral Phosphoric Acid Catalyst for Enantioselective Mukaiyama–Mannich Reactions. Angewandte Chemie - International Edition, 2016, 55, 8970-8974.	7.2	44
149	Organoâ€lodine(III)â€Catalyzed Oxidative Phenol–Arene and Phenol–Phenol Crossâ€Coupling Reaction. Angewandte Chemie - International Edition, 2016, 55, 3652-3656.	7.2	98
150	Dynamic Kinetic Resolution Approach for the Asymmetric Synthesis of Tetrahydrobenzodiazepines Using Transfer Hydrogenation by Chiral Phosphoric Acid. Chemistry - A European Journal, 2016, 22, 8078-8083.	1.7	37
151	Organocatalytic Enantioselective Transfer Hydrogenation of βâ€Amino Nitroolefins. Advanced Synthesis and Catalysis, 2016, 358, 1561-1565.	2.1	22
152	Ringâ€Opening/Expansion Rearrangement of Cycloprop[2,3]indenâ€1â€ols Catalyzed by <i>pâ€</i> Toluenesulfonic Acid. Advanced Synthesis and Catalysis, 2016, 358, 2088-2092.	2.1	5
153	An Atropisomerically Enforced Phosphoric Acid for Organocatalytic Asymmetric Reactions. European Journal of Organic Chemistry, 2016, 2016, 3208-3216.	1.2	14
154	Asymmetric, Three omponent, Oneâ€Pot Synthesis of Spiropyrazolones and 2,5â€Chromenediones from Aldol Condensation/NHC atalyzed Annulation Reactions. Chemistry - A European Journal, 2016, 22, 5123-5127.	1.7	59
155	Chiral Phosphoric Acidâ€Catalyzed Enantioselective Formal [3+2] Cycloaddition of Azomethine Imines with Enecarbamates. Chemistry - A European Journal, 2016, 22, 8084-8088.	1.7	37
156	Organocatalytic Enantioselective Azaâ€Friedel–Crafts Reaction of Cyclic Ketimines with Pyrroles using Imidazolinephosphoric Acid Catalysts. Chemistry - A European Journal, 2016, 22, 9478-9482.	1.7	76
157	Diastereo―and Enantioselective Synthesis of Spiroâ€Pyrrolidineâ€PyrÂazolones by Squaramideâ€Catalyzed Cascade Azaâ€Michael/Michael Reactions. European Journal of Organic Chemistry, 2016, 2016, 2492-2499.	1.2	52
158	Intermediateâ€Dependent Unusual [4+3], [3+2] and Cascade Reactions of 3â€Indolylmethanols: Controllable Chemodivergent and Stereoselective Synthesis of Diverse Indole Derivatives. Advanced Synthesis and Catalysis, 2016, 358, 1259-1288.	2.1	42
159	Chiral Phosphoric Acid Catalyzed Kinetic Resolution of Indolines Based on a Selfâ€Redox Reaction. Angewandte Chemie, 2016, 128, 3200-3204.	1.6	18
160	Enantioselective Oxetane Ring Opening with Chloride: Unusual Use of Wet Molecular Sieves for the Controlled Release of HCl. Angewandte Chemie - International Edition, 2016, 55, 6954-6958.	7.2	63
161	Organocatalyzed Asymmetric Synthesis of Axially, Planar, and Helical Chiral Compounds. Chemistry - an Asian Journal, 2016, 11, 330-341.	1.7	97
162	A Powerful Chiral Phosphoric Acid Catalyst for Enantioselective Mukaiyama–Mannich Reactions. Angewandte Chemie, 2016, 128, 9116-9120.	1.6	11
163	The Cation–π Interaction in Smallâ€Molecule Catalysis. Angewandte Chemie - International Edition, 2016, 55, 12596-12624.	7.2	199
164	The Application of Nâ€Protected 3â€Vinylindoles in Chiral Phosphoric Acidâ€Catalyzed [3+2] Cyclization with 3â€Indolylmethanols: Monoactivation of the Catalyst to Vinyliminium. Advanced Synthesis and Catalysis, 2016, 358, 2017-2031.	2.1	64

	_
	Report
CITA	NLPORT

#	Article	IF	CITATIONS
165	Chiral Phosphoric Acid Catalyzed Asymmetric Ugi Reaction by Dynamic Kinetic Resolution of the Primary Multicomponent Adduct. Angewandte Chemie - International Edition, 2016, 55, 5282-5285.	7.2	95
166	Enantioselective Aza Michaelâ€Type Addition to Alkenyl Benzimidazoles Catalyzed by a Chiral Phosphoric Acid. Angewandte Chemie - International Edition, 2016, 55, 927-931.	7.2	55
167	Combining Organocatalysis with Centralâ€toâ€Axial Chirality Conversion: Atroposelective Hantzschâ€Type Synthesis of 4â€Arylpyridines. Angewandte Chemie - International Edition, 2016, 55, 1401-1405.	7.2	150
168	Chiral Phosphate in Rhodiumâ€Catalyzed Asymmetric [2+2+2] Cycloaddition: Ligand, Counterion, or Both?. Chemistry - A European Journal, 2016, 22, 8553-8558.	1.7	10
169	Stereoselective Synthesis of <i>P</i> ‣tereogenic <i>N</i> â€Phosphinyl Compounds. European Journal of Organic Chemistry, 2016, 2016, 255-259.	1.2	10
170	Chiral Imidodiphosphoric Acidsâ€Catalyzed Friedel–Crafts Reactions of Indoles/Pyrroles with 3â€Hydroxyâ€indolyloxindoles: Enantioselective Synthesis of 3,3â€Diaryloxindoles. Advanced Synthesis and Catalysis, 2016, 358, 808-815.	2.1	56
171	Rational Design of Amine Nucleophiles for Dynamic Kinetic Resolution of Azlactones Leading to Highly Enantioselective Synthesis of Bisamides. Asian Journal of Organic Chemistry, 2016, 5, 914-919.	1.3	14
172	Combining Organocatalysis with Centralâ€toâ€Axial Chirality Conversion: Atroposelective Hantzschâ€Type Synthesis of 4â€Arylpyridines. Angewandte Chemie, 2016, 128, 1423-1427.	1.6	68
173	Organoâ€lodine(III)â€Catalyzed Oxidative Phenol–Arene and Phenol–Phenol Crossâ€Coupling Reaction. Angewandte Chemie, 2016, 128, 3716-3720.	1.6	36
174	Enantioselective Oxetane Ring Opening with Chloride: Unusual Use of Wet Molecular Sieves for the Controlled Release of HCl. Angewandte Chemie, 2016, 128, 7068-7072.	1.6	16
175	Design chiraler Katalysatoren: Cyclopentadienâ€basierte BrÃ,nstedâ€ 5 Ã ¤ ren. Angewandte Chemie, 2016, 128, 7708-7710.	1.6	2
176	Phosphoric Acid-Catalyzed Asymmetric Synthesis of SPINOL Derivatives. Journal of the American Chemical Society, 2016, 138, 16561-16566.	6.6	88
177	Chiral BrÃ,nsted Acid atalyzed Enantioselective αâ€Amidoalkylation Reactions: A Joint Experimental and Predictive Study. ChemistryOpen, 2016, 5, 540-549.	0.9	21
178	Ligandâ€Accelerated Direct Câ^H Arylation of BINOL: A Rapid Oneâ€Step Synthesis of Racemic 3,3′â€Diaryl BINOLs. Angewandte Chemie, 2016, 128, 14322-14326.	1.6	26
179	"Dial Up and Lock In― Asymmetric Organo-BrÃ,nsted Acid Catalysis Incorporating Stable Isotopes. CheM, 2016, 1, 921-945.	5.8	6
180	Small Molecule-Assisted Exfoliation of Layered Zirconium Phosphate Nanoplatelets by Ionic Liquids. Nanoscale Research Letters, 2016, 11, 348.	3.1	26
181	An Enantioselective Bidentate Auxiliary Directed Palladium atalyzed Benzylic Câ^'H Arylation of Amines Using a BINOL Phosphate Ligand. Angewandte Chemie, 2016, 128, 15613-15617.	1.6	46
182	Lewis Acids. ACS Symposium Series, 2016, , 27-66.	0.5	9

#	Article	IF	CITATIONS
183	N-Boc-aminals as easily accessible precursors for less accessible N-Boc-imines: facile synthesis of optically active propargylamine derivatives using Mannich-type reactions. Tetrahedron, 2016, 72, 3687-3700.	1.0	25
184	A bifunctional chiral [2]catenane based on 1,1′-binaphthyl-phosphates. Chemical Communications, 2016, 52, 5977-5980.	2.2	60
185	Organocatalytic Asymmetric Reactions of Epoxides: Recent Progress. Chemistry - A European Journal, 2016, 22, 3632-3642.	1.7	106
186	A unified approach to pyrrole-embedded aza-heterocyclic scaffolds based on the RCM/isomerization/cyclization cascade catalyzed by a Ru/B-H binary catalyst system. RSC Advances, 2016, 6, 34428-34433.	1.7	10
187	Cofactor-Controlled Chirality of Tropoisomeric Ligand. Organometallics, 2016, 35, 1956-1963.	1.1	26
188	Dynamic Kinetic Resolution of Biaryl Lactones via a Chiral Bifunctional Amine Thiourea-Catalyzed Highly Atropo-enantioselective Transesterification. Journal of the American Chemical Society, 2016, 138, 6956-6959.	6.6	144
189	Symmetry in Cascade Chirality-Transfer Processes: A Catalytic Atroposelective Direct Arylation Approach to BINOL Derivatives. Journal of the American Chemical Society, 2016, 138, 5202-5205.	6.6	195
190	Structural and energetics aspects of a proposed mechanism for the phosphate-mediated Pictet–Spengler cyclization reaction: A computational study. Computational and Theoretical Chemistry, 2016, 1082, 1-10.	1.1	8
191	Catalytic Enantioselective Conversion of Epoxides to Thiiranes. Journal of the American Chemical Society, 2016, 138, 5230-5233.	6.6	54
192	Friedel–Crafts Alkylation of Indoles with <i>p</i> -Quinols: The Role of Hydrogen Bonding of Water for the Desymmetrization of the Cyclohexadienone System. Organic Letters, 2016, 18, 2224-2227.	2.4	54
193	Chiral Pyridinium Phosphoramide as a Dual BrÃ,nsted Acid Catalyst for Enantioselective Diels–Alder Reaction. Organic Letters, 2016, 18, 2004-2007.	2.4	38
194	Transition State Models for Understanding the Origin of Chiral Induction in Asymmetric Catalysis. Accounts of Chemical Research, 2016, 49, 1019-1028.	7.6	118
195	Organocatalytic Transfer Hydrogenation and Hydrosilylation Reactions. Topics in Current Chemistry, 2016, 374, 29.	3.0	20
196	Noncovalent Interactions in Organocatalysis and the Prospect of Computational Catalyst Design. Accounts of Chemical Research, 2016, 49, 1061-1069.	7.6	306
197	A Practical Guide for Predicting the Stereochemistry of Bifunctional Phosphoric Acid Catalyzed Reactions of Imines. Accounts of Chemical Research, 2016, 49, 1029-1041.	7.6	139
198	Chiral Phosphoric Acid Catalyzed Diastereo- and Enantioselective Mannich-Type Reaction between Enamides and Thiazolones. Organic Letters, 2016, 18, 2521-2523.	2.4	29
199	BrÃ,nsted Acid-Catalyzed Transfer Hydrogenation of Imines and Alkenes Using Cyclohexa-1,4-dienes as Dihydrogen Surrogates. Organic Letters, 2016, 18, 2463-2466.	2.4	39
200	A Disulfonimide Catalyst for Highly Enantioselective Mukaiyama–Mannich Reaction. Organic Letters, 2016, 18, 4974-4977.	2.4	21

Сітатіс	on Report	
Article	IF	CITATIONS
Catalytic Enantioselective and Regioselective [3+3] Cycloadditions Using 2â€Indolylmethanols as 3 C Building Blocks. Chemistry - A European Journal, 2016, 22, 17526-17532.	1.7	84
Sequential Deprotonation–Alkylation of Binaphthyloxy-Substituted Phosphonochalcogenoates: Chiral Tri- and Tetrasubstituted Carbon Centers Adjacent to a Phosphorus Atom. Organic Letters, 2016, 18, 5264-5267.	2.4	12
Chiral Phosphoric Acid Catalyzed Asymmetric Oxidative Dearomatization of Naphthols with Quinones. Organic Letters, 2016, 18, 5288-5291.	2.4	54
Organocatalytic Transfer Hydrogenation and Hydrosilylation Reactions. Topics in Current Chemistry Collections, 2016, , 105-144.	0.2	2
Development of Axially Chiral Cycloâ€Biaryldiol Ligands with Adjustable Dihedral Angles. Chemistry - A European Journal, 2016, 22, 17477-17484.	1.7	15
Enantioselective transfer hydrogenation, a key step for the synthesis of 3-aminotetrahydroquinolines. New Journal of Chemistry, 2016, 40, 9034-9037.	1.4	10
Polystyrene-Supported TRIP: A Highly Recyclable Catalyst for Batch and Flow Enantioselective Allylation of Aldehydes. ACS Catalysis, 2016, 6, 7647-7651.	5.5	77
Highly Enantioselective Allylic C–H Alkylation of Terminal Olefins with Pyrazol-5-ones Enabled by Cooperative Catalysis of Palladium Complex and BrÃ,nsted Acid. Journal of the American Chemical Society, 2016, 138, 14354-14361.	6.6	158
Catalytic Asymmetric Piancatelli Rearrangement: BrÃ,nsted Acid Catalyzed 4ï€â€Electrocyclization for the Synthesis of Multisubstituted Cyclopentenones. Angewandte Chemie - International Edition, 2016, 55, 14126-14130.	7.2	60
Enantioselective Protonation of Silyl Enol Ether Using Excited State Proton Transfer Dyes. Organic Letters, 2016, 18, 5416-5419.	2.4	36
Ligandâ€Accelerated Direct Câ^'H Arylation of BINOL: A Rapid Oneâ€Step Synthesis of Racemic 3,3′â€Di BINOLs. Angewandte Chemie - International Edition, 2016, 55, 14116-14120.	iaryl 7.2	73
Desymmetrization of acid anhydride with asymmetric esterification catalyzed by chiral phosphoric acid. Tetrahedron Letters, 2016, 57, 4098-4100.	0.7	20
Applications and stereoselective syntheses of P-chirogenic phosphorus compounds. Chemical Society Reviews, 2016, 45, 5771-5794.	18.7	333
Imidodiphosphoric acid catalysis. Tetrahedron, 2016, 72, 5247-5255.	1.0	17
Diastereo―and Enantioselective Construction of Dihydroisocoumarinâ€Based Spirooxindole Frameworks <i>via</i> Organocatalytic Tandem Reactions. Advanced Synthesis and Catalysis, 2016, 358, 2777-2790.	2.1	44
Concise Asymmetric Total Synthesis of <i>ent</i> â€Ancistrocladinium A. Advanced Synthesis and Catalysis, 2016, 358, 2883-2888.	2.1	12
Origin of Kinetic Resolution of Hydroxy Esters through Catalytic Enantioselective Lactonization by Chiral Phosphoric Acids. Organic Letters, 2016, 18, 3730-3733.	2.4	12

218	Enantiodivergent Atroposelective Synthesis of Chiral Biaryls by Asymmetric Transfer Hydrogenation: Chiral Phosphoric Acid Catalyzed Dynamic Kinetic Resolution. Angewandte Chemie, 2016, 128,	1.6	71
	11814-11818.		

#

#	Article	IF	CITATIONS
219	Enantiodivergent Atroposelective Synthesis of Chiral Biaryls by Asymmetric Transfer Hydrogenation: Chiral Phosphoric Acid Catalyzed Dynamic Kinetic Resolution. Angewandte Chemie - International Edition, 2016, 55, 11642-11646.	7.2	167
220	Application of Roof-Shape Amines as Chiral Solvating Agents for Discrimination of Optically Active Acids by NMR Spectroscopy: Study of Match–Mismatch Effect and Crystal Structure of the Diastereomeric Salts. Journal of Organic Chemistry, 2016, 81, 7384-7392.	1.7	22
221	Enantioconvergent Nucleophilic Substitution Reaction of Racemic Alkyne–Dicobalt Complex (Nicholas Reaction) Catalyzed by Chiral BrÃ,nsted Acid. Journal of the American Chemical Society, 2016, 138, 11038-11043.	6.6	37
222	Biocatalytic Dynamic Kinetic Resolution for the Synthesis of Atropisomeric Biaryl Nâ€Oxide Lewis Base Catalysts. Angewandte Chemie - International Edition, 2016, 55, 10755-10759.	7.2	87
223	Emerging Roles of in Situ Generated Quinone Methides in Metal-Free Catalysis. Journal of Organic Chemistry, 2016, 81, 10145-10153.	1.7	246
224	Novel Easily Recyclable Bifunctional Phosphonic Acid Carrying Tripeptides for the Stereoselective Michael Addition of Aldehydes with Nitroalkenes. Advanced Synthesis and Catalysis, 2016, 358, 34-40.	2.1	28
225	BrÃ,nstedâ€Säreâ€katalysierte Addition von Enamiden an <i>ortho</i> hinonmethidimine – ein effizienter und hoch enantioselektiver Zugang zu chiralen Tetrahydroacridinen. Angewandte Chemie, 2016, 128, 9941-9946.	1.6	29
226	Synthesis of Tetracyclic Tetrahydroâ€Î²â€carbolines by Acidâ€Promoted Oneâ€Pot Sequential Formation of Câ^'C and Câ^'N Bonds. Asian Journal of Organic Chemistry, 2016, 5, 1378-1387.	1.3	10
227	Synthesis of Optically Pure 3,3′-Disubstituted-1,1′-Bi-6-Methoxy-2-Phenol (BIPhOL) Derivatives via Diastereomeric Resolution. Journal of Organic Chemistry, 2016, 81, 8464-8469.	1.7	6
228	Counteranion-Controlled Unprecedented Diastereo- and Enantioselective Tandem Formal Povarov Reaction for Construction of Bioactive Octahydro-Dipyrroloquinolines. ACS Catalysis, 2016, 6, 6182-6190.	5.5	39
229	Molecular Design of a Chiral BrÃ,nsted Acid with Two Different Acidic Sites: Regio-, Diastereo-, and Enantioselective Hetero-Diels–Alder Reaction of Azopyridinecarboxylate with Amidodienes Catalyzed by Chiral Carboxylic Acid–Monophosphoric Acid. Journal of the American Chemical Society, 2016, 138, 11353-11359.	6.6	47
230	Enantioselective Oxidative Homocoupling and Cross-Coupling of 2-Naphthols Catalyzed by Chiral Iron Phosphate Complexes. Journal of the American Chemical Society, 2016, 138, 16553-16560.	6.6	209
231	Enantioselective Construction of Cyclic Enaminoneâ€Based 3â€Substituted 3â€Aminoâ€2â€oxindole Scaffolds <i>via</i> Catalytic Asymmetric Additions of Isatinâ€Derived Imines. Advanced Synthesis and Catalysis, 2016, 358, 3069-3083.	2.1	43
232	Origins of Selectivity and General Model for Chiral Phosphoric Acid-Catalyzed Oxetane Desymmetrizations. Journal of the American Chemical Society, 2016, 138, 12356-12359.	6.6	50
233	Competing Noncovalent Interactions Control the Stereoselectivity of Chiral Phosphoric Acid Catalyzed Ring Openings of 3-Substituted Oxetanes. ACS Catalysis, 2016, 6, 7222-7228.	5.5	41
234	Asymmetric Cycloetherification via the Kinetic Resolution of Alcohols Using Chiral Phosphoric Acid Catalysts. Chemistry Letters, 2016, 45, 1300-1303.	0.7	16
235	Biocatalytic Dynamic Kinetic Resolution for the Synthesis of Atropisomeric Biaryl Nâ€Oxide Lewis Base Catalysts. Angewandte Chemie, 2016, 128, 10913-10917.	1.6	32
236	Computing organic stereoselectivity – from concepts to quantitative calculations and predictions. Chemical Society Reviews, 2016, 45, 6093-6107.	18.7	175

#	Article	IF	CITATIONS
237	BrÃ,nsted Acid Catalyzed Addition of Enamides to <i>ortho</i> â€Quinone Methide Imines—An Efficient and Highly Enantioselective Synthesis of Chiral Tetrahydroacridines. Angewandte Chemie - International Edition, 2016, 55, 9788-9792.	7.2	77
238	Stereochemically Rich Polycyclic Amines from the Kinetic Resolution of Indolines through Intramolecular Povarov Reactions. Chemistry - A European Journal, 2016, 22, 10817-10820.	1.7	38
239	Metalâ€Free Oxidative Cross oupling Reaction of Thiophene Iodonium Salts with Pyrroles. European Journal of Organic Chemistry, 2016, 2016, 4294-4297.	1.2	13
240	Recent Developments in the Chiral BrÃ,nsted Acid atalyzed Allylboration Reaction with Polyfunctionalized Substrates. Chemical Record, 2016, 16, 2046-2060.	2.9	22
241	Facile and Selective Cross oupling of Phenols Using Selenium Dioxide. European Journal of Organic Chemistry, 2016, 2016, 4307-4310.	1.2	17
242	A Dual-Catalytic Strategy To Direct Asymmetric Radical Aminotrifluoromethylation of Alkenes. Journal of the American Chemical Society, 2016, 138, 9357-9360.	6.6	250
243	Bimetallic chiral nanoparticles as catalysts for asymmetric synthesis. Tetrahedron Letters, 2016, 57, 5168-5178.	0.7	15
244	Organocatalytic Enantioselective Vinylogous Pinacol Rearrangement Enabled by Chiral Ion Pairing. Angewandte Chemie, 2016, 128, 15637-15640.	1.6	23
245	Catalytic Asymmetric [3+2] Cycloadditions of Câ€3 Unsubstituted 2â€Indolylmethanols: Regioâ€, Diastereoâ€ and Enantioselective Construction of the Cyclopenta[<i>b</i>]indole Framework. Advanced Synthesis and Catalysis, 2016, 358, 3797-3808.	2.1	74
246	Organocatalytic Enantioselective Vinylogous Pinacol Rearrangement Enabled by Chiral Ion Pairing. Angewandte Chemie - International Edition, 2016, 55, 15411-15414.	7.2	53
247	An Enantioselective Bidentate Auxiliary Directed Palladiumâ€Catalyzed Benzylic Câ^'H Arylation of Amines Using a BINOL Phosphate Ligand. Angewandte Chemie - International Edition, 2016, 55, 15387-15391.	7.2	142
248	Synthesis of axially chiral heterobiaryl alkynes via dynamic kinetic asymmetric alkynylation. Chemical Communications, 2016, 52, 14121-14124.	2.2	45
249	Catalytic Enantioselective Azaâ€Piancatelli Rearrangement. Angewandte Chemie - International Edition, 2016, 55, 15125-15128.	7.2	49
250	An Arylation Strategy to Propargylamines: Catalytic Asymmetric Friedel–Craftsâ€type Arylation Reactions of Câ€Alkynyl Imines. Angewandte Chemie - International Edition, 2016, 55, 15142-15146.	7.2	60
251	BrĂ,nsted Acid Catalyzed [3 + 2]-Cycloaddition of Cyclic Enamides with <i>in Situ</i> Generated 2-Methide-2 <i>H</i> -indoles: Enantioselective Synthesis of Indolo[1,2- <i>a</i>]indoles. Organic Letters, 2016, 18, 5660-5663.	2.4	81
252	Catalytic Asymmetric Vinylogous Prins Cyclization: A Highly Diastereo- and Enantioselective Entry to Tetrahydrofurans. Journal of the American Chemical Society, 2016, 138, 14538-14541.	6.6	67
253	Gold- and BrÃ,nsted Acid-Catalyzed Cycloisomerization of 1,8-Diynyl Vinyl Acetates to Bicyclo[2.2.1]hept-2-en-7-ones. Organic Letters, 2016, 18, 5936-5939.	2.4	26
254	Catalytic Enantioselective Azaâ€Piancatelli Rearrangement. Angewandte Chemie, 2016, 128, 15349-15352.	1.6	11

#	Article	IF	CITATIONS
255	An Arylation Strategy to Propargylamines: Catalytic Asymmetric Friedel–Craftsâ€ŧype Arylation Reactions of Câ€Alkynyl Imines. Angewandte Chemie, 2016, 128, 15366-15370.	1.6	9
256	Catalytic Asymmetric Piancatelli Rearrangement: BrÃ,nsted Acid Catalyzed 4ï€â€Electrocyclization for the Synthesis of Multisubstituted Cyclopentenones. Angewandte Chemie, 2016, 128, 14332-14336.	1.6	16
258	A stereodynamic phosphoramidite ligand derived from 3,3′â€functionalized <i>ortho</i> â€biphenol and its rhodium(I) complex. Chirality, 2016, 28, 744-748.	1.3	8
259	Electrostatically Enhanced Phosphoric Acids: A Tool in Brønsted Acid Catalysis. Organic Letters, 2016, 18, 5812-5815.	2.4	20
260	Chiral Phosphoric Acid Catalyzed Asymmetric Ugi Reaction by Dynamic Kinetic Resolution of the Primary Multicomponent Adduct. Angewandte Chemie, 2016, 128, 5368-5371.	1.6	65
261	Remarkable Differences in Reactivity between Benzothiazoline and Hantzsch Ester as a Hydrogen Donor in Chiral Phosphoric Acid Catalyzed Asymmetric Reductive Amination of Ketones. Chemistry - an Asian Journal, 2016, 11, 274-279.	1.7	12
262	Enantioselective Aza Michaelâ€Type Addition to Alkenyl Benzimidazoles Catalyzed by a Chiral Phosphoric Acid. Angewandte Chemie, 2016, 128, 939-943.	1.6	12
263	Organocatalytic Enantioselective Synthesis of 1,4â€Dioxanes and Other Oxaâ€Heterocycles by Oxetane Desymmetrization. Angewandte Chemie, 2016, 128, 1900-1903.	1.6	25
264	Catalytic Asymmetric Prins Bicyclization for the <i>endo</i> â€Selective Formation of 2,6â€dioxabicyclo[2.2.2]octanes. Chemistry - A European Journal, 2016, 22, 6258-6261.	1.7	23
265	In situ generation of dihydropyridine for the enantioselective transfer hydrogenation of 1,4-benzoxazines. RSC Advances, 2016, 6, 54185-54188.	1.7	12
266	Enantioselective synthesis of chiral α,β-unsaturated γ-substituted butyrolactams by organocatalyzed direct asymmetric vinylogous Michael addition of α,β-unsaturated γ-butyrolactam to 2-enoylpyridines. Organic and Biomolecular Chemistry, 2016, 14, 6568-6576.	1.5	29
267	Organocatalytic enantioselective desymmetrisation. Chemical Society Reviews, 2016, 45, 5474-5540.	18.7	196
268	Chiral BrÃ,nsted Acid Catalyzed Enantioselective Phosphonylation of Allylamine via Oxidative Dehydrogenation Coupling. Organic Letters, 2016, 18, 3262-3265.	2.4	27
269	Reinvestigation of the photoreaction of 1,4-bis(2,4,6-triphenylpyridinio)benzene: Synthesis of a diazonia derivative of hexabenzoperylene by multiple photocyclization. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 331, 8-16.	2.0	4
270	Goldilocks Catalysts: Computational Insights into the Role of the 3,3′ Substituents on the Selectivity of BINOL-Derived Phosphoric Acid Catalysts. Journal of the American Chemical Society, 2016, 138, 7910-7917.	6.6	77
271	Chiral Phosphoric Acid Catalyzed [3 + 2] Cycloaddition and Tandem Oxidative [3 + 2] Cycloaddition: Asymmetric Synthesis of Substituted 3-Aminodihydrobenzofurans. Organic Letters, 2016, 18, 3422-3425.	2.4	57
272	Asymmetric Oxidative Nitroso-Diels–Alder Reaction of N-Arylhydroxylamines Catalyzed by a Chiral Phosphoric Acid. Journal of Organic Chemistry, 2016, 81, 10154-10159.	1.7	24
273	Phosphoric Acid Catalyzed Asymmetric 1,6 onjugate Addition of Thioacetic Acid to <i>para</i> â€Quinone Methides. Angewandte Chemie, 2016, 128, 1482-1486.	1.6	47

#	Article	IF	CITATIONS
274	Asymmetrische BrÄ̈,nsted-SÄ̃ ¤ re-katalysierte Substitution von Diarylmethanolen mit Thiolen und Alkoholen zur Synthese von chiralen Thioethern und Ethern. Angewandte Chemie, 2016, 128, 4882-4887.	1.6	26
275	Phosphoric Acid Catalyzed Asymmetric 1,6â€Conjugate Addition of Thioacetic Acid to <i>para</i> â€Quinone Methides. Angewandte Chemie - International Edition, 2016, 55, 1460-1464.	7.2	202
276	Organocatalytic Enantioselective Synthesis of 1,4â€Dioxanes and Other Oxaâ€Heterocycles by Oxetane Desymmetrization. Angewandte Chemie - International Edition, 2016, 55, 1868-1871.	7.2	78
277	Chiral Phosphoric Acid Catalyzed Kinetic Resolution of Indolines Based on a Selfâ€Redox Reaction. Angewandte Chemie - International Edition, 2016, 55, 3148-3152.	7.2	56
278	Chiral Catalyst Design: Cyclopentadieneâ€Based BrÃ,nsted Acids. Angewandte Chemie - International Edition, 2016, 55, 7582-7584.	7.2	5
279	BrÃ,nsted Acid Catalyzed [3+2] ycloaddition of 2â€Vinylindoles with Inâ€Situ Generated 2â€Methideâ€2 <i>H</i> â€indoles: Highly Enantioselective Synthesis of Pyrrolo[1,2â€ <i>a</i>]indoles. Chemistry - A European Journal, 2016, 22, 7074-7078.	1.7	88
280	Catalytic Asymmetric Cycloaddition of In Situâ€Generated <i>ortho</i> â€Quinone Methides and Azlactones by a Triple BrÃ,nsted Acid Activation Strategy. Chemistry - A European Journal, 2016, 22, 6774-6778.	1.7	74
281	Enzymatic approaches for the preparation of optically active non-centrochiral compounds. Tetrahedron, 2016, 72, 1257-1275.	1.0	30
282	A new generation of chiral phase-transfer catalysts. Organic and Biomolecular Chemistry, 2016, 14, 5367-5376.	1.5	115
283	The first catalytic asymmetric thioacetalization by chiral phosphoric acid catalysis. Organic and Biomolecular Chemistry, 2016, 14, 2205-2209.	1.5	12
284	Cationic Chiral Fluorinated Oxazaborolidines. More Potent, Second-Generation Catalysts for Highly Enantioselective Cycloaddition Reactions. Journal of the American Chemical Society, 2016, 138, 2443-2453.	6.6	57
285	Synthesis and characterization of chiral aza-macrocycles and study of their enantiomer recognition ability for organo-phosphoric acid and phosphonic acid derivatives by ³¹ P NMR and fluorescence spectroscopy. Organic and Biomolecular Chemistry, 2016, 14, 2742-2748.	1.5	15
286	Tailor-Made Supramolecular Chirogenic System Based on <i>C</i> _{<i>s</i>} -Symmetric Rigid Organophosphoric Acid Host and Amino Alcohols: Mechanistic Studies, Bulkiness Effect, and Chirality Sensing. Organic Letters, 2016, 18, 440-443.	2.4	17
287	BrÃ,nsted acid-catalysed conjugate addition of photochemically generated α-amino radicals to alkenylpyridines. Chemical Communications, 2016, 52, 3520-3523.	2.2	76
288	Diastereo- and enantioselective construction of an indole-based 2,3-dihydrobenzofuran scaffold via catalytic asymmetric [3+2] cyclizations of quinone monoimides with 3-vinylindoles. Chemical Communications, 2016, 52, 2968-2971.	2.2	61
289	Ligand-Accelerated Stereoretentive Suzuki–Miyaura Coupling of Unprotected 3,3′-Dibromo-BINOL. Journal of Organic Chemistry, 2016, 81, 745-750.	1.7	24
290	Perfluorinated Aryls in the Design of Chiral BrÃ,nsted Acid Catalysts: Catalysis of Enantioselective [4 + 2] Cycloadditions and Ene Reactions of Imines with Alkenes by Chiral Mono-Phosphoric Acids with Perfluoroaryls. ACS Catalysis, 2016, 6, 1198-1204.	5.5	35
291	Merging Chiral BrÃ,nsted Acid/Base Catalysis: An Enantioselective [4Â+ 2] Cycloaddition of <i>o</i> -Hydroxystyrenes with Azlactones. Journal of Organic Chemistry, 2016, 81, 1681-1688.	1.7	101

#	Article	IF	CITATIONS
292	Non-covalent organocatalysis in asymmetric oxidative C(sp ³)–H bond functionalization – broadening C–H bond coupling reactions. Organic Chemistry Frontiers, 2016, 3, 277-280.	2.3	9
293	Chiral BrÃุnsted acid-catalysed enantioselective synthesis of isoindolinone-derived N(acyl),S-acetals. Chemical Communications, 2016, 52, 2071-2074.	2.2	75
294	Enhancing the enantioselective recognition and sensing of chiral anions by halogen bonding. Chemical Communications, 2016, 52, 5527-5530.	2.2	74
296	Catalysis of Radical Reactions: A Radical Chemistry Perspective. Angewandte Chemie - International Edition, 2016, 55, 58-102.	7.2	998
297	Electrostatic Basis for Enantioselective BrÃ,nsted-Acid-Catalyzed Asymmetric Ring Openings of <i>meso</i> -Epoxides. ACS Catalysis, 2016, 6, 2681-2688.	5.5	56
298	Chiral BrÃ,nsted acid-catalyzed alkylation of C3-substituted indoles with o-hydroxybenzyl alcohols: highly enantioselective synthesis of diarylindol-2-ylmethanes and evaluation on their cytotoxicity. Tetrahedron: Asymmetry, 2016, 27, 307-316.	1.8	24
299	Discovery and enantiocontrol of axially chiral urazoles via organocatalytic tyrosine click reaction. Nature Communications, 2016, 7, 10677.	5.8	121
300	Enantioselective Total Synthesis of Lycoposerramine-Z Using Chiral Phosphoric Acid Catalyzed Intramolecular Michael Addition. Journal of Organic Chemistry, 2016, 81, 1899-1904.	1.7	25
301	N-Heterocyclic carbene catalysed 1,6-hydrophosphonylation of p-quinone methides and fuchsones: an atom economical route to unsymmetrical diaryl- and triarylmethyl phosphonates. Organic and Biomolecular Chemistry, 2016, 14, 5550-5554.	1.5	70
302	Organocatalytic Asymmetric Synthesis of Dihydrobenzoxazinones Bearing Trifluoromethylated Quaternary Stereocenters. Journal of Organic Chemistry, 2016, 81, 2019-2026.	1.7	56
303	Catalytic Asymmetric Synthesis of <i>anti</i> -α,β-Diamino Acid Derivatives. Organic Letters, 2016, 18, 696-699.	2.4	36
304	Asymmetric Catalysis Powered by Chiral Cyclopentadienyl Ligands. Journal of the American Chemical Society, 2016, 138, 3935-3941.	6.6	203
305	Tandem Long Distance Chain-Walking/Cyclization via RuH ₂ (CO)(PPh ₃) ₃ /BrÃุnsted Acid Catalysis: Entry to Aromatic Oxazaheterocycles. Organic Letters, 2016, 18, 642-645.	2.4	25
306	Phosphonoselenoic acid esters from the reaction between phosphoroselenoyl chlorides and Grignard reagents: synthetic and stereochemical aspects. RSC Advances, 2016, 6, 15180-15183.	1.7	11
307	Low-Mode Conformational Search Method with Semiempirical Quantum Mechanical Calculations: Application to Enantioselective Organocatalysis. Journal of Chemical Information and Modeling, 2016, 56, 347-353.	2.5	23
308	Enantioselective Construction of Functionalized Tetrahydrocarbazoles Enabled by Asymmetric Relay Catalysis of Gold Complex and Chiral BrÃ,nsted Acid. Organic Letters, 2016, 18, 1506-1509.	2.4	74
309	Chiral phosphoric acid catalyzed asymmetric addition of naphthols to para-quinone methides. Organic and Biomolecular Chemistry, 2016, 14, 5751-5754.	1.5	89
310	An aromatic ion platform for enantioselective BrÃ,nsted acid catalysis. Science, 2016, 351, 961-965.	6.0	115

#	Article	IF	Citations
311	QM/MM study on the enantioselectivity of spiroacetalization catalysed by an imidodiphosphoric acid catalyst: how confinement works. Organic and Biomolecular Chemistry, 2016, 14, 3031-3039.	1.5	24
312	Update and challenges in organo-mediated polymerization reactions. Progress in Polymer Science, 2016, 56, 64-115.	11.8	289
313	Intramolecular carbonyl-ene reactions in the synthesis of peri-oxygenated hydroaromatics. Tetrahedron, 2016, 72, 1758-1772.	1.0	9
314	Enantiodivergent Fluorination of Allylic Alcohols: Data Set Design Reveals Structural Interplay between Achiral Directing Group and Chiral Anion. Journal of the American Chemical Society, 2016, 138, 3863-3875.	6.6	116
315	Application of 3-Methyl-2-vinylindoles in Catalytic Asymmetric Povarov Reaction: Diastereo- and Enantioselective Synthesis of Indole-Derived Tetrahydroquinolines. Journal of Organic Chemistry, 2016, 81, 185-192.	1.7	89
316	Hydrogen Bonds-Enabled Design of a <i>C</i> ₁ -Symmetric Chiral BrÃ,nsted Acid Catalyst. ACS Catalysis, 2016, 6, 949-956.	5.5	42
317	The catalytic enantioselective synthesis of tetrahydroquinolines containing all-carbon quaternary stereocenters via the formation of aza-ortho-xylylene with 1,2-dihydroquinoline as a precursor. Chemical Communications, 2016, 52, 2304-2306.	2.2	29
318	An enantioselective three-component reaction of diazoacetates with indoles and enals by iridium/iminium co-catalysis. Chemical Communications, 2016, 52, 2736-2739.	2.2	42
319	Chiral phosphoric acid catalyzed enantioselective 1,3-dipolar cycloaddition reaction of azlactones. Chemical Communications, 2016, 52, 1377-1380.	2.2	55
320	The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2014. Coordination Chemistry Reviews, 2016, 317, 1-121.	9.5	11
321	Chiral BrÃ,nsted acid-catalyzed enantioselective Friedel–Crafts reaction of 2-methoxyfuran with aliphatic ketimines generated in situ. Chemical Science, 2016, 7, 1057-1062.	3.7	39
322	Catalytic asymmetric chemoselective 1,3-dipolar cycloadditions of an azomethine ylide with isatin-derived imines: diastereo- and enantioselective construction of a spiro[imidazolidine-2,3′-oxindole] framework. Chemical Communications, 2016, 52, 1804-1807.	2.2	136
323	Pd ^{II} /Ag ^I -Catalyzed Room-Temperature Reaction of γ-Hydroxy Lactams: Mechanism, Scope, and Antistaphylococcal Activity. Journal of Organic Chemistry, 2017, 82, 2193-2198.	1.7	19
324	Highly Atroposelective Synthesis of Arylpyrroles by Catalytic Asymmetric Paal–Knorr Reaction. Journal of the American Chemical Society, 2017, 139, 1714-1717.	6.6	255
325	Enantioselective Synthesis of Chiral Oxime Ethers: Desymmetrization and Dynamic Kinetic Resolution of Substituted Cyclohexanones. Angewandte Chemie, 2017, 129, 2494-2498.	1.6	11
326	Enantioselective Synthesis of Chiral Oxime Ethers: Desymmetrization and Dynamic Kinetic Resolution of Substituted Cyclohexanones. Angewandte Chemie - International Edition, 2017, 56, 2454-2458.	7.2	46
327	Palladium-Catalyzed Enantioselective C–H Activation of Aliphatic Amines Using Chiral Anionic BINOL-Phosphoric Acid Ligands. Journal of the American Chemical Society, 2017, 139, 1412-1415.	6.6	151
328	Enantioselective Hydrophosphonylation of <i>in Situ</i> Generated <i>N</i> -Acyl Ketimines Catalyzed by BINOL-Derived Phosphoric Acid. Organic Letters, 2017, 19, 476-479.	2.4	59

		REPORT	
#	ARTICLE A BrÃ,nsted acid catalysed enantioselective Biginelli reaction. Green Chemistry, 2017, 19, 1529-1535.	IF 4.6	Citations
	A New Class of Lowâ€Loading Catalysts for Highly Enantioselective, Metalâ€Free Imine Reduction of Wide		
330	General Applicability. ChemCatChem, 2017, 9, 941-945.	1.8	24
331	Protonation Behavior of 1,1′-Bi-2-naphthol and Insights into Its Acid-Catalyzed Atropisomerization. Organic Letters, 2017, 19, 532-535.	2.4	19
332	General Enantioselective Câ^'H Activation with Efficiently Tunable Cyclopentadienyl Ligands. Angewandte Chemie - International Edition, 2017, 56, 2429-2434.	7.2	287
333	Aerobic oxidative homocoupling reaction of anilides using heterogeneous metal catalysts. Tetrahedron Letters, 2017, 58, 973-976.	0.7	17
334	Catalytic Enantioselective Synthesis of Lactams through Formal [4+2] Cycloaddition of Imines with Homophthalic Anhydride. Angewandte Chemie - International Edition, 2017, 56, 2670-2674.	7.2	56
335	Catalytic Enantioselective Synthesis of Lactams through Formal [4+2] Cycloaddition of Imines with Homophthalic Anhydride. Angewandte Chemie, 2017, 129, 2714-2718.	1.6	10
336	General Enantioselective Câ^H Activation with Efficiently Tunable Cyclopentadienyl Ligands. Angewandte Chemie, 2017, 129, 2469-2474.	1.6	117
337	BrÃ,nsted Acid Catalyzed Oxygenative Bimolecular Friedel-Crafts-type Coupling of Ynamides. Angewandte Chemie, 2017, 129, 3724-3728.	1.6	29
338	BrÃ,nsted Acid Catalyzed Oxygenative Bimolecular Friedel–Craftsâ€ŧype Coupling of Ynamides. Angewandte Chemie - International Edition, 2017, 56, 3670-3674.	7.2	86
339	Enantioselective Hydroaminomethylation of Olefins Enabled by Rh/BrÃ,nsted Acid Relay Catalysis. Organic Letters, 2017, 19, 1076-1079.	2.4	38
340	Enantioselective Azaâ€Eneâ€type Reactions of Enamides with Gold Carbenes Generated from αâ€Diazoesters. Angewandte Chemie, 2017, 129, 3295-3299.	1.6	6
341	BrÃ,nsted acid-catalyzed aza-Mannich reaction of N-Boc aminals: access to multifunctional rhodanine/hydantoin derivatives. Research on Chemical Intermediates, 2017, 43, 4503-4516.	1.3	1
342	Recent advances in organocatalytic enantioselective transfer hydrogenation. Organic and Biomolecular Chemistry, 2017, 15, 2307-2340.	1.5	107
343	Palladium atalyzed Oxidative Cascade Carbonylative Spirolactonization of Enallenols. Angewandte Chemie, 2017, 129, 3269-3273.	1.6	10
344	Palladium atalyzed Oxidative Cascade Carbonylative Spirolactonization of Enallenols. Angewandte Chemie - International Edition, 2017, 56, 3221-3225.	7.2	40
345	Photocatalytic Phenol–Arene C–C and C–O Crossâ€Dehydrogenative Coupling. European Journal of Organic Chemistry, 2017, 2017, 2194-2204.	1.2	32
346	Chiral Calcium Phosphate Catalyzed Asymmetric Alkenylation Reaction of Arylglyoxals with 3-Vinylindoles. Organic Letters, 2017, 19, 1120-1123.	2.4	22

#	Article	IF	CITATIONS
347	Asymmetric Arylative Dearomatization of βâ€Naphthols Catalyzed by a Chiral Phosphoric Acid. Chemistry - A European Journal, 2017, 23, 5381-5385.	1.7	44
348	A catalytic enantioselective approach to tetrol bearing vicinal all-carbon quaternary stereogenic centers. Chemical Communications, 2017, 53, 3737-3740.	2.2	20
349	Acid- and Au(<scp>i</scp>)-mediated synthesis of hexathymidine-DNA-heterocycle chimeras, an efficient entry to DNA-encoded libraries inspired by drug structures. Chemical Science, 2017, 8, 3356-3361.	3.7	44
350	Functionalized Metal–Organic Framework as a Biomimetic Heterogeneous Catalyst for Transfer Hydrogenation of Imines. ACS Applied Materials & Interfaces, 2017, 9, 9772-9777.	4.0	37
351	BrÃ,nsted acid-catalyzed stereoselective [4+3] cycloadditions of ortho-hydroxybenzyl alcohols with N,N′-cyclic azomethine imines. Chemical Communications, 2017, 53, 2768-2771.	2.2	80
352	Squaramideâ€Catalyzed Asymmetric Reactions. Chemical Record, 2017, 17, 994-1018.	2.9	92
353	Harnessing a <i>p</i> â€Quinone Methide Intermediate in the Biomimetic Total Synthesis of the Highly Active Antibiotic 20â€Deoxyâ€Elansolid B1. Chemistry - A European Journal, 2017, 23, 5291-5298.	1.7	18
354	Phosphoric Acid Catalyzed 1,2â€Rearrangements of 3â€Hydroxyindolenines to Indoxyls and 2â€Oxindoles: Reagentâ€Controlled Regioselectivity Enabled by Dual Activation. European Journal of Organic Chemistry, 2017, 2017, 3134-3138.	1.2	25
355	Enantioselective Azaâ€Eneâ€type Reactions of Enamides with Gold Carbenes Generated from αâ€Diazoesters. Angewandte Chemie - International Edition, 2017, 56, 3247-3251.	7.2	28
356	Organocatalytic Nucleophilic Addition of Hydrazones to Imines: Synthesis of Enantioenriched Vicinal Diamines. Angewandte Chemie - International Edition, 2017, 56, 5612-5615.	7.2	45
357	Controlling the Reactivity of Ferrocenyl Carbocations: Routes to Enantiomerically Pure Chlorophosphites and Solidâ€State Characterization of a Benzopentalene Dimer. European Journal of Organic Chemistry, 2017, 2017, 2848-2854.	1.2	4
358	Cyclopentadiene-based BrÃ,nsted acid as a new generation of organocatalyst for transfer hydrogenation of 2-substituted quinoline derivatives. Tetrahedron Letters, 2017, 58, 2050-2053.	0.7	16
359	Rigidly Tethered Bisâ€phosphoric Acids: Generation of Tunable Chiral Fluorescent Frameworks and Unexpected Selectivity for the Detection of Ferric Ions. Chemistry - A European Journal, 2017, 23, 10058-10067.	1.7	13
360	Cationic polycyclization of ynamides: building up molecular complexity. Organic and Biomolecular Chemistry, 2017, 15, 4399-4416.	1.5	23
361	Organocatalytic Enantioselective Acyloin Rearrangement of αâ€Hydroxy Acetals to αâ€Alkoxy Ketones. Angewandte Chemie - International Edition, 2017, 56, 5858-5861.	7.2	54
362	Pd-catalyzed enantioselective C–H arylation of phosphinamides with boronic acids for the synthesis of P-stereogenic compounds. Tetrahedron: Asymmetry, 2017, 28, 522-531.	1.8	15
363	Asymmetric fluorinative dearomatization of tryptamine derivatives. Chemical Communications, 2017, 53, 5531-5534.	2.2	49
364	Diverse exploitation of BrÃ,nsted acid catalysts – paving the way for simple access to enantioenriched amines. Organic Chemistry Frontiers, 2017, 4, 1651-1654.	2.3	1

#	Article	IF	CITATIONS
365	Asymmetric synthesis of CF ₃ - and indole-containing tetrahydro-β-carbolines via chiral spirocyclic phosphoric acid-catalyzed aza-Friedel–Crafts reaction. Organic Chemistry Frontiers, 2017, 4, 1407-1410.	2.3	37
366	Mechanisms of Carbonyl Activation by BINOL <i>N</i> -Triflylphosphoramides: Enantioselective Nazarov Cyclizations. ACS Catalysis, 2017, 7, 3466-3476.	5.5	25
367	Reversing Enantioselectivity Using Noncovalent Interactions in Asymmetric Dearomatization of β-Naphthols: The Power of 3,3′ Substituents in Chiral Phosphoric Acid Catalysts. Organic Letters, 2017, 19, 2354-2357.	2.4	33
368	Enhanced reactivity and selectivity of asymmetric oxa-Michael addition of 2′-hydroxychalcones in carbon confined spaces. Chemical Communications, 2017, 53, 6029-6032.	2.2	23
369	Iron Phosphate Catalyzed Asymmetric Cross-Dehydrogenative Coupling of 2-Naphthols with β-Ketoesters. Organic Letters, 2017, 19, 2917-2920.	2.4	55
370	Construction of Chiral Tetrahydroâ€Î²â€Carbolines: Asymmetric Pictet–Spengler Reaction of Indolyl Dihydropyridines. Angewandte Chemie, 2017, 129, 7548-7551.	1.6	30
371	Diastereo- and enantioselective construction of spirooxindole scaffolds through a catalytic asymmetric [3 + 3] cycloaddition. Organic and Biomolecular Chemistry, 2017, 15, 4794-4797.	1.5	29
372	Catalytic Asymmetric 1,2â€Difunctionalization of Indolenines with αâ€(Benzothiazolâ€2â€ylsulfonyl) Carbonyl Compounds. Advanced Synthesis and Catalysis, 2017, 359, 2549-2556.	2.1	17
373	Solid Supported Chiral <i>N</i> â€Picolylimidazolidinones: Recyclable Catalysts for the Enantioselective, Metal―and Hydrogenâ€Free Reduction of Imines in Batch and in Flow Mode. Advanced Synthesis and Catalysis, 2017, 359, 2375-2382.	2.1	34
374	Silverâ€Catalyzed Biomimetic Transfer Hydrogenation of Nâ€Heteroaromatics with Hantzsch Esters as NADH Analogues. ChemistrySelect, 2017, 2, 3976-3979.	0.7	10
375	Chiral Phosphoric Acid-Catalyzed Kinetic Resolution via Amide Bond Formation. Journal of the American Chemical Society, 2017, 139, 6855-6858.	6.6	24
376	Achiral Pyridine Ligandâ€Enabled Enantioselective Radical Oxytrifluoromethylation of Alkenes with Alcohols. Angewandte Chemie, 2017, 129, 9009-9012.	1.6	97
377	Achiral Pyridine Ligandâ€Enabled Enantioselective Radical Oxytrifluoromethylation of Alkenes with Alcohols. Angewandte Chemie - International Edition, 2017, 56, 8883-8886.	7.2	124
378	Chiral BrÃ,nsted Acidâ€Catalyzed Asymmetric Synthesis of <i>N</i> â€Arylâ€ <i>cis</i> â€aziridine Carboxylate Esters. Angewandte Chemie, 2017, 129, 5406-5410.	1.6	4
379	Construction of Chiral Tetrahydroâ€Î²â€€arbolines: Asymmetric Pictet–Spengler Reaction of Indolyl Dihydropyridines. Angewandte Chemie - International Edition, 2017, 56, 7440-7443.	7.2	84
380	Organocatalytic Enantioselective Acyloin Rearrangement of αâ€Hydroxy Acetals to αâ€Alkoxy Ketones. Angewandte Chemie, 2017, 129, 5952-5955.	1.6	20
381	Organocatalytic Nucleophilic Addition of Hydrazones to Imines: Synthesis of Enantioenriched Vicinal Diamines. Angewandte Chemie, 2017, 129, 5704-5707.	1.6	17
382	Decrypting Transition States by Light: Photoisomerization as a Mechanistic Tool in BrÃ,nsted Acid Catalysis. Journal of the American Chemical Society, 2017, 139, 6752-6760.	6.6	31

<u> </u>			~	
СП	ΆΤΙ	ON.	REPO	DRT

#	Article	IF	CITATIONS
383	Enantioselective [4 + 2] Cycloaddition of o-Quinone Methides and Vinyl Sulfides: Indirect Access to Generally Substituted Chiral Chromanes. Organic Letters, 2017, 19, 2334-2337.	2.4	108
384	Phenolic Activation in Chiral BrĄ̃nsted Acid-Catalyzed Intramolecular α-Amidoalkylation Reactions for the Synthesis of Fused Isoquinolines. ACS Omega, 2017, 2, 2706-2718.	1.6	12
385	Catalytic Enantioselective Azaâ€pinacol Rearrangement. Angewandte Chemie, 2017, 129, 9345-9349.	1.6	18
386	Regiodivergent Glycosylations of 6-Deoxy-erythronolide B and Oleandomycin-Derived Macrolactones Enabled by Chiral Acid Catalysis. Journal of the American Chemical Society, 2017, 139, 8570-8578.	6.6	63
387	BrÃ,nsted acid-catalysed enantioselective construction of axially chiral arylquinazolinones. Nature Communications, 2017, 8, 15489.	5.8	115
388	Catalytic Asymmetric [3+3] Cycloaddition of Azomethine Ylides with C3‣ubstituted 2â€Indolylmethanols. Advanced Synthesis and Catalysis, 2017, 359, 2660-2670.	2.1	51
389	Visibleâ€Lightâ€Mediated Dehydrogenative Crossâ€Coupling: Synthesis of Nonsymmetrical Atropisomeric Biaryls. Asian Journal of Organic Chemistry, 2017, 6, 1402-1407.	1.3	12
390	Kinetic resolution of indolines through reductive amination of aldehydes by chiral BrÃ,nsted acid. Tetrahedron Letters, 2017, 58, 2993-2996.	0.7	4
391	Katalytische asymmetrische konjugierte Addition von Indolizinen an α,βâ€ungesÃætigte Ketone. Angewandte Chemie, 2017, 129, 8075-8078.	1.6	13
392	Enantio- and Diastereoselective Cyclopropanation of β,γ-Unsaturated α-Ketoester by a Chiral Phosphate/Indium(III) Complex. Organic Letters, 2017, 19, 3331-3334.	2.4	32
393	Complexity in Acid–Base Titrations: Multimer Formation Between Phosphoric Acids and Imines. Chemistry - A European Journal, 2017, 23, 10853-10860.	1.7	12
394	Recent progress in organocatalytic asymmetric total syntheses of complex indole alkaloids. National Science Review, 2017, 4, 381-396.	4.6	105
395	An Enantioselective Multicomponent Carbonyl Allylation of Aldehydes with Dienes and Alkynyl Bromides Enabled by Chiral Palladium Phosphate. Advanced Synthesis and Catalysis, 2017, 359, 2383-2389.	2.1	23
396	Enantioselective Cycloaddition of Styrenes with Aldimines Catalyzed by a Chiral Magnesium Potassium Binaphthyldisulfonate Cluster as a Chiral BrĀʿnsted Acid Catalyst. Journal of the American Chemical Society, 2017, 139, 8424-8427.	6.6	41
397	Organocatalytic Redox Deracemization of Cyclic Benzylic Ethers Enabled by An Acetal Pool Strategy. Angewandte Chemie, 2017, 129, 5198-5202.	1.6	12
398	Suzuki Crossâ€Coupling for Postâ€Complexation Derivatization of Nonâ€Racemic Bisâ€Cyclometalated Iridium(III) Complexes. Chemistry - A European Journal, 2017, 23, 12363-12371.	1.7	6
399	Catalytic Asymmetric Conjugate Addition of Indolizines to α,βâ€Unsaturated Ketones. Angewandte Chemie - International Edition, 2017, 56, 7967-7970.	7.2	64
400	Functional Mechanically Interlocked Molecules: Asymmetric Organocatalysis with a Catenated Bifunctional BrÄ _s nsted Acid. Angewandte Chemie - International Edition, 2017, 56, 11456-11459.	7.2	88

	CITATION	Report	
#	Article	IF	Citations
401	Stereoselective SN1-Type Reaction of Enols and Enolates. Synthesis, 2017, 49, 3433-3443.	1.2	22
402	Catalytic Enantioselective Azaâ€pinacol Rearrangement. Angewandte Chemie - International Edition, 2017, 56, 9217-9221.	7.2	46
403	Development of Chiral, Bifunctional Thiosquaramides: Enantioselective Michael Additions of Barbituric Acids to Nitroalkenes. Journal of the American Chemical Society, 2017, 139, 5297-5300.	6.6	68
404	<i>cis</i> cisâ€4â€Alkoxydialkyl―and <i>cis</i> â€4â€Alkoxydiarylprolinol Organocatalysts: High Throughput Experimentation (HTE)â€Based and Design of Experiments (DoE)â€Guided Development of a Highly Enantioselective <i>aza</i> azaatalysts: 2017, 359, 2414-2424.	2.1	24
405	Chiral BrÃ,nsted Acid atalyzed Asymmetric Synthesis of <i>N</i> â€Arylâ€ <i>cis</i> â€aziridine Carboxylate Esters. Angewandte Chemie - International Edition, 2017, 56, 5322-5326.	7.2	31
406	Efficient Catalytic Kinetic Resolution of Spiroâ€epoxyoxindoles with Concomitant Asymmetric Friedel–Crafts Alkylation of Indoles. Angewandte Chemie - International Edition, 2017, 56, 5332-5335.	7.2	69
407	Catalytic Asymmetric Nâ€Alkylation of Indoles and Carbazoles through 1,6â€Conjugate Addition of Azaâ€ <i>para</i> â€quinone Methides. Angewandte Chemie - International Edition, 2017, 56, 4583-4587.	7.2	118
408	Catalytic asymmetric radical aminoperfluoroalkylation and aminodifluoromethylation of alkenes to versatile enantioenriched-fluoroalkyl amines. Nature Communications, 2017, 8, 14841.	5.8	134
409	Catalytic Asymmetric Nâ€Alkylation of Indoles and Carbazoles through 1,6â€Conjugate Addition of Azaâ€ <i>para</i> â€quinone Methides. Angewandte Chemie, 2017, 129, 4654-4658.	1.6	30
410	Palladiumâ€Catalyzed Enantioselective Synthesis of 2â€Aryl Cyclohexâ€2â€enone Atropisomers: Platform Molecules for the Divergent Synthesis of Axially Chiral Biaryl Compounds. Angewandte Chemie - International Edition, 2017, 56, 4777-4781.	7.2	90
411	Palladiumâ€Catalyzed Enantioselective Synthesis of 2â€Aryl Cyclohexâ€2â€enone Atropisomers: Platform Molecules for the Divergent Synthesis of Axially Chiral Biaryl Compounds. Angewandte Chemie, 2017, 129, 4855-4859.	1.6	25
412	BrĄ̃nsted acid-catalyzed, enantioselective synthesis of 1,4-dihydroquinoline-3-carboxylates via in situ generated ortho-quinone methide imines. Organic and Biomolecular Chemistry, 2017, 15, 3706-3716.	1.5	35
413	Efficient Catalytic Kinetic Resolution of Spiroâ€epoxyoxindoles with Concomitant Asymmetric Friedel–Crafts Alkylation of Indoles. Angewandte Chemie, 2017, 129, 5416-5419.	1.6	20
414	Concise catalytic asymmetric total syntheses of ancistrocladinium A and its atropdiastereomer. Organic Chemistry Frontiers, 2017, 4, 1341-1349.	2.3	5
415	Organocatalytic Redox Deracemization of Cyclic Benzylic Ethers Enabled by An Acetal Pool Strategy. Angewandte Chemie - International Edition, 2017, 56, 5116-5120.	7.2	53
416	Highâ€Pressure Accelerated Enantioselective Addition of Indoles to Trifluoromethyl Ketones with a Low Loading of Chiral BINOLâ€Derived Phosphoric Acid. ChemCatChem, 2017, 9, 2453-2456.	1.8	17
417	Enantioselective Direct α-Arylation of Pyrazol-5-ones with 2-Indolylmethanols via Organo-Metal Cooperative Catalysis. Organic Letters, 2017, 19, 1542-1545.	2.4	68
418	Bifunctional Tripeptide with a Phosphonic Acid as a BrÃ,nsted Acid for Michael Addition: Mechanistic Insights. Chemistry - A European Journal, 2017, 23, 6654-6662.	1.7	13

#	Article	IF	CITATIONS
419	BrÃ,nsted Acid Catalysis in Visibleâ€Lightâ€Induced [2+2]â€Photocycloaddition Reactions of Enone Dithianes. Angewandte Chemie - International Edition, 2017, 56, 4337-4341.	7.2	38
420	BrÃ,nstedâ€Säreâ€Katalyse der [2+2]â€Photocycloaddition von Enondithianen bei Bestrahlung mit sichtbarem Licht. Angewandte Chemie, 2017, 129, 4401-4405.	1.6	17
421	Organocatalytic Enantioselective Amination of 2-Substituted Indolin-3-ones: A Strategy for the Synthesis of Chiral α-Hydrazino Esters. Organic Letters, 2017, 19, 170-173.	2.4	35
422	Synthesis of a novel sterically hindered chiral cyclic phosphoric acid derived from l-tartaric acid and application to the asymmetric catalytic Biginelli reaction. Tetrahedron: Asymmetry, 2017, 28, 69-74.	1.8	18
423	Scalable and Selective Preparation of 3,3′,5,5′-Tetramethyl-2,2′-biphenol. Organic Process Research and Development, 2017, 21, 79-84.	1.3	4
424	Catalytic asymmetric substitution of ortho-hydroxybenzyl alcohols with tetronic acid-derived enamines: enantioselective synthesis of tetronic acid-derived diarylmethanes. Organic Chemistry Frontiers, 2017, 4, 358-368.	2.3	32
425	Synthesis of annulated bis-indoles through Au(<scp>i</scp>)/BrÃ,nsted acid-catalyzed reactions of (1H-indol-3-yl)(aryl)methanols with 2-(arylethynyl)-1H-indoles. Organic and Biomolecular Chemistry, 2017, 15, 863-869.	1.5	32
426	Self-Supported BINOL-Derived Phosphoric Acid Based on a Chiral Carbazolic Porous Framework. Organic Letters, 2017, 19, 6072-6075.	2.4	24
427	Asymmetric synthesis of dihydrocoumarins via the organocatalytic hetero-Diels–Alder reaction of ortho-quinone methides. Organic and Biomolecular Chemistry, 2017, 15, 8743-8747.	1.5	85
428	2,6-(Diphenylmethyl)-Aryl-Substituted Neutral and Anionic Phosphates: Approaches to H-Bonded Dimeric Molecular Structures. ChemistrySelect, 2017, 2, 8898-8910.	0.7	10
429	Direct Synthesis of <i>N</i> -Alkyl Arylglycines by Organocatalytic Asymmetric Transfer Hydrogenation of <i>N</i> -Alkyl Aryl Imino Esters. Organic Letters, 2017, 19, 5541-5544.	2.4	14
430	Catalytic Enantioselective Synthesis of Marilineâ€A and Related Isoindolinones through a Biomimetic Approach. Angewandte Chemie, 2017, 129, 15555-15559.	1.6	18
431	Catalytic Enantioselective Synthesis of Marilineâ€A and Related Isoindolinones through a Biomimetic Approach. Angewandte Chemie - International Edition, 2017, 56, 15353-15357.	7.2	66
432	Activation Mode and Origin of Selectivity in Chiral Phosphoric Acid-Catalyzed Oxacycle Formation by Intramolecular Oxetane Desymmetrizations. ACS Catalysis, 2017, 7, 7332-7339.	5.5	45
433	Cooperative Effects between Chiral Cp ^x –Iridium(III) Catalysts and Chiral Carboxylic Acids in Enantioselective Câ^'H Amidations of Phosphine Oxides. Angewandte Chemie, 2017, 129, 15284-15288.	1.6	73
434	Catalytic asymmetric chemodivergent arylative dearomatization of tryptophols. Chemical Communications, 2017, 53, 12124-12127.	2.2	47
435	Enantioselective syntheses of atropisomers featuring a five-membered ring. Chemical Communications, 2017, 53, 12385-12393.	2.2	150
436	The iso-Nazarov reaction. Organic and Biomolecular Chemistry, 2017, 15, 9255-9274.	1.5	32

#	Article	IF	Citations
437	Importance of Electrostatic Effects in the Stereoselectivity of NHC-Catalyzed Kinetic Resolutions. Journal of the American Chemical Society, 2017, 139, 12441-12449.	6.6	39
438	Synthetic Studies Probing Elansolid Biosynthesis: A <i>para</i> â€Quinoneâ€Methideâ€Triggered Intramolecular Diels–Alder Reaction. European Journal of Organic Chemistry, 2017, 2017, 5582-5591.	1.2	7
439	Asymmetric Synthesis of Spirooxindole δ‣actones with Vicinal Tertiary and Quaternary Stereocenters via Regioâ€, Diastereoâ€, and Enantioselective Organocatalytic Vinylogous Aldol yclization Cascade Reaction. Advanced Synthesis and Catalysis, 2017, 359, 4043-4049.	2.1	33
440	Organocatalytic synthesis of chiral tetrasubstituted allenes from racemic propargylic alcohols. Nature Communications, 2017, 8, 567.	5.8	178
441	Enantioselective Construction of Cyclopenta[<i>b</i>]indole Scaffolds via the Catalytic Asymmetric [3 + 2] Cycloaddition of 2-Indolylmethanols with <i>p</i> -Hydroxystyrenes. Journal of Organic Chemistry, 2017, 82, 10226-10233.	1.7	48
442	Bond dissociation energy controlled Ïf-bond metathesis in alkaline-earth-metal hydride catalyzed dehydrocoupling of amines and boranes: a theoretical study. Inorganic Chemistry Frontiers, 2017, 4, 1813-1820.	3.0	18
443	Catalytic asymmetric C2-nucleophilic substitutions of C3-substituted indoles with ortho-hydroxybenzyl alcohols. Organic Chemistry Frontiers, 2017, 4, 2465-2479.	2.3	39
444	Catalyst-Controlled Chemoselective and Enantioselective Reactions of Tryptophols with Isatin-Derived Imines. ACS Catalysis, 2017, 7, 6984-6989.	5.5	94
445	Cooperative Effects between Chiral Cp ^x –Iridium(III) Catalysts and Chiral Carboxylic Acids in Enantioselective Câ°'H Amidations of Phosphine Oxides. Angewandte Chemie - International Edition, 2017, 56, 15088-15092.	7.2	156
446	Boosting Chemical Stability, Catalytic Activity, and Enantioselectivity of Metal–Organic Frameworks for Batch and Flow Reactions. Journal of the American Chemical Society, 2017, 139, 13476-13482.	6.6	110
447	Asymmetric synthesis of isoquinolinonaphthyridines catalyzed by a chiral BrÃ,nsted acid. Organic and Biomolecular Chemistry, 2017, 15, 6474-6477.	1.5	21
448	Phosphine-catalyzed remote α-C–H bond activation of alcohols or amines triggered by the radical trifluoromethylation of alkenes: reaction development and mechanistic insights. Organic Chemistry Frontiers, 2017, 4, 2139-2146.	2.3	29
449	Functional Mechanically Interlocked Molecules: Asymmetric Organocatalysis with a Catenated Bifunctional BrAֻnsted Acid. Angewandte Chemie, 2017, 129, 11614-11617.	1.6	35
450	Asymmetric BrÃ _, nsted acid catalysis with chiral carboxylic acids. Chemical Society Reviews, 2017, 46, 5889-5902.	18.7	126
451	Catalytic Regio―and Enantioselective [4+2] Annulation Reactions of Nonâ€activated Allenes by a Chiral Cationic Indium Complex. Angewandte Chemie, 2017, 129, 11007-11011.	1.6	2
452	Asymmetric Hydrogen Bonding Catalysis for the Synthesis of Dihydroquinazoline-Containing Antiviral, Letermovir. Journal of the American Chemical Society, 2017, 139, 10637-10640.	6.6	28
453	Chiral BrÃ,nsted Acid Catalyzed Enantioselective aza-Friedel–Crafts Reaction of Cyclic α-Diaryl <i>N</i> -Acyl Imines with Indoles. Journal of Organic Chemistry, 2017, 82, 8752-8760.	1.7	54
454	Enantioselective Oxidative (4+3) Cycloadditions between Allenamides and Furans through Bifunctional Hydrogenâ€Bonding/Ionâ€Pairing Interactions. Angewandte Chemie - International Edition, 2017, 56, 10535-10538.	7.2	54

#	Article	IF	Citations
" 455	Catalytic Regio―and Enantioselective [4+2] Annulation Reactions of Nonâ€activated Allenes by a Chiral	7.2	37
456	Cationic Indium Complex. Angewandte Chemie - International Edition, 2017, 56, 10867-10871. Transfer hydrogenation of ortho-hydroxybenzophenone ketimines catalysed by BINOL-derived phosphoric acid occurs by a 14-membered bifunctional transition structure. Organic and Biomolecular Chemistry, 2017, 15, 6943-6947.	1.5	14
457	Selecting Chiral BINOLâ€Derived Phosphoric Acid Catalysts: General Model To Identify Steric Features Essential for Enantioselectivity. Chemistry - A European Journal, 2017, 23, 14248-14260.	1.7	60
458	Enantioselective Anion Recognition by Chiral Halogen-Bonding [2]Rotaxanes. Journal of the American Chemical Society, 2017, 139, 12228-12239.	6.6	110
459	Enantioselective Oxidative (4+3) Cycloadditions between Allenamides and Furans through Bifunctional Hydrogenâ€Bonding/lonâ€Pairing Interactions. Angewandte Chemie, 2017, 129, 10671-10674.	1.6	13
460	Enantioselective Organocatalytic Intramolecular Azaâ€Diels–Alder Reaction. Angewandte Chemie, 2017, 129, 10709-10712.	1.6	13
461	Patent Review of Manufacturing Routes to Recently Approved PARP Inhibitors: Olaparib, Rucaparib, and Niraparib. Organic Process Research and Development, 2017, 21, 1227-1244.	1.3	41
462	Relay Catalysis: Manganese(III) Phosphate Catalyzed Asymmetric Addition of β-Dicarbonyls to <i>ortho</i> -Quinone Methides Generated by Catalytic Aerobic Oxidation. Organic Letters, 2017, 19, 4588-4591.	2.4	68
463	Acid promoted Ir–P^N complex catalyzed hydrogenation of heavily hindered 3,4-diphenyl-1,2-dihydronaphthalenes: asymmetric synthesis of lasofoxifene tartrate. Organic Chemistry Frontiers, 2017, 4, 2311-2322.	2.3	9
464	Solvent-controlled selective synthesis of biphenols and quinones via oxidative coupling of phenols. Chemical Communications, 2017, 53, 9616-9619.	2.2	29
465	Controlling the C(sp3)–C(sp2) Axial Conformation in the Enantioselective Friedel–Crafts-Type Alkylation of β-Naphthols with Inden-1-ones. Organic Letters, 2017, 19, 6692-6695.	2.4	23
466	Catalytic Asymmetric Radical Diamination of Alkenes. CheM, 2017, 3, 979-990.	5.8	115
467	Enantioselective synthesis of cyclic quaternary \hat{I}_\pm -amino acid derivatives by chiral phosphoric acid catalysis. Organic and Biomolecular Chemistry, 2017, 15, 6033-6041.	1.5	19
468	An asymmetric BrÃ,nsted acid-catalyzed Friedel–Crafts reaction of indoles with cyclic N-sulfimines. RSC Advances, 2017, 7, 34283-34286.	1.7	18
469	Molecular Recognition in Asymmetric Counteranion Catalysis: Understanding Chiral Phosphate-Mediated Desymmetrization. Journal of the American Chemical Society, 2017, 139, 8886-8896.	6.6	47
470	<i>Pyro</i> -Borates, <i>Spiro</i> -Borates, and Boroxinates of BINOL—Assembly, Structures, and Reactivity. Journal of the American Chemical Society, 2017, 139, 10267-10285.	6.6	24
471	Enantioselective Organocatalytic Intramolecular Azaâ€Điels–Alder Reaction. Angewandte Chemie - International Edition, 2017, 56, 10573-10576.	7.2	41
472	Design and Enantioselective Construction of Axially Chiral Naphthylâ€Indole Skeletons. Angewandte Chemie, 2017, 129, 122-127.	1.6	82

#	Article	IF	CITATIONS
473	Design and Enantioselective Construction of Axially Chiral Naphthylâ€Indole Skeletons. Angewandte Chemie - International Edition, 2017, 56, 116-121.	7.2	274
474	A mechanistic study of the Lewis acid–BrÃ,nsted base–BrÃ,nsted acid catalysed asymmetric Michael addition of diethyl malonate to cyclohexenone. Catalysis Science and Technology, 2017, 7, 90-101.	2.1	6
475	The BrÃ,nsted Acidâ€Catalyzed, Enantioselective Azaâ€Diels–Alder Reaction for the Direct Synthesis of Chiral Piperidones. Chemistry - A European Journal, 2017, 23, 513-518.	1.7	31
476	Diastereo- and enantioselective construction of biologically important pyrrolo[1,2-a]indole scaffolds via catalytic asymmetric [3 + 2] cyclodimerizations of 3-alkyl-2-vinylindoles. Organic Chemistry Frontiers, 2017, 4, 57-68.	2.3	28
477	Rhodium(III)â€Catalyzed Enantiotopic Câ^'H Activation Enables Access to <i>P</i> â€Chiral Cyclic Phosphinamides. Angewandte Chemie - International Edition, 2017, 56, 364-367.	7.2	206
478	Highly selective olefin-assisted palladium-catalyzed oxidative carbocyclization via remote olefin insertion. Chemical Science, 2017, 8, 616-620.	3.7	41
479	Rhodium(III)â€Catalyzed Enantiotopic Câ^'H Activation Enables Access to P â€Chiral Cyclic Phosphinamides. Angewandte Chemie, 2017, 129, 370-373.	1.6	89
480	Integration of aerobic oxidation and intramolecular asymmetric aza-Friedel–Crafts reactions with a chiral bifunctional heterogeneous catalyst. Chemical Science, 2017, 8, 1356-1359.	3.7	20
481	Enantioselective amine α-functionalization via palladium-catalysed C–H arylation of thioamides. Nature Chemistry, 2017, 9, 140-144.	6.6	272
482	BITHIENOLs: Promising <i>C</i> ₂ ymmetric Biheteroaromatic Diols for Organic Transformation. European Journal of Organic Chemistry, 2017, 2017, 861-870.	1.2	7
483	High diastereoselectivity induced by intermolecular hydrogen bonding in [3Â+Â2] cycloaddition reaction: experimental and computational mechanistic approaches. Journal of Physical Organic Chemistry, 2017, 30, e3629.	0.9	2
484	Click-binol-phosphoric acid catalysts in intramolecular enantioselective oxidative C H-bond functionalization. Journal of Molecular Catalysis A, 2017, 426, 572-585.	4.8	11
485	Sixteen isostructural phosphonate metal-organic frameworks with controlled Lewis acidity and chemical stability for asymmetric catalysis. Nature Communications, 2017, 8, 2171.	5.8	97
486	Synthesis of (R)-Modafinil via Organocatalyzed and Non-Heme Iron-Catalyzed Sulfoxidation Using H2O2 as an Environmentally Benign Oxidant. Symmetry, 2017, 9, 88.	1.1	5
487	The Design of Environmentally-Benign, High-Performance Organocatalysts for Asymmetric Catalysis. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2017, 75, 1141-1149.	0.0	0
488	Phosphoric Acid Catalyzed Asymmetric [2+2] Cyclization/Penicillin–Penillonic Acid Rearrangement. Angewandte Chemie - International Edition, 2018, 57, 4921-4925.	7.2	29
489	A Bird's Eye View of Atropisomers Featuring a Fiveâ€Membered Ring. European Journal of Organic Chemistry, 2018, 2018, 2417-2431.	1.2	127
490	Catalytic Asymmetric [2+3] Cyclizations of Azlactones with Azonaphthalenes. Angewandte Chemie - International Edition, 2018, 57, 5398-5402.	7.2	93

#	Article	IF	CITATIONS
491	Efficient access to chiral benzo[<i>c</i>]chromenes <i>via</i> asymmetric transfer hydrogenation of ketals. Organic Chemistry Frontiers, 2018, 5, 1280-1283.	2.3	9
492	Enhanced enantiostability of BINOL dimethyl ether under moderate acidic conditions. Mendeleev Communications, 2018, 28, 27-28.	0.6	5
493	Asymmetric Induction via a Helically Chiral Anion: Enantioselective Pentacarboxycyclopentadiene BrAֻnsted Acid-Catalyzed Inverse-Electron-Demand Diels–Alder Cycloaddition of Oxocarbenium Ions. Journal of the American Chemical Society, 2018, 140, 3523-3527.	6.6	55
494	Intramolecular Azaâ€Diels–Alder Reactions of <i>ortho</i> â€Quinone Methide Imines: Rapid, Catalytic, and Enantioselective Assembly of Benzannulated Quinolizidines. Angewandte Chemie - International Edition, 2018, 57, 4774-4778.	7.2	39
495	Organocatalytic Enantioselective Synthesis of Chiral Diarylmethylamines from Racemic Alcohols. Chinese Journal of Chemistry, 2018, 36, 587-593.	2.6	30
496	Dynamic Kinetic Resolution of Heterobiaryl Ketones by Zincâ€Catalyzed Asymmetric Hydrosilylation. Angewandte Chemie, 2018, 130, 3839-3843.	1.6	22
497	Catalytic Enantioselective 1,3â€Alkyl Shift in Alkyl Aryl Ethers: Efficient Synthesis of Optically Active 3,3′â€Diaryloxindoles. Angewandte Chemie - International Edition, 2018, 57, 5735-5739.	7.2	24
498	Boron Tribromideâ€Assisted Chiral Phosphoric Acid Catalysts for Enantioselective [2+2] Cycloaddition. Chemistry - an Asian Journal, 2018, 13, 2373-2377.	1.7	27
499	Cooperative Catalysis with Coupled Chiral Induction in 1,3â€Đipolar Cycloadditions of Azomethine Ylides. Chemistry - A European Journal, 2018, 24, 8092-8097.	1.7	12
500	Redox deracemization of 1,3,4,9-tetrahydropyrano[3,4- <i>b</i>]indoles. Chemical Communications, 2018, 54, 4445-4448.	2.2	16
501	Application of 7â€Indolylmethanols in Catalytic Asymmetric Arylations with Tryptamines: Enantioselective Synthesis of 7â€indolylmethanes. Advanced Synthesis and Catalysis, 2018, 360, 1850-1860.	2.1	29
502	Phosphoric Acid Catalyzed Asymmetric [2+2] Cyclization/Penicillin–Penillonic Acid Rearrangement. Angewandte Chemie, 2018, 130, 5015-5019.	1.6	13
503	Oxidative Asymmetric Azaâ€Friedel–Crafts Alkylation of Indoles with 3â€Indolinoneâ€2â€carboxylates Catalyzed by a BINOL Phosphoric Acid and Promoted by DDQ. Chemistry - an Asian Journal, 2018, 13, 1327-1334.	1.7	18
504	Enantioselective indium(<scp>i</scp>)-catalyzed [4 + 2] annulation of alkoxyallenes and β,γ-unsaturated α-keto esters. Organic Chemistry Frontiers, 2018, 5, 1787-1791.	2.3	15
505	Chiral BrÃ,nsted Acid Catalyzed Enantioselective Dehydrative Nazarov-Type Electrocyclization of Aryl and 2-Thienyl Vinyl Alcohols. Journal of the American Chemical Society, 2018, 140, 5834-5841.	6.6	33
506	Counterionâ€Induced Asymmetric Control in Ringâ€Opening of Azetidiniums: Facile Access to Chiral Amines. Angewandte Chemie, 2018, 130, 3825-3828.	1.6	17
507	Modular Synthesis of β-Amino Boronate Peptidomimetics. Journal of Organic Chemistry, 2018, 83, 7296-7302.	1.7	22
508	Intramolekulare Azaâ€Dielsâ€Alderâ€Reaktionen von <i>ortho</i> â€Chinon―methidiminen – ein schneller, katalytischer und enantioselektiver Aufbau benzanellierter Chinolizidine. Angewandte Chemie, 2018, 130, 4864-4868.	1.6	14

#	Article	IF	CITATIONS
509	Covalent or Non ovalent? A Mechanistic Insight into the Enantioselective BrÃ,nsted Acid Catalyzed Dearomatization of Indoles with Allenamides. ChemCatChem, 2018, 10, 2442-2449.	1.8	18
510	Synthesis of 1,1′â€Spirobiindaneâ€7,7′â€Disulfonic Acid and Disulfonimide: Application for Catalytic Asymmetric Aminalization. Chemistry - an Asian Journal, 2018, 13, 2378-2381.	1.7	22
511	Cooperative Catalysis-Enabled Asymmetric α-Arylation of Aldehydes Using 2-Indolylmethanols as Arylation Reagents. Journal of Organic Chemistry, 2018, 83, 5027-5034.	1.7	38
512	An asymmetric organocatalytic vinylogous Mannich reaction of 3-methyl-5-arylfuran-2(3 <i>H</i>)-ones with <i>N</i> -(2-pyridinesulfonyl) imines: enantioselective synthesis of Ĩ´-amino γ,γ-disubstituted butenolides. Organic and Biomolecular Chemistry, 2018, 16, 1636-1640.	1.5	14
513	Diastereo- and enantioselective construction of chiral cyclopenta[b]indole framework via a catalytic asymmetric tandem cyclization of 2-indolymethanols with 2-naphthols. Organic Chemistry Frontiers, 2018, 5, 1436-1445.	2.3	22
515	Chiral Phosphoric Acid Catalyzed Enantioselective Ring Expansion Reaction of 1,3-Dithiane Derivatives: Case Study of the Nature of Ion-Pairing Interaction. Journal of the American Chemical Society, 2018, 140, 2629-2642.	6.6	42
516	Organocatalytic asymmetric synthesis of benzazepinoindole derivatives with trifluoromethylated quaternary stereocenters by chiral phosphoric acid catalysts. Organic and Biomolecular Chemistry, 2018, 16, 1367-1374.	1.5	25
517	BrÃ,nsted Acids Enable Three Molecular Rearrangements of One 3-Alkylidene-2H-1,2-oxazine Molecule into Distinct Heterocyles. Organic Letters, 2018, 20, 1038-1041.	2.4	12
518	Direct Difluorination–Hydroxylation, Trifluorination, and C(sp ²)–H Fluorination of Enamides. Organic Letters, 2018, 20, 1042-1045.	2.4	33
519	Enhancing the potential of enantioselective organocatalysis with light. Nature, 2018, 554, 41-49.	13.7	466
520	Direct C3-arylations of 2-indolylmethanols with tryptamines and tryptophols <i>via</i> an umpolung strategy. Organic and Biomolecular Chemistry, 2018, 16, 1536-1542.	1.5	14
521	Revised Theoretical Model on Enantiocontrol in Phosphoric Acid Catalyzed <i>H</i> -Transfer Hydrogenation of Quinoline. Journal of Organic Chemistry, 2018, 83, 2779-2787.	1.7	13
522	Dicyclopentyl Dithiosquarate as an Intermediate for the Synthesis of Thiosquaramides. Organic Letters, 2018, 20, 514-517.	2.4	29
523	Enantioselective aza-Friedel–Crafts reaction of cyclic ketimines with indoles using chiral imidazoline–phosphoric acid catalysts. Chemical Communications, 2018, 54, 3811-3814.	2.2	41
524	Counterionâ€Induced Asymmetric Control in Ringâ€Opening of Azetidiniums: Facile Access to Chiral Amines. Angewandte Chemie - International Edition, 2018, 57, 3763-3766.	7.2	44
525	Dynamic Kinetic Resolution of Heterobiaryl Ketones by Zincâ€Catalyzed Asymmetric Hydrosilylation. Angewandte Chemie - International Edition, 2018, 57, 3777-3781.	7.2	77
526	Enantioselective Polyene Cyclization Catalyzed by a Chiral BrÃ,nsted Acid. Angewandte Chemie, 2018, 130, 2137-2141.	1.6	10
527	Chiral phosphoric acid catalysis: from numbers to insights. Chemical Society Reviews, 2018, 47, 1142-1158.	18.7	251

#	Article	IF	CITATIONS
528	Enantioselectivity in CPA-catalyzed Friedel–Crafts reaction of indole and <i>N</i> -tosylimines: a challenge for guiding models. Organic and Biomolecular Chemistry, 2018, 16, 2225-2238.	1.5	11
529	Highly Enantioselective Synthesis of Cyclic Aminals with a Cyclopentadieneâ€Based Chiral Carboxylic Acid. European Journal of Organic Chemistry, 2018, 2018, 215-218.	1.2	21
530	Upgrading and expanding the scope of homogeneous transfer hydrogenation. Tetrahedron Letters, 2018, 59, 504-513.	0.7	73
531	Organocatalytic enantioselective transformations involving quinone derivatives as reaction partners. Tetrahedron Letters, 2018, 59, 473-486.	0.7	40
532	Dissecting the Gold(I)-Catalyzed Carboaminations of <i>N</i> -Allyl Tetrahydro-β-carbolines to Allenes. Journal of Organic Chemistry, 2018, 83, 898-912.	1.7	9
533	Metallic organophosphate catalyzed bulk ring-opening polymerization. Polymer Chemistry, 2018, 9, 732-742.	1.9	15
534	Highly Diastereo―and Enantioselective Cascade Synthesis of Bicyclic Lactams in Oneâ€Pot. European Journal of Organic Chemistry, 2018, 2018, 1158-1164.	1.2	6
537	Enantioselective Polyene Cyclization Catalyzed by a Chiral BrÃ,nsted Acid. Angewandte Chemie - International Edition, 2018, 57, 2115-2119.	7.2	36
538	Catalytic Kinetic Resolution of Spiro-Epoxyoxindoles with 1-Naphthols: Switchable Asymmetric Tandem Dearomatization/Oxa-Michael Reaction and Friedel–Crafts Alkylation of 1-Naphthols at the C4 Position. ACS Catalysis, 2018, 8, 1810-1816.	5.5	44
539	Organic Photoredox Catalyst with Substrate-capture Ability: A Perylene Derivative Bearing Urethane Moiety for Reductive Coupling of Ketones and Aldehydes under Visible Light. Chemistry Letters, 2018, 47, 369-372.	0.7	2
540	Enantioselective cooperative proton-transfer catalysis using chiral ammonium phosphates. Chemical Communications, 2018, 54, 1473-1476.	2.2	17
541	Calcium(<scp>ii</scp>)-catalyzed enantioselective conjugate additions of amines. Chemical Science, 2018, 9, 1634-1639.	3.7	16
542	Catalytic Asymmetric Dearomatization of Indolyl Dihydropyridines through an Enamine Isomerization/Spirocyclization/Transfer Hydrogenation Sequence. Angewandte Chemie, 2018, 130, 2683-2686.	1.6	12
543	Catalytic Asymmetric Dearomatization of Indolyl Dihydropyridines through an Enamine Isomerization/Spirocyclization/Transfer Hydrogenation Sequence. Angewandte Chemie - International Edition, 2018, 57, 2653-2656.	7.2	59
545	Catalytic Enantioselective 1,3â€Alkyl Shift in Alkyl Aryl Ethers: Efficient Synthesis of Optically Active 3,3′â€Diaryloxindoles. Angewandte Chemie, 2018, 130, 5837-5841.	1.6	7
546	Asymmetric Arylation of 2,2,2-Trifluoroacetophenones Catalyzed by Chiral Electrostatically-Enhanced Phosphoric Acids. Organic Letters, 2018, 20, 2689-2692.	2.4	35
547	Enantioselective [3 + 2] Formal Cycloaddition of 1-Styrylnaphthols with Quinones Catalyzed by a Chiral Phosphoric Acid. Organic Letters, 2018, 20, 2929-2933.	2.4	37
548	Enantioselective Decarboxylative Alkylation of β-Keto Acids to <i>ortho</i> -Quinone Methides as Reactive Intermediates: Asymmetric Synthesis of 2,4-Diaryl-1-benzopyrans. Organic Letters, 2018, 20, 2944-2947.	2.4	73

#	Article	IF	CITATIONS
549	Assembly of Tetrahydropyran Derivatives from Aldehydes, Allylboronates, and Syngas by Asymmetric Relay Catalytic Cascade Reaction. Chemistry - A European Journal, 2018, 24, 7626-7630.	1.7	13
550	Activation of olefins via asymmetric BrÃ,nsted acid catalysis. Science, 2018, 359, 1501-1505.	6.0	168
551	BrÃ,nsted-Acid-Promoted Rh-Catalyzed Asymmetric Hydrogenation of N-Unprotected Indoles: A Cocatalysis of Transition Metal and Anion Binding. Organic Letters, 2018, 20, 2143-2147.	2.4	62
552	The True Catalyst Revealed: The Intervention of Chiral Ca and Mg Phosphates in BrÃ,nsted Acid Promoted Asymmetric Mannich Reactions. Journal of the American Chemical Society, 2018, 140, 5412-5420.	6.6	21
553	Stereoselective Synthesis of Optically Pure 2-Amino-2′-hydroxy-1,1′-binaphthyls. Organic Letters, 2018, 20, 2459-2463.	2.4	37
554	Catalytic Asymmetric [2+3] Cyclizations of Azlactones with Azonaphthalenes. Angewandte Chemie, 2018, 130, 5496-5500.	1.6	56
555	Enantioselective counter-anions in photoredox catalysis: The asymmetric cation radical Diels-Alder reaction. Tetrahedron, 2018, 74, 3266-3272.	1.0	61
556	Chiral proton-transfer shuttle catalysts for carbene insertion reactions. Organic and Biomolecular Chemistry, 2018, 16, 3087-3094.	1.5	160
557	Theoretical insight into phosphoric acid-catalyzed asymmetric conjugate addition of indolizines to α,β-unsaturated ketones. Chinese Chemical Letters, 2018, 29, 1237-1241.	4.8	26
558	Divergent Stereoselectivity in Phosphothreonine (pThr)-Catalyzed Reductive Aminations of 3-Amidocyclohexanones. Journal of Organic Chemistry, 2018, 83, 4491-4504.	1.7	13
559	Fast, Efficient and Low Eâ€Factor Oneâ€Pot Palladium atalyzed Crossâ€Coupling of (Hetero)Arenes. Angewandte Chemie, 2018, 130, 9596-9599.	1.6	6
560	Highly Efficient and Robust Enantioselective Liquid–Liquid Extraction of 1,2â€Amino Alcohols utilizing VAPOL―and VANOLâ€based Phosphoric Acid Hosts. ChemSusChem, 2018, 11, 178-184.	3.6	6
561	Asymmetric Dearomative Halogenation of βâ€Naphthols: The Axial Chirality Transfer Reaction. Advanced Synthesis and Catalysis, 2018, 360, 401-405.	2.1	34
562	Organocatalytic asymmetric arylation of indoles enabled by azo groups. Nature Chemistry, 2018, 10, 58-64.	6.6	296
563	Enantioselective BrÃ,nsted Acid Catalysis as a Tool for the Synthesis of Natural Products and Pharmaceuticals. Chemistry - A European Journal, 2018, 24, 3925-3943.	1.7	139
564	Fast, Efficient and Low Eâ€Factor Oneâ€Pot Palladiumâ€Catalyzed Crossâ€Coupling of (Hetero)Arenes. Angewandte Chemie - International Edition, 2018, 57, 9452-9455.	7.2	20
565	Dual BrÃ,nstedâ€acid Organocatalysis: Cooperative Asymmetric Catalysis with Combined Phosphoric and Carboxylic Acids. ChemCatChem, 2018, 10, 1221-1234.	1.8	48
566	Asymmetric one-pot reactions using heterogeneous chemical catalysis: recent steps towards sustainable processes. Catalysis Science and Technology, 2018, 8, 389-422.	2.1	71

#	Article	IF	CITATIONS
567	Chiral Phosphoric Acid Catalyzed Enantioselective Friedelâ€Crafts Reaction of Nâ€Protected 4â€Aminoindoles with β,γâ€Unsaturated αâ€Ketimino Esters. Advanced Synthesis and Catalysis, 2018, 360, 664	4-669.	12
568	An <i>Atropos</i> Chiral Biphenyl Bisphosphine Ligand Bearing Only 2,2′â€Substituents and Its Application in Rhâ€Catalyzed Asymmetric Hydrogenation. Advanced Synthesis and Catalysis, 2018, 360, 738-743.	2.1	27
569	Chiral 2-(2-hydroxyaryl)alcohols (HAROLs) with a 1,4-diol scaffold as a new family of ligands and organocatalysts. Tetrahedron, 2018, 74, 268-286.	1.0	12
570	Catalytic Enantioselective Povarov Reactions of Ferrocenecarbaldehydeâ€Derived Imines – BrÃ,nsted Acid Catalysis at Partsâ€Perâ€Million Level Loading. Advanced Synthesis and Catalysis, 2018, 360, 893-900.	2.1	21
571	Photokatalytische aerobe Phosphatierung von Alkenen. Angewandte Chemie, 2018, 130, 2484-2488.	1.6	12
572	Catalytic Enantioselective Tautomerization of Metastable Enamines. Organic Letters, 2018, 20, 244-247.	2.4	30
573	Design of C3â€Alkenylâ€Substituted 2â€Indolylmethanols for Catalytic Asymmetric Interrupted Nazarovâ€Type Cyclization. Advanced Synthesis and Catalysis, 2018, 360, 846-851.	2.1	36
574	Enantioselective Aza-Friedel–Crafts Reaction of Indoles with Ketimines Catalyzed by Chiral Potassium Binaphthyldisulfonates. ACS Catalysis, 2018, 8, 349-353.	5.5	42
575	Photocatalytic Aerobic Phosphatation of Alkenes. Angewandte Chemie - International Edition, 2018, 57, 2459-2463.	7.2	44
576	A BrÃ _, nsted acid-promoted asymmetric intramolecular allylic amination of alcohols. Organic and Biomolecular Chemistry, 2018, 16, 380-383.	1.5	15
577	Enantioselective Synthesis of βâ€Aminotetralins via Chiral Phosphoric Acidâ€catalyzed Reductive Amination of βâ€Tetralones. Advanced Synthesis and Catalysis, 2018, 360, 462-467.	2.1	16
578	Pdâ€Catalyzed Atroposelective Câ^H Allylation through βâ€O Elimination: Diverse Synthesis of Axially Chiral Biaryls. Angewandte Chemie, 2018, 130, 17397-17401.	1.6	57
579	Pd atalyzed Atroposelective Câ^'H Allylation through βâ€O Elimination: Diverse Synthesis of Axially Chiral Biaryls. Angewandte Chemie - International Edition, 2018, 57, 17151-17155.	7.2	163
580	Mechanistic Insights into a Chiral Phosphoric Acid-Catalyzed Asymmetric Pinacol Rearrangement. Journal of Organic Chemistry, 2018, 83, 14683-14687.	1.7	17
581	Synthesis and Application of Thiosquaramides and Their Derivatives: A Review. Periodica Polytechnica: Chemical Engineering, 2018, 62, .	0.5	1
582	Phosphoric Acid Catalyzed [4 + 1]-Cycloannulation Reaction of <i>ortho</i> -Quinone Methides and Diazoketones: Catalytic, Enantioselective Access toward <i>cis</i> -2,3-Dihydrobenzofurans. Organic Letters, 2018, 20, 7576-7580.	2.4	74
583	Organocatalytic enantioselective Mannich-type addition of 5 <i>H</i> -thiazol-4-ones to isatin-derived imines: access to 3-substituted 3-amino-2-oxindoles featured by vicinal sulfur-containing tetrasubstituted stereocenters. Organic Chemistry Frontiers, 2018, 5, 3226-3230.	2.3	28
584	A Highly Enantio―and Diastereoselective Synthesis of Spirocyclic Dihydroquinolones via Domino Michael Addition‣actamization of ortho â€Quinone Methide Imines. Chemistry - A European Journal, 2018, 24, 18082-18088.	1.7	21

#	Article	IF	CITATIONS
585	Unexpected BrÃ,nsted Acidâ€Catalyzed Domino Reaction of 3â€Hydroxyisoindolinâ€1â€ones and <i>N</i> â€ <i>tert</i> â€Butyl Hydrazones for the Synthesis of 3â€(Hydrazono)isoindolinâ€1â€ones. European Journal of Organic Chemistry, 2018, 2018, 6733-6737.	1.2	6
586	Enantioselective Synthesis of Tetrahydroquinolines from 2-Aminochalcones via a Consecutive One-Pot Reaction Catalyzed by Chiral Phosphoric Acid. Journal of Organic Chemistry, 2018, 83, 12486-12495.	1.7	25
587	Synthesis of Furan-Annelated BINOL Derivatives: Acid-Catalyzed Cyclization Induces Partial Racemization. Journal of Organic Chemistry, 2018, 83, 14568-14587.	1.7	7
588	Enantioselective Azaâ€Friedel–Crafts Reaction of Pyrroles with Cyclic <i>N</i> â€Sulfimines Catalyzed by Chiral BINOLâ€Phosphoric Acid. Bulletin of the Korean Chemical Society, 2018, 39, 1340-1343.	1.0	8
589	A Cooperative Hydrogen Bond Donor–BrÃ,nsted Acid System for the Enantioselective Synthesis of Tetrahydropyrans. Angewandte Chemie - International Edition, 2018, 57, 17225-17229.	7.2	40
590	A Cooperative Hydrogen Bond Donor–BrÃ,nsted Acid System for the Enantioselective Synthesis of Tetrahydropyrans. Angewandte Chemie, 2018, 130, 17471-17475.	1.6	8
591	Enantioselective Functionalization of Enamides at the β arbon Center with Indoles. Angewandte Chemie, 2018, 130, 15784-15788.	1.6	2
592	Enantioselective Functionalization of Enamides at the β arbon Center with Indoles. Angewandte Chemie - International Edition, 2018, 57, 15558-15562.	7.2	10
593	Chemoenzymatic Access to Chiral Tetrols Produced by Thiamine Diphosphate Dependent Benzaldehyde Lyase. European Journal of Organic Chemistry, 2018, 2018, 6465-6468.	1.2	4
594	Diastereoselective synthesis of 1,3-disubstituted isoindolines and sultams <i>via</i> bronsted acid catalysis. Chemical Communications, 2018, 54, 11292-11295.	2.2	13
595	Photophysical Properties of Tetracationic Ruthenium Complexes and Their Ter-Ionic Assemblies with Chloride. Inorganic Chemistry, 2018, 57, 12232-12244.	1.9	13
596	Chiral Diol-Based Organocatalysts in Enantioselective Reactions. Molecules, 2018, 23, 2317.	1.7	36
597	Enantioselective access to multi-cyclic α-amino phosphonates <i>via</i> carbene-catalyzed cycloaddition reactions between enals and six-membered cyclic imines. Organic Chemistry Frontiers, 2018, 5, 2992-2996.	2.3	26
598	Asymmetric phosphoric acid–catalyzed four-component Ugi reaction. Science, 2018, 361, .	6.0	150
599	Enantioselective Intramolecular Nicholas Reaction Catalyzed by Chiral Phosphoric Acid: Enantioconvergent Synthesis of Sevenâ€Membered Cyclic Ethers from Racemic Diols. Angewandte Chemie, 2018, 130, 14113-14117.	1.6	6
600	Enantioselective Intramolecular Nicholas Reaction Catalyzed by Chiral Phosphoric Acid: Enantioconvergent Synthesis of Sevenâ€Membered Cyclic Ethers from Racemic Diols. Angewandte Chemie - International Edition, 2018, 57, 13917-13921.	7.2	24
601	Copper-Catalyzed Stereo- and Enantioselective 1,4-Protosilylation of <i>α,β</i> -Unsaturated Ketimines To Synthesize Functionalized Allylsilanes. ACS Catalysis, 2018, 8, 6239-6245.	5.5	32
602	Synergisticâ€Catalysisâ€Enabled Reaction of 2â€Indolymethanols with Oxonium Ylides for the Construction of 3â€Indolylâ€3â€Alkoxy Oxindole Frameworks. Chemistry - an Asian Journal, 2018, 13, 2549-2558.	1.7	62

#	Article	IF	CITATIONS
603	Formal [4 + 2] cycloaddition of imines with alkoxyisocoumarins. Organic and Biomolecular Chemistry, 2018, 16, 4231-4235.	1.5	12
604	Chiral phosphoric acid-catalyzed enantioselective three-component Mannich reaction of acyclic ketones, aldehydes and anilines. Tetrahedron, 2018, 74, 5143-5149.	1.0	9
605	Directed Remote Lateral Metalation: Highly Substituted 2â€Naphthols and BINOLs by In Situ Generation of a Directing Group. Angewandte Chemie - International Edition, 2018, 57, 9425-9429.	7.2	10
606	Directed Remote Lateral Metalation: Highly Substituted 2â€Naphthols and BINOLs by In Situ Generation of a Directing Group. Angewandte Chemie, 2018, 130, 9569-9573.	1.6	4
607	Development and application of chiral spirocyclic phosphoric acids in asymmetric catalysis. Organic and Biomolecular Chemistry, 2018, 16, 4753-4777.	1.5	121
608	Catalytic Enantioselective Cloke–Wilson Rearrangement. Angewandte Chemie, 2018, 130, 8357-8361.	1.6	36
609	An Organocatalytic Asymmetric Synthesis of Chiral β,βâ€Điarylâ€Î±â€amino Acids via Addition of Azlactones to Ir Situ Generated <i>para</i> â€Quinone Methides. Chemistry - an Asian Journal, 2018, 13, 2440-2444.	¹ 1.7	32
610	Asymmetric Robinson Annulation of 3-Indolinone-2-carboxylates with Cyclohexenone: Access to Chiral Bridged Tricyclic Hydrocarbazoles. Organic Letters, 2018, 20, 4195-4199.	2.4	18
611	Asymmetric organocatalytic synthesis of chiral 3,3-disubstituted oxindoles <i>via</i> a 1,6-conjugate addition reaction. Organic and Biomolecular Chemistry, 2018, 16, 5301-5309.	1.5	17
612	Origin of stereoselectivity in the amination of alcohols using cooperative asymmetric dual catalysis involving chiral counter-ions. Chemical Science, 2018, 9, 6126-6133.	3.7	23
613	Enantioselective aza-Friedel–Crafts reaction of furan with α-ketimino esters induced by a conjugated double hydrogen bond network of chiral bis(phosphoric acid) catalysts. Chemical Science, 2018, 9, 6361-6367.	3.7	56
614	Induced circular dichroism of monoatomic anions: silica-assisted the transfer of chiral environment from molecular assembled nanohelices to halide ions. Chemical Communications, 2018, 54, 10244-10247.	2.2	20
615	Chiral phosphoric acid-catalyzed direct asymmetric mannich reaction of cyclic <i>C</i> -acylimines with simple ketones: facile access to C2-quaternary indolin-3-ones. Chemical Communications, 2018, 54, 9151-9154.	2.2	53
616	Recent advances in the synthesis of functionalised monofluorinated compounds. Chemical Communications, 2018, 54, 9706-9725.	2.2	68
617	Catalytic Stereoselective S _N 1â€īype Reactions Promoted by Chiral Phosphoric Acids as BrÃ,nsted Acid Catalysts. Asian Journal of Organic Chemistry, 2018, 7, 1957-1981.	1.3	42
618	Phosphoric Acid Catalyzed Aldehyde Addition to in Situ Generated <i>o</i> -Quinone Methides: An Enantio- and Diastereoselective Entry toward <i>cis</i> -3,4-Diaryl Dihydrocoumarins. Organic Letters, 2018, 20, 4769-4772.	2.4	58
619	lon-pairing catalysis in the enantioselective addition of hydrazones to <i>N</i> -acyldihydropyrrole derivatives. Chemical Communications, 2018, 54, 8905-8908.	2.2	18
620	Advances in Enantioselective C–H Activation/Mizoroki-Heck Reaction and Suzuki Reaction. Catalysts, 2018, 8, 90.	1.6	21

#	Article	IF	CITATIONS
621	5-Annulation of Ketoimines: TFA-Catalyzed Construction of Isoindolinone-3-carboxylates and Development of Photophysical Properties. Journal of Organic Chemistry, 2018, 83, 8401-8409.	1.7	13
622	Desymmetrisation of <i>meso</i> -diones promoted by a highly recyclable polymer-supported chiral phosphoric acid catalyst. RSC Advances, 2018, 8, 6910-6914.	1.7	17
623	Chiral Pentacarboxycyclopentadiene-Based BrÃ,nsted Acid-Catalyzed Enantioselective Desymmetrization of Meso-Epoxides by 2-Mercaptobenzothiazoles. ACS Omega, 2018, 3, 6820-6826.	1.6	12
624	A catalytic asymmetric interrupted Nazarov-type cyclization of 2-indolylmethanols with cyclic enaminones. Organic and Biomolecular Chemistry, 2018, 16, 5457-5464.	1.5	14
625	Synthesis of new thioxanthenes by organocatalytic intramolecular Friedel–Crafts reaction. Synthetic Communications, 2018, 48, 2177-2188.	1.1	11
626	Highly Diastereo―and Enantioselective Synthesis of Cyclohepta[<i>b</i>]indoles by Chiralâ€Phosphoricâ€Acidâ€Catalyzed (4+3) Cycloaddition. Angewandte Chemie, 2018, 130, 12297-12301.	1.6	18
627	Synthesis and Characterization of Selfâ€Assembled Chiral Fe ^{II} ₂ L ₃ Cages. Chemistry - A European Journal, 2018, 24, 14693-14700.	1.7	18
628	Recent advances in the application of Diels–Alder reactions involving <i>o</i> -quinodimethanes, aza- <i>o</i> -quinone methides and <i>o</i> -quinone methides in natural product total synthesis. Chemical Society Reviews, 2018, 47, 7926-7953.	18.7	312
629	Highly Diastereo―and Enantioselective Synthesis of Cyclohepta[<i>b</i>]indoles by Chiralâ€Phosphoricâ€Acidâ€Catalyzed (4+3) Cycloaddition. Angewandte Chemie - International Edition, 2018, 57, 12121-12125.	7.2	71
630	Diastereo- and Enantioselective Construction of Dihydrobenzo[<i>e</i>]indole Scaffolds via Catalytic Asymmetric [3 + 2] Cycloannulations. Journal of Organic Chemistry, 2018, 83, 9190-9200.	1.7	31
631	Multiple Hydrogenâ€Bond Activation in Asymmetric BrÃ,nsted Acid Catalysis. Chemistry - A European Journal, 2018, 24, 7718-7723.	1.7	25
632	Chemodivergent Tandem Cyclizations of 2-Indolylmethanols with Tryptophols: C–N versus C–C Bond Formation. Journal of Organic Chemistry, 2018, 83, 5931-5946.	1.7	20
633	Catalytic Enantioselective Cloke–Wilson Rearrangement. Angewandte Chemie - International Edition, 2018, 57, 8225-8229.	7.2	86
634	Chiral Magnesium Bisphosphate-Catalyzed Asymmetric Double C(sp ³)–H Bond Functionalization Based on Sequential Hydride Shift/Cyclization Process. Journal of the American Chemical Society, 2018, 140, 6203-6207.	6.6	114
635	3â€Monoâ€5ubstituted BINOL Phosphoric Acids as Effective Organocatalysts in Direct Enantioselective Friedel–Craftsâ€Type Alkylation of Nâ€Unprotected αâ€Ketiminoester. Chemistry - A European Journal, 2018, 24, 15211-15214.	1.7	39
636	Synthesis of Enantioenriched Bromohydrins via Divergent Reactions of Racemic Intermediates from Anchimeric Oxygen Borrowing. Journal of the American Chemical Society, 2018, 140, 10677-10681.	6.6	26
637	Regioselective and Enantioselective Synthesis of βâ€Indolyl Cyclopentenamides by Chiral Anion Catalysis. Angewandte Chemie, 2018, 130, 13677-13682.	1.6	2
638	Multi-catalyst promoted asymmetric relay reactions. Organic Chemistry Frontiers, 2018, 5, 2765-2768.	2.3	14

#	Article	IF	CITATIONS
639	First <i>in situ</i> vesicular self-assembly of â€~binols' generated by a two-component aerobic oxidation reaction. RSC Advances, 2018, 8, 29155-29163.	1.7	6
640	Catalytic Asymmetric [4+2] Cyclization of <i>para</i> â€Quinone Methide Derivatives with 3â€Alkylâ€2â€vinylindoles. Advanced Synthesis and Catalysis, 2018, 360, 4225-4235.	2.1	80
641	Catalytic enantioselective radical coupling of activated ketones with <i>N</i> -aryl glycines. Chemical Science, 2018, 9, 8094-8098.	3.7	98
642	Catalytic enantioselective and regioselective substitution of 2,3-indolyldimethanols with enaminones. Organic Chemistry Frontiers, 2018, 5, 2657-2667.	2.3	18
643	Enantioselective Radical Cyclization of Tryptamines by Visible Light-Excited Nitroxides. Journal of Organic Chemistry, 2018, 83, 10948-10958.	1.7	53
644	Regioselective and Enantioselective Synthesis of βâ€Indolyl Cyclopentenamides by Chiral Anion Catalysis. Angewandte Chemie - International Edition, 2018, 57, 13489-13494.	7.2	17
645	Palladium-Catalyzed Cascade Heck Cyclization To Access Bisindoles. Organic Letters, 2018, 20, 3477-3481.	2.4	45
646	Chiral BrÃ,nsted acid-catalyzed intramolecular S _N 2′ reaction for enantioselective construction of a quaternary stereogenic center. Chemical Science, 2018, 9, 5747-5757.	3.7	23
648	Nâ€Heterocyclic Carbene (NHC)â€Organocatalyzed Kinetic Resolutions, Dynamic Kinetic Resolutions, and Desymmetrizations. Chemistry - an Asian Journal, 2018, 13, 2149-2163.	1.7	64
649	Organocatalytic Asymmetric Reduction of Fluorinated Alkynyl Ketimines. Journal of Organic Chemistry, 2018, 83, 8688-8694.	1.7	28
650	Paracyclophaneâ€based Silver Phosphates as Catalysts for Enantioselective Cycloisomerization/Addition Reactions: Synthesis of Bicyclic Furans. Advanced Synthesis and Catalysis, 2018, 360, 3356-3366.	2.1	12
651	Recent advances in the asymmetric catalytic synthesis of chiral 3-hydroxy and 3-aminooxindoles and derivatives: Medicinally relevant compounds. Tetrahedron, 2018, 74, 4927-4957.	1.0	36
652	Ter-Ionic Complex that Forms a Bond Upon Visible Light Absorption. Journal of the American Chemical Society, 2018, 140, 7799-7802.	6.6	16
653	Catalytic Enantioselective House–Meinwald Rearrangement: Efficient Construction of All-Carbon Quaternary Stereocenters. Journal of the American Chemical Society, 2019, 141, 13783-13787.	6.6	68
654	C–H Triflation of BINOL Derivatives Using DIH and TfOH. Organic Letters, 2019, 21, 6466-6470.	2.4	4
655	Electrostatically Enhanced Phosphoric Acids and Their Applications in Asymmetric Friedel–Crafts Alkylations. Journal of Organic Chemistry, 2019, 84, 11125-11134.	1.7	10
656	Synthesis of P-Stereogenic Diarylphosphinamides as Novel Inhibitors of Melanoma. Chemical Research in Chinese Universities, 2019, 35, 812-816.	1.3	1
657	Catalysis by Pure Graphene—From Supporting Actor to Protagonist through Shape Complementarity. Journal of Organic Chemistry, 2019, 84, 11343-11347.	1.7	17

#	Article	IF	CITATIONS
658	Enantioselective Strecker and Allylation Reactions with Aldimines Catalyzed by Chiral Oxazaborolidinium Ions. Organic Letters, 2019, 21, 6679-6683.	2.4	14
659	Efficient Construction of Atropisomeric Arylamines through a Diastereoselective Buchwaldâ€Hartwig Amination. Asian Journal of Organic Chemistry, 2019, 8, 1846-1849.	1.3	4
660	Double-Fold Ortho and Remote C–H Bond Activation/Borylation of BINOL: A Unified Strategy for Arylation of BINOL. Organic Letters, 2019, 21, 6476-6480.	2.4	19
661	Chiral Phosphoric Acids in Metal–Organic Frameworks with Enhanced Acidity and Tunable Catalytic Selectivity. Angewandte Chemie - International Edition, 2019, 58, 14748-14757.	7.2	50
662	Reorganization from Kinetically Stable Aggregation States to Thermodynamically Stable Nanotubes of BINOL-Derived Amphiphiles in Water. Langmuir, 2019, 35, 11821-11828.	1.6	4
663	A Strategy for Synthesizing Axially Chiral Naphthylâ€Indoles: Catalytic Asymmetric Addition Reactions of Racemic Substrates. Angewandte Chemie - International Edition, 2019, 58, 15104-15110.	7.2	148
664	Rh ^I , Ir ^{III} ,and Co ^{III} Complexes with Atropchiral Biaryl Cyclopentadienyl Ligands: Syntheses, Structures, and Catalytic Activities. Organometallics, 2019, 38, 3939-3947.	1.1	40
665	Chiral phosphoric acid catalyzed aminative dearomatization of α-naphthols/Michael addition sequence. Nature Communications, 2019, 10, 3150.	5.8	46
666	Holistic prediction of enantioselectivity in asymmetric catalysis. Nature, 2019, 571, 343-348.	13.7	190
667	Chiral phosphoric acid-catalyzed asymmetric transfer hydrogenation of quinazolinones. Tetrahedron Letters, 2019, 60, 150947.	0.7	3
668	Stereoselective synthesis of medium lactams enabled by metal-free hydroalkoxylation/stereospecific [1,3]-rearrangement. Nature Communications, 2019, 10, 3234.	5.8	105
669	Enantioselective Oxidative Phenol-Indole [3 + 2] Coupling Enabled by Biomimetic Mn(III)/BrÃ,nsted Acid Relay Catalysis. ACS Catalysis, 2019, 9, 7285-7291.	5.5	52
670	Practical access to axially chiral sulfonamides and biaryl amino phenols via organocatalytic atroposelective N-alkylation. Nature Communications, 2019, 10, 3061.	5.8	83
671	Catalytic Mechanism Study on the 1,2―and 1,4â€Transfer Hydrogenation of Ketimines and βâ€Enamino Esters Catalyzed by Axially Chiral Biscarbolineâ€Based Alcohols. Advanced Synthesis and Catalysis, 2019, 361, 4602-4610.	2.1	9
672	Transition Metal-Catalyzed Directed C(sp3)–H Functionalization of Saturated Heterocycles. Synthesis, 2019, 51, 3171-3204.	1.2	43
673	Tandem Organocatalytic Cycloaromatization/Intramolecular Friedel–Crafts Alkylation Sequence for the Synthesis of Indolizinones and Pyrrolo-azepinone Derivatives. Journal of Organic Chemistry, 2019, 84, 10785-10795.	1.7	7
674	NHC-Catalyzed Atroposelective Acylation of Phenols: Access to Enantiopure NOBIN Analogs by Desymmetrization. Organic Letters, 2019, 21, 6169-6172.	2.4	67
675	Asymmetric Ring-Opening of Donor–Acceptor Cyclopropanes with Primary Arylamines Catalyzed by a Chiral Heterobimetallic Catalyst. ACS Catalysis, 2019, 9, 8285-8293.	5.5	40

#	Article	IF	CITATIONS
676	Chiral BrÃ,nsted Acid-Catalyzed Formal α-Vinylation of Cyclopentanones for the Enantioselective Construction of Quaternary Carbon Centers. ACS Catalysis, 2019, 9, 6846-6850.	5.5	21
677	Enantioselective Friedel–Crafts Alkylation Reaction of Indoles with α-Trifluoromethylated β-Nitrostyrenes Catalyzed by Chiral BINOL Metal Phosphate. ACS Catalysis, 2019, 9, 6903-6909.	5.5	36
678	Organocatalytic Asymmetric Dearomative Oxyalkylation of Indoles Enables Access to C2-Quaternary Indolin-3-ones. Organic Letters, 2019, 21, 5626-5629.	2.4	35
679	Catalytic Enantioselective Pinacol and Meinwald Rearrangements for the Construction of Quaternary Stereocenters. Journal of the American Chemical Society, 2019, 141, 11372-11377.	6.6	72
680	Catalytic Asymmetric Dearomative [3+2] Cyclisation of 1,4â€Quinone with 2,3â€Disubstituted Indoles. Advanced Synthesis and Catalysis, 2019, 361, 5449-5457.	2.1	23
681	Asymmetric Desymmetrization of Oxetanes for the Synthesis of Chiral Tetrahydrothiophenes and Tetrahydroselenophenes. Angewandte Chemie - International Edition, 2019, 58, 18055-18060.	7.2	44
682	Centralâ€toâ€Axial Chirality Conversion Approach Designed on Organocatalytic Enantioselective Povarov Cycloadditions: First Access to Configurationally Stable Indole–Quinoline Atropisomers. Chemistry - A European Journal, 2019, 25, 15694-15701.	1.7	62
683	Chiral BrÃ,nsted acid-catalyzed conjugate addition of indoles to azadienes: Enantioselective synthesis of hetero-triarylmethanes. Chinese Journal of Catalysis, 2019, 40, 1566-1575.	6.9	21
684	Boosting Enantioselectivity of Chiral Organocatalysts with Ultrathin Two-Dimensional Metal–Organic Framework Nanosheets. Journal of the American Chemical Society, 2019, 141, 17685-17695.	6.6	128
685	ortho â€Oxygenative 1,2â€Difunctionalization of Diarylalkynes under Merged Gold/Organophotoredox Relay Catalysis. Chemistry - an Asian Journal, 2019, 14, 4601-4606.	1.7	7
686	Asymmetric Desymmetrization of Oxetanes for the Synthesis of Chiral Tetrahydrothiophenes and Tetrahydroselenophenes. Angewandte Chemie, 2019, 131, 18223-18228.	1.6	10
687	Predictive Multivariate Linear Regression Analysis Guides Successful Catalytic Enantioselective Minisci Reactions of Diazines. Journal of the American Chemical Society, 2019, 141, 19178-19185.	6.6	68
688	Amination of \hat{l}^2 -hydroxyl acid esters via cooperative catalysis enables access to bio-based \hat{l}^2 -amino acid esters. Communications Chemistry, 2019, 2, .	2.0	18
689	Chiral Phosphoric Acids in Metal–Organic Frameworks with Enhanced Acidity and Tunable Catalytic Selectivity. Angewandte Chemie, 2019, 131, 14890-14899.	1.6	16
690	Asymmetric Dearomatization of Indole Derivatives with Nâ€Hydroxycarbamates Enabled by Photoredox Catalysis. Angewandte Chemie, 2019, 131, 18237-18242.	1.6	60
691	Organocatalytic Enantioselective Mukaiyama–Mannich Reaction of Isatinâ€Derived Ketimines for the Synthesis of Oxindolylâ€ <i>β</i> ^{3, 3} â€Amino Acid Esters. Chemistry - A European Journal, 2019 25, 14688-14693.	,1.7	13
693	A Strategy for Synthesizing Axially Chiral Naphthylâ€Indoles: Catalytic Asymmetric Addition Reactions of Racemic Substrates. Angewandte Chemie, 2019, 131, 15248-15254.	1.6	33
694	Asymmetric Dearomatization of Indole Derivatives with Nâ€Hydroxycarbamates Enabled by Photoredox Catalysis. Angewandte Chemie - International Edition, 2019, 58, 18069-18074.	7.2	95

#	Article	IF	CITATIONS
695	Bis-phosphoric Acid Derived from BINOL Dimer as a Chiral BrÃ,nsted Acid Catalyst for Enantioselective Transformations. Chemistry Letters, 2019, 48, 260-263.	0.7	8
696	Remote C6-Enantioselective C–H Functionalization of 2,3-Disubstituted Indoles through the Dual H-Bonds and π–π Interaction Strategy Enabled by CPAs. Organic Letters, 2019, 21, 8662-8666.	2.4	39
697	Atroposelective Phosphoric Acid Catalyzed Threeâ€Component Cascade Reaction: Enantioselective Synthesis of Axially Chiral Nâ€Arylindoles. Angewandte Chemie - International Edition, 2019, 58, 15824-15828.	7.2	131
698	Generation of Heteroatom Stereocenters by Enantioselective C–H Functionalization. ACS Catalysis, 2019, 9, 9164-9177.	5.5	122
699	Combining Organocatalysis and Photoredox Catalysis: An Asymmetric Synthesis of Chiral β―Amino α― Substituted Tryptamines. ChemCatChem, 2019, 11, 5723-5727.	1.8	8
700	Cu/chiral phosphoric acid-catalyzed radical-initiated asymmetric aminosilylation of alkene with hydrosilane. Science China Chemistry, 2019, 62, 1529-1536.	4.2	26
701	Internal acidity scale and reactivity evaluation of chiral phosphoric acids with different 3,3′-substituents in BrÃ,nsted acid catalysis. Chemical Science, 2019, 10, 10025-10034.	3.7	26
702	Recent Advances in First-Row Transition Metal/Chiral Phosphoric Acid Combined Catalysis. Topics in Current Chemistry, 2019, 377, 23.	3.0	22
703	<i>P</i> -Chiral, <i>N</i> -phosphoryl sulfonamide BrÃ,nsted acids with an intramolecular hydrogen bond interaction that modulates organocatalysis. Organic and Biomolecular Chemistry, 2019, 17, 8690-8694.	1.5	13
704	Disulfonimides versus Phosphoric Acids in BrÃ,nsted Acid Catalysis: The Effect of Weak Hydrogen Bonds and Multiple Acceptors on Complex Structures and Reactivity. Journal of Organic Chemistry, 2019, 84, 13221-13231.	1.7	14
705	Adamantyl-BINOL as platform for chiral porous polymer aromatic frameworks. Multiple applications as recyclable catalysts. Journal of Catalysis, 2019, 377, 609-618.	3.1	15
706	Site-Selective Acylation of Natural Products with BINOL-Derived Phosphoric Acids. ACS Catalysis, 2019, 9, 9794-9799.	5.5	22
707	BINOL-phosphoric acid catalyzed asymmetric Mannich addition of β-ketoesters to indolenines generated in situ by DDQ. Tetrahedron, 2019, 75, 130620.	1.0	7
708	Organocatalytic Enantioconvergent Synthesis of Tetrasubstituted Allenes via Asymmetric 1,8-Addition to aza- <i>para</i> -Quinone Methides. Organic Letters, 2019, 21, 8127-8131.	2.4	70
709	Relaxation Dispersion NMR to Reveal Fast Dynamics in BrÃ,nsted Acid Catalysis: Influence of Sterics and H-Bond Strength on Conformations and Substrate Hopping. Journal of the American Chemical Society, 2019, 141, 16398-16407.	6.6	10
710	BrÃ,nsted acid-catalyzed aromatic annulation of alkoxyallenes with naphthols: a reaction sequence to larger ï€-conjugated naphthopyrans with aggregation-induced emission characters. Chemical Science, 2019, 10, 1070-1074.	3.7	14
711	Porous liquid zeolites: hydrogen bonding-stabilized H-ZSM-5 in branched ionic liquids. Nanoscale, 2019, 11, 1515-1519.	2.8	82
712	Tetrafluoropyridyl (TFP): a general phenol protecting group readily cleaved under mild conditions. Organic and Biomolecular Chemistry, 2019, 17, 2110-2115.	1.5	29

#	Article	IF	CITATIONS
713	Structural Diversity in Supramolecular Organization of Anionic Phosphate Monoesters: Role of Cations. ACS Omega, 2019, 4, 2118-2133.	1.6	6
714	Regio- and Enantioselective (Het)arylation of β-Alkenyl Pyrroline to α-Aryl-β-alkenyl Pyrrolidines. ACS Omega, 2019, 4, 2445-2454.	1.6	3
715	Recent Advances in Catalytic Enantioselective Rearrangement. European Journal of Organic Chemistry, 2019, 2019, 1964-1980.	1.2	61
716	Permanent porous hydrogen-bonded frameworks with two types of BrÃ,nsted acid sites for heterogeneous asymmetric catalysis. Nature Communications, 2019, 10, 600.	5.8	126
717	Manipulation of Spiroindolenine Intermediates for Enantioselective Synthesis of 3â€(Indolâ€3â€yl)â€Pyrrolidines. Angewandte Chemie, 2019, 131, 1170-1174.	1.6	1
718	BINOPtimal: a web tool for optimal chiral phosphoric acid catalyst selection. Chemical Communications, 2019, 55, 1778-1781.	2.2	11
719	Synergistic promotion by intramolecular hydrogen bonding: a bi-functionally catalyzed cascade reaction for the synthesis of enantiopure chromenopyrrolidines. Organic Chemistry Frontiers, 2019, 6, 674-678.	2.3	13
720	F ₁₀ BINOL-derived chiral phosphoric acid-catalyzed enantioselective carbonyl-ene reaction: theoretical elucidation of stereochemical outcomes. Chemical Science, 2019, 10, 1426-1433.	3.7	26
721	Catalytic Asymmetric Conjugate Addition of Indoles to <i>para</i> -Quinone Methide Derivatives. Journal of Organic Chemistry, 2019, 84, 7829-7839.	1.7	55
722	Pd-Catalyzed Asymmetric C–H Bond Activation for the Synthesis of P-Stereogenic Dibenzophospholes. Organometallics, 2019, 38, 3916-3920.	1.1	54
723	Hyper-Cross-Linked Polymer on the Hollow Conjugated Microporous Polymer Platform: A Heterogeneous Catalytic System for Poly(caprolactone) Synthesis. ACS Macro Letters, 2019, 8, 687-693.	2.3	28
724	Copper omplex atalyzed Asymmetric Aerobic Oxidative Cross oupling of 2â€Naphthols: Enantioselective Synthesis of 3,3′‧ubstituted C 1 ‧ymmetric BINOLs. Angewandte Chemie, 2019, 131, 11139-11143.	1.6	46
725	Copper omplex atalyzed Asymmetric Aerobic Oxidative Cross oupling of 2â€Naphthols: Enantioselective Synthesis of 3,3′â€Substituted <i>C₁</i> â€Symmetric BINOLs. Angewandte Chemie - International Edition, 2019, 58, 11023-11027.	7.2	73
726	Kinetic Resolution of Tertiary 2â€Alkoxycarboxamidoâ€Substituted Allylic Alcohols by Chiral Phosphoric Acid Catalyzed Intramolecular Transesterification. Angewandte Chemie - International Edition, 2019, 58, 10315-10319.	7.2	43
727	Synthesis of Chiral Aldehyde Catalysts by Pdâ€Catalyzed Atroposelective Câ^'H Naphthylation. Angewandte Chemie, 2019, 131, 11586-11590.	1.6	36
728	Parallel Kinetic Resolution of Unsymmetrical Acyclic Aliphatic syn-1,3-Diols. Organic Letters, 2019, 21, 5197-5200.	2.4	11
729	Chiral Phosphoric Acid Catalyzed Asymmetric Addition of 2-(Vinyloxy)ethanol to Imines and Applications of the Products. Organic Letters, 2019, 21, 5335-5340.	2.4	10
730	Asymmetric [4+2] cycloaddition of azlactones with dipolar copper–allenylidene intermediates for chiral 3,4-dhydroquinolin-2-one derivatives. Tetrahedron Letters, 2019, 60, 1967-1970.	0.7	17

#	Article	IF	Citations
731	BINOL Phosphoric Acidâ€Catalyzed Asymmetric Mannich Reaction of Cyclic <i>N</i> â€Acyl Ketimines with Cyclic Enones. Chemistry - an Asian Journal, 2019, 14, 2958-2965.	1.7	16
732	Kinetic Resolution of Tertiary 2â€Alkoxycarboxamidoâ€Substituted Allylic Alcohols by Chiral Phosphoric Acid Catalyzed Intramolecular Transesterification. Angewandte Chemie, 2019, 131, 10421-10425.	1.6	30
733	Recent advances in the synthesis of axially chiral biaryls <i>via</i> transition metal-catalysed asymmetric C–H functionalization. Chemical Communications, 2019, 55, 8514-8523.	2.2	322
734	Micellar BrÃ,nsted Acid Mediated Synthesis of DNA-Tagged Heterocycles. Journal of the American Chemical Society, 2019, 141, 10546-10555.	6.6	59
735	New class of P-stereogenic chiral BrĄ̃,nsted acid catalysts derived from chiral phosphinamides. Tetrahedron Letters, 2019, 60, 1834-1837.	0.7	10
736	Organocatalytic Atroposelective FriedlÃ ¤ der Quinoline Heteroannulation. Organic Letters, 2019, 21, 4831-4836.	2.4	53
737	Chiral Spiro Phosphoric Acid-Catalyzed Friedel–Crafts Conjugate Addition/Enantioselective Protonation Reactions. ACS Catalysis, 2019, 9, 6522-6529.	5.5	58
738	Strategic C–C Bond-Forming Dearomatization of Pyridines and Quinolines. Organic Letters, 2019, 21, 4459-4463.	2.4	30
739	Rhodium-Catalyzed Atroposelective C–H Arylation: Efficient Synthesis of Axially Chiral Heterobiaryls. Journal of the American Chemical Society, 2019, 141, 9504-9510.	6.6	156
740	Rational design, enantioselective synthesis and catalytic applications of axially chiral EBINOLs. Nature Catalysis, 2019, 2, 504-513.	16.1	145
741	Cooperative Use of BrÃnsted Acids and Metal Catalysts in Tandem Isomerization Reactions of Olefins. ChemCatChem, 2019, 11, 3343-3354.	1.8	18
742	Transitionâ€Metalâ€Free Aryl–Aryl Crossâ€Coupling: Câ^'H Arylation of 2â€Naphthols with Diaryliodonium Salts. Chemistry - A European Journal, 2019, 25, 9619-9623.	1.7	25
743	Mechanistic knowledge and noncovalent interactions as the key features for enantioselective catalysed multicomponent reactions: a critical review. Organic and Biomolecular Chemistry, 2019, 17, 7260-7269.	1.5	48
744	Synthesis of Chiral Aldehyde Catalysts by Pd atalyzed Atroposelective Câ^'H Naphthylation. Angewandte Chemie - International Edition, 2019, 58, 11464-11468.	7.2	122
745	Design and synthesis of new alkylâ€based chiral phosphoric acid catalysts. Chirality, 2019, 31, 592-602.	1.3	1
746	Addition of a Carbene Catalyst to Indole Aryl Aldehyde Activates a Remote δ-sp2 Carbon for Protonation and Formal [4+2] Reaction. Organic Letters, 2019, 21, 5026-5029.	2.4	12
747	Chiral BrÃ,nsted acid-catalyzed Friedel–Crafts reaction of 3-indolylsulfamidates with indoles: Synthesis of enantioenriched bisindolylmethane sulfamates. Tetrahedron Letters, 2019, 60, 1625-1630.	0.7	15
748	Acid-Catalyzed Versus Thermally Induced C1–C1′ Bond Cleavage in 1,1′-Bi-2-naphthol: An Experimental an Theoretical Study. Journal of Organic Chemistry, 2019, 84, 7238-7243.	d _{1.7}	10

#	Article	IF	CITATIONS
749	Design and Optimization of Catalysts Based on Mechanistic Insights Derived from Quantum Chemical Reaction Modeling. Chemical Reviews, 2019, 119, 6509-6560.	23.0	130
750	Asymmetric Phosphoric Acidâ€catalyzed Azaâ€Friedel–Crafts Reaction of Furan with Cyclic <i>N</i> â€Sulfimines. Bulletin of the Korean Chemical Society, 2019, 40, 606-609.	1.0	7
751	Switchable Skeletal Rearrangement of Dihydroisobenzofuran Acetals with Indoles. Organic Letters, 2019, 21, 4313-4317.	2.4	9
752	Enantioselective synthesis of multi-nitrogen-containing heterocycles using azoalkenes as key intermediates. Chemical Communications, 2019, 55, 6672-6684.	2.2	62
753	Tandem Chiral Cu(II) Phosphateâ€Catalyzed Deoxygenation of Nitrones/Enantioselective Povarov Reaction with Enecarbamates. European Journal of Organic Chemistry, 2019, 2019, 5151-5155.	1.2	15
754	Asymmetric Library Synthesis of P-Chiral t-Butyl-Substituted Secondary and Tertiary Phosphine Oxides. Journal of Organic Chemistry, 2019, 84, 7291-7302.	1.7	16
755	A Facile Enantioselective Alkynylation of Chromones. Angewandte Chemie - International Edition, 2019, 58, 8416-8420.	7.2	38
756	Enantioselective Addition Reaction of Azlactones with Styrene Derivatives Catalyzed by Strong Chiral BrÃ,nsted Acids. Angewandte Chemie - International Edition, 2019, 58, 8458-8462.	7.2	36
757	Asymmetric Synthesis of <i>P</i> -Stereogenic Compounds via Thulium(III)-Catalyzed Desymmetrization of Dialkynylphosphine Oxides. ACS Catalysis, 2019, 9, 4834-4840.	5.5	59
758	Design of Phosphinic Acid Catalysts with the Closest Stereogenicity at the α-Position: Synthesis and Application of α-Stereogenic Perfluoroalkyl Phosphinic Acid Catalysts. Organic Letters, 2019, 21, 3387-3391.	2.4	9
759	Cooperative Organocatalysis: A Systematic Investigation of Covalently Linked Organophosphoric Acids for the Stereoselective Transfer Hydrogenation of Quinolines. European Journal of Organic Chemistry, 2019, 2019, 5190-5195.	1.2	8
760	Design of Planar Chiral Phosphoric Acids with a [2.2]Paracyclophanyl Backbone as Organocatalysts for the Highly Enantioselective Aza-Friedel–Crafts Reaction. Organic Letters, 2019, 21, 3682-3686.	2.4	24
761	Enantioselective Addition Reaction of Azlactones with Styrene Derivatives Catalyzed by Strong Chiral BrÃ,nsted Acids. Angewandte Chemie, 2019, 131, 8546-8550.	1.6	7
762	Highly Stable Zr(IV)-Based Metal–Organic Frameworks with Chiral Phosphoric Acids for Catalytic Asymmetric Tandem Reactions. Journal of the American Chemical Society, 2019, 141, 7498-7508.	6.6	118
763	Enantioselective Synthesis of Biaryl Atropisomers by Pd atalyzed Câ^'H Olefination using Chiral Spiro Phosphoric Acid Ligands. Angewandte Chemie, 2019, 131, 6780-6784.	1.6	58
764	Asymmetric Synthesis of β-Indolyl Cyclopentanones and Cyclopentylamides with an All-Carbon Quaternary Stereocenter via Chiral Phosphoric Acid Catalyzed Friedel–Crafts Alkylation Reactions. Organic Letters, 2019, 21, 3563-3567.	2.4	13
765	Asymmetric Formal Synthesis of (+)-Catharanthine via Desymmetrization of Isoquinuclidine. Organic Letters, 2019, 21, 3750-3754.	2.4	24
766	A Facile Enantioselective Alkynylation of Chromones. Angewandte Chemie, 2019, 131, 8504-8508.	1.6	7

		CITATION RE	PORT	
#	Article		IF	CITATIONS
767	New enantiopure binaphthyl-cinchona thiosquaramides: synthesis and application for enantioselective organocatalysis. New Journal of Chemistry, 2019, 43, 5948-5959.		1.4	16
768	IDPi Catalysis. Angewandte Chemie - International Edition, 2019, 58, 12761-12777.		7.2	125
769	IDPiâ€Katalyse. Angewandte Chemie, 2019, 131, 12891-12908.		1.6	24
770	Theoretical Investigation of the Enantioselective [4 + 2] Cycloaddition Reaction of <i>o</i> -Hydroxystyrene and Azlactone. Journal of Organic Chemistry, 2019, 84, 4025-	4032.	1.7	6
771	Enantioselective Friedel–Crafts Alkylation Reaction of Heteroarenes with Nâ€Unprot Trifluoromethyl Ketimines by Means of Chiral Phosphoric Acid. Chemistry - A European 25, 5677-5681.	ected Iournal, 2019,	1.7	31
772	Enantioselective Synthesis of Biaryl Atropisomers by Pd atalyzed Câ^'H Olefination u Phosphoric Acid Ligands. Angewandte Chemie - International Edition, 2019, 58, 6708-6	ısing Chiral Spiro 712.	7.2	183
773	Mechanistic investigation of superelectrophilic activation of 1,1′-bi-2-naphthols in th aluminum halides. Organic and Biomolecular Chemistry, 2019, 17, 3971-3977.	e presence of	1.5	2
774	Chiral BrÃ,nsted Acid Catalyzed Dynamic Kinetic Asymmetric Hydroamination of Racem Asymmetric Hydroamination of Dienes. Angewandte Chemie - International Edition, 20		7.2	40
775	Disparate Catalytic Scaffolds for Atroposelective Cyclodehydration. Journal of the Amer Chemical Society, 2019, 141, 6698-6705.	ican	6.6	120
776	A chemo- and regioselective C6-functionalization of 2,3-disubstituted indoles: highly ef synthesis of diarylindol-6-ylmethanes. Organic and Biomolecular Chemistry, 2019, 17, 3		1.5	21
777	Enantioselective Synthesis of 3,4-Dihydropyrimidin-2(1 <i>H</i>)-ones through Organo Transfer Hydrogenation of 2-Hydroxypyrimidines. Journal of Organic Chemistry, 2019, 8	catalytic 34, 4435-4442.	1.7	24
778	The Interrupted Pummerer Reaction in a Sulfoxideâ€Catalyzed Oxidative Coupling of 2 Angewandte Chemie - International Edition, 2019, 58, 7813-7817.	â€Naphthols.	7.2	34
779	BrÃ,nsted acid catalysis – the effect of 3,3′-substituents on the structural space a of imine/phosphoric acid complexes. Chemical Science, 2019, 10, 5226-5234.	nd the stabilization	3.7	25
780	Catalytic Asymmetric (4+3) Cyclizations of In Situ Generated <i>ortho</i> â€Quinone № 2â€Indolylmethanols. Angewandte Chemie, 2019, 131, 8795-8800.	1ethides with	1.6	38
781	The Interrupted Pummerer Reaction in a Sulfoxideâ€Catalyzed Oxidative Coupling of 2 Angewandte Chemie, 2019, 131, 7895-7899.	â€Naphthols.	1.6	4
782	Catalytic Asymmetric (4+3) Cyclizations of In Situ Generated <i>ortho</i> â€Quinone № 2â€Indolylmethanols. Angewandte Chemie - International Edition, 2019, 58, 8703-870	1ethides with 8.	7.2	174
783	Chiral BrÃ,nsted Acid-Catalyzed Metal-Free Asymmetric Direct Reductive Amination Usi 1-Hydrosilatrane. Journal of Organic Chemistry, 2019, 84, 5021-5026.	ng	1.7	17
784	Merging Visible-Light Photoredox and Chiral Phosphate Catalysis for Asymmetric Friede Reaction with in Situ Generation of <i>N</i> Acyl Imines. Organic Letters, 2019, 21, 29		2.4	50

#	Article	IF	CITATIONS
785	Asymmetric syn â€1,3â€Dioxane Construction via Kinetic Resolution of Secondary Alcohols Using Chiral Phosphoric Acid Catalysts. Asian Journal of Organic Chemistry, 2019, 8, 814-818.	1.3	7
786	Asymmetric <i>N</i> -Hydroxyalkylation of Indoles with Ethyl Glyoxalates Catalyzed by a Chiral Phosphoric Acid: Highly Enantioselective Synthesis of Chiral <i>N,O</i> -Aminal Indole Derivatives. Organic Letters, 2019, 21, 2795-2799.	2.4	27
787	Chiral BrÃ,nsted Acid Catalyzed Dynamic Kinetic Asymmetric Hydroamination of Racemic Allenes and Asymmetric Hydroamination of Dienes. Angewandte Chemie, 2019, 131, 7166-7170.	1.6	8
788	Electrostatically Enhanced Sulfuric Acid: A Strong BrÂ,nsted Acidic Catalyst for Multi-Component Reactions. Catalysis Letters, 2019, 149, 1934-1940.	1.4	8
789	Axially Chiral Cyclic Phosphoric Acid Enabled Enantioselective Sequential Additions. Organic Letters, 2019, 21, 2498-2503.	2.4	25
790	Organocatalytic Asymmetric Synthesis of Cyclic Compounds Bearing a Trifluoromethylated Stereogenic Center: Recent Developments. Advanced Synthesis and Catalysis, 2019, 361, 1923-1957.	2.1	71
791	Catalytic Enantioselective Flow Processes with Solid‣upported Chiral Catalysts. Chemical Record, 2019, 19, 1872-1890.	2.9	53
792	Asymmetric Catalysis within the Chiral Confined Space of Metal–Organic Architectures. Small, 2019, 15, e1804770.	5.2	51
793	Catalytic, Enantioselective αâ€Alkylation of Azlactones with Nonconjugated Alkenes by Directed Nucleopalladation. Angewandte Chemie - International Edition, 2019, 58, 3923-3927.	7.2	63
794	Catalytic, Enantioselective αâ€Alkylation of Azlactones with Nonconjugated Alkenes by Directed Nucleopalladation. Angewandte Chemie, 2019, 131, 3963-3967.	1.6	29
795	Electrocatalytic Synthesis of Nonâ€Symmetric Biphenols Mediated by Tri(pâ€bromophenyl)amine: Selective Oxidative Crossâ€Coupling of Different Phenols and Naphthols. Chinese Journal of Chemistry, 2019, 37, 352-358.	2.6	14
796	Recent developments in enantioselective iron-catalyzed transformations. Coordination Chemistry Reviews, 2019, 386, 1-31.	9.5	40
797	Design and Catalytic Asymmetric Construction of Axially Chiral 3,3′â€Bisindole Skeletons. Angewandte Chemie, 2019, 131, 3046-3052.	1.6	51
798	Oxidative phenol-arene and phenol-phenol cross-coupling using periodic acid. Tetrahedron, 2019, 75, 2004-2011.	1.0	5
799	The crystal structure of dimethyl ((3,5-di- <i>tert</i> -butyl-4-hydroxyphenyl)(phenyl)methyl)phosphonate, C ₂₃ H ₃₃ O ₄ P. Zeitschrift Fur Kristallographie - New Crystal Structures, 2019, 234, 865-867.	0.1	1
800	Atroposelective Phosphoric Acid Catalyzed Three omponent Cascade Reaction: Enantioselective Synthesis of Axially Chiral Nâ€Arylindoles. Angewandte Chemie, 2019, 131, 15971-15975.	1.6	30
801	The control effects of different scaffolds in chiral phosphoric acids: a case study of enantioselective asymmetric arylation. Catalysis Science and Technology, 2019, 9, 6482-6491.	2.1	7
802	Asymmetric aerobic decarboxylative Povarov reactions of <i>N</i> -aryl α-amino acids with methylenephthalimidines <i>via</i> cooperative photoredox and chiral BrĂ,nsted acid catalysis. Chemical Communications, 2019, 55, 12916-12919.	2.2	62

#	Article	IF	CITATIONS
803	1,1′-Bi(2-naphthol-4,5-dicarboximide)s: blue emissive axially chiral scaffolds with aggregation-enhanced emission properties. Organic Chemistry Frontiers, 2019, 6, 3731-3740.	2.3	7
804	Organocatalysis and Beyond: Activating Reactions with Two Catalytic Species. Catalysts, 2019, 9, 928.	1.6	26
805	Privilege-Structure-Oriented Three-Component Asymmetric Aminomethylation: Assembly of Chiral 3-Aminomethyl Indolones. Organic Letters, 2019, 21, 9878-9883.	2.4	23
806	Solvent-assisted monomeric molecular structure of the phosphate diester and the synthesis of menthol-based phosphate diesters. Journal of Chemical Sciences, 2019, 131, 1.	0.7	2
807	Atroposelective synthesis of tetra-ortho-substituted biaryls by catalyst-controlled non-canonical polyketide cyclizations. Nature Catalysis, 2019, 2, 925-930.	16.1	58
808	Atroposelective Synthesis of Biaryl Diamines and Amino Alcohols via Chiral Phosphoric Acid Catalyzed para-Aminations of Anilines and Phenols. IScience, 2019, 22, 195-205.	1.9	36
809	Enantioselective aryl–aryl coupling facilitated by chiral binuclear gold complexes. Chemical Communications, 2019, 55, 12988-12991.	2.2	18
810	Development of Chiral Phosphoric Acid Catalyst. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2019, 77, 850-853.	0.0	0
811	Organocatalyzed Intermolecular Asymmetric Allylic Dearomatization of Both α- and β-Naphthols. Organic Letters, 2019, 21, 330-334.	2.4	49
813	Harnessing Noncovalent Interactions in Dual-Catalytic Enantioselective Heck–Matsuda Arylation. Journal of the American Chemical Society, 2019, 141, 998-1009.	6.6	59
814	Cu/Chiral Phosphoric Acid-Catalyzed Asymmetric Three-Component Radical-Initiated 1,2-Dicarbofunctionalization of Alkenes. Journal of the American Chemical Society, 2019, 141, 1074-1083.	6.6	151
815	Kinetic Resolution of Allylic Alcohol with Chiral BINOL-Based Alkoxides: A Combination of Experimental and Theoretical Studies. Journal of the American Chemical Society, 2019, 141, 1150-1159.	6.6	24
816	A BrÃ,nsted Acid atalyzed Michael Addition/Cyclization Sequence for the Diastereoselective Assembly of Chromanâ€Bridged Polycyclic Isoindolinones. Advanced Synthesis and Catalysis, 2019, 361, 456-461.	2.1	22
817	Organocatalytic double arylation of 3-isothiocyanato oxindoles: Stereocontrolled synthesis of complex spirooxindoles. Tetrahedron, 2019, 75, 1689-1696.	1.0	7
818	Phosphothreonine (pThr)-Based Multifunctional Peptide Catalysis for Asymmetric Baeyer–Villiger Oxidations of Cyclobutanones. ACS Catalysis, 2019, 9, 242-252.	5.5	34
819	Design and Catalytic Asymmetric Construction of Axially Chiral 3,3′â€Bisindole Skeletons. Angewandte Chemie - International Edition, 2019, 58, 3014-3020.	7.2	244
820	Outer-Sphere Control for Divergent Multicatalysis with Common Catalytic Moieties. Journal of Organic Chemistry, 2019, 84, 1664-1672.	1.7	7
821	BrÃ,nsted Acid Catalyzed [6 + 2]-Cycloaddition of 2-Vinylindoles with in Situ Generated 2-Methide-2 <i>H</i> -pyrroles: Direct, Catalytic, and Enantioselective Synthesis of 2,3-Dihydro-1 <i>H</i> -pyrrolizines. Organic Letters, 2019, 21, 519-523.	2.4	30

#	Article	IF	CITATIONS
822	Asymmetric Counter-Anion-Directed Aminomethylation: Synthesis of Chiral β-Amino Acids via Trapping of an Enol Intermediate. Journal of the American Chemical Society, 2019, 141, 1473-1478.	6.6	116
823	A General Catalytic Route to Enantioenriched Isoindolinones and Phthalides: Application in the Synthesis of (<i>S</i>)-PD 172938. Organic Letters, 2019, 21, 417-422.	2.4	40
824	Stereoselective formation of P-N bonds via coupling of H-P species with amines and the addition of Grignard reagents to chiral <i>N</i> -phosphinoylimines. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 102-110.	0.8	3
825	Recent Progress in Asymmetric Ionâ€Pairing Catalysis with Ammonium Salts. Chemistry - A European Journal, 2019, 25, 3740-3751.	1.7	76
826	Synthesis and Application of Substituted 1,16-Dihydroxytetraphenylenes in Catalytic Asymmetric Allylboration of Ketones. Journal of Organic Chemistry, 2019, 84, 120-127.	1.7	24
827	Manipulation of Spiroindolenine Intermediates for Enantioselective Synthesis of 3â€(Indolâ€3â€yl)â€Pyrrolidines. Angewandte Chemie - International Edition, 2019, 58, 1158-1162.	7.2	12
828	Insights into the Structure and Function of a Chiral Conjugateâ€Baseâ€6tabilized BrÃ,nsted Acid Catalyst. European Journal of Organic Chemistry, 2019, 2019, 486-492.	1.2	18
829	Enhanced catalyst performance through compartmentalization exemplified by colloidal l-proline modified microgel catalysts. Journal of Colloid and Interface Science, 2020, 559, 76-87.	5.0	29
830	Enantioselective three-component Ugi reaction catalyzed by chiral phosphoric acid. Science China Chemistry, 2020, 63, 47-54.	4.2	32
831	Synthesis, structural analysis, and photophysical properties of bi-1,2,3-triazoles. Structural Chemistry, 2020, 31, 191-201.	1.0	4
832	Organocatalytic Enantioselective Synthesis of Tetrasubstituted αâ€Amino Allenoates by Dearomative Î3â€Addition of 2,3â€Disubstituted Indoles to β,Î3â€Alkynylâ€Î±â€imino Esters. Angewandte Chemie - Internatior Edition, 2020, 59, 642-647.	a t. 2	71
833	Hydrogen Bonding and Internal or External Lewis or BrÃ,nsted Acid Assisted (Thio)urea Catalysts. European Journal of Organic Chemistry, 2020, 2020, 1057-1068.	1.2	32
834	Organocatalytic Enantioselective Synthesis of Tetrasubstituted αâ€Amino Allenoates by Dearomative γâ€Addition of 2,3â€Disubstituted Indoles to β,γâ€Alkynylâ€Î±â€imino Esters. Angewandte Chemie, 2020, 132,	652-657.	20
835	Asymmetric synthesis of pyrrolo[1,2-a]indoles via organocatalytic [3 + 2] annulation of substituted 2-vinylindoles with azlactones. Chinese Chemical Letters, 2020, 31, 721-724.	4.8	13
836	Highly Acidic Conjugateâ€Baseâ€Stabilized Carboxylic Acids Catalyze Enantioselective oxaâ€Pictet–Spengler Reactions with Ketals. Angewandte Chemie - International Edition, 2020, 59, 2028-2032.	7.2	34
837	Tandem Crossâ€Coupling/Spirocyclization/Mannichâ€Type Reactions of 3â€{2â€Isocyanoethyl)indoles with Diazo Compounds toward Polycyclic Spiroindolines. Angewandte Chemie, 2020, 132, 624-631.	1.6	13
838	Cooperative Catalysis for the Highly Diastereo―and Enantioselective [4+3]â€Cycloannulation of <i>ortho</i> â€Quinone Methides and Carbonyl Ylides. Angewandte Chemie - International Edition, 2020, 59, 5536-5540.	7.2	87
839	Chiral phosphoric acid-catalyzed asymmetric dearomatization reactions. Chemical Society Reviews, 2020, 49, 286-300.	18.7	247

#	Article	IF	CITATIONS
840	Direct enantioselective Mannich reactions of α-azido cyclic ketones: asymmetric construction of chiral azides possessing an α-quaternary stereocenter. Chemical Communications, 2020, 56, 98-101.	2.2	13
841	Ternary Catalysis: A Stepping Stone toward Multicatalysis. ACS Catalysis, 2020, 10, 3462-3489.	5.5	70
842	Atroposelective Synthesis of Axially Chiral Styrenes via an Asymmetric C–H Functionalization Strategy. CheM, 2020, 6, 497-511.	5.8	133
843	Recent applications of chiral phosphoric acids in palladium catalysis. Organic and Biomolecular Chemistry, 2020, 18, 618-637.	1.5	33
844	Recent Progress in Asymmetric Relay Catalysis of Metal Complex with Chiral Phosphoric Acid. Topics in Current Chemistry, 2020, 378, 9.	3.0	54
845	Triflic Acid-Catalyzed Cycloisomerization of 1,6-Enynes: Facile Access to Carbo- and Azaheterocycles. Journal of Organic Chemistry, 2020, 85, 2406-2414.	1.7	3
846	Understanding the Role of Metallocenium Ion-Pair Aggregates on the Rate of Olefin Insertion into the Metal–Carbon Bond. ACS Catalysis, 2020, 10, 1591-1606.	5.5	25
847	Synthesis of Bis-BINOL Derivatives: Linking via the 3-, 4-, or 5-Position by Generation of Suitable C 1-Symmetric Precursors. Synthesis, 2020, 52, 853-860.	1.2	1
848	Asymmetric Hydrogenation of Ketones and Enones with Chiral Lewis Base Derived Frustrated Lewis Pairs. Angewandte Chemie, 2020, 132, 4528-4534.	1.6	17
849	Asymmetric Hydrogenation of Ketones and Enones with Chiral Lewis Base Derived Frustrated Lewis Pairs. Angewandte Chemie - International Edition, 2020, 59, 4498-4504.	7.2	64
850	Mechanism and Origin of Stereoselectivity in Chiral Phosphoric Acidâ€Catalyzed Aldolâ€Type Reactions of Azlactones with Vinyl Ethers. Chemistry - A European Journal, 2020, 26, 3364-3372.	1.7	8
851	H ₃ PO ₂ -Catalyzed Intramolecular Stereospecific Substitution of the Hydroxyl Group in Enantioenriched Secondary Alcohols by N-, O-, and S-Centered Nucleophiles to Generate Heterocycles. ACS Catalysis, 2020, 10, 1344-1352.	5.5	23
852	Tandem Crossâ€Coupling/Spirocyclization/Mannichâ€Type Reactions of 3â€(2â€Isocyanoethyl)indoles with Diazo Compounds toward Polycyclic Spiroindolines. Angewandte Chemie - International Edition, 2020, 59, 614-621.	7.2	78
853	Highly Acidic Conjugateâ€Baseâ€Stabilized Carboxylic Acids Catalyze Enantioselective oxaâ€Pictet–Spengler Reactions with Ketals. Angewandte Chemie, 2020, 132, 2044-2048.	1.6	8
854	Kooperative Katalyse für die diastereo―und enantioselektive [4+3]â€Cycloanellierung von ortho â€Chinonmethiden und Carbonylyliden. Angewandte Chemie, 2020, 132, 5580-5585.	1.6	17
855	Enantioenriched Methyleneâ€Bridged Benzazocanes Synthesis by Organocatalytic and Superacid Activations. Angewandte Chemie, 2020, 132, 1295-1301.	1.6	7
856	Organocatalytic Asymmetric Synthesis of Indole-Based Chiral Heterocycles: Strategies, Reactions, and Outreach. Accounts of Chemical Research, 2020, 53, 425-446.	7.6	414
857	Catalytic Enantioselective Synthesis of 1,4-Benzodioxepines. Organic Letters, 2020, 22, 249-252.	2.4	19

#	Article	IF	CITATIONS
858	Palladium-Catalyzed Dual Ligand-Enabled Alkylation of Silyl Enol Ether and Enamide under Irradiation: Scope, Mechanism, and Theoretical Elucidation of Hybrid Alkyl Pd(I)-Radical Species. ACS Catalysis, 2020, 10, 1334-1343.	5.5	79
859	Chiral Phosphoric Acid Catalyzed Kinetic Resolution of 2â€Amido Benzyl Alcohols: Asymmetric Synthesis of 4 H â€3,1â€Benzoxazines. Angewandte Chemie, 2020, 132, 2353-2357.	1.6	15
860	Enantioenriched Methyleneâ€Bridged Benzazocanes Synthesis by Organocatalytic and Superacid Activations. Angewandte Chemie - International Edition, 2020, 59, 1279-1285.	7.2	9
861	Diastereoselective Synthesis of Functionalized Indoline <i>N</i> , <i>O</i> â€Aminals: Unexpected Waterâ€Involved Cascade Reaction of 3 <i>H</i> â€Indoles and Oxazolâ€5â€(4 <i>H</i>)ones. European Journal of Organic Chemistry, 2020, 2020, 496-500.	1.2	0
862	Chiral BrÃ,nsted Acid from Chiral Phosphoric Acid Boron Complex and Water: Asymmetric Reduction of Indoles. Angewandte Chemie, 2020, 132, 3320-3325.	1.6	8
863	Chiral Phosphoric Acid Catalyzed Kinetic Resolution of 2â€Amido Benzyl Alcohols: Asymmetric Synthesis of 4 <i>H</i> â€3,1â€Benzoxazines. Angewandte Chemie - International Edition, 2020, 59, 2333-2337.	7.2	48
864	Chiral BrÃ,nsted Acid from Chiral Phosphoric Acid Boron Complex and Water: Asymmetric Reduction of Indoles. Angewandte Chemie - International Edition, 2020, 59, 3294-3299.	7.2	37
865	Chiral Transient Directing Groups in Transition-Metal-Catalyzed Enantioselective C–H Bond Functionalization. ACS Catalysis, 2020, 10, 12898-12919.	5.5	88
866	Exploiting attractive non-covalent interactions for the enantioselective catalysis of reactions involving radical intermediates. Nature Chemistry, 2020, 12, 990-1004.	6.6	113
867	Catalytic Enantioselective Synthesis of <i>N</i> , <i>N</i> â€Acetals from αâ€Dicarbonyl Compounds Using Chiral Imidazolineâ€Phosphoric Acid Catalysts. Advanced Synthesis and Catalysis, 2020, 362, 5374-5379.	2.1	18
868	Progresses in organocatalytic asymmetric dearomatization reactions of indole derivatives. Organic Chemistry Frontiers, 2020, 7, 3967-3998.	2.3	175
869	The Ugi Three omponent Reaction; a Valuable Tool in Modern Organic Synthesis. European Journal of Organic Chemistry, 2020, 2020, 6525-6554.	1.2	39
870	Chiral Phosphoric Acid-Catalyzed Enantioselective Phospha-Michael-Type Addition Reaction of Diarylphosphine Oxides with Alkenyl Benzimidazoles. Journal of Organic Chemistry, 2020, 85, 14802-14809.	1.7	15
871	Catalytic Asymmetric Transfer Hydrogenation of <i>trans</i> -Chalcone Derivatives Using BINOL-derived Boro-phosphates. Organic Letters, 2020, 22, 5953-5957.	2.4	16
872	Direct Asymmetric Three-Component Mannich Reaction Catalyzed by Chiral Counteranion-Assisted Silver. Journal of Organic Chemistry, 2020, 85, 10369-10377.	1.7	16
873	Chiral Phosphoric Acid Catalyzed Enantioselective Synthesis of α-Tertiary Amino Ketones from Sulfonium Ylides. Journal of the American Chemical Society, 2020, 142, 14384-14390.	6.6	71
874	Chiral phosphoric acid catalyzed atroposelective and diastereoselective synthesis of 9-aryltetrahydroacridines. Organic Chemistry Frontiers, 2020, 7, 2255-2262.	2.3	12
875	Catalytic Asymmetric Synthesis of 3,3′-Bisindoles Bearing Single Axial Chirality. Journal of Organic Chemistry, 2020, 85, 10152-10166.	1.7	31

	CITATION	Report	
#	Article	IF	CITATIONS
876	Imine Amidation Catalyzed by a Chiral VAPOL Calcium Phosphate. Organic Letters, 2020, 22, 5958-5962.	2.4	11
877	Atropisomerism in Diarylamines: Structural Requirements and Mechanisms of Conformational Interconversion. Angewandte Chemie, 2020, 132, 18829-18837.	1.6	12
878	Acid Catalysis via Acidâ€Promoted Electron Transfer. Bulletin of the Korean Chemical Society, 2020, 41, 1217-1232.	1.0	28
879	Arylâ€Aryl Crossâ€Coupling with Hypervalent Iodine Reagents: Aryl Group Transfer Reactions. ChemistrySelect, 2020, 5, 13644-13655.	0.7	3
880	Binaphthyl-based chiral ligands: design, synthesis and evaluation of their performance in enantioselective addition of diethylzinc to aromatic aldehydes. Organic and Biomolecular Chemistry, 2020, 18, 9712-9725.	1.5	16
881	Enantioselective Synthesis of Pyrrolizidinone Scaffolds through Multiple-Relay Catalysis. Organic Letters, 2020, 22, 9433-9438.	2.4	7
882	A Computational and Experimental Investigation of the Origin of Selectivity in the Chiral Phosphoric Acid Catalyzed Enantioselective Minisci Reaction. Journal of the American Chemical Society, 2020, 142, 21091-21101.	6.6	38
883	Development of Immobilized SPINOL-Derived Chiral Phosphoric Acids for Catalytic Continuous Flow Processes. Use in the Catalytic Desymmetrization of 3,3-Disubstituted Oxetanes. ACS Catalysis, 2020, 10, 14971-14983.	5.5	19
885	Ln(III)/Chiral BrÃ,nsted Acid Catalyzed Asymmetric Cascade Ring Opening/Aza-Piancatelli Rearrangement of D–A Cyclopropanes. Organic Letters, 2020, 22, 9016-9021.	2.4	23
886	Transition Metal Catalyzed Enantioselective C(sp ²)–H Bond Functionalization. ACS Catalysis, 2020, 10, 13748-13793.	5.5	177
887	Evaluation and Development of Methodologies for the Synthesis of Thiophosphinic Acids. Journal of Organic Chemistry, 2020, 85, 14545-14558.	1.7	5
888	Construction of axial chirality via palladium/chiral norbornene cooperative catalysis. Nature Catalysis, 2020, 3, 727-733.	16.1	93
889	Synergy of activating substrate and introducing C-H···O interaction to achieve Rh2(II)-catalyzed asymmetric cycloisomerization of 1,n-enynes. Science China Chemistry, 2020, 63, 1230-1239.	4.2	19
890	Rhodium(III)-Catalyzed Oxidative <i>ortho</i> -Olefination of Phenyl Carbamates with Alkenes: Elucidation of Acceleration Mechanisms by Using an Unsubstituted Cyclopentadienyl Ligand. Organic Letters, 2020, 22, 7181-7186.	2.4	19
891	Composition-Dependent Hydrogen-Bonding Motifs and Dynamics in BrÃ,nsted Acid–Base Mixtures. Journal of Physical Chemistry B, 2020, 124, 7229-7238.	1.2	7
892	Enantioselective Synthesis of 2â€Substituted Indoles Bearing Trifluoromethyl Moiety by the Friedelâ€Crafts Alkylation Reaction of 4,7â€Dihydroindole with N â^'H Trifluoromethyl Ketimines. ChemCatChem, 2020, 12, 4784-4787.	1.8	13
893	Advances in asymmetric organocatalysis over the last 10 years. Nature Communications, 2020, 11, 3786.	5.8	135
894	Atroposelective Ring Opening of Cyclic Diaryliodonium Salts with Bulky Anilines Controlled by a Chiral Cobalt(III) Anion. Angewandte Chemie - International Edition, 2020, 59, 19899-19904.	7.2	64

#	Article	IF	CITATIONS
895	Mechanism and origins of selectivity in the enantioselective oxa-Pictet–Spengler reaction: a cooperative catalytic complex from a hydrogen bond donor and chiral phosphoric acid. Chemical Science, 2020, 11, 8736-8743.	3.7	9
896	Supramolecular self-assembly of chiral helical tubular polymers with amplified circularly polarized luminescence. Materials Chemistry Frontiers, 2020, 4, 2772-2781.	3.2	24
897	Chiral BrÃุnsted Acidâ€Catalyzed Asymmetric 1,4â€Addition of Benzofuranâ€Derived Azadienes with 3â€Substituted indoles. ChemCatChem, 2020, 12, 4862-4870.	1.8	20
898	Atroposelective Ring Opening of Cyclic Diaryliodonium Salts with Bulky Anilines Controlled by a Chiral Cobalt(III) Anion. Angewandte Chemie, 2020, 132, 20071-20076.	1.6	19
899	The flowering of Mechanically Interlocked Molecules: Novel approaches to the synthesis of rotaxanes and catenanes. Coordination Chemistry Reviews, 2020, 423, 213484.	9.5	28
900	Multicomponent and multicatalytic asymmetric synthesis of furo[2,3- <i>b</i>]pyrrole derivatives: further insights into the mode of action of chiral phosphoric acid catalysts. Chemical Science, 2020, 11, 9181-9190.	3.7	6
901	Chiral Phosphoric Acid Catalyzed Enantioselective [4 + 2] Cycloaddition Reaction of α-Fluorostyrenes with Imines. Organic Letters, 2020, 22, 8957-8961.	2.4	7
902	Isosterically designed chiral catalysts: Rationale, optimization and their application in enantioselective nucleophilic addition to aldehydes. Tetrahedron, 2020, 76, 131648.	1.0	6
903	Catalytic Asymmetric Synthesis of the anti OVIDâ€19 Drug Remdesivir. Angewandte Chemie - International Edition, 2020, 59, 20814-20819.	7.2	73
904	Catalytic Asymmetric 1,4-Reduction of α-Branched 2-Vinyl-azaarenes by a Chiral SPINOL-Derived Borophosphate. ACS Catalysis, 2020, 10, 10914-10919.	5.5	14
905	Recent advances in catalytic enantioselective multicomponent reactions. Organic and Biomolecular Chemistry, 2020, 18, 7751-7773.	1.5	62
906	Stay positive: catalysis with 1,3,2-diazaphospholenes. Organic Chemistry Frontiers, 2020, 7, 3521-3529.	2.3	20
907	Design and Atroposelective Construction of IAN analogues by Organocatalytic Asymmetric Heteroannulation of Alkynes. Angewandte Chemie - International Edition, 2020, 59, 23077-23082.	7.2	55
908	Launching Werner Complexes into the Modern Era of Catalytic Enantioselective Organic Synthesis. Accounts of Chemical Research, 2020, 53, 2299-2313.	7.6	32
909	Preparation of Chiral Photosensitive Organocatalysts and Their Application for the Enantioselective Synthesis of 1,2-Diamines. Journal of Organic Chemistry, 2020, 85, 12843-12855.	1.7	19
910	Chiral Calcium Phosphate Catalyzed Enantioselective Amination of 3-Aryl-2-benzofuranones. Organic Letters, 2020, 22, 8101-8105.	2.4	9
911	Asymmetric Catalysis Mediated by Synthetic Peptides, Version 2.0: Expansion of Scope and Mechanisms. Chemical Reviews, 2020, 120, 11479-11615.	23.0	115
912	Asymmetric Fluorination Reactions promoted by Chiral Hydrogen Bondingâ€based Organocatalysts. Advanced Synthesis and Catalysis, 2020, 362, 5275-5300.	2.1	21

#	Article	IF	CITATIONS
913	BrÃ,nsted Acidâ€Catalyzed Enantioselective Cycloisomerization of Arylalkynes. Chemistry - A European Journal, 2020, 26, 16266-16271.	1.7	13
914	Tetrabromomethane as an Organic Catalyst: a Kinetic Study of CBr ₄ â€Catalyzed Schiff Condensation. European Journal of Organic Chemistry, 2020, 2020, 6763-6769.	1.2	6
915	Enantiomerization of Axially Chiral Biphenyls: Polarizable MD Simulations in Water and Butylmethylether. International Journal of Molecular Sciences, 2020, 21, 6222.	1.8	4
916	Catalytic Asymmetric Synthesis of the antiâ€COVIDâ€19 Drug Remdesivir. Angewandte Chemie, 2020, 132, 21000-21005.	1.6	11
917	Atroposelective Access to Oxindole-Based Axially Chiral Styrenes via the Strategy of Catalytic Kinetic Resolution. Journal of the American Chemical Society, 2020, 142, 15686-15696.	6.6	115
918	Connecting and Analyzing Enantioselective Bifunctional Hydrogen Bond Donor Catalysis Using Data Science Tools. Journal of the American Chemical Society, 2020, 142, 16382-16391.	6.6	27
919	Chiral disulfonimides: a versatile template for asymmetric catalysis. Organic and Biomolecular Chemistry, 2020, 18, 7485-7513.	1.5	15
920	Rhodium-Catalyzed Atroposelective Oxidative C–H/C–H Cross-Coupling Reaction of 1-Aryl Isoquinoline Derivatives with Electron-Rich Heteroarenes. Journal of the American Chemical Society, 2020, 142, 15678-15685.	6.6	126
921	Modulating Stereoselectivity through Electrostatic Interactions in a SPINOL-Phosphoric Acid-Catalyzed Synthesis of 2,3-Dihydroquinazolinones. ACS Catalysis, 2020, 10, 12292-12299.	5.5	17
922	A Versatile Method for Kinetic Resolution of Protectingâ€Groupâ€Free BINAMs and NOBINs through Chiral Phosphoric Acid Catalyzed Triazane Formation. Angewandte Chemie - International Edition, 2020, 59, 23598-23602.	7.2	56
923	Design and Atroposelective Construction of IAN analogues by Organocatalytic Asymmetric Heteroannulation of Alkynes. Angewandte Chemie, 2020, 132, 23277-23282.	1.6	16
924	The Diaryliodonium(III) Salts Reaction With Free-Radicals Enables One-Pot Double Arylation of Naphthols. Frontiers in Chemistry, 2020, 8, 563470.	1.8	12
925	Enantioselective Dehydrative γ-Arylation of α-Indolyl Propargylic Alcohols with Phenols: Access to Chiral Tetrasubstituted Allenes and Naphthopyrans. Organic Letters, 2020, 22, 6873-6878.	2.4	39
926	Insights into 2-Indolylmethanol-Involved Cycloadditions: Origins of Regioselectivity and Enantioselectivity. Journal of Organic Chemistry, 2020, 85, 11641-11653.	1.7	20
927	Modular Design of Chiral Conjugate-Base-Stabilized Carboxylic Acids: Catalytic Enantioselective [4 + 2] Cycloadditions of Acetals. Journal of the American Chemical Society, 2020, 142, 15252-15258.	6.6	25
928	A Versatile Method for Kinetic Resolution of Protectingâ€Groupâ€Free BINAMs and NOBINs through Chiral Phosphoric Acid Catalyzed Triazane Formation. Angewandte Chemie, 2020, 132, 23804-23808.	1.6	17
929	Enantioselective Aza-Friedel–Crafts Reaction of Indoles and Pyrroles Catalyzed by Chiral <i>C</i> ₁ -Symmetric Bis(phosphoric Acid). Organic Letters, 2020, 22, 9614-9620.	2.4	20
930	Enantioselective intramolecular [2 + 2] photocycloaddition using phosphoric acid as a chiral template. Organic and Biomolecular Chemistry, 2020, 18, 9261-9267.	1.5	10

ARTICLE IF CITATIONS Hybrid Palladium Catalyst Assembled from Chiral Phosphoric Acid and Thioamide for Enantioselective 931 1.6 13 βấ€€(sp 3)â^'H Arylation. Angewandte Chemie, 2020, 132, 12874-12878. Catalytic Asymmetric Construction of Axially Chiral Indoleâ€Based Frameworks: An Emerging Area. 1.7 Chemistry - A European Journal, 2020, 26, 15779-15792. Highly Enantioselective, Hydrogen-Bond-Donor Catalyzed Additions to Oxetanes. Journal of the 933 6.6 47 American Chemical Society, 2020, 142, 9175-9180. The C–H Activation/Bidirecting Group Strategy for Selective Direct Synthesis of Diverse 934 2.4 1,1â€²-Biisoquinolines. Organic Letters, 2020, 22, 4207-4212. Oneâ€Pot Synthesis of Enantioenriched βâ€Amino Secondary Amides via an Enantioselective [4+2] Cycloaddition Reaction of Vinyl Azides with $i N < i > a \in A$ cyl Imines Catalyzed by a Chiral Brà nsted Acid. 935 1.7 11 Chemistry - A European Journal, 2020, 26, 8230-8234. Chiral Metallacycles as Catalysts for Asymmetric Conjugate Addition of Styrylboronic Acids to \hat{I}_{\pm}, \hat{I}^2 -Enones. Journal of the American Chemical Society, 2020, 142, 10244-10249. 6.6 $Desymmetrization \ of \ unactivated \ bis-alkenes \ {i>via</i> chiral Br {\ciral acid-catalysed hydroamination}.$ 937 3.7 19 Chemical Science, 2020, 11, 5987-5993. <i>N</i>-Iodosuccinimide-Mediated Dimerization of 2-Alkynylnaphthols: A Highly Diastereoselective Construction of Bridged Polycyclic Compounds via Vinylidene <i>ortho</i>-Quinone Methide Intermediate. Organic Letters, 2020, 22, 4461-4466. 2.4 Enantioselective Ni-Catalyzed Electrochemical Synthesis of Biaryl Atropisomers. Journal of the 939 138 6.6 American Chemical Society, 2020, 142, 9872-9878. When Anthracene and Quinone Avoid Cycloaddition: Acid-Catalyzed Redox Neutral Functionalization 940 2.4 of Anthracene to Aryl Ethers. Organic Letters, 2020, 22, 4276-4282. Asymmetric <i>N</i>-aminoalkylation of 3-substituted indoles by N-protected <i>N</i>,<i>O</i>-acetals: 941 1.5 8 an access to chiral propargyl aminals. Organic and Biomolecular Chemistry, 2020, 18, 4169-4173. Advances in the Catalytic Asymmetric Synthesis of Atropisomeric Hexatomic Nâ€Heterobiaryls. Advanced 2.1 58 Synthesis and Catalysis, 2020, 362, 3081-3099. Enantioselective Intramolecular Allylic Substitution via Synergistic Palladium/Chiral Phosphoric Acid Catalysis: Insight into Stereoinduction through Statistical Modeling. Angewandte Chemie -943 7.2 25 International Edition, 2020, 59, 14647-14655. CoFe2O4@SiO2-NH2-Coll NPs: An effective magnetically recoverable catalyst for Biginelli reaction. Inorganic Chemistry Communication, 2020, 118, 107988. 944 1.8 Enantioselective Intramolecular Allylic Substitution via Synergistic Palladium/Chiral Phosphoric Acid Catalysis: Insight into Stereoinduction through Statistical Modeling. Angewandte Chemie, 2020, 132, 945 1.6 6 14755-14763 Recent Progress on Catalytic Addition Reactions to<i>N</i>-Unsubstituted Imines. ACS Catalysis, 2020, 946 10,6924-6951. Enantioselective Diarylcarbene Insertion into Siâ€"H Bonds Induced by Electronic Properties of the 947 6.6 62 Carbenes. Journal of the American Chemical Society, 2020, 142, 12394-12399. Enantioselective Construction of Sulfurâ€Containing Tetrasubstituted Stereocenters via Asymmetric 948 2.1 Functionalizations of αâ€Sulfanyl Cyclic Ketones. Advanced Synthesis and Catalysis, 2020, 362, 3374-3379.

#	Article	IF	CITATIONS
949	Rapid Synthesis of Alkenylated BINOL Derivatives via Rh(III)-Catalyzed C–H Bond Activation. Organic Letters, 2020, 22, 4648-4652.	2.4	7
950	Aerobic redox deracemization of $\hat{I}\pm$ -aryl glycine esters. Tetrahedron Letters, 2020, 61, 152107.	0.7	8
951	A semipinacol rearrangement of vinylogous α-ketol cocatalyzed by a cinchona-based primary amine and N-Boc-phenylglycines: mechanisms, roles of catalysts and the origin of enantioselectivity. Organic Chemistry Frontiers, 2020, 7, 1845-1861.	2.3	6
952	Organocatalytic Enantioselective Synthesis of Chiral Allenes: Remote Asymmetric 1,8â€Addition of Indole Imine Methides. Angewandte Chemie, 2020, 132, 17197-17202.	1.6	19
953	Organocatalytic Enantioselective Synthesis of Chiral Allenes: Remote Asymmetric 1,8â€Addition of Indole Imine Methides. Angewandte Chemie - International Edition, 2020, 59, 17049-17054.	7.2	91
954	Pristine Graphene as a Racemization Catalyst for Axially Chiral BINOL. ChemPhysChem, 2020, 21, 1675-1681.	1.0	12
955	Synthesis And Study of Fluorine Containing Kagan's Amides as Chiral Solvating Agents For Enantiodiscrimination of Acids by NMR Spectroscopy. ChemistrySelect, 2020, 5, 6927-6932.	0.7	7
956	Lewis Acid Mediated Electrophilic Cyanation of 2,2′-Biphenols. Journal of Organic Chemistry, 2020, 85, 8702-8713.	1.7	4
957	Metalâ€Catalyzed Regiospecific (4+3) Cyclization of 2â€Indolylmethanols with <i>ortho</i> â€Quinone Methides. European Journal of Organic Chemistry, 2020, 2020, 4301-4308.	1.2	21
958	Enantioselective Allenoate-Claisen Rearrangement Using Chiral Phosphate Catalysts. Journal of the American Chemical Society, 2020, 142, 6390-6399.	6.6	50
959	Catalytic enantioselective desymmetrizing functionalization of alkyl radicals via Cu(i)/CPA cooperative catalysis. Nature Catalysis, 2020, 3, 401-410.	16.1	71
960	Catalyst-Free Conjugate Addition of Indolizines to <i>In Situ</i> -Generated Oxidized Morita–Baylis–Hillman Adducts. Journal of Organic Chemistry, 2020, 85, 5438-5448.	1.7	13
961	Axially Chiral <scp>Arylâ€Alkeneâ€Indole</scp> Framework: A Nascent Member of the Atropisomeric Family and Its Catalytic Asymmetric Construction. Chinese Journal of Chemistry, 2020, 38, 543-552.	2.6	121
962	Enantioselective Synthesis of Atropisomers with Multiple Stereogenic Axes. Angewandte Chemie - International Edition, 2020, 59, 12623-12634.	7.2	115
963	Enantioselective three-component aminomethylation of $\hat{I}\pm$ -diazo ketones with alcohols and 1,3,5-triazines. Nature Communications, 2020, 11, 1511.	5.8	62
964	Diastereo- and Enantioselective Construction of Biologically Important Chiral 1,3-Dioxolochroman Frameworks via Catalytic Asymmetric [4+2] Cycloaddition. Journal of Organic Chemistry, 2020, 85, 5403-5415.	1.7	24
965	Carbamates: A Directing Group for Selective C–H Amidation and Alkylation under Cp*Co(III) Catalysis. Organic Letters, 2020, 22, 2615-2620.	2.4	43
966	Recent Developments in Enantioselective Multicatalyzed Tandem Reactions. Advanced Synthesis and Catalysis, 2020, 362, 2289-2325.	2.1	42

#	ARTICLE	IF	CITATIONS
967	A Catalytic Dual Isomerization/Allylboration Sequence for the Stereoselective Construction of Congested Secondary Homoallylic Alcohols. Journal of Organic Chemistry, 2020, 85, 5638-5650.	1.7	13
968	Enantioselective Synthesis of Atropisomers with Multiple Stereogenic Axes. Angewandte Chemie, 2020, 132, 12723-12734.	1.6	31
969	Enantioselective Palladaâ€Electrocatalyzed Câ^'H Activation by Transient Directing Groups: Expedient Access to Helicenes. Angewandte Chemie - International Edition, 2020, 59, 13451-13457.	7.2	177
970	Oxidative Kinetic Resolution of Acyclic Amines Based on Equilibrium Control. Organic Letters, 2020, 22, 3128-3134.	2.4	7
971	What is the role of acid–acid interactions in asymmetric phosphoric acid organocatalysis? A detailed mechanistic study using interlocked and non-interlocked catalysts. Chemical Science, 2020, 11, 4381-4390.	3.7	29
972	Synergistic Palladium-Phosphoric Acid Catalysis in (3 + 2) Cycloaddition Reactions between Vinylcyclopropanes and Imines. Catalysts, 2020, 10, 150.	1.6	9
973	Enantioselective Iron/Bisquinolyldiamine Ligand-Catalyzed Oxidative Coupling Reaction of 2-Naphthols. Molecules, 2020, 25, 852.	1.7	9
974	Asymmetric Intramolecular Hydroalkoxylation of Unactivated Alkenes Catalyzed by Chiral N―Triflyl Phosphoramide and TiCl 4 â€. Chinese Journal of Chemistry, 2020, 38, 565-569.	2.6	11
975	Highly Chemo-, Site-, and Enantioseletive <i>para</i> C–H Aminoalkylation of <i>N</i> -Monosubstituted Aniline Derivatives Affording 3-Amino-2-oxindoles. Organic Letters, 2020, 22, 2173-2177.	2.4	32
976	DFT-Guided Phosphoric-Acid-Catalyzed Atroposelective Arene Functionalization of Nitrosonaphthalene. CheM, 2020, 6, 2046-2059.	5.8	83
977	Organocatalytic Formal (3 + 2) Cycloaddition toward Chiral Pyrrolo[1,2- <i>a</i>]indoles via Dynamic Kinetic Resolution of Allene Intermediates. Organic Letters, 2020, 22, 5439-5445.	2.4	38
978	Asymmetric Aza-Diels–Alder Reactions of in Situ Generated β,β-Disubstituted α,β-Unsaturated N–H Ketimines Catalyzed by Chiral Phosphoric Acids. Organic Letters, 2020, 22, 5633-5639.	2.4	13
979	Synthesis of Electron-Deficient Chiral Biphenols and Their Applications in Catalytic Asymmetric Reactions. Journal of Organic Chemistry, 2020, 85, 10232-10239.	1.7	4
980	Organocatalytic C3-functionalization of indolizines: synthesis of biologically important indolizine derivatives. Organic and Biomolecular Chemistry, 2020, 18, 5688-5696.	1.5	20
981	Formal oxo- and aza-[3 + 2] reactions of α-enaminones and quinones: a double divergent process and the roles of chiral phosphoric acid and molecular sieves. Chemical Science, 2020, 11, 9386-9394.	3.7	19
982	Construction of chiral chroman scaffolds <i>via</i> catalytic asymmetric (4 + 2) cyclizations of <i>para</i> -quinone methide derivatives with 3-vinylindoles. Organic and Biomolecular Chemistry, 2020, 18, 5388-5399.	1.5	21
983	Hexafluoroisopropanol-Promoted Disulfidation and Diselenation of Alkyne, Alkene, and Allene. Organic Letters, 2020, 22, 5462-5465.	2.4	24
984	A Broad Substrate Scope of Aza-Friedel–Crafts Alkylation for the Synthesis of Quaternary α-Amino Esters. Organic Letters, 2020, 22, 5822-5827.	2.4	11

#	Article	IF	CITATIONS
985	Light-Mediated Chiral Phosphate Catalysis for Asymmetric Dicarbofunctionalization of Enamides. ACS Catalysis, 2020, 10, 8247-8253.	5.5	40
986	A Oneâ€Pot Dearomative Approach to C4â€Alkylated Tetrahydropyridines and Tetrahydroquinolines. Asian Journal of Organic Chemistry, 2020, 9, 1571-1575.	1.3	8
987	Atropisomerism in Diarylamines: Structural Requirements and Mechanisms of Conformational Interconversion. Angewandte Chemie - International Edition, 2020, 59, 18670-18678.	7.2	28
988	Enantioselective Synthesis of Tropanes: BrÃ,nsted Acid Catalyzed Pseudotransannular Desymmetrization. Angewandte Chemie - International Edition, 2020, 59, 6780-6784.	7.2	15
989	Unsymmetrical 1,1-Bisboryl Species: Valuable Building Blocks in Synthesis. Molecules, 2020, 25, 959.	1.7	23
990	Atroposelective Synthesis of 3,3'â€Bisindoles Bearing Axial and Central Chirality: Using <scp>Isatinâ€Derived</scp> Imines as Electrophiles. Chinese Journal of Chemistry, 2020, 38, 583-589.	2.6	65
991	Stereochemistry and Recent Applications of Axially Chiral Organic Molecules. European Journal of Organic Chemistry, 2020, 2020, 4070-4086.	1.2	52
992	Enantioselective Dehydroxyhydrogenation of 3-Indolylmethanols by the Combined Use of Benzothiazoline and Chiral Phosphoric Acid: Construction of a Tertiary Carbon Center. Organic Letters, 2020, 22, 2225-2229.	2.4	17
993	Modular bismacycles for the selective C–H arylation of phenols and naphthols. Nature Chemistry, 2020, 12, 260-269.	6.6	64
994	Rendering classical hydrophilic enantiopure Werner salts [M(en) ₃] ⁿ⁺ <i>n</i> X ^{â[^]} lipophilic (M/ <i>n</i> = Cr/3, Co/3, Rh/3, Ir/3,) Tj	ETQq1 1 (0.784314 rg ⁸¹ 21
994 995	Rendering classical hydrophilic enantiopure Werner salts [M(en) ₃] ⁿ⁺ <i>n</i> X ^{â[^]} lipophilic (M/ <i>n</i> = Cr/3, Co/3, Rh/3, Ir/3,) Tj charge. Dalton Transactions, 2020, 49, 3680-3691. <i>para</i> â€Quinone Methides as Acceptors in 1,6â€Nucleophilic Conjugate Addition Reactions for the Synthesis of Structurally Diverse Molecules. European Journal of Organic Chemistry, 2020, 2020, 2650-2692.	ETQq1 1 (1.2	0.784314 rg 21 154
	<pre>[M(en) ₃]ⁿ⁺<i>n</i>X^{â[^]}lipophilic (M/<i>n</i>= Cr/3, Co/3, Rh/3, Ir/3,) Tj charge. Dalton Transactions. 2020. 49. 3680-3691. <i>para</i>â€Quinone Methides as Acceptors in 1,6â€Nucleophilic Conjugate Addition Reactions for the Synthesis of Structurally Diverse Molecules. European Journal of Organic Chemistry, 2020, 2020,</pre>	1.0	21
995	<pre>[M(en) ₃]ⁿ⁺<i>n</i>X^{â[*]}lipophilic (M/<i>n</i>= Cr/3, Co/3, Rh/3, Ir/3,) Tj charge. Dalton Transactions. 2020. 49. 3680-3691. <i>para</i>@Quinone Methides as Acceptors in 1,6â€Nucleophilic Conjugate Addition Reactions for the Synthesis of Structurally Diverse Molecules. European Journal of Organic Chemistry, 2020, 2020, 2650-2692.</pre> Enantioselective Redoxâ€Divergent Chiral Phosphoric Acid Catalyzed Quinone Dielsâ€"Alder Reactions.	1.0	154
995 996	 [M(en) ₃]ⁿ⁺<i>n</i>X^{â[*]}lipophilic (M/<i>n</i>= Cr/3, Co/3, Rh/3, Ir/3,) Tj charge, Dalton Transactions, 2020, 49, 3680-3691. <i>>para</i>à<@Quinone Methides as Acceptors in 1,6â€Nucleophilic Conjugate Addition Reactions for the Synthesis of Structurally Diverse Molecules. European Journal of Organic Chemistry, 2020, 2020, 2650-2692. Enantioselective Redoxâ€Divergent Chiral Phosphoric Acid Catalyzed Quinone Dielsâ€"Alder Reactions. Angewandte Chemie - International Edition, 2020, 59, 8491-8496. A Thioxanthone Sensitizer with a Chiral Phosphoric Acid Binding Site: Properties and Applications in 	1.0 1.2 7.2	21 154 28
995 996 997	 [M(en) < sub>3 < /sub>] < sup>n+ <i>> n < /i>> X < sup>â[*] < /sup> lipophilic (M/<i>n < /i>> = Cr/3, Co/3, Rh/3, Ir/3,) Tj</i></i> charge. Dalton Transactions. 2020. 49. 3680-3691. <i>> para < /i>à â Quinone Methides as Acceptors in 1,6â € Nucleophilic Conjugate Addition Reactions for the Synthesis of Structurally Diverse Molecules. European Journal of Organic Chemistry, 2020, 2020, 2650-2692.</i> Enantioselective Redoxâ € Divergent Chiral Phosphoric Acid Catalyzed Quinone Dielsâ € "Alder Reactions. Angewandte Chemie - International Edition, 2020, 59, 8491-8496. A Thioxanthone Sensitizer with a Chiral Phosphoric Acid Binding Site: Properties and Applications in Visible Lightâ € Mediated Cycloadditions. Chemistry - A European Journal, 2020, 26, 5190-5194. Chiral Phosphoric Acid Catalyzed Atroposelective Câ[*]H Amination of Arenes. Angewandte Chemie, 2020, 	1.0 1.2 7.2 1.7	21 154 28 36
995 996 997 998	 [M(en) < sub>3 < /sub>] < sup>n+ <i>n+ </i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	1.0 1.2 7.2 1.7 1.6	21 154 28 36 39
995 996 997 998 999	 [M(en) ₃3 3 1 1 1 [M(en) ₃3 1 [M(en) ₃3 1 [N(en) ₃1 [N(en) ₁ [N(en) ₃1 [N(en) ₁ [N(en) [N(en) ₁ [N(en) <l< td=""><td>1.0 1.2 7.2 1.7 1.6 1.6</td><td>21 154 28 36 39 8</td></l<>	1.0 1.2 7.2 1.7 1.6 1.6	21 154 28 36 39 8

#	Article	IF	CITATIONS
1003	Modular Synthesis of Polycyclic Alkaloid Scaffolds via an Enantioselective Dearomative Cascade. Organic Letters, 2020, 22, 1175-1181.	2.4	38
1004	Direct asymmetric N-propargylation of indoles and carbazoles catalyzed by lithium SPINOL phosphate. Nature Communications, 2020, 11, 226.	5.8	30
1005	Catalytic Atroposelective Synthesis of <i>N</i> -Aryl Quinoid Compounds. Journal of the American Chemical Society, 2020, 142, 2198-2203.	6.6	72
1006	Cross-dehydrogenative coupling enables enantioselective access to CF ₃ -substituted all-carbon quaternary stereocenters. Chemical Science, 2020, 11, 2414-2419.	3.7	38
1007	Continuous Flow Preparation of Enantiomerically Pure BINOL(s) by Acylative Kinetic Resolution. Advanced Synthesis and Catalysis, 2020, 362, 1370-1377.	2.1	11
1008	Synthesis of Chiral Triarylmethanes Bearing Allâ€Carbon Quaternary Stereocenters: Catalytic Asymmetric Oxidative Crossâ€Coupling of 2,2â€Diarylacetonitriles and (Hetero)arenes. Angewandte Chemie - International Edition, 2020, 59, 3053-3057.	7.2	45
1009	Sulfoxide-mediated oxidative cross-coupling of phenols. Chemical Science, 2020, 11, 2001-2005.	3.7	18
1010	Tethered Counterion-Directed Catalysis: Merging the Chiral Ion-Pairing and Bifunctional Ligand Strategies in Enantioselective Gold(I) Catalysis. Journal of the American Chemical Society, 2020, 142, 3797-3805.	6.6	77
1011	Chiral Tricationic Tris(1,2-diphenylethylenediamine) Cobalt(III) Hydrogen Bond Donor Catalysts with Defined Carbon/Metal Configurations; Matched/Mismatched Effects upon Enantioselectivities with Enantiomeric Chiral Counter Anions. ACS Catalysis, 2020, 10, 3249-3263.	5.5	21
1012	Chiral strong BrÃ,nsted acid-catalyzed enantioselective addition reaction of simple olefins with ethyl glyoxylate. Organic Chemistry Frontiers, 2020, 7, 1383-1387.	2.3	4
1013	Functionalized Macrocycles in Supramolecular Organocatalysis. ChemPlusChem, 2020, 85, 889-899.	1.3	22
1014	Novel π-expanded chrysene-based axially chiral molecules: 1,1′-bichrysene-2,2′-diols and thiophene analogs. Journal of Chemical Research, 2020, 44, 641-645.	0.6	0
1015	Hybrid Palladium Catalyst Assembled from Chiral Phosphoric Acid and Thioamide for Enantioselective β (sp ³)â^'H Arylation. Angewandte Chemie - International Edition, 2020, 59, 12774-12778.	7.2	39
1016	Enantioselektive Palladaâ€elektrokatalysierte Câ€Hâ€Aktivierung durch transiente dirigierende Gruppen: Ein nützlicher Zugang zu Helicenen. Angewandte Chemie, 2020, 132, 13553-13559.	1.6	42
1017	Organocatalytic Enantioselective Synthesis of Atropisomeric Aryl―p â€Quinones: Platform Molecules for Diversityâ€Oriented Synthesis of Biaryldiols. Angewandte Chemie, 2020, 132, 11470-11474.	1.6	23
1018	Organocatalytic Enantioselective Synthesis of Atropisomeric Arylâ€∢i>pâ€Quinones: Platform Molecules for Diversityâ€Oriented Synthesis of Biaryldiols. Angewandte Chemie - International Edition, 2020, 59, 11374-11378.	7.2	85
1019	Chiral BrÃ,nsted Acid Catalyzed Enantioconvergent Propargylic Substitution Reaction of Racemic Secondary Propargylic Alcohols with Thiols. Chemistry - A European Journal, 2020, 26, 11124-11128.	1.7	21
1020	A Catalytic Cycle of Discovery: Asymmetric Catalysis Gives Rise to New Chiral Catalyst Scaffolds. CheM, 2020, 6, 810-812.	5.8	2

#	Article	IF	Citations
1021	BrÃ,nsted Acid Catalyzed Enantioselective Assembly of Spirochroman-3,3-oxindoles. Organic Letters, 2020, 22, 2925-2930.	2.4	27
1022	Atroposelective synthesis of configurationally stable nonbiaryl N–C atropisomers through direct asymmetric aminations of 1,3-benzenediamines. Chemical Communications, 2020, 56, 6201-6204.	2.2	40
1023	Diastereoselective thermal [3+2] cycloaddition reactions of nitrone possessing an amide functional group as hydrogen bond donor/acceptor. Chemistry of Heterocyclic Compounds, 2020, 56, 365-370.	0.6	1
1024	Continuous Flow Organophosphorus Chemistry. European Journal of Organic Chemistry, 2020, 2020, 5236-5277.	1.2	19
1025	Tetraethylphosphorodiamidate-Directed Metalation Group: Directed <i>Ortho</i> and Remote Metalation, Cross Coupling, and Remote Phospha Anionic Fries Rearrangement Reactions. Organic Letters, 2020, 22, 3860-3864.	2.4	5
1026	Harnessing structurally unbiased <i>ortho</i> -benzoquinone monoimine for biomimetic oxidative [4+2] cycloaddition with enamines. Chemical Communications, 2020, 56, 5965-5968.	2.2	8
1027	Redox deracemization of \hat{I}^2 , \hat{I}^3 -alkynyl $\hat{I}\pm$ -amino esters. Chemical Science, 2020, 11, 4444-4449.	3.7	21
1028	Chiral metal-organic frameworks with tunable catalytic selectivity in asymmetric transfer hydrogenation reactions. Nano Research, 2021, 14, 466-472.	5.8	34
1029	Chiral phosphoric acid catalyzed atroposelective C–H amination of arenes: mechanisms, origin and influencing factors of enantioselectivity. Organic Chemistry Frontiers, 2021, 8, 61-76.	2.3	3
1030	Recent Perspectives on Rearrangement Reactions of Ylides via Carbene Transfer Reactions. Chemistry - A European Journal, 2021, 27, 1270-1281.	1.7	97
1031	Chiral Catalysts for Pd ⁰ â€Catalyzed Enantioselective Câ^'H Activation. Chemistry - A European Journal, 2021, 27, 1231-1257.	1.7	72
1032	Regio―and Enantioselective (3+3) Cycloaddition of Nitrones with 2â€Indolylmethanols Enabled by Cooperative Organocatalysis. Angewandte Chemie - International Edition, 2021, 60, 2355-2363.	7.2	81
1033	Kinetic Resolution of 2â€ <i>N</i> â€Acylamido Tertiary Allylic Alcohols: Asymmetric Synthesis of Oxazolines. Advanced Synthesis and Catalysis, 2021, 363, 200-207.	2.1	24
1034	Chiral Spirocyclic Phosphoric Acids and Their Growing Applications. Chinese Journal of Chemistry, 2021, 39, 802-824.	2.6	46
1035	Catalytic Enantioselective Synthesis of Spirooxindoles by Oxidative Rearrangement of Indoles. Angewandte Chemie - International Edition, 2021, 60, 5871-5875.	7.2	39
1036	Catalytic Enantioselective Synthesis of Spirooxindoles by Oxidative Rearrangement of Indoles. Angewandte Chemie, 2021, 133, 5935-5939.	1.6	9
1037	Chiral Phosphoric Acid: A Powerful Organocatalyst for the Asymmetric Synthesis of Heterocycles with Chiral Atropisomerism. ChemCatChem, 2021, 13, 1271-1289.	1.8	45
1038	Silica gel-promoted synthesis of multisubstituted spiroindolenines from tryptamines and Î ³ -chloro-α,β-unsaturated ketones. Tetrahedron, 2021, 77, 131765.	1.0	3

#	Article	IF	CITATIONS
1039	Construction of Partially Protected Nonsymmetrical Biaryldiols via Semipinacol Rearrangement of <i>o</i> -NQM Derived from Enynones. Organic Letters, 2021, 23, 71-75.	2.4	2
1040	Reusable Silica‣upported Ammonium BINSate Catalysts for Enantio―and Diastereoselective Friedel–Craftsâ€Type Double Aminoalkylation of N â€Alkylpyrroles with Aldimines. Asian Journal of Organic Chemistry, 2021, 10, 360-365.	1.3	5
1041	Rhodium atalyzed Atroposelective Construction of Indoles via Câ^'H Bond Activation. Angewandte Chemie - International Edition, 2021, 60, 8391-8395.	7.2	99
1042	Rhodium atalyzed Atroposelective Construction of Indoles via Câ^'H Bond Activation. Angewandte Chemie, 2021, 133, 8472-8476.	1.6	23
1043	Crystalline C—C and C╀ Bond-Linked Chiral Covalent Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 369-381.	6.6	117
1044	Regio―and Enantioselective (3+3) Cycloaddition of Nitrones with 2â€Indolylmethanols Enabled by Cooperative Organocatalysis. Angewandte Chemie, 2021, 133, 2385-2393.	1.6	13
1045	Applications of Pictet–Spengler reaction in the total synthesis of alkaloids. , 2021, , 227-294.		1
1046	Copper-catalyzed P–H insertion reactions of sulfoxonium ylides. Organic and Biomolecular Chemistry, 2021, 19, 5767-5771.	1.5	23
1047	Recent progress on the construction of axial chirality through transition-metal-catalyzed benzannulation. Organic Chemistry Frontiers, 2021, 8, 2772-2785.	2.3	35
1048	Recent quinone diazide based transformations <i>via</i> metal–carbene formation. New Journal of Chemistry, 2021, 45, 10135-10149.	1.4	21
1049	Organocatalytic asymmetric formal oxidative coupling for the construction of all-aryl quaternary stereocenters. Chemical Science, 2021, 12, 11793-11798.	3.7	17
1050	Research Advances in the Synthesis, Application, Assembly, and Calculation of Janus Materials. Industrial & Engineering Chemistry Research, 2021, 60, 1071-1095.	1.8	57
1051	Computational study on <i>N</i> -triflylphosphoramide-catalyzed enantioselective hydroamination of alkenyl thiourea. Organic and Biomolecular Chemistry, 2021, 19, 8806-8811.	1.5	1
1052	Understanding the mechanism of the chiral phosphoric acid-catalyzed aza-Cope rearrangement. Organic and Biomolecular Chemistry, 2021, 19, 3656-3664.	1.5	3
1053	Chemo- and enantioselective hetero-coupling of hydroxycarbazoles catalyzed by a chiral vanadium(<scp>v</scp>) complex. Organic Chemistry Frontiers, 2021, 8, 4878-4885.	2.3	20
1054	Mukaiyama aldol reaction catalyzed by (benz)imidazolium-based halogen bond donors. Organic and Biomolecular Chemistry, 2021, 19, 770-774.	1.5	8
1055	Dynamic parallel kinetic resolution of α-ferrocenyl cation initiated by chiral BrÃ,nsted acid catalyst. Chemical Science, 2021, 12, 10306-10312.	3.7	7
1056	Luminescent metal–organic frameworks as chemical sensors based on "mechanism–response†a review. Dalton Transactions, 2021, 50, 3429-3449.	1.6	68

CITATION	Report
ennion	

#	Article	IF	CITATIONS
1057	Chiral bis(benzo[1,2-b:4,3-b′]dithiophene) atropisomers: experimental and theoretical investigations of the stereochemical and chiroptical properties. New Journal of Chemistry, 2021, 45, 16442-16451.	1.4	0
1058	Organocatalytic asymmetric synthesis of α-amino esters from sulfoxonium ylides. Chemical Science, 2021, 12, 11191-11196.	3.7	32
1059	Precious Metal-Free LaMnO ₃ Perovskite Catalyst with an Optimized Nanostructure for Aerobic C–H Bond Activation Reactions: Alkylarene Oxidation and Naphthol Dimerization. ACS Applied Materials & Interfaces, 2021, 13, 5099-5110.	4.0	15
1060	Asymmetric synthesis of oxazolines bearing α-stereocenters through radical addition–enantioselective protonation enabled by cooperative catalysis. Organic Chemistry Frontiers, 2021, 8, 5804-5809.	2.3	9
1061	Selective hydrolysis of phosphorus(<scp>v</scp>) compounds to form organophosphorus monoacids. Organic and Biomolecular Chemistry, 2021, 19, 6007-6014.	1.5	8
1062	Radical addition reaction between chromenols and toluene derivatives initiated by BrÃ,nsted acid catalyst under light irradiation. Organic Chemistry Frontiers, 2021, 8, 4153-4159.	2.3	5
1063	Kinetic resolution of <i>N</i> -aryl β-amino alcohols <i>via</i> asymmetric aminations of anilines. Chemical Communications, 2021, 57, 9394-9397.	2.2	13
1064	BrÃ,nsted acid-promoted hydroamination of unsaturated hydrazones: access to biologically important 5-arylpyrazolines. RSC Advances, 2021, 11, 17340-17345.	1.7	7
1065	Biomimetic Intramolecular Diels-Alder Reaction to Construct the Tetrahydroindane Core of Elansolid A1/A2. Chinese Journal of Organic Chemistry, 2021, 41, 2820.	0.6	0
1066	A mild and practical method for deprotection of aryl methyl/benzyl/allyl ethers with HPPh ₂ and ^{<i>t</i>} BuOK. Organic and Biomolecular Chemistry, 2021, 19, 7633-7640.	1.5	5
1067	Advances in organocatalytic asymmetric reactions of vinylindoles: powerful access to enantioenriched indole derivatives. Organic Chemistry Frontiers, 2021, 8, 2643-2672.	2.3	82
1068	Self-assembly of chiral BINOL cages <i>via</i> imine condensation. Chemical Communications, 2021, 57, 9088-9091.	2.2	9
1069	Catalytic Asymmetric Reduction of α-Trifluoromethylated Imines with Catecholborane by BINOL-Derived Boro-phosphates. Journal of Organic Chemistry, 2021, 86, 4336-4345.	1.7	6
1070	Association Equilibria of Organo-Phosphoric Acids with Imines from a Combined Dielectric and Nuclear Magnetic Resonance Spectroscopy Approach. Analytical Chemistry, 2021, 93, 3914-3921.	3.2	0
1071	Organocatalyzed Cascade Aza-Michael/Aldol Reaction for Atroposelective Construction of 4-Naphthylquinoline-3-carbaldehydes. Journal of Organic Chemistry, 2021, 86, 4262-4273.	1.7	16
1072	Selective Synthesis of 4,4â€2-Dimethylbiphenyl from 2-Methylfuran. ACS Sustainable Chemistry and Engineering, 2021, 9, 3316-3323.	3.2	11
1073	Desymmetric Enantioselective Reduction of Cyclic 1,3-Diketones Catalyzed by a Recyclable <i>P</i> -Chiral Phosphinamide Organocatalyst. Journal of the American Chemical Society, 2021, 143, 2994-3002.	6.6	29
1074	Catalytic asymmetric and stereodivergent oligonucleotide synthesis. Science, 2021, 371, 702-707.	6.0	49

#	Article	IF	CITATIONS
1075	Design and Development of Axially Chiral Bis(naphthofuran) Luminogens as Fluorescent Probes for Cell Imaging. Chemistry - A European Journal, 2021, 27, 5470-5482.	1.7	15
1076	Catalyst- and additive-free cascade phosphorylation/cyclization of propargylic alcohols and R2P(O)OH. Tetrahedron Letters, 2021, 65, 152761.	0.7	2
1077	Insights into the Chiral Phosphoric Acid-Catalyzed Dynamic Kinetic Asymmetric Hydroamination of Racemic Allenes: An Allyl Carbocation/Phosphate Pair Mechanism. Journal of Organic Chemistry, 2021, 86, 4121-4130.	1.7	8
1078	Asymmetric Synthesis of 3â€Pyrrolines through an Aryneâ€Induced Domino Process. Asian Journal of Organic Chemistry, 2021, 10, 803-815.	1.3	5
1079	Chiral <i>C</i> ₂ -Symmetric Aminomethylbinaphthol as Synergistic Catalyst for Asymmetric Epoxidation of Alkylidenemalononitriles: Easy Access to Chiral Spirooxindoles. Organic Letters, 2021, 23, 1980-1985.	2.4	10
1080	Enantioselective Synthesis of 3,3′â€Disubstituted 2â€Aminoâ€2′â€hydroxyâ€1,1′â€binaphthyls by Cop Aerobic Oxidative Crossâ€Coupling. Angewandte Chemie, 2021, 133, 7137-7141.	perâ€Cata 1.6	lyzęd
1081	Chain Entropy Beats Hydrogen Bonds to Unfold and Thread Dialcohol Phosphates inside Cyanostar Macrocycles To Form [3]Pseudorotaxanes. Journal of Organic Chemistry, 2021, 86, 4532-4546.	1.7	10
1082	Highly enantioselective transfer hydrogenation catalyzed by diasteromeric mixtures of axially chiral (aR,S)- and (aS,S)-Biscarbolines. Tetrahedron, 2021, 82, 131924.	1.0	1
1083	Enantioselective Synthesis of 3,3′â€Disubstituted 2â€Aminoâ€2′â€hydroxyâ€1,1′â€binaphthyls by Cop Aerobic Oxidative Crossâ€Coupling. Angewandte Chemie - International Edition, 2021, 60, 7061-7065.	perâ€Cata 7.2	lyzed 48
1084	Regioselective, Diastereoselective, and Enantioselective One-Pot Tandem Reaction Based on an in Situ Formed Reductant: Preparation of 2,3-Disubstituted 1,5-Benzodiazepine. Journal of Organic Chemistry, 2021, 86, 5110-5119.	1.7	13
1085	Catalytic Enantioselective Desymmetrizing Fischer Indolization through Dynamic Kinetic Resolution. Angewandte Chemie - International Edition, 2021, 60, 9086-9092.	7.2	16
1086	Enantioselective Reductive Cyanation and Phosphonylation of Secondary Amides by Iridium and Chiral Thiourea Sequential Catalysis. Angewandte Chemie - International Edition, 2021, 60, 8827-8831.	7.2	55
1087	Phosphorus-Based Catalysis. ACS Central Science, 2021, 7, 536-558.	5.3	157
1088	Atroposelective Transfer Hydrogenation of Biaryl Aminals via Dynamic Kinetic Resolution. Synthesis of Axially Chiral Diamines. ACS Catalysis, 2021, 11, 4117-4124.	5.5	24
1089	Catalytic Enantioselective Desymmetrizing Fischer Indolization through Dynamic Kinetic Resolution. Angewandte Chemie, 2021, 133, 9168-9174.	1.6	3
1090	Recent Advances in (Dynamic) Kinetic Resolution and Desymmetrization Catalyzed by Chiral Phosphoric Acids. Asian Journal of Organic Chemistry, 2021, 10, 692-710.	1.3	60
1091	First application of chiral phosphotriesters in asymmetric metal catalysis: enantioselective Zn-catalyzed hydrosilylation of ketones in the presence of BINOL-derived phosphates. Comptes Rendus Chimie, 2021, 24, 77-81.	0.2	0
1092	Enantioselective Reductive Cyanation and Phosphonylation of Secondary Amides by Iridium and Chiral Thiourea Sequential Catalysis. Angewandte Chemie, 2021, 133, 8909-8913.	1.6	15

#	Article	IF	CITATIONS
1093	Advances in Chiral Metal–Organic and Covalent Organic Frameworks for Asymmetric Catalysis. Small, 2021, 17, e2005686.	5.2	41
1094	Recent Applications of Asymmetric Organocatalytic Methods in Total Synthesis. ChemistrySelect, 2021, 6, 2252-2280.	0.7	8
1095	Desymmetrization of 1,3-Diones by Catalytic Enantioselective Condensation with Hydrazine. Journal of the American Chemical Society, 2021, 143, 4179-4186.	6.6	39
1096	Recent Advances in Catalytic Asymmetric Construction of Atropisomers. Chemical Reviews, 2021, 121, 4805-4902.	23.0	499
1097	Enantioselective synthesis of hetero-triarylmethanes by chiral phosphoric acid-catalyzed 1,4-addition of 3-substituted indoles with azadienes. Tetrahedron Letters, 2021, 67, 152862.	0.7	6
1098	Organocatalytic Enantioselective Azaâ€Michael Addition of Arylamines to 7â€Methideâ€7 <i>H</i> â€Indoles. Advanced Synthesis and Catalysis, 2021, 363, 2557-2561.	2.1	10
1099	Catalytic and Enantioselective Control of the C–N Stereogenic Axis via the Pictet–Spengler Reaction. Angewandte Chemie, 2021, 133, 12387-12391.	1.6	18
1100	One-Pot Enantioselective Construction of Polycyclic Tetrahydroquinoline Scaffolds through Asymmetric Organo/Photoredox Catalysis via Triple-Reaction Sequence. Organic Letters, 2021, 23, 3287-3293.	2.4	10
1101	Dreams, False Starts, Dead Ends, and Redemption: A Chronicle of the Evolution of a Chemoinformatic Workflow for the Optimization of Enantioselective Catalysts. Accounts of Chemical Research, 2021, 54, 2041-2054.		31
1102	Stereoselective construction of fused cyclopropane from ynamide and its application to synthesis of small drug candidate molecules. Tetrahedron Letters, 2021, 70, 152985.	0.7	4
1103	Bis(trifluoromethanesulfonimide) (BSI): Acidity and application to hydrofunctionalization as a BrĀ̯nsted acid catalyst. Tetrahedron, 2021, 85, 132037.	1.0	6
1104	Kinetic Resolution of Tertiary Allylic Alcohols: Highly Enantioselective Access to Cyclic Ethers Bearing an α-Tetrasubstituted Stereocenter. Organic Letters, 2021, 23, 3949-3954.	2.4	20
1105	Catalytic Enantioselective Allylation of Acetylenic Aldehydes by Chiral Phosphoric Acid/Transition Metal Cooperative Catalysis: Formal Synthesis of Fostriecin. Organic Letters, 2021, 23, 3767-3771.	2.4	7
1107	Enantioselective Silicon-Directed Nazarov Cyclization. Journal of the American Chemical Society, 2021, 143, 6962-6968.	6.6	27
1108	Development of Asymmetric Propargylic Substitution Reactions Using Transition Metal Catalysts. Chemistry Letters, 2021, 50, 1282-1288.	0.7	35
1109	On the Enantioselective Phosphoric-Acid-Catalyzed Hantzsch Synthesis of Polyhydroquinolines. Organic Letters, 2021, 23, 3394-3398.	2.4	11
1110	Recent Advances in Metal atalyzed Functionalization of Indoles. Advanced Synthesis and Catalysis, 2021, 363, 2723-2739.	2.1	89
1111	Catalytic Asymmetric C-7 Friedel–Crafts Alkylation/ <i>N</i> -Hemiacetalization of 4-Aminoindoles. Organic Letters, 2021, 23, 3010-3014.	2.4	21

#	Article		CITATIONS
1112	Au(I)/(<i>R</i>)-BINOL–Ti(IV) Concerted Catalyzed Asymmetric Cascade Cycloaddition Reaction of Arylalkynols. Organic Letters, 2021, 23, 3573-3577.	2.4	5
1113	Asymmetric Zinc Catalysis in Green One-pot Processes. Current Organic Chemistry, 2021, 25, 857-875.	0.9	6
1114	Catalytic and Enantioselective Control of the C–N Stereogenic Axis via the Pictet–Spengler Reaction. Angewandte Chemie - International Edition, 2021, 60, 12279-12283.	7.2	65
1115	Computational Insights into Privileged Stereocontrolling Interactions Involving Chiral Phosphates and Iminium Intermediates. Journal of the American Chemical Society, 2021, 143, 7209-7215.	6.6	18
1116	Rhodomentosones A and B: Two Pairs of Enantiomeric Phloroglucinol Trimers from <i>Rhodomyrtus tomentosa</i> and Their Asymmetric Biomimetic Synthesis. Organic Letters, 2021, 23, 4499-4504.	2.4	21
1117	Organocatalytic Enantioselective Desymmetrization of Prochiral 2,2â€Disubstituted Cyclic 1,3â€Diones. Asian Journal of Organic Chemistry, 2021, 10, 1267-1281.	1.3	13
1118	Palladium-Catalyzed Allylic Alkylation via Photocatalytic Nucleophile Generation. ACS Catalysis, 2021, 11, 6757-6762.	5.5	19
1119	Enantioselective Intermolecular Mannich-Type Interception of Phenolic Oxonium Ylide for the Direct Assembly of Chiral 2,2-Disubstituted Dihydrobenzofurans. ACS Catalysis, 2021, 11, 6750-6756.	5.5	21
1120	Enantiodivergent Kinetic Resolution of 1,1′â€Biarylâ€2,2′â€Diols and Amino Alcohols by Dipeptideâ€Phospl Salt Catalysis Inspired by the Atherton–Todd Reaction. Angewandte Chemie - International Edition, 2021, 60, 14921-14930.	10nium 7.2	40
1121	Organocatalytic Enantioselective Friedel rafts Alkylation Reactions of Pyrroles. Advanced Synthesis and Catalysis, 2021, 363, 3439-3470.	2.1	30
1122	Kinetic Resolution of 2,2-Disubstituted Dihydroquinolines through Chiral Phosphoric Acid-Catalyzed C6-Selective Asymmetric Halogenations. Organic Letters, 2021, 23, 4104-4108.	2.4	12
1123	Enantio- and Diastereoselective Carbonyl-Ene Cyclization–Acetalization Tandem Reaction Catalyzed by Tris(pentafluorophenyl)borane-Assisted Chiral Phosphoric Acids. ACS Catalysis, 2021, 11, 6121-6127.	5.5	23
1124	Reductive Coupling of Aryl Halides <i>via</i> C—H Activation of Indene. Chinese Journal of Chemistry, 2021, 39, 1573-1579.	2.6	10
1125	Enantiodivergent Kinetic Resolution of 1,1′â€Biarylâ€2,2′â€Diols and Amino Alcohols by Dipeptideâ€Phospl Salt Catalysis Inspired by the Atherton–Todd Reaction. Angewandte Chemie, 2021, 133, 15048-15057.	10nium 1.6	16
1126	Development of novel C2-symmetrical [5]oxahelicenoid diols. Tetrahedron Letters, 2021, 71, 153026.	0.7	2
1127	Accelerating Amine atalyzed Asymmetric Reactions by Intermolecular Cooperative Thiourea/Oxime Hydrogenâ€Bond Catalysis. European Journal of Organic Chemistry, 2021, 2021, 3043-3049.	1.2	3
1128	Atroposelective Construction of Axially Chiral <scp>Alkeneâ€Indole</scp> Scaffolds <i>via</i> Catalytic Enantioselective Addition Reaction of <scp>3â€Alkynyl</scp> â€2â€Indolylmethanols ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2163-2171.	2.6	69
1129	Green Chemistry Meets Asymmetric Organocatalysis: A Critical Overview on Catalysts Synthesis. ChemSusChem, 2021, 14, 2785-2853.	3.6	58

#	Article	IF	CITATIONS
1130	Chiral Cobalt(III) Tris(1,2-diamine) Catalysts That Incorporate Nitrogenous Base Containing Anions for the Bifunctional Activation of Nucleophiles and Electrophiles in Enantioselective Addition Reactions. ACS Catalysis, 2021, 11, 7762-7771.	5.5	10
1131	Enantioselective Organocatalytic Syntheses and Ringâ€Expansions of Cyclobutane Derivatives. European Journal of Organic Chemistry, 2021, 2021, 3023-3034.	1.2	5
1132	Enantioconvergent Substitution Reactions of Racemic Electrophiles by Organocatalysis. Chemistry - A European Journal, 2021, 27, 10215-10225.	1.7	25
1133	Enantioselective Synthesis of Axially Chiral Biaryls by Diels–Alder/Retro-Diels–Alder Reaction of 2-Pyrones with Alkynes. Journal of the American Chemical Society, 2021, 143, 8993-9001.	6.6	57
1134	Enantioselective [2 + 2] Photocycloaddition via Iminium Ions: Catalysis by a Sensitizing Chiral Brønsted Acid. Journal of the American Chemical Society, 2021, 143, 9350-9354.	6.6	56
1135	Enantioselective and Diastereodivergent Synthesis of Spiroindolenines via Chiral Phosphoric Acid-Catalyzed Cycloaddition. Journal of the American Chemical Society, 2021, 143, 11611-11619.	6.6	24
1136	Redox deracemization of α-substituted 1,3-dihydroisobenzofurans. Chinese Chemical Letters, 2021, 32, 2305-2308.	4.8	9
1137	Application of 3-Alkyl-2-vinylindoles in Catalytic Asymmetric Dearomative (2+3) Cycloadditions. Journal of Organic Chemistry, 2021, 86, 10427-10439.	1.7	16
1138	The hydrogen bond effect on excited state mechanism for 2-isopropyl thioxanone in protic solvents: Experimental and theoretical investigation. Journal of Molecular Liquids, 2022, 345, 117012.	2.3	9
1139	Recent developments in enantioselective zinc-catalyzed transformations. Coordination Chemistry Reviews, 2021, 439, 213926.	9.5	10
1140	Organocatalytic Enantioselective Construction of Acyclic <i>N</i> , <i>N</i> â€Acetals via Azaâ€Addition of Arylamines to Ketimines. Advanced Synthesis and Catalysis, 2021, 363, 4332-4337.	2.1	6
1141	Construction of Atropisomeric 3-Arylindoles via Enantioselective Cacchi Reaction. Organic Letters, 2021, 23, 5901-5905.	2.4	37
1142	Enantioselective Photochemical Reactions Enabled by Triplet Energy Transfer. Chemical Reviews, 2022, 122, 1626-1653.	23.0	197
1143	Recent Advances in Catalytic Atroposelective Construction of Pentatomic Heterobiaryl Scaffolds. ChemCatChem, 2021, 13, 3547-3564.	1.8	33
1145	Data Science Meets Physical Organic Chemistry. Accounts of Chemical Research, 2021, 54, 3136-3148.	7.6	47
1146	Catalytic Asymmetric Radical-Mediated Three-Component Piancatelli-Type Rearrangement of Furylalkenes. ACS Catalysis, 2021, 11, 10198-10207.	5.5	15
1147	Aminocatalytic stereoselective synthesis of (E)-α-naphthyl enals via cross-coupling-like reaction of 1-bromo-2-naphthols with enals. Green Synthesis and Catalysis, 2021, 2, 377-380.	3.7	3
1148	Tandem Catalytic Indolization/Enantioconvergent Substitution of Alcohols by Borrowing Hydrogen to Access Tricyclic Indoles. Angewandte Chemie - International Edition, 2021, 60, 20689-20694.	7.2	26

#	Article	IF	CITATIONS
1149	Asymmetric Enamide–Imine Tautomerism in the Kinetic Resolution of Tertiary Alcohols. Angewandte Chemie - International Edition, 2021, 60, 21334-21339.	7.2	19
1150	SPHENOL, A New Chiral Framework for Asymmetric Synthesis. Journal of the American Chemical Society, 2021, 143, 12445-12449.	6.6	21
1151	Selective Synthesis of <i>C</i> ₁ -Symmetric BINOL-phosphates and P-chiral Phosphoramides Using Directed <i>ortho</i> -Lithiation. Organic Letters, 2021, 23, 7055-7058.	2.4	6
1152	Chiral Phosphoric Acid-Catalyzed Remote Control of Axial Chirality at Boron–Carbon Bond. Journal of the American Chemical Society, 2021, 143, 12924-12929.	6.6	51
1153	Organocatalytic enantioselective dearomatization of thiophenes by 1,10-conjugate addition of indole imine methides. Nature Communications, 2021, 12, 4881.	5.8	36
1154	Carbeneâ€Catalyzed Asymmetric Construction of Atropisomers. Angewandte Chemie - International Edition, 2021, 60, 26026-26037.	7.2	119
1155	Tandem Catalytic Indolization/Enantioconvergent Substitution of Alcohols by Borrowing Hydrogen to Access Tricyclic Indoles. Angewandte Chemie, 2021, 133, 20857-20862.	1.6	3
1156	Rational design and atroposelective synthesis of N–N axially chiral compounds. CheM, 2021, 7, 2743-2757.	5.8	87
1157	Asymmetric Enamide–Imine Tautomerism in the Kinetic Resolution of Tertiary Alcohols. Angewandte Chemie, 2021, 133, 21504-21509.	1.6	5
1158	Organocatalyst-controlled site-selective arene C–H functionalization. Nature Chemistry, 2021, 13, 982-991.	6.6	52
1159	Carbeneâ€Catalyzed Asymmetric Construction of Atropisomers. Angewandte Chemie, 2021, 133, 26230-26241.	1.6	21
1160	Organocatalytic Asymmetric Dearomatization Reaction for the Synthesis of Axial Chiral Allene-Derived Naphthalenones Bearing Quaternary Stereocenters. Organic Letters, 2021, 23, 6606-6611.	2.4	29
1161	Enantioselective Oxidative Multi-Functionalization of Terminal Alkynes with Nitrones and Alcohols for Expeditious Assembly of Chiral α-Alkoxy-β-amino-ketones. Journal of the American Chemical Society, 2021, 143, 14703-14711.	6.6	44
1162	Chiral BrÃ,nsted acid-controlled intermolecular asymmetric [2 + 2] photocycloadditions. Nature Communications, 2021, 12, 5735.	5.8	32
1163	Design and synthesis of 3,3′-triazolyl biisoquinoline N,N'-dioxides via Hiyama cross-coupling of 4-trimethylsilyl-1,2,3-triazoles. Tetrahedron Letters, 2021, 81, 153338.	0.7	4
1164	Synthesis of Chiral Spirolactams via Sequential Câ^'H Olefination/Asymmetric [4+1] Spirocyclization under a Simple Co ^{II} /Chiral Spiro Phosphoric Acid Binary System. Angewandte Chemie - International Edition, 2021, 60, 23187-23192.	7.2	51
1165	Synthesis of Chiral Spirolactams via Sequential Câ^'H Olefination/Asymmetric [4+1] Spirocyclization under a Simple Co II /Chiral Spiro Phosphoric Acid Binary System. Angewandte Chemie, 2021, 133, 23371.	1.6	14
1166	An Alternative Synthesis of Cycloalkylâ€&ubstituted CPA Catalysts and Application in Asymmetric Protonation Reactions**. European Journal of Organic Chemistry, 2021, 2021, 4943-4945.	1.2	2

#	Article	IF	CITATIONS
1167	Nitrosobenzeneâ€Enabled Chiral Phosphoric Acid Catalyzed Enantioselective Construction of Atropisomeric <i>N</i> â€Arylbenzimidazoles. Angewandte Chemie - International Edition, 2021, 60, 24888-24893.	7.2	43
1168	Asymmetric Aminations and Kinetic Resolution of Acyclic <scp>αâ€Branched</scp> Ynones. Chinese Journal of Chemistry, 2022, 40, 15-20.	2.6	10
1169	Nitrosobenzeneâ€Enabled Chiral Phosphoric Acid Catalyzed Enantioselective Construction of Atropisomeric Nâ€Arylbenzimidazoles. Angewandte Chemie, 0, , .	1.6	9
1170	Chiral Phosphoric Acid Catalysis: The Terada Model Revisited. Journal of Organic Chemistry, 2021, 86, 13631-13635.	1.7	4
1171	Comprehensive Stereochemical Models for Selectivity Prediction in Diverse Chiral Phosphate-Catalyzed Reaction Space. ACS Catalysis, 2021, 11, 11897-11905.	5.5	12
1172	Development of chiral bisphosphoric acid/boronic acid co-catalyst system for enantioselective SN2' reaction. Tetrahedron, 2021, 98, 132412.	1.0	5
1173	BrÃ,nsted Acid Catalyzed Stereoselective Polymerization of Vinyl Ethers. Journal of the American Chemical Society, 2021, 143, 16388-16393.	6.6	30
1174	Enantioselective assembly of 3,3-disubstituted succinimides <i>via</i> three-component reaction of vinyl diazosuccinimides with alcohols and imines. Chemical Communications, 2021, 57, 8043-8046.	2.2	12
1175	Rh(<scp>iii</scp>)-Catalyzed one-pot three-component cyclization reaction: rapid selective synthesis of monohydroxy polycyclic BINOL derivatives. Organic Chemistry Frontiers, 2021, 8, 4967-4973.	2.3	7
1176	lodonium salts as efficient iodine(<scp>iii</scp>)-based noncovalent organocatalysts for Knorr-type reactions. RSC Advances, 2021, 11, 4574-4583.	1.7	32
1177	Regio- and enantioselective amination of acyclic branched α-alkynyl ketones: asymmetric construction of N-containing quaternary stereocenters. Organic Chemistry Frontiers, 2021, 8, 5377-5382.	2.3	9
1178	Chiral Phosphoric Acid-Catalyzed Enantioselective Construction of 2,3-Disubstituted Indolines. Organic Letters, 2021, 23, 442-448.	2.4	28
1179	Enamides and dienamides in phosphoric acid-catalysed enantioselective cycloadditions for the synthesis of chiral amines. Chemical Communications, 2021, 57, 4089-4105.	2.2	29
1180	Asymmetric organocatalysis: an enabling technology for medicinal chemistry. Chemical Society Reviews, 2021, 50, 1522-1586.	18.7	219
1181	Catalytic Enantioselective Synthesis of Aryl–Methyl Organophosphorus Compounds. Journal of Organic Chemistry, 2021, 86, 2000-2011.	1.7	11
1182	Artificial plant cell walls as multi-catalyst systems for enzymatic cooperative asymmetric catalysis in non-aqueous media. Chemical Communications, 2021, 57, 8814-8817.	2.2	11
1183	Predicting the catalytic activity of azolium-based halogen bond donors: an experimentally-verified theoretical study. Organic and Biomolecular Chemistry, 2021, 19, 7611-7620.	1.5	21
1184	Organocatalytic regio-, diastereo- and enantioselective γ-additions of isoxazol-5(4 <i>H</i>)-ones to β,γ-alkynyl-α-imino esters for the synthesis of axially chiral tetrasubstituted α-amino allenoates. Organic Chemistry Frontiers, 2021, 8, 1243-1248.	2.3	32

#	Article	IF	CITATIONS
1185	On the question of steric repulsion <i>versus</i> noncovalent attractive interactions in chiral phosphoric acid catalyzed asymmetric reactions. Physical Chemistry Chemical Physics, 2021, 23, 18936-18950.	1.3	10
1187	Catalytic Asymmetric Azaâ€Dielsâ€Alder Reaction: Pivotal Milestones and Recent Applications to Synthesis of Nitrogen ontaining Heterocycles. Advanced Synthesis and Catalysis, 2021, 363, 1466-1526.	2.1	40
1188	Synthesis of Chiral Triarylmethanes Bearing Allâ€Carbon Quaternary Stereocenters: Catalytic Asymmetric Oxidative Crossâ€Coupling of 2,2â€Diarylacetonitriles and (Hetero)arenes. Angewandte Chemie, 2020, 132, 3077-3081.	1.6	9
1189	Chiral Phosphoric Acid Catalyzed Atroposelective Câ^'H Amination of Arenes. Angewandte Chemie - International Edition, 2020, 59, 6775-6779.	7.2	139
1190	Aerobic Catalyzed Oxidative Cross-Coupling of N,N-Disubstituted Anilines and Aminonaphthalenes with Phenols and Naphthols. Organic Letters, 2020, 22, 1765-1770.	2.4	18
1191	Organocatalytic Regio- and Enantioselective 1,8-Additions of Nitrogen and Sulfur Nucleophiles to 6-Methylene-6 <i>H</i> -indoles. Organic Letters, 2020, 22, 7859-7863.	2.4	23
1192	Recent Perspectives in Catalysis under Continuous Flow. RSC Green Chemistry, 2019, , 1-49.	0.0	5
1193	Catalytic asymmetric total syntheses of myrtucommuacetalone, myrtucommuacetalone B, and callistrilones A, C, D and E. Chemical Science, 2018, 9, 1488-1495.	3.7	57
1194	Redox deracemization of diarylmethyl alkynes. Organic Chemistry Frontiers, 2020, 7, 2526-2530.	2.3	11
1195	Nucleophilic Addition to N-Benzoylisoquinolinium Cation Catalyzed by Sodium Tetracyanocyclopentadienides. Heterocycles, 2019, 99, 703.	0.4	3
1196	Development and Recent Progress in the Chiral BrÃ,nsted Acid Catalyst. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2017, 75, 410-420.	0.0	2
1197	Design of High Performance Catalysts Based on Acid-Base Combination Chemistry. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2017, 75, 98-110.	0.0	1
1198	Asymmetric Substitution Reactions Catalyzed by a Chiral Phosphoric Acid. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 325-335.	0.0	3
1199	<i>N</i> -Triflylphosphoramides: highly acidic catalysts for asymmetric transformations. Organic and Biomolecular Chemistry, 2021, 19, 9565-9618.	1.5	16
1200	Organocatalytic atroposelective heterocycloaddition to access axially chiral 2-arylquinolines. Communications Chemistry, 2021, 4, .	2.0	14
1201	Turning renewable feedstocks into a valuable and efficient punctually chiral phosphate salt catalyst. Asian Journal of Organic Chemistry, 0, , .	1.3	2
1202	Asymmetric dearomatization catalysed by chiral BrÃ,nsted acids via activation of ynamides. Nature Chemistry, 2021, 13, 1093-1100.	6.6	77
1203	Nazarov Cyclizations Catalyzed by BINOL Phosphoric Acid Derivatives: Quantum Chemistry Struggles To Predict the Enantioselectivity. Journal of Organic Chemistry, 2022, 87, 1710-1722.	1.7	5

#	Article	IF	CITATIONS
1204	Chiral Phosphoric Acid atalyzed Enantioselective Synthesis of Pyrazoleâ€Based Unnatural αâ€Amino Acid Derivatives. Advanced Synthesis and Catalysis, 2022, 364, 274-280.	2.1	12
1205	Nonâ€Covalent Interactions between Chiral Phosphate and Lanthanide Ion by Chiroptical Spectroscopy. Chemistry Methods, 2022, 2, .	1.8	2
1206	Chiral Phosphoric Acids as Versatile Tools for Organocatalytic Asymmetric Transfer Hydrogenations. European Journal of Organic Chemistry, 2021, 2021, 5367-5381.	1.2	21
1207	Asymmetric C–H Functionalization Enabled by Pd/Chiral Phosphoric Acid Combined Catalysis. Synthesis, 2022, 54, 4795-4801.	1.2	7
1208	Exploiting non-covalent interactions in selective carbohydrate synthesis. Nature Reviews Chemistry, 2021, 5, 792-815.	13.8	50
1209	Chapter 2. Ring-opening Polymerization Promoted by BrÃ,nsted Acid Catalysts. RSC Polymer Chemistry Series, 2018, , 37-86.	0.1	2
1210	Noncovalent Interactions in the Design of Chiral Brønsted Acid Catalysts. RSC Catalysis Series, 2019, , 209-231.	0.1	0
1211	CHAPTER 12. Noncovalent Interactions in Asymmetric Reactions Catalysed by Chiral Phosphoric Acids. RSC Catalysis Series, 2019, , 253-282.	0.1	0
1212	Computational asymmetric catalysis: On the origin of stereoselectivity in catalytic reactions. Advances in Physical Organic Chemistry, 2019, 53, 1-27.	0.5	2
1213	Nickel-Catalyzed Enantioselective Arylative Activation of Aromatic C–O Bond. Journal of the American Chemical Society, 2021, 143, 18380-18387.	6.6	30
1214	An Organocatalytic Kinetic Resolution of Aziridines by Thiol Nucleophiles. Organic Letters, 2021, 23, 554-558.	2.4	9
1215	Chiral spiro phosphoric acid-catalysed enantioselective reaction of ketenes with N–H pyrroles. Chemical Communications, 2021, 57, 11992-11995.	2.2	5
1216	Enantioconvergent Catalytic S _N 1 Reaction by Stereocontrol over Tertiary Carbocations. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 60-61.	0.0	0
1217	CHAPTER 12. P: Asymmetric Acid Catalysis. RSC Catalysis Series, 2020, , 334-347.	0.1	0
1218	MCDCalc: Markov Chain Molecular Descriptors Calculator for Medicinal Chemistry. Current Topics in Medicinal Chemistry, 2020, 20, 305-317.	1.0	4
1219	An asymmetric oxidative cyclization/Mannich-type addition cascade reaction for direct access to chiral pyrrolidin-3-ones. Chemical Communications, 2021, 57, 12171-12174.	2.2	7
1220	Hypercrosslinking chiral BrÃ,nsted acids into porous organic polymers for efficient heterogeneous asymmetric organosynthesis. Journal of Materials Chemistry A, 2021, 9, 25369-25373.	5.2	9
1222	Transannular Enantioselective (3 + 2) Cycloaddition of Cycloalkenone Hydrazones under BrÃ,nsted Acid Catalysis. Organic Letters, 2021, 23, 8738-8743.	2.4	10

#	Article		CITATIONS
1224	On the synthesis of a novel chiral phosphorodiamidic acid containing the α-phenylethyl moiety: Insights in its conformation and reactivity. Synthesis, 0, 0, .	1.2	0
1227	Organocatalytic Asymmetric [2 + 4] Cycloadditions of 3-Vinylindoles with ortho-Quinone Methides. Molecules, 2021, 26, 6751.	1.7	6
1229	Enantioselective construction of a tetrasubstituted stereocenter in isoindolinones <i>via</i> an organocatalyzed reaction between ketones and 3-hydroxyisoindolinones. Chemical Communications, 2021, 57, 13546-13549.	2.2	9
1230	Organocatalytic enantioselective S _N 1-type dehydrative nucleophilic substitution: access to bis(indolyl)methanes bearing quaternary carbon stereocenters. Chemical Science, 2021, 13, 170-177.	3.7	28
1231	Mechanochemical Organocatalysis: Do High Enantioselectivities Contradict What We Might Expect?. ChemSusChem, 2022, 15, .	3.6	37
1232	Recent advances in the asymmetric phosphoric acid-catalyzed synthesis of axially chiral compounds. Beilstein Journal of Organic Chemistry, 2021, 17, 2729-2764.	1.3	18
1233	Recent Advances in Organocatalyzed Asymmetric Reduction of Prochiral Ketones: An Update. Synthesis, 2022, 54, 1708-1720.	1.2	1
1234	Cooperative Hydrogen-Bond-Donor Catalysis with Hydrogen Chloride Enables Highly Enantioselective Prins Cyclization Reactions. Journal of the American Chemical Society, 2021, 143, 20077-20083.	6.6	16
1235	Rational Design of Axially Chiral Styreneâ€Based Organocatalysts and Their Application in Catalytic Asymmetric (2+4) Cyclizations. Angewandte Chemie, 0, , e202112226.	1.6	9
1236	The Phosphinamide-Based Catalysts: Discovery, Methodology Development, and Applications in Natural Product Synthesis. Accounts of Chemical Research, 2021, 54, 4354-4370.	7.6	11
1238	Late Transition Metal (LTM)-NHC Catalyzed Transformations of Renewable Chemicals to Fine Chemicals, Fuels, and Intermediates. , 0, , .		0
1239	Rational Design of Axially Chiral Styreneâ€Based Organocatalysts and Their Application in Catalytic Asymmetric (2+4) Cyclizations. Angewandte Chemie - International Edition, 2022, 61, e202112226.	7.2	49
1240	Organocatalytic Regio―and Enantioselective Nâ€Alkylation of Isoxazolâ€5â€ones. European Journal of Organic Chemistry, 2021, 2021, 6777.	1.2	3
1241	Ternary complexes of chiral disulfonimides in transfer-hydrogenation of imines: the relevance of late intermediates in ion pair catalysis. Chemical Science, 2021, 12, 15263-15272.	3.7	10
1242	Identifying the true origins of selectivity in chiral phosphoric acid catalyzed <i>N</i> -acyl-azetidine desymmetrizations. Chemical Science, 2021, 12, 15662-15672.	3.7	7
1243	Asymmetric Synthesis of Hydroquinazolines Bearing C4-Tetrasubstituted Stereocenters via Kinetic Resolution of I±-Tertiary Amines. Organic Letters, 2022, 24, 625-630.	2.4	11
1244	Rhodium-Catalyzed Atroposelective C–H/C–H Cross-Coupling Reaction between 1-Aryl Isoquinoline Derivatives and Indolizines. Organic Letters, 2022, 24, 564-569.	2.4	21
1245	Organocatalytic Enantioselective Construction of Conformationally Stable C(sp ²)–C(sp ³) Atropisomers. Journal of the American Chemical Society, 2022, 144, 1056-1065.	6.6	18

#	Article	IF	Citations
1246	Enantiomer stability of atropisomeric 1,5-disubstituted 1,2,3-triazoles. , 2022, 1, 100004.		5
1247	S â€Benzyl―N,N′ â€diphenyl Isothiouronium Iodide as an Efficient Organocatalyst for the Transfer Hydrogenation of 1,4â€Benzoxazines. ChemistrySelect, 2022, 7, .	0.7	0
1248	Organocatalytic Atroposelective Synthesis of Nâ^'N Axially Chiral Indoles and Pyrroles by De Novo Ring Formation. Angewandte Chemie, 2022, 134, .	1.6	13
1249	Enantioselective Povarov Reactions: An Update of a Powerful Catalytic Synthetic Methodology. European Journal of Organic Chemistry, 2022, 2022, .	1.2	16
1250	A BINOL-phosphoric acid and metalloporphyrin derived chiral covalent organic framework for enantioselective α-benzylation of aldehydes. Chemical Science, 2022, 13, 1906-1911.	3.7	15
1251	Perylene Bisimide Cyclophanes as Biaryl Enantiomerization Catalysts─Explorations into π–π Catalysis and Host–Guest Chirality Transfer. Journal of Organic Chemistry, 2022, 87, 5485-5496.	1.7	7
1252	Recent advances towards organocatalytic enantioselective desymmetrizing reactions. Trends in Chemistry, 2022, 4, 191-205.	4.4	23
1253	Enantioselective Radical Reactions Using Chiral Catalysts. Chemical Reviews, 2022, 122, 5842-5976.	23.0	136
1254	Enantioselective Peroxidation of <i>C</i> -alkynyl imines enabled by chiral BINOL calcium phosphate. Chemical Communications, 2022, 58, 3035-3038.	2.2	6
1255	Synthesis of Axially Chiral Aldehydes by Nâ€Heterocyclicâ€Carbeneâ€Catalyzed Desymmetrization Followed by Kinetic Resolution. Angewandte Chemie, 0, , .	1.6	6
1256	C(sp3)–H Bond Functionalization Mediated by Hydride a Shift/Cyclization System. Bulletin of the Chemical Society of Japan, 2022, 95, 296-305.	2.0	17
1257	Design and synthesis of axially chiral aryl-pyrroloindoles via the strategy of organocatalytic asymmetric (2Â+Â3) cyclization. Fundamental Research, 2023, 3, 237-248.	1.6	43
1258	Synthesis of Axially Chiral Aldehydes by Nâ€Heterocyclicâ€Carbeneâ€Catalyzed Desymmetrization Followed by Kinetic Resolution. Angewandte Chemie - International Edition, 2022, 61, .	7.2	39
1259	Chiral Phosphoric Acid Catalyzed Conversion of Epoxides into Thiiranes: Mechanism, Stereochemical Model, and New Catalyst Design. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
1260	Enantioselective "clip-cycle―synthesis of di-, tri- and spiro-substituted tetrahydropyrans. Organic and Biomolecular Chemistry, 2022, 20, 1181-1185.	1.5	4
1261	Convenient, Large-Scale Synthesis of (<i>S</i>)-TRIP Using Suzuki Cross-Coupling Conditions. Organic Process Research and Development, 2022, 26, 165-173.	1.3	3
1262	Enantioselective [2 + 2] cycloaddition of 1,2-dihydroquinolines with 3-olefinic oxindoles via BrÃ,nsted acid catalysis. Organic Chemistry Frontiers, 0, , .	2.3	7
1263	Carbene-catalyzed atroposelective synthesis of axially chiral styrenes. Nature Communications, 2022, 13, 84.	5.8	46

#	Article	IF	Citations
1264	Inducing a pH-dependent conformational response by competitive binding to Zn ²⁺ of a series of chiral ligands of disparate basicity. Chemical Science, 2022, 13, 2258-2269.	3.7	3
1265	Facile synthesis of <i>N</i> -aryl phenothiazines and phenoxazines <i>via</i> BrÃ,nsted acid catalyzed C–H amination of arenes. Chemical Communications, 2022, 58, 1613-1616.	2.2	3
1266	Development of Greener Catalytic Synthetic Methods of Nitrogen-Containing Compounds Using <i>N</i> -Unprotected Ketimines. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2022, 80, 2-13.	0.0	0
1267	lridium(iii)-catalyzed two-fold C–H alkylation of BINOLs with allyl alcohols. Organic Chemistry Frontiers, 2022, 9, 471-475.	2.3	2
1268	Organocatalytic Atroposelective Synthesis of Isoquinolines via Dynamic Kinetic Resolution. Organic Letters, 2022, 24, 1077-1082.	2.4	7
1269	Chiral Phosphoric Acid Catalyzed Conversion of Epoxides into Thiiranes: Mechanism, Stereochemical Model, and New Catalyst Design. Angewandte Chemie, 0, , .	1.6	6
1270	Chiral <i>N</i> -triflylphosphoramide-catalyzed asymmetric hydroamination of unactivated alkenes: a hetero-ene reaction mechanism. Organic Chemistry Frontiers, 2022, 9, 1649-1661.	2.3	4
1271	Organocatalytic Atroposelective Synthesis of Nâ~'N Axially Chiral Indoles and Pyrroles by De Novo Ring Formation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	97
1272	Chiral BrÃ,nsted Acid Catalyzed Enantioconvergent Synthesis of Chiral Tetrahydrocarbazoles with Allenylsilanes from Racemic Indolylmethanols. Chemistry Letters, 2022, 51, 391-394.	0.7	5
1273	Computational discoveries of reaction mechanisms: recent highlights and emerging challenges. Organic and Biomolecular Chemistry, 2022, 20, 2028-2042.	1.5	4
1274	Photocatalytic redox-neutral reaction of γ-indolyl α-keto esters. Organic Chemistry Frontiers, 2022, 9, 1875-1883.	2.3	2
1275	Atropoenantioselective palladaelectro-catalyzed anilide C–H olefinations viable with natural sunlight as sustainable power source. Chemical Science, 2022, 13, 2729-2734.	3.7	24
1276	Chiral Calcium Phosphate Catalyzed Enantioselective Synthesis of All-Carbon Quaternary Center by Friedel–Crafts Alkylation Reaction of Pyrroles and Trifluoromethylated Nitrostyrenes. Synthesis, 0, , .	1.2	3
1278	H-Bonded Counterion-Directed Enantioselective Au(I) Catalysis. Journal of the American Chemical Society, 2022, 144, 3497-3509.	6.6	34
1279	A Powerful Chiral Super BrÃ,nsted C–H Acid for Asymmetric Catalysis. Journal of the American Chemical Society, 2022, 144, 2853-2860.	6.6	21
1280	Organocatalytic asymmetric synthesis of bioactive hexahydropyrrolo[2,3-b]indole-containing tetrasubstituted allenes bearing multiple chiral elements. , 2022, 1, 100007.		27
1281	Synthesis of axially chiral <i>N</i> -aryl benzimidazoles <i>via</i> chiral phosphoric acid catalyzed enantioselective oxidative aromatization. New Journal of Chemistry, 2022, 46, 6398-6402.	1.4	2
1282	Thioether-enabled palladium-catalyzed atroposelective C–H olefination for N–C and C–C axial chirality. Chemical Science, 2022, 13, 4088-4094.	3.7	30

~			_		
()	$IT \Delta^{-}$	LUUN	i Re	PO	PТ

#	Article		CITATIONS
1283	Axially chiral 1,1′-bicarbazolyls with near-ultraviolet circularly polarized luminescence. Chemical Communications, 2022, 58, 4849-4852.	2.2	3
1284	Construction of chiral Betti base precursors containing a congested quaternary stereogenic center <i>via</i> chiral phosphoric acid-catalyzed arylation of isoindolinone-derived ketimines. New Journal of Chemistry, 2022, 46, 8760-8764.	1.4	3
1285	Recent advances in the catalytic asymmetric construction of atropisomers by central-to-axial chirality transfer. Organic Chemistry Frontiers, 2022, 9, 2280-2292.	2.3	37
1286	Optical resolution of 1,16-dihydroxytetraphenylene by chiral gold(<scp>iii</scp>) complexation and its applications as chiral ligands in asymmetric catalysis. Chemical Science, 2022, 13, 4608-4615.	3.7	6
1287	Pyreneâ€Fused Furan: Simple Synthesis of Ï€â€Expanded Heterohelicene. ChemistrySelect, 2022, 7, .	0.7	0
1288	Diaryliodoniums as Hybrid Hydrogen- and Halogen-Bond-Donating Organocatalysts for the Groebke–Blackburn–Bienaymé Reaction. Journal of Organic Chemistry, 2022, 87, 4569-4579.	1.7	27
1289	Stereoselective Synthesis of Atropisomeric Acridinium Salts by the Catalystâ€Controlled Cyclization of <i>ortho</i> â€Quinone Methide Iminiums. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
1290	Atroposelective Synthesis of 1,1′â€Bipyrroles Bearing a Chiral Nâ^'N Axis: Chiral Phosphoric Acid Catalysis with Lewis Acid Induced Enantiodivergence. Angewandte Chemie - International Edition, 2022, 61, .	7.2	54
1291	A Chiral Iron Disulfonate Catalyst for the Enantioselective Synthesis of 2-Amino-2′-hydroxy-1,1′-binaphthyls (NOBINs). Journal of the American Chemical Society, 2022, 144, 3676-3684.	6.6	25
1292	Cooperative Palladium/BrÃ,nsted Acid Catalysis toward the Highly Enantioselective Allenylation of β-Keto Esters. Organic Letters, 2022, 24, 1496-1501.	2.4	16
1293	Atroposelective Synthesis of 1,1′â€Bipyrroles Bearing a Chiral Nâ^'N Axis: Chiral Phosphoric Acid Catalysis with Lewis Acid Induced Enantiodivergence. Angewandte Chemie, 2022, 134, .	1.6	10
1294	Organocatalytic Dynamic Kinetic Resolution: An Update. European Journal of Organic Chemistry, 2022, 2022, .	1.2	19
1295	Stereoselective Synthesis of Atropisomeric Acridinium Salts by the Catalystâ€Controlled Cyclization of <i>ortho</i> â€Quinone Methide Iminiums. Angewandte Chemie, 2022, 134, .	1.6	4
1296	Effect of the Dihedral Angle of Biaryl-Bridged Bis(<i>N</i> -Heterocylic Carbene) Ligands on Enantioselectivity in Pd-Catalyzed Asymmetric Aryl–Aryl Cross-Coupling. Organometallics, 2022, 41, 811-819.	1.1	2
1297	Epoxides: Small Rings to Play with under Asymmetric Organocatalysis. ACS Organic & Inorganic Au, 2022, 2, 289-305.	1.9	15
1298	Chiral Phosphoric Acid-Catalyzed Asymmetric Arylation of Indolizines: Atroposelective Access to Axially Chiral 3-Arylindolizines. Organic Letters, 2022, 24, 2315-2320.	2.4	10
1299	Asymmetric Synthesis of Pyrrolidines via Oxetane Desymmetrization. Organic Letters, 2022, 24, 2359-2364.	2.4	9
1300	Novel Axially Chiral Ligand-Enabled Copper-Catalyzed Asymmetric Oxidative Coupling of 2-Naphthols for the Synthesis of 6,6â€2-Disubstituted BINOLs. Organic Letters, 2022, 24, 2321-2326.	2.4	7

#	Article	IF	CITATIONS
1301	Enantioselective Synthesis of Planarâ€Chiral Macrocycles through Asymmetric Electrophilic Aromatic Amination. Angewandte Chemie - International Edition, 2022, 61, .	7.2	27
1302	PFOAâ€Catalyzed Regioselective Alkylation of Indolylmethanols with 2â€Alkylazaarenes**. ChemistrySelect, 2022, 7, .	0.7	4
1303	Chiral Metal–Organic Frameworks. Chemical Reviews, 2022, 122, 9078-9144.	23.0	175
1304	Axially chiral alkenes: Atroposelective synthesis and applications. , 2022, 1, 100009.		46
1305	Chelation-Controlled Stereospecific Cross-Coupling Reaction between Alkenes for Atroposelective Synthesis of Axially Chiral Conjugated Dienes. Organic Letters, 2022, 24, 1979-1984.	2.4	19
1306	Enantioselective Synthesis of Planarâ€Chiral Macrocycles through Asymmetric Electrophilic Aromatic Amination. Angewandte Chemie, 0, , .	1.6	3
1307	Hyper-Crosslinked Porous Chiral Phosphoric Acids: Robust Solid Organocatalysts for Asymmetric Dearomatization Reactions. ACS Catalysis, 2022, 12, 4545-4553.	5.5	17
1308	Cobalt/Salox atalyzed Enantioselective C–H Functionalization of Arylphosphinamides. Angewandte Chemie, 0, , .	1.6	9
1309	Cobalt/Salox atalyzed Enantioselective Câ^'H Functionalization of Arylphosphinamides. Angewandte Chemie - International Edition, 2022, 61, .	7.2	56
1310	Pentacarboxycyclopentadienes in Organic Synthesis. Russian Journal of Organic Chemistry, 2021, 57, 1757-1808.	0.3	6
1311	Enantioselective access to tricyclic tetrahydropyran derivatives by a remote hydrogen bonding mediated intramolecular IEDHDA reaction. Nature Communications, 2021, 12, 7188.	5.8	9
1314	Pdâ€Catalyzed Atropselective Câ`'H Olefination Promoted by a Transient Directing Group. Advanced Synthesis and Catalysis, 2022, 364, 897-908.	2.1	8
1315	Phosphorus-Based Organocatalysis for the Dehydrative Cyclization of <i>N</i> -(2-Hydroxyethyl)amides into 2-Oxazolines. Journal of Organic Chemistry, 2022, 87, 243-257.	1.7	6
1316	Chiral Quaternary Ammoniums Derived from Dehydroabietylamine: Synthesis and Application to Alkynylation of Isatin Derivatives Catalyzed by Silver. Catalysts, 2021, 11, 1479.	1.6	3
1317	Organocatalytic discrimination of non-directing aryl and heteroaryl groups: enantioselective synthesis of bioactive indole-containing triarylmethanes. Chemical Science, 2022, 13, 5767-5773.	3.7	10
1319	Preparation of Chiral <scp>DMAP</scp> Derivatives and Investigation on Their Enantioselective Catalytic Activity in Benzazetidine Synthesis and Kinetic Resolutions of Alcohols. Journal of Heterocyclic Chemistry, 0, , .	1.4	1
1320	Hydrogen Atom Transfer Driven Enantioselective Minisci Reaction of Alcohols. Angewandte Chemie - International Edition, 2022, 61, .	7.2	29
1321	Kinetic Resolution of 1, <scp>2â€Diamines</scp> via Organocatalyzed Asymmetric Electrophilic Aminations of Anilines. Chinese Journal of Chemistry, 2022, 40, 1674-1680.	2.6	9

#	Article	IF	CITATIONS
1322	Acid Catalysis in the Oxidation of Substrates by Mononuclear Manganese(III)–Aqua Complexes. Inorganic Chemistry, 2022, 61, 6594-6603.	1.9	5
1323	Hydrogen Atom Transfer Driven Enantioselective Minisci Reaction of Alcohols. Angewandte Chemie, 0,	1.6	1
1324	Asymmetric Total Synthesis of Antibiotic Elansolid A. Journal of the American Chemical Society, 2022, 144, 6871-6881.	6.6	6
1326	Chapter 4. Dynamic Kinetic Resolutions Promoted by Phosphoric Acid Catalysts. RSC Catalysis Series, 2022, , 67-95.	0.1	0
1327	Enantioselective [2 + 2] photocycloaddition of quinolone using a <i>C</i> ₁ -symmetric chiral phosphoric acid as a visible-light photocatalyst. Organic and Biomolecular Chemistry, 2022, , .	1.5	5
1328	Recent advances in gold-complex and chiral organocatalyst cooperative catalysis for asymmetric alkyne functionalization. Chinese Chemical Letters, 2022, 33, 4969-4979.	4.8	26
1329	Visible-Light-Mediated Formal Carbene Insertion Reaction: Enantioselective Synthesis of 1,4-Dicarbonyl Compounds Containing All-Carbon Quaternary Stereocenter. ACS Catalysis, 2022, 12, 5510-5516.	5.5	30
1330	BINOL as a chiral element in mechanically interlocked molecules. Beilstein Journal of Organic Chemistry, 0, 18, 508-523.	1.3	12
1331	Enantioselective Synthesis of Atropisomeric Biaryl Phosphorus Compounds by Chiralâ€Phosphoniumâ€Saltâ€Enabled Cascade Arene Formation. Angewandte Chemie, 2022, 134, .	1.6	4
1332	Enantioselective Synthesis of Atropisomeric Biaryl Phosphorus Compounds by Chiralâ€Phosphoniumâ€Saltâ€Enabled Cascade Arene Formation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
1333	Atropisomers beyond the C–C axial chirality: Advances in catalytic asymmetric synthesis. CheM, 2022, 8, 1855-1893.	5.8	149
1334	Enantioselective amination of βâ€keto esters catalyzed by chiral calcium phosphates. Chemistry - A European Journal, 2022, , .	1.7	4
1335	Discovery, enantioselective synthesis of myrtucommulone E analogues as tyrosyl-DNA phosphodiesterase 2 inhibitors and their biological activities. European Journal of Medicinal Chemistry, 2022, 238, 114445.	2.6	2
1336	Orientation of 1,1′-Bi-2-naphthol Grafted onto TiO ₂ . Journal of Physical Chemistry C, 2022, 126, 7980-7990.	1.5	0
1337	Different Chiral Ligands Assisted Enantioselective C-H Functionalization with Transition-Metal Catalysts. Catalysts, 2022, 12, 537.	1.6	2
1338	Enantioselective Synthesis of Triarylmethanes via Organocatalytic Transfer Hydrogenation of para-Quinone Methides. Chemical Communications, 0, , .	2.2	7
1339	Diastereoselective Synthesis of Amide-Bridged Axially Chiral Biaryls through Point-to-Axial Asymmetric C-H Arylation. Heterocycles, 2022, 104, 1026.	0.4	1
1340	Metal-free dearomatization reactions of naphthol-ynamides for the divergent and enantioselective synthesis of azaspirocycles. Organic Chemistry Frontiers, 2022, 9, 3709-3717.	2.3	8

#	Article	IF	CITATIONS
1341	Enantioselective alkylative cross-coupling of unactivated aromatic C–O electrophiles. Nature Communications, 2022, 13, .	5.8	15
1342	Asymmetric synthesis of planar-chiral macrocycles <i>via</i> organocatalyzed enantioselective macrocyclization. Chemical Communications, 2022, 58, 7293-7296.	2.2	15
1343	Transition Metal-catalyzed Regioselective Direct C-H Arylations Using Quinone Diazide as Arylating Agent: A Mini Review. Mini-Reviews in Organic Chemistry, 2023, 20, 494-508.	0.6	0
1344	Regenerable Dihydrophenanthridine via Borane-Catalyzed Hydrogenation for the Asymmetric Transfer Hydrogenation of Benzoxazinones. Organic Letters, 2022, 24, 3955-3959.	2.4	14
1345	Asymmetric [3 + 3] Annulation to Construct Trifluoromethylated Pyrazolo[3,4- <i>b</i>]pyridin-6-ones via Chiral Phosphoric Acid and MgSO ₄ Synergistic Catalysis. Organic Letters, 2022, 24, 4058-4063.	2.4	11
1346	Catalytic Asymmetric Synthesis of Axially Chiral 3,3'â€Bisindoles by Direct Coupling of Indole Rings. Chinese Journal of Chemistry, 2022, 40, 2151-2160.	2.6	77
1348	Azaâ€ <i>Ortho</i> â€Quinone Methides as Reactive Intermediates: Generation and Utility in Contemporary Asymmetric Synthesis. Chemistry - A European Journal, 2022, 28, .	1.7	15
1349	Catalytic Asymmetric Allylic Substitution/Isomerization with Central Chirality Transposition. Organic Letters, 2022, 24, 4246-4251.	2.4	22
1350	Construction of axially chiral compounds via catalytic asymmetric radical reaction. Green Synthesis and Catalysis, 2022, 3, 212-218.	3.7	18
1351	Construction of Axially Chiral Indoles by Cycloaddition–Isomerization via Atroposelective Phosphoric Acid and Silver Sequential Catalysis. ACS Catalysis, 2022, 12, 8094-8103.	5.5	30
1352	Enantioselective Friedel–Crafts Reaction of 2-Alkynyphenols with Aromatic Ethers by Chiral BrÃ,nsted Acid Catalysis. Journal of Organic Chemistry, 0, , .	1.7	2
1353	Enantioselective Friedel–Crafts Alkylation Reaction of Pyrroles with <i>N</i> -Unprotected Alkynyl Trifluoromethyl Ketimines. Organic Letters, 2022, 24, 4699-4703.	2.4	10
1354	Deracemization of Binaphthyl by Suzuki Diarylation: The Role of Electronic and Steric Effects. Journal of Organic Chemistry, 2022, 87, 9316-9329.	1.7	4
1355	BrÃ,nsted acid catalyzed enantioselective addition of hydrazones to 3-indolylmethanols. Organic Chemistry Frontiers, 0, , .	2.3	1
1356	Asymmetric higher-order [10 + <i>n</i>] cycloadditions of palladium-containing 10Ï€-cycloaddends. Chemical Science, 2022, 13, 9265-9270.	3.7	2
1357	Enantioselective synthesis of α-tetrasubstituted (3-indolizinyl) (diaryl)methanamines <i>via</i> chiral phosphoric acid catalysis. RSC Advances, 2022, 12, 20499-20506.	1.7	4
1358	Catalytically atroposelective ring-opening of configurationally labile compounds to access axially chiral biaryls. Organic Chemistry Frontiers, 2022, 9, 4507-4521.	2.3	15
1359	Chiral Phosphoric Acid-Catalyzed Enantioselective Dearomative Electrophilic Hydrazination: Access to Chiral Aza-Quaternary Carbon Indolenines. ACS Catalysis, 2022, 12, 7511-7516.	5.5	17

#	Article	IF	CITATIONS
1360	Xenon Derivatives as Aerogen Bond-Donating Catalysts for Organic Transformations: A Theoretical Study on the Metaphorical "Spherical Cow in a Vacuum―Provides Insights into Noncovalent Organocatalysis. Journal of Organic Chemistry, 0, , .	1.7	8
1361	Synergistic Catalysis between a Dipeptide Phosphonium Salt and a Metalâ€Based Lewis Acid for Asymmetric Synthesis of <i>N</i> â€Bridged [3.2.1] Ring Systems. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16
1362	Synergistic Catalysis between a Dipeptide Phosphonium Salt and a Metalâ€Based Lewis Acid for Asymmetric Synthesis of <i>N</i> â€Bridged [3.2.1] Ring Systems. Angewandte Chemie, 2022, 134, .	1.6	9
1363	BrÃ,nsted acid-catalyzed asymmetric dearomatization of indolyl ynamides: Practical and enantioselective synthesis of polycyclic indolines. Chinese Chemical Letters, 2023, 34, 107647.	4.8	11
1364	Binaphthyl Scaffold: A Class of Versatile Structure in Asymmetric C–H Functionalization. ACS Catalysis, 2022, 12, 9359-9396.	5.5	35
1365	Highlights of the Recent Patent Literature: Focus on Asymmetric Organocatalysis. Organic Process Research and Development, 2022, 26, 2224-2239.	1.3	8
1366	Palladiumâ€Catalyzed Dual Catalytic Synthesis of Heterocycles. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
1367	Discovery and organocatalytic enantioselective construction of axially chiral cyclohexadienylidene skeletons. CheM, 2022, 8, 2529-2541.	5.8	17
1368	Sulfonium and Selenonium Salts as Noncovalent Organocatalysts for the Multicomponent Groebke–Blackburn–Bienaymé Reaction. Journal of Organic Chemistry, 2022, 87, 10199-10207.	1.7	20
1369	Perfluoroarene Interaction-Controlled Chiral Phosphoric Acid-Catalyzed Enantioselective Michael Addition of Difluoroenoxysilanes to Azadienes: a Combination of Experimental and Theoretical Studies. ACS Catalysis, 2022, 12, 9655-9663.	5.5	12
1370	Cobalt/Salox atalyzed Enantioselective Dehydrogenative Câ^'H Alkoxylation and Amination. Angewandte Chemie, 2022, 134, .	1.6	6
1371	Asymmetric Cycloaddition/Annulation Reactions by Chiral Phosphoric Acid Catalysis: Recent Advances. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
1372	Chloride-Mediated Alkene Activation Drives Enantioselective Thiourea and Hydrogen Chloride Co-Catalyzed Prins Cyclizations. Journal of the American Chemical Society, 2022, 144, 15812-15824.	6.6	8
1373	Cobalt/Salox atalyzed Enantioselective Dehydrogenative Câ^'H Alkoxylation and Amination. Angewandte Chemie - International Edition, 2022, 61, .	7.2	34
1374	BrÃ,nsted Acid Catalyzed Carbocyclizations Involving Electrophilic Activation of Alkynes. Synthesis, 2022, 54, 5360-5384.	1.2	3
1375	Unusual Enantiodivergence in Chiral BrÃ,nsted Acidâ€Catalyzed Asymmetric Allylation with βâ€Alkenyl Allylic Boronates. Angewandte Chemie, Ö, , .	1.6	0
1376	Multiselective Diels–Alder Reaction of α-Arylacroleins Catalyzed by Boron Tribromide-Assisted Chiral Phosphoric Acids. Organic Letters, 2022, 24, 6483-6488.	2.4	4
1378	Access to Enantiomerically Pure <i>P</i> ‣tereogenic Primary Aminophosphine Sulfides under Reductive Conditions. Chemistry - A European Journal, 2022, 28, .	1.7	4

#	Article	IF	CITATIONS
1379	Atroposelective Access to 1,3â€Oxazepine ontaining Bridged Biaryls via Carbene atalyzed Desymmetrization of Imines. Angewandte Chemie - International Edition, 2023, 62, .	7.2	16
1380	Halonium, chalconium, and pnictonium salts as noncovalent organocatalysts: a computational study on relative catalytic activity. Organic and Biomolecular Chemistry, 2022, 20, 7632-7639.	1.5	8
1381	Unveiling the origin of the chemoselectivity of bismacycle-mediated C–H arylation of phenols: from mechanism concept to new coupling design. Organic Chemistry Frontiers, 2022, 9, 4890-4901.	2.3	0
1382	Kinetic resolution of racemic tertiary allylic alcohols through S _N 2′ reaction using a chiral bisphosphoric acid/silver(<scp>i</scp>) salt co-catalyst system. Chemical Science, 2022, 13, 9607-9613.	3.7	4
1383	Catalytic asymmetric addition to cyclic <i>N</i> -acyl-iminium: access to sulfone-bearing contiguous quaternary stereocenters. Chemical Communications, 2022, 58, 9942-9945.	2.2	1
1384	Synthesis of Biphenanthrol-Based Confined Chiral Phosphoric Acid. Chinese Journal of Organic Chemistry, 2022, 42, 2574.	0.6	0
1385	An overview of the applications of chiral phosphoric acid organocatalysts in enantioselective additions to Cî€O and Cî€N bonds. Organic Chemistry Frontiers, 2022, 9, 6331-6399.	2.3	16
1386	Organocatalytic Regio- and Enantioselective <i>aza</i> -1,8-Conjugate Additions of Isoxazol-5(4 <i>H</i>)-ones to 6-Methide-6 <i>H</i> -indoles. Chinese Journal of Organic Chemistry, 2022, 42, 1722.	0.6	5
1387	Enantioselective [6 + 2]-Cycloaddition of Transient 3-Methide-3 <i>H</i> -pyrroles with 2-Vinylindoles under Chiral Brā,nsted Acid Catalysis. Organic Letters, 2022, 24, 6433-6437.	2.4	7
1388	Design, Synthesis, and Application of Chiral Bicyclic Imidazole Catalysts. Accounts of Chemical Research, 2022, 55, 2708-2727.	7.6	12
1389	Multifunctional Organocatalysts ―Singly‣inked and Macrocyclic Bisphosphoric Acids for Asymmetric Phaseâ€Transfer and BrÃ,nstedâ€Acid Catalysis. Chemistry - A European Journal, 2023, 29, .	1.7	4
1390	Enantioselective Synthesis of Atropisomers via Vinylidene <i>ortho</i> -Quinone Methides (VQMs). Accounts of Chemical Research, 2022, 55, 2780-2795.	7.6	68
1391	Binaphthyl-Proline Hybrid Chiral Ligands: Modular Design, Synthesis, and Enantioswitching in Cu(II)-Catalyzed Enantioselective Henry Reactions. Journal of Organic Chemistry, 2023, 88, 7651-7659.	1.7	8
1392	Design, Synthesis, and Physicochemical Studies of Configurationally Stable β-Carboline Atropisomers. Journal of Organic Chemistry, 2022, 87, 14068-14077.	1.7	3
1393	N-heterocyclic carbene-catalyzed atroposelective synthesis of axially chiral 5-aryl 2-pyrones from enals. Science China Chemistry, 2022, 65, 1953-1961.	4.2	17
1394	Organocatalytic Asymmetric Synthesis of Bridged Tetrahydrobenzo[<i>b</i>]azepines/oxepines. Organic Letters, 2022, 24, 7140-7144.	2.4	5
1395	Atropisomers with Axial and Point Chirality: Synthesis and Applications. Accounts of Chemical Research, 2022, 55, 2545-2561.	7.6	44
1396	Atroposelective Access to 1,3â€Oxazepineâ€Containing Bridged Biaryls via Carbeneâ€Catalyzed Desymmetrization of Imines. Angewandte Chemie, 2023, 135, .	1.6	0

ARTICLE IF CITATIONS Unusual Enantiodivergence in Chiral BrÃ,nsted Acidâ€Catalyzed Asymmetric Allylation with βâ€Alkenyl 1397 7.2 9 Allylic Boronates. Angewandte Chemie - International Edition, 2022, 61, . Palladium-catalyzed asymmetric hydrophosphination of internal alkynes: Atroposelective access to 1398 5.8 phosphine-functionalized olefins. CheM, 2022, 8, 3346-3362. Organocatalytic Atroposelective Synthesis of Indole Derivatives Bearing Axial Chirality: Strategies 1399 7.6 156 and Applications. Accounts of Chemical Research, 2022, 55, 2562-2580. Organocatalytic Enantioselective Synthesis of Axially Chiral Molecules: Development of Strategies 1400 and Skeletons. Accounts of Chemical Research, 2022, 55, 2920-2937. Synthesis of Axially Chiral CF3â€5ubstituted 2â€Arylpyrroles by Sequential Phosphineâ€Catalyzed Asymmetric [3+2] Annulation and Oxidative Centralâ€toâ€Axial Chirality Transfer. Angewandte Chemie, 0, , 1401 1.6 0 Synthesis of Axially Chiral CF₃â€Substituted 2â€Arylpyrroles by Sequential Phosphineâ€Catalyzed Asymmetric [3+2] Annulation and Oxidative Centralâ€toâ€Axial Chirality Transfer. Angewandte Chemie - International Edition, 2022, 61, . Asymmetric Construction of an Arylâ€Alkene Axis by Palladiumâ€Catalyzed Suzuki–Miyaura Coupling 1403 7.2 19 Reaction. Angewandte Chemie - International Edition, 2022, 61, . Noncovalent Stabilization of Radical Intermediates in the Enantioselective Hydroamination of Alkenes 1404 6.6 with Sulfonamides. Journal of the American Chemical Society, 2022, 144, 18948-18958. Nâ€Heterocyclic carbeneâ€catalyzed Atroposelective Annulation for Access to 1406 Pyrrolo[3,4â€<i>b</i>)pyridines Derivatives with Câ[^]N Axial Chirality. Asian Journal of Organic 1.3 4 Chemistry, 2022, 11, . Reaction Mechanisms for Chiral Phosphate Catalyzed Transformations Involving Cationic 1407 1.0 Intermediates and Protic Nucleophiles. Synlett, 0, , . Asymmetric Construction of Arylâ€Alkene Axis by Palladiumâ€Catalyzed Suzuki–Miyaura Coupling 1408 1 1.6 Reaction. Angewandte Chemie, 0, , . Advances in Catalytic Asymmetric Reactions Using 2-Indolylmethanols as Platform Molecules. Chinese 1409 0.6 38 Journal of Organic Chemistry, 2022, 42, 3351. OSCAR: an extensive repository of chemically and functionally diverse organocatalysts. Chemical 1410 3.7 11 Science, 2022, 13, 13782-13794. Ion-Pairing Catalysis in Stereoselective, Light-Induced Transformations. Journal of the American Chemical Society, 2022, 144, 19207-19218. 1411 6.6 Atroposelective Synthesis of Nâ€Arylated Quinoids by Organocatalytic Tandem Nâ€Arylation/Oxidation. 1412 7.2 10 Angewandte Chemie - International Edition, 2022, 61, . Unravelling the Development of Non-Covalent Organocatalysis in India. Synlett, 0, , . 1413 1.0 Design, synthesis, and evaluation of chiral thiophosphorus acids as organocatalysts. Beilstein 1414 1.32 Journal of Organic Chemistry, 0, 18, 1471-1478. Atroposelective Synthesis of 2,2′â€Bis(arylamino)â€1,1′â€biaryls by Oxidative Iron(III)―and Phosphoric 1415 Acidâ€Catalyzed Câ`'C Coupling of Diarylamines**. Chemistry - A European Journal, 2023, 29, .

#	Article	IF	CITATIONS
1416	Regulation of Chiral Phosphoric Acid Catalyzed Asymmetric Reaction through Crown Ether Based Host–Guest Chemistry. Organic Letters, 2022, 24, 7955-7960.	2.4	5
1417	Asymmetric Photochemical [2 + 2]-Cycloaddition of Acyclic Vinylpyridines through Ternary Complex Formation and an Uncontrolled Sensitization Mechanism. Journal of the American Chemical Society, 2022, 144, 20109-20117.	6.6	8
1418	Recent Advances in Catalytic Asymmetric Syntheses of Functionalized Heterocycles <i>via</i> Halogenation/Chalcogenation of Carbon arbon Unsaturated Bonds. Advanced Synthesis and Catalysis, 2022, 364, 3974-4005.	2.1	10
1419	N-Fluorenyltryptamines as a Useful Platform for Catalytic EnantioÂselective Pictet–Spengler Reactions. Synthesis, 2023, 55, 1724-1735.	1.2	3
1420	Highly Enantioselective BrÃ,nsted Acid Catalyzed Heyns Rearrangement. Angewandte Chemie - International Edition, 2023, 62, .	7.2	6
1421	Recent Developments and Trends in Asymmetric Organocatalysis. European Journal of Organic Chemistry, 2023, 26, .	1.2	27
1422	Asymmetric Ketoalkylation/Rearrangement of Alkyenlfurans via Synergistic Photoredox/BrÃ,nsted Acid Catalysis. Organic Letters, 2022, 24, 7928-7933.	2.4	11
1423	Atroposelective Synthesis of Nâ€Arylated Quinoids by Organocatalytic Tandem Nâ€Arylation/Oxidation. Angewandte Chemie, 2022, 134, .	1.6	2
1424	Highly Enantioselective Br $ ilde{A}$, $nsted$ Acid Catalyzed Heyns Rearrangement. Angewandte Chemie, 0, , .	1.6	0
1425	Advances in catalytic enantioselective synthesis of chiral helicenes and helicenoids. Chem Catalysis, 2022, 2, 3077-3111.	2.9	24
1426	Cu(I)/Chiral Vanadium Complex Cooperatively Catalyzed Asymmetric Sulfonation/Rearrangement of Alkenylfurans. Organic Letters, 2022, 24, 8202-8207.	2.4	5
1427	Strategies toward the Difunctionalizations of Enamide Derivatives for Synthesizing α,β-Substituted Amines. Accounts of Chemical Research, 2022, 55, 3265-3283.	7.6	9
1428	Exploring Molecular Complexity by Nâ€Heterocyclic Carbene Organocatalysis: New Activation and Reaction Diversity. Chemical Record, 2023, 23, .	2.9	7
1429	Bayesian optimization-driven parallel-screening of multiple parameters for the flow synthesis of biaryl compounds. Communications Chemistry, 2022, 5, .	2.0	11
1430	Phosphoric Acidâ€Catalyzed Enantioselective Synthesis of Axially Chiral Anthroneâ€based Compounds. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
1431	Organocatalytic Enantioselective Diels–Alder Reaction of 2â€Trifluoroacetamidoâ€1,3â€dienes with α,l²â€Unsaturated Ketones. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
1432	Phosphoric Acidâ€Catalyzed Enantioselective Synthesis of Axially Chiral Anthroneâ€based Compounds. Angewandte Chemie, 2023, 135, .	1.6	0
1433	Atropoenantioselective synthesis of heterobiaryl N-oxides via dynamic kinetic resolution. Science China Chemistry, 2022, 65, 2512-2516.	4.2	8

ARTICLE IF CITATIONS Remote Enantioselective Desymmetrization of 9,9-Disubstituted 9,10-Dihydroacridines through 1434 5.5 11 Asymmetric Aromatic Aminations. ACS Catalysis, 2022, 12, 14609-14618. Organocatalytic Enantioselective Diels–Alder Reaction of 2â€Trifluoroacetamidoâ€1,3â€dienes with 1435 1.6 α,Ĩ²â€Unsaturated Ketones. Angewandte Chemie, 2023, 135, . Imidodiphosphorimidates (<scp>IDPis</scp>): Catalyst Motifs with Unprecedented Reactivity and 1436 7 2.6 Selectivity. Chinese Journal of Chemistry, 2023, 41, 685-694. Recent Advances in Chiral Aldehyde Catalysis for Asymmetric Functionalization of Amines. Synthesis, 1437 1.2 2023, 55, 719-732. Chiral phosphoric acid-catalyzed chemo and enantioselective 1,2-addition of isatin-derived 1442 2.3 0 \hat{l}^2, \hat{l}^3 -unsaturated \hat{l} ±-ketoesters with 4-aminoindoles at the C7 position. Organic Chemistry Frontiers, 0, , . Visible-light-induced organocatalytic enantioselective N–H insertion of α-diazoesters enabled by 3.7 indirect free carbene capture. Chemical Science, 2023, 14, 843-848. Electrostatically tuned phenols: a scalable organocatalyst for transfer hydrogenation and tandem 1444 3.7 5 reductive alkylation of <i>N</i>-heteroarenes. Chemical Science, 2023, 14, 540-549. Anion effect on enantioselective oxidative NHC catalysis: highly efficient kinetic resolution of 1445 2.3 tertiary alcohols and beyond. Organic Chemistry Frontiers, 2023, 10, 416-421. Chiral BINOL-based borate counterions: from cautionary tale on anion stability to enantioselective 1446 2.2 1 Cu-catalyzed cyclopropanation. Chemical Communications, 2023, 59, 728-731. Bidentate substrate binding in BrAnsted acid catalysis: structural space, hydrogen bonding and 1447 dimerization. Chemical Science, 2022, 13, 14366-14372. Chiral aldehyde-nickel dual catalysis enables asymmetric αâ^'propargylation of amino acids and 1448 5.8 13 stereodivergent synthesis of NP25302. Nature Communications, 2022, 13, . BINOL-Containing Chiral Porous Polymers as Platforms for Enantiorecognition. ACS Applied Materials 4.0 & Interfaces, 2022, 14, 53936-53946. A Contrasting Effect of Acid in Electron Transfer, Oxygen Atom Transfer, and Hydrogen Atom 1450 1.9 1 Transfer Reactions of a Nickel(III) Complex. Inorganic Chemistry, 2022, 61, 19735-19747. Design and Organocatalytic Asymmetric Synthesis of Indolyl-Pyrroloindoles Bearing Both Axial and 1451 1.7 Central Chirality. Journal of Organic Chemistry, 2023, 88, 7684-7702. Chiral Phosphoric Acid Catalyzed Asymmetric Cycloadditions: from Alkenes to Alkynes. Synlett, 2023, 1452 1.0 4 34, 1200-1214. Catalytic Efficiency of Primary α-Amino Amides as Multifunctional Organocatalysts in Recent 1453 Asymmetric Organic Transformations. Catalysts, 2022, 12, 1674. N-Heterocyclic Carbene/BrAnsted Acid Cooperatively Catalyzed Conversions of 1±, 12-Unsaturated Carbonyls: Hydrogen Bond Donor/Acceptor-Electrophile/Nucleophile Combination Models. ACS 1454 5.59 Catalysis, 2023, 13, 612-623. Asymmetric Hydrophosphinylation of Alkynes: Facile Access to Axially Chiral Styreneâ€Phosphines. 1455 Angewandte Chemie - International Edition, 2023, 62, .

#	Article	IF	CITATIONS
1456	Asymmetric Rubottomâ€Type Oxidation Catalyzed by Chiral Calcium Phosphates. Chemistry - A European Journal, 2023, 29, .	1.7	2
1457	Enantioselective Construction of C3-Multifunctionalization α-Hydroxy-β-amino Pyridines via α-Pyridyl Diazoacetate, Water, and Imines for Drug Hunting. Organic Letters, 2022, 24, 9502-9507.	2.4	3
1458	Asymmetric Hydrophosphinylation of Alkynes: Facile Access to Axially Chiral Styreneâ€Phosphines. Angewandte Chemie, 2023, 135, .	1.6	0
1459	Enantioselective synthesis of tetraarylmethanes through meta-hydroxyl-directed benzylic substitution. , 2023, 2, 275-285.		2
1460	Catalytic Enantioselective Synthesis of 2,3′-Bis(indolyl)methanes Bearing All-Carbon Quaternary Stereocenters via 2-Indole Imine Methides. Organic Letters, 2023, 25, 477-482.	2.4	6
1461	Chiralityâ€Driven Selfâ€Assembly of Discrete, Homochiral Fell2L3 Cages. Chemistry - A European Journal, 0, ,	1.7	1
1462	Construction of Axial Chirality via Click Chemistry: Rh-Catalyzed Enantioselective Synthesis of 1-Triazolyl-2-Naphthylamines. Organic Letters, 2023, 25, 443-448.	2.4	2
1463	Catalytic asymmetric synthesis of α-tertiary aminoketones from sulfoxonium ylides bearing two aryl groups. Chemical Communications, 2023, 59, 1193-1196.	2.2	4
1464	Asymmetric Organocatalysis: A Survival Guide to Medicinal Chemists. Molecules, 2023, 28, 271.	1.7	2
1465	Silver-Catalyzed Direct Nucleophilic Cyclization: Enantioselective <i>De Novo</i> Synthesis of C–C Axially Chiral 2-Arylindoles. Organic Letters, 2023, 25, 522-527.	2.4	13
1466	Catalytic Asymmetric Synthesis of Atropisomeric <i>N</i> -Aryl 1,2,4-Triazoles. Journal of Organic Chemistry, 2023, 88, 7815-7820.	1.7	3
1467	Enantioselective Construction of Triaryl-Substituted All-Carbon Quaternary Stereocenter via Organocatalytic Arylation of Oxindoles with Azonaphthalenes. Chemical Science, 0, , .	3.7	1
1468	Progress in the Construction of Chiral Aromatic Compounds from [3,3]-Rearrangement. Journal of Organic Chemistry Research, 2023, 11, 10-16.	0.1	0
1469	Graphene Catalysis Made Easy. , 2024, , 580-593.		0
1470	Synthetic Chemistry of Phosphoroselenoic Acid Derivatives with a Binaphthyl Group. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2023, 81, 84-95.	0.0	1
1471	Chiral phosphoric acid-catalyzed enantioselective phosphinylation of 3,4-dihydroisoquinolines with diarylphosphine oxides. Communications Chemistry, 2023, 6, .	2.0	4
1472	Atroposelective Synthesis of Heterobiaryls through Ring Formation. Chemistry - A European Journal, 2023, 29, .	1.7	10
1473	TADDOL-derived phosphorus ligands in asymmetric catalysis. Coordination Chemistry Reviews, 2023, 482, 215079.	9.5	4

#	Article	IF	CITATIONS
1474	Enantioselective Mukaiyama–Michael Reaction of β,γ-Unsaturated α-Keto Esters with Silyl Ketene Acetals Catalyzed by a Chiral Magnesium Phosphate. Organic Letters, 2023, 25, 782-787.	2.4	3
1475	Organocatalytic Enantioselective Synthesis of Axially Chiral <i>N</i> , <i>N′</i> â€Bisindoles. Angewandte Chemie, 2023, 135, .	1.6	1
1476	Organocatalytic Enantioselective Synthesis of Axially Chiral <i>N</i> , <i>N′</i> â€Bisindoles. Angewandte Chemie - International Edition, 2023, 62, .	7.2	54
1477	Catalytic Asymmetric Conjugate Reduction. Angewandte Chemie - International Edition, 2023, 62, .	7.2	3
1478	Catalytic Asymmetric Conjugate Reduction. Angewandte Chemie, 2023, 135, .	1.6	0
1479	Nitrogen-Neighbored Single-Cobalt Sites Enable Heterogeneous Oxidase-Type Catalysis. Journal of the American Chemical Society, 2023, 145, 4166-4176.	6.6	13
1480	Catalytic Asymmetric Synthesis of Axially Chiral Diaryl Ethers through Enantioselective Desymmetrization. Angewandte Chemie - International Edition, 2023, 62, .	7.2	22
1481	Catalytic Asymmetric Synthesis of Axially Chiral Diaryl Ethers through Enantioselective Desymmetrization. Angewandte Chemie, 2023, 135, .	1.6	5
1482	Cross-assembly confined bifunctional catalysis via non-covalent interactions for asymmetric halogenation. CheM, 2023, 9, 1255-1269.	5.8	6
1483	Construction of Axially Chiral Biaryls via Atroposelective <i>ortho</i> -C–H Arylation of Aryl Iodides. ACS Catalysis, 2023, 13, 2968-2980.	5.5	9
1484	Applications of Hantzsch Esters in Organocatalytic Enantioselective Synthesis. Catalysts, 2023, 13, 419.	1.6	6
1485	Asymmetric Reduction of Quinolines: A Competition between Enantioselective Transfer Hydrogenation and Racemic Borane Catalysis. Journal of Organic Chemistry, 2023, 88, 3335-3339.	1.7	6
1487	Asymmetric Construction of α,αâ€Disubstituted Piperazinones Enabled by Benzilic Amide Rearrangement. Angewandte Chemie - International Edition, 2023, 62, .	7.2	12
1488	Asymmetric Construction of î±,î±â€Disubstituted Piperazinones Enabled by Benzilic Amide Rearrangement. Angewandte Chemie, 2023, 135, .	1.6	0
1489	Development of diverse adjustable axially chiral biphenyl ligands and catalysts. IScience, 2023, 26, 106344.	1.9	1
1490	Enantioselective Organocatalysis and Superacid Activation: Challenges and Opportunities. Chemistry - A European Journal, 2023, 29, .	1.7	3
1491	Scalable Total Synthesis of Leucascandrolide A Macrolactone Using a Chiral Phosphoric Acid/CuX Combined Catalytic System. Organic Letters, 2023, 25, 1924-1928.	2.4	0
1492	Chiral Recognition and Resolution of Phosphoric Acids Using Octahedral Cobalt Complexes. Organic Letters, 2023, 25, 2036-2040.	2.4	1

#	Article	IF	CITATIONS
1493	Atroposelective Three omponent Coupling of Cyclic Diaryliodoniums and Sodium Cyanate Enabled by the Dualâ€Role of Phenol. Angewandte Chemie, 2023, 135, .	1.6	1
1494	Atroposelective Three omponent Coupling of Cyclic Diaryliodoniums and Sodium Cyanate Enabled by the Dualâ€Role of Phenol. Angewandte Chemie - International Edition, 2023, 62, .	7.2	11
1495	Data science enables the development of a new class of chiral phosphoric acid catalysts. CheM, 2023, 9, 1518-1537.	5.8	9
1496	Design, Synthesis and Application of C ₂ ‣ymmetric Cycloglycerodiphosphate Catalysts. Advanced Synthesis and Catalysis, 2023, 365, 1170-1178.	2.1	0
1497	Asymmetric synthesis of highly sterically congested α-tertiary amines <i>via</i> organocatalyzed kinetic resolution. Chemical Communications, 2023, 59, 4762-4765.	2.2	1
1498	Chiral Bisphosphoric Acids and Their Applications in Asymmetric Catalysis. Chemical Record, 2023, 23, .	2.9	1
1499	Chiral organophosphates as ligands in asymmetric metal catalysis. Organic Chemistry Frontiers, 2023, 10, 3080-3109.	2.3	4
1500	Construction of Axially Chiral Arylpyrroles via Atroposelective Diyne Cyclization. Angewandte Chemie - International Edition, 2023, 62, .	7.2	16
1501	Harnessing Protonated 2,2′-Bipyridinium Salts as Powerful BrÃ,nsted Acid Catalysts in Organic Reactions. Journal of Organic Chemistry, 2023, 88, 4066-4076.	1.7	1
1502	BrÃ,nsted Acid Catalysis—Controlling the Competition between Monomeric versus Dimeric Reaction Pathways Enhances Stereoselectivities. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
1503	Axial Chirality in Alkylideneâ \in cyclic Molecules. European Journal of Organic Chemistry, 0, , .	1.2	0
1504	Construction of Axially Chiral Arylpyrroles via Atroposelective Diyne Cyclization. Angewandte Chemie, 0, , .	1.6	1
1505	Asymmetric Aminative Dearomatization of 2-Naphthols via Non-covalent N-Heterocyclic Carbene Catalysis. Organic Letters, 2023, 25, 2323-2327.	2.4	6
1506	BrÃ,nsted Acid Catalysis ―Controlling the Competition of Monomeric versus Dimeric Reaction Pathway Enhances Stereoselectivities. Angewandte Chemie, 0, , .	1.6	0
1507	Enantioselective Synthesis of Atropisomers by Oxidative Aromatization with Central-to-Axial Conversion of Chirality. Molecules, 2023, 28, 3142.	1.7	7
1508	Chiral Carboxylic Acids as Organic Catalysts for Asymmetric Reactions. ChemistrySelect, 2023, 8, .	0.7	2
1509	Cascade Alkenylation/Intramolecular Friedel–Crafts Alkylation: High Selectivity at the C7-Position of BINOL. Journal of Organic Chemistry, 2023, 88, 6108-6119.	1.7	3
1510	Synergistic Palladium/Chiral Phosphoric Acid-Catalyzed Kinetic Resolution via Stereoselective Intramolecular Substitution of Unactivated Allylic Alcohols. Journal of Organic Chemistry, 2023, 88, 5813-5826.	1.7	2

#	Article	IF	CITATIONS
1511	Visible-light-mediated catalytic asymmetric synthesis of α-amino esters via free carbene insertion into N H bond. Tetrahedron Letters, 2023, 122, 154496.	0.7	3
1512	Enantioselective Synthesis of an All-Carbon Quaternary Stereocenter by Chiral BrĄ̃nsted Acid-Catalyzed Friedel–Crafts-Type Reaction between Pyrroles and 3-Indolylmethanols. Journal of Organic Chemistry, 2023, 88, 7774-7783.	1.7	3
1513	Hydrazone-oxime Selectively Directed Redox-Neutral [4 + 2] Annulations Cascade with Alkynes and Iodonium Ylides to Build 1,1′-Biisoquinoline Mono- <i>N</i> -oxides. Organic Letters, 2023, 25, 2616-2621.	2.4	7
1514	From Three―to Sixâ€Membered Heterocycles Bearing a Quaternary Stereocenter: an Asymmetric Organocatalytic Approach. Chemical Record, 2023, 23, .	2.9	1
1515	Modular enantioselective access to β-amino amides by BrÃ,nsted acid-catalysed multicomponent reactions. Nature Chemistry, 2023, 15, 647-657.	6.6	12
1516	Asymmetric Organocatalyzed Intermolecular Functionalization of Cyclohexanoneâ€Đerived Dienones. Chemical Record, 2023, 23, .	2.9	3
1517	Synthesis of atropisomeric phosphino-triazoles and their corresponding gold(I) complexes. Organic Chemistry Frontiers, 0, , .	2.3	0
1520	Organocatalysis. , 2017, , 218-248.		0
1559	The use of molecular electronic structure methods to investigate mechanically interlocked molecules. Physical Chemistry Chemical Physics, 2023, 25, 19409-19421.	1.3	3
1565	Dual-Hydrogen-Bond Donor and BrÃ,nsted Acid Cocatalysis Enables Highly Enantioselective Protio-Semipinacol Rearrangement Reactions. Journal of the American Chemical Society, 2023, 145, 15036-15042.	6.6	3
1570	Light-controlled pKa Value of Chiral BrÃ,nsted Acid Catalysts in Enantioselective Aza-Friedel–Crafts Reaction. Chemical Communications, 0, , .	2.2	0
1571	Catalyst-controlled Stereoselective Carbon‒heteroatom Bond Formations by N-Heterocyclic Carbene (NHC) Organocatalysis. Organic Chemistry Frontiers, 0, , .	2.3	1
1585	Bifunctional organic photocatalysts for enantioselective visible-light-mediated photocatalysis. , 2023, 2, 913-925.		2
1593	Recent advances in the construction of axially chiral arylpyrroles. Science China Chemistry, 2023, 66, 2480-2491.	4.2	9
1594	Chiral Auxiliaries for the Synthesis of P-Chiral Phosphorus Derivatives. , 2023, , .		1
1595	Chiral discrimination of small substituents in biaryl atropisomer construction: enantioselective synthesis of axially chiral 1-azafluorene via Ni-catalyzed [2+2+2] cycloaddition. Science China Chemistry, 0, , .	4.2	0
1603	Enantioselective organocatalytic cycloadditions for the synthesis of medium-sized rings. , 2023, 2, 1142-1158.		0
1606	Catalytic asymmetric synthesis of sulfur-containing atropisomers by C-S bond formations. Science China Chemistry, 2023, 66, 3331-3346.	4.2	3

#	Article	IF	CITATIONS
1624	Enantioselective Synthesis of 3-(N-Indolyl)quinolines Containing Axial and Central Chiralities. Chemical Communications, 0, , .	2.2	0
1628	Straight-chain ω-amino-α,β-unsaturated carbonyl compounds: versatile synthons for the synthesis of nitrogen-containing heterocycles <i>via</i> organocatalytic reactions. Organic Chemistry Frontiers, 2023, 11, 236-253.	2.3	1
1638	Asymmetric Photochemical Transformations Using a Chiral Hydrogen Bond Donor. , 2024, , .		0
1642	Pd(<scp>ii</scp>)-Catalyzed enantioselective C–H olefination toward the synthesis of <i>P</i> -stereogenic phosphinamides. Chemical Communications, 2024, 60, 1623-1626.	2.2	0
1645	A convenient synthetic approach to highly hindered 3,3â€2-bis(2,4,6-tri- <i>tert</i> -butylphenyl)-BINOL-derived phosphoric acids. New Journal of Chemistry, 2024, 48, 1898-1901.	1.4	0
1656	Privileged BrÃ,nsted acid organocatalysis. Nature Catalysis, 2024, 7, 7-9.	16.1	0
1660	Chiral phosphoric acid-catalyzed enantioselective [5+1] cycloaddition reaction of <i>C</i> , <i>N</i> -cyclic azomethine imines with isocyanides. Chemical Communications, 2024, 60, 2637-2640.	2.2	0