Environmental stress activation of plant long-terminal

Functional Plant Biology 41, 557 DOI: 10.1071/fp13339

Citation Report

#	Article	IF	CITATIONS
1	Retrotransposon-based molecular markers for assessment of genomic diversity. Functional Plant Biology, 2014, 41, 781.	1.1	13
2	DKRE1—The first full-length Ty1-copia-like retrotransposon in persimmon: Isolation, characteristic and potential involvement in occurrence of bud mutations. Scientia Horticulturae, 2015, 184, 149-159.	1.7	5
3	Introgression of bacterial wilt resistance from Solanum melongena to S . t uberosum through asymmetric protoplast fusion. Plant Cell, Tissue and Organ Culture, 2016, 125, 433-443.	1.2	15
4	A highly specific micro <scp>RNA</scp> â€mediated mechanism silences <scp>LTR</scp> retrotransposons of strawberry. Plant Journal, 2016, 85, 70-82.	2.8	31
5	Partial sequencing reveals the transposable element composition of Coffea genomes and provides evidence for distinct evolutionary stories. Molecular Genetics and Genomics, 2016, 291, 1979-1990.	1.0	16
6	Useful parasites: the evolutionary biology and biotechnology applications of transposable elements. Journal of Genetics, 2016, 95, 1039-1052.	0.4	4
7	Rapid amplification of four retrotransposon families promoted speciation and genome size expansion in the genus Panax. Scientific Reports, 2017, 7, 9045.	1.6	24
8	Heterochromatic and cytomolecular diversification in the Caesalpinia group (Leguminosae): Relationships between phylogenetic and cytogeographical data. Perspectives in Plant Ecology, Evolution and Systematics, 2017, 29, 51-63.	1.1	30
9	Genome-wide analysis of salinity-stress induced DNA methylation alterations in cotton (Gossypium) Tj ETQq0 0 C) rgBT /Ove	erlock 10 Tf 5
10	Short-term mutagenicity test by using IRAP molecular marker in rice grown under herbicide treatment. Biotechnology and Biotechnological Equipment, 2018, 32, 923-928.	0.5	11
11	Retrotransposons in Plant Genomes: Structure, Identification, and Classification through Bioinformatics and Machine Learning. International Journal of Molecular Sciences, 2019, 20, 3837.	1.8	56
12	Karyological traits related to phylogenetic signal and environmental conditions within the Hymenaea clade (Leguminosae, Detarioideae). Perspectives in Plant Ecology, Evolution and Systematics, 2019, 39, 125462.	1.1	10
13	LTR-TEs abundance, timing and mobility in Solanum commersonii and S. tuberosum genomes following cold-stress conditions. Planta, 2019, 250, 1781-1787.	1.6	25
14	Physiological, epigenetic and genetic regulation in some olive cultivars under salt stress. Scientific Reports, 2019, 9, 1093.	1.6	64
15	Zinc priming and foliar application enhances photoprotection mechanisms in drought-stressed wheat plants during anthesis. Plant Physiology and Biochemistry, 2019, 140, 27-42.	2.8	26
16	Epigenetic changes and their relationship to somaclonal variation: a need to monitor the micropropagation of plantation crops, Functional Plant Biology, 2020, 47, 508	1.1	24

10	micropropagation of plantation crops. Functional Plant Biology, 2020, 47, 508.		
17	Inter-retrotransposon amplified polymorphism markers revealed long terminal repeat retrotransposon insertion polymorphism in flax cultivated on the experimental fields around Chernobyl. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2020, 55, 957-963.	0.9	9
18	Evaluation of wheat (Triticum aestivum L.) salt stress tolerance using physiological parameters and retrotransposon based markers. Canatic Resources and Crop Evalution, 2021, 68, 227-242	0.8	59

CITATION REPORT

#	Article	IF	CITATIONS
19	Activation of plant LTR-retrotransposons under in vitro culture stress. Visnik Ukrains Kogo Tovaristva Genetikiv I Selekcioneriv, 2021, 18, 58-69.	0.4	0
20	InpactorDB: A Classified Lineage-Level Plant LTR Retrotransposon Reference Library for Free-Alignment Methods Based on Machine Learning. Genes, 2021, 12, 190.	1.0	14
21	Wheat omics: Classical breeding to new breeding technologies. Saudi Journal of Biological Sciences, 2021, 28, 1433-1444.	1.8	12
22	Genome-wide characterization of LTR retrotransposons in the non-model deep-sea annelid Lamellibrachia luymesi. BMC Genomics, 2021, 22, 466.	1.2	5
23	Complex Networks of Prion-Like Proteins Reveal Cross Talk Between Stress and Memory Pathways in Plants. Frontiers in Plant Science, 2021, 12, 707286.	1.7	13
24	Aluminum-Induced Changes on DNA Damage, DNA Methylation and LTR Retrotransposon Polymorphism in Maize. Arabian Journal for Science and Engineering, 2018, 43, 123-131.	1.7	34
26	Bridging the Gap Between Environmental Adversity and Neuropsychiatric Disorders: The Role of Transposable Elements. Frontiers in Genetics, 0, 13, .	1.1	6
28	The role of LTR retrotransposons in plant genetic engineering: how to control their transposition in the genome. Plant Cell Reports, 2023, 42, 3-15.	2.8	4
29	The mechanisms underpinning lateral gene transfer between grasses. Plants People Planet, 2023, 5, 672-682.	1.6	3