Tailored hierarchical micelle architectures using living self-assembly in two dimensions

Nature Chemistry 6, 893-898

DOI: 10.1038/nchem.2038

Citation Report

#	Article	IF	CITATIONS
1	Served on a nanoplate. Nature Chemistry, 2014, 6, 857-858.	6.6	6
2	In Situ Visualization of Block Copolymer Selfâ€Assembly in Organic Media by Superâ€Resolution Fluorescence Microscopy. Chemistry - A European Journal, 2015, 21, 18539-18542.	1.7	48
3	Strategies for preparing fluorescently labelled polymer nanoparticles. Polymer International, 2015, 64, 174-182.	1.6	66
4	Synthetic Covalent and Nonâ€Covalent 2D Materials. Angewandte Chemie - International Edition, 2015, 54, 13876-13894.	7.2	157
5	Fiberâ€Like Micelles from the Crystallizationâ€Driven Selfâ€Assembly of Poly(3â€heptylselenophene)â€ <i>block</i> \$6€Polystyrene. Macromolecular Chemistry and Physics, 2015, 216, 685-695.	1.1	35
7	Self-assembly of "patchy―nanoparticles: a versatile approach to functional hierarchical materials. Chemical Science, 2015, 6, 3663-3673.	3.7	124
8	Crystallization-Driven Solution Self-Assembly of Block Copolymers with a Photocleavable Junction. Journal of the American Chemical Society, 2015, 137, 2203-2206.	6.6	64
9	Synthesis and Redox Activity of "Clicked―Triazolylbiferrocenyl Polymers, Network Encapsulation of Gold and Silver Nanoparticles and Anion Sensing. Inorganic Chemistry, 2015, 54, 2284-2299.	1.9	16
10	Synthesis of Mainâ€Chain Metal Carbonyl Organometallic Macromolecules (MCMCOMs). Macromolecular Rapid Communications, 2015, 36, 586-596.	2.0	8
11	Branched Micelles by Living Crystallization-Driven Block Copolymer Self-Assembly under Kinetic Control. Journal of the American Chemical Society, 2015, 137, 2375-2385.	6.6	101
12	Fluorous Cylindrical Micelles of Controlled Length by Crystallization-Driven Self-Assembly of Block Copolymers in Fluorinated Media. ACS Macro Letters, 2015, 4, 187-191.	2.3	18
13	Semi-crystalline polymethylene-b-poly(acrylic acid) diblock copolymers: aggregation behavior, confined crystallization and controlled growth of semicrystalline micelles from dilute DMF solution. Soft Matter, 2015, 11, 1778-1787.	1.2	26
14	Simple Preparation of Various Nanostructures via <i>in Situ</i> Nanoparticlization of Polyacetylene Blocklike Copolymers by One-Shot Polymerization. Macromolecules, 2015, 48, 1390-1397.	2.2	53
15	Self-assembly concepts for multicompartment nanostructures. Nanoscale, 2015, 7, 11841-11876.	2.8	279
16	Enzymatic synthesis and post-functionalization of two-dimensional crystalline cellulose oligomers with surface-reactive groups. Chemical Communications, 2015, 51, 12525-12528.	2.2	58
17	Metallopolymer-Based Shape Anisotropic Nanoparticles. ACS Macro Letters, 2015, 4, 731-735.	2.3	78
18	Living supramolecular polymerization. Science, 2015, 349, 241-242.	6.0	165
19	[2]Ferrocenophanes with Nitrogen in Bridging Positions. Organometallics, 2015, 34, 3039-3046.	1.1	16

#	ARTICLE	IF	CITATIONS
20	Photocleavage of the Corona Chains of Rigid-Rod Block Copolymer Micelles. Macromolecules, 2015, 48, 2254-2262.	2.2	20
21	Facile Preparation of Hierarchical Structures Using Crystallization-Kinetics Driven Self-Assembly. ACS Applied Materials & Driven Self-Assembly. ACS Applied Materials & Driven Self-Assembly. ACS	4.0	14
22	Non-covalent synthesis of supermicelles with complex architectures using spatially confined hydrogen-bonding interactions. Nature Communications, 2015, 6, 8127.	5.8	93
23	Silkworm cocoons by cylinders self-assembled from H-shaped alternating polymer brushes. Polymer Chemistry, 2015, 6, 886-890.	1.9	18
24	Synthesis and self-assembly of poly(ferrocenyldimethylsilane)-block-poly(2-alkyl-2-oxazoline) block copolymers. Polymer Chemistry, 2015, 6, 1604-1612.	1.9	11
25	Synthesis and Solution Selfâ€Assembly of Polyisopreneâ€∢i>blockàâ€poly(ferrocenylmethylsilane): A Diblock Copolymer with an Atactic but Semicrystalline Coreâ€Forming Metalloblock. Macromolecular Chemistry and Physics, 2016, 217, 1671-1682.	1.1	11
26	Versatile and controlled functionalization of polyferrocenylsilaneâ€∢i>bàêpolyvinylsiloxane block copolymers using a <i>N</i> àêhydroxysuccinimidyl ester strategy. Journal of Polymer Science Part A, 2016, 54, 245-252.	2.5	9
27	⟨i⟩In situ⟨ i⟩ synthesis of nanoâ€assemblies of the high molecular weight ferroceneâ€containing block copolymer ⟨i⟩via⟨ i⟩ dispersion ⟨scp⟩RAFT⟨ scp⟩ polymerization. Journal of Polymer Science Part A, 2016, 54, 900-909.	2.5	22
28	Rational design of ABC triblock terpolymer solution nanostructures with controlled patch morphology. Nature Communications, 2016, 7, 12097.	5.8	140
29	Reorganization of self-assembled supramolecular materials controlled by hydrogen bonding and hydrophilic–lipophilic balance. Journal of Materials Chemistry B, 2016, 4, 2662-2668.	2.9	43
30	Coordination nanoarchitectonics at interfaces between supramolecular and materials chemistry. Coordination Chemistry Reviews, 2016, 320-321, 139-152.	9.5	82
31	Uniform patchy and hollow rectangular platelet micelles from crystallizable polymer blends. Science, 2016, 352, 697-701.	6.0	305
32	Slow slip near the trench at the Hikurangi subduction zone, New Zealand. Science, 2016, 352, 701-704.	6.0	242
33	Self-assembly creates 2D materials. Science, 2016, 352, 656-657.	6.0	14
34	Hierarchical Assembly of Cylindrical Block Comicelles Mediated by Spatially Confined Hydrogen-Bonding Interactions. Journal of the American Chemical Society, 2016, 138, 12902-12912.	6.6	62
35	Corona Liquid Crystalline Order Helps to Form Single Crystals When Self-Assembly Takes Place in the Crystalline/Liquid Crystalline Block Copolymers. ACS Macro Letters, 2016, 5, 867-872.	2.3	54
36	Amorphization of a Ruâ€Ruâ€Cdâ€Coordination Polymer at Low Pressure. ChemistrySelect, 2016, 1, 901-905.	0.7	9
37	How a Small Modification of the Corona-Forming Block Redirects the Self-Assembly of Crystalline–Coil Block Copolymers in Solution. Macromolecules, 2016, 49, 7975-7984.	2.2	17

#	Article	IF	Citations
38	Monodisperse Cylindrical Micelles of Controlled Length with a Liquidâ€Crystalline Perfluorinated Core by 1D "Selfâ€Seeding― Angewandte Chemie - International Edition, 2016, 55, 11392-11396.	7.2	108
39	Chiral supramolecular polymerization leading to eye differentiable circular polarization in luminescence. Chemical Communications, 2016, 52, 9885-9888.	2.2	60
40	Precisely Controlled 2D Freeâ€Floating Nanosheets of Amphiphilic Molecules through Frameâ€Guided Assembly. Advanced Materials, 2016, 28, 9819-9823.	11.1	59
41	Monodisperse Cylindrical Micelles of Controlled Length with a Liquidâ€Crystalline Perfluorinated Core by 1D "Self‧eeding― Angewandte Chemie, 2016, 128, 11564-11568.	1.6	12
42	Fabrication of Chiralâ€Selective Nanotubular Heterojunctions through Living Supramolecular Polymerization. Angewandte Chemie, 2016, 128, 9691-9695.	1.6	31
43	Fabrication of Chiralâ€Selective Nanotubular Heterojunctions through Living Supramolecular Polymerization. Angewandte Chemie - International Edition, 2016, 55, 9539-9543.	7.2	92
44	Computationally designed peptides for self-assembly of nanostructured lattices. Science Advances, 2016, 2, e1600307.	4.7	58
45	Polyferrocenylsilanes: synthesis, properties, and applications. Chemical Society Reviews, 2016, 45, 5358-5407.	18.7	259
46	Nanoparticle-Induced Ellipse-to-Vesicle Morphology Transition of Rod–Coil–Rod Triblock Copolymer Aggregates. Langmuir, 2016, 32, 6917-6927.	1.6	21
47	Thermodynamic-Driven Self-Assembly: Heterochiral Self-Sorting and Structural Reconfiguration in Gold(I)–Sulfido Cluster System. Journal of the American Chemical Society, 2016, 138, 7260-7263.	6.6	75
48	One for all: cobalt-containing polymethacrylates for magnetic ceramics, block copolymerization, unexpected electrochemistry, and stimuli-responsiveness. Polymer Chemistry, 2016, 7, 1129-1137.	1.9	26
49	Patchy Wormlike Micelles with Tailored Functionality by Crystallization-Driven Self-Assembly: A Versatile Platform for Mesostructured Hybrid Materials. Macromolecules, 2016, 49, 2761-2771.	2.2	73
50	[$\langle i \rangle n \langle i \rangle$] Ferrocenophanes ($\langle i \rangle n \langle i \rangle = 2, 3$) with Nitrogen and Phosphorus in Bridging Positions. Inorganic Chemistry, 2016, 55, 3630-3639.	1.9	10
51	"Cross―Supermicelles via the Hierarchical Assembly of Amphiphilic Cylindrical Triblock Comicelles. Journal of the American Chemical Society, 2016, 138, 4087-4095.	6.6	58
52	Preparing DNA-mimicking multi-line nanocaterpillars <i>via in situ</i> nanoparticlisation of fully conjugated polymers. Polymer Chemistry, 2016, 7, 1422-1428.	1.9	19
53	Re-assembly behaviors of block copolymer micelles on substrates: effects of block length and interaction force. Colloid and Polymer Science, 2016, 294, 181-187.	1.0	2
54	Facile access to thermoresponsive filomicelles with tuneable cores. Chemical Communications, 2016, 52, 4497-4500.	2.2	51
55	Fluorescent Block Copolymer Micelles That Can Self-Report on Their Assembly and Small Molecule Encapsulation. Macromolecules, 2016, 49, 653-662.	2.2	35

#	Article	IF	CITATIONS
56	Hydrogen-Bonding-Mediated Fragmentation and Reversible Self-assembly of Crystalline Micelles of Block Copolymer. Macromolecules, 2016, 49, 367-372.	2.2	68
57	Controlling and imaging biomimetic self-assembly. Nature Chemistry, 2016, 8, 10-15.	6.6	460
58	Metallocenophanes bridged by group 13 elements. Coordination Chemistry Reviews, 2016, 314, 114-133.	9.5	35
59	Crystallization-driven one-dimensional self-assembly of polyethylene-b-poly(tert-butylacrylate) diblock copolymers in DMF: effects of crystallization temperature and the corona-forming block. Soft Matter, 2016, 12, 67-76.	1.2	54
60	Photo-induced secondary assembly of bis(terpyridyl)dibenzo-24-crown-8/Zn2+ supramolecular polymer. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 331, 240-246.	2.0	14
61	"Installation art―like hierarchical self-assembly of giant polymeric elliptical platelets. Nanoscale, 2017, 9, 2145-2149.	2.8	6
62	<i>>50th Anniversary Perspective</i> : Are Polymer Nanocomposites Practical for Applications?. Macromolecules, 2017, 50, 714-731.	2.2	491
63	Polymerization-induced self-assembly of PVAc-b-PVDF block copolymers via RAFT dispersion polymerization of vinylidene fluoride in dimethyl carbonate. Polymer Chemistry, 2017, 8, 1477-1487.	1.9	47
64	Two-dimensional assemblies from crystallizable homopolymers with charged termini. Nature Materials, 2017, 16, 481-488.	13.3	179
65	How Strained are [1]Ferrocenophanes?. Organometallics, 2017, 36, 614-621.	1.1	18
66	Uniform "Patchy―Platelets by Seeded Heteroepitaxial Growth of Crystallizable Polymer Blends in Two Dimensions. Journal of the American Chemical Society, 2017, 139, 4409-4417.	6.6	78
67	Supramolecularly Engineered Amphiphilic Macromolecules: Molecular Interaction Overrules Packing Parameters. Angewandte Chemie - International Edition, 2017, 56, 3516-3520.	7.2	42
68	Direct Formation of Large-Area 2D Nanosheets from Fluorescent Semiconducting Homopolymer with Orthorhombic Crystalline Orientation. Journal of the American Chemical Society, 2017, 139, 3082-3088.	6.6	58
69	Local pH oscillations witness autocatalytic self-organization of biomorphic nanostructures. Nature Communications, 2017, 8, 14427.	5.8	40
70	Supramolecularly Engineered Amphiphilic Macromolecules: Molecular Interaction Overrules Packing Parameters. Angewandte Chemie, 2017, 129, 3570-3574.	1.6	17
71	Crystallization-Driven Co-Assembly of Micrometric Polymer Hybrid Single Crystals and Nanometric Crystalline Micelles. Macromolecules, 2017, 50, 2006-2015.	2.2	64
72	Scalable and uniform 1D nanoparticles by synchronous polymerization, crystallization and self-assembly. Nature Chemistry, 2017, 9, 785-792.	6.6	174
73	1D vs. 2D shape selectivity in the crystallization-driven self-assembly of polylactide block copolymers. Chemical Science, 2017, 8, 4223-4230.	3.7	165

#	Article	IF	Citations
74	Self-assembly of poly(vinylidene fluoride)-block-poly(2-(dimethylamino)ethylmethacrylate) block copolymers prepared by CuAAC click coupling. Polymer Chemistry, 2017, 8, 5203-5211.	1.9	29
75	<i>>50th Anniversary Perspective</i> : Functional Nanoparticles from the Solution Self-Assembly of Block Copolymers. Macromolecules, 2017, 50, 3439-3463.	2.2	295
76	Bottomâ€up trifft auf Topâ€down: Patchâ€artig strukturierte Hybridfasermatten als effiziente Katalyseplattform. Angewandte Chemie, 2017, 129, 416-419.	1.6	10
77	Transition from disordered aggregates to ordered lattices: kinetic control of the assembly of a computationally designed peptide. Organic and Biomolecular Chemistry, 2017, 15, 6109-6118.	1.5	18
78	Complex and Hierarchical 2D Assemblies via Crystallization-Driven Self-Assembly of Poly(<scp>I</scp> -lactide) Homopolymers with Charged Termini. Journal of the American Chemical Society, 2017, 139, 9221-9228.	6.6	99
79	Efficient Codelivery of Paclitaxel and Curcumin by Novel Bottlebrush Copolymer-based Micelles. Molecular Pharmaceutics, 2017, 14, 2378-2389.	2.3	60
80	Single crystals of crystalline block copolymers formed in <i>n</i> aêhexanol and methanol/DMF solutions: A comparative study. Journal of Applied Polymer Science, 2017, 134, 45089.	1.3	12
81	A Noncrystallization Approach toward Uniform Thylakoids-like 2D "Nano-coins―and Their Grana-like 3D Suprastructures. Journal of the American Chemical Society, 2017, 139, 5883-5889.	6.6	52
82	Bottomâ€Up Meets Topâ€Down: Patchy Hybrid Nonwovens as an Efficient Catalysis Platform. Angewandte Chemie - International Edition, 2017, 56, 405-408.	7.2	67
83	Amphiphilic Ferrocene-Containing PEG Block Copolymers as Micellar Nanocarriers and Smart Surfactants. Langmuir, 2017, 33, 272-279.	1.6	25
84	Control over differentiation of a metastable supramolecular assembly in one and two dimensions. Nature Chemistry, 2017, 9, 493-499.	6.6	408
85	Surfactant-Mediated Crystallization-Driven Self-Assembly of Crystalline/Ionic Complexed Block Copolymers in Aqueous Solution. Langmuir, 2017, 33, 176-183.	1.6	35
86	Constructing Three-Dimensional Mesoporous Bouquet-Posy-like TiO ₂ Superstructures with Radially Oriented Mesochannels and Single-Crystal Walls. Journal of the American Chemical Society, 2017, 139, 517-526.	6.6	76
87	Two-Dimensional Self-Assembled Structures of Highly Ordered Bioactive Crystalline-Based Block Copolymers. Macromolecules, 2017, 50, 8544-8553.	2.2	66
88	Precision Epitaxy for Aqueous 1D and 2D Poly($\hat{l}\mu$ -caprolactone) Assemblies. Journal of the American Chemical Society, 2017, 139, 16980-16985.	6.6	159
89	Formation of Polymeric Nanocubes by Selfâ€Assembly and Crystallization of Dithiolaneâ€Containing Triblock Copolymers. Angewandte Chemie - International Edition, 2017, 56, 16357-16362.	7.2	29
90	A numerical study on improving the specific properties of staggered composites by incorporating voids. Materials Today Communications, 2017, 13, 144-154.	0.9	12
91	<i>>50th Anniversary Perspective</i> : Living Polymerizationâ€"Emphasizing the <i>Molecule</i> in <i>Macromolecules</i> . Macromolecules, 2017, 50, 6979-6997.	2.2	295

#	Article	IF	CITATIONS
92	Fiber-like micelle with a π-conjugated polymer core: a potential building block for organic electronics. Science Bulletin, 2017, 62, 1229-1230.	4.3	4
93	Self-Assembled 2D Free-Standing Janus Nanosheets with Single-Layer Thickness. Journal of the American Chemical Society, 2017, 139, 13592-13595.	6.6	93
94	Higher-order assembly of crystalline cylindrical micelles into membrane-extendable colloidosomes. Nature Communications, 2017, 8, 426.	5.8	62
95	Manipulation of Inorganic Atomicâ€Layer Networks by Solutionâ€Phase Coâ€assembly. Chemistry - A European Journal, 2017, 23, 13525-13532.	1.7	12
96	Twoâ€Dimensional Seeded Selfâ€Assembly of a Complex Hierarchical Peryleneâ€Based Heterostructure. Angewandte Chemie - International Edition, 2017, 56, 11380-11384.	7.2	40
97	Twoâ€Dimensional Seeded Selfâ€Assembly of a Complex Hierarchical Peryleneâ€Based Heterostructure. Angewandte Chemie, 2017, 129, 11538-11542.	1.6	16
98	Autocatalytic Time-Dependent Evolution of Metastable Two-Component Supramolecular Assemblies to Self-Sorted or Coassembled State. Scientific Reports, 2017, 7, 2425.	1.6	27
99	Topologically Directed Assemblies of Semiconducting Sphere–Rod Conjugates. Journal of the American Chemical Society, 2017, 139, 18616-18622.	6.6	51
100	Dimensionally controlled water-dispersible amplifying fluorescent polymer nanoparticles for selective detection of charge-neutral analytes. Polymer Chemistry, 2017, 8, 7507-7514.	1.9	24
101	Formation of Polymeric Nanocubes by Selfâ€Assembly and Crystallization of Dithiolaneâ€Containing Triblock Copolymers. Angewandte Chemie, 2017, 129, 16575-16580.	1.6	7
102	Soft patchy micelles. Current Opinion in Colloid and Interface Science, 2017, 30, 97-105.	3.4	23
103	Nanoscale Aggregates as Building Elements in a Biomimetic Living Self-Assembly. Journal of Physical Chemistry C, 2017, 121, 14907-14913.	1.5	2
104	Self-assembled structures and excellent surface properties of a novel anionic phosphate diester surfactant derived from natural rosin acids. Journal of Colloid and Interface Science, 2017, 486, 67-74.	5.0	22
105	In Situ Visualization of Assembly and Photonic Signal Processing in a Triplet Light-Harvesting Nanosystem. Journal of the American Chemical Society, 2018, 140, 4269-4278.	6.6	93
106	Uniform two-dimensional square assemblies from conjugated block copolymers driven by π–π interactions with controllable sizes. Nature Communications, 2018, 9, 865.	5.8	103
107	Block Copolymer Micelles for Photonic Fluids and Crystals. ACS Nano, 2018, 12, 3149-3158.	7.3	36
108	lonic silsesquioxanes: Preparation, structure control, characterization, and applications. Polymer, 2018, 144, 205-224.	1.8	32
109	Hollow polymer nanocapsules: synthesis, properties, and applications. Polymer Chemistry, 2018, 9, 2059-2081.	1.9	58

#	Article	IF	Citations
110	Selfâ€Collapsing of Single Molecular Polyâ€Propylene Oxide (PPO) in a 3D DNA Network. Small, 2018, 14, 1703426.	5.2	17
111	Uniform Polyselenophene Block Copolymer Fiberlike Micelles and Block Co-micelles via Living Crystallization-Driven Self-Assembly. Macromolecules, 2018, 51, 1002-1010.	2.2	46
112	Two-dimensional assembly of giant molecules. Science China Chemistry, 2018, 61, 17-24.	4.2	13
113	Semi-crystalline polymethylene-b-poly(acrylic acid) diblock copolymers in selective solutions: Morphological and crystallization evolution dependent on calcium chloride. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 539, 301-309.	2.3	8
114	Cylindrical Micelles with "Patchy―Coronas from the Crystallization-Driven Self-Assembly of ABC Triblock Terpolymers with a Crystallizable Central Polyferrocenyldimethylsilane Segment. Macromolecules, 2018, 51, 222-231.	2.2	27
115	Soft matter nanoscopy. Current Opinion in Colloid and Interface Science, 2018, 34, 59-73.	3.4	14
116	Photothermal MÃ \P bius aromatic metallapentalenofuran and its NIR-responsive copolymer. Polymer Chemistry, 2018, 9, 2092-2100.	1.9	25
117	Self-Assembly of Bodipy-Derived Extended π-Systems. Bulletin of the Chemical Society of Japan, 2018, 91, 100-120.	2.0	89
118	Controlling the Size of Two-Dimensional Polymer Platelets for Water-in-Water Emulsifiers. ACS Central Science, 2018, 4, 63-70.	5.3	94
119	Scalable Fiber-like Micelles and Block Co-micelles by Polymerization-Induced Crystallization-Driven Self-Assembly. Journal of the American Chemical Society, 2018, 140, 18104-18114.	6.6	83
120	Ring-Closing Metathesis and Ring-Opening Metathesis Polymerization toward Main-Chain Ferrocene-Containing Polymers. Macromolecules, 2018, 51, 9131-9139.	2.2	30
121	Polymer crystallization at liquidâ€liquid interface. Polymer Crystallization, 2018, 1, e10045.	0.5	8
122	Terraced and Smooth Gradient Polymer Brushes via a Polymer Singleâ€Crystal Assisted Grafting‶o Method. Angewandte Chemie - International Edition, 2018, 57, 15758-15761.	7.2	24
123	Nanotubes, Plates, and Needles: Pathway-Dependent Self-Assembly of Computationally Designed Peptides. Biomacromolecules, 2018, 19, 4286-4298.	2.6	34
124	Terraced and Smooth Gradient Polymer Brushes via a Polymer Singleâ€Crystal Assisted Graftingâ€To Method. Angewandte Chemie, 2018, 130, 15984-15987.	1.6	5
125	Efficient Fabrication of Pure, Single-Chain Janus Particles through Their Exclusive Self-Assembly in Mixtures with Their Analogues. ACS Macro Letters, 2018, 7, 1278-1282.	2.3	20
126	Probing the Growth Kinetics for the Formation of Uniform 1D Block Copolymer Nanoparticles by Living Crystallization-Driven Self-Assembly. ACS Nano, 2018, 12, 8920-8933.	7.3	60
127	Strategies for the selective loading of patchy worm-like micelles with functional nanoparticles. Nanoscale, 2018, 10, 18257-18268.	2.8	26

#	ARTICLE	IF	CITATIONS
128	Self-Assembly of Metallacages into Multidimensional Suprastructures with Tunable Emissions. Journal of the American Chemical Society, 2018, 140, 12819-12828.	6.6	63
129	Pathway driven self-assembly and living supramolecular polymerization in an amyloid-inspired peptide amphiphile. Chemical Communications, 2018, 54, 10730-10733.	2.2	50
130	Kinetic Study on the Self-Assembly of Au(I)–Thiolate Lamellar Sheets: Preassembled Precursor vs Molecular Precursor. Journal of Physical Chemistry A, 2018, 122, 5089-5097.	1.1	8
131	Cyanine-Mediated DNA Nanofiber Growth with Controlled Dimensionality. Journal of the American Chemical Society, 2018, 140, 9518-9530.	6.6	60
132	Self-Assembly of Block and Graft Copolymers in Organic Solvents: An Overview of Recent Advances. Polymers, 2018, 10, 62.	2.0	68
133	Emulsionâ€Assisted Polymerizationâ€Induced Hierarchical Selfâ€Assembly of Giant Sea Urchinâ€Iike Aggregates on a Large Scale. Angewandte Chemie, 2018, 130, 8175-8179.	1.6	18
134	Emulsionâ€Assisted Polymerizationâ€Induced Hierarchical Selfâ€Assembly of Giant Sea Urchinâ€Iike Aggregates on a Large Scale. Angewandte Chemie - International Edition, 2018, 57, 8043-8047.	7.2	45
135	Crystallization-Driven Two-Dimensional Nanosheet from Hierarchical Self-Assembly of Polypeptoid-Based Diblock Copolymers. Macromolecules, 2018, 51, 6344-6351.	2.2	70
136	Cylindrical NIR-Responsive Metallopolymer Containing Möbius Metalla-aromatics. ACS Macro Letters, 2018, 7, 1034-1038.	2.3	22
137	Self-Assembly of Soft Nanoparticles. , 2019, , 217-254.		2
138	Formation of well-defined supramolecular microstructures consisting of γ-cyclodextrin and polyether â€"rods, cubes, plates, and nanosheetsâ€"guided by guest polymer structure. Polymer, 2019, 179, 121689.	1.8	9
139	A Gold Quartet Framework with Reversible Anisotropic Structural Transformation Accompanied by Luminescence Response. CheM, 2019, 5, 2418-2428.	5.8	36
140	Uniform, High-Aspect-Ratio, and Patchy 2D Platelets by Living Crystallization-Driven Self-Assembly of Crystallizable Poly(ferrocenyldimethylsilane)-Based Homopolymers with Hydrophilic Charged Termini. Macromolecules, 2019, 52, 6068-6079.	2.2	26
141	2D Crystal Engineering of Nanosheets Assembled from Helical Peptide Building Blocks. Angewandte Chemie, 2019, 131, 13641-13646.	1.6	11
142	Supramolecular Block Copolymers by Seeded Living Polymerization of Perylene Bisimides. Journal of the American Chemical Society, 2019, 141, 12044-12054.	6.6	107
143	Tandem Interplay of the Host–Guest Interaction and Photoresponsive Supramolecular Polymerization to 1D and 2D Functional Peptide Materials. ACS Applied Materials & Samp; Interfaces, 2019, 11, 28213-28220.	4.0	28
144	Rodlike Block Copolymer Micelles of Controlled Length in Water Designed for Biomedical Applications. Macromolecules, 2019, 52, 5231-5244.	2.2	38
145	2D Crystal Engineering of Nanosheets Assembled from Helical Peptide Building Blocks. Angewandte Chemie - International Edition, 2019, 58, 13507-13512.	7.2	39

#	Article	IF	CITATIONS
146	A versatile bottom-up interface self-assembly strategy to hairy nanoparticle-based 2D monolayered composite and functional nanosheets. Chemical Communications, 2019, 55, 10241-10244.	2.2	15
147	Directed Self-Assembly of Ultrasmall Metal Nanoclusters. , 2019, 1, 237-248.		124
148	One-shot preparation of topologically chimeric nanofibers via a gradient supramolecular copolymerization. Nature Communications, 2019, 10, 4578.	5.8	35
149	Morphologically Tunable Square and Rectangular Nanosheets of a Simple Conjugated Homopolymer by Changing Solvents. Journal of the American Chemical Society, 2019, 141, 19138-19143.	6.6	52
150	Unique Bora[1]ferrocenophanes with Sterically Protected Boron: A Potential Gateway to Helical Polyferrocenes. Angewandte Chemie, 2019, 131, 16728-16735.	1.6	2
151	Unique Bora[1]ferrocenophanes with Sterically Protected Boron: A Potential Gateway to Helical Polyferrocenes. Angewandte Chemie - International Edition, 2019, 58, 16575-16582.	7.2	8
152	ROMPI-CDSA: ring-opening metathesis polymerization-induced crystallization-driven self-assembly of metallo-block copolymers. Chemical Science, 2019, 10, 9782-9787.	3.7	47
153	Structure and thermodynamics of mixed polymeric micelles with crystalline cores: tuning properties <i>via</i>) co-assembly. Soft Matter, 2019, 15, 7777-7786.	1.2	6
154	Supramolecular Hexagonal Platelet Assemblies with Uniform and Precisely-Controlled Dimensions. Journal of the American Chemical Society, 2019, 141, 15498-15503.	6.6	30
155	Linear and Branched Fiber-like Micelles from the Crystallization-Driven Self-Assembly of Heterobimetallic Block Copolymer Polyelectrolyte/Surfactant Complexes. Macromolecules, 2019, 52, 7289-7300.	2.2	17
156	Getting into Shape: Reflections on a New Generation of Cylindrical Nanostructures' Self-Assembly Using Polymer Building Blocks. Journal of the American Chemical Society, 2019, 141, 2742-2753.	6.6	186
157	Aggregated-fluorescent detection of PFAS with a simple chip. Analytical Methods, 2019, 11, 163-170.	1.3	27
158	Disassembly of Crystalline Platelets of an Amphiphilic Triblock Copolymer Mediated by Varying pH and Organic Diacids. Macromolecular Chemistry and Physics, 2019, 220, 1900187.	1.1	2
159	Recent Advances in Nanostructured Polymer Composites for Biomedical Applications. , 2019, , 21-52.		4
160	One-pot universal initiation-growth methods from a liquid crystalline block copolymer. Nature Communications, 2019, 10, 2397.	5.8	39
161	Formation of Isolated Pseudo-Polyrotaxane Nanosheet Consisting of $\hat{I}\pm$ -Cyclodextrin and Poly(ethylene) Tj ETQq1	1 0,7843 2.2	14.rgBT /Ove
162	Oneâ€dimensional growth kinetics for formation of cylindrical crystalline micelles of block copolymers. Polymer Crystallization, 2019, 2, 10047.	0.5	18
163	Glyco-Platelets with Controlled Morphologies via Crystallization-Driven Self-Assembly and Their Shape-Dependent Interplay with Macrophages. ACS Macro Letters, 2019, 8, 596-602.	2.3	63

#	Article	IF	CITATIONS
164	Enantiopure Ferrocenophanes with Phosphorus in Bridging Positions: Thermostability and Ring-Opening Polymerization. Organometallics, 2019, 38, 2092-2104.	1.1	9
165	Future of Supramolecular Copolymers Unveiled by Reflecting on Covalent Copolymerization. Journal of the American Chemical Society, 2019, 141, 6110-6121.	6.6	130
166	Solution self-assembly of ABC triblock terpolymers with a central crystallizable poly(ferrocenyldimethylsilane) core-forming segment. Polymer Chemistry, 2019, 10, 2559-2569.	1.9	7
167	Manipulation and Deposition of Complex, Functional Block Copolymer Nanostructures Using Optical Tweezers. ACS Nano, 2019, 13, 3858-3866.	7.3	21
168	Fabrication of Single-Handed Nanocoils with Controlled Length via a Living Supramolecular Self-Assembly. Chemistry of Materials, 2019, 31, 1403-1407.	3.2	14
169	Tetraphenylethene-Functionalized Polyethylene-Based Polymers with Aggregation-Induced Emission. Macromolecules, 2019, 52, 1955-1964.	2.2	38
170	Autonomously isolated pseudo-polyrotaxane nanosheets fabricated <i>via</i> hierarchically ordered supramolecular self-assembly. Chemical Communications, 2019, 55, 4158-4161.	2.2	17
171	CO2-Triggered and temperature-switchable crystallization-driven self-assembly of a semicrystalline block copolymer in aqueous medium. Polymer Chemistry, 2019, 10, 6305-6314.	1.9	2
172	Crystallization-Driven Self-Assembly of Coil–Comb-Shaped Polypeptoid Block Copolymers: Solution Morphology and Self-Assembly Pathways. Macromolecules, 2019, 52, 8867-8877.	2.2	42
173	Seeded Heteroepitaxial Growth of Crystallizable Collagen Triple Helices: Engineering Multifunctional Two-Dimensional Core–Shell Nanostructures. Journal of the American Chemical Society, 2019, 141, 20107-20117.	6.6	42
174	Uniform Toroidal Micelles via the Solution Self-Assembly of Block Copolymer–Homopolymer Blends Using a "Frustrated Crystallization―Approach. Macromolecules, 2019, 52, 113-120.	2.2	25
175	Effect of Concentration on the Dissolution of One-Dimensional Polymer Crystals: A TEM and NMR Study. Macromolecules, 2019, 52, 208-216.	2.2	17
176	Selfâ€assembly of Amphiphilic Alternating Copolymers. Chemistry - A European Journal, 2019, 25, 4255-4264.	1.7	46
177	Multicolor Emission from Nonâ€conjugated Polymers Based on a Single Switchable Boron Chromophore. Angewandte Chemie - International Edition, 2019, 58, 3082-3086.	7.2	67
178	Multicolor Emission from Nonâ€conjugated Polymers Based on a Single Switchable Boron Chromophore. Angewandte Chemie, 2019, 131, 3114-3118.	1.6	43
179	Design and applications of dipyrrin-based fluorescent dyes and related organic luminophores: From individual compounds to supramolecular self-assembled systems. Dyes and Pigments, 2019, 162, 517-542.	2.0	54
180	Shape-controlled synthesis of liquid metal nanodroplets for photothermal therapy. Nano Research, 2019, 12, 1313-1320.	5.8	83
181	Fabrication of 2D surface-functional polymer platelets via crystallization-driven self-assembly of poly ($\hat{l}\mu$ -caprolactone)-contained block copolymers. Polymer, 2019, 160, 196-203.	1.8	29

#	Article	IF	CITATIONS
182	Supramolecular polymer chemistry: From structural control to functional assembly. Progress in Polymer Science, 2020, 100, 101167.	11.8	135
183	Block copolymer vesicles via liquid/liquid interface-mediated self-assembly. Applied Surface Science, 2020, 499, 143896.	3.1	5
184	Freeâ€Standing CoOâ€POM Janusâ€like Ultrathin Nanosheets. Angewandte Chemie - International Edition, 2020, 59, 8497-8501.	7.2	32
185	Formation of Hierarchical Architectures with Dimensional and Morphological Control in the Selfâ€Assembly of Conjugated Block Copolymers. Small Methods, 2020, 4, 1900470.	4.6	16
186	Freeâ€Standing CoOâ€POM Janusâ€like Ultrathin Nanosheets. Angewandte Chemie, 2020, 132, 8575-8579.	1.6	13
187	Influence of patch size and chemistry on the catalytic activity of patchy hybrid nonwovens. Nanoscale Advances, 2020, 2, 438-452.	2.2	9
188	Inky flower-like supermicelles assembled from π-conjugated block copolymers. Polymer Chemistry, 2020, 11, 61-67.	1.9	7
189	Self-assembly of luminescent triblock bottlebrush copolymers in solution. Polymer Chemistry, 2020, 11, 1062-1071.	1.9	9
190	Concepts, fabrication methods and applications of living crystallization-driven self-assembly of block copolymers. Progress in Polymer Science, 2020, 101, 101195.	11.8	116
191	Multicolor conjugated polymers containing thiophene/indole moieties and the influence of structures on their photophysical properties. Polymer, 2020, 206, 122820.	1.8	4
192	Surface Patterning of Uniform 2D Platelet Block Comicelles via Coronal Chain Collapse. ACS Macro Letters, 2020, 9, 1514-1520.	2.3	7
193	Supramolecular double-stranded Archimedean spirals and concentric toroids. Nature Communications, 2020, 11, 3578.	5.8	67
194	The Origins of Toroidal Micelles from a Liquid–Crystalline Triblock Copolymer â€. Chinese Journal of Chemistry, 2020, 38, 1709-1717.	2.6	8
195	Rectangular Platelet Micelles with Controlled Aspect Ratio by Hierarchical Self-Assembly of Poly(3-hexylthiophene)- <i>b</i> -poly(ethylene glycol). Macromolecules, 2020, 53, 6555-6565.	2.2	39
196	Polymers producing hydrogen. Nature Chemistry, 2020, 12, 1093-1095.	6.6	6
197	Understanding the Dissolution and Regrowth of Core-Crystalline Block Copolymer Micelles: A Scaling Approach. Macromolecules, 2020, 53, 10198-10211.	2.2	11
198	Controlled synthesis of organic two-dimensional nanostructures <i>via</i> reaction-driven, cooperative supramolecular polymerization. Chemical Science, 2020, 11, 12701-12709.	3.7	29
199	Uniform Continuous and Segmented Nanofibers Containing a π-Conjugated Oligo(<i>p</i> poligo(<i>p</i> phenylene) Tj ETQq1 Oligo(<i>p</i> phenylene ethynylene) Chain Length. Macromolecules, 2020, 53, 6299-6313.	1 0.7843	14 rgBT /Ov 37

#	Article	IF	CITATIONS
200	Precise control of cyclodextrin-based pseudo-polyrotaxane lamellar structure <i>via </i> via via	1.2	5
201	Light-directed trapping of metastable intermediates in a self-assembly process. Nature Communications, 2020, 11, 6260.	5.8	15
202	Intramolecular Cyclization-Induced Crystallization-Driven Self-Assembly of an Amorphous Poly(amic) Tj ETQq0 0 C	rgBT /Ov	erlock 10 Tf 5 17
203	Impact of amino acids on the aqueous self-assembly of benzenetrispeptides into supramolecular polymer bottlebrushes. Polymer Chemistry, 2020, 11 , 6763-6771.	1.9	9
204	Poly(εâ€caprolactone) Single Crystals with Different Aspect Ratios Mediated by Counterion Exchange on the Basis of Hofmeister Series. Macromolecular Chemistry and Physics, 2020, 221, 2000089.	1.1	2
205	Cooperative Supramolecular Block Copolymerization for the Synthesis of Functional Axial Organic Heterostructures. Journal of the American Chemical Society, 2020, 142, 11528-11539.	6.6	86
206	Hierarchical Selfâ€Assembled Photoâ€Responsive Tubisomes from a Cyclic Peptideâ€Bridged Amphiphilic Block Copolymer. Angewandte Chemie, 2020, 132, 8945-8948.	1.6	9
207	Control over the Aspect Ratio of Supramolecular Nanosheets by Molecular Design. Chemistry - A European Journal, 2020, 26, 7840-7846.	1.7	28
208	Self-Assembly of Copolymer Micelles: Higher-Level Assembly for Constructing Hierarchical Structure. Chemical Reviews, 2020, 120, 4111-4140.	23.0	150
209	Towards shape-translational symmetry incommensurate polymer crystals. Polymer, 2020, 195, 122407.	1.8	13
210	Cellular uptake and targeting of low dispersity, dual emissive, segmented block copolymer nanofibers. Chemical Science, 2020, 11, 8394-8408.	3.7	39
211	Scalable preparation of crystalline nanorods through sequential polymerization-induced and crystallization-driven self-assembly of alternating copolymers. Polymer Chemistry, 2020, 11, 2312-2317.	1.9	18
212	Controlled Synthesis of PdII and PtII Supramolecular Copolymer with Sequential Multiblock and Amplified Phosphorescence. CheM, 2020, 6, 945-967.	5.8	67
213	Hierarchical Selfâ€Assembled Photoâ€Responsive Tubisomes from a Cyclic Peptideâ€Bridged Amphiphilic Block Copolymer. Angewandte Chemie - International Edition, 2020, 59, 8860-8863.	7.2	57
214	The Power of Confocal Laser Scanning Microscopy in Supramolecular Chemistry: In situ Realâ€time Imaging of Stimuliâ€Responsive Multicomponent Supramolecular Hydrogels. ChemistryOpen, 2020, 9, 67-79.	0.9	39
215	Length Control of Biodegradable Fiber-Like Micelles via Tuning Solubility: A Self-Seeding Crystallization-Driven Self-Assembly of Poly(ε-caprolactone)-Containing Triblock Copolymers. Macromolecules, 2020, 53, 1514-1521.	2.2	41
216	Polypeptide templating for designer hierarchical materials. Nature Communications, 2020, 11, 351.	5.8	27
217	Breaking translational symmetry via polymer chain overcrowding in molecular bottlebrush crystallization. Nature Communications, 2020, 11, 2152.	5.8	29

#	Article	IF	CITATIONS
218	Solvent effects leading to a variety of different 2D structures in the self-assembly of a crystalline-coil block copolymer with an amphiphilic corona-forming block. Chemical Science, 2020, 11, 4631-4643.	3.7	26
219	Formation of 2D and 3D multi-tori mesostructures via crystallization-driven self-assembly. Science Advances, 2020, 6, eaaz7301.	4.7	12
220	Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions. Nature Reviews Chemistry, 2021, 5, 21-45.	13.8	154
221	Frustrated Microparticle Morphologies of a Semicrystalline Triblock Terpolymer in 3D Soft Confinement. ACS Nano, 2021, 15, 1111-1120.	7.3	20
222	Fabrication of complex hierarchical heterostructures with controlled luminescence via seeded self-assembly. Journal of Materials Chemistry C, 2021, 9, 12073-12078.	2.7	3
223	Towards scalable, low dispersity, and dimensionally tunable 2D platelets using living crystallization-driven self-assembly. Polymer Chemistry, 2021, 12, 3650-3660.	1.9	8
224	Thickness control of 2D nanosheets assembled from precise side-chain giant molecules. Chemical Science, 2021, 12, 5216-5223.	3.7	13
225	100th Anniversary of Macromolecular Science Viewpoint: User's Guide to Supramolecular Peptide–Polymer Conjugates. ACS Macro Letters, 2021, 10, 258-271.	2.3	12
226	Emerging applications for living crystallization-driven self-assembly. Chemical Science, 2021, 12, 4661-4682.	3.7	126
227	Constructing Cylindrical Nanostructures Via Directional Morphology Evolution Induced by Seeded Polymerization. Macromolecular Rapid Communications, 2021, 42, 2100001.	2.0	2
228	Robust nucleation control via crisscross polymerization of highly coordinated DNA slats. Nature Communications, 2021, 12, 1741.	5.8	30
229	Spatially Restricted Templated Growth of Poly($\hat{l}\mu$ -caprolactone) from Carbon Nanotubes by Crystallization-Driven Self-Assembly. Macromolecules, 2021, 54, 2844-2851.	2.2	27
231	A case study of monomer design for controlled/living supramolecular polymerization. Polymer Journal, 2021, 53, 865-875.	1.3	5
232	Modulating the Molecular Geometry and Solution Self-Assembly of Amphiphilic Polypeptoid Block Copolymers by Side Chain Branching Pattern. Journal of the American Chemical Society, 2021, 143, 5890-5902.	6.6	46
233	Semi-conducting 2D rectangles with tunable length via uniaxial living crystallization-driven self-assembly of homopolymer. Nature Communications, 2021, 12, 2602.	5.8	47
234	Cargo Encapsulation in Uniform, Length-Tunable Aqueous Nanofibers with a Coaxial Crystalline and Amorphous Core. Macromolecules, 2021, 54, 5784-5796.	2.2	22
235	Microscopic Imaging Techniques for Molecular Assemblies: Electron, Atomic Force, and Confocal Microscopies. Chemical Reviews, 2021, 121, 14281-14347.	23.0	34
236	Living supramolecular polymerization of fluorinated cyclohexanes. Nature Communications, 2021, 12, 3134.	5.8	49

#	Article	IF	CITATIONS
237	Precisely Controlled Two-Dimensional Rhombic Copolymer Micelles for Sensitive Flexible Tunneling Devices. CCS Chemistry, 2021, 3, 1399-1409.	4.6	23
238	Patchy Micelles with a Crystalline Core: Self-Assembly Concepts, Properties, and Applications. Polymers, 2021, 13, 1481.	2.0	20
239	Block copolymer solution selfâ€assembly: Recent advances, emerging trends, and applications. Journal of Polymer Science, 2021, 59, 1874-1898.	2.0	81
240	Tricomponent Supramolecular Multiblock Copolymers with Tunable Composition via Sequential Seeded Growth. Angewandte Chemie, 2021, 133, 18357-18364.	1.6	6
241	Self-Seeding of Oligo(<i>p</i> phenylenevinylene)- <i>b</i> poly(2-vinylpyridine) Micelles: Effect of Metal Ions. Macromolecules, 2021, 54, 6705-6717.	2.2	18
242	Tricomponent Supramolecular Multiblock Copolymers with Tunable Composition via Sequential Seeded Growth. Angewandte Chemie - International Edition, 2021, 60, 18209-18216.	7.2	44
243	Self-assembly using a retro Diels-Alder reaction. Nature Communications, 2021, 12, 4207.	5.8	19
244	Corona-Loading Strategies for Crystalline Particles Made by Living Crystallization-Driven Self-Assembly. Macromolecules, 2021, 54, 6662-6669.	2.2	38
245	Versatile Applications of Metallopolymers. Progress in Polymer Science, 2021, 119, 101428.	11.8	29
246	Terpyridine-Induced Folding of Anisotropic Polyphosphoester Platelets. ACS Polymers Au, 2021, 1, 123-130.	1.7	1
247	Solution Self-Assembly of Coil-Crystalline Diblock Copolypeptoids Bearing Alkyl Side Chains. Polymers, 2021, 13, 3131.	2.0	9
248	Robust organic semiconductor thermoset composite films based on Crystallization-Driven Self-Assembled nanofibers of Poly(3-hexylthiophene) block copolymers. Chemical Engineering Journal, 2022, 430, 132695.	6.6	2
249	Constructing helical nanowires <i>via</i> polymerization-induced self-assembly. RSC Advances, 2021, 11, 8986-8992.	1.7	4
250	Hybrid Hairy Platelets with Tunable Structures by Inclusion Crystallization of Polyferrocene-Containing Block Copolymers and Silicotungstic Acid. ACS Macro Letters, 2021, 10, 272-277.	2.3	7
251	Functional nanoparticles through π-conjugated polymer self-assembly. Nature Reviews Materials, 2021, 6, 7-26.	23.3	179
252	Main-Chain Ferrocene-Containing Polymers Prepared by Acyclic Diene Metathesis Polymerization: A Review. Current Organic Chemistry, 2020, 24, 1010-1017.	0.9	8
253	An Amphiphilic Corona-Forming Block Promotes Formation of a Variety of 2D Platelets via Crystallization-Driven Block Copolymer Self-Assembly. Macromolecules, 2021, 54, 9761-9772.	2.2	12
254	Crystallization-Driven Self-Assembly of Block Copolymers Having Monodisperse Poly(lactic acid)s with Defined Stereochemical Sequences. Macromolecules, 2021, 54, 10487-10498.	2.2	25

#	Article	IF	CITATIONS
255	Ferrocene and Related Metallocene Polymers. , 2022, , 3-22.		2
256	Hydrogen-Bond-Regulated Platelet Micelles by Crystallization-Driven Self-Assembly and Templated Growth for Poly(ε-Caprolactone) Block Copolymers. Macromolecules, 2022, 55, 1067-1076.	2.2	22
257	Bottom-up supramolecular assembly in two dimensions. Chemical Science, 2022, 13, 3057-3068.	3.7	30
258	Single crystals and twoâ€dimensional crystalline assemblies of block copolymers. Journal of Polymer Science, 2022, 60, 2153-2174.	2.0	7
259	Self-Assembled Metal Nanoclusters: Driving Forces and Structural Correlation with Optical Properties. Nanomaterials, 2022, 12, 544.	1.9	29
260	Crystallizationâ€Driven Controlled Twoâ€Dimensional (2D) Assemblies from Chromophoreâ€Appended Poly(Lâ€lactide)s: Highly Efficient Energy Transfer on a 2D Surface. Angewandte Chemie - International Edition, 2022, 61, .	7.2	22
261	Crystallizationâ€Driven Controlled Twoâ€Dimensional (2D) Assemblies from Chromophoreâ€Appended Poly(Lâ€lactide)s: Highly Efficient Energy Transfer on a 2D Surface. Angewandte Chemie, 2022, 134, .	1.6	2
262	Efficient and Controlled Seeded Growth of Poly(3-hexylthiophene) Block Copolymer Nanofibers through Suppression of Homogeneous Nucleation. Macromolecules, 2021, 54, 11269-11280.	2.2	14
263	Elucidating the Supramolecular Copolymerization of N―and C entered Benzeneâ€1,3,5â€Tricarboxamides: The Role of Parallel and Antiparallel Packing of Amide Groups in the Copolymer Microstructure. Chemistry - A European Journal, 2022, 28, .	1.7	13
264	Semiconductor polymer nanoparticles for biological application., 2022, , .		0
265	Diffusion characteristics of water molecules in a lamellar structure formed by triblock copolymers. Physical Chemistry Chemical Physics, 2022, 24, 8015-8021.	1.3	0
267	Core–Satellite Micelles by a Linear A ₁ B ₁ A ₂ B ₂ Tetrablock Copolymer. Macromolecules, 2022, 55, 1544-1551.	2.2	3
268	Controlling Polymeric Supramolecular Microstructures through Host–Guest Interactions Assisted with Ultrasound Oscillation. Crystal Growth and Design, 2022, 22, 2087-2096.	1.4	1
269	Driving forces and molecular interactions in the self-assembly of block copolymers to form fiber-like micelles. Applied Physics Reviews, 2022, 9, .	5.5	11
270	Sustainable synthesis of ordered mesoporous materials without additional solvents. Journal of Colloid and Interface Science, 2022, 619, 116-122.	5.0	7
271	Polymer Brush Formation Assisted by the Hierarchical Self-Assembly of Topological Supramolecules. ACS Applied Materials & Samp; Interfaces, 2021, 13, 60446-60453.	4.0	2
272	Noncovalent Postmodification Guided Reversible Compartmentalization of Polymeric Micelles. ACS Macro Letters, 2022, 11, 687-692.	2.3	1
273	Fiberlike Micelle Networks from the Solution Self-Assembly of Bâ \in "Aâ \in "B Triblock Copolymers with Crystallizable Terminal Polycarbonate Segments. Macromolecules, 0, , .	2.2	1

#	Article	IF	CITATIONS
274	Multistep molecular and macromolecular assembly for the creation of complex nanostructures. Chemical Physics Reviews, 2022, 3, 021305.	2.6	4
275	Formation of Hierarchical Platelets with Morphological Control by Self-Assembly of Azobenzene-Containing Liquid Crystalline Diblock Copolymer. Materials Chemistry Frontiers, 0, , .	3.2	3
276	Hydrophobic cargo loading at the core–corona interface of uniform, length-tunable aqueous diblock copolymer nanofibers with a crystalline polycarbonate core. Polymer Chemistry, 2022, 13, 4100-4110.	1.9	7
277	Hierarchical Approach for Controlled Assembly of Branched Nanostructures from One Polymer Compound by Engineering Crystalline Domains. ACS Nano, 2022, 16, 10470-10481.	7.3	5
278	Porphyrin Tripod as a Monomeric Building Block for Guest-Induced Reversible Supramolecular Polymerization. Macromolecules, 0, , .	2.2	1
279	2D Liquid-Crystallization-Driven Self-Assembly of Rod–Coil Block Copolymers: Living Growth and Self-Similarity. Journal of Physical Chemistry Letters, 2022, 13, 6215-6222.	2.1	6
280	Mechanical Manipulation of Archimedean Spirals of an Achiral Pyrazinacene for Chiral Assemblies. Advanced Materials Interfaces, 0, , 2200209.	1.9	4
281	Polymer-Derived Janus Particles at Multiple Length Scales. Macromolecules, 2022, 55, 6297-6310.	2.2	8
282	Two-Dimensional Janus Film with Au Nanoparticles Assembled on Trinuclear Gold(I) Pyrazolate Coordination Nanosheets for Photocatalytic H ₂ Evolution. Inorganic Chemistry, 2022, 61, 13591-13599.	1.9	5
283	Unprecedented Small Molecule-Based Uniform Two-Dimensional Platelets with Tailorable Shapes and Sizes/b>. Journal of the American Chemical Society, 2022, 144, 15403-15410.	6.6	16
284	Living Crystallization-Driven Self-Assembly of Linear and V-Shaped Oligo(<i>p</i> -phenylene) Tj ETQq0 0 0 rgBT /C Macromolecules, 2022, 55, 7856-7868.		0 Tf 50 347 ⁻ 18
285	AIE-Active, Stimuli-Responsive Fluorescent 2D Block Copolymer Nanoplatelets Based on Corona Chain Compression. Journal of the American Chemical Society, 2022, 144, 17630-17641.	6.6	23
286	Precise Control of Two-Dimensional Platelet Micelles from Biodegradable Poly(<i>p</i> block Copolymers by Crystallization-Driven Self-Assembly. Macromolecules, 2022, 55, 8250-8261.	2.2	11
287	Precise and Controllable Assembly of Block Copolymers < sup > †< /sup > . Chinese Journal of Chemistry, 2023, 41, 93-110.	2.6	8
288	Role of Competitive Crystallization Kinetics in the Formation of 2D Platelets with Distinct Coronal Surface Patterns via Seeded Growth. Journal of the American Chemical Society, 2022, 144, 19051-19059.	6.6	14
289	Metallurgical alloy approach to two-dimensional supramolecular materials. CheM, 2023, 9, 170-180.	5.8	5
290	Organosilicon Fluorescent Materials. Polymers, 2023, 15, 332.	2.0	8
291	Polyferrocenylsilane Block Copolymer Spherulites in Dilute Solution. Journal of the American Chemical Society, 2023, 145, 1247-1261.	6.6	9

#	Article	IF	CITATIONS
292	Recent advances in the solution selfâ€assembly of polypeptides. Journal of Polymer Science, 2024, 62, 693-706.	2.0	2
293	Supramolecular reactions of polypeptide micelles: polymerization, cyclization, and living growth. Scientia Sinica Chimica, 2023, 53, 664-677.	0.2	O
294	Chemical shield effect of metal complexation on seeded growth of poly($\hat{l}\mu$ -caprolactone) core-forming blends. Polymer, 2023, 272, 125831.	1.8	3
295	Chiral Hierarchical Architecture Induced by Confinement-Assisted Living Supramolecular Polymerization of Simple Achiral Molecules. ACS Nano, 2023, 17, 3838-3846.	7.3	5
296	Synthesis of Catalytic Microswimmers Based on Anisotropic Platinum Sorption on Melamine Barbiturate Supramolecular Structures. Advanced Intelligent Systems, 0, , 2200436.	3.3	2
297	In situ Nucleationâ€Growth Strategy for Controllable Heterogeneous Supramolecular Polymerization of Liquid Crystalline Block Copolymers and Their Hierarchical Assembly. Angewandte Chemie - International Edition, 2023, 62, .	7.2	10
298	In situ Nucleationâ€Growth Strategy for Controllable Heterogeneous Supramolecular Polymerization of Liquid Crystalline Block Copolymers and Their Hierarchical Assembly. Angewandte Chemie, 2023, 135,	1.6	1
299	Controlled Fabrication of Uniform Digital Nanorods from Precise Sequence-Defined Amphiphilic Polymers in Aqueous Media. Chinese Journal of Polymer Science (English Edition), 2023, 41, 768-777.	2.0	12
300	Nanoscale Control of the Surface Functionality of Polymeric 2D Materials. Small, 0, , 2206454.	5.2	0
301	Twoâ€Dimensional Supramolecular Polymerization of DNA Amphiphiles is Driven by Sequenceâ€Dependent DNAâ€Chromophore Interactions. Angewandte Chemie, 2023, 135, .	1.6	1
302	Twoâ€Dimensional Supramolecular Polymerization of DNA Amphiphiles is Driven by Sequenceâ€Dependent DNAâ€Chromophore Interactions. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
303	Formation of Sizeâ€Controllable Tetragonal Nanoprisms by Crystallizationâ€Directed Ionic Selfâ€Assembly of Anionic Porphyrin and PEOâ€Containing Triblock Cationic Copolymer. Small, 2023, 19, .	5.2	0
304	Size-Tunable Semiconducting 2D Nanorectangles from Conjugated Polyenyne Homopolymer Synthesized via Cascade Metathesis and Metallotropy Polymerization. Journal of the American Chemical Society, 2023, 145, 9029-9038.	6.6	4
305	Autonomous and Programmable Reorganization of DNAâ€Based Polymers Using Redox Chemistry**. Chemistry - A European Journal, 2023, 29, .	1.7	1
306	Uniform segmented platelet micelles with compositionally distinct and selectively degradable cores. Nature Chemistry, 2023, 15, 824-831.	6.6	16