Innovative high performing metal organic framework (electrolytes for all-solid-state lithium batteries

Journal of Materials Chemistry A 2, 9948-9954 DOI: 10.1039/c4ta01856g

Citation Report

#	Article	IF	CITATIONS
1	A fast charging/discharging all-solid-state lithium ion battery based on PEO-MIL-53(Al)-LiTFSI thin film electrolyte. RSC Advances, 2014, 4, 42278-42284.	1.7	108
2	Photopolymer Electrolytes for Sustainable, Upscalable, Safe, and Ambientâ€Temperature Sodiumâ€lon Secondary Batteries. ChemSusChem, 2015, 8, 3668-3676.	3.6	85
3	Newly Elaborated Multipurpose Polymer Electrolyte Encompassing RTILs for Smart Energy-Efficient Devices. ACS Applied Materials & Interfaces, 2015, 7, 12961-12971.	4.0	74
4	Polymer electrolytes and perovskites: lights and shadows in photovoltaic devices. Electrochimica Acta, 2015, 175, 151-161.	2.6	89
5	Cellulose-based novel hybrid polymer electrolytes for green and efficient Na-ion batteries. Electrochimica Acta, 2015, 174, 185-190.	2.6	132
6	Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 19218-19253.	5.2	1,566
7	Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano-Al2O3. Electrochimica Acta, 2015, 169, 334-341.	2.6	159
8	Zeolitic Imidazole Framework-67 (ZIF-67) as a heterogeneous catalyst to activate peroxymonosulfate for degradation of Rhodamine B in water. Journal of the Taiwan Institute of Chemical Engineers, 2015, 53, 40-45.	2.7	240
9	Polymer Composite Electrolytes Having Core–Shell Silica Fillers with Anion-Trapping Boron Moiety in the Shell Layer for All-Solid-State Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 7690-7701.	4.0	68
10	Fabrication of dye sensitized solar cell using gel polymer electrolytes consisting poly(ethylene) Tj ETQq1 1 0.784	314 rgBT / 4.0	Overlock 10
11	Metal–Organic Frameworks (MOFs) as Sandwich Coating Cushion for Silicon Anode in Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 26608-26613.	4.0	75
12	Electrospun poly(3-hexylthiophene)/poly(ethylene oxide)/graphene oxide composite nanofibers: effects of graphene oxide reduction. Polymers for Advanced Technologies, 2016, 27, 1465-1475.	1.6	29
13	Synthesis, Structure, and Selected Properties of Aluminum-, Gallium-, and Indium-Based Metal-Organic Frameworks. , 0, , 105-135.		5
14	Structural and Dielectric Properties of Ionic Liquid Doped Metal Organic Framework based Polymer Electrolyte Nanocomposites. Journal of Physics: Conference Series, 2016, 765, 012020.	0.3	9
15	Lowâ€Cost Hollow Mesoporous Polymer Spheres and Allâ€Solidâ€State Lithium, Sodium Batteries. Advanced Energy Materials, 2016, 6, 1501802.	10.2	132
16	Charge–discharge studies of all-solid-state Li/LiFePO ₄ cells with PEO-based composite electrolytes encompassing metal organic frameworks. RSC Advances, 2016, 6, 97180-97186.	1.7	50
17	Solid-State NMR Studies of Lithium Ion Dynamics Across Materials Classes. Annual Reports on NMR Spectroscopy, 2016, , 1-102.	0.7	55
18	The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Materials Horizons, 2016, 3, 487-516.	6.4	592

#	Article	IF	CITATIONS
19	Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. Journal of the American Chemical Society, 2016, 138, 9385-9388.	6.6	844
20	Silicotungustic acid incorporated gel polymer electrolyte as efficient redox mediator for dye sensitized solar cells. Synthetic Metals, 2016, 219, 93-100.	2.1	5
21	A triPEG-boron based electrolyte membrane for wide temperature lithium ion batteries. RSC Advances, 2016, 6, 20343-20348.	1.7	22
22	Inorganic and organic hybrid solid electrolytes for lithium-ion batteries. CrystEngComm, 2016, 18, 4236-4258.	1.3	110
23	Solid polymer electrolyte membranes based on organic/inorganic nanocomposites with star-shaped structure for high performance lithium ion battery. Journal of Membrane Science, 2016, 509, 138-148.	4.1	100
24	Thermally cured semi-interpenetrating electrolyte networks (s-IPN) for safe and aging-resistant secondary lithium polymer batteries. Journal of Power Sources, 2016, 306, 258-267.	4.0	98
25	Toward ambient temperature operation with all-solid-state lithium metal batteries with a sp boron-based solid single ion conducting polymer electrolyte. Journal of Power Sources, 2016, 306, 152-161.	4.0	73
26	Composite electrolyte membranes incorporating viscous copolymers with cellulose for high performance lithium-ion batteries. Journal of Membrane Science, 2016, 497, 259-269.	4.1	66
27	Metal–organic frameworks for energy storage: Batteries and supercapacitors. Coordination Chemistry Reviews, 2016, 307, 361-381.	9.5	1,098
28	Improved electrochemical, mechanical and transport properties of novel lithium bisnonafluoro-1-butanesulfonimidate (LiBNFSI) based solid polymer electrolytes for rechargeable lithium ion batteries. Journal of Industrial and Engineering Chemistry, 2017, 52, 224-234.	2.9	26
29	High performance multi-functional trilayer membranes as permselective separators for lithium–sulfur batteries. Inorganic Chemistry Frontiers, 2017, 4, 1013-1021.	3.0	25
30	Modified Metal Organic Frameworks (MOFs)/Ionic Liquid Matrices for Efficient Charge Storage. Journal of the Electrochemical Society, 2017, 164, H5169-H5174.	1.3	35
31	Hybridization of MOFs and polymers. Chemical Society Reviews, 2017, 46, 3108-3133.	18.7	708
32	Metal–Organic Frameworks and Their Composites: Synthesis and Electrochemical Applications. Small Methods, 2017, 1, 1700187.	4.6	163
33	Solid polymer electrolyte based on waterborne polyurethane for allâ€solidâ€state lithium ion batteries. Journal of Applied Polymer Science, 2017, 134, 45554.	1.3	20
34	Dielectric relaxation dynamics and AC conductivity scaling of metal-organic framework (MOF-5) based polymer electrolyte nanocomposites incorporated with ionic liquid. Journal Physics D: Applied Physics, 2017, 50, 425302.	1.3	13
35	Surface-supported metal–organic framework thin films: fabrication methods, applications, and challenges. Chemical Society Reviews, 2017, 46, 5730-5770.	18.7	549
36	Enhanced Interface Stability of Polymer Electrolytes Using Organic Cage-Type Cucurbit[6]uril for Lithium Metal Batteries. Journal of the Electrochemical Society, 2017, 164, A1834-A1840.	1.3	17

#	Article	IF	CITATIONS
37	A high-performance BaTiO ₃ -grafted-GO-laden poly(ethylene oxide)-based membrane as an electrolyte for all-solid lithium-batteries. Materials Chemistry Frontiers, 2017, 1, 269-277.	3.2	22
38	Metal-organic frameworks based membrane as a permselective separator for lithium-sulfur batteries. Electrochimica Acta, 2018, 265, 151-159.	2.6	79
39	Expanding the dimensions of metal–organic framework research towards dielectrics. Coordination Chemistry Reviews, 2018, 360, 77-91.	9.5	48
40	Creating Lithiumâ€Ion Electrolytes with Biomimetic Ionic Channels in Metal–Organic Frameworks. Advanced Materials, 2018, 30, e1707476.	11.1	230
41	Status, promises, and challenges of nanocomposite solid-state electrolytes for safe and high performance lithium batteries. Materials Today Nano, 2018, 4, 1-16.	2.3	201
42	Metal-Organic Frameworks for Batteries. Joule, 2018, 2, 2235-2259.	11.7	462
43	A rational design of solid polymer electrolyte with high salt concentration for lithium battery. Journal of Power Sources, 2018, 407, 23-30.	4.0	50
44	An AB alternating diblock single ion conducting polymer electrolyte membrane for all-solid-state lithium metal secondary batteries. Journal of Membrane Science, 2018, 566, 181-189.	4.1	35
46	From synthesis to applications: Metal–organic frameworks for an environmentally sustainable future. Current Opinion in Green and Sustainable Chemistry, 2018, 12, 47-56.	3.2	33
47	Polymer nanocomposites for lithium battery applications. , 2018, , 283-313.		5
48	Zeolitic imidazolate framework-67 based separator for enhanced high thermal stability of lithium ion battery. Journal of Power Sources, 2018, 400, 325-332.	4.0	52
49	Metal-organic frameworks for direct electrochemical applications. Coordination Chemistry Reviews, 2018, 376, 292-318.	9.5	430
50	Covalently linked metal–organic framework (MOF)-polymer all-solid-state electrolyte membranes for room temperature high performance lithium batteries. Journal of Materials Chemistry A, 2018, 6, 17227-17234.	5.2	145
51	Metal organic framework laden poly(ethylene oxide) based composite electrolytes for all-solid-state Li-S and Li-metal polymer batteries. Electrochimica Acta, 2018, 285, 355-364.	2.6	118
52	Understanding the Mechanism for Capacity Decay of V ₆ O ₁₃ -Based Lithium-Metal Polymer Batteries. ACS Applied Materials & Interfaces, 2018, 10, 29667-29674.	4.0	3
53	Effect of IL incorporation on ionic transport in PVdF-HFP-based polymer electrolyte nanocomposite doped with NiBTC-metal-organic framework. Journal of Solid State Electrochemistry, 2018, 22, 2945-2958.	1.2	12
54	A new solid-state electrolyte based on polymeric ionic liquid for high-performance supercapacitor. Ionics, 2019, 25, 241-251.	1.2	14
55	Review on Polymer-Based Composite Electrolytes for Lithium Batteries. Frontiers in Chemistry, 2019, 7, 522.	1.8	302

#	Article	IF	CITATIONS
56	Bimetallic Oxide Hollow Structures Induced by Surface Coordination of ZIFâ€67. European Journal of Inorganic Chemistry, 2019, 2019, 4920-4926.	1.0	4
57	On the potential for nanoscale metal–organic frameworks for energy applications. Journal of Materials Chemistry A, 2019, 7, 21545-21576.	5.2	88
58	Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries. Energy Storage Materials, 2019, 21, 308-334.	9.5	221
59	Metal- and covalent-organic frameworks as solid-state electrolytes for metal-ion batteries. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180225.	1.6	51
60	Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review. Renewable and Sustainable Energy Reviews, 2019, 109, 367-385.	8.2	161
61	100 MeV O ⁷⁺ ion irradiation induced electrochemical enhancement in NiBTC metal-organic framework based composite polymer electrolytes incorporated with ionic liquid. Materials Research Express, 2019, 6, 085305.	0.8	4
62	Cross-linking network based on Poly(ethylene oxide): Solid polymer electrolyte for room temperature lithium battery. Journal of Power Sources, 2019, 420, 63-72.	4.0	186
63	Metalâ^'Organic Frameworks for Highâ€Energy Lithium Batteries with Enhanced Safety: Recent Progress and Future Perspectives. Batteries and Supercaps, 2019, 2, 591-626.	2.4	45
64	Charge–Discharge and Interfacial Properties of Ionic Liquid-Added Hybrid Electrolytes for Lithium–Sulfur Batteries. ACS Omega, 2019, 4, 3894-3903.	1.6	26
65	Cerium Hexacyanocobaltate: A Lanthanide-Compliant Prussian Blue Analogue for Li-Ion Storage. ACS Omega, 2019, 4, 21410-21416.	1.6	23
66	A facile non-solvent induced phase separation process for preparation of highly porous polybenzimidazole separator for lithium metal battery application. Scientific Reports, 2019, 9, 19320.	1.6	24
67	Metal–Organic Frameworks (MOFs) and MOF-Derived Materials for Energy Storage and Conversion. Electrochemical Energy Reviews, 2019, 2, 29-104.	13.1	274
68	lon transport dynamics in ionic liquid incorporated CuBTC–metal-organic framework based composite polymer electrolyte. Journal of Materials Science: Materials in Electronics, 2019, 30, 1117-1132.	1.1	13
69	New oligoether plasticizers for poly(ethylene oxide)-based solid polymer electrolytes. Ionics, 2019, 25, 1633-1643.	1.2	12
70	Borohydride caffolded Li/Na/Mg Fast Ionic Conductors for Promising Solid tate Electrolytes. Advanced Materials, 2019, 31, e1803533.	11.1	105
71	Doubleâ€Layer Polymer Electrolyte for Highâ€Voltage Allâ€Solidâ€State Rechargeable Batteries. Advanced Materials, 2019, 31, e1805574.	11.1	321
72	MOFs and COFs for Batteries and Supercapacitors. Electrochemical Energy Reviews, 2020, 3, 81-126.	13.1	98
73	All-solid-state sodium batteries enabled by flexible composite electrolytes and plastic-crystal interphase. Chemical Engineering Journal, 2020, 384, 123233.	6.6	53

#	Article	IF	CITATIONS
74	Probing the ionic transport dynamics in ionic liquid incorporated CuBTC-Metal-Organic Framework based PVdF-HFP nanocomposite membranes. Solid State Sciences, 2020, 100, 106115.	1.5	14
75	Metal Organic Framework Functionalized Fabrics for Detoxification of Chemical Warfare Agents. Industrial & Engineering Chemistry Research, 2020, 59, 569-586.	1.8	39
76	Metal Organic Framework Nanorod Doped Solid Polymer Electrolyte with Decreased Crystallinity for Highâ€Performance Allâ€Solidâ€State Lithium Batteries. ChemElectroChem, 2020, 7, 1125-1134.	1.7	49
77	MOF-derived ionic conductor enhancing polymer electrolytes with superior electrochemical performances for all solid lithium metal batteries. Journal of Membrane Science, 2020, 598, 117800.	4.1	82
78	Application of organic-inorganic hybrids in lithium batteries. Materials Today Physics, 2020, 15, 100289.	2.9	15
79	Facilitating Lithium-Ion Conduction in Gel Polymer Electrolyte by Metal-Organic Frameworks. , 2020, 2, 1435-1441.		48
80	A functionalized metal organic framework-laden nanoporous polymer electrolyte for exceptionally stable lithium electrodeposition. Chemical Communications, 2020, 56, 15533-15536.	2.2	20
81	A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chemical Society Reviews, 2020, 49, 8790-8839.	18.7	461
82	Effect of intermolecular interactions on the performance of UiO-66-laden solid composite polymer electrolytes. Journal of Alloys and Compounds, 2020, 845, 155179.	2.8	12
83	Covalent Organic Frameworks: Emerging Organic Solid Materials for Energy and Electrochemical Applications. ACS Applied Materials & amp; Interfaces, 2020, 12, 27821-27852.	4.0	116
84	Metal–organic frameworks for solid-state electrolytes. Energy and Environmental Science, 2020, 13, 2386-2403.	15.6	182
85	Pristine MOF and COF materials for advanced batteries. Energy Storage Materials, 2020, 31, 115-134.	9.5	149
86	Exploring porous zeolitic imidazolate frame work-8 (ZIF-8) as an efficient filler for high-performance poly(ethyleneoxide)-based solid polymer electrolytes. Nano Research, 2020, 13, 2259-2267.	5.8	82
87	Anionâ€Immobilized and Fiberâ€Reinforced Hybrid Polymer Electrolyte for Advanced Lithiumâ€Metal Batteries. ChemElectroChem, 2020, 7, 2660-2664.	1.7	14
88	Electrochemically active sites inside crystalline porous materials for energy storage and conversion. Chemical Society Reviews, 2020, 49, 2378-2407.	18.7	233
89	Recent progress in all-solid-state lithium batteries: The emerging strategies for advanced electrolytes and their interfaces. Energy Storage Materials, 2020, 31, 401-433.	9.5	107
90	Designing of root-soil-like polyethylene oxide-based composite electrolyte for dendrite-free and long-cycling all-solid-state lithium metal batteries. Chemical Engineering Journal, 2020, 389, 124478.	6.6	62
91	Review—Polymer Electrolytes for Rechargeable Batteries: From Nanocomposite to Nanohybrid. Journal of the Electrochemical Society, 2020, 167, 070524.	1.3	135

#	Article	IF	CITATIONS
92	Cationic covalent organic framework based all-solid-state electrolytes. Materials Chemistry Frontiers, 2020, 4, 1164-1173.	3.2	80
93	Enhancing Ion Transport: Function of Ionic Liquid Decorated MOFs in Polymer Electrolytes for All-Solid-State Lithium Batteries. ACS Applied Energy Materials, 2020, 3, 4265-4274.	2.5	54
94	Towards practical lithium-metal anodes. Chemical Society Reviews, 2020, 49, 3040-3071.	18.7	473
95	Recent advances of organometallic complexes for rechargeable batteries. Coordination Chemistry Reviews, 2021, 429, 213650.	9.5	41
96	A flexible, ion-conducting solid electrolyte with vertically bicontinuous transfer channels toward high performance all-solid-state lithium batteries. Chemical Engineering Journal, 2021, 404, 126517.	6.6	78
97	Recent advances in lithium-based batteries using metal organic frameworks as electrode materials. Electrochemistry Communications, 2021, 122, 106881.	2.3	75
98	A Metal–Organic Frameworkâ€5â€Incorporated Allâ€Solidâ€State Composite Polymer Electrolyte Membrane with Enhanced Performances for Highâ€Safety Lithiumâ€Ion Batteries. Energy Technology, 2021, 9, 2000808.	1.8	17
99	Metal-organic frameworks containing solid-state electrolytes for lithium metal batteries and beyond. Materials Chemistry Frontiers, 2021, 5, 1771-1794.	3.2	34
100	Expanding energy prospects of metal-organic frameworks. , 2021, , 139-151.		0
101	The Potential of MOFs in the Field of Electrochemical Energy Storage. , 2021, , 111-154.		2
102	<i>In situ</i> polymerization process: an essential design tool for lithium polymer batteries. Energy and Environmental Science, 2021, 14, 2708-2788.	15.6	140
103	Metal–organic frameworks and zeolite materials as active fillers for lithium-ion battery solid polymer electrolytes. Materials Advances, 2021, 2, 3790-3805.	2.6	27
104	The recent progress and perspectives on metal- and covalent-organic framework based solid-state electrolytes for lithium-ion batteries. Materials Chemistry Frontiers, 2021, 5, 3593-3613.	3.2	61
105	Electrochemical aspects of metal-organic frameworks. , 2021, , 65-109.		4
106	Fabrication of a metal-organic framework composite for removal of Aflatoxin B1 from water. Journal of Environmental Chemical Engineering, 2021, 9, 104966.	3.3	22
107	Solid Polymer Electrolytes with High Conductivity and Transference Number of Li Ions for Liâ€Based Rechargeable Batteries. Advanced Science, 2021, 8, 2003675.	5.6	172
108	Synthesis of a copper (II) metal–organic framework for photocatalytic degradation of rhodamine B dye in water. Environmental Science and Pollution Research, 2021, 28, 40835-40843.	2.7	35
109	Lithium-, Sodium-, and Potassium-ion Conduction in Polymeric and Discrete Coordination Systems. Chemistry Letters, 2021, 50, 697-710.	0.7	7

#	Article	IF	CITATIONS
110	Structural and Dynamic Insights into the Conduction of Lithium-Ionic-Liquid Mixtures in Nanoporous Metal–Organic Frameworks as Solid-State Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 21166-21174.	4.0	19
111	Hybridization of Emerging Crystalline Porous Materials: Synthesis Dimensionality and Electrochemical Energy Storage Application. Advanced Energy Materials, 2022, 12, 2100321.	10.2	41
112	Composite polymer electrolytes with uniform distribution of ionic liquid-grafted ZIF-90 nanofillers for high-performance solid-state Li batteries. Chemical Engineering Journal, 2021, 412, 128733.	6.6	66
113	Core–Shell MOFâ€inâ€MOF Nanopore Bifunctional Host of Electrolyte for Highâ€Performance Solidâ€&tate Lithium Batteries. Small Methods, 2021, 5, e2100508.	4.6	43
114	Metal organic frameworks enabled rational design of multifunctional PEO-based solid polymer electrolytes. Chemical Engineering Journal, 2021, 414, 128702.	6.6	58
115	Electrospun MOF/PAN composite separator with superior electrochemical performances for high energy density lithium batteries. Electrochimica Acta, 2021, 382, 138346.	2.6	42
116	Energy related ion transports in coordination polymers. Nano Select, 0, , .	1.9	6
117	Metal organic framework reinforced polymer electrolyte with high cation transference number to enable dendrite-free solid state Li metal conversion batteries. Journal of Power Sources, 2021, 501, 229946.	4.0	74
118	Metal–organic frameworks (MOFs) based electrochemical biosensors for early cancer diagnosis in vitro. Coordination Chemistry Reviews, 2021, 439, 213948.	9.5	130
119	Metal/ <scp>covalentâ€organic</scp> frameworks for electrochemical energy storage applications. EcoMat, 2021, 3, e12133.	6.8	36
120	Roomâ€Temperature Solidâ€State Lithium Metal Batteries Using Metal Organic Framework Composited Combâ€Like Methoxy Poly(ethylene glycol) Acrylate Solid Polymer Electrolytes. Macromolecular Materials and Engineering, 2021, 306, 2100336.	1.7	7
121	MOF-derived multifunctional filler reinforced polymer electrolyte for solid-state lithium batteries. Journal of Energy Chemistry, 2021, 60, 259-271.	7.1	90
122	An advance review of solid-state battery: Challenges, progress and prospects. Sustainable Materials and Technologies, 2021, 29, e00297.	1.7	74
123	Functional polymers for lithium metal batteries. Progress in Polymer Science, 2021, 122, 101453.	11.8	39
124	One-pot electrodeposition of metal organic frameworks composite accelerated by gold nanoparticles and electroreduced carbon dots for electroanalysis of bisphenol A in real plastic samples. Sensors and Actuators B: Chemical, 2021, 346, 130499.	4.0	28
125	Metal–organic framework based electrode materials for lithium-ion batteries: a review. RSC Advances, 2021, 11, 29247-29266.	1.7	50
126	Chapter 5. 2D Nanomaterial-based Polymer Composite Electrolytes for Lithium-based Batteries. Inorganic Materials Series, 2021, , 204-274.	0.5	2
127	Recent progress on pristine metal/covalent-organic frameworks and their composites for lithium–sulfur batteries. Energy and Environmental Science, 2021, 14, 1835-1853.	15.6	150

#	Article	IF	CITATIONS
128	Recent advances in metal organic frameworks and their composites for batteries. Nano Futures, 2020, 4, 032007.	1.0	9
129	Modified MOFâ€Based Composite Allâ€Solidâ€State Polymer Electrolyte with Improved Comprehensive Performance for Dendriteâ€Free Liâ€Ion Batteries. Macromolecular Chemistry and Physics, 2022, 223, 2100325.	1.1	11
130	Development on Solid Polymer Electrolytes for Electrochemical Devices. Molecules, 2021, 26, 6499.	1.7	33
131	Nanostructured zeolitic imidazolate framework-67 reinforced poly(ethylene oxide) composite electrolytes for all solid state Lithium ion batteries. Applied Surface Science, 2022, 573, 151489.	3.1	19
133	Ionic Liquid and Polymer Coated Garnet Solid Electrolytes for Highâ€Energy Solidâ€State Lithium Metal Batteries. Energy Technology, 2022, 10, .	1.8	5
134	Chapter 6. Applications of Metal–Organic Framework/Polymer Hybrid Materials. RSC Smart Materials, 2021, , 142-225.	0.1	0
135	New Epoxy Thermosets Organic-Inorganic Hybrid Nanomaterials Derived from Imidazolium Ionic Liquid Monomers and POSS®Ph. Nanomaterials, 2022, 12, 550.	1.9	1
136	Porous Coordination Polymers as Active Fillers for Solid Polymer Electrolytes of Lithium-Ion Batteries. Materials Performance and Characterization, 2022, 11, 34-45.	0.2	0
137	Reducing the crystallinity of PEO-based composite electrolyte for high performance lithium batteries. Composites Part B: Engineering, 2022, 234, 109729.	5.9	25
138	Activated metal-organic frameworks (a-MIL-100 (Fe)) as fillers in polymer electrolyte for high-performance all-solid-state lithium metal batteries. Materials Today Communications, 2022, 31, 103518.	0.9	23
139	The structural and ionic conductivity analysis of poly(ethylene oxide)/LiTFSI/MOF-5 nanocomposite electrolytes by using molecular dynamics simulations. Ionics, 2022, 28, 3255-3268.	1.2	2
140	Preparation of poly(ionic liquid) composite quasi-solid electrolyte by incorporating metalÂâ ^{~,} Âorganic framework filler decorated with ionic liquid for lithium batteries. Solid State Ionics, 2022, 380, 115945.	1.3	1
141	In-Situ Polymerized Electrolyte Modified with Oligomeric Cyclotetrasiloxane for All-Solid-State Lithium Metal Batteries. SSRN Electronic Journal, 0, , .	0.4	0
142	Metal–organic framework-based solid-state electrolytes for all solid-state lithium metal batteries: a review. CrystEngComm, 2022, 24, 5014-5030.	1.3	64
143	Metal Organic Frameworks Enabled Multifunctional Poly(ethylene oxide)-Based Solid Polymer Electrolytes with High Lithium-Ion Conductivity and Excellent Stability. ACS Applied Energy Materials, 2022, 5, 8973-8981.	2.5	12
144	An ion conducting ZIF-8 coating protected PEO based polymer electrolyte for high voltage lithium metal batteries. Chemical Engineering Journal, 2022, 447, 137503.	6.6	25
145	The Impact of Polymer Electrolyte Properties on Lithium-Ion Batteries. Polymers, 2022, 14, 3101.	2.0	11
146	A Cu-functionalized MOF and multi-walled carbon nanotube composite modified electrode for the simultaneous determination of hydroquinone and catechol. Analytical Methods, 2022, 14, 3961-3969.	1.3	9

#	Article	IF	CITATIONS
147	Metal organic framework optimized hybrid solid polymer electrolytes with a high lithium-ion transference number and excellent electrochemical stability. Sustainable Energy and Fuels, 2022, 6, 4528-4538.	2.5	7
148	Bifunctional MOF Doped PEO Composite Electrolyte for Long-Life Cycle Solid Lithium Ion Battery. ACS Applied Materials & Interfaces, 2022, 14, 45476-45483.	4.0	37
149	Metal-organic framework (MOF)-incorporated polymeric electrolyte realizing fast lithium-ion transportation with high Li+ transference number for solid-state batteries. Frontiers in Chemistry, 0, 10, .	1.8	6
150	Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes. Chemical Reviews, 2022, 122, 17155-17239.	23.0	67
151	In-situ polymerized electrolyte modified with oligomeric cyclotetrasiloxane for all-solid-state lithium metal batteries. Journal of Power Sources, 2023, 555, 232346.	4.0	1
152	Restraining lithium dendrite formation in all-solid-state Li-metal batteries via the surface modification of the ceramic filler. Sustainable Materials and Technologies, 2023, 35, e00548.	1.7	1
153	Composite Electrolyte for All-Solid-State Lithium Battery. , 2023, , 253-302.		0
154	MOFs Containing Solidâ€State Electrolytes for Batteries. Advanced Science, 2023, 10, .	5.6	22
155	Tailoring Practically Accessible Polymer/Inorganic Composite Electrolytes for All-Solid-State Lithium Metal Batteries: A Review. Nano-Micro Letters, 2023, 15, .	14.4	44
156	Design strategies for coordination polymers as electrodes and electrolytes in rechargeable lithium batteries. Coordination Chemistry Reviews, 2023, 483, 215084.	9.5	8
157	Insights into tailoring composite solid polymer electrolytes for solid-state lithium batteries. Journal of Membrane Science, 2023, 675, 121552.	4.1	21
158	Phosphorylated cellulose nanofiber as sustainable organic filler and potential flame-retardant for all-solid-state lithium batteries. Journal of Energy Storage, 2023, 62, 106838.	3.9	11
160	A novel polymer electrolyte with <i>in situ</i> polymerization and a high concentration of lithium salts for lithium metal batteries. Polymer Chemistry, 2023, 14, 1094-1102.	1.9	0
161	Polyacrylonitrile fibers network reinforced polymer electrolyte with Li-Sn alloy layer protected Li anode toward ultra-long cycle lifespan for room-temperature solid-state batteries. Chemical Engineering Journal, 2023, 461, 141993.	6.6	11
162	Engineering strategies of metalâ€organic frameworks towardÂadvanced batteries. , 2023, 2, .		13
163	2D Layered Nanomaterials as Fillers in Polymer Composite Electrolytes for Lithium Batteries. Advanced Energy Materials, 2023, 13, .	10.2	21
164	Development of metal-organic framework materials as solid-state polymer electrolytes for lithium-metal batteries: A review. Functional Materials Letters, 0, , .	0.7	0
165	Composite electrolyte with polyethylene oxide and metal–organic framework for lithiumâ€ion conduction. Journal of Polymer Science, 0, , .	2.0	0

#	Article	IF	CITATIONS
166	The Rise and Development of MOFâ€Based Materials for Metalâ€Chalcogen Batteries: Current Status, Challenges, and Prospects. Advanced Energy Materials, 2023, 13, .	10.2	6
167	Solid Polymer Electrolyte Based on an Ionically Conducting Unique Organic Polymer Framework for All-Solid-State Lithium Batteries. ACS Applied Energy Materials, 2023, 6, 4390-4403.	2.5	4