Recent advances in solid sorbents for CO₂c trends

Energy and Environmental Science 7, 3478-3518 DOI: 10.1039/c4ee01647e

Citation Report

#	Article	IF	CITATIONS
2	An Ultrahigh Pore Volume Drives Up the Amine Stability and Cyclic CO ₂ Capacity of a Solidâ€Amine@Carbon Sorbent. Advanced Materials, 2015, 27, 4903-4909.	11.1	81
3	A Cationic MOF with High Uptake and Selectivity for CO ₂ due to Multiple CO ₂ â€Philic Sites. Chemistry - A European Journal, 2015, 21, 16525-16531.	1.7	72
4	Effect of Dopants on the Adsorption of Carbon Dioxide on Ceria Surfaces. ChemSusChem, 2015, 8, 3651-3660.	3.6	61
5	CO ₂ chemisorption and cyclability analyses in αâ^'Li ₅ AlO ₄ : effects of Na ₂ CO ₃ CO ₃ Aldition. , 2015, 5, 802-811.		15
6	How to Overcome the Water–Gasâ€ S hift Equilibrium using a Conventional Nickel Reformer Catalyst. Energy Technology, 2015, 3, 1205-1216.	1.8	10
7	Activation Effect of Fullerene C ₆₀ on the Carbon Dioxide Absorption Performance of Amineâ€Rich Polypropylenimine Dendrimers. ChemSusChem, 2015, 8, 2635-2644.	3.6	14
8	Preparation of triethylenetetramineâ€modified zirconosilicate molecular sieve for carbon dioxide adsorption. Environmental Progress and Sustainable Energy, 2015, 34, 1814-1821.	1.3	7
9	Synthesis of CaCO ₃ @C yolk–shell particles for CO ₂ adsorption. RSC Advances, 2015, 5, 24872-24876.	1.7	17
10	Interaction between CO2 and ionic liquids confined in the nanopores of SAPO-11. RSC Advances, 2015, 5, 48908-48915.	1.7	11
11	Microporous covalent triazine polymers: efficient Friedel–Crafts synthesis and adsorption/storage of CO ₂ and CH ₄ . Journal of Materials Chemistry A, 2015, 3, 6792-6797.	5.2	160
12	Remarkable oxygen barrier films based on a layered double hydroxide/chitosan hierarchical structure. Journal of Materials Chemistry A, 2015, 3, 12350-12356.	5.2	41
13	Comprehensive study of ultra-microporous nitrogen-doped activated carbon for CO2 capture. Carbon, 2015, 93, 68-80.	5.4	263
14	Water steam effect during high CO ₂ chemisorption in lithium cuprate (Li ₂ CuO ₂) at moderate temperatures: experimental and theoretical evidence. RSC Advances, 2015, 5, 34157-34165.	1.7	29
15	Interaction of pristine hydrotalcite-like layered double hydroxides with CO2: a thermogravimetric study. Bulletin of Materials Science, 2015, 38, 1783-1790.	0.8	4
16	K ₂ CO ₃ -Modified Potassium Feldspar for CO ₂ Capture from Post-combustion Flue Gas. Energy & Fuels, 2015, 29, 8151-8156.	2.5	13
17	Designed porous carbon materials for efficient CO2 adsorption and separation. New Carbon Materials, 2015, 30, 481-501.	2.9	91
18	Flux Response Technology (FRT) Applied in Zero Length Column Diffusivity and Adsorption Measurements. Transport in Porous Media, 2015, 107, 731-744.	1.2	0
19	A stable metal–organic framework with suitable pore sizes and rich uncoordinated nitrogen atoms on the internal surface of micropores for highly efficient CO ₂ capture. Journal of Materials Chemistry A, 2015, 3, 7361-7367.	5.2	86

τατιών Ρει

#	Article	IF	CITATIONS
20	Water vapour adsorption by a coffee-based microporous carbon: effect on CO ₂ capture. Journal of Chemical Technology and Biotechnology, 2015, 90, 1592-1600.	1.6	21
21	Dual function materials for CO 2 capture and conversion using renewable H 2. Applied Catalysis B: Environmental, 2015, 168-169, 370-376.	10.8	227
22	Improving the stability of synthetic CaO-based CO 2 sorbents by structural promoters. Applied Energy, 2015, 156, 331-343.	5.1	116
23	Mesoporous titanium dioxide coating on gold modified silica nanotubes: a tube-in-tube titanium nanostructure for visible-light photocatalysts. RSC Advances, 2015, 5, 69962-69969.	1.7	8
24	High capacity CO ₂ sorbents based on zinc-functionalized ionic liquid confined in morphologically diverse porous matrices. RSC Advances, 2015, 5, 65074-65083.	1.7	15
25	Synergistic enhancement of CO2 uptake in highly ordered mesoporous silica-supported zinc-functionalized ionic liquid sorbents. Chemical Engineering Journal, 2015, 281, 119-125.	6.6	29
26	A MOF platform for incorporation of complementary organic motifs for CO ₂ binding. Chemical Communications, 2015, 51, 12478-12481.	2.2	45
27	The impact of water vapor on CO2 separation performance of mixed matrix membranes. Journal of Membrane Science, 2015, 492, 471-477.	4.1	29
28	Analysis of the CO ₂ –H ₂ O Chemisorption in Lithium Silicates at Low Temperatures (30–80 °C). Industrial & Engineering Chemistry Research, 2015, 54, 6884-6892.	1.8	15
29	Highly optimized CO2 capture by inexpensive nanoporous covalent organic polymers and their amine composites. Faraday Discussions, 2015, 183, 401-412.	1.6	39
30	Correlating Carbon Dioxide Capture and Chemical Changes in Pyrolyzed Polyethylenimine-C60. Energy & Fuels, 2015, 29, 4479-4487.	2.5	19
31	Synthesis, Pelleting, and Performance Evaluation of a Novel K-Promoted γ-Alumina/MgAl-Layered Double Oxide Composite Adsorbent for Warm Gas H ₂ /CO ₂ Separation. Industrial & Engineering Chemistry Research, 2015, 54, 7154-7163.	1.8	12
32	Pathways of the Chemical Reaction of Carbon Dioxide with Ionic Liquids and Amines in Ionic Liquid Solution. Energy & Fuels, 2015, 29, 5990-6007.	2.5	20
33	Preparation of cage-like nano-CaCO ₃ hollow spheres for enhanced CO ₂ sorption. RSC Advances, 2015, 5, 65052-65057.	1.7	20
34	New Kinetic Model That Describes the Reversible Adsorption and Desorption Behavior of CO ₂ in a Solid Amine Sorbent. Energy & Fuels, 2015, 29, 4492-4502.	2.5	12
35	A (3,8)-connected metal–organic framework with a unique binuclear [Ni ₂ (μ ₂ -OH)(COO) ₂] node for high H ₂ and CO ₂ adsorption capacities. Journal of Materials Chemistry A, 2015, 3, 15399-15402.	5.2	30
36	Thermogravimetric analysis of kinetic characteristics of K2CO3-impregnated mesoporous silicas in low-concentration CO2. Journal of Thermal Analysis and Calorimetry, 2015, 121, 1393-1402.	2.0	7
37	CO2 chemisorption and evidence of the CO oxidation–chemisorption mechanisms on sodium cobaltate. Chemical Engineering Journal, 2015, 271, 106-113.	6.6	22

#	Article	IF	CITATIONS
38	CO ₂ Absorption Studies on Mixed Alkali Orthosilicates Containing Rare-Earth Second-Phase Additives. Journal of Physical Chemistry C, 2015, 119, 5319-5326.	1.5	42
39	Covalent grafting of polyethyleneimine on hydroxylated three-dimensional graphene for superior CO ₂ capture. Journal of Materials Chemistry A, 2015, 3, 12252-12258.	5.2	45
40	Magnesium-based systems for carbon dioxide capture, storage and recycling: from leaves to synthetic nanostructured materials. RSC Advances, 2015, 5, 36192-36239.	1.7	61
41	Control over crystallization of CaCO ₃ micro-particles by a novel CO ₂ SM. CrystEngComm, 2015, 17, 7896-7904.	1.3	17
42	LDH/MgCO3hybrid multilayer on an aluminium substrate as a novel high-temperature CO2adsorbent. RSC Advances, 2015, 5, 82777-82780.	1.7	10
43	Cation-assisted interactions between N-heterocycles and CO2. Physical Chemistry Chemical Physics, 2015, 17, 15725-15731.	1.3	8
44	Direct Carbonization of Cyanopyridinium Crystalline Dicationic Salts into Nitrogen-Enriched Ultra-Microporous Carbons toward Excellent CO ₂ Adsorption. ACS Applied Materials & Interfaces, 2015, 7, 18508-18518.	4.0	30
45	Development Trends in Porous Adsorbents for Carbon Capture. Environmental Science & Technology, 2015, 49, 12641-12661.	4.6	94
46	A site trial demonstration of CO 2 capture from real flue gas by novel carbon fibre composite monolith adsorbents. International Journal of Greenhouse Gas Control, 2015, 42, 415-423.	2.3	10
47	An lcy-topology amino acid MOF as eco-friendly catalyst for cyclic carbonate synthesis from CO ₂ : Structure-DFT corroborated study. Journal of Materials Chemistry A, 2015, 3, 22636-22647.	5.2	106
48	Large-scale synthesis of ZIF-67 and highly efficient carbon capture using a ZIF-67/glycol-2-methylimidazole slurry. Chemical Engineering Science, 2015, 137, 504-514.	1.9	62
49	Regeneration mechanisms of high-lithium content zirconates as CO ₂ capture sorbents: experimental measurements and theoretical investigations. Physical Chemistry Chemical Physics, 2015, 17, 22543-22547.	1.3	19
50	Carbohydrate based hyper-crosslinked organic polymers with –OH functional groups for CO ₂ separation. Journal of Materials Chemistry A, 2015, 3, 20913-20918.	5.2	39
51	Effect of SO ₂ on CO ₂ Absorption in Flue Gas by Ionic Liquid 1-Ethyl-3-methylimidazolium Acetate. Industrial & Engineering Chemistry Research, 2015, 54, 8569-8578.	1.8	59
52	Recent Advances in CO ₂ Capture by Functionalized Ionic Liquids. ACS Symposium Series, 2015, , 341-369.	0.5	9
53	A triazine–resorcinol based porous polymer with polar pores and exceptional surface hydrophobicity showing CO ₂ uptake under humid conditions. Journal of Materials Chemistry A, 2015, 3, 21116-21122.	5.2	39
54	Recent advances and progress in the development of graphene-based adsorbents for CO ₂ capture. Journal of Materials Chemistry A, 2015, 3, 21968-21989.	5.2	142
55	Rapidly reversible adsorption of methane with a high storage capacity on the zeolite templated carbons with glucose as carbon precursors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 485, 11-17.	2.3	26

#	Article	IF	CITATIONS
56	An investigation of the textural properties of mesostructured silica-based adsorbents for predicting CO ₂ adsorption capacity. RSC Advances, 2015, 5, 103147-103154.	1.7	18
57	Colloidal Nanoclusters of MgO Coated with Alkali Metal Nitrates/Nitrites for Rapid, High Capacity CO ₂ Capture at Moderate Temperature. Chemistry of Materials, 2015, 27, 8153-8161.	3.2	97
58	Enhancement in CO ₂ Adsorption on Hydrotalcite-based Material by Novel Carbon Support Combined with K ₂ CO ₃ Impregnation. Industrial & Engineering Chemistry Research, 2015, 54, 10876-10884.	1.8	33
59	Potassium-based sorbents using mesostructured Î ³ -alumina supports for low temperature CO2 capture. Ceramics International, 2015, 41, 3036-3044.	2.3	15
60	The effects of high-pressure on the chemisorption process of CO2 on lithium oxosilicate (Li8SiO6). Chemical Engineering Journal, 2015, 264, 10-15.	6.6	25
61	Ongoing Activity on CO2 Capture in the Power Sector: Review of the Demonstration Projects Worldwide. , 2016, , .		1
62	CO2Capture by Carbon Aerogel–Potassium Carbonate Nanocomposites. International Journal of Chemical Engineering, 2016, 2016, 1-8.	1.4	8
63	Review of Recent Developments in CO2 Capture Using Solid Materials: Metal Organic Frameworks (MOFs). , 0, , .		17
64	Pentaethylenehexamine-Loaded Hierarchically Porous Silica for CO2 Adsorption. Materials, 2016, 9, 835.	1.3	23
66	CO2 Adsorption by para-Nitroaniline Sulfuric Acid-Derived Porous Carbon Foam. Journal of Carbon Research, 2016, 2, 25.	1.4	4
67	Preparation of Novel Li ₄ SiO ₄ Sorbents with Superior Performance at Low CO ₂ Concentration. ChemSusChem, 2016, 9, 1607-1613.	3.6	55
68	A novel aerogel sodiumâ€based sorbent for low temperature CO ₂ capture. , 2016, 6, 561-573.		13
69	Thermodynamic analysis of sorption-enhanced water-gas shift reaction using syngases. International Journal of Energy Research, 2016, 40, 1688-1703.	2.2	7
70	Tunable Polyanilineâ€Based Porous Carbon with Ultrahigh Surface Area for CO ₂ Capture at Elevated Pressure. Advanced Energy Materials, 2016, 6, 1502491.	10.2	129
71	Poly(ethylenimine)â€Functionalized Monolithic Alumina Honeycomb Adsorbents for CO ₂ Capture from Air. ChemSusChem, 2016, 9, 1859-1868.	3.6	75
72	Synthesis, characterization, and CO2 adsorption of three metal-organic frameworks (MOFs): MIL-53, MIL-96, and amino-MIL-53. Polyhedron, 2016, 120, 103-111.	1.0	92
73	High performance CO ₂ filtration and sequestration by using bromomethyl benzene linked microporous networks. RSC Advances, 2016, 6, 66324-66335.	1.7	6
74	Investigating CO2 removal by Ca- and Mg-based sorbents with application to indoor air treatment. Building and Environment, 2016, 110, 161-172.	3.0	18

ARTICLE IF CITATIONS # Crystal-Size Effects on Carbon Dioxide Capture of a Covalently Alkylamine-Tethered Metal-Organic 75 1.6 21 Frámework Constructed by a One-Step Self-Assembly. Scientific Réports, 2016, 6, 19337. Porous Covalent Triazine Polymer as a Potential Nanocargo for Cancer Therapy and Imaging. ACS Applied Materials & amp; Interfaces, 2016, 8, 8947-8955. Chemical transformation of CO2 during its capture by waste biomass derived biochars. Environmental 77 3.7 140 Pollution, 2016, 213, 533-540. Facile synthesis of a thermally stable imine and benzimidazole functionalized nanoporous polymer (IBFNP) for CO₂ capture application., 2016, 6, 150-157. CO₂ Sorption Durability of Zr-Modified Nano-CaO Sorbents with Cage-like Hollow Sphere 79 3.2 49 Structure. ACS Sustainable Chemistry and Engineering, 2016, 4, 2047-2055. Nitrogen-doped porous carbon nanosheets derived from poly(ionic liquid)s: hierarchical pore structures for efficient CO₂capture and dye removal. Journal of Materials Chemistry A, 5.2 2016, 4, 7313-7321. Effect of pH-controlled synthesis on the physical properties and intermediate-temperature CO2 sorption behaviors of K–Mg double salt-based sorbents. Chemical Engineering Journal, 2016, 294, 81 6.6 32 439-446. Entrapment of carbon dioxide with chitosan-based core-shell particles containing changeable cores. 3.6 International Journal of Biological Macromolecules, 2016, 89, 545-549. A comparative study of CO 2 diffusion from adsorption kinetic measurements on microporous 83 30 6.6 materials at low pressures and temperatures. Chemical Engineering Journal, 2016, 302, 278-286. High-Pressure Methane, Carbon Dioxide, and Nitrogen Adsorption on Amine-Impregnated Porous 84 1.0 Montmorillonite Nanoclays. Journal of Chemical & amp; Engineering Data, 2016, 61, 2749-2760. Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Progress in 15.8 234 85 Energy and Combustion Science, 2016, 55, 98-194. Layered Double Hydroxides/Multiwalled Carbon Nanotubes-Based Composite for High-Temperature 86 CÓ₂ Adsorption. Energy & amp; Fuels, 2016, 30, 4244-4250. Impact of solvents and surfactants on the self-assembly of nanostructured amine functionalized 87 7.1 20 silica spheres for CO2 capture. Journal of Energy Chemistry, 2016, 25, 327-335. Theoretical studies on CO₂ capture behavior of quaternary ammonium-based polymeric ionic liquids. Physical Chemistry Chemical Physics, 2016, 18, 13084-13091. 1.3 Superior CO2, CH4, and H2 uptakes over ultrahigh-surface-area carbon spheres prepared from 89 5.4 111 sustainable biomass-derived char by CO2 activation. Carbon, 2016, 105, 454-462. Comparison of the efficiency of carbon dioxide capture by sorption-enhanced water–gas shift and palladium-based membranes for power and hydrogen production. International Journal of Greenhouse Gas Control, 2016, 50, 121-134. 90 2.3 Recent advances in aerogels for environmental remediation applications: A review. Chemical 91 494 6.6 Engineering Journal, 2016, 300, 98-118. CO₂ Adsorption in M-IRMOF-10 (M = Mg, Ca, Fe, Cu, Zn, Ge, Sr, Cd, Sn, Ba). Journal of 1.5 Physical Chemistry C, 2016, 120, 12819-12830.

#	Article	IF	CITATIONS
93	Controllable Synthesis of Various CaCO ₃ Morphologies Based on a CCUS Idea. ACS Sustainable Chemistry and Engineering, 2016, 4, 3032-3044.	3.2	37
94	Investigation of CO2 capture using solid sorbents in a fluidized bed reactor: Cold flow hydrodynamics. Powder Technology, 2016, 301, 1130-1143.	2.1	19
95	Morphologically and compositionally tuned lithium silicate nanorods as high-performance carbon dioxide sorbents. Journal of Materials Chemistry A, 2016, 4, 16928-16935.	5.2	42
96	Amides Do Not Always Work: Observation of Guest Binding in an Amide-Functionalized Porous Metal–Organic Framework. Journal of the American Chemical Society, 2016, 138, 14828-14831.	6.6	44
97	Synthesis of Efficient CaO Sorbents for CO ₂ Capture Using a Simple Organometallic Calcium-Based Carbon Template Route. Energy & Fuels, 2016, 30, 7543-7550.	2.5	33
98	Cyclic Performance of Waste-Derived SiO ₂ Stabilized, CaO-Based Sorbents for Fast CO ₂ Capture. ACS Sustainable Chemistry and Engineering, 2016, 4, 7004-7012.	3.2	35
99	Evaluation of the Multi-amine Functionalized Ionic Liquid for Efficient Postcombustion CO ₂ Capture. Energy & amp; Fuels, 2016, 30, 7489-7495.	2.5	44
100	Production of spherical mesoporous molecularly imprinted polymer particles containing tunable amine decorated nanocavities with CO 2 molecule recognition properties. Chemical Engineering Journal, 2016, 306, 214-225.	6.6	32
101	Steam gasification behavior during coal combustion and CaO regeneration in O2/CO2/steam atmosphere. Fuel, 2016, 184, 409-417.	3.4	19
102	Effect of Coal Combustion on the Reactivity of a CaO-Based Sorbent for CO ₂ Capture. Energy & Fuels, 2016, 30, 7571-7578.	2.5	4
103	CO2 Capture on Mesocellular Silica Foam Supported Amino Acid-Functionalized Ionic Liquids. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	10
104	Solid Amine Adsorbent Prepared by Molecular Imprinting and Its Carbon Dioxide Adsorption Properties. Chemistry - an Asian Journal, 2016, 11, 3055-3061.	1.7	12
105	Modelling photophysical properties of metal–organic frameworks: a density functional theory based approach. Physical Chemistry Chemical Physics, 2016, 18, 25176-25182.	1.3	27
106	Alkaliâ€Doped Lithium Orthosilicate Sorbents for Carbon Dioxide Capture. ChemSusChem, 2016, 9, 2480-2487.	3.6	71
107	Effect of H ₂ 0 Vapor on the Adsorption and Desorption Behavior of CO ₂ in a Solid Amine Sorbent. Energy & Fuels, 2016, 30, 10653-10660.	2.5	10
108	Enhanced Adsorption Efficiency through Materials Design for Direct Air Capture over Supported Polyethylenimine. ChemSusChem, 2016, 9, 2796-2803.	3.6	82
109	High-temperature CO2 sorption by Ca-doped Li4SiO4 sorbents. International Journal of Hydrogen Energy, 2016, 41, 13077-13085.	3.8	69
110	Unexpected highly reversible topotactic CO ₂ sorption/desorption capacity for potassium dititanate. Journal of Materials Chemistry A, 2016, 4, 12889-12896.	5.2	27

#	Article	IF	CITATIONS
111	Simultaneous Process and Material Design for Aprotic N-Heterocyclic Anion lonic Liquids in Postcombustion CO ₂ Capture. Industrial & Engineering Chemistry Research, 2016, 55, 8432-8449.	1.8	22
112	Emerging Multifunctional Metal–Organic Framework Materials. Advanced Materials, 2016, 28, 8819-8860.	11.1	1,227
113	Waste Marble Powders as Promising Inexpensive Natural CaO-Based Sorbents for Post-Combustion CO ₂ Capture. Industrial & amp; Engineering Chemistry Research, 2016, 55, 7860-7872.	1.8	37
114	Preface to the ICCDU-2015 Special Issue. Industrial & Engineering Chemistry Research, 2016, 55, 7839-7841.	1.8	4
115	Insights into choline chloride–phenylacetic acid deep eutectic solvent for CO ₂ absorption. RSC Advances, 2016, 6, 109201-109210.	1.7	31
116	Holey graphene frameworks for highly selective post-combustion carbon capture. Scientific Reports, 2016, 6, 21537.	1.6	54
117	Structural and microstructural analysis of different CaO–NiO composites and their application as CO2 or CO–O2 captors. Reaction Kinetics, Mechanisms and Catalysis, 2016, 119, 445-455.	0.8	8
118	Layered Double Hydroxide Nanotransporter for Molecule Delivery to Intact Plant Cells. Scientific Reports, 2016, 6, 26738.	1.6	77
119	Synthesis of amine-modified solid Fe-Zr adsorbents for CO2adsorption. Journal of Chemical Technology and Biotechnology, 2016, 91, 2340-2348.	1.6	12
120	Adsorption and Methanation of Flue Gas CO ₂ with Dual Functional Catalytic Materials: A Parametric Study. Industrial & Engineering Chemistry Research, 2016, 55, 6768-6776.	1.8	102
121	Moisture-Stable Zn(II) Metal–Organic Framework as a Multifunctional Platform for Highly Efficient CO ₂ Capture and Nitro Pollutant Vapor Detection. ACS Applied Materials & Interfaces, 2016, 8, 18043-18050.	4.0	84
122	Effect of dolomite decomposition under CO ₂ on its multicycle CO ₂ capture behaviour under calcium looping conditions. Physical Chemistry Chemical Physics, 2016, 18, 16325-16336.	1.3	22
123	Alterations of S-doped porous carbon-rGO composites surface features upon CO2 adsorption at ambient conditions. Carbon, 2016, 107, 501-509.	5.4	33
124	Polyaniline films photoelectrochemically reduce CO ₂ to alcohols. Chemical Communications, 2016, 52, 8858-8861.	2.2	53
125	Carbon-Based Adsorbents for Postcombustion CO ₂ Capture: A Critical Review. Environmental Science & Technology, 2016, 50, 7276-7289.	4.6	430
126	High-Temperature Capture of CO ₂ by Strontium Oxide Sorbents. Industrial & Engineering Chemistry Research, 2016, 55, 6696-6707.	1.8	21
127	Preparation of MgO-coated nano CaO using adsorption phase reaction technique for CO2 sorption. RSC Advances, 2016, 6, 41239-41246.	1.7	15
128	CO ₂ chemisorption in Li ₂ CuO ₂ microstructurally modified by ball milling: study performed with different physicochemical CO ₂ capture conditions. RSC Advances, 2016, 6, 57880-57888.	1.7	26

#	Article	IF	CITATIONS
129	A novel CCU approach of CO2 by the system 1,2-ethylenediamine+1,2-ethylene glycol. Korean Journal of Chemical Engineering, 2016, 33, 1883-1888.	1.2	13
130	Design of Stable Cage-like CaO/CaZrO ₃ Hollow Spheres for CO ₂ Capture. Energy & Fuels, 0, , .	2.5	10
131	Operando Raman spectroscopic studies of lithium zirconates during CO ₂ capture at high temperature. RSC Advances, 2016, 6, 8222-8231.	1.7	37
132	Plasmon-free SERS detection of environmental CO ₂ on TiO ₂ surfaces. Nanoscale, 2016, 8, 3226-3231.	2.8	71
133	Enhanced CO ₂ Chemisorption Properties of Li ₄ SO ₄ , Using a Water Hydration–Calcination Technique. Industrial & Engineering Chemistry Research, 2016, 55, 1142-1146.	1.8	27
134	Natural dolomite modified with carbon coating for cyclic high-temperature CO2 capture. Applied Energy, 2016, 165, 14-21.	5.1	66
135	Analysis and study of CO 2 adsorption on UiO-66/graphene oxide composite using equilibrium modeling and ideal adsorption solution theory (IAST). Journal of Environmental Chemical Engineering, 2016, 4, 1081-1091.	3.3	20
136	MIL-125(Ti) based mixed matrix membranes for CO2 separation from CH4 and N2. Journal of Membrane Science, 2016, 502, 21-28.	4.1	111
137	Material Exhibiting Efficient CO ₂ Adsorption at Room Temperature for Concentrations Lower Than 1000 ppm: Elucidation of the State of Barium Ion Exchanged in an MFI-Type Zeolite. ACS Applied Materials & Interfaces, 2016, 8, 8821-8833.	4.0	15
138	From Azo-Linked Polymers to Microporous Heteroatom-Doped Carbons: Tailored Chemical and Textural Properties for Gas Separation. ACS Applied Materials & Interfaces, 2016, 8, 8491-8501.	4.0	39
139	Fundamental Understanding of the Interaction of Acid Gases with CeO ₂ : From Surface Science to Practical Catalysis. Industrial & Engineering Chemistry Research, 2016, 55, 3909-3919.	1.8	26
140	Progress on sorption-enhanced reaction process for hydrogen production. Reviews in Chemical Engineering, 2016, .	2.3	8
141	Layered double hydroxides/oxidized carbon nanotube nanocomposites for CO2 capture. Journal of Industrial and Engineering Chemistry, 2016, 36, 255-262.	2.9	50
142	Hydrothermal synthesis of pectin derived nanoporous carbon material. Materials Letters, 2016, 171, 212-215.	1.3	11
143	Influences of zinc–metal complex on the carbon dioxide regeneration behaviors of alkanolamine absorbents. Journal of Industrial and Engineering Chemistry, 2016, 34, 76-83.	2.9	16
144	Evaluating the Activity and Stability of CaO-based Sorbents for Post-combustion CO2 Capture in Fixed-bed Reactor Experiments. Energy Procedia, 2016, 86, 171-180.	1.8	19
145	Calcination–carbonation durability of nano CaCO3 doped with Li2SO4. Chemical Engineering Journal, 2016, 294, 22-29.	6.6	39
146	Ionic liquid-based materials: a platform to design engineered CO ₂ separation membranes. Chemical Society Reviews, 2016, 45, 2785-2824.	18.7	347

#	Article	IF	Citations
147	lonic liquid tethered post functionalized ZIF-90 framework for the cycloaddition of propylene oxide and CO ₂ . Green Chemistry, 2016, 18, 2479-2487.	4.6	174
148	Highly efficient, rapid and selective CO2 capture by thermally treated graphene nanosheets. Journal of CO2 Utilization, 2016, 13, 50-60.	3.3	80
149	Bifunctional application of sodium cobaltate as a catalyst and captor through CO oxidation and subsequent CO ₂ chemisorption processes. RSC Advances, 2016, 6, 2162-2170.	1.7	27
150	New developments on carbon dioxide capture using amine-impregnated silicas. Adsorption, 2016, 22, 609-619.	1.4	41
151	An overview of activated carbons utilization for the post-combustion carbon dioxide capture. Journal of CO2 Utilization, 2016, 13, 1-16.	3.3	269
152	Synthesis of cyclophosphazene bridged mesoporous organosilicas for CO 2 capture and Cr (VI) removal. Microporous and Mesoporous Materials, 2016, 219, 93-102.	2.2	43
153	Li2SiO3 fast microwave-assisted hydrothermal synthesis and evaluation of its water vapor and CO2 absorption properties. Particuology, 2016, 24, 129-137.	2.0	16
154	Dual-porous metal organic framework for room temperature CO ₂ fixation via cyclic carbonate synthesis. Green Chemistry, 2016, 18, 232-242.	4.6	220
155	Carbon dioxide removal using calcium aluminate carbonates on titanic oxide under warm-gas conditions. Applied Energy, 2016, 162, 1122-1130.	5.1	18
156	Production of molecularly imprinted polymer particles with amide-decorated cavities for CO 2 capture using membrane emulsification/suspension polymerisation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 521, 231-238.	2.3	34
157	Sorption Enhanced Steam Reforming of Methane using Calcium Looping. , 2017, , .		1
158	Stability and Carbon Capture Enhancement by Coal-Fly-Ash-Doped Sorbents at a High Temperature. Energy & Fuels, 2017, 31, 785-794.	2.5	35
159	A Model to Stabilize CO ₂ Uptake Capacity during Carbonation–Calcination Cycles and its Case of CaO–MgO. Environmental Science & Technology, 2017, 51, 552-559.	4.6	26
160	Analysis of the CO ₂ Chemisorption in Li ₅ FeO ₄ , a New High Temperature CO ₂ Captor Material. Effect of the CO ₂ and O ₂ Partial Pressures. Journal of Physical Chemistry C, 2017, 121, 3455-3462.	1.5	46
161	Amino-functionalized graphene oxide blend with monoethanolamine for efficient carbon dioxide capture. Journal of Alloys and Compounds, 2017, 704, 245-253.	2.8	35
162	Impact of organic interlayer anions on the CO 2 adsorption performance of Mg-Al layered double hydroxides derived mixed oxides. Journal of Energy Chemistry, 2017, 26, 346-353.	7.1	58
163	Synthesis of vaterite CaCO 3 micro-spheres by carbide slag and a novel CO 2 -storage material. Journal of CO2 Utilization, 2017, 18, 23-29.	3.3	37
164	Textural and morphology changes of mesoporous SBA-15 silica due to introduction of guest phase. Pure and Applied Chemistry, 2017, 89, 481-491.	0.9	4

#	Article	IF	CITATIONS
165	Iron Nanoclusters as Template/Activator for the Synthesis of Nitrogen Doped Porous Carbon and Its CO ₂ Adsorption Application. ACS Applied Materials & Interfaces, 2017, 9, 9955-9963.	4.0	68
166	Selective strategy for solid sorbent replacement in CCS. Chemical Engineering Research and Design, 2017, 120, 82-91.	2.7	0
167	Stability of a Benzyl Amine Based CO ₂ Capture Adsorbent in View of Regeneration Strategies. Industrial & Engineering Chemistry Research, 2017, 56, 3259-3269.	1.8	70
168	One-step synthesis of highly efficient CaO-based CO2 sorbent pellets via gel-casting technique. Fuel Processing Technology, 2017, 160, 70-77.	3.7	50
169	Frontiers in poly(ionic liquid)s: syntheses and applications. Chemical Society Reviews, 2017, 46, 1124-1159.	18.7	843
170	Functionalization of hierarchically porous silica monoliths with polyethyleneimine (PEI) for CO 2 adsorption. Microporous and Mesoporous Materials, 2017, 245, 51-57.	2.2	78
171	Plane tree seed biomass used for preparation of activated carbons (AC) derived from pyrolysis. Modeling the activation process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522, 83-96.	2.3	27
172	Synthetic Architecture of MgO/C Nanocomposite from Hierarchical-Structured Coordination Polymer toward Enhanced CO ₂ Capture. ACS Applied Materials & Interfaces, 2017, 9, 9592-9602.	4.0	57
173	Microporous amine-functionalized aromatic polymers and their carbonized products for CO2 adsorption. Chemical Engineering Journal, 2017, 319, 65-74.	6.6	123
174	Alkali Nitrates Molten Salt Modified Commercial MgO for Intermediate-Temperature CO ₂ Capture: Optimization of the Li/Na/K Ratio. Industrial & Engineering Chemistry Research, 2017, 56, 1509-1517.	1.8	102
175	Preparation of Monodisperse Hyper-Crosslinking Polymer Nanoparticles for Highly Efficient CO ₂ Adsorption. Macromolecular Chemistry and Physics, 2017, 218, 1700001.	1.1	3
176	Effect of metal oxides modification on CO2 adsorption performance over mesoporous carbon. Microporous and Mesoporous Materials, 2017, 249, 34-41.	2.2	47
177	Selective CO ₂ Sequestration with Monolithic Bimodal Micro/Macroporous Carbon Aerogels Derived from Stepwise Pyrolytic Decomposition of Polyamide-Polyimide-Polyurea Random Copolymers. ACS Applied Materials & Interfaces, 2017, 9, 13520-13536.	4.0	48
178	Biomass-derived flexible porous carbon materials and their applications in supercapacitor and gas adsorption. Materials and Design, 2017, 129, 164-172.	3.3	105
179	Metal–Organic Frameworks with Tb ₄ Clusters as Nodes: Luminescent Detection of Chromium(VI) and Chemical Fixation of CO ₂ . Inorganic Chemistry, 2017, 56, 6244-6250.	1.9	109
180	Nanosheet MgO-Based CO ₂ Sorbent Promoted by Mixed-Alkali-Metal Nitrate and Carbonate: Performance and Mechanism. Industrial & Engineering Chemistry Research, 2017, 56, 5802-5812.	1.8	51
181	Effect of Water on the CO ₂ Adsorption Capacity of Amine-Functionalized Carbon Sorbents. Industrial & Engineering Chemistry Research, 2017, 56, 6317-6325.	1.8	18
182	CO ₂ adsorption on different organo-modified SBA-15 silicas: a multidisciplinary study on the effects of basic surface groups. Physical Chemistry Chemical Physics, 2017, 19, 14114-14128.	1.3	22

#	Article	IF	CITATIONS
183	Aminated poly(vinyl chloride) solid state adsorbents with hydrophobic function for post-combustion CO ₂ capture. Journal of Materials Chemistry A, 2017, 5, 11864-11872.	5.2	35
184	Clustering of water molecules in ultramicroporous carbon: In-situ small-angle neutron scattering. Carbon, 2017, 111, 681-688.	5.4	39
185	Alkali Carbonate Molten Salt Coated Calcium Oxide with Highly Improved Carbon Dioxide Capture Capacity. Energy Technology, 2017, 5, 1328-1336.	1.8	40
186	A novel metalporphyrin-based microporous organic polymer with high CO ₂ uptake and efficient chemical conversion of CO ₂ under ambient conditions. Journal of Materials Chemistry A, 2017, 5, 1509-1515.	5.2	186
187	Stability and efficiency of CO ₂ capture using linear amine polymer modified carbon nanotubes. Journal of Materials Chemistry A, 2017, 5, 10486-10494.	5.2	33
188	Synthesis of Hierarchically Structured Hybrid Materials by Controlled Self-Assembly of Metal–Organic Framework with Mesoporous Silica for CO ₂ Adsorption. ACS Applied Materials & Interfaces, 2017, 9, 23060-23071.	4.0	105
189	Catalyst-free N-formylation of amines using BH ₃ NH ₃ and CO ₂ under mild conditions. Chemical Communications, 2017, 53, 8046-8049.	2.2	66
190	Greening the Processes of Metal–Organic Framework Synthesis and their Use in Sustainable Catalysis. ChemSusChem, 2017, 10, 3165-3187.	3.6	132
191	Development of amine-functionalized hierarchically porous silica for CO2 capture. Journal of Industrial and Engineering Chemistry, 2017, 54, 59-68.	2.9	50
192	Green Synthesis of Nanosilica from Coal Fly Ash and Its Stabilizing Effect on CaO Sorbents for CO ₂ Capture. Environmental Science & Technology, 2017, 51, 7606-7615.	4.6	77
193	Water-based synthesis of zeolitic imidazolate framework-8 for CO ₂ capture. RSC Advances, 2017, 7, 29227-29232.	1.7	35
194	Algae to Economically Viable Low-Carbon-Footprint Oil. Annual Review of Chemical and Biomolecular Engineering, 2017, 8, 335-357.	3.3	25
195	Low-temperature CO2 adsorption on Titania nanotubes (TNTs). Surfaces and Interfaces, 2017, 8, 158-162.	1.5	9
196	Synthesis of polymeric ionic liquids material and application in CO2 adsorption. Journal of Energy Chemistry, 2017, 26, 909-918.	7.1	19
197	Synthesis of anion-functionalized mesoporous poly(ionic liquid)s via a microphase separation-hypercrosslinking strategy: highly efficient adsorbents for bioactive molecules. Journal of Materials Chemistry A, 2017, 5, 14114-14123.	5.2	54
198	Remarkable effect of moisture on the CO 2 adsorption of nano-silica supported linear and branched polyethylenimine. Journal of CO2 Utilization, 2017, 19, 91-99.	3.3	73
199	Catalytic application of layered double hydroxide-derived catalysts for the conversion of biomass-derived molecules. Catalysis Science and Technology, 2017, 7, 1622-1645.	2.1	163
200	Surface engineered silica mesospheres – A promising adsorbent for CO 2 capture. Separation and Purification Technology, 2017, 181, 192-200.	3.9	20

ARTICLE IF CITATIONS # Sketching a Portrait of the Optimal Adsorbent for CO2 Separation by Pressure Swing Adsorption. 201 1.8 10 Industrial & amp; Engineering Chemistry Research, 2017, 56, 4818-4829. Layered microporous polymers by solvent knitting method. Science Advances, 2017, 3, e1602610. A dual-functional UiO-66/TiO₂ composite for water treatment and CO₂ 203 1.7 25 capture. RSC Advances, 2017, 7, 16232-16237. Unique allosteric effect-driven rapid adsorption of carbon dioxide in a newly designed ionogel [P₄₄₄₄][2-Op]@MCM-41 with excellent cyclic stability and loading-dependent capacity. Journal of Materials Chemistry A, 2017, 5, 6504-6514. 204 Two Finite Binuclear [M₂(1¼₂-OH)(COO)₂] (M = Co, Ni) Based Highly Porous Metal–Organic Frameworks with High Performance for Gas Sorption and Separation. 205 1.9 57 Inorganic Chemistry, 2017, 56, 4141-4147. Metal–Organic Frameworkâ€Templated Catalyst: Synergy in Multiple Sites for Catalytic CO₂ Fixation. ChemSusChem, 2017, 10, 1898-1903. 3.6 Effect of Hg on CO2 capture by solid sorbents in the presence of acid gases. Chemical Engineering 207 6.6 7 Journal, 2017, 312, 367-374. Electric field controlled CO₂capture and CO₂/N₂separation on 208 2.8 78 MoS₂monolayers. Nanoscale, 2017, 9, 19-24. Experimental and modeling investigation on CO2 sorption kinetics over K2CO3-modified silica 209 6.6 37 aerogels. Chemical Engineering Journal, 2017, 312, 50-58. Process simulations of post-combustion CO 2 capture for coal and natural gas-fired power plants using a polyethyleneimine/silica adsorbent. International Journal of Greenhouse Gas Control, 2017, 58, 2.3 34 276-289 Recent advances in the synthesis of covalent organic frameworks for CO 2 capture. Journal of CO2 211 3.3 94 Utilization, 2017, 17, 137-161. Dual-Channel, Molecular-Sieving Core/Shell ZIF@MOF Architectures as Engineered Fillers in Hybrid 4.5 Membranes for Highly Selective CO₂ Separation. Nano Letters, 2017, 17, 6752-6758. Experimental aspects of buoyancy correction in measuring reliable high-pressure excess adsorption 213 1.4 15 isotherms using the gravimetric method. Measurement Science and Technology, 2017, 28, 125802. Sorption Enhanced Steam Reforming of Propane Using Calcium Looping., 2017, , . 214 Highly N-doped microporous carbon nanospheres with high energy storage and conversion efficiency. 215 23 1.6 Scientific Reports, 2017, 7, 14400. Hierarchical Nanocomposite by the Integration of Reduced Graphene Oxide and Amorphous Carbon with Ultrafine MgO Nanocrystallites for Enhanced CO₂ Capture. Environmental Science & amp; Technology, 2017, 51, 12998-13007. CO₂ Adsorption Behavior and Kinetics on Amine-Functionalized Composites Silica with 217 2.542 Trimodal Nanoporous Structure. Energy & amp; Fuels, 2017, 31, 12508-12520. Unprecedented CO2 uptake in vertically aligned carbon nanotubes. Carbon, 2017, 125, 327-335. 5.4

#	Article	IF	CITATIONS
219	Probing the role of O-containing groups in CO ₂ adsorption of N-doped porous activated carbon. Nanoscale, 2017, 9, 17593-17600.	2.8	44
220	Tri-lithium borate (Li ₃ BO ₃); a new highly regenerable high capacity CO ₂ adsorbent at intermediate temperature. Journal of Materials Chemistry A, 2017, 5, 22224-22233.	5.2	28
221	Development of High-performance CaO-based CO2 Sorbents Stabilized with Al2O3 or MgO. Energy Procedia, 2017, 114, 158-166.	1.8	22
222	Direct Air Capture of CO ₂ with an Amine Resin: A Molecular Modeling Study of the CO ₂ Capturing Process. Industrial & Engineering Chemistry Research, 2017, 56, 12297-12304.	1.8	27
223	Novel Ternary Absorbent: Dibutylamine Aqueous–Organic Solution for CO ₂ Capture. Energy & Fuels, 2017, 31, 12530-12539.	2.5	22
224	Novel Amine-impregnated Mesostructured Silica Materials for CO2 Capture. Energy Procedia, 2017, 114, 2252-2258.	1.8	27
225	Paving the Way for the Molecular-Level Design of Adsorbents for Carbon Capture: A Quantum-Chemical Investigation of the Adsorption of CO ₂ and N ₂ on Pure-Silica Chabazite. Journal of Physical Chemistry C, 2017, 121, 19314-19320.	1.5	7
226	CaOâ€Based CO ₂ Sorbents Effectively Stabilized by Metal Oxides. ChemPhysChem, 2017, 18, 3280-3285.	1.0	27
227	Multishelled CaO Microspheres Stabilized by Atomic Layer Deposition of Al ₂ O ₃ for Enhanced CO ₂ Capture Performance. Advanced Materials, 2017, 29, 1702896.	11.1	126
228	Surface modification induced enhanced CO ₂ sorption in cucurbit[6]uril, an organic porous material. Physical Chemistry Chemical Physics, 2017, 19, 25564-25573.	1.3	15
229	Facile synthesis of nitrogen-enriched microporous carbons derived from imine and benzimidazole-linked polymeric framework for efficient CO2 adsorption. Journal of CO2 Utilization, 2017, 21, 503-512.	3.3	45
230	Computational simulation study of the influence of faujasite Si/Al ratio on CO2 capture by temperature swing adsorption. Journal of CO2 Utilization, 2017, 21, 261-269.	3.3	16
231	Designing Moisture-Swing CO ₂ Sorbents through Anion Screening of Polymeric Ionic Liquids. Energy & Fuels, 2017, 31, 11127-11133.	2.5	22
232	Optimal Size of a Cylindrical Pore for Post-Combustion CO ₂ Capture. Journal of Physical Chemistry C, 2017, 121, 22025-22030.	1.5	9
233	Nitrogen doped hierarchically porous carbon derived from glucosamine hydrochloride for CO2 adsorption. Journal of CO2 Utilization, 2017, 21, 444-449.	3.3	44
234	Thin zeolite laminates for rapid and energy-efficient carbon capture. Scientific Reports, 2017, 7, 10988.	1.6	12
235	Hydrochar-Supported, <i>in Situ</i> -Generated Nickel Nanoparticles for Sorption-Enhanced Catalytic Gasification of Sewage Sludge. ACS Sustainable Chemistry and Engineering, 2017, 5, 7613-7622.	3.2	34
236	Antifouling composites with self-adaptive controlled release based on an active compound intercalated into layered double hydroxides. Applied Surface Science, 2017, 426, 185-193.	3.1	10

# 237	ARTICLE Sorption Enhanced Catalytic Gasification of Char. , 2017, , .	IF	CITATIONS 0
238	High-pressure carbon dioxide adsorption kinetics of potassium-modified hydrotalcite at elevated temperature. Fuel, 2017, 207, 579-590.	3.4	31
239	Post-combustion CO 2 capture technologies $\hat{a} \in $ " a review of processes for solvent-based and sorbent-based CO 2 capture. Current Opinion in Chemical Engineering, 2017, 17, 78-92.	3.8	56
240	Molten K2CO3-promoted high-performance Li4SiO4 sorbents at low CO2 concentrations. Thermochimica Acta, 2017, 655, 284-291.	1.2	59
241	Twoâ€Dimensional Materials as Prospective Scaffolds for Mixedâ€Matrix Membraneâ€Based CO ₂ Separation. ChemSusChem, 2017, 10, 3304-3316.	3.6	77
242	Enhanced CO ₂ Capture Performance of Limestone by Industrial Waste Sludge. Chemical Engineering and Technology, 2017, 40, 2322-2328.	0.9	14
243	Design of hyperporous graphene networks and their application in solid-amine based carbon capture systems. Journal of Materials Chemistry A, 2017, 5, 17833-17840.	5.2	48
244	Synthesis gas adjustment by low temperature sorption enhanced water-gas shift reaction through a copper-zeolite 13X hybrid material. Chemical Engineering and Processing: Process Intensification, 2017, 121, 97-110.	1.8	5
245	Clay honeycomb monoliths as low cost CO2 adsorbents. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 415-423.	2.7	13
246	Substituted Benzoxazole and Catechol Cocrystals as an Adsorbent for CO2 Capture: Synthesis and Mechanistic Studies. Crystal Growth and Design, 2017, 17, 4504-4510.	1.4	4
247	Screening of Naturally Al/Si-Based Mineral Binders to Modify CaO-Based Pellets for CO ₂ Capture. Energy & Fuels, 2017, 31, 14070-14078.	2.5	33
248	Molecular properties of metal difluorides and their interactions with CO2 and H2O molecules: a DFT investigation. Journal of Molecular Modeling, 2017, 23, 345.	0.8	1
249	Efficient CO ₂ Capture by Nitrogen-Doped Biocarbons Derived from Rotten Strawberries. Industrial & Engineering Chemistry Research, 2017, 56, 14115-14122.	1.8	62
250	Effect of Zr and Li on high temperature CO2 sorption characteristics of CaO. Adsorption, 2017, 23, 1033-1039.	1.4	2
251	Fly ash-derived MCM-41 as a low-cost silica support for polyethyleneimine in post-combustion CO2 capture. Journal of CO2 Utilization, 2017, 22, 81-90.	3.3	80
252	Solvent selection and design for CO ₂ capture – how we might have been missing the point. Sustainable Energy and Fuels, 2017, 1, 2078-2090.	2.5	69
253	Molten salts-modified MgO-based adsorbents for intermediate-temperature CO2 capture: A review. Journal of Energy Chemistry, 2017, 26, 830-838.	7.1	114
254	Bifunctional application of lithium ferrites (Li 5 FeO 4 and LiFeO 2) during carbon monoxide (CO) oxidation and chemisorption processes. A catalytic, thermogravimetric and theoretical analysis. Chemical Engineering Journal, 2017, 327, 783-791.	6.6	33

#	Article	IF	CITATIONS
255	NiO CaO materials as promising catalysts for hydrogen production through carbon dioxide capture and subsequent dry methane reforming. Journal of Energy Chemistry, 2017, 26, 942-947.	7.1	35
256	Potassium and Zeolitic Structure Modified Ultra-microporous Adsorbent Materials from a Renewable Feedstock with Favorable Surface Chemistry for CO ₂ Capture. ACS Applied Materials & Interfaces, 2017, 9, 26826-26839.	4.0	36
257	Determination and analysis of CO2 capture kinetics and mechanisms on the novel graphene-based adsorbents. Journal of CO2 Utilization, 2017, 21, 17-29.	3.3	46
258	lonic-Liquid-Based CO ₂ Capture Systems: Structure, Interaction and Process. Chemical Reviews, 2017, 117, 9625-9673.	23.0	696
259	Pentaerythritol-Based Molecular Sorbent for CO ₂ Capturing: A Highly Efficient Wet Scrubbing Agent Showing Proton Shuttling Phenomenon. Energy & Fuels, 2017, 31, 8407-8414.	2.5	22
260	Fabrication of Lithium Silicates As Highly Efficient High-Temperature CO ₂ Sorbents from SBA-15 Precursor. Inorganic Chemistry, 2017, 56, 7821-7834.	1.9	41
261	CO2 residual concentration of potassium-promoted hydrotalcite for deep CO/CO2 purification in H2-rich gas. Journal of Energy Chemistry, 2017, 26, 956-964.	7.1	16
262	High and efficient Li2CuO2-CO2 chemisorption using different partial pressures and enhancement produced by the oxygen addition. Chemical Engineering Journal, 2017, 313, 1288-1294.	6.6	34
263	Highly efficient mechanochemical synthesis of an indium based metal-organic framework with excellent water stability. Chemical Engineering Science, 2017, 158, 539-544.	1.9	55
264	Chemical fixation and conversion of CO2 into cyclic and cage-type metal carbonates. Coordination Chemistry Reviews, 2017, 334, 199-231.	9.5	44
265	Nitrogen-containing polymers as a platform for CO2 electroreduction. Advances in Colloid and Interface Science, 2017, 244, 184-198.	7.0	41
266	Low-cost hierarchical micro/macroporous carbon foams as efficient sorbents for CO 2 capture. Fuel Processing Technology, 2017, 156, 235-245.	3.7	31
267	Efficacious means for inhibiting the deactivation of K 2 CO 3 /AC for low-concentration CO 2 removal in the presence of SO 2 and NO 2. Chemical Engineering Journal, 2017, 308, 516-526.	6.6	11
268	Pelletization of MgO-based sorbents for intermediate temperature CO 2 capture. Fuel, 2017, 187, 328-337.	3.4	50
269	Nitrogen-doped hollow carbon spheres for supercapacitors. Journal of Materials Science, 2017, 52, 3153-3161.	1.7	23
270	Enhanced CO 2 capture on graphene via N, S dual-doping. Applied Surface Science, 2017, 399, 420-425.	3.1	53
271	Sorption-Enhanced Water–Gas Shift. Advances in Chemical Engineering, 2017, , 1-96.	0.5	23
272	Environmental Benign Synthesis of Lithium Silicates and Mg-Al Layered Double Hydroxide from Vermiculite Mineral for CO2 Capture. Catalysts, 2017, 7, 105.	1.6	21

#	Article	IF	Citations
273	Hydrothermal Fabrication of High Specific Surface Area Mesoporous MgO with Excellent CO2 Adsorption Potential at Intermediate Temperatures. Catalysts, 2017, 7, 116.	1.6	36
274	Characteristics of Spray-Dried K ₂ CO ₃ -MgO Solid Sorbent for CO ₂ Capture from Power Plant Flue Gas. Journal of Chemical Engineering of Japan, 2017, 50, 213-220.	0.3	4
275	Recent Advances in Heterogeneous Catalytic Hydrogenation of CO2 to Methane. , 0, , .		6
276	Facile synthesis of diamine-functionalized hollow mesoporous silica sphere with self-templating method. Journal of Porous Materials, 2018, 25, 1715-1721.	1.3	8
277	Oxidation-stable amine-containing adsorbents for carbon dioxide capture. Nature Communications, 2018, 9, 726.	5.8	137
278	Adsorption of pure and predicted binary (CO2:CH4) mixtures on 13X-Zeolite: Equilibrium and kinetic properties at offshore conditions. Microporous and Mesoporous Materials, 2018, 267, 221-234.	2.2	37
279	Germanium-incorporated lithium silicate composites as highly efficient low-temperature sorbents for CO ₂ capture. Journal of Materials Chemistry A, 2018, 6, 7913-7921.	5.2	30
280	Recent Progress in the Theoretical Investigation of Electrocatalytic Reduction of CO ₂ . Advanced Theory and Simulations, 2018, 1, 1800004.	1.3	50
281	Naphthyl Substitution-Induced Fine Tuning of Porosity and Gas Uptake Capacity in Microporous Hyper-Cross-Linked Amine Polymers. Macromolecules, 2018, 51, 2923-2931.	2.2	54
282	Silanol-rich platelet silica modified with branched amine for efficient CO2 capture. Chemical Engineering Science, 2018, 181, 315-325.	1.9	35
283	Effects of preparation methods on the structure and property of Al-stabilized CaO-based sorbents for CO 2 capture. Fuel Processing Technology, 2018, 173, 276-284.	3.7	33
284	Novel MgO/hollow carbon sphere composites for CO ₂ adsorption. New Journal of Chemistry, 2018, 42, 5674-5679.	1.4	11
285	Chemical looping combustion using geopolymer-based oxygen carriers. Chemical Engineering Journal, 2018, 341, 187-197.	6.6	11
286	Calcium cobaltate: a phase-change catalyst for stable hydrogen production from bio-glycerol. Energy and Environmental Science, 2018, 11, 660-668.	15.6	38
287	High Density and Super Ultraâ€Microporousâ€Activated Carbon Macrospheres with High Volumetric Capacity for CO ₂ Capture. Advanced Sustainable Systems, 2018, 2, 1700115.	2.7	30
288	Controlled synthesis of MgO with diverse basic sites and its CO2 capture mechanism under different adsorption conditions. Chemical Engineering Journal, 2018, 336, 710-720.	6.6	93
289	Enhanced CO ₂ Adsorption on Nitrogen-Doped Porous Carbons Derived from Commercial Phenolic Resin. Energy & Fuels, 2018, 32, 2081-2088.	2.5	40
290	Textural properties determined CO2 capture of tetraethylenepentamine loaded SiO2 nanowires from α-sepiolite. Chemical Engineering Journal, 2018, 337, 342-350.	6.6	50

ARTICLE IF CITATIONS # In Situ Observation of Carbon Dioxide Capture on Pseudo-Liquid Eutectic Mixture-Promoted 291 4.0 47 Magnesium Oxide. ACS Applied Materials & amp; Interfaces, 2018, 10, 2414-2422. Techno-economic feasibility assessment of CO2 capture from coal-fired power plants using 3.4 molecularly imprinted polymer. Fuel, 2018, 214, 512-520. CO₂ Adsorption Behavior of Graphite Oxide Modified with Tetraethylenepentamine. 293 1.0 18 Journal of Chemical & amp; Engineering Data, 2018, 63, 202-207. Carbon dioxide adsorption properties and adsorption/desorption kinetics of amine-functionalized 294 5.1 93 KIT-6. Applied Energy, 2018, 211, 1080-1088. Zirconium-based isoreticular metal-organic frameworks for CO2 fixation via cyclic carbonate 295 1.2 19 synthesis. Korean Journal of Chemical Engineering, 2018, 35, 438-444. CaO-based CO2 sorbents: A review on screening, enhancement, cyclic stability, regeneration and kinetics modelling. Journal of CO2 Utilization, 2018, 23, 179-199. 296 3.3 164 The remarkable activity of templateâ€containing Mg/MCMâ€41 and Ni/MCMâ€41 in CO₂ 297 3 sequestration., 2018, 8, 462-468. Highly efficient CO2 adsorption by nitrogen-doped porous carbons synthesized with low-temperature sodium amide activation. Carbon, 2018, 130, 31-40. 298 5.4 Nitrogen-rich hyper-crosslinked polymers for low-pressure CO2 capture. Chemical Engineering 299 6.6 53 Journal, 2018, 334, 2004-2013. Standing out the key role of ultramicroporosity to tailor biomass-derived carbons for CO2 capture. 3.3 Journal of CO2 Utilization, 2018, 26, 1-7. CO2 sorbents derived from capsule-connected Ca-Al hydrotalcite-like via low-saturated 301 19 3.7 coprecipitation. Fuel Processing Technology, 2018, 177, 210-218. CO₂ Capacity and Heat of Sorption on a Polyethylenimine-Impregnated Silica under Equilibrium and Transient Sorption Conditions. Journal of Physical Chemistry C, 2018, 122, 11442-11449. 1.5 Nitrogen doping and CO2 adsorption on graphene: A thermodynamical study. Physical Review B, 2018, 303 1.1 19 97,. Catalytic reduction of low-concentration CO2 with water by Pt/Co@NC. Journal of Materials Science and Technology, 2018, 34, 2337-2341. 304 5.6 Calcium precursor from stirring processes at room temperature for controllable preparation of nano-structure CaO sorbents for high-temperature CO2 adsorption. Journal of CO2 Utilization, 2018, 305 19 3.3 25, 315-322. A novel biphasic solvent of amino-functionalized ionic liquid for CO2 capture: High efficiency and 306 regenerability. Journal of CO2 Utilization, 2018, 25, 22-30. Carbon dioxide capture in the presence of water by an amine-based crosslinked porous polymer. 307 5.239 Journal of Materials Chemistry A, 2018, 6, 6455-6462. Characterization analysis of raw and pyrolyzed plane tree seed (Platanus orientalis L.) samples for its application in carbon capture and storage (CCS) technology. Journal of Thermal Analysis and Calorimetry, 2018, 133, 465-480.

#	Article	IF	CITATIONS
309	Construction of Nitrogen-Containing Hierarchical Porous Polymers and Its Application on Carbon Dioxide Capturing. Industrial & Engineering Chemistry Research, 2018, 57, 5291-5300.	1.8	19
310	Knitting polycyclic aromatic hydrocarbon-based microporous organic polymers for efficient CO ₂ capture. RSC Advances, 2018, 8, 10347-10354.	1.7	24
311	Adsorption performance of 5A molecular sieve zeolite in water vapor–binary gas environment: Experimental and modeling evaluation. Journal of Industrial and Engineering Chemistry, 2018, 64, 173-187.	2.9	37
312	Adsorption of CO ₂ on MgAl-CO ₃ LDHs-Derived Sorbents with 3D Nanoflower-like Structure. Energy & Fuels, 2018, 32, 5313-5320.	2.5	27
313	Sequestration of CO 2 using Cu nanoparticles supported on spherical and rod-shape mesoporous silica. Journal of Saudi Chemical Society, 2018, 22, 343-351.	2.4	28
314	Hierarchical porous carbon activated by CaCO3 from pigskin collagen for CO2 and H2 adsorption. Microporous and Mesoporous Materials, 2018, 260, 172-179.	2.2	36
315	Alternative pathways for efficient CO2 capture by hybrid processes—A review. Renewable and Sustainable Energy Reviews, 2018, 82, 215-231.	8.2	236
316	In-depth evaluation of a ZrO2 promoted CaO-based CO2 sorbent in fluidized bed reactor tests. Chemical Engineering Journal, 2018, 333, 697-711.	6.6	76
317	Populus wood biomass-derived graphene for high CO2 capture at atmospheric pressure and estimated cost of production. Chemical Engineering Research and Design, 2018, 113, 97-108.	2.7	59
318	Mesoporous MgO promoted with NaNO3/NaNO2 for rapid and high-capacity CO2 capture at moderate temperatures. Chemical Engineering Journal, 2018, 332, 216-226.	6.6	88
319	Adsorption of CO2 on mixed oxides derived from hydrotalcites at several temperatures and high pressures. Chemical Engineering Journal, 2018, 332, 24-32.	6.6	47
320	Nickel-doped sodium zirconate catalysts for carbon dioxide storage and hydrogen production through dry methane reforming process. Applied Catalysis B: Environmental, 2018, 224, 80-87.	10.8	29
321	Chemically activated microporous carbons derived from petroleum coke: Performance evaluation for CF4 adsorption. Chemical Engineering Journal, 2018, 336, 297-305.	6.6	54
322	Polyethyleneimine (PEI) loaded MgO-SiO 2 nanofibers from sepiolite minerals for reusable CO 2 capture/release applications. Applied Clay Science, 2018, 152, 267-275.	2.6	40
323	A critical assessment of the testing conditions of CaO-based CO2 sorbents. Chemical Engineering Journal, 2018, 336, 544-549.	6.6	47
324	Soft-Pillared@Magadiite: influence of the interlayer space and amine type on CO ₂ adsorption. Dalton Transactions, 2018, 47, 3102-3111.	1.6	10
325	Molecular Layer Deposition-Modified 5A Zeolite for Highly Efficient CO ₂ Capture. ACS Applied Materials & Interfaces, 2018, 10, 769-775.	4.0	50
326	Effect of isopropyl-substituent introduction into tetraethylenepentamine-based solid sorbents for CO2 capture. Fuel, 2018, 214, 14-19.	3.4	13

#	Article	IF	CITATIONS
327	Kinetic modeling of CO2 adsorption on an amine-functionalized solid sorbent. Chemical Engineering Science, 2018, 177, 122-131.	1.9	35
328	Adsorption equilibrium studies of CO2, CH4 and N2 on various modified zeolites at high pressures up to 200 bars. Microporous and Mesoporous Materials, 2018, 262, 49-58.	2.2	35
329	Extra Unsaturated Metal Centers of Zirconiumâ€Based MOFs: a Facile Approach towards Increasing CO ₂ Uptake Capacity at Low Pressure. European Journal of Inorganic Chemistry, 2018, 2018, 194-202.	1.0	5
331	Humidity-induced CO ₂ capture enhancement in Mg-CUK-1. Dalton Transactions, 2018, 47, 15827-15834.	1.6	29
332	Potential of ultramicroporous metal–organic frameworks in CO ₂ clean-up. Chemical Communications, 2018, 54, 13472-13490.	2.2	49
333	Structure Design of Low-Temperature Regenerative Hyperbranched Polyamine Adsorbent for CO ₂ Capture. Langmuir, 2018, 34, 14169-14179.	1.6	14
334	Rapid CO2 Adsorption over Hierarchical ZSM-5 with Controlled Mesoporosity. Industrial & Engineering Chemistry Research, 2018, 57, 16875-16883.	1.8	16
335	Enhancement of CO ₂ Absorption in Li ₄ SiO ₄ by Acidification and Eutectic Doping. Energy & Fuels, 2018, 32, 12758-12765.	2.5	9
336	Decoupling microporosity and nitrogen content to optimize CO2 adsorption in melamine–resorcinol–formaldehyde xerogels. Materials Today Chemistry, 2018, 10, 195-205.	1.7	10
337	Progress in the development and application of CaO-based adsorbents for CO2 capture—a review. Materials Today Sustainability, 2018, 1-2, 1-27.	1.9	60
338	Application of Industrial Wastes from Chemically Treated Aluminum Saline Slags as Adsorbents. ACS Omega, 2018, 3, 18275-18284.	1.6	23
339	2.27 CO 2 Capturing Materials. , 2018, , 881-912.		0
340	Improved CO2 capture and separation performances of a Cr-based metal–organic framework induced by post-synthesis modification of amine groups. Polyhedron, 2018, 156, 195-199.	1.0	6
341	Steam-Stable Covalently Bonded Polyethylenimine Modified Multiwall Carbon Nanotubes for Carbon Dioxide Capture. Energy & Fuels, 2018, 32, 11701-11709.	2.5	20
342	Facile and Controllable Preparation of Ultramicroporous Biomass-Derived Carbons and Application on Selective Adsorption of Gas-mixtures. Industrial & Engineering Chemistry Research, 2018, 57, 14191-14201.	1.8	25
343	Unusual Moisture-Enhanced CO ₂ Capture within Microporous PCN-250 Frameworks. ACS Applied Materials & Interfaces, 2018, 10, 38638-38647.	4.0	57
344	Stabilization of NaNO ₃ -Promoted Magnesium Oxide for High-Temperature CO ₂ Capture. Environmental Science & Technology, 2018, 52, 11952-11959.	4.6	7
345	Structure Property–CO ₂ Capture Performance Relations of Amine-Functionalized Porous Silica Composite Adsorbents. ACS Applied Materials & Interfaces, 2018, 10, 34340-34354.	4.0	47

#	Article	IF	CITATIONS
347	Parametric, cyclic aging and characterization studies for CO2 capture from flue gas and catalytic conversion to synthetic natural gas using a dual functional material (DFM). Journal of CO2 Utilization, 2018, 27, 390-397.	3.3	78
348	Molecular Modeling of Carbon Dioxide Adsorption in Metal-Organic Frameworks. , 2018, , 99-149.		6
349	Structural parameters to consider in selecting silica supports for polyethylenimine based CO2 solid adsorbents. Importance of pore size. Journal of CO2 Utilization, 2018, 26, 246-253.	3.3	37
350	Adsorption of carbon dioxide on solid amine-functionalized sorbents: A dual kinetic model. Separation and Purification Technology, 2018, 204, 13-20.	3.9	29
351	Scalable synthesis of the lithium silicate-based high-temperature CO2 sorbent from inexpensive raw material vermiculite. Chemical Engineering Journal, 2018, 349, 562-573.	6.6	51
352	Cost-Efficient Strategy for Sustainable Cross-Linked Microporous Carbon Bead with Satisfactory CO2 Capture Capacity. ACS Omega, 2018, 3, 5563-5573.	1.6	23
353	Efficient CO ₂ Adsorption on Nitrogen-Doped Porous Carbons Derived from <scp>d</scp> -Glucose. Energy & Fuels, 2018, 32, 6955-6963.	2.5	96
354	Ultrafast and Stable CO ₂ Capture Using Alkali Metal Salt-Promoted MgO–CaCO ₃ Sorbents. ACS Applied Materials & Interfaces, 2018, 10, 20611-20620.	4.0	57
355	Nanostructured MgO Sorbents Derived from Organometallic Magnesium Precursors for Post-combustion CO ₂ Capture. Energy & Fuels, 2018, 32, 6910-6917.	2.5	44
356	Me–N–C (Me = Fe, Cu, and Co) nanosheet as a promising charge-controlled CO2 capture material. Journal of Materials Chemistry A, 2018, 6, 12404-12410.	5.2	27
357	Na2CO3-doped CaO-based high-temperature CO2 sorbent and its sorption kinetics. Chemical Engineering Journal, 2018, 352, 103-109.	6.6	51
358	TiO(OH) ₂ can exceed the critical limit of conventional CO ₂ sorbents: modification needed for high capacity and selectivity. Chemical Communications, 2018, 54, 8395-8398.	2.2	4
359	Self-activated, nanostructured composite for improved CaL-CLC technology. Chemical Engineering Journal, 2018, 351, 1038-1046.	6.6	63
360	A facile Solvent/Nonsolvent Preparation of Sinteringâ€Resistant MgO/CaO Composites for Highâ€Temperature CO ₂ Capture. Energy Technology, 2018, 6, 2469-2478.	1.8	24
361	Optimization of the structural characteristics of CaO and its effective stabilization yield high-capacity CO2 sorbents. Nature Communications, 2018, 9, 2408.	5.8	167
362	Rational Design of the Polymeric Amines in Solid Adsorbents for Postcombustion Carbon Dioxide Capture. ACS Applied Materials & Interfaces, 2018, 10, 23825-23833.	4.0	41
363	Aerogels as promising materials for environmental remediation—A broad insight into the environmental pollutants removal through adsorption and (photo)catalytic processes. , 2018, , 389-436.		8
364	Study on CO ₂ Desorption Behavior of a PDMS–SiO ₂ Hybrid Membrane Applied in a Novel CO ₂ Capture Process. ACS Applied Materials & Interfaces, 2018, 10, 28992-29002.	4.0	24

#	Article	IF	CITATIONS
365	Recent developments and consideration issues in solid adsorbents for CO2 capture from flue gas. Chinese Journal of Chemical Engineering, 2018, 26, 2303-2317.	1.7	70
366	Enhanced hydrogen production from thermochemical processes. Energy and Environmental Science, 2018, 11, 2647-2672.	15.6	111
367	One-step synthesis of porous Li4SiO4-based adsorbent pellets via graphite moulding method for cyclic CO2 capture. Chemical Engineering Journal, 2018, 353, 92-99.	6.6	120
368	Rattle-Type Diamine-Functionalized Mesoporous Silica Sphere for Carbon Dioxide Adsorption. Journal of Nano Research, 0, 53, 13-21.	0.8	3
369	Investigation of CO ₂ Sorption Mechanisms in Isothermal Columns via Transient Material and Energy Balance PDE Models. Industrial & Engineering Chemistry Research, 2018, 57, 10303-10314.	1.8	1
370	A Study on the Evolution of Carbon Capture and Storage Technology Based on Knowledge Mapping. Energies, 2018, 11, 1103.	1.6	24
371	Low-Temperature and Fast Kinetics for CO2 Sorption Using Li6WO6 Nanowires. Nano Letters, 2018, 18, 4891-4899.	4.5	17
372	New acetal-linked porous organic polymer as an efficient absorbent for CO2 and iodine uptake. Materials Letters, 2018, 229, 240-243.	1.3	14
373	Synthesis of highly efficient, structurally improved Li4SiO4 sorbents for high-temperature CO2 capture. Ceramics International, 2018, 44, 16668-16677.	2.3	52
374	Enhancing Gas Sorption and Separation Performance via Bisbenzimidazole Functionalization of Highly Porous Covalent Triazine Frameworks. ACS Applied Materials & Interfaces, 2018, 10, 26678-26686.	4.0	52
375	Phosphorus Dendrimer Derived Solid Sorbents for CO2 Capture from Post-Combustion Gas Streams. Energy & Fuels, 2018, 32, 8658-8667.	2.5	12
376	Preparation and Evaluation of CaO-Based CO ₂ Sorbents Deposited on Saffil Fiber Supports. Energy & Fuels, 2018, 32, 8631-8640.	2.5	4
377	Sorption-Enhanced Ethanol Steam Reforming Process in a Fixed-Bed Reactor. Industrial & Engineering Chemistry Research, 2018, 57, 11547-11553.	1.8	18
378	Interfacial Interactions Govern the Mechanisms of CO ₂ Absorption and Desorption on A ₂ CO ₃ -Promoted MgO (A = Na, K, Rb, and Cs) Absorbents. Journal of Physical Chemistry C, 2018, 122, 20289-20300.	1.5	19
379	Easily tunable hydrogel-derived heteroatom-doped hierarchically porous carbons as multifunctional materials for supercapacitors, CO2 capture and dye removal. Microporous and Mesoporous Materials, 2018, 271, 92-99.	2.2	13
380	Enhanced CO2 chemisorption at high temperatures via oxygen addition using (Fe, Cu or Ni)-containing sodium cobaltates as solid sorbents. Journal of CO2 Utilization, 2018, 25, 147-157.	3.3	14
381	Immobilization, enrichment and recycling of Cr(VI) from wastewater using a red mud/carbon material to produce the valuable chromite (FeCr2O4). Chemical Engineering Journal, 2018, 350, 1103-1113.	6.6	39
382	Metal–Organicâ€Frameworkâ€Based Catalysts for Photoreduction of CO ₂ . Advanced Materials, 2018, 30, e1705512.	11.1	415

#	Article	IF	CITATIONS
383	Phosphorous dendrimer bound polyethyleneimine as solid sorbents for post-combustion CO2 capture. Chemical Engineering Journal, 2018, 350, 1056-1065.	6.6	20
384	Double-Layer Structured CO ₂ Adsorbent Functionalized with Modified Polyethyleneimine for High Physical and Chemical Stability. ACS Applied Materials & Interfaces, 2018, 10, 21213-21223.	4.0	26
385	Synthesis of S-Doped porous g-C3N4 by using ionic liquids and subsequently coupled with Au-TiO2 for exceptional cocatalyst-free visible-light catalytic activities. Applied Catalysis B: Environmental, 2018, 237, 1082-1090.	10.8	151
386	CO ₂ —H ₂ O Capture and Cyclability on Sodium Cobaltate at Low Temperatures (30–80°C): Experimental and Theoretical Analysis. Energy Technology, 2019, 7, 1800527.	1.8	4
387	CO ₂ adsorption testing on fly ash derived cancriniteâ€type zeolite and its amineâ€functionalized derivatives. Environmental Progress and Sustainable Energy, 2019, 38, 77-88.	1.3	16
388	Synergistic Enhancement of CO ₂ Adsorption Capacity and Kinetics in Triethylenetetrammonium Nitrate Protic Ionic Liquid Functionalized SBA-15. Energy & Fuels, 2019, 33, 8967-8975.	2.5	19
389	DFT investigation of role of N – H⋯O and N – H⋯π interactions in the stabilization of the hydrogen bonded complexes of anisole with aromatic amines. Heliyon, 2019, 5, e02155.	1.4	15
390	Selective Carbon Dioxide Capture Using Silicaâ€&upported Polyaminals. ChemistrySelect, 2019, 4, 8534-8541.	0.7	5
391	Conceptual Design for Integrating Lithium-Based Carbon Capture Looping Systems into Natural Gas Combined Cycle Power Plants. Industrial & Engineering Chemistry Research, 2019, 58, 14975-14990.	1.8	5
392	A Microporous Organic Copolymer for Selective CO ₂ Capture under Humid Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 13941-13948.	3.2	29
393	Recent advances in elevated-temperature pressure swing adsorption for carbon capture and hydrogen production. Progress in Energy and Combustion Science, 2019, 75, 100784.	15.8	82
394	An Enhanced Carbon Capture and Storage Process (e-CCS) Applied to Shallow Reservoirs Using Nanofluids Based on Nitrogen-Rich Carbon Nanospheres. Materials, 2019, 12, 2088.	1.3	11
395	CO ₂ Capture by Supported Ionic Liquid Phase: Highlighting the Role of the Particle Size. ACS Sustainable Chemistry and Engineering, 2019, 7, 13089-13097.	3.2	24
396	A highly efficient 2D siloxene coated Ni foam catalyst for methane dry reforming and an effective approach to recycle the spent catalyst for energy storage applications. Journal of Materials Chemistry A, 2019, 7, 18950-18958.	5.2	48
397	Environmental sustainability of cellulose-supported solid ionic liquids for CO2 capture. Green Chemistry, 2019, 21, 4100-4114.	4.6	19
398	<i>110th Anniversary</i> : Carbon Dioxide and Chemical Looping: Current Research Trends. Industrial & amp; Engineering Chemistry Research, 2019, 58, 16235-16257.	1.8	39
399	A facile one-pot synthesis of CaO/CuO hollow microspheres featuring highly porous shells for enhanced CO ₂ capture in a combined Ca–Cu looping process <i>via</i> a template-free synthesis approach. Journal of Materials Chemistry A, 2019, 7, 21096-21105.	5.2	56
400	Role of the Structure of Graphene Oxide Sheets on the CO ₂ Adsorption Properties of Nanocomposites Based on Graphene Oxide and Polyaniline or Fe ₃ O ₄ -Nanoparticles. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	19

#	Article	IF	CITATIONS
401	Influence of fluorination on CO ₂ adsorption in materials derived from fluorinated covalent triazine framework precursors. Journal of Materials Chemistry A, 2019, 7, 17277-17282.	5.2	47
402	Understanding the CO ₂ sorption mechanisms of the MgOâ€doped Naâ€based sorbent at low temperatures. , 2019, 9, 672-686.		5
403	Novel hexaazatrinaphthalene-based covalent triazine frameworks as high-performance platforms for efficient carbon capture and storage. Microporous and Mesoporous Materials, 2019, 290, 109650.	2.2	18
404	Water-Tolerant DUT-Series Metal–Organic Frameworks: A Theoretical–Experimental Study for the Chemical Fixation of CO ₂ and Catalytic Transfer Hydrogenation of Ethyl Levulinate to γ-Valerolactone. ACS Applied Materials & Interfaces, 2019, 11, 41458-41471.	4.0	55
405	CO2 capture with polyamine-based protic ionic liquid functionalized mesoporous silica. Journal of CO2 Utilization, 2019, 34, 606-615.	3.3	53
406	Enhanced water gas shift processes for carbon dioxide capture and hydrogen production. Applied Energy, 2019, 254, 113700.	5.1	36
407	Progress in MgO sorbents for cyclic CO ₂ capture: a comprehensive review. Journal of Materials Chemistry A, 2019, 7, 20103-20120.	5.2	132
408	The dynamic CO ₂ adsorption of polyethylene polyamine-loaded MCM-41 before and after methoxypolyethylene glycol codispersion. RSC Advances, 2019, 9, 27050-27059.	1.7	11
409	Molten ionic oxides for CO ₂ capture at medium to high temperatures. Journal of Materials Chemistry A, 2019, 7, 21827-21834.	5.2	23
410	Metal–Organic Frameworks and Metal–Organic Framework-Derived N-Doped Porous Carbon Materials as Heterogeneous Catalysts: Chemical Fixation of Carbon Dioxide under Mild Conditions and Electrochemical Hydrogen Evolution. Crystal Growth and Design, 2019, 19, 6672-6681.	1.4	20
411	Understanding CO ₂ Adsorption on a M ₁ (M ₂)-Promoted (Doped) MgO–CaO(100) Surface (M ₁ = Li, Na, K, and Rb, M ₂ = Sr): A DFT Theoretical Study. ACS Sustainable Chemistry and Engineering, 2019, 7, 16979-16984.	3.2	18
412	Synergistic enhancement of chemical looping-based CO ₂ splitting with biomass cascade utilization using cyclic stabilized Ca ₂ Fe ₂ O ₅ aerogel. Journal of Materials Chemistry A, 2019, 7, 1216-1226.	5.2	43
413	Solidâ€Wasteâ€Derived Carbon Dioxideâ€Capturing Materials. ChemSusChem, 2019, 12, 2055-2082.	3.6	43
414	Thermokinetic evaluation of iron addition on lithium metazirconate (Fe-Li2ZrO3) for enhancing carbon dioxide capture at high temperatures. Thermochimica Acta, 2019, 673, 129-137.	1.2	12
415	The effect of the Li:Na molar ratio on the structural and sorption properties of mixed zirconates for CO2 capture at high temperature. Journal of Environmental Chemical Engineering, 2019, 7, 102927.	3.3	22
416	Continuous testing of silica-PEI adsorbents in a labscale twin bubbling fluidized-bed system. International Journal of Greenhouse Gas Control, 2019, 82, 184-191.	2.3	19
417	Functionalized Rutile TiO ₂ (110) as a Sorbent To Capture CO ₂ through Noncovalent Interactions: A Computational Investigation. Journal of Physical Chemistry C, 2019, 123, 3491-3504.	1.5	16
418	CO ₂ Uptake and Cyclic Stability of MgO-Based CO ₂ Sorbents Promoted with Alkali Metal Nitrates and Their Eutectic Mixtures. ACS Applied Energy Materials, 2019, 2, 1295-1307.	2.5	79

#	Article	IF	CITATIONS
419	Magnesium-based basic mixtures derived from earth-abundant natural minerals for CO2 capture in simulated flue gas. Fuel, 2019, 243, 298-305.	3.4	42
420	Modeling CO2 adsorption dynamics within solid amine sorbent based on the fundamental diffusion-reaction processes. Chemical Engineering Journal, 2019, 364, 328-339.	6.6	27
421	Effects of synthesis methodology on microporous organic hyper-cross-linked polymers with respect to structural porosity, gas uptake performance and fluorescence properties. Polymer Chemistry, 2019, 10, 1299-1311.	1.9	93
422	Amino-decorated bis(pyrazolate) metal–organic frameworks for carbon dioxide capture and green conversion into cyclic carbonates. Inorganic Chemistry Frontiers, 2019, 6, 533-545.	3.0	36
423	Alkali carbonates promote CO ₂ capture by sodium orthosilicate. Physical Chemistry Chemical Physics, 2019, 21, 13135-13143.	1.3	20
424	Highly efficient and stable calcium looping based pre-combustion CO2 capture for high-purity H2 production. Materials Today Energy, 2019, 13, 233-238.	2.5	13
425	Nitrogen-doped asphaltene-based porous carbon nanosheet for carbon dioxide capture. Applied Surface Science, 2019, 491, 607-615.	3.1	32
426	Pyridine-containing ionic liquids lowly loaded in large mesoporous silica and their rapid CO2 gas adsorption at low partial pressure. Journal of CO2 Utilization, 2019, 34, 282-292.	3.3	18
427	Characterization and Modeling of Reversible CO ₂ Capture from Wet Streams by a MgO/Zeolite Y Nanocomposite. Journal of Physical Chemistry C, 2019, 123, 17214-17224.	1.5	17
428	Nonâ€Porous versus Mesoporous Siliceous Materials for CO ₂ Capture. ChemistryOpen, 2019, 8, 719-727.	0.9	17
429	One-step synthesis of spherical CaO pellets via novel graphite-casting method for cyclic CO2 capture. Chemical Engineering Journal, 2019, 374, 619-625.	6.6	65
430	Stability of amine-functionalized CO ₂ adsorbents: a multifaceted puzzle. Chemical Society Reviews, 2019, 48, 3320-3405.	18.7	260
431	A semi-industrial preparation procedure of CaO-based pellets with high CO2 uptake performance. Fuel Processing Technology, 2019, 193, 149-158.	3.7	21
432	Novel short-cut estimation method for the optimum total energy demand of solid sorbents in an adsorption-based CO2 capture process. Energy, 2019, 180, 640-648.	4.5	10
433	High and fast carbon dioxide capture of hydroxypyridine-based ionogel depending on pore structure of mesoporous silica vesicle in the simulated flue gas. International Journal of Greenhouse Gas Control, 2019, 84, 111-120.	2.3	6
434	Highly efficient and durable metal-organic framework material derived Ca-based solid sorbents for CO2 capture. Chemical Engineering Journal, 2019, 372, 1028-1037.	6.6	41
435	Liquid marble-derived solid-liquid hybrid superparticles for CO2 capture. Nature Communications, 2019, 10, 1854.	5.8	52
436	Amino acid ionic liquid-modified mesoporous silica sorbents with remaining surfactant for CO2 capture. Adsorption, 2019, 25, 703-716.	1.4	14

#	Article	IF	CITATIONS
437	N-doped porous carbons derived from a polymer precursor with a record-high N content: Efficient adsorbents for CO2 capture. Chemical Engineering Journal, 2019, 372, 656-664.	6.6	71
438	5 Ultramicropore-rich renewable porous carbon from biomass tar with excellent adsorption capacity and selectivity for CO2 capture. Chemical Engineering Journal, 2019, 373, 171-178.	6.6	68
439	Carbon capture using amine modified porous carbons derived from starch (Starbons®). SN Applied Sciences, 2019, 1, 1.	1.5	8
440	Relevance of hydrogen bonding in CO ₂ capture enhancement within InOF-1: an energy and vibrational analysis. Dalton Transactions, 2019, 48, 8611-8616.	1.6	12
441	Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chemical Society Reviews, 2019, 48, 2783-2828.	18.7	1,685
442	High and Efficient CO ₂ Capture in Molten Nitrate-Modified Mg–Al–Palmitate Layered Double Oxides at High Pressures and Elucidation of Carbonation Mechanisms by in Situ DRIFT Spectroscopy Analysis. Industrial & Engineering Chemistry Research, 2019, 58, 5501-5509.	1.8	21
443	Impregnation of PEI in Novel Porous MgCO ₃ for Carbon Dioxide Capture from Flue Gas. Industrial & Engineering Chemistry Research, 2019, 58, 4979-4987.	1.8	14
444	Nitrogen Amelioration-Driven Carbon Dioxide Capture by Nanoporous Polytriazine. Langmuir, 2019, 35, 4893-4901.	1.6	21
445	Ultrasound-assisted amine functionalized graphene oxide for enhanced CO2 adsorption. Fuel, 2019, 247, 10-18.	3.4	75
446	Synthesis of highly effective stabilized CaO sorbents <i>via</i> a sacrificial N-doped carbon nanosheet template. Journal of Materials Chemistry A, 2019, 7, 9173-9182.	5.2	35
447	Mesoporous adsorbent for CO2 capture application under mild condition: A review. Journal of Environmental Chemical Engineering, 2019, 7, 103022.	3.3	78
448	CO2 adsorption on amine-functionalized clays. Microporous and Mesoporous Materials, 2019, 282, 38-47.	2.2	66
449	Calcium-looping reforming of methane realizes in situ CO ₂ utilization with improved energy efficiency. Science Advances, 2019, 5, eaav5077.	4.7	153
450	Synthesis of hierarchical Li4SiO4 nanoparticles/flakers composite from vermiculite/MCM-41 hybrid with improved CO2 capture performance under different CO2 concentrations. Chemical Engineering Journal, 2019, 371, 424-432.	6.6	20
451	Modular and conservative procedure for the quantification of amino functionalities bonded to solid porous matrices. Analytica Chimica Acta, 2019, 1068, 120-130.	2.6	1
452	Friedman method kinetic analysis of CaO-based sorbent for high-temperature thermochemical energy storage. Chemical Engineering Science, 2019, 200, 236-247.	1.9	33
453	Preparation of CaMgAl-LDHs and mesoporous silica sorbents derived from blast furnace slag for CO ₂ capture. RSC Advances, 2019, 9, 6054-6063.	1.7	18
454	Recent advances in lithium containing ceramic based sorbents for high-temperature CO ₂ capture. Journal of Materials Chemistry A, 2019, 7, 7962-8005.	5.2	106

#	Article	IF	CITATIONS
455	Thermodynamics and kinetics analysis of Ca-looping for CO2 capture: Application of carbide slag. Fuel, 2019, 242, 1-11.	3.4	50
456	Unravelling the Structure of Chemisorbed CO ₂ Species in Mesoporous Aminosilicas: A Critical Survey. Environmental Science & Technology, 2019, 53, 2758-2767.	4.6	36
457	Porous hypercrosslinked polymer-TiO2-graphene composite photocatalysts for visible-light-driven CO2 conversion. Nature Communications, 2019, 10, 676.	5.8	278
458	Toward Understanding the Kinetics of CO ₂ Capture on Sodium Carbonate. ACS Applied Materials & Interfaces, 2019, 11, 9033-9041.	4.0	21
459	Development of Amine-Functionalized Silica Foams with Hierarchical Pore Structure for CO ₂ Capture. Energy & amp; Fuels, 2019, 33, 3357-3369.	2.5	18
460	Nanopore structure of deep-burial coals explored by AFM. Fuel, 2019, 246, 9-17.	3.4	107
461	A review on strategies to LDH-based materials to improve adsorption capacity and photoreduction efficiency for CO2. Coordination Chemistry Reviews, 2019, 386, 154-182.	9.5	187
462	Interaction of Pristine Hydrocalumite-Like Layered Double Hydroxides with Carbon Dioxide. ACS Omega, 2019, 4, 3198-3204.	1.6	8
463	Molecular Insights into Carbon Dioxide Sorption in Hydrazone-Based Covalent Organic Frameworks with Tertiary Amine Moieties. Chemistry of Materials, 2019, 31, 1946-1955.	3.2	71
464	Synergetic promotion by oxygen doping and Ca decoration on graphene for CO ₂ selective adsorption. Physical Chemistry Chemical Physics, 2019, 21, 5133-5141.	1.3	22
465	Roles for K2CO3 doping on elevated temperature CO2 adsorption of potassium promoted layered double oxides. Chemical Engineering Journal, 2019, 366, 181-191.	6.6	35
466	Furfuryl alcohol-derived carbon monoliths for CO2 capture: adsorption isotherm and kinetic study. IOP Conference Series: Materials Science and Engineering, 2019, 625, 012014.	0.3	2
467	Formation of large clusters of CO ₂ around anions: DFT study reveals cooperative CO ₂ adsorption. Physical Chemistry Chemical Physics, 2019, 21, 23143-23153.	1.3	15
468	Fabrication of hierarchically porous MIL-88-NH ₂ (Fe): a highly efficient catalyst for the chemical fixation of CO ₂ under ambient pressure. Inorganic Chemistry Frontiers, 2019, 6, 3613-3620.	3.0	27
469	Recent Innovation of Metal-Organic Frameworks for Carbon Dioxide Photocatalytic Reduction. Polymers, 2019, 11, 2090.	2.0	46
470	Faradaic electro-swing reactive adsorption for CO ₂ capture. Energy and Environmental Science, 2019, 12, 3530-3547.	15.6	147
471	Impregnation of hydrotalcite with NaNO3 for enhanced high-temperature CO2 sorption uptake. Chemical Engineering Journal, 2019, 356, 964-972.	6.6	16
472	Towards a cleaner natural gas production: recent developments on purification technologies. Separation Science and Technology, 2019, 54, 2461-2497.	1.3	6

#	Article	IF	CITATIONS
473	Biogas upgrading to methane: Application of a regenerable polyethyleneimine-impregnated polymeric resin (NKA-9) via CO2 sorption. Chemical Engineering Journal, 2019, 361, 294-303.	6.6	47
474	A combined experimental and theoretical study on gas adsorption performance of amine and amide porous polymers. Microporous and Mesoporous Materials, 2019, 279, 61-72.	2.2	15
475	Unexpected Highly Reversible Lithium-Silicate-Based CO ₂ Sorbents Derived from Sediment of Dianchi Lake. Energy & Fuels, 2019, 33, 1734-1744.	2.5	18
476	CO2 capture by Li4SiO4 sorbents and their applications: Current developments and new trends. Chemical Engineering Journal, 2019, 359, 604-625.	6.6	142
477	Selective preparation of biomass-derived porous carbon with controllable pore sizes toward highly efficient CO2 capture. Chemical Engineering Journal, 2019, 360, 250-259.	6.6	172
478	Packed and fluidized bed absorber modeling for carbon capture with micro-encapsulated sodium carbonate solution. Applied Energy, 2019, 235, 1192-1204.	5.1	24
479	Synthesis of elevated temperature CO2 adsorbents from aqueous miscible organic-layered double hydroxides. Energy, 2019, 167, 960-969.	4.5	34
480	CO2 adsorption using amino acid ionic liquid-impregnated mesoporous silica sorbents with different textural properties. Microporous and Mesoporous Materials, 2019, 278, 378-386.	2.2	32
481	Device-scale computational fluid dynamics modeling of carbon dioxide absorption using encapsulated sorbents. Powder Technology, 2019, 344, 590-597.	2.1	8
482	Time-Resolved Synchrotron Powder X-ray Diffraction Studies on the Synthesis of Li ₈ SiO ₆ and Its Reaction with CO ₂ . Inorganic Chemistry, 2019, 58, 1040-1047.	1.9	11
483	Poplar catkin-derived self-templated synthesis of N-doped hierarchical porous carbon microtubes for effective CO2 capture. Chemical Engineering Journal, 2019, 358, 1507-1518.	6.6	103
484	Exceptionally High CO ₂ Adsorption at 273 K by Microporous Carbons from Phenolic Aerogels: The Role of Heteroatoms in Comparison with Carbons from Polybenzoxazine and Other Organic Aerogels. Macromolecular Chemistry and Physics, 2019, 220, 1800333.	1.1	25
485	Structuring ZIF-8-based hybrid material with hierarchical pores by in situ synthesis and thermal treatment for enhancement of CO2 uptake. Journal of Solid State Chemistry, 2019, 269, 507-512.	1.4	33
486	Plasma-catalytic hybrid process for CO2 methanation: optimization of operation parameters. Reaction Kinetics, Mechanisms and Catalysis, 2019, 126, 629-643.	0.8	27
487	Applications of fly ash for CO2 capture, utilization, and storage. Journal of CO2 Utilization, 2019, 29, 82-102.	3.3	234
488	Multicycle CO2 capture activity and fluidizability of Al-based synthesized CaO sorbents. Chemical Engineering Journal, 2019, 358, 679-690.	6.6	90
489	Li-LSX-zeolite evaluation for post-combustion CO2 capture. Chemical Engineering Journal, 2019, 358, 1351-1362.	6.6	36
	Copper benzene-1,3,5-tricarboxylate (Cu-BTC) metal-organic framework (MOF) and porous carbon		

		CITATION REPORT		
#	Article		IF	Citations
491	Porous extruded-spheronized Li4SiO4 pellets for cyclic CO2 capture. Fuel, 2019, 236,	1043-1049.	3.4	54
492	Carbon Dioxide Capture Using Amine Functionalized Hydrothermal Carbons from Tech Waste and Biomass Valorization, 2019, 10, 2725-2731.	nical Lignin.	1.8	10
493	Improved CO2 recovery from flue gas by layered bed Vacuum Swing Adsorption (VSA). Purification Technology, 2020, 234, 115594.	Separation and	3.9	18
494	Characterization of oil palm trunk biocoal and its suitability for solid fuel applications. Conversion and Biorefinery, 2020, 10, 45-55.	Biomass	2.9	23
495	CO2–CO capture and kinetic analyses of sodium cobaltate under various partial pres Adsorption, 2020, 26, 781-792.	ssures.	1.4	2
496	Iron mesh-supported vertically aligned Co-Fe layered double oxide as a novel monolithi catalytic oxidation of toluene. Chemical Engineering Journal, 2020, 384, 123284.	c catalyst for	6.6	62
497	Enhancement of sintering resistance of CaO-based sorbents using industrial waste reso Ca-looping in the cement industry. Separation and Purification Technology, 2020, 235		3.9	23
498	Preparation of spherical Li4SiO4 pellets by novel agar method for high-temperature CC Chemical Engineering Journal, 2020, 380, 122538.	02 capture.	6.6	47
499	Imine-linked polymer/silica composites for CO2 sequestration. Materials Chemistry and 239, 121995.	ł Physics, 2020,	2.0	11
500	Fabrication of efficient and stable Li4SiO4-based sorbent pellets via extrusion-spheronicyclic CO2 capture. Chemical Engineering Journal, 2020, 379, 122385.	zation for	6.6	92
501	Dry hydrated potassium carbonate for effective CO ₂ capture. Dalton Trar 49, 3965-3969.	isactions, 2020,	1.6	5
502	Development of KNaTiO3 as a novel high-temperature CO2 capturing material with fas and high reversible sorption capacity. Chemical Engineering Journal, 2020, 380, 12244	t sorption rate 4.	6.6	14
503	K2CO3 promoted novel Li4SiO4-based sorbents from sepiolite with high CO2 capture different CO2 partial pressures. Chemical Engineering Journal, 2020, 380, 122515.	capacity under	6.6	38
504	Application of elevated temperature pressure swing adsorption in hydrogen production Adsorption, 2020, 26, 1227-1237.	n from syngas.	1.4	3
505	High and efficient carbon dioxide chemisorption on a new high lithium-content ceramic cobaltate (Li6CoO4). Chemical Engineering Journal, 2020, 384, 123291.	:; hexalithium	6.6	19
506	New insights into CO2 sorption on biochar/Fe oxyhydroxide composites: Kinetics, mec situ characterization. Chemical Engineering Journal, 2020, 384, 123289.	hanisms, and in	6.6	28
507	Pre arbonization: An Efficient Route to Improve the Textural and Gas Sorption Prop Nitrogenâ€Enriched Nanoporous Polytriazine. ChemNanoMat, 2020, 6, 113-117.	erties of	1.5	7
508	Integrated transcriptome and physiology analysis of Microcystis aeruginosa after expo sulfate. Journal of Oceanology and Limnology, 2020, 38, 102-113.	sure to copper	0.6	17

#	Article	IF	CITATIONS
509	Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO ₂ Separation. Angewandte Chemie - International Edition, 2020, 59, 6068-6073.	7.2	50
510	Development of an effective bi-functional Ni–CaO catalyst-sorbent for the sorption-enhanced water gas shift reaction through structural optimization and the controlled deposition of a stabilizer by atomic layer deposition. Sustainable Energy and Fuels, 2020, 4, 713-729.	2.5	20
511	Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO ₂ Separation. Angewandte Chemie, 2020, 132, 6124-6129.	1.6	15
512	The effect of the layer-interlayer chemistry of LDHs on developing high temperature carbon capture materials. Dalton Transactions, 2020, 49, 923-931.	1.6	12
513	Lignocellulose-based adsorbents: A spotlight review of the effective parameters on carbon dioxide capture process. Chemosphere, 2020, 246, 125756.	4.2	40
514	CO2 capture performance and environmental impact of copolymers of ethylene glycol dimethacrylate with acrylamide, methacrylamide and triallylamine. Journal of Environmental Chemical Engineering, 2020, 8, 103536.	3.3	6
515	CaO-Based CO ₂ Sorbents with a Hierarchical Porous Structure Made via Microfluidic Droplet Templating. Industrial & Engineering Chemistry Research, 2020, 59, 7182-7188.	1.8	29
516	Efficient CO ₂ adsorption using mesoporous carbons from biowastes. Materials Research Express, 2020, 7, 015605.	0.8	10
517	Efficient carbon dioxide capture by nitrogen and sulfur dual-doped mesoporous carbon spheres from polybenzoxazines synthesized by a simple strategy. Journal of Environmental Chemical Engineering, 2020, 8, 103614.	3.3	23
518	Catalytic activity of SAPO-34 molecular sieves prepared by using palygorskite in the synthesis of light olefins via CO2 hydrogenation. Applied Clay Science, 2020, 184, 105392.	2.6	25
519	Kinetic study of CO2 capture on ternary nitrates modified MgO with different precursor and morphology. Chemical Engineering Journal, 2020, 392, 123752.	6.6	27
520	Toward a Mechanistic Understanding and Optimization of Molten Alkali Metal Borates (A _{<i>x</i>} B _{1–<i>x</i>} O _{1.5–<i>x</i>}) for High-Temperature CO ₂ Capture. Chemistry of Materials, 2020, 32, 348-359.	3.2	21
521	Charge-modulated/electric-field controlled reversible CO2/H2 capture and storage on metal-free N-doped penta-graphene. Chemical Engineering Journal, 2020, 391, 123577.	6.6	35
522	Synthesis, characterisation and CO2 adsorption potential of NaA and NaX zeolites and hydrotalcite obtained from the same coal fly ash. Journal of CO2 Utilization, 2020, 36, 220-230.	3.3	76
523	Promotional role of MgO on sorptionâ€enhanced steam reforming of ethanol over Ni/CaO catalysts. AICHE Journal, 2020, 66, e16877.	1.8	31
524	CO ₂ green technologies in CO ₂ capture and direct utilization processes: methanation, reverse water-gas shift, and dry reforming of methane. Sustainable Energy and Fuels, 2020, 4, 5543-5549.	2.5	48
525	Microporous carbon nanoflakes derived from biomass cork waste for CO2 capture. Science of the Total Environment, 2020, 748, 142465.	3.9	40
526	Covalent Amine Tethering on Ketone Modified Porous Organic Polymers for Enhanced CO ₂ Capture. ChemSusChem, 2020, 13, 6433-6441.	3.6	18

#	Article	IF	CITATIONS
527	Ionothermal carbonization in [Bmim][FeCl ₄]: an opportunity for the valorization of raw lignocellulosic agrowastes into advanced porous carbons for CO ₂ capture. Green Chemistry, 2020, 22, 5423-5436.	4.6	24
528	CO2 capture and separation on charge-modulated calcite. Applied Surface Science, 2020, 530, 147265.	3.1	54
529	CO fuel and Î ³ -LiAlO2 production through alkali carbonate-assisted CO2 splitting by reusing aluminum wastes. Journal of CO2 Utilization, 2020, 39, 101168.	3.3	1
530	Advanced aerosol technologies towards structure and morphologically controlled next-generation catalytic materials. Journal of Aerosol Science, 2020, 149, 105608.	1.8	30
531	A novel integrated CO ₂ capture and direct methanation process using Ni/CaO catal-sorbents. Sustainable Energy and Fuels, 2020, 4, 4679-4687.	2.5	45
532	Combustion Products of Calcium Carbide Reused by Cu-Based Catalysts for Acetylene Carbonylation. ACS Omega, 2020, 5, 27692-27701.	1.6	3
533	The CO2 adsorption behavior study on activated carbon synthesized from olive waste. Journal of CO2 Utilization, 2020, 42, 101292.	3.3	31
534	WO3.1/3H2O nanorods/nanoplates: Growth mechanism and CO2 uptake. Materialia, 2020, 14, 100943.	1.3	2
535	An amine-bifunctionalization strategy with Beta/KIT-6 composite as a support for CO ₂ adsorbent preparation. RSC Advances, 2020, 10, 34187-34196.	1.7	16
536	CO2 adsorption by functionalized sorbents. , 2020, , 229-240.		3
536 537		1.0	3
	CO2 adsorption by functionalized sorbents. , 2020, , 229-240. Water Based Synthesis of ZIF-8 Assisted by Hydrogen Bond Acceptors and Enhancement of CO2 Uptake	1.0	
537	CO2 adsorption by functionalized sorbents. , 2020, , 229-240. Water Based Synthesis of ZIF-8 Assisted by Hydrogen Bond Acceptors and Enhancement of CO2 Uptake by Solvent Assisted Ligand Exchange. Crystals, 2020, 10, 599. CO2 capture and fluidity performance of CaO-based sorbents: Effect of Zr, Al and Ce additives in tri-,		16
537 538	CO2 adsorption by functionalized sorbents. , 2020, , 229-240. Water Based Synthesis of ZIF-8 Assisted by Hydrogen Bond Acceptors and Enhancement of CO2 Uptake by Solvent Assisted Ligand Exchange. Crystals, 2020, 10, 599. CO2 capture and fluidity performance of CaO-based sorbents: Effect of Zr, Al and Ce additives in tri-, bi- and mono-metallic configurations. Chemical Engineering Research and Design, 2020, 144, 349-365. Two urea-functionalized pcu metal–organic frameworks based on a pillared-layer strategy for	2.7	16 53
537 538 539	CO2 adsorption by functionalized sorbents. , 2020, , 229-240. Water Based Synthesis of ZIF-8 Assisted by Hydrogen Bond Acceptors and Enhancement of CO2 Uptake by Solvent Assisted Ligand Exchange. Crystals, 2020, 10, 599. CO2 capture and fluidity performance of CaO-based sorbents: Effect of Zr, Al and Ce additives in tri-, bi- and mono-metallic configurations. Chemical Engineering Research and Design, 2020, 144, 349-365. Two urea-functionalized pcu metal–organic frameworks based on a pillared-layer strategy for gas adsorption and separation. Inorganic Chemistry Frontiers, 2020, 7, 3500-3508. Effect of Extended Aging and Oxidation on Linear Poly(propylenimine)-Mesoporous Silica Composites for CO ₂ Capture from Simulated Air and Flue Gas Streams. ACS Applied Materials & amp;	2.7 3.0	16 53 23
537 538 539 540	CO2 adsorption by functionalized sorbents. , 2020, , 229-240. Water Based Synthesis of ZIF-8 Assisted by Hydrogen Bond Acceptors and Enhancement of CO2 Uptake by Solvent Assisted Ligand Exchange. Crystals, 2020, 10, 599. CO2 capture and fluidity performance of CaO-based sorbents: Effect of Zr, Al and Ce additives in tri-, bi- and mono-metallic configurations. Chemical Engineering Research and Design, 2020, 144, 349-365. Two urea-functionalized pcu metal–organic frameworks based on a pillared-layer strategy for gas adsorption and separation. Inorganic Chemistry Frontiers, 2020, 7, 3500-3508. Effect of Extended Aging and Oxidation on Linear Poly(propylenimine)-Mesoporous Silica Composites for CO ₂ Capture from Simulated Air and Flue Gas Streams. ACS Applied Materials & amp; Interfaces, 2020, 12, 38085-38097. Effect of Varying Amine Functionalities on CO2 Capture of Carboxylated Graphene Oxide-Based	2.7 3.0 4.0	16 53 23 46
537 538 539 540 541	CO2 adsorption by functionalized sorbents. , 2020, , 229-240. Water Based Synthesis of ZIF-8 Assisted by Hydrogen Bond Acceptors and Enhancement of CO2 Uptake by Solvent Assisted Ligand Exchange. Crystals, 2020, 10, 599. CO2 capture and fluidity performance of CaO-based sorbents: Effect of Zr, AI and Ce additives in tri-, bi- and mono-metallic configurations. Chemical Engineering Research and Design, 2020, 144, 349-365. Two urea-functionalized pcu metal–organic frameworks based on a pillared-layer strategy for gas adsorption and separation. Inorganic Chemistry Frontiers, 2020, 7, 3500-3508. Effect of Extended Aging and Oxidation on Linear Poly(propylenimine)-Mesoporous Silica Composites for CO ₂ Capture from Simulated Air and Flue Gas Streams. ACS Applied Materials & Interfaces, 2020, 12, 38085-38097. Effect of Varying Amine Functionalities on CO2 Capture of Carboxylated Graphene Oxide-Based Cryogels. Nanomaterials, 2020, 10, 1446. Design and development of 3D hierarchical ultra-microporous CO2-sieving carbon architectures for potential flow-through CO2 capture at typical practical flue gas temperatures. Journal of Materials	2.7 3.0 4.0 1.9	 16 53 23 46 25

ARTICLE IF CITATIONS Isotherm and kinetics modeling of simultaneous CO2 and H2O adsorption on an amine-functionalized 545 2.1 11 solid sorbent. Journal of Natural Gas Science and Engineering, 2020, 84, 103489. First-principles evaluation of the potential of using Mg2SiO4, Mg2VO4, and Mg2GeO4 for CO2 capture. 546 3.3 Journ'al of CO2 Utilization, 2020, 42, 101293. Rational design of multistage drug delivery vehicles for pulmonary RNA interference therapy. 547 9 2.6 International Journal of Pharmaceutics, 2020, 591, 119989. Preparation of CO2 adsorbent with N1-(3-(trimethoxysilyl)propyl)-1,3-propanediamine and its performance. Korean Journal of Chemical Engineering, 2020, 37, 1515-1521. 548 1.2 H₂O-prompted CO₂ capture on metal silicates <i>in situ</i> generated from 549 1.7 3 SBA-15. RSC Advances, 2020, 10, 28731-28740. Preparation of an Amine-Modified Cellulose Nanocrystal Aerogel by Chemical Vapor Deposition and Its Application in CO₂ Capture. Industrial & amp; Engineering Chemistry Research, 2020, 59, 1.8 16660-16668. Acid-Modulated Synthesis of High Surface Area Amine-Functionalized MIL-101(Cr) Nanoparticles for 551 1.8 18 CO₂ Separations. Industrial & amp; Engineering Chemistry Research, 2020, 59, 18139-18150. Unravelling the role of alkaline earth metal carbonates in intermediate temperature CO₂ capture using alkali metal salt-promoted MgO-based sorbents. Journal of Materials Chemistry A, 2020, 8, 18280-18291. 5.2 Improving the Cu/ZnO-Based Catalysts for Carbon Dioxide Hydrogenation to Methanol, and the Use of 553 1.2 39 Methanol As a Renewable Energy Storage Media. Frontiers in Energy Research, 2020, 8, . Assessing CO2 Adsorption on Amino-Functionalized Mesocellular Foams Synthesized at Different 554 1.8 Aging Temperatures. Frontiers in Chemistry, 2020, 8, 591766. CO₂-Responsive Water-Soluble Conjugated Polymers for <i>In Vitro</i> and <i>In Vivo</i> 555 2.6 8 Biological Imaging. Biomacromolecules, 2020, 21, 5282-5291. Evaluation of Calcium-Based Sorbents Derived from Natural Ores and Industrial Wastes for High-Temperature CO₂ Capture. Industrial & amp; Engineering Chemistry Research, 2020, 59, 556 1.8 9926-9938. Incorporation of CaO into inert supports for enhanced CO2 capture: A review. Chemical Engineering 557 6.6 92 Journal, 2020, 396, 125253. Multi-Metals CaMgAl Metal-Organic Framework as CaO-based Sorbent to Achieve Highly CO2 Capture 1.3 Capacity and Cyclic Performance. Materials, 2020, 13, 2220. Engineered Porous Nanocomposites That Deliver Remarkably Low Carbon Capture Energy Costs. Cell 559 2.8 26 Reports Physical Science, 2020, 1, 100070. Nanoconfinement of metal oxide MgO and ZnO in zeolitic imidazolate framework ZIF-8 for CO2 adsorption and regeneration. Journal of Hazardous Materials, 2020, 400, 122974. Recent advances in layered double hydroxides (LDHs) derived catalysts for selective catalytic 561 6.5 53 reduction of NOx with NH3. Journal of Hazardous Materials, 2020, 400, 123260. Metal and Coâ€Catalyst Free CO 2 Conversion with a Bifunctional Covalent Organic Framework (COF). 1.8 ChemCatChem, 2020, 12, 5192-5199.

#	Article	IF	CITATIONS
563	Introduction of cross-linking agents to enhance the performance and chemical stability of polyethyleneimine-impregnated CO2 adsorbents: Effect of different alkyl chain lengths. Chemical Engineering Journal, 2020, 398, 125531.	6.6	21
564	Assessing the environmental impact and payback of carbon nanotube supported CO2 capture technologies using LCA methodology. Journal of Cleaner Production, 2020, 270, 122465.	4.6	26
565	Long effective tea tree oil/mesoporous silica sustained release system decorated by polyethyleneimine with high antibacterial performance. Journal of Dispersion Science and Technology, 0, , 1-12.	1.3	5
566	Lower-Threshold Ionization in Laser Channel Propagation. Russian Physics Journal, 2020, 63, 338-343.	0.2	1
567	Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous adsorbents: A review. Journal of Environmental Chemical Engineering, 2020, 8, 104142.	3.3	142
568	Coupling experiment and simulation analysis to investigate physical parameters of CO ₂ methanation in a plasmaâ€catalytic hybrid process. Plasma Processes and Polymers, 2020, 17, 1900261.	1.6	13
569	Progress in the CO2 Capture Technologies for Fluid Catalytic Cracking (FCC) Units—A Review. Frontiers in Energy Research, 2020, 8, .	1.2	20
570	A Molecular Foaming and Activation Strategy to Porous N-Doped Carbon Foams for Supercapacitors and CO2 Capture. Nano-Micro Letters, 2020, 12, 58.	14.4	45
571	Development of CO2 capture capacity by using impregnation method in base condition for K2CO3/Al2O3. Energy Reports, 2020, 6, 25-31.	2.5	8
572	NaNO ₃ â€Promoted Mesoporous MgO for High apacity CO ₂ Capture from Simulated Flue Gas with Isothermal Regeneration. ChemSusChem, 2020, 13, 2988-2995.	3.6	30
573	A novel C ₆ N ₂ monolayer as a potential material for charge-controlled CO ₂ capture. Journal of Materials Chemistry C, 2020, 8, 6542-6551.	2.7	23
574	Tailored Gas Adsorption Properties of Electrospun Carbon Nanofibers for Gas Separation and Storage. ChemSusChem, 2020, 13, 3180-3191.	3.6	40
575	New Metrics of Green Sorbents for CO ₂ Capturing. Advanced Sustainable Systems, 2020, 4, 1900121.	2.7	13
576	Highâ€ŧemperature CO ₂ adsorption over Li ₄ SiO ₄ sorbents derived from different lithium sources. Canadian Journal of Chemical Engineering, 2020, 98, 1495-1500.	0.9	11
577	Mechanistic and Experimental Study of the Formation of MoS ₂ /HKUST-1 Core–Shell Composites on MoS ₂ Quantum Dots with an Enhanced CO ₂ Adsorption Capacity. Industrial & Engineering Chemistry Research, 2020, 59, 5808-5817.	1.8	12
578	Construction of a hierarchical-structured MgO-carbon nanocomposite from a metal–organic complex for efficient CO2 capture and organic pollutant removal. Dalton Transactions, 2020, 49, 5183-5191.	1.6	18
579	Unveiling the carbonation mechanism in molten salt-promoted MgO-Al2O3 sorbents. Journal of CO2 Utilization, 2020, 39, 101153.	3.3	9
580	Computational fluid dynamic simulation modeling of carbon capture using polyethylenimine impregnated protonated titanate nanotubes. Energy Science and Engineering, 2020, 8, 2311-2321.	1.9	1

#	Article	IF	CITATIONS
581	Synergistic dual-Li+ sites for CO2 separation in metal-organic framework composites. Chemical Engineering Journal, 2020, 402, 126201.	6.6	17
582	Enhanced CO2 adsorption of MgO with alkali metal nitrates and carbonates. Applied Energy, 2020, 263, 114681.	5.1	49
583	Cyclic performance evaluation of a polyethylenimine/silica adsorbent with steam regeneration using simulated NGCC flue gas and actual flue gas of a gas-fired boiler in a bubbling fluidized bed reactor. International Journal of Greenhouse Gas Control, 2020, 95, 102975.	2.3	6
584	Epoxide-Functionalization of Grafted Tetraethylenepentamine on the Framework of an Acrylate Copolymer as a CO ₂ Sorbent with Long Cycle Stability. ACS Sustainable Chemistry and Engineering, 2020, 8, 3853-3864.	3.2	24
585	Metal-Free Modified Boron Nitride for Enhanced CO2 Capture. Energies, 2020, 13, 549.	1.6	5
586	An active and stable nickel-based catalyst with embedment structure for CO2 methanation. Applied Catalysis B: Environmental, 2020, 269, 118801.	10.8	84
587	Non-precious molybdenum nanospheres as a novel cocatalyst for full-spectrum-driven photocatalytic CO2 reforming to CH4. Journal of Hazardous Materials, 2020, 393, 122324.	6.5	39
588	Materials and logistics for carbon dioxide capture, storage and utilization. Science of the Total Environment, 2020, 717, 137221.	3.9	77
589	A facile method for in situ fabrication of silica/cellulose aerogels and their application in CO2 capture. Carbohydrate Polymers, 2020, 236, 116079.	5.1	35
590	Coupled gravimetric, manometric and calorimetric study of CO2, N2 and CH4 adsorption on zeolites for the assessment of classical equilibrium models. Adsorption, 2020, 26, 1137-1152.	1.4	5
591	CO2 selective separation of Pebax-based mixed matrix membranes (MMMs) accelerated by silica nanoparticle organic hybrid materials (NOHMs). Separation and Purification Technology, 2020, 241, 116708.	3.9	41
592	Gas phase synthesis of aminated nanocellulose aerogel for carbon dioxide adsorption. Cellulose, 2020, 27, 2953-2958.	2.4	29
593	Charge-regulated CO2 capture capacity of metal atom embedded graphyne: A first-principles study. Applied Surface Science, 2020, 509, 145392.	3.1	79
594	Understanding the morphology of supported Na2CO3/Î ³ -AlOOH solid sorbent and its CO2 sorption performance. Chemical Engineering Journal, 2020, 395, 124139.	6.6	12
595	Intercalation Effect in NiAl-layered Double Hydroxide Nanosheets for CO2 Reduction Under Visible Light. Chemical Research in Chinese Universities, 2020, 36, 127-133.	1.3	16
596	The Aminosilane Functionalization of Cellulose Nanofibrils and the Mechanical and CO ₂ Adsorption Characteristics of Their Aerogel. Industrial & Engineering Chemistry Research, 2020, 59, 2874-2882.	1.8	28
597	Covalent organic frameworks for separation applications. Chemical Society Reviews, 2020, 49, 708-735.	18.7	804
598	Recent advance on VOCs oxidation over layered double hydroxides derived mixed metal oxides. Chinese Journal of Catalysis, 2020, 41, 550-560.	6.9	61

#	Article	IF	CITATIONS
599	Amineâ€functionalized ordered mesoporous silicas as model materials for liquid phase acid capture. AICHE Journal, 2020, 66, e16918.	1.8	4
600	Investigation on Naphthalene and Its Derivativesâ€Based Microporous Organic Hyperâ€Crossâ€Linked Polymers via Different Methodologies. Macromolecular Chemistry and Physics, 2020, 221, 1900302.	1.1	6
601	Metal–organic frameworks for the chemical fixation of CO2 into cyclic carbonates. Coordination Chemistry Reviews, 2020, 408, 213173.	9.5	272
602	Process intensification technologies for CO2 capture and conversion – a review. BMC Chemical Engineering, 2020, 2, .	3.4	62
603	Anion-regulated selective growth ultrafine copper templates in carbon nanosheets network toward highly efficient gas capture. Journal of Colloid and Interface Science, 2020, 564, 296-302.	5.0	17
604	Adsorption of CO2 in presence of NOx and SOx on activated carbon textile for CO2 capture in post-combustion conditions. Adsorption, 2020, 26, 1173-1181.	1.4	2
605	Ionic liquids with multiple active sites supported by SBA-15 for catalyzing conversion of CO2 into cyclic carbonates. Journal of CO2 Utilization, 2020, 39, 101162.	3.3	60
606	Plasma-Modified N/O-Doped Porous Carbon for CO ₂ Capture: An Experimental and Theoretical Study. Energy & Fuels, 2020, 34, 6077-6084.	2.5	42
607	Reduced Graphene Oxide/Polymer Monolithic Materials for Selective CO2 Capture. Polymers, 2020, 12, 936.	2.0	26
608	Bench-Scale Demonstration of Molten Alkali Metal Borates for High-Temperature CO ₂ Capture. Industrial & Engineering Chemistry Research, 2020, 59, 8937-8945.	1.8	14
609	Acid Gas Capture at High Temperatures Using Molten Alkali Metal Borates. Environmental Science & Technology, 2020, 54, 6319-6328.	4.6	11
610	Mechanochemically activated Li4SiO4-based adsorbent with enhanced CO2 capture performance and its modification mechanisms. Fuel, 2020, 273, 117749.	3.4	13
611	Progress of hydrogen gas generation by reaction between iron and steel powder and carbonate water in the temperature range near room temperature. International Journal of Hydrogen Energy, 2020, 45, 13832-13840.	3.8	6
612	Effect of structural promoters on calcium based sorbents from waste derived sources. Materials Today Communications, 2020, 24, 101075.	0.9	3
613	Evaluation of different potassium salts as activators for hierarchically porous carbons and their applications in CO2 adsorption. Journal of Colloid and Interface Science, 2021, 583, 40-49.	5.0	54
614	Regeneration reaction characteristics and mechanism model of K ₂ CO ₃ /Al ₂ O ₃ sorbent for CO ₂ capture. Asia-Pacific Journal of Chemical Engineering, 2021, 16, .	0.8	0
615	General approach to facile synthesis of MgO-based porous ultrathin nanosheets enabling high-efficiency CO2 capture. Chemical Engineering Journal, 2021, 404, 126459.	6.6	34
616	Single step fabrication of spherical CaO pellets via novel agar-assisted moulding technique for high-temperature CO2 capture. Chemical Engineering Journal, 2021, 404, 127137.	6.6	18

#	Article	IF	CITATIONS
617	Effect of calcium ferrites on carbon dioxide gasification reactivity and kinetics of pine wood derived char. Renewable Energy, 2021, 163, 445-452.	4.3	19
618	Biomass-derived microporous adsorbents for selective CO2 capture. , 2021, , 661-679.		3
619	Cesium Ionâ€Mediated Microporous Carbon for CO ₂ Capture and Lithiumâ€lon Storage. ChemNanoMat, 2021, 7, 150-157.	1.5	6
620	Experiment and regeneration kinetic model study on CO2 adsorbent prepared from fly ash. Chemical Engineering Journal, 2021, 421, 127865.	6.6	15
621	Specific Li+ sites in a nanoporous carbon for enhanced light hydrocarbons storage and separation: GCMC and DFT simulations. Fuel, 2021, 288, 119647.	3.4	9
622	New insight into absorption characteristics of CO2 on the surface of calcite, dolomite, and magnesite. Applied Surface Science, 2021, 540, 148320.	3.1	50
623	Magnesium oxide-based adsorbents for carbon dioxide capture: Current progress and future opportunities. Journal of CO2 Utilization, 2021, 43, 101357.	3.3	61
624	Mitigation of CO2 emissions by hydrotalcites of Mg3Al-CO3 at 0°C and high pressure. Applied Clay Science, 2021, 202, 105950.	2.6	7
625	Effect of surface chemistry on the uptake of lignin-derived aromatic molecules on ordered mesoporous silica. Microporous and Mesoporous Materials, 2021, 313, 110809.	2.2	1
626	Heterojunction-redox catalysts of Fe _x Co _y Mg ₁₀ CaO for high-temperature CO ₂ capture and <i>in situ</i> conversion in the context of green manufacturing. Energy and Environmental Science, 2021, 14, 2291-2301.	15.6	86
627	Heteroatom-doped porous carbons exhibit superior CO2 capture and CO2/N2 selectivity: Understanding the contribution of functional groups and pore structure. Separation and Purification Technology, 2021, 259, 118065.	3.9	57
628	Inquiry for the multifunctional design of metal–organic frameworks: in situ equipping additional open metal sites (OMSs) inducing high CO2 capture/conversion abilities. Materials Chemistry Frontiers, 2021, 5, 1398-1404.	3.2	10
629	Capture of carbon dioxide using solid carbonaceous and non-carbonaceous adsorbents: a review. Environmental Chemistry Letters, 2021, 19, 851-873.	8.3	40
630	Wet chemically derived Li4SiO4 nanowires as efficient CO2 sorbents at intermediate temperatures. Chemical Engineering Journal, 2021, 406, 126731.	6.6	17
631	Rational design of silicas with meso-macroporosity as supports for high-performance solid amine CO2 adsorbents. Energy, 2021, 214, 119093.	4.5	31
632	Novel Systems and Membrane Technologies for Carbon Capture. International Journal of Chemical Engineering, 2021, 2021, 1-23.	1.4	10
633	Thermodynamics and kinetics analyses of high CO ₂ absorption properties of Li ₃ NaSiO ₄ under various CO ₂ partial pressures. Dalton Transactions, 2021, 50, 5301-5310.	1.6	5
634	Graphene-based Macroassemblies as Highly Efficient and Selective Adsorbents for Postcombustion CO2 Capture. Chemistry in the Environment, 2021, , 384-395.	0.2	0

# 635	ARTICLE One-Step Synthesis of Solid–Liquid Composite Microsphere for CO ₂ Capture. ACS Applied Materials & Interfaces, 2021, 13, 5814-5822.	lF 4.0	Citations 14
636	Conversion of carbon dioxide to valuable compounds. , 2021, , 307-352.		0
637	Adsorptive removals of pollutants using aerogels and its composites. , 2021, , 171-199.		0
638	Unprecedented CO ₂ adsorption behaviour by 5A-type zeolite discovered in lower pressure region and at 300 K. Journal of Materials Chemistry A, 2021, 9, 7531-7545.	5.2	12
639	Porous polymers-based adsorbent materials for CO2 capture. , 2021, , 31-52.		3
640	PREPARATION OF CaO-BASED PELLET USING RICE HUSK ASH VIA GRANULATION METHOD FOR POTENTIAL CO2 CAPTURE. IIUM Engineering Journal, 2021, 22, 234-244.	0.5	1
641	Hybridization of MOFs and ionic POFs: a new strategy for the construction of bifunctional catalysts for CO ₂ cycloaddition. Green Chemistry, 2021, 23, 1766-1771.	4.6	26
642	High molecular weight polyethylenimine encapsulated into a porous polymer monolithic by one-step polymerization for CO ₂ capture. New Journal of Chemistry, 2021, 45, 12538-12548.	1.4	5
643	The inorganic cation-tailored "trapdoor―effect of silicoaluminophosphate zeolite for highly selective CO ₂ separation. Chemical Science, 2021, 12, 8803-8810.	3.7	32
644	Performance comparison among three types of adsorbents in CO2 adsorption and recovery from wet flue gas. Separation and Purification Technology, 2021, 257, 117922.	3.9	8
645	Enhanced and environment-friendly chemical looping gasification of crop straw using red mud as a sinter-resistant oxygen carrier. Waste Management, 2021, 121, 354-364.	3.7	43
646	Carbon Dioxide Capture and Utilization with Isomeric Forms of Bis(amino)â€Tagged Zinc Bipyrazolate Metal–Organic Frameworks. Chemistry - A European Journal, 2021, 27, 4746-4754.	1.7	11
647	Ultrahigh Nitric Oxide Capture by Tetrakis(azolyl)borate Ionic Liquid through Multiple-Sites Uniform Interaction. ACS Sustainable Chemistry and Engineering, 2021, 9, 3357-3362.	3.2	14
649	Nitrogen-doped hierarchically porous carbon spheres for low concentration CO2 capture. Journal of Energy Chemistry, 2021, 53, 168-174.	7.1	29
650	Enhanced Activity of Integrated CO ₂ Capture and Reduction to CH ₄ under Pressurized Conditions toward Atmospheric CO ₂ Utilization. ACS Sustainable Chemistry and Engineering, 2021, 9, 3452-3463.	3.2	66
651	Cost-Effective Nanoporous Hypercross-linked Polymers Could Drastically Promote the CO ₂ Absorption Rate in Amine-Based Solvents, Improving Energy-Efficient CO ₂ Capture. Industrial & Engineering Chemistry Research, 2021, 60, 3105-3114.	1.8	7
652	Advances in Postâ€Combustion CO ₂ Capture by Physical Adsorption: From Materials Innovation to Separation Practice. ChemSusChem, 2021, 14, 1428-1471.	3.6	75
653	Sepiolite-based adsorbents for carbon dioxide capture. Polish Journal of Chemical Technology, 2021, 23, 1-6.	0.3	2

ARTICLE IF CITATIONS Progress in Adsorption-Enhanced Hydrogenation of CO2 on Layered Double Hydroxide (LDH) Derived 2.9 35 654 Catalysts. Journal of Industrial and Engineering Chemistry, 2021, 95, 16-27. Ammonia production using iron nitride and water as hydrogen source under mild temperature and 3.8 pressure. International Journal of Hydrogen Energy, 2021, 46, 10642-10652. Biogas Upgrading via Cyclic CO₂ Adsorption: Application of Highly Regenerable PEI@nano-Al₂O₃ Adsorbents with Anti-Urea Properties. Environmental 656 4.6 42 Science & amp; Technology, 2021, 55, 5236-5247. A Pressure Swing Approach to Selective CO2 Sequestration Using Functionalized Hypercrosslinked 1.3 Polymers. Materials, 2021, 14, 1605. Molten Salt-Promoted MgO Adsorbents for CO₂ Capture: Transient Kinetic Studies. 658 4.6 30 Environmental Science & amp; Technology, 2021, 55, 4513-4521. Direct aromatization of CO2 via combined CO2 hydrogenation and zeolite-based acid catalysis. Journal 3.3 of CO2 Utilization, 2021, 45, 101405. Design of Graphene/Ionic Liquid Composites for Carbon Capture. ACS Applied Materials & amp; 660 4.0 17 Interfaces, 2021, 13, 17511-17516. Li4SiO4-based sorbents from expanded perlite for high-temperature CO2 capture. Chemical Engineering 6.6 Journal, 2021, 410, 128357. Enhanced stability and hydrophobicity of LiX@ZIF-8 composite synthesized environmental friendly for 662 22 6.6 CO2 capture in highly humid flue gas. Chemical Engineering Journal, 2021, 410, 128322. Three-dimensional amino acid backbone Cu-aspartate metal–organic framework as a catalyst for the cycloaddition of propylene oxide and CO2. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133, 0.8 425-439. Effect of particle size on in-situ desulfurization for oxy-fuel CFBC. Fuel, 2021, 291, 120270. 12 664 3.4 Study of CO₂ Sorption Kinetics on Electrospun Polyacrylonitrileâ€Based Carbon 0.9 Nanofibers. Chemical Engineering and Technology, 2021, 44, 1168-1177. Sorption enhanced gasification (SEG) of biomass for tailored syngas production with in-situ CO2 666 capture: Current status, process scale-up experiences and outlook. Renewable and Sustainable Energy 8.2 52 Reviews, 2021, 141, 110756. A kinetic study of CO2 sorption/desorption of lithium silicate synthesized through a ball milling method. Thermochimica Acta, 2021, 699, 178918. 1.2 Assessment of the Effect of Process Conditions and Material Characteristics of Alkali Metal Salt 668 Promoted MgO-Based Sorbents on Their CO₂ Capture Performance. ACS Sustainable 3.2 32 Chemistry and Engineering, 2021, 9, 6659-6672. Insights into Host–Guest Binding in Hydroquinone Clathrates: Single-Crystal X-ray and Neutron Diffraction, and Complementary Computational Studies on the Hydroquinone-CO₂ 1.4 Clathrate. Crystal Growth and Design, 2021, 21, 3477-3486. Understanding the Effect of Water on CO₂ Adsorption. Chemical Reviews, 2021, 121, 670 23.0 194 7280-7345. Production and characterization of bamboo-based activated carbon through single-step H3PO4 671 activation for CO2 capture. Environmental Science and Pollution Research, 2022, 29, 12434-12440.

#	Article	IF	CITATIONS
672	Effect of micropores on CO2 capture in ordered mesoporous CMK-3 carbon at atmospheric pressure. Adsorption, 2021, 27, 1221-1236.	1.4	16
673	Amine or Azo functionalized hypercrosslinked polymers for highly efficient CO2 capture and selective CO2 capture. Materials Today Communications, 2021, 27, 102338.	0.9	7
674	Long‣ived Liquid Marbles for Green Applications. Advanced Functional Materials, 2021, 31, 2011198.	7.8	26
675	Peering into buried interfaces with X-rays and electrons to unveil MgCO ₃ formation during CO ₂ capture in molten salt-promoted MgO. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	26
676	Sorbents for the Capture of CO ₂ and Other Acid Gases: A Review. Industrial & Engineering Chemistry Research, 2021, 60, 9313-9346.	1.8	55
677	Development of facile synthesized mesoporous carbon composite adsorbent for efficient CO2 capture. Journal of CO2 Utilization, 2021, 50, 101612.	3.3	13
678	Graphene - based membranes for carbon dioxide separation. Journal of CO2 Utilization, 2021, 49, 101544.	3.3	16
679	Time-Saving and Cheap Strategy To Prepare Large Mesoporous Materials for Efficient CO ₂ Adsorption. Industrial & Engineering Chemistry Research, 2021, 60, 9915-9927.	1.8	6
680	Potential CO2 capture in one-coat limestone mortar modified with Mg3Al–CO3 calcined hydrotalcites using ultrafast testing technique. Chemical Engineering Journal, 2021, 415, 129077.	6.6	17
681	Acetic acid-mediated cellulose-based carbons: Influence of activation conditions on textural features and carbon dioxide uptakes. Journal of Colloid and Interface Science, 2021, 594, 745-758.	5.0	39
682	Comprehensive investigation of dynamic CO2 capture performance using Mg/DOBDC as precursor to fabricate a composite of metallic organic framework and graphene oxide. Chemical Engineering Journal, 2021, 415, 128859.	6.6	16
683	Self-assembled iron-containing mordenite monolith for carbon dioxide sieving. Science, 2021, 373, 315-320.	6.0	179
684	Applied Machine Learning for Prediction of CO ₂ Adsorption on Biomass Waste-Derived Porous Carbons. Environmental Science & Technology, 2021, 55, 11925-11936.	4.6	132
685	CO ₂ Capture at Medium to High Temperature Using Solid Oxide-Based Sorbents: Fundamental Aspects, Mechanistic Insights, and Recent Advances. Chemical Reviews, 2021, 121, 12681-12745.	23.0	177
686	Tuning the pore structure and surface chemistry of porous graphene for CO2 capture and H2 storage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 622, 126640.	2.3	7
687	Improved CO2 adsorption capacity and fluidization behavior of silica-coated amine-functionalized multi-walled carbon nanotubes. Journal of Environmental Chemical Engineering, 2021, 9, 105786.	3.3	19
688	A review of CO ₂ adsorbents performance for different carbon capture technology processes conditions. , 2021, 11, 1076-1117.		61
689	Synthesis and characterization of Benzyl chloride-based hypercrosslinked polymers and its amine-modification as an adsorbent for CO2 capture. Environmental Technology and Innovation, 2021, 23, 101746.	3.0	30

#	Article	IF	CITATIONS
690	Nitrogen-Doped Porous Carbon Materials Derived from Graphene Oxide/Melamine Resin Composites for CO2 Adsorption. Molecules, 2021, 26, 5293.	1.7	21
691	Adsorption of Carbon Dioxide for Post-combustion Capture: A Review. Energy & Fuels, 2021, 35, 12845-12868.	2.5	193
692	Amine-bifunctionalized ZSM-5/SBA-16 composite for CO2 adsorption. Journal of Porous Materials, 2022, 29, 19-31.	1.3	5
693	On-column quantification of amino functionalities bonded to solid porous matrices packed within high performance liquid chromatography columns. Journal of Chromatography A, 2021, 1651, 462284.	1.8	0
694	High yield nitrogen-doped carbon monolith with rich ultramicropores prepared by in-situ activation for high performance of selective CO2 capture. Carbon, 2021, 181, 270-279.	5.4	42
695	Highly selective carbon capture by novel graphene-carbon nanotube hybrids. Molecular Simulation, 2021, 47, 1326-1334.	0.9	2
696	Structure and properties of KNi–hexacyanoferrate Prussian Blue Analogues for efficient CO2 capture: Host–guest interaction chemistry and dynamics of CO2 adsorption. Journal of CO2 Utilization, 2021, 50, 101593.	3.3	7
697	Enhancing effect of UV activation of graphene oxide on carbon capture performance of metal-organic framework / graphene oxide hybrid adsorbents. Chemical Engineering Journal, 2021, 420, 129677.	6.6	36
698	Enhanced CO2 capture from methane-stream using MII -Al LDH prepared by microwave-assisted urea hydrolysis. Advanced Powder Technology, 2021, 32, 4096-4109.	2.0	12
699	Study on the Synthesis of High-Purity γ-Phase Mesoporous Alumina with Excellent CO2 Adsorption Performance via a Simple Method Using Industrial Aluminum Oxide as Raw Material. Materials, 2021, 14, 5465.	1.3	4
700	Cold plasma-Metal Organic Framework (MOF)-177 breathable system for atmospheric remediation. Journal of CO2 Utilization, 2021, 51, 101642.	3.3	16
701	Porous CaO–MgO Nanostructures for CO ₂ Capture. ACS Applied Nano Materials, 2021, 4, 10969-10975.	2.4	18
702	Amine-functionalized micron-porous polymer foams with high CO2 adsorption efficiency and exceptional stability in PSA process. Chemical Engineering Journal, 2021, 420, 129555.	6.6	18
703	Microwave-assisted synthesis of Zr-based metal–organic framework (Zr-fum-fcu-MOF) for gas adsorption separation. Chemical Physics Letters, 2021, 780, 138906.	1.2	27
704	Facile construction of highly porous carbon materials derived from porous aromatic frameworks for greenhouse gas adsorption and separation. Microporous and Mesoporous Materials, 2021, 326, 111385.	2.2	19
705	Magnesite-derived MgO promoted with molten salts and limestone as highly-efficient CO2 sorbent. Journal of CO2 Utilization, 2021, 53, 101725.	3.3	17
706	Li4SiO4 pellets templated by rice husk for cyclic CO2 capture: Insight into the modification mechanism. Ceramics International, 2021, 47, 32060-32067.	2.3	7
707	Adsorption mechanism of CO2 on the single atom doped or promoted Li4SiO4(0 1 0) surface from first principles. Computational and Theoretical Chemistry, 2021, 1205, 113424.	1.1	7

#	Article	IF	CITATIONS
708	A review for Metal-Organic Frameworks (MOFs) utilization in capture and conversion of carbon di of carbon dioxide into valuable products. Journal of CO2 Utilization, 2021, 53, 101715.	3.3	58
709	Structurally improved Li4SiO4 sorbents derived from lithium salicylate precursor for enhanced CO2 capture. Fuel Processing Technology, 2021, 224, 107027.	3.7	14
710	Easily-synthesized and low-cost amine-functionalized silica sol-coated structured adsorbents for CO2 capture. Chemical Engineering Journal, 2021, 425, 131409.	6.6	20
711	Synthesis of nitrogen and sulfur co-doped carbons with chemical blowing method for CO2 adsorption. Fuel, 2021, 305, 121505.	3.4	26
712	Efficient integration of CO2 capture and conversion over a Ni supported CeO2-modified CaO microsphere at moderate temperature. Chemical Engineering Journal, 2021, 426, 130864.	6.6	54
713	Amine-functionalized fumed silica for CO2 capture through particle molecular layer deposition. Chemical Engineering Science, 2021, 245, 116954.	1.9	3
714	Economic evaluation for four different solid sorbent processes with heat integration for energy-efficient CO2 capture based on PEI-silica sorbent. Energy, 2022, 238, 121864.	4.5	16
715	Robust structure regulation of geopolymer as novel efficient amine support to prepare high-efficiency CO2 capture solid sorbent. Chemical Engineering Journal, 2022, 427, 131577.	6.6	38
716	High Performance of Fly Ash Derived Li ₄ SiO ₄ -Based Sorbents for High Temperature CO ₂ Capture. Journal of Encapsulation and Adsorption Sciences, 2021, 11, 1-17.	0.3	0
717	Eutectic doped Li ₄ SiO ₄ adsorbents using the optimal dopants for highly efficient CO ₂ removal. Journal of Materials Chemistry A, 2021, 9, 14309-14318.	5.2	22
718	Efficient MgO-doped CaO sorbent pellets for high temperature CO2 capture. Frontiers of Chemical Science and Engineering, 2021, 15, 698-708.	2.3	18
719	Carbon dioxide adsorption based on porous materials. RSC Advances, 2021, 11, 12658-12681.	1.7	109
720	How Molecular Modelling Tools Can Help in Mitigating Climate Change. Molecular Modeling and Simulation, 2021, , 181-220.	0.2	2
721	Dynamics of phase transitions in Na ₂ TiO ₃ and its possible utilization as a CO ₂ sorbent: a critical analysis. Reaction Chemistry and Engineering, 2021, 6, 1974-1982.	1.9	4
722	Reducing Greenhouse Gas Emissions with CO2 Capture and Geological Storage. , 2015, , 1-40.		4
723	Metal Oxides for Carbon Dioxide Capture. Sustainable Agriculture Reviews, 2019, , 63-83.	0.6	6
724	Carbon Capture and Storage in Geologic Formations. , 2017, , 497-545.		3
725	Thermally stable amine-functionalized silica sorbents using one-pot synthesis method for CO2 capture at low temperature. Korean Journal of Chemical Engineering, 2020, 37, 2317-2325.	1.2	5

#	Article	IF	Citations
726	Sorption enhanced steam reforming of methanol for high-purity hydrogen production over Cu-MgO/Al2O3 bifunctional catalysts. Applied Catalysis B: Environmental, 2020, 276, 119052.	10.8	61
727	Carbon dioxide capture from a real coal-fired flue gas using K-based solid sorbents in a 0.5 MWe-scale test-bed facility. International Journal of Greenhouse Gas Control, 2020, 103, 103192.	2.3	3
728	Highly Efficient Capture of Postcombustion Generated CO ₂ through a Copper-Based Metal–Organic Framework. Energy & Fuels, 2021, 35, 610-617.	2.5	14
729	Carbon-based CO2 Adsorbents. Inorganic Materials Series, 2018, , 1-75.	0.5	8
730	Layered Double Hydroxides-derived Intermediate-temperature CO2 Adsorbents. Inorganic Materials Series, 2018, , 1-60.	0.5	3
731	CHAPTER 2. MgO-based Intermediate-temperature CO2 Adsorbents. Inorganic Materials Series, 2018, , 61-143.	0.5	2
732	CaO-based High-temperature CO2 Sorbents. Inorganic Materials Series, 2018, , 144-237.	0.5	2
733	Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chemical Society Reviews, 2020, 49, 8584-8686.	18.7	610
734	Recent Development in Metal Oxides for Carbon Dioxide Capture and Storage. Membrane Journal, 2020, 30, 97-110.	0.2	1
735	A Selenophene-Incorporated Metal–Organic Framework for Enhanced CO2 Uptake and Adsorption Selectivity. Molecules, 2020, 25, 4396.	1.7	14
736	Biomass-Derived Carbon Molecular Sieves Applied to an Enhanced Carbon Capture and Storage Process (e-CCS) for Flue Gas Streams in Shallow Reservoirs. Nanomaterials, 2020, 10, 980.	1.9	10
737	Synthesis of MgO nanostructures through simple hydrogen peroxide treatment for carbon capture. Chemical Engineering Research and Design, 2021, 156, 361-372.	2.7	6
738	Reticular frameworks and their derived materials for CO2 conversion by thermoâ^'catalysis. EnergyChem, 2021, 3, 100064.	10.1	52
739	CO2 Adsorption Performance and Kinetics of Ionic Liquid-Modified Calcined Magnesite. Nanomaterials, 2021, 11, 2614.	1.9	4
740	Synthesis and CO2 sorption kinetics of lithium zirconate. Thermochimica Acta, 2021, 706, 179074.	1.2	5
741	CaO-Based Sorbents for Post Combustion CO2 Capture via Carbonate Looping. Green Energy and Technology, 2016, , 571-589.	0.4	0
742	Reducing Greenhouse Gas Emissions with CO2 Capture and Geological Storage. , 2017, , 2197-2237.		3
743	Adsorption Characteristics of Flue Gas Components on Zeolite 13X and Effects of Impurity. Korean Chemical Engineering Research, 2016, 54, 838-846.	0.2	0

# 744	ARTICLE CHAPTER 2. Zeolite and Silica-based CO2 Adsorbents. Inorganic Materials Series, 2018, , 76-152.	IF 0.5	Citations
745	Alkaline Ceramics-based High-temperature CO2 Sorbents. Inorganic Materials Series, 2018, , 238-280.	0.5	0
746	Synthesis and characterization of activated carbon from Delonix regia seeds for CO2 adsorption. Energy and Climate Change, 2021, 2, 100064.	2.2	10
747	Phytic acid-induced self-assembled chitosan gel-derived N, P–co-doped porous carbon for high-performance CO2 capture and supercapacitor. Journal of Power Sources, 2022, 517, 230727.	4.0	44
748	Applications of Sol-Gel Processing. , 2020, , 597-685.		3
749	Multiscale study of carbon dioxide chemisorption in the plug flow adsorber of the anesthesia machine. Separation Science and Technology, 2021, 56, 485-497.	1.3	8
750	Application of clay minerals and their derivatives in adsorption from gaseous phase. Applied Clay Science, 2021, 215, 106323.	2.6	18
751	Physicochemical characterization of the performance of acidified modified eggshell cyclic adsorption of CO ₂ . Journal of Physics: Conference Series, 2021, 2076, 012034.	0.3	0
752	Recent advances in potassium-based adsorbents for CO2 capture and separation: a review. Carbon Capture Science & Technology, 2021, 1, 100011.	4.9	39
753	Reduced graphene oxide -MnO2 nanocomposite for CO2 capture from flue gases at elevated temperatures. Science of the Total Environment, 2022, 816, 151522.	3.9	11
754	Progress in adsorption capacity of nanomaterials for carbon dioxide capture: A comparative study. Journal of Cleaner Production, 2021, 328, 129553.	4.6	37
755	Recent advances on materials and processes for intensified production of blue hydrogen. Renewable and Sustainable Energy Reviews, 2022, 155, 111917.	8.2	32
756	Hierarchical Mesoporous SSZ-13 Chabazite Zeolites for Carbon Dioxide Capture. Catalysts, 2021, 11, 1355.	1.6	4
757	New insight and evaluation of secondary Amine/N-butanol biphasic solutions for CO2 Capture: Equilibrium Solubility, phase separation Behavior, absorption Rate, desorption Rate, energy consumption and ion species. Chemical Engineering Journal, 2022, 431, 133912.	6.6	9
758	An overview of porous silica immobilized amines for direct air CO ₂ capture. Journal of Materials Chemistry A, 2021, 9, 27271-27303.	5.2	39
759	An overview of the materials and methodologies for CO ₂ capture under humid conditions. Journal of Materials Chemistry A, 2021, 9, 26498-26527.	5.2	29
760	Elucidating the promotion of Na ₂ CO ₃ in CO ₂ capture by Li ₄ SiO ₄ . Physical Chemistry Chemical Physics, 2021, 23, 26696-26708.	1.3	7
761	A novel flat-panel photobioreactor for simultaneous production of lutein and carbon sequestration by Chlorella sorokiniana TH01. Bioresource Technology, 2022, 345, 126552.	4.8	14

#	Article	IF	CITATIONS
762	CO2 adsorption by organohydrotalcites at low temperatures and high pressure. Chemical Engineering Journal, 2022, 431, 134324.	6.6	9
763	Benzoguanamine based polyaminal carbon materials for CO2 capture application. Carbon Capture Science & Technology, 2022, 2, 100021.	4.9	3
764	Defect-rich Mg-Al MMOs supported TEPA with enhanced charge transfer for highly efficient and stable direct air capture. Journal of Energy Chemistry, 2022, 68, 401-410.	7.1	18
765	Development of Ultramicropore-Mesopore Interconnected Pore Architectures for Boosting Carbon Dioxide Capture at Low Partial Pressure. SSRN Electronic Journal, 0, , .	0.4	0
766	Counter-Intuitive Magneto-Water-Wetting Effect to CO2 Adsorption at Room Temperature Using MgO/Mg(OH)2 Nanocomposites. Materials, 2022, 15, 983.	1.3	2
767	Chemical looping mechanisms for sequestration of greenhouse gases for biofuel and biomaterials. , 2022, , 85-109.		0
768	Study of rice husk ash derived MCM-41-type materials on pore expansion, Al incorporation, PEI impregnation, and CO2 adsorption. Korean Journal of Chemical Engineering, 2022, 39, 736-759.	1.2	10
769	Synthetic solid oxide sorbents for CO ₂ capture: state-of-the art and future perspectives. Journal of Materials Chemistry A, 2022, 10, 1682-1705.	5.2	40
770	Optimizing the Properties of Hybrids Based on Graphene Oxide for Carbon Dioxide Capture. Industrial & Engineering Chemistry Research, 2022, 61, 1332-1343.	1.8	6
771	Carbon Dioxide Capture Chemistry of Amino Acid Functionalized Metal–Organic Frameworks in Humid Flue Gas. Journal of the American Chemical Society, 2022, 144, 2387-2396.	6.6	122
772	Intelligent CO ₂ Monitoring for Diagnosis of Sleep Apnea Using Neural Cryptography Techniques. Adsorption Science and Technology, 2022, 2022, .	1.5	1
773	In-situ activated ultramicroporous carbon materials derived from waste biomass for CO2 capture and benzene adsorption. Biomass and Bioenergy, 2022, 158, 106353.	2.9	28
774	Interlayer functionalization of vermiculite derived silica with hierarchical layered porous structure for stable CO2 adsorption. Chemical Engineering Journal, 2022, 435, 134875.	6.6	10
775	Sequential separation-driven solar methane reforming for H ₂ derivation under mild conditions. Energy and Environmental Science, 2022, 15, 1861-1871.	15.6	27
776	Synthesis of palm sheath derived-porous carbon for selective CO ₂ adsorption. RSC Advances, 2022, 12, 8592-8599.	1.7	16
777	Ab Initio Study of Hydrostable Metal–Organic Frameworks for Postsynthetic Modification and Tuning toward Practical Applications. ACS Omega, 2022, 7, 7791-7805.	1.6	1
778	Reference surface excess isotherms for carbon dioxide adsorption on ammonium ZSM-5 at various temperatures. Adsorption, 2022, 28, 15-25.	1.4	2
779	Recent Progress in Two-Dimensional Materials for Electrocatalytic CO2 Reduction. Catalysts, 2022, 12, 228.	1.6	23

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
780	Storing and releasing Mg by C12 carbon ring. Chemical Physics Letters, 2022, 799, 139554.	1.2	5
781	Arginine containing chitosan-graphene oxide aerogels for highly efficient carbon capture and fixation. Journal of CO2 Utilization, 2022, 59, 101958.	3.3	22
782	Development of ultramicropore-mesopore interconnected pore architectures for boosting carbon dioxide capture at low partial pressure. Carbon, 2022, 192, 41-49.	5.4	12
783	Post-combustion CO2 capture via a variety of temperature ranges and material adsorption process: A review. Journal of Environmental Management, 2022, 313, 115026.	3.8	47
784	Progress in in-situ CO2-sorption for enhanced hydrogen production. Progress in Energy and Combustion Science, 2022, 91, 101008.	15.8	28
785	Utilisation of CO ₂ as "Structure Modifier―of Inorganic Solids. Chemistry - A European Journal, 2022, 28, .	1.7	Ο
786	Direct Synthesis of a Regenerative CaO–Fe ₃ O ₄ –SiO ₂ Composite Adsorbent from Converter Slag for CO ₂ Capture Applications. ACS Sustainable Chemistry and Engineering, 2022, 10, 372-381.	3.2	14
787	From Spent Lithium-Ion Batteries to Low-Cost Li ₄ SiO ₄ Sorbent for CO ₂ Capture. Environmental Science & Technology, 2022, 56, 5734-5742.	4.6	43
788	Conversion of carbon dioxide to carbon monoxide: Two-step chemical looping dry reforming using Ca2Fe2O5–Zr0.5Ce0.5O2 composite oxygen carriers. Fuel, 2022, 322, 124182.	3.4	6
789	Recent advancements in sustainable upcycling of solid waste into porous carbons for carbon dioxide capture. Renewable and Sustainable Energy Reviews, 2022, 162, 112413.	8.2	30
792	A theoretical study on CO ₂ at Li ₄ SiO ₄ and Li ₃ NaSiO ₄ surfaces. Physical Chemistry Chemical Physics, 2022, 24, 13678-13689.	1.3	5
793	Improved Hydrogen Production Performance of Ni-Al2o3/Cao-Cazro3 Composite Catalyst for Co2 Sorption Enhanced Ch4/H2o Reforming. SSRN Electronic Journal, 0, , .	0.4	0
795	Impact of Synthesis Method and Metal Salt Precursors on the CO2 Adsorption Performance of Layered Double Hydroxides Derived Mixed Metal Oxides. Frontiers in Energy Research, 2022, 10, .	1.2	3
796	An In-Situ-Grown Cu-BTC Metal–Organic Framework / Graphene Oxide Hybrid Adsorbent for Selective Hydrogen Storage at Ambient Temperature. Industrial & Engineering Chemistry Research, 2022, 61, 6200-6213.	1.8	13
797	A review on granulation of CaO-based sorbent for carbon dioxide capture. Chemical Engineering Journal, 2022, 446, 136880.	6.6	10
798	Integrating life cycle assessment and life cycle costing using TOPSIS to select sustainable biomass-based -carbonaceous adsorbents for CO2 capture. Journal of Cleaner Production, 2022, 357, 131968.	4.6	14
799	Porous materials for capture and catalytic conversion of CO2 at low concentration. Coordination Chemistry Reviews, 2022, 465, 214576.	9.5	74
800	Enhanced CO ₂ sorption in a hybrid PEI–Mo oxide film <i>via</i> pulsed electrodeposition. Materials Advances, 2022, 3, 5510-5520.	2.6	1

#	Article	IF	CITATIONS
801	Oxygen Vacancies in Cu/Tio2 Boost Strong Metal–Support Interaction and Improve the Catalyst's Activity, Selectivity, and Stability in Co2 Hydrogenation to Methanol. SSRN Electronic Journal, 0, , .	0.4	0
802	Modification of Metalâ^'Organic Frameworks for CO ₂ Capture. ACS Symposium Series, 0, , 269-308.	0.5	2
803	Carbonate-based hyper-cross-linked polymers with pendant versatile electron-withdrawing functional groups for CO ₂ adsorption and separation. Journal of Materials Chemistry A, 2022, 10, 15062-15073.	5.2	8
804	Perspective on Sorption Enhanced Bifunctional Catalysts to Produce Hydrocarbons. ACS Catalysis, 2022, 12, 7486-7510.	5.5	14
805	Oxygen vacancies in Cu/TiO2 boost strong metal-support interaction and CO2 hydrogenation to methanol. Journal of Catalysis, 2022, 413, 284-296.	3.1	54
806	Novel Adsorption–Reaction Process for Biomethane Purification/Production and Renewable Energy Storage. ACS Sustainable Chemistry and Engineering, 2022, 10, 7833-7851.	3.2	7
807	Construction of high performance binder-free zeolite monolith. Chemical Engineering Journal, 2022, 447, 137558.	6.6	5
808	Mechanistic insights into the CO ₂ capture and reduction on K-promoted Cu/Al ₂ O ₃ by spatiotemporal <i>operando</i> methodologies. Catalysis Science and Technology, 2022, 12, 5349-5359.	2.1	5
809	Construction and Application of Porous Ionic Liquids. Acta Chimica Sinica, 2022, 80, 848.	0.5	1
810	A General Route to Flame Aerosol Synthesis and In Situ Functionalization of Mesoporous Silica. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
811	A General Route to Flame Aerosol Synthesis and in situ Functionalization of Mesoporous Silica. Angewandte Chemie, 0, , .	1.6	1
812	Review of the Application of Hydrotalcite as CO2 Sinks for Climate Change Mitigation. ChemEngineering, 2022, 6, 50.	1.0	3
813	Modeling and Optimizing N/O-Enriched Bio-Derived Adsorbents for CO ₂ Capture: Machine Learning and DFT Calculation Approaches. Industrial & Engineering Chemistry Research, 2022, 61, 10670-10688.	1.8	16
814	Synthesis and characterization of calcium oxide nanoparticles for CO2 capture. Journal of Nanoparticle Research, 2022, 24, .	0.8	20
815	Quaternized polyepichlorohydrin-based membrane as high-selective CO2 sorbent for cost-effective carbon capture. Journal of CO2 Utilization, 2022, 63, 102135.	3.3	7
816	Progress in reducing calcination reaction temperature of Calcium-Looping CO2 capture technology: A critical review. Chemical Engineering Journal, 2022, 450, 137952.	6.6	41
817	Sorption-catalytic steam conversion of CO on a mechanical mixture of Pt/Ce0.75Zr0.25O2 catalyst and NaNO3/MgO sorbent. Kataliz V Promyshlennosti, 2022, 22, 28-35.	0.2	2
818	Evaluation of the potential of a 3D-printed hybrid zeolite 13X/activated carbon material for CO2/N2 separation using electric swing adsorption. Chemical Engineering Journal, 2022, 450, 138197.	6.6	14

#	Article	IF	CITATIONS
819	CO ₂ removal in humid environment by ionâ€exchange membranes. Asia-Pacific Journal of Chemical Engineering, 2022, 17, .	0.8	4
820	Exploring Molecular Dynamics of Adsorbed CO ₂ Species in Amine-Modified Porous Silica by Solid-State NMR Relaxation. Journal of Physical Chemistry C, 0, , .	1.5	6
821	CO2 capture from biogas by biomass-based adsorbents: A review. Fuel, 2022, 328, 125276.	3.4	53
822	CO2 Activation and Hydrogenation on Cu-ZnO/Al2O3 Nanorod Catalysts: An In Situ FTIR Study. Nanomaterials, 2022, 12, 2527.	1.9	8
823	Direct Air Capture Using Electrochemically Regenerated Anion Exchange Resins. Environmental Science & Technology, 2022, 56, 11559-11566.	4.6	9
824	Efficient and recyclable composite beads containing sodium alginate and EGDMA-AN cross-linked polymer for phenol removal: Kinetic and diffusion mechanisms. Journal of Environmental Chemical Engineering, 2022, 10, 108357.	3.3	2
825	Polyethyleneimine-modified layered double hydroxide/SBA-15 composites: A novel kind of highly efficient CO2 adsorbents. Applied Clay Science, 2022, 229, 106660.	2.6	6
826	Preparation and CO2 adsorption properties of TEPA-functionalized multi-level porous particles based on solid waste. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 653, 130004.	2.3	12
827	Highly Efficient Removal of CO2 Using Water-Lean KHCO3/Isopropanol Solutions. Atmosphere, 2022, 13, 1521.	1.0	1
828	Nitrogen and oxygen-codoped microporous carbon derived from acid-base interaction of carboxylic acid polymers and urea for enhanced CO2 capture. Journal of Environmental Chemical Engineering, 2022, 10, 108526.	3.3	4
829	Tailoring waste-derived materials for Calcium-Looping application in thermochemical energy storage systems. Journal of CO2 Utilization, 2022, 65, 102180.	3.3	6
830	Quaternary Ammonium-Functionalized Polysulfone Sorbent: Toward a Selective and Reversible Trap-Release of Co2. SSRN Electronic Journal, 0, , .	0.4	0
831	Carbon dioxide capture with zeotype materials. Chemical Society Reviews, 2022, 51, 9340-9370.	18.7	63
832	Supported nanosized metal catalysts for thermocatalytic CO2 reduction to hydrocarbons and alcohols. , 2022, , .		0
833	A comprehensive overview of carbon dioxide capture: From materials, methods to industrial status. Materials Today, 2022, 60, 227-270.	8.3	13
834	Sustainable Food Waste Management: Synthesizing Engineered Biochar for CO ₂ Capture. ACS Sustainable Chemistry and Engineering, 2022, 10, 13026-13036.	3.2	15
835	Experimental and theoretical study of the effect of different functionalities of graphene oxide/polymer composites on selective CO2 capture. Scientific Reports, 2022, 12, .	1.6	3
836	Thermodynamic analysis of a novel adsorption-type trans-critical compressed carbon dioxide energy storage system. Energy Conversion and Management, 2022, 270, 116268.	4.4	12

#	Article	IF	CITATIONS
837	Quaternary ammonium-functionalized polysulfone sorbent: Toward a selective and reversible trap-release of CO2. Journal of CO2 Utilization, 2022, 65, 102259.	3.3	6
838	Theoretical investigation of selective CO ₂ capture and desorption controlled by an electric field. Physical Chemistry Chemical Physics, 2022, 24, 28141-28149.	1.3	2
839	Progress and current challenges for CO2 capture materials from ambient air. Advanced Composites and Hybrid Materials, 2022, 5, 2721-2759.	9.9	54
840	Room Temperature CO ₂ Adsorption Studies Using Pure and Ionic Liquid Immobilized Zeolites. Journal of Chemical & Engineering Data, 2022, 67, 3503-3515.	1.0	4
841	Migration Mechanism of Lattice Oxygen: Conversion of CO2 to CO Using NiFe2O4 Spinel Oxygen Carrier in Chemical Looping Reactions. Catalysts, 2022, 12, 1181.	1.6	5
842	Enhanced Carbon Capture Behavior of Carbon Fibers via Ionic Liquid Modification. ChemNanoMat, 0, , .	1.5	1
843	Critical Review on Carbon-Based Nanomaterial for Carbon Capture: Technical Challenges, Opportunities, and Future Perspectives. Energy & Fuels, 2022, 36, 13479-13505.	2.5	15
844	Synthesis of Composite Carbon Fiber Electrode Materials for CO ₂ Reduction. Materials Science Forum, 0, 1072, 203-208.	0.3	0
845	High-temperature CO2 sorbents with citrate and stearate intercalated Ca Al hydrotalcite-like as precursor. Chinese Journal of Chemical Engineering, 2022, 50, 177-184.	1.7	1
846	Reaction Mechanism of CO2 with Choline-Amino Acid Ionic Liquids: A Computational Study. Entropy, 2022, 24, 1572.	1.1	3
847	Study of calcium-based CO2 sorbent with high cycling stability derived from steel slag and its anti-sintering mechanism. Journal of CO2 Utilization, 2022, 66, 102279.	3.3	5
848	Study on CO2 adsorption capacity and kinetic mechanism of CO2 adsorbent prepared from fly ash. Energy, 2023, 263, 125764.	4.5	21
849	Improved hydrogen production performance of Ni–Al2O3/CaO–CaZrO3 composite catalyst for CO2 sorption enhanced CH4/H2O reforming. International Journal of Hydrogen Energy, 2023, 48, 2558-2570.	3.8	3
850	A graphene-like semiconducting BC ₂ P monolayer as a promising material for a Li-ion battery and CO ₂ adsorbent. Physical Chemistry Chemical Physics, 2023, 25, 2430-2438.	1.3	11
851	Reaction-induced macropore formation enabling commodity polymer derived carbons for CO ₂ capture. New Journal of Chemistry, 2023, 47, 1318-1327.	1.4	5
852	MxOy (M = Mg, Zr, La, Ce) modified Ni/CaO dual functional materials for combined CO2 capture and hydrogenation. International Journal of Hydrogen Energy, 2023, 48, 24871-24883.	3.8	9
853	Recent advances in direct gas–solid-phase photocatalytic conversion of CO2 for porous photocatalysts under different CO2 atmospheres. Chemical Engineering Journal, 2023, 455, 140654.	6.6	17
854	Unconventional CO ₂ -Binding and Catalytic Activity of Urea-Derived Histidines. ACS Sustainable Chemistry and Engineering, 2022, 10, 15813-15823.	3.2	5

	Сітатіс	on Report	
#	Article	IF	CITATIONS
855	ZIF for CO2 Capture: Structure, Mechanism, Optimization, and Modeling. Processes, 2022, 10, 2689.	1.3	3
857	Sorption-Enhanced Water Gas Shift Reaction over a Mechanical Mixture of the Catalyst Pt/Ce0.75Zr0.25O2 and the Sorbent NaNO3/MgO. Catalysis in Industry, 2022, 14, 349-356.	0.3	2
858	Microporous Polymelamine Framework Functionalized with Re(I) Tricarbonyl Complexes for CO2 Absorption and Reduction. Polymers, 2022, 14, 5472.	2.0	2
859	A series of cation-modified robust zirconium-based metal–organic frameworks for carbon dioxide capture. CrystEngComm, 2023, 25, 1067-1075.	1.3	1
860	Preparation, Characterization and Experimental Investigation of the Separation Performance of a Novel CaOâ€based CO ₂ Sorbent for Direct Air Capture. Chemical Engineering and Technology, 2023, 46, 891-900.	0.9	3
861	Molten salt-mediated carbon capture and conversion. Fuel, 2023, 339, 127473.	3.4	2
862	Industrial carbon dioxide capture and utilization. , 2023, , 231-278.		0
863	Graphene-based nanomaterials for CO2 capture and conversion. , 2023, , 211-243.		1
864	Rice Husk Ash-Derived Ca-Mg-Modified Silicate as Support for Ni-Co for Hydrogen Production by Sorption-Enhanced Steam Reforming of Bioethanol. Industrial & Engineering Chemistry Research, 2023, 62, 1806-1818.	1.8	3
865	Amino acid–based CO2 capture and management. , 2023, , 217-238.		0
866	Current overview of the valorization of bio-wastes for adsorbed natural gas applications. Carbon Letters, 2023, 33, 1519-1547.	3.3	2
867	Microwave treatment effect on the enhanced basicity of porous clay heterostructured composites derived from Laponite. Applied Surface Science, 2023, 619, 156768.	3.1	0
868	Simultaneous CO2 adsorption and conversion over Ni-Pd supported CeO2 nanoparticles during catalytic n-C7 asphaltene gasification. Fuel, 2023, 342, 127733.	3.4	4
869	Metal-organic frameworks-based advanced catalysts for anthropogenic CO2 conversion toward sustainable future. Fuel Processing Technology, 2023, 244, 107705.	3.7	8
870	Sorption-enhanced steam gasification of biomass for H2-rich gas production and in-situ CO2 capture by CaO-based sorbents: A critical review. Applications in Energy and Combustion Science, 2023, 14, 100124.	0.9	3
871	Effects of LaË—doping and preparation conditions on magnesia-based adsorption materials prepared by salicylic acid complex-combustion method for CO2 capture. Journal of Environmental Chemical Engineering, 2023, 11, 109391.	3.3	1
872	Hydrophobic ZIF-8 covered active carbon for CO2 capture from humid gas. Journal of Industrial and Engineering Chemistry, 2023, 121, 331-337.	2.9	7
873	Silica centered aerogels as advanced functional material and their applications: A review. Journal of Non-Crystalline Solids, 2023, 611, 122322.	1.5	20

#	Article	IF	CITATIONS
874	Photoelectrochemical properties of Cu ₂ O/PANI/Si-based photocathodes for CO ₂ conversion. Emerging Materials Research, 2023, 12, 78-91.	0.4	2
875	Microporous MOF-5@AC and Cu-BDC@AC Composite Materials for Methane Storage in ANG Technology. International Journal of Energy Research, 2023, 2023, 1-14.	2.2	0
876	CO2 as a building block: from capture to utilization. Current Opinion in Chemical Engineering, 2023, 39, 100902.	3.8	16
877	CO ₂ capture and conversion to syngas <i>via</i> dry reforming of C ₃ H ₈ over a Pt/ZrO ₂ –CaO catalyst. Catalysis Science and Technology, 2023, 13, 1650-1665.	2.1	1
878	Microporous Borocarbonitrides BxCyNz: Synthesis, Characterization, and Promises for CO2 Capture. Nanomaterials, 2023, 13, 734.	1.9	6
879	Zeolites as Selective Adsorbents for CO ₂ Separation. ACS Applied Energy Materials, 2023, 6, 2634-2656.	2.5	45
880	Electronic structural and lattice thermodynamic properties of MAlO2 and M5AlO4 (M = Li, Na, K) sorbents for CO2 capture applications. Discover Chemical Engineering, 2023, 3, .	1.1	3
881	Preparation and Characterization of Hydrotalcite-Derived Material from Mullite-Rich Tailings (II): CO2 Capture from Coal-Fired Thermal Power Plants. , 2023, , 299-330.		0
882	The Role of Carbonate Formation during CO2 Hydrogenation over MgO-Supported Catalysts: A Review on Methane and Methanol Synthesis. Energies, 2023, 16, 2973.	1.6	3
883	Prospects of lowâ€ŧemperature solid sorbents in industrial COâ,, capture: A focus on biomass residues as precursor material. , 2023, 13, 245-284.		0
884	Role of fiber density of amine functionalized dendritic fibrous nanosilica on CO ₂ capture capacity and kinetics. Pure and Applied Chemistry, 2023, 95, 451-462.	0.9	0
885	Progress on CO ₂ -induced inactivation of solid amine adsorbents. Chinese Science Bulletin, 2023, , .	0.4	0
886	Efficient Photoactive Materials for CO2 Conversion into Valuable Products Using Organic and Inorganic-Based Composites. Green Chemistry and Sustainable Technology, 2023, , 395-415.	0.4	0
904	Ongoing activity on CO2 capture in the power sector: Review of the demonstration projects worldwide. , 2016, , 564-580.		0
912	Environmental Applications for Aerogels. Springer Handbooks, 2023, , 1383-1398.	0.3	0
913	Silica Aerogels. Springer Handbooks, 2023, , 309-334.	0.3	0
936	Carbon Capture by Solid Amine Sorbents. , 2023, , .		0
944	Integrated CO ₂ capture and utilization: a review of the synergistic effects of dual function materials. Catalysis Science and Technology, 2024, 14, 790-819.	2.1	0

#	Article	IF	CITATIONS
945	Low-Temperature Composite CO2 Sorbents Based on Amine-Containing Compounds. Russian Journal of Applied Chemistry, 2023, 96, 257-274.	0.1	0
951	Modeling Tools for Evaluating Materials in CO2 Capture. Advances in Chemical and Materials Engineering Book Series, 2024, , 316-333.	0.2	0