Substitution reactions in metal–organic frameworks

Chemical Society Reviews 43, 5952-5981 DOI: 10.1039/c4cs00033a

Citation Report

#	Article	IF	CITATIONS
2	Preparation of Core–Shell Coordination Molecular Assemblies via the Enrichment of Structure-Directing "Codes―of Bridging Ligands and Metathesis of Metal Units. Journal of the American Chemical Society, 2014, 136, 16895-16901.	6.6	40
3	Research Update: A hafnium-based metal-organic framework as a catalyst for regioselective ring-opening of epoxides with a mild hydride source. APL Materials, 2014, 2, .	2.2	7
5	Anion-Directed Assemblies of Cationic Metal–Organic Frameworks Based on 4,4′-Bis(1,2,4-triazole): Syntheses, Structures, Luminescent and Anion Exchange Properties. Inorganic Chemistry, 2014, 53, 12127-12134.	1.9	45
6	A 3-D diamondoid MOF catalyst based on in situ generated [Cu(L) ₂] N-heterocyclic carbene (NHC) linkers: hydroboration of CO ₂ . Chemical Communications, 2014, 50, 11760-11763.	2.2	70
7	Singleâ€Crystal to Singleâ€Crystal Linker Substitution, Linker Place Exchange, and Transmetalation Reactions in Interpenetrated Pillared–Bilayer Zinc(II) Metal–Organic Frameworks. Chemistry - A European Journal, 2015, 21, 17422-17429.	1.7	32
8	Systematic Syntheses and Metalloligand Doping of Flexible Porous Coordination Polymers Composed of a Co(III)–Metalloligand. Inorganic Chemistry, 2015, 54, 2522-2535.	1.9	18
9	Continuous flow production of metal-organic frameworks. Current Opinion in Chemical Engineering, 2015, 8, 55-59.	3.8	65
10	Size-exclusive and coordination-induced selective dye adsorption in a nanotubular metal–organic framework. Journal of Materials Chemistry A, 2015, 3, 12804-12809.	5.2	118
11	Metal-Ion Exchange, Small-Molecule Sensing, Selective Dye Adsorption, and Reversible Iodine Uptake of Three Coordination Polymers Constructed by a New Resorcin[4]arene-Based Tetracarboxylate. Inorganic Chemistry, 2015, 54, 1744-1755.	1.9	104
12	Metalation of a Thiocatechol-Functionalized Zr(IV)-Based Metal–Organic Framework for Selective C–H Functionalization. Journal of the American Chemical Society, 2015, 137, 2191-2194.	6.6	234
13	Structure-Assisted Functional Anchor Implantation in Robust Metal–Organic Frameworks with Ultralarge Pores. Journal of the American Chemical Society, 2015, 137, 1663-1672.	6.6	70
14	Solvent induced single-crystal to single-crystal structural transformation and concomitant transmetalation in a 3D cationic Zn(<scp>ii</scp>)-framework. Chemical Communications, 2015, 51, 3173-3176.	2.2	52
15	Tuning the properties of the UiO-66 metal organic framework by Ce substitution. Chemical Communications, 2015, 51, 14458-14461.	2.2	79
16	A Family of Capsule-Based Coordination Polymers Constructed from a New Tetrakis(1,2,4-triazol-ylmethyl)resorcin[4]arene Cavitand and Varied Dicarboxylates for Selective Metal-Ion Exchange and Luminescent Properties. Crystal Growth and Design, 2015, 15, 3822-3831.	1.4	43
17	BrÃ,nsted Acidity in Metal–Organic Frameworks. Chemical Reviews, 2015, 115, 6966-6997.	23.0	477
18	Homochiral coordination cages assembled from dinuclear paddlewheel nodes and enantiopure ditopic ligands: syntheses, structures and catalysis. Dalton Transactions, 2015, 44, 12180-12188.	1.6	26
19	Construction of variable dimensional cadmium(<scp>ii</scp>) coordination polymers from pyridine-2,3-dicarboxylic acid. CrystEngComm, 2015, 17, 3619-3626.	1.3	21
20	Postsynthetic Metal and Ligand Exchange in MFUâ€4 <i>l</i> : A Screening Approach toward Functional Metal–Organic Frameworks Comprising Single‧ite Active Centers. Chemistry - A European Journal, 2015, 21, 8188-8199.	1.7	70

#	Article	IF	CITATIONS
21	"Click―post-functionalization of a metal–organic framework for engineering active single-site heterogeneous Ru(<scp>iii</scp>) catalysts. Chemical Communications, 2015, 51, 9884-9887.	2.2	55
22	Photoinduced Postsynthetic Polymerization of a Metal–Organic Framework toward a Flexible Standâ€Alone Membrane. Angewandte Chemie - International Edition, 2015, 54, 4259-4263.	7.2	235
24	Towards the use of metal–organic frameworks for water reuse: a review of the recent advances in the field of organic pollutants removal and degradation and the next steps in the field. Journal of Materials Chemistry A, 2015, 3, 22484-22506.	5.2	516
25	Solvothermal Metal Metathesis on a Metal–Organic Framework with Constricted Pores and the Study of Gas Separation. ACS Applied Materials & Interfaces, 2015, 7, 25402-25412.	4.0	18
26	Adsorption-Driven Heat Pumps: The Potential of Metal–Organic Frameworks. Chemical Reviews, 2015, 115, 12205-12250.	23.0	410
27	Orthogonal Ternary Functionalization of a Mesoporous Metal–Organic Framework via Sequential Postsynthetic Ligand Exchange. Journal of the American Chemical Society, 2015, 137, 10508-10511.	6.6	96
28	A vanadium(<scp>iv</scp>) pyrazolate metal–organic polyhedron with permanent porosity and adsorption selectivity. Chemical Communications, 2015, 51, 14724-14727.	2.2	31
29	Dual Exchange in PCN-333: A Facile Strategy to Chemically Robust Mesoporous Chromium Metal–Organic Framework with Functional Groups. Journal of the American Chemical Society, 2015, 137, 11801-11809.	6.6	83
30	Divalent metal ions modulated strong frustrated M(<scp>ii</scp>)–Fe(<scp>iii</scp>) ₃ O (M = Fe, Mn, Mg) chains with metamagnetism only in a mixed valence iron complex. Chemical Communications, 2015, 51, 15336-15339.	2.2	13
31	Pyrazine Motif Containing Hexagonal Macrocycles: Synthesis, Characterization, and Host–Guest Chemistry with Nitro Aromatics. Inorganic Chemistry, 2015, 54, 8994-9001.	1.9	22
32	An in situ self-assembly template strategy for the preparation of hierarchical-pore metal-organic frameworks. Nature Communications, 2015, 6, 8847.	5.8	309
33	Crystal engineering, structure–function relationships, and the future of metal–organic frameworks. CrystEngComm, 2015, 17, 229-246.	1.3	237
34	The surface chemistry of metal–organic frameworks. Chemical Communications, 2015, 51, 5199-5217.	2.2	336
35	Switchable Roomâ€Temperature Ferroelectric Behavior, Selective Sorption and Solventâ€Exchange Studies of [H ₃ O][Co ₂ (dat)(sdba) ₂]â‹H ₂ sdbaâ‹5 H _{2ChemPlusChem, 2016, 81, 733-742.}	,, ¹ 0.	9
36	Thermal and Gas Dualâ€Responsive Behaviors of an Expanded UiOâ€66â€Type Porous Coordination Polymer. ChemPlusChem, 2016, 81, 817-821.	1.3	11
37	Inserting CO ₂ into Aryl Câ^'H Bonds of Metal–Organic Frameworks: CO ₂ Utilization for Direct Heterogeneous Câ^'H Activation. Angewandte Chemie - International Edition, 2016, 55, 5472-5476.	7.2	129
38	Central-metal exchange, improved catalytic activity, photoluminescence properties of a new family of d ¹⁰ coordination polymers based on the 5,5′-(1H-2,3,5-triazole-1,4-diyl)diisophthalic acid ligand. Dalton Transactions, 2016, 45, 7776-7785.	1.6	56
39	Research trend of metal–organic frameworks: a bibliometric analysis. Scientometrics, 2016, 109, 481-513.	1.6	91

	CITATION	Report	
#	Article	IF	CITATIONS
40	Positional isomerism-driven two 3D pillar-layered metal-organic frameworks: Syntheses, topological structures and photoluminescence properties. Journal of Solid State Chemistry, 2016, 238, 284-290.	1.4	14
41	Tetrahedral cage complex with planar vertices: selective synthesis of Pt ₄ L ₆ cage complexes involving hydrogen bonds driven by halide binding. Chemical Communications, 2016, 52, 7205-7208.	2.2	7
42	Rational construction of functional molybdenum (tungsten)–copper–sulfur coordination oligomers and polymers from preformed cluster precursors. Chemical Society Reviews, 2016, 45, 4995-5019.	18.7	113
43	Lanthanide Metal-Organic Frameworks for Luminescent Applications. Fundamental Theories of Physics, 2016, 50, 243-268.	0.1	24
44	In-Situ Ligand Formation-Driven Preparation of a Heterometallic Metal–Organic Framework for Highly Selective Separation of Light Hydrocarbons and Efficient Mercury Adsorption. ACS Applied Materials & Interfaces, 2016, 8, 23331-23337.	4.0	72
45	A flexible metal-organic framework with double interpenetration for highly selective CO2 capture at room temperature. Science China Chemistry, 2016, 59, 965-969.	4.2	30
46	Two highly porous single-crystalline zirconium-based metal-organic frameworks. Science China Chemistry, 2016, 59, 980-983.	4.2	14
47	Solvent-Controlled Assembly of Ionic Metal–Organic Frameworks Based on Indium and Tetracarboxylate Ligand: Topology Variety and Gas Sorption Properties. Crystal Growth and Design, 2016, 16, 5554-5562.	1.4	46
48	Four calcium(<scp>ii</scp>) coordination polymers based on 2,5-dibromoterephthalic acid and different N-donor organic species: syntheses, structures, topologies, and luminescence properties. CrystEngComm, 2016, 18, 8664-8671.	1.3	30
49	Metal–Organic Framework–Polymer Composite as a Highly Efficient Sorbent for Sulfonamide Adsorption and Desorption: Effect of Coordinatively Unsaturated Metal Site and Topology. Langmuir, 2016, 32, 11465-11473.	1.6	45
50	Transformation of metal-organic frameworks for molecular sieving membranes. Nature Communications, 2016, 7, 11315.	5.8	140
51	Inserting CO ₂ into Aryl Câ^'H Bonds of Metal–Organic Frameworks: CO ₂ Utilization for Direct Heterogeneous Câ^'H Activation. Angewandte Chemie, 2016, 128, 5562-5566.	1.6	41
52	Encapsulation of Ln ^{III} ions/Ag nanoparticles within Cd(<scp>ii</scp>) boron imidazolate frameworks for tuning luminescence emission. Chemical Communications, 2016, 52, 8577-8580.	2.2	17
53	Different two-dimensional metal-organic frameworks through ligand modification. Journal of Coordination Chemistry, 2016, 69, 2193-2199.	0.8	4
54	Four Pb(<scp>ii</scp>) metal–organic frameworks with increasing dimensions: structural diversities by varying the ligands. New Journal of Chemistry, 2016, 40, 6867-6873.	1.4	12
55	Controlling structural topology of metal-organic frameworks with a desymmetric 4-connected ligand through the design of metal-containing nodes. Chinese Chemical Letters, 2016, 27, 502-506.	4.8	23
56	Pyrazine-based donor tectons: synthesis, self-assembly and characterization. RSC Advances, 2016, 6, 8992-9001.	1.7	12
57	Encapsulation of a Metal–Organic Polyhedral in the Pores of a Metal–Organic Framework. Journal of the American Chemical Society, 2016, 138, 1138-1141.	6.6	114

#	Article	IF	CITATIONS
58	Structural transformations and solid-state reactivity involving nano lead(II) coordination polymers via thermal, mechanochemical and photochemical approaches. Coordination Chemistry Reviews, 2016, 310, 116-130.	9.5	47
59	Cooperative effects of lanthanides when associated with palladium in novel, 3D Pd/Ln coordination polymers. Sustainable applications as water-stable, heterogeneous catalysts in carbon–carbon cross-coupling reactions. Applied Catalysis A: General, 2016, 511, 1-10.	2.2	34
60	Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chemical Society Reviews, 2016, 45, 2327-2367.	18.7	1,905
61	A novel porous anionic metal–organic framework with pillared double-layer structure for selective adsorption of dyes. Journal of Solid State Chemistry, 2016, 233, 143-149.	1.4	22
62	Crystalline central-metal transformation in metal-organic frameworks. Coordination Chemistry Reviews, 2016, 307, 130-146.	9.5	134
63	Photodriven single-crystal-to-single-crystal transformation. Coordination Chemistry Reviews, 2017, 346, 112-122.	9.5	108
64	Cu ²⁺ sorption from aqueous media by a recyclable Ca ²⁺ framework. Inorganic Chemistry Frontiers, 2017, 4, 773-781.	3.0	37
65	Solvent-mediated preparation of a heterometallic [2 × 2] grid via a 1D metal–organic template with extraordinary acid/base-resistance. RSC Advances, 2017, 7, 5578-5582.	1.7	1
66	Six new coordination compounds based on rigid 5-(3-carboxy-phenyl)-pyridine-2-carboxylic acid: synthesis, structural variations and properties. RSC Advances, 2017, 7, 7217-7226.	1.7	15
67	Exploiting NMR spectroscopy for the study of disorder in solids. International Reviews in Physical Chemistry, 2017, 36, 39-115.	0.9	65
68	Controllable construction of metal–organic polyhedra in confined cavities via in situ site-induced assembly. Journal of Materials Chemistry A, 2017, 5, 5278-5282.	5.2	18
69	Facile synthesis of an ultra-stable metal–organic framework with excellent acid and base resistance. Faraday Discussions, 2017, 201, 63-70.	1.6	14
70	A flexible porous copper-based metal-organic cage for carbon dioxide adsorption. Inorganic Chemistry Communication, 2017, 78, 28-31.	1.8	4
71	Water-Stable In(III)-Based Metal–Organic Frameworks with Rod-Shaped Secondary Building Units: Single-Crystal to Single-Crystal Transformation and Selective Sorption of C ₂ H ₂ over CO ₂ and CH ₄ . Inorganic Chemistry, 2017, 56, 2188-2197.	1.9	83
72	An anionic metal–organic framework with ternary building units for rapid and selective adsorption of dyes. Dalton Transactions, 2017, 46, 3332-3337.	1.6	88
73	Solventâ€Assisted Metal Metathesis: A Highly Efficient and Versatile Route towards Synthetically Demanding Chromium Metal–Organic Frameworks. Angewandte Chemie, 2017, 129, 6578-6582.	1.6	4
74	A Fluorescent Zirconiumâ€Based Metalâ€Organic Framework for Selective Detection of Nitro Explosives and Metal Ions. Chinese Journal of Chemistry, 2017, 35, 1091-1097.	2.6	12
75	Toward Covalent Organic Frameworks Bearing Three Different Kinds of Pores: The Strategy for Construction and COF-to-COF Transformation via Heterogeneous Linker Exchange. Journal of the American Chemical Society, 2017, 139, 6736-6743.	6.6	217

#	Article	IF	Citations
76	Metal-ion exchange induced structural transformation as a way of forming novel Ni(II)â^' and Cu(II)â^'salicylaldimine structures. Journal of Solid State Chemistry, 2017, 246, 23-28.	1.4	8
77	A Flexible Doubly Interpenetrated Metal–Organic Framework with Breathing Behavior and Tunable Gate Opening Effect by Introducing Co ²⁺ into Zn ₄ O Clusters. Inorganic Chemistry, 2017, 56, 6645-6651.	1.9	39
78	Solventâ€Assisted Metal Metathesis: A Highly Efficient and Versatile Route towards Synthetically Demanding Chromium Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2017, 56, 6478-6482.	7.2	80
79	Reversible Single-Crystal-to-Single-Crystal Transformations of Metal–Organic Frameworks that Accompany Two-Dimensional Framework Reorganizations. Crystal Growth and Design, 2017, 17, 2228-2237.	1.4	6
80	Cu ₂ O Mediated Synthesis of Metal–Organic Framework UiO-66 in Nanometer Scale. Crystal Growth and Design, 2017, 17, 685-692.	1.4	15
81	Anion–Cation Mediated Structural Rearrangement of an In-derived Three-Dimensional Interpenetrated Metal–Organic Framework. Inorganic Chemistry, 2017, 56, 950-955.	1.9	6
82	Zinc(II) and Copper(II) Hybrid Frameworks via Metal-Ion Metathesis with Enhanced Gas Uptake and Photoluminescence Properties. Inorganic Chemistry, 2017, 56, 14157-14163.	1.9	33
83	Enhancement of photocatalytic performance in two zinc-based metal–organic frameworks by solvent assisted linker exchange. CrystEngComm, 2017, 19, 5749-5754.	1.3	39
84	Topologically Guided, Automated Construction of Metal–Organic Frameworks and Their Evaluation for Energy-Related Applications. Crystal Growth and Design, 2017, 17, 5801-5810.	1.4	176
85	A 2D Coordination Network That Detects Nitro Explosives in Water, Catalyzes Baylis–Hillman Reactions, and Undergoes Unusual 2D→3D Single-Crystal to Single-Crystal Transformation. Inorganic Chemistry, 2017, 56, 8847-8855.	1.9	43
86	The Design of Dual-Emissive Composite Material [Zn ₂ (HL) ₃] ⁺ @MOF-5 as Self-Calibrating Luminescent Sensors of Al ³⁺ lons and Monoethanolamine. Inorganic Chemistry, 2017, 56, 9555-9562.	1.9	40
87	Chromium(II) Metal–Organic Polyhedra as Highly Porous Materials. ACS Applied Materials & Interfaces, 2017, 9, 28064-28068.	4.0	74
88	Construction of Eu(III)- and Tb(III)-MOFs with photoluminescence for sensing small molecules based on furan-2,5-dicarboxylic acid. Journal of Solid State Chemistry, 2017, 255, 76-81.	1.4	27
89	Coordination change, lability and hemilability in metal–organic frameworks. Chemical Society Reviews, 2017, 46, 5444-5462.	18.7	216
90	Synthesis of Denser Energetic Metal–Organic Frameworks via a Tandem Anion–Ligand Exchange Strategy. Inorganic Chemistry, 2017, 56, 10281-10289.	1.9	24
91	Novel Viologen Derivative Based Uranyl Coordination Polymers Featuring Photochromic Behaviors. Chemistry - A European Journal, 2017, 23, 18074-18083.	1.7	56
92	Long-lasting phosphorescence with a tunable color in a Mn ²⁺ -doped anionic metal–organic framework. Journal of Materials Chemistry C, 2017, 5, 7898-7903.	2.7	56
93	Two Polymorphs of an Organicâ^'Zincophosphate Incorporating a Terephthalate Bridging Ligand in an Unusual Bonding Mode. Inorganic Chemistry, 2017, 56, 7602-7605.	1.9	12

#	Article	IF	CITATIONS
94	Three novel bismuth-based coordination polymers: Synthesis, structure and luminescent properties. Inorganic Chemistry Communication, 2017, 85, 70-73.	1.8	22
95	Solventâ€Dependent Synthesis of Porous Anionic Uranyl–Organic Frameworks Featuring a Highly Symmetrical (3,4)â€Connected <i>ctn</i> or <i>bor</i> Topology for Selective Dye Adsorption. Chemistry - A European Journal, 2017, 23, 529-532.	1.7	57
96	Dynamic Behavior of Porous Coordination Polymers. , 2017, , 425-474.		2
97	Binuclear Mn ²⁺ complexes of a biphenyltetracarboxylic acid with variable N-donor ligands: syntheses, structures, and magnetic properties. CrystEngComm, 2018, 20, 1818-1831.	1.3	20
98	Semirigid Tripodal Ligand Based Uranyl Coordination Polymer Isomers Featuring 2D Honeycomb Nets. Inorganic Chemistry, 2018, 57, 4492-4501.	1.9	29
99	Microfluidic synthesis of uniform single-crystalline MOF microcubes with a hierarchical porous structure. Nanoscale, 2018, 10, 9192-9198.	2.8	49
100	A Series of Organic–Inorganic Hybrid Zinc Phosphites Containing Extra-Large Channels. Inorganic Chemistry, 2018, 57, 2390-2393.	1.9	17
101	A versatile MOF-based trap for heavy metal ion capture and dispersion. Nature Communications, 2018, 9, 187.	5.8	543
102	Robust multifunctional Zr-based metal–organic polyhedra for high proton conductivity and selective CO ₂ capture. Journal of Materials Chemistry A, 2018, 6, 7724-7730.	5.2	101
103	Sonochemical synthesis and characterization of a new nano Ce(III) coordination supramolecular compound; highly sensitive direct fluorescent sensor for Cu2+. Ultrasonics Sonochemistry, 2018, 40, 453-459.	3.8	23
104	Heterogeneous catalysts based on mesoporous metal–organic frameworks. Coordination Chemistry Reviews, 2018, 373, 199-232.	9.5	113
105	Uranyl-Organic Coordination Compounds Incorporating Photoactive Vinylpyridine Moieties: Synthesis, Structural Characterization, and Light-Induced Fluorescence Attenuation. Inorganic Chemistry, 2018, 57, 14772-14785.	1.9	18
106	Encapsulation of C–N-decorated metal sub-nanoclusters/single atoms into a metal–organic framework for highly efficient catalysis. Chemical Science, 2018, 9, 8962-8968.	3.7	27
107	Metal Acetylacetonates as a Source of Metals for Aqueous Synthesis of Metal–Organic Frameworks. ACS Sustainable Chemistry and Engineering, 2018, 6, 14554-14560.	3.2	41
108	An anionic metal–organic framework: metathesis of zinc(<scp>ii</scp>) with copper(<scp>ii</scp>) for efficient C ₃ /C ₂ hydrocarbon and organic dye separation. Inorganic Chemistry Frontiers, 2018, 5, 2898-2905.	3.0	18
109	Actinideâ€Based Porphyrinic MOF as a Dehydrogenation Catalyst. Chemistry - A European Journal, 2018, 24, 16766-16769.	1.7	37
110	(3,3)-Connected Three-dimentional Supramolecular Metal Organic Polyhedral Based on Nanometresized Ligand with Magnetism Properties. Chemical Research in Chinese Universities, 2018, 34, 723-726.	1.3	2
111	Modulating CO ₂ Adsorption in Metal–Organic Frameworks via Metal-Ion Doping. Inorganic Chemistry, 2018, 57, 6135-6141.	1.9	21

		CITATION REPORT		
#	Article		IF	CITATIONS
112	Photonic functional metal–organic frameworks. Chemical Society Reviews, 2018, 47	, 5740-5785.	18.7	528
113	Structure and Fluorescence Properties of a Two-Dimensional Zinc(II) Coordination Poly Containing Isophthalate. Journal of Structural Chemistry, 2018, 59, 720-724.	mer	0.3	1
114	Recent advances in POM-organic frameworks and POM-organic polyhedra. Coordinatic Reviews, 2019, 397, 220-240.	n Chemistry	9.5	172
115	Biopolymer@Metal-Organic Framework Hybrid Materials: A Critical Survey. Progress in Science, 2019, 106, 100579.	Materials	16.0	63
116	Stabilizing Metal–Organic Polyhedra (MOP): Issues and Strategies. Chemistry - an As 14, 3096-3108.	ian Journal, 2019,	1.7	66
117	Metal–Organic Frameworkâ€Derived Fe/Coâ€based Bifunctional Electrode for H <sub through Water and Urea Electrolysis. ChemSusChem, 2019, 12, 4810-4823.</sub 	>>2 Production	3.6	64
118	Subppm Amine Detection via Absorption and Luminescence Turn-On Caused by Ligand Organic Frameworks. Analytical Chemistry, 2019, 91, 15853-15859.	Exchange in Metal	3.2	37
119	Ligand Exchange in the Synthesis of Metal–Organic Frameworks Occurs Through Aci Associative Substitution. Inorganic Chemistry, 2019, 58, 14457-14466.	d-Catalyzed	1.9	18
120	Post synthetic exchange enables orthogonal click chemistry in a metal organic framework Transactions, 2019, 48, 45-49.	ork. Dalton	1.6	17
121	Fabrication of Desired Metal–Organic Frameworks via Postsynthetic Exchange and S Installation. Crystal Growth and Design, 2019, 19, 1454-1470.	equential Linker	1.4	57
122	Ultrasonicâ€Assisted Linker Exchange (USALE): A Novel Postâ€Synthesis Method for C Functionality, Porosity, and Morphology of MOFs. Chemistry - A European Journal, 201 10876-10885.		1.7	24
123	Metalâ€Carboxyl Helical Chain Secondary Units Supported Ionâ€Exchangeable Anionic Framework. Chemistry - A European Journal, 2019, 25, 10309-10313.	Uranyl–Organic	1.7	12
124	Syntheses, crystal structures, and photocatalytic properties of two zinc(II) coordination based on dicarboxylates and flexible bis(benzimidazole) ligands. Polyhedron, 2019, 167		1.0	12
125	Density Functional Theory Studies of Catalytic Sites in Metal- Organic Frameworks. , 0,			3
126	Vapor-assisted preparation of Mn/Fe/Co/Zn–Cu bimetallic metal–organic framewo octahedron micron crystals (PCN-6′). New Journal of Chemistry, 2019, 43, 6452-645		1.4	6
127	Cobalt substitution in a flexible metal–organic framework: modulating a soft paddle- tunable gate-opening adsorption. Dalton Transactions, 2019, 48, 7100-7104.	wheel unit for	1.6	9
128	Maximizing Photoresponsive Efficiency by Isolating Metal–Organic Polyhedra into Co Nanoscaled Spaces. Journal of the American Chemical Society, 2019, 141, 8221-8227.	onfined	6.6	71
129	A quantitative transmetalation with a metal organic framework compound in a solidâ€ reaction: synthesis, structure, kinetics, spectroscopy and electrochemistry. CrystEngCo 2438-2446.	"liquid interface omm, 2019, 21,	1.3	5

#	Article	IF	CITATIONS
130	Desulfurization Efficiency Preserved in a Heterometallic MOF: Synthesis and Thermodynamically Controlled Phase Transition. Advanced Science, 2019, 6, 1802056.	5.6	17
131	<i>In situ</i> nitroso formation induced structural diversity of uranyl coordination polymers. Inorganic Chemistry Frontiers, 2019, 6, 775-785.	3.0	19
132	Selective detection and removal of mercury ions by dual-functionalized metal–organic frameworks: design-for-purpose. New Journal of Chemistry, 2019, 43, 18079-18091.	1.4	49
133	Enhancing the hydrostability and processability of metal–organic polyhedra by self-polymerization or copolymerization with styrene. Dalton Transactions, 2019, 48, 17153-17157.	1.6	13
134	Functional Coordination Polymers from a Bifunctional Ligand: A Quantitative Transmetalation via Single Crystal to Single Crystal Transformation. Crystal Growth and Design, 2019, 19, 1155-1166.	1.4	18
135	A Single-Crystal to Single-Crystal Conversion Scheme for a Two-Dimensional Metal–Organic Framework Bearing Linear Cd ₃ Secondary Building Units. Crystal Growth and Design, 2019, 19, 724-729.	1.4	24
136	An Amineâ€Functionalized Zirconium Metal–Organic Polyhedron Photocatalyst with High Visibleâ€Light Activity for Hydrogen Production. Chemistry - A European Journal, 2019, 25, 2824-2830.	1.7	53
137	Metal–organic framework membranes: Production, modification, and applications. Progress in Materials Science, 2019, 100, 21-63.	16.0	169
138	An anionic In(III)-based metal-organic framework with Lewis basic sites for the selective adsorption and separation of organic cationic dyes. Chinese Chemical Letters, 2019, 30, 234-238.	4.8	39
139	Two silver(I) complexes based on dicarboxylate and flexible bis(benzimidazole) ligands: synthesis, crystal structures, sensing and photocatalytic properties. Transition Metal Chemistry, 2020, 45, 19-29.	0.7	10
140	Metal-Organic Cages (MOCs): From Discrete to Cage-based Extended Architectures. Chemistry Letters, 2020, 49, 28-53.	0.7	67
141	A highly active, robust photocatalyst heterogenized in discrete cages of metal–organic polyhedra for CO ₂ reduction. Energy and Environmental Science, 2020, 13, 519-526.	15.6	59
142	Pt ²⁺ -Exchanged ZIF-8 nanocube as a solid-state precursor for L1 ₀ -PtZn intermetallic nanoparticles embedded in a hollow carbon nanocage. Nanoscale, 2020, 12, 1118-1127.	2.8	10
143	Semiconductive Nature of Lead-Based Metal–Organic Frameworks with Three-Dimensionally Extended Sulfur Secondary Building Units. Journal of the American Chemical Society, 2020, 142, 27-32.	6.6	51
144	Structural Insight into Binary Protein Metal–Organic Frameworks with Ferritin Nanocages as Linkers and Nickel Clusters as Nodes. Chemistry - A European Journal, 2020, 26, 3016-3021.	1.7	19
145	Strategies for Pore Engineering in Zirconium Metal-Organic Frameworks. CheM, 2020, 6, 2902-2923.	5.8	91
146	Porous metal–organic alloys based on soluble coordination cages. Chemical Science, 2020, 11, 12540-12546.	3.7	16
147	Use of open source monitoring hardware to improve the production of MOFs: using STA-16(Ni) as a case study. Scientific Reports, 2020, 10, 17355.	1.6	3

#	Article	IF	CITATIONS
148	lsomorphous Substitution Synthesis and Photoelectric Properties of Spinel AgInSnS ₄ Nanosheets. Chemistry of Materials, 2020, 32, 9713-9720.	3.2	12
149	Postsynthetic Oxidation of the Coordination Site in a Heterometallic Metal–Organic Framework: Tuning Catalytic Behaviors. Chemistry of Materials, 2020, 32, 5192-5199.	3.2	20
150	Modular approach towards functional multimetallic coordination clusters. Coordination Chemistry Reviews, 2020, 419, 213394.	9.5	38
151	Unconventional Pyridyl Ligand Inclusion within a Flexible Metalâ€Organic Framework Bearing an N , N ′â€Diethylformamide (DEF)â€Solvated Cd 5 Cluster Secondary Building Unit. ChemPlusChem, 2020, 85, 503-509.	1.3	6
152	Metal ion adaptive self-assembly of photoactive lanthanide-based supramolecular hosts. Chemical Communications, 2020, 56, 4416-4419.	2.2	21
153	Exchange reactions in metal-organic frameworks: New advances. Coordination Chemistry Reviews, 2020, 421, 213421.	9.5	66
154	Incorporation of Clathrochelate-Based Metalloligands in Metal–Organic Frameworks by Solvent-Assisted Ligand Exchange. Crystal Growth and Design, 2020, 20, 1394-1399.	1.4	15
155	Aminoâ€Induced 2D Cuâ€Based Metal–Organic Framework as an Efficient Heterogeneous Catalyst for Aerobic Oxidation of Olefins. Chemistry - A European Journal, 2020, 26, 4333-4340.	1.7	18
156	<scp>Poreâ€Environment</scp> Engineering in Multifunctional <scp>Metalâ€Organic</scp> Frameworks. Chinese Journal of Chemistry, 2020, 38, 509-524.	2.6	28
157	Isolating reactive metal-based species in Metal–Organic Frameworks – viable strategies and opportunities. Chemical Science, 2020, 11, 4031-4050.	3.7	59
158	Synthesis of the Elusive bis (4â€carboxyphenylimino)acenaphthene Ligand and of its Palladium Dichloride Complex. ChemistrySelect, 2020, 5, 3119-3123.	0.7	1
159	A chemically stable nanoporous coordination polymer with fixed and free Cu2+ ions for boosted C2H2/CO2 separation. Nano Research, 2021, 14, 546-553.	5.8	39
160	Microporous framework membranes for precise molecule/ion separations. Chemical Society Reviews, 2021, 50, 986-1029.	18.7	191
161	Single-crystal-to-single-crystal mediated metal exchange from Zn(II) to Cu(II) and diverse structures in Zn/Cu coordination polymers using pyridylmethionine ligand. Journal of Molecular Structure, 2021, 1227, 129527.	1.8	3
162	Design and preparation of new luminescent metal–organic frameworks and different doped isomers: sensing pollution ions and enhancement of gas capture capacity. Inorganic Chemistry Frontiers, 2021, 8, 286-295.	3.0	25
163	The key role of metal nanoparticle in metal organic frameworks of UiO family (MOFs) for the application of CO2 capture and heterogeneous catalysis. , 2021, , 369-404.		1
164	Intermediate snapshots of a 116-nuclear metallosupramolecular cage-of-cage in a homogeneous single-crystal-to-single-crystal transformation. Chemical Communications, 2021, 57, 6090-6093.	2.2	3
165	Recent developments in organic–inorganic hybrid metal phosphates and phosphites. Dalton Transactions, 2021, 50, 10014-10019.	1.6	7

ARTICLE IF CITATIONS In Situ Porphyrin Substitution in a Zr(IV)â€MOF for Stability Enhancement and Photocatalytic 166 5.2 84 CO₂ Reduction. Small, 2021, 17, e2005357. Hierarchical trimetallic Co-Ni-Fe oxides derived from core-shell structured metal-organic frameworks for highly efficient oxygen evolution reaction. Applied Catalysis B: Environmental, 2021, 10.8 287, 119953. Synthesis and crystal structure of poly[(3-amino-1,2,4-triazole)(l¼₃-1<i>H</i>benzimidazole-5,6-dicarboxylato)cobalt(II)]. Acta Crystallographica Section E: Crystallographic Communications, 2021, 77, 714-717. 168 0.2 0 Cobalt Werner hosts with nicotinamides: Characterisation of mixed ligand complexes and their selectivity towards ortho xylene. Polyhedron, 2021, 202, 115202. Chemically Stable Metal–Organic Frameworks: Rational Construction and Application Expansion. 170 7.6 167 Accounts of Chemical Research, 2021, 54, 3083-3094. Influence of the Reaction Sequence on the Complexation of an NS₄-Macrocycle with Cd^{II} and Cu^I Salts Leading to the Formation of Supramolecular Isomers and an Endo/Exocyclic Cu^I Complex. Inorganic Chemistry, 2021, 60, 13637-13645. 171 Amino-functionalized zirconium and cerium MOFs: Catalysts for visible light induced aerobic oxidation of benzylic alcohols and microwaves assisted N-Alkylation of amines. Applied Catalysis A: 172 2.2 17 General, 2021, 623, 118287. A General Strategy for Instantaneous and Continuous Synthesis of Ultrasmall Metalâ€Organic 1.6 Framework Nanoparticles. Angewandte Chemie, 2021, 133, 26594. A General Strategy for Instantaneous and Continuous Synthesis of Ultrasmall Metal–Organic 174 7.2 36 Framework Nanoparticles. Angewandte Chemie - International Edition, 2021, 60, 26390-26396. The Amazing Chemistry of Metal-Organic Frameworks., 2017, , 339-369. Co-ligand tuned pyrimidine-2-carboxylate Mn(ii) complexes from a 2D 63 layer to an interpenetrated 176 4 1.6 srs-net. Dalton Transactions, 2017, 46, 8593-8597. Reviewâ€"Recent Trend on Two-Dimensional Metal-Organic Frameworks for Electrochemical Biosensor 1.3 Application. Journal of the Electrochemical Society, 2020, 167, 136509. Conductive MOFs based on Thiol-functionalized Linkers: Challenges, Opportunities, and Recent 178 9.5 42 Advances. Coordination Chemistry Reviews, 2022, 450, 214235. Viologenâ€Based Uranyl Coordination Polymers: Anionâ€Induced Structural Diversity and the Potential as 179 1.0 a Fluorescent Probe. European Journal of Ínorganic Chemistry, 2021, 2021, 5077-5084. Organometallic Functionalized MOFs - Reactivity and Catalysis., 2021, , . 180 1 Single-Crystal-to-Single-Crystal Transformation of Two Copper(II) Metal–Organic Frameworks Modulatéd by Auxiliary Ligands. Inorganic Chemistry, 2022, 61, 1360-1367. Nanochannel Engineering in Metal–Organic Frameworks by Grafting Sulfonic Groups for Boosting 182 2.55 Proton Conductivity. ACS Applied Energy Materials, 2022, 5, 3235-3241. A real space picture of the role of steric effects in <scp> S _N 2 </scp> reactions. Journal 1.5

CITATION REPORT

of Computational Chemistry, 2022, 43, 785-795.

	CHATION K	EPORT	
#	Article	IF	CITATIONS
184	Post-synthetic modifications of metal–organic cages. Nature Reviews Chemistry, 2022, 6, 339-356.	13.8	66
185	Enhancement of Output Performance of Triboelectric Nanogenerator by Switchable Stimuli in Metal–Organic Frameworks for Photocatalysis. ACS Applied Materials & Interfaces, 2022, 14, 16424-16434.	4.0	28
186	Catalytic reduction of organic pollutants using novel Ni-Ce-Zr trimetallic metal organic framework. Materials Today: Proceedings, 2023, 72, 47-54.	0.9	0
187	Summary and prospects. , 2022, , 503-518.		0
188	Metal-organic frameworks (MOFs), rare earth MOFs, and rare earth functionalized MOF hybrid materials. , 2022, , 3-40.		0
189	N2-selective adsorbents and membranes for natural gas purification. Separation and Purification Technology, 2022, 300, 121808.	3.9	9
190	Single-Phase White-Light Phosphors Based on a Bicarbazole-Based Metal–Organic Framework with Encapsulated Dyes. , 2022, 4, 2345-2351.		10
191	Mechanochemistry-assisted linker exchange of metal-organic framework for efficient kinetic separation of propene and propane. Chemical Engineering Journal, 2023, 454, 140093.	6.6	8
192	trans-[Ni(pdm)2]2+ (pdm = 2-pyridinemethanol) as a reliable synthon for isoreticular metal–organic frameworks of linear dicarboxylates. Journal of Solid State Chemistry, 2023, 317, 123721.	1.4	2
193	Metal–Organic Frameworks as Photocatalysts for Solar-Driven Overall Water Splitting. Chemical Reviews, 2023, 123, 445-490.	23.0	84
194	Metal-organic layers: Preparation and applications. Science China Materials, 2023, 66, 839-858.	3.5	3
195	Unveiling Structural Diversity of Uranyl Compounds of Aprotic 4,4′-Bipyridine <i>N</i> , <i>N</i> ′-Dioxide Bearing O-Donors. ACS Omega, 2023, 8, 8894-8909.	1.6	1
197	Four isostructural lanthanide metal–organic frameworks: luminescence properties and fluorescence sensing for Fe ³⁺ and Cr ₂ O ₇ ^{2â^`} ions. CrystEngComm, 2023, 25, 2813-2823.	1.3	3
202	Post-synthesis modification of metal–organic frameworks: synthesis, characteristics, and applications. Journal of Materials Chemistry A, 2023, 11, 24519-24550.	5.2	0