Cation exchange at the secondary building units of met

Chemical Society Reviews 43, 5456-5467 DOI: 10.1039/c4cs00002a

Citation Report

#	Article	IF	CITATIONS
2	Direct photo-hydroxylation of the Zr-based framework UiO-66. Chemical Communications, 2014, 50, 15453-15456.	2.2	19
3	Ordered Vacancies and Their Chemistry in Metal–Organic Frameworks. Journal of the American Chemical Society, 2014, 136, 14465-14471.	6.6	156
4	Core–Shell Catalysts of Metal Nanoparticle Core and Metal–Organic Framework Shell. ACS Catalysis, 2014, 4, 4409-4419.	5.5	318
5	Cation exchange at the secondary building units of metal–organic frameworks. Chemical Society Reviews, 2014, 43, 5456-5467.	18.7	462
6	Post-synthetic metalation of metal–organic frameworks. Chemical Society Reviews, 2014, 43, 5933-5951.	18.7	529
7	A 3-D diamondoid MOF catalyst based on in situ generated [Cu(L) ₂] N-heterocyclic carbene (NHC) linkers: hydroboration of CO ₂ . Chemical Communications, 2014, 50, 11760-11763.	2.2	70
8	Versatile Tailoring of Paddleâ€Wheel Zn ^{II} Metal–Organic Frameworks through Singleâ€Crystalâ€toâ€Singleâ€Crystal Transformations. Chemistry - A European Journal, 2015, 21, 16083-16090.	1.7	35
9	Combination of Optimization and Metalatedâ€Ligand Exchange: An Effective Approach to Functionalize UiOâ€66(Zr) MOFs for CO ₂ Separation. Chemistry - A European Journal, 2015, 21, 17246-17255.	1.7	82
10	Significant Gas Adsorption and Catalytic Performance by a Robust Cu ^{II} –MOF Derived through Singleâ€Crystal to Singleâ€Crystal Transmetalation of a Thermally Lessâ€Stable Zn ^{II} –MOF. Chemistry - A European Journal, 2015, 21, 19064-19070.	1.7	68
11	Ligand Symmetry Modulation for Designing a Mesoporous Metal–Organic Framework: Dual Reactivity to Transition and Lanthanide Metals for Enhanced Functionalization. Chemistry - A European Journal, 2015, 21, 9713-9719.	1.7	59
14	Singleâ€Crystal to Singleâ€Crystal Linker Substitution, Linker Place Exchange, and Transmetalation Reactions in Interpenetrated Pillared–Bilayer Zinc(II) Metal–Organic Frameworks. Chemistry - A European Journal, 2015, 21, 17422-17429.	1.7	32
15	Photoluminescence Modulation in LanÂthanide(III)/Pyrazineâ€2,5â€dicarboxylato/Nitrato Frameworks. European Journal of Inorganic Chemistry, 2015, 2015, 4318-4328.	1.0	18
16	Three Cadmium(II) Coordination Polymers based on Mixed 1,2â€Naphthalenedicarboxylate and Bis(pyridyl) Coâ€ligands: Structural Diversities and Photoluminescent Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 876-882.	0.6	1
17	A luminescent cadmium(<scp>ii</scp>) metal–organic framework based on a triazolate–carboxylate ligand exhibiting selective gas adsorption and guest-dependent photoluminescence properties. CrystEngComm, 2015, 17, 4787-4792.	1.3	30
18	Electrosynthesis of Metal–Organic Frameworks: Challenges and Opportunities. ChemElectroChem, 2015, 2, 462-474.	1.7	199
19	Modulating structural dimensionality of cadmium(II) coordination polymers by means of pyrazole, tetrazole and pyrimidine derivative ligands. Journal of Molecular Structure, 2015, 1089, 135-145.	1.8	9
20	Size-exclusive and coordination-induced selective dye adsorption in a nanotubular metal–organic framework. Journal of Materials Chemistry A, 2015, 3, 12804-12809.	5.2	118
21	Synthesis and characterization of MHa-g-poly(HEMA)PO ₄ ^{2â^'} 2H ⁺ cation exchanger-effective removal of methylene blue from waste water. RSC Advances, 2015, 5, 39771-39784.	1.7	7

#	Article	IF	CITATIONS
22	Metal cluster-based functional porous coordination polymers. Coordination Chemistry Reviews, 2015, 293-294, 263-278.	9.5	234
23	Constructing Crystalline Heterometallic Indium–Organic Frameworks by the Bifunctional Method. Crystal Growth and Design, 2015, 15, 1440-1445.	1.4	50
24	Metal-Ion Exchange, Small-Molecule Sensing, Selective Dye Adsorption, and Reversible Iodine Uptake of Three Coordination Polymers Constructed by a New Resorcin[4]arene-Based Tetracarboxylate. Inorganic Chemistry, 2015, 54, 1744-1755.	1.9	104
25	Metalation of a Thiocatechol-Functionalized Zr(IV)-Based Metal–Organic Framework for Selective C–H Functionalization. Journal of the American Chemical Society, 2015, 137, 2191-2194.	6.6	234
26	The concept of mixed organic ligands in metal–organic frameworks: design, tuning and functions. Dalton Transactions, 2015, 44, 5258-5275.	1.6	225
27	Structure-Assisted Functional Anchor Implantation in Robust Metal–Organic Frameworks with Ultralarge Pores. Journal of the American Chemical Society, 2015, 137, 1663-1672.	6.6	70
28	Conformal and highly adsorptive metal–organic framework thin films via layer-by-layer growth on ALD-coated fiber mats. Journal of Materials Chemistry A, 2015, 3, 1458-1464.	5.2	100
29	Manganese- and Cobalt-Based Coordination Networks as Promising Heterogeneous Catalysts for Olefin Epoxidation Reactions. Inorganic Chemistry, 2015, 54, 2603-2615.	1.9	33
30	Dynamic DMF Binding in MOF-5 Enables the Formation of Metastable Cobalt-Substituted MOF-5 Analogues. ACS Central Science, 2015, 1, 252-260.	5.3	123
31	Atomically Precise Growth of Catalytically Active Cobalt Sulfide on Flat Surfaces and within a Metal–Organic Framework <i>via</i> Atomic Layer Deposition. ACS Nano, 2015, 9, 8484-8490.	7.3	158
32	[Co(H ₂ 0) ₆] ²⁺ and H ₃ O ⁺ encapsulated in a unique 3D anionic Co(<scp>ii</scp>) framework with hydrophilic hexagonal and circular channels. CrystEngComm, 2015, 17, 7034-7037.	1.3	8
33	Three-Dimensional Heterometallic Coordination Networks: Syntheses, Crystal Structures, Topologies, and Heterogeneous Catalysis. Crystal Growth and Design, 2015, 15, 4110-4122.	1.4	23
34	Two Series of Isostructural Coordination Polymers with Isomeric Benzenedicarboxylates and Different Azine Based N,Nâ€2-Donor Ligands: Syntheses, Characterization and Magnetic Properties. Crystal Growth and Design, 2015, 15, 4427-4437.	1.4	36
35	Light-induced nitric oxide release from physiologically stable porous coordination polymers. Dalton Transactions, 2015, 44, 15324-15333.	1.6	30
36	Thermodynamic parameters of cation exchange in MOF-5 and MFU-4l. Chemical Communications, 2015, 51, 11780-11782.	2.2	30
37	BrÃ,nsted Acidity in Metal–Organic Frameworks. Chemical Reviews, 2015, 115, 6966-6997.	23.0	477
38	When the Solvent Locks the Cage: Theoretical Insight into the Transmetalation of MOF-5 Lattices and Its Kinetic Limitations. Chemistry of Materials, 2015, 27, 3422-3429.	3.2	23
39	Postsynthetic Improvement of the Physical Properties in a Metal–Organic Framework through a Single Crystal to Single Crystal Transmetallation. Angewandte Chemie - International Edition, 2015, 54, 6521-6525.	7.2	98

C		ON	Drno	DT
	пап		REPU	KI

#	Article	IF	CITATIONS
40	Transforming metal–organic frameworks into functional materials. Inorganic Chemistry Frontiers, 2015, 2, 495-509.	3.0	42
41	Postsynthetic Metal and Ligand Exchange in MFUâ€4 <i>l</i> : A Screening Approach toward Functional Metal–Organic Frameworks Comprising Singleâ€&ite Active Centers. Chemistry - A European Journal, 2015, 21, 8188-8199.	1.7	70
42	Photoinduced Postsynthetic Polymerization of a Metal–Organic Framework toward a Flexible Standâ€Alone Membrane. Angewandte Chemie - International Edition, 2015, 54, 4259-4263.	7.2	235
44	New 3-D coordination polymers based on semi-rigid V-shape tetracarboxylates. Journal of Solid State Chemistry, 2015, 226, 206-214.	1.4	4
45	Enhanced O ₂ Selectivity versus N ₂ by Partial Metal Substitution in Cu-BTC. Chemistry of Materials, 2015, 27, 2018-2025.	3.2	72
46	Immobilization of Cu Complex into Zr-Based MOF with Bipyridine Units for Heterogeneous Selective Oxidation. Journal of Physical Chemistry C, 2015, 119, 8131-8137.	1.5	89
47	A family of coordination polymers assembled with a flexible hexacarboxylate ligand and auxiliary N-donor ligands: syntheses, structures, and physical properties. CrystEngComm, 2015, 17, 3181-3196.	1.3	22
48	What Matters to the Adsorptive Desulfurization Performance of Metal - Organic Frameworks?. Journal of Physical Chemistry C, 2015, 119, 21969-21977.	1.5	91
49	Solvothermal Metal Metathesis on a Metal–Organic Framework with Constricted Pores and the Study of Gas Separation. ACS Applied Materials & Interfaces, 2015, 7, 25402-25412.	4.0	18
50	Hydrolytic Transformation of Microporous Metal–Organic Frameworks to Hierarchical Micro―and Mesoporous MOFs. Angewandte Chemie - International Edition, 2015, 54, 13273-13278.	7.2	186
51	Cation Exchange in Dynamic 3D Porous Magnets: Improvement of the Physical Properties. Inorganic Chemistry, 2015, 54, 10834-10840.	1.9	20
52	De facto methodologies toward the synthesis and scale-up production of UiO-66-type metal–organic frameworks and membrane materials. Dalton Transactions, 2015, 44, 19018-19040.	1.6	155
53	Heterometallic coordination polymers: syntheses, structures and heterogeneous catalytic applications. New Journal of Chemistry, 2015, 39, 9772-9781.	1.4	28
54	A series of reaction-controlled coordination polymers constructed from bis(imidazole) and tetrafluoroterephthalic acid ligands: syntheses, structural diversities, properties. CrystEngComm, 2015, 17, 8273-8281.	1.3	20
55	Diverse isostructural MOFs by postsynthetic metal node metathesis: anionic-to-cationic framework conversion, luminescence and separation of dyes. Journal of Materials Chemistry A, 2015, 3, 22915-22922.	5.2	63
56	Facile Conversion of Hydroxy Double Salts to Metal–Organic Frameworks Using Metal Oxide Particles and Atomic Layer Deposition Thin-Film Templates. Journal of the American Chemical Society, 2015, 137, 13756-13759.	6.6	174
57	Dual Exchange in PCN-333: A Facile Strategy to Chemically Robust Mesoporous Chromium Metal–Organic Framework with Functional Groups. Journal of the American Chemical Society, 2015, 137, 11801-11809.	6.6	83
58	Synthesis and Structural Characterizations of New Coordination Polymers Generated by the Interaction Between the Trinuclear Triangular SBU [Cu ₃ (μ ₃ -OH)(μ-pz) ₃] ²⁺ and 4,4′-Bipyridine. 3°. Cryst Growth and Design. 2015. 15. 4854-4862.	al ^{1.4}	21

#	Article	IF	CITATIONS
59	Heterogeneity within a Mesoporous Metal–Organic Framework with Three Distinct Metal-Containing Building Units. Journal of the American Chemical Society, 2015, 137, 13456-13459.	6.6	88
60	The preparation of an ultrastable mesoporous Cr(<scp>iii</scp>)-MOF via reductive labilization. Chemical Science, 2015, 6, 7044-7048.	3.7	56
61	Reaction of Copper(II) Chloroacetate with Pyrazole. Synthesis of a One-Dimensional Coordination Polymer and Unexpected Dehydrochlorination Reaction. Crystal Growth and Design, 2015, 15, 5910-5918.	1.4	18
62	Functionalization of robust Zr(<scp>iv</scp>)-based metal–organic framework films via a postsynthetic ligand exchange. Chemical Communications, 2015, 51, 66-69.	2.2	107
63	Crystal engineering, structure–function relationships, and the future of metal–organic frameworks. CrystEngComm, 2015, 17, 229-246.	1.3	237
64	Post-assembly transformations of porphyrin-containing metal–organic framework (MOF) films fabricated via automated layer-by-layer coordination. Chemical Communications, 2015, 51, 85-88.	2.2	54
65	A Heterobimetallic Anionic 3,6-Connected 2D Coordination Polymer Based on Nitranilate as Ligand. Polymers, 2016, 8, 89.	2.0	23
66	Bimetallic Metalâ€Organic Frameworks: Probing the Lewis Acid Site for CO ₂ Conversion. Small, 2016, 12, 2334-2343.	5.2	122
67	Solid‣tate Molecular Nanomagnet Inclusion into a Magnetic Metal–Organic Framework: Interplay of the Magnetic Properties. Chemistry - A European Journal, 2016, 22, 539-545.	1.7	61
68	Understanding the Origins of Nucleophilic Hydride Reactivity of a Sodium Hydride–Iodide Composite. Chemistry - A European Journal, 2016, 22, 7108-7114.	1.7	44
69	Switchable Roomâ€Temperature Ferroelectric Behavior, Selective Sorption and Solventâ€Exchange Studies of [H ₃ 0][Co ₂ (dat)(sdba) ₂]â <h<sub>2sdbaâ<5 H_{2ChemPlusChem, 2016, 81, 733-742.}</h<sub>) ¹ 3.)>0.	9
70	Carboxylate-Hydrazone Mixed-Linker Metal-Organic Frameworks: Synthesis, Structure, and Selective Gas Adsorption. European Journal of Inorganic Chemistry, 2016, 2016, 4450-4456.	1.0	27
71	Carboxylic Acid Functionalized Clathrochelate Complexes: Large, Robust, and Easy-to-Access Metalloligands. Inorganic Chemistry, 2016, 55, 4006-4015.	1.9	43
72	Central-metal exchange, improved catalytic activity, photoluminescence properties of a new family of d ¹⁰ coordination polymers based on the 5,5′-(1H-2,3,5-triazole-1,4-diyl)diisophthalic acid ligand. Dalton Transactions, 2016, 45, 7776-7785.	1.6	56
73	Exceptionally water stable heterometallic gyroidal MOFs: tuning the porosity and hydrophobicity by doping metal ions. Chemical Communications, 2016, 52, 6513-6516.	2.2	74
74	Photoreaction of adsorbed diiodomethane: halide effects of a series of neutral palladium(<scp>ii</scp>) coordination cages. Dalton Transactions, 2016, 45, 9574-9581.	1.6	11
75	Metal-center exchange of tetrahedral cages: single crystal to single crystal and spin-crossover properties. Chemical Communications, 2016, 52, 4796-4799.	2.2	27
76	A Carboxylate-Rich Metalloligand and Its Heterometallic Coordination Polymers: Syntheses, Structures, Topologies, and Heterogeneous Catalysis. Crystal Growth and Design, 2016, 16, 2874-2886.	1.4	37

#	Article	IF	CITATIONS
77	Spin-crossover complex encapsulation within a magnetic metal–organic framework. Chemical Communications, 2016, 52, 7360-7363.	2.2	39
78	Rational construction of functional molybdenum (tungsten)–copper–sulfur coordination oligomers and polymers from preformed cluster precursors. Chemical Society Reviews, 2016, 45, 4995-5019.	18.7	113
79	Plasmonic Semiconductor Nanoparticles in a Metal–Organic Framework Structure and Their <i>in Situ</i> Cation Exchange. Chemistry of Materials, 2016, 28, 7511-7518.	3.2	8
80	Ligand and Metal Effects on the Stability and Adsorption Properties of an Isoreticular Series of MOFs Based on Tâ€Shaped Ligands and Paddleâ€Wheel Secondary Building Units. Chemistry - A European Journal, 2016, 22, 16147-16156.	1.7	43
81	Lanthanide Metal-Organic Frameworks for Luminescent Applications. Fundamental Theories of Physics, 2016, 50, 243-268.	0.1	24
82	Combining Ruthenium(II) Complexes with Metal–Organic Frameworks to Realize Effective Two-Photon Absorption for Singlet Oxygen Generation. ACS Applied Materials & Interfaces, 2016, 8, 21465-21471.	4.0	78
83	Complete Transmetalation in a Metal–Organic Framework by Metal Ion Metathesis in a Single Crystal for Selective Sensing of Phosphate Ions in Aqueous Media. Angewandte Chemie - International Edition, 2016, 55, 11528-11532.	7.2	135
84	Complete Transmetalation in a Metal–Organic Framework by Metal Ion Metathesis in a Single Crystal for Selective Sensing of Phosphate Ions in Aqueous Media. Angewandte Chemie, 2016, 128, 11700-11704.	1.6	25
85	Postsynthetic Modification of Zirconium Metalâ€Organic Frameworks. European Journal of Inorganic Chemistry, 2016, 2016, 4310-4331.	1.0	188
86	Integrated Co3O4/TiO2 Composite Hollow Polyhedrons Prepared via Cation-exchange Metal-Organic Framework for Superior Lithium-ion Batteries. Electrochimica Acta, 2016, 222, 1021-1028.	2.6	50
87	A bifunctional metal–organic framework featuring the combination of open metal sites and Lewis basic sites for selective gas adsorption and heterogeneous cascade catalysis. Journal of Materials Chemistry A, 2016, 4, 15240-15246.	5.2	120
88	A Partially Fluorinated, Water-Stable Cu(II)–MOF Derived via Transmetalation: Significant Gas Adsorption with High CO ₂ Selectivity and Catalysis of Biginelli Reactions. Inorganic Chemistry, 2016, 55, 7835-7842.	1.9	71
89	Single-Site Heterogeneous Catalysts for Olefin Polymerization Enabled by Cation Exchange in a Metal-Organic Framework. Journal of the American Chemical Society, 2016, 138, 10232-10237.	6.6	153
90	Four calcium(<scp>ii</scp>) coordination polymers based on 2,5-dibromoterephthalic acid and different N-donor organic species: syntheses, structures, topologies, and luminescence properties. CrystEngComm, 2016, 18, 8664-8671.	1.3	30
91	Metalloligands to material: design strategies and network topologies. CrystEngComm, 2016, 18, 9185-9208.	1.3	33
92	Metal–Organic Framework–Polymer Composite as a Highly Efficient Sorbent for Sulfonamide Adsorption and Desorption: Effect of Coordinatively Unsaturated Metal Site and Topology. Langmuir, 2016, 32, 11465-11473.	1.6	45
93	Transformation of metal-organic frameworks for molecular sieving membranes. Nature Communications, 2016, 7, 11315.	5.8	140
94	Hetero-bimetallic paddlewheel clusters in coordination polymers formed by a water-induced single-crystal-to-single-crystal transformation. Chemical Communications, 2016, 52, 13397-13400.	2.2	19

#	Article	IF	CITATIONS
95	Metal Substitution into Metal Organic Nanotubes: Impacts on Solvent Uptake and Stability. Crystal Growth and Design, 2016, 16, 7058-7066.	1.4	15
96	Synthesis of bimetallic Zr(Ti)-naphthalendicarboxylate MOFs and their properties as Lewis acid catalysis. RSC Advances, 2016, 6, 106790-106797.	1.7	44
97	Two Cd II -containing coordination polymers based on trinuclear and dodecanuclear clusters. Inorganic Chemistry Communication, 2016, 70, 90-94.	1.8	9
98	Solvent-regulated assemblies of four Zn(II) coordination polymers constructed by flexible tetracarboxylates and pyridyl ligands. Journal of Molecular Structure, 2016, 1118, 233-240.	1.8	6
99	Bis(carboxyphenyl)-1,2,4-triazole Based Metal–Organic Frameworks: Impact of Metal Ion Substitution on Adsorption Performance. Inorganic Chemistry, 2016, 55, 6938-6948.	1.9	16
100	Intercalation of Coordinatively Unsaturated Fe ^{III} Ion within Interpenetrated Metal–Organic Framework MOFâ€5. Chemistry - A European Journal, 2016, 22, 7711-7715.	1.7	15
101	Controlled synthesis of spherical hierarchical LiNi1â^'xâ^'yCoxAlyO2 (0 <x, a="" cation<br="" novel="" via="" y<0.2)="">exchange process as cathode materials for High-Performance Lithium Batteries. Electrochimica Acta, 2016, 190, 932-938.</x,>	2.6	32
102	Crystal phase competition by addition of a second metal cation in solid solution metal–organic frameworks. Dalton Transactions, 2016, 45, 4327-4337.	1.6	13
103	A series of Zn(<scp>ii</scp>) and Cd(<scp>ii</scp>) coordination compounds based on 4-(4H-1,2,4-triazol-4-yl)benzoic acid: synthesis, structure and photoluminescence properties. CrystEngComm, 2016, 18, 130-142.	1.3	16
104	Roles of anions in the structural diversity of Cd(II) complexes based on a V-shaped triazole-carboxylate ligand: Synthesis, structure and photoluminescence properties. Inorganica Chimica Acta, 2016, 446, 103-110.	1.2	9
105	Anionic metal–organic framework hybrids: functionalization with lanthanide ions or cationic dyes and fluorescence sensing of small molecules. RSC Advances, 2016, 6, 28165-28170.	1.7	55
106	Lanthanide-based coordination polymers as promising heterogeneous catalysts for ring-opening reactions. RSC Advances, 2016, 6, 21352-21361.	1.7	32
107	Barcoded materials based on photoluminescent hybrid system of lanthanide ions-doped metal organic framework and silica via ion exchange. Journal of Colloid and Interface Science, 2016, 468, 220-226.	5.0	16
108	Structural variation of transition metal coordination polymers based on bent carboxylate and flexible spacer ligand: polymorphism, gas adsorption and SC-SC transmetallation. CrystEngComm, 2016, 18, 4323-4335.	1.3	30
109	Covalent Chemistry beyond Molecules. Journal of the American Chemical Society, 2016, 138, 3255-3265.	6.6	328
110	Synthetic Access to Atomically Dispersed Metals in Metal–Organic Frameworks via a Combined Atomic-Layer-Deposition-in-MOF and Metal-Exchange Approach. Chemistry of Materials, 2016, 28, 1213-1219.	3.2	85
111	The structural diversity and properties of nine new viologen based zwitterionic metal–organic frameworks. CrystEngComm, 2016, 18, 2189-2202.	1.3	50
112	3,5-Bis((4′-carboxylbenzyl)oxy)benzoilate-based coordination polymers: their synthesis, structural characterization, and sensing properties. Inorganic Chemistry Frontiers, 2016, 3, 406-416.	3.0	20

#	Article	IF	CITATIONS
113	A versatile synthetic route for the preparation of titanium metal–organic frameworks. Chemical Science, 2016, 7, 1063-1069.	3.7	114
114	A novel porous anionic metal–organic framework with pillared double-layer structure for selective adsorption of dyes. Journal of Solid State Chemistry, 2016, 233, 143-149.	1.4	22
115	Formation of oriented and patterned films of metal–organic frameworks by liquid phase epitaxy: A review. Coordination Chemistry Reviews, 2016, 307, 391-424.	9.5	193
116	Syntheses and Characterizations of Two New Octamolybdate-Based Polyoxometalates Decorated by Isoquinoline Ligands. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 370-375.	0.6	2
117	Crystalline central-metal transformation in metal-organic frameworks. Coordination Chemistry Reviews, 2016, 307, 130-146.	9.5	134
118	Cu ²⁺ sorption from aqueous media by a recyclable Ca ²⁺ framework. Inorganic Chemistry Frontiers, 2017, 4, 773-781.	3.0	37
119	Self-assembly, structures and properties of three new Ni(II) coordination polymers derived from two different bis-pyridyl-bis-amide ligands and two aromatic polycarboxylates. Journal of Chemical Sciences, 2017, 129, 9-20.	0.7	10
120	The Postsynthetic Renaissance in Porous Solids. Journal of the American Chemical Society, 2017, 139, 2855-2863.	6.6	377
121	A microporous Mg ²⁺ MOF with cation exchange properties in a single-crystal-to-single-crystal fashion. Inorganic Chemistry Frontiers, 2017, 4, 530-536.	3.0	19
122	Post-synthetic ion-exchange process in nanoporous metal–organic frameworks; an effective way for modulating their structures and properties. RSC Advances, 2017, 7, 1782-1808.	1.7	119
123	Metal–organic frameworks with Lewis acidity: synthesis, characterization, and catalytic applications. CrystEngComm, 2017, 19, 4066-4081.	1.3	205
124	Between the Sheets: Postsynthetic Transformations in Hybrid Perovskites. Chemistry of Materials, 2017, 29, 1868-1884.	3.2	75
125	Design, structural diversity and properties of novel zwitterionic metal–organic frameworks. Dalton Transactions, 2017, 46, 6853-6869.	1.6	10
126	Mn-Doped ZnSe quantum dots initiated mild and rapid cation exchange for tailoring the composition and optical properties of colloid nanocrystals: novel template, new applications. Nanoscale, 2017, 9, 2824-2835.	2.8	16
127	Orthogonal self-assembly of a trigonal triptycene triacid: signaling of exfoliation of porous 2D metal–organic layers by fluorescence and selective CO ₂ capture by the hydrogen-bonded MOF. Journal of Materials Chemistry A, 2017, 5, 5402-5412.	5.2	105
128	Solventâ€Assisted Metal Metathesis: A Highly Efficient and Versatile Route towards Synthetically Demanding Chromium Metal–Organic Frameworks. Angewandte Chemie, 2017, 129, 6578-6582.	1.6	4
129	Local Deprotonation Enables Cation Exchange, Porosity Modulation, and Tunable Adsorption Selectivity in a Metal–Organic Framework. Crystal Growth and Design, 2017, 17, 3387-3394.	1.4	23
130	Selective Dimerization of Propylene with Ni-MFU-4 <i>l</i> . Organometallics, 2017, 36, 1681-1683.	1.1	55

#	Article	IF	CITATIONS
131	Enhancing the Catalytic Activity in the Solid State: Metal–Organic Frameworks to the Rescue. ACS Central Science, 2017, 3, 367-368.	5.3	5
132	Crystallization process development of metal–organic frameworks by linking secondary building units, lattice nucleation and luminescence: insight into reproducibility. CrystEngComm, 2017, 19, 426-441.	1.3	34
133	Metal-ion exchange induced structural transformation as a way of forming novel Ni(II)â^' and Cu(II)â^'salicylaldimine structures. Journal of Solid State Chemistry, 2017, 246, 23-28.	1.4	8
134	Sonochemical synthesis and structural characterization of a new nanostructured Co(II) supramolecular coordination polymer with Lewis base sites as a new catalyst for Knoevenagel condensation. Ultrasonics Sonochemistry, 2017, 39, 897-907.	3.8	23
135	A highly stable metalâ€organic framework with optimum aperture size for CO ₂ capture. AICHE Journal, 2017, 63, 4103-4114.	1.8	85
136	Two threefold Interpenetrating 3D Supramolecular Networks Based on 1D Chains and Hydrogenâ€bond Interactions. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 864-869.	0.6	1
137	Impact of Postsynthetic Modification on the Electrical and Magnetic Properties of Materials. Inorganic Chemistry, 2017, 56, 7316-7319.	1.9	11
138	A Flexible Doubly Interpenetrated Metal–Organic Framework with Breathing Behavior and Tunable Gate Opening Effect by Introducing Co ²⁺ into Zn ₄ O Clusters. Inorganic Chemistry, 2017, 56, 6645-6651.	1.9	39
139	Grand Challenges and Future Opportunities for Metal–Organic Frameworks. ACS Central Science, 2017, 3, 554-563.	5.3	311
140	Four Flexible Bis(Thiabendazole)-Based Cd(II) Coordination Polymers with Various Aromatic Carboxylates: Syntheses, Structures and Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 37-45.	1.9	4
141	New Zinc functionalized metal organic Framework for selective sensing of chromate ion. Sensors and Actuators B: Chemical, 2017, 251, 644-649.	4.0	34
142	The MOF-driven synthesis of supported palladium clusters with catalytic activity for carbene-mediated chemistry. Nature Materials, 2017, 16, 760-766.	13.3	230
143	Functionalised metal–organic frameworks: a novel approach to stabilising single metal atoms. Journal of Materials Chemistry A, 2017, 5, 15559-15566.	5.2	24
144	Solventâ€Assisted Metal Metathesis: A Highly Efficient and Versatile Route towards Synthetically Demanding Chromium Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2017, 56, 6478-6482.	7.2	80
145	Robust MOFs of "tsg―Topology Based on Trigonal Prismatic Organic and Metal Cluster SBUs: Single Crystal to Single Crystal Postsynthetic Metal Exchange and Selective CO ₂ Capture. Chemistry - A European Journal, 2017, 23, 7297-7305.	1.7	26
146	Reversible Single-Crystal-to-Single-Crystal Transformations of Metal–Organic Frameworks that Accompany Two-Dimensional Framework Reorganizations. Crystal Growth and Design, 2017, 17, 2228-2237.	1.4	6
147	Synthesis, crystal structures and photoluminescence studies of three mixed ligand silver(I) coordination polymers. Transition Metal Chemistry, 2017, 42, 285-291.	0.7	7
148	Stepwise Synthesis of Diverse Isomer MOFs via Metal-Ion Metathesis in a Controlled Single-Crystal-to-Single-Crystal Transformation. Crystal Growth and Design, 2017, 17, 4084-4089.	1.4	29

#	Article	IF	CITATIONS
149	Bimetallic Metal–Organic Frameworks for Gas Storage and Separation. Crystal Growth and Design, 2017, 17, 1450-1455.	1.4	255
150	Electronic Properties of Bimetallic Metal–Organic Frameworks (MOFs): Tailoring the Density of Electronic States through MOF Modularity. Journal of the American Chemical Society, 2017, 139, 5201-5209.	6.6	178
151	Recent advances and challenges of metal–organic framework membranes for gas separation. Journal of Materials Chemistry A, 2017, 5, 10073-10091.	5.2	314
152	Cation exchanged MOF-derived nitrogen-doped porous carbons for CO ₂ capture and supercapacitor electrode materials. Journal of Materials Chemistry A, 2017, 5, 9544-9552.	5.2	149
153	Probing Molecular Mechanisms of Self-Assembly in Metal–Organic Frameworks. ACS Nano, 2017, 11, 258-268.	7.3	41
154	Anion–Cation Mediated Structural Rearrangement of an In-derived Three-Dimensional Interpenetrated Metal–Organic Framework. Inorganic Chemistry, 2017, 56, 950-955.	1.9	6
155	Metal-organic frameworks: Challenges and opportunities for ion-exchange/sorption applications. Progress in Materials Science, 2017, 86, 25-74.	16.0	324
156	Multifaceted Modularity: A Key for Stepwise Building of Hierarchical Complexity in Actinide Metal–Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 16852-16861.	6.6	107
157	Zinc(II) and Copper(II) Hybrid Frameworks via Metal-Ion Metathesis with Enhanced Gas Uptake and Photoluminescence Properties. Inorganic Chemistry, 2017, 56, 14157-14163.	1.9	33
158	Thermally Driven Resistive Switching in Solution-Processable Thin Films of Coordination Polymers. Journal of Physical Chemistry Letters, 2017, 8, 5008-5014.	2.1	23
159	Luminescent Cu ₄ 1 ₄ –Cu ₃ (Pyrazolate) ₃ Coordination Frameworks: Postsynthetic Ligand Substitution Leads to Network Displacement and Entanglement. Inorganic Chemistry, 2017, 56, 13446-13455.	1.9	44
160	Revisiting the Incorporation of Ti(IV) in UiO-type Metal–Organic Frameworks: Metal Exchange versus Grafting and Their Implications on Photocatalysis. Chemistry of Materials, 2017, 29, 8963-8967.	3.2	64
161	Mechanical Properties of Microcrystalline Metal–Organic Frameworks (MOFs) Measured by Bimodal Amplitude Modulated-Frequency Modulated Atomic Force Microscopy. ACS Applied Materials & Interfaces, 2017, 9, 32202-32210.	4.0	46
162	Addressed realization of multication complex arrangements in metal-organic frameworks. Science Advances, 2017, 3, e1700773.	4.7	47
163	Kinetic ontrolled Formation of Bimetallic Metal–Organic Framework Hybrid Structures. Small, 2017, 13, 1702049.	5.2	69
164	Metal Organic Framework-Templated Chemiresistor: Sensing Type Transition from P-to-N Using Hollow Metal Oxide Polyhedron via Galvanic Replacement. Journal of the American Chemical Society, 2017, 139, 11868-11876.	6.6	136
165	Highly Stereoselective Heterogeneous Diene Polymerization by Co-MFU-4I: A Single-Site Catalyst Prepared by Cation Exchange. Journal of the American Chemical Society, 2017, 139, 12664-12669.	6.6	63
166	Coordination change, lability and hemilability in metal–organic frameworks. Chemical Society Reviews, 2017, 46, 5444-5462.	18.7	216

#	Article	IF	CITATIONS
167	Morphology effect of metal-organic framework HKUST-1 as a catalyst on benzene oxidation. Chemical Research in Chinese Universities, 2017, 33, 971-978.	1.3	12
168	Latest advances in supercapacitors: from new electrode materials to novel device designs. Chemical Society Reviews, 2017, 46, 6816-6854.	18.7	1,567
169	Two luminescent Zn(<scp>ii</scp>)/Cd(<scp>ii</scp>) metal–organic frameworks as rare multifunctional sensors. New Journal of Chemistry, 2017, 41, 8107-8117.	1.4	58
170	Spontaneous Magnetization in Heterometallic NiFe-MOF-74 Microporous Magnets by Controlled Iron Doping. Chemistry of Materials, 2017, 29, 6181-6185.	3.2	28
171	Post-Synthetic Annealing: Linker Self-Exchange in UiO-66 and Its Effect on Polymer–Metal Organic Framework Interaction. Crystal Growth and Design, 2017, 17, 4384-4392.	1.4	37
172	MOF catalysts in biomass upgrading towards value-added fine chemicals. CrystEngComm, 2017, 19, 4092-4117.	1.3	166
173	A Hirshfeld surface analysis, crystal structure and physicochemical studies of a new Cd(II) complex with the 2-amino-4-methylpyrimidine ligand. Journal of Molecular Structure, 2017, 1128, 378-384.	1.8	11
174	Cr(VI) removal via anion exchange on a silver-triazolate MOF. Journal of Hazardous Materials, 2017, 321, 622-628.	6.5	249
175	Best Practices for the Synthesis, Activation, and Characterization of Metal–Organic Frameworks. Chemistry of Materials, 2017, 29, 26-39.	3.2	518
176	A Series of Robust Copper-Based Triazolyl Isophthalate MOFs: Impact of Linker Functionalization on Gas Sorption and Catalytic Activity â€. Materials, 2017, 10, 338.	1.3	11
177	Landscape of Research Areas for Zeolites and Metal-Organic Frameworks Using Computational Classification Based on Citation Networks. Materials, 2017, 10, 1428.	1.3	19
179	A Roomâ€Temperature Postsynthetic Ligand Exchange Strategy to Construct Mesoporous Feâ€Doped CoP Hollow Triangle Plate Arrays for Efficient Electrocatalytic Water Splitting. Small, 2018, 14, e1704233.	5.2	244
180	Encapsulating a ruthenium(<scp>ii</scp>) complex into metal organic frameworks to engender high sensitivity for dopamine electrochemiluminescence detection. Analytical Methods, 2018, 10, 1560-1564.	1.3	24
181	Crystallographic snapshots of host–guest interactions in drugs@metal–organic frameworks: towards mimicking molecular recognition processes. Materials Horizons, 2018, 5, 683-690.	6.4	64
182	Stabilized Vanadium Catalyst for Olefin Polymerization by Site Isolation in a Metal–Organic Framework. Angewandte Chemie - International Edition, 2018, 57, 8135-8139.	7.2	73
183	Stabilized Vanadium Catalyst for Olefin Polymerization by Site Isolation in a Metal–Organic Framework. Angewandte Chemie, 2018, 130, 8267-8271.	1.6	6
184	Exploring Lanthanide Doping in UiO-66: A Combined Experimental and Computational Study of the Electronic Structure. Inorganic Chemistry, 2018, 57, 5463-5474.	1.9	51
185	Towards flexible solid-state supercapacitors for smart and wearable electronics. Chemical Society Reviews, 2018, 47, 2065-2129.	18.7	1,338

#	Article	IF	CITATIONS
186	Metal–organic framework technologies for water remediation: towards a sustainable ecosystem. Journal of Materials Chemistry A, 2018, 6, 4912-4947.	5.2	369
187	Facile synthesis of cuboid Ni-MOF for high-performance supercapacitors. Journal of Materials Science, 2018, 53, 6807-6818.	1.7	193
188	Titanium-based metal–organic frameworks for photocatalytic applications. Coordination Chemistry Reviews, 2018, 359, 80-101.	9.5	246
189	Tricking Inert Metals into Water-Absorbing MOFs. Joule, 2018, 2, 18-20.	11.7	6
190	Controlled Gas Uptake in Metal–Organic Frameworks with Record Ammonia Sorption. Journal of the American Chemical Society, 2018, 140, 3461-3466.	6.6	250
191	Reticular Chemistry in Action: A Hydrolytically Stable MOF Capturing Twice Its Weight in Adsorbed Water. CheM, 2018, 4, 94-105.	5.8	282
192	Transmission Electron Microscopy Reveals Deposition of Metal Oxide Coatings onto Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 1348-1357.	6.6	51
193	Programmable Topology in New Families of Heterobimetallic Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 6194-6198.	6.6	78
194	Facile Postâ€Synthesis of a Ce ³⁺ â€Doped Ca _x Sr _{1â€x} Sc ₂ O ₄ Phosphor by Means of Cation Exchange. ChemistrySelect, 2018, 3, 4387-4392.	0.7	6
195	Precise control of pore hydrophilicity enabled by post-synthetic cation exchange in metal–organic frameworks. Chemical Science, 2018, 9, 3856-3859.	3.7	70
196	Sonochemical synthesis and characterization of a new nano Ce(III) coordination supramolecular compound; highly sensitive direct fluorescent sensor for Cu2+. Ultrasonics Sonochemistry, 2018, 40, 453-459.	3.8	23
197	A water-stable Tb(<scp>iii</scp>)-based metal–organic gel (MOC) for detection of antibiotics and explosives. Inorganic Chemistry Frontiers, 2018, 5, 120-126.	3.0	248
198	Selective Catalytic Olefin Epoxidation with Mn ^{II} -Exchanged MOF-5. ACS Catalysis, 2018, 8, 596-601.	5.5	105
199	Copper based coordination polymers based on metalloligands: utilization as heterogeneous oxidation catalysts. Dalton Transactions, 2018, 47, 16985-16994.	1.6	15
200	Reticular Chemistry of Multifunctional Metalâ€Organic Framework Materials. Israel Journal of Chemistry, 2018, 58, 949-961.	1.0	24
201	Structure and Photocatalytic Properties of a 3D Zinc(II) Triazolate Coordination Polymer Combining Hydroxyl and Formate Anions as the Auxiliary Coligands. Journal of Structural Chemistry, 2018, 59, 1450-1455.	0.3	2
202	Exact Stoichiometry of Ce _{<i>x</i>} Zr _{6–<i>x</i>} Cornerstones in Mixed-Metal UiO-66 Metal–Organic Frameworks Revealed by Extended X-ray Absorption Fine Structure Spectroscopy. Journal of the American Chemical Society, 2018, 140, 17379-17383.	6.6	71
203	Supramolecular Assembly of a Zn(II)-Based 1D Coordination Polymer through Hydrogen Bonding and ï€Â·Â·Î€ Interactions: Crystal Structure and Device Applications. ACS Omega, 2018, 3, 12060-12067.	1.6	31

#	Article	IF	CITATIONS
204	Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Science Advances, 2018, 4, eaat9180.	4.7	533
205	Luminescent Zn(ii) coordination polymers as efficient fluorescent sensors for highly sensitive detection of explosive nitroaromatics. CrystEngComm, 2018, 20, 6762-6774.	1.3	32
206	Post-Synthetic Modification of Nonporous Adaptive Crystals of Pillar[4]arene[1]quinone by Capturing Vaporized Amines. Journal of the American Chemical Society, 2018, 140, 15070-15079.	6.6	86
207	Higher Symmetry Multinuclear Clusters of Metal–Organic Frameworks for Highly Selective CO ₂ Capture. Journal of the American Chemical Society, 2018, 140, 17825-17829.	6.6	98
208	Robust heterometallic MOF catalysts for the cyanosilylation of aldehydes. Inorganic Chemistry Frontiers, 2018, 5, 2772-2776.	3.0	44
209	Changing the Dress to a MOF through Fluorination and Transmetalation. Structural and Gas-Sorption Effects. Crystal Growth and Design, 2018, 18, 6824-6832.	1.4	17
210	Smoothing the single-crystal to single-crystal conversions of a two-dimensional metal–organic framework <i>via</i> the hetero-metal doping of the linear trimetallic secondary building unit. Dalton Transactions, 2018, 47, 13722-13729.	1.6	16
211	Crystal structures and investigation of the third-order nonlinear optical properties of four coordination polymers by using the Z-scan technique. CrystEngComm, 2018, 20, 5833-5843.	1.3	8
212	Tailoring the structure, pH sensitivity and catalytic performance in Suzuki–Miyaura cross-couplings of Ln/Pd MOFs based on the 1,1′-di(<i>p</i> -carboxybenzyl)-2,2′-diimidazole linker. Dalton Transactions, 2018, 47, 8755-8763.	1.6	22
213	Modulating CO ₂ Adsorption in Metal–Organic Frameworks via Metal-Ion Doping. Inorganic Chemistry, 2018, 57, 6135-6141.	1.9	21
214	Lanthanide-Based Porous Coordination Polymers: Syntheses, Slow Relaxation of Magnetization, and Magnetocaloric Effect. Inorganic Chemistry, 2018, 57, 6584-6598.	1.9	38
215	Pore Wall-Functionalized Luminescent Cd(II) Framework for Selective CO ₂ Adsorption, Highly Specific 2,4,6-Trinitrophenol Detection, and Colorimetric Sensing of Cu ²⁺ lons. ACS Sustainable Chemistry and Engineering, 2018, 6, 10295-10306.	3.2	102
216	Isolated Fe(III)–O Sites Catalyze the Hydrogenation of Acetylene in Ethylene Flows under Front-End Industrial Conditions. Journal of the American Chemical Society, 2018, 140, 8827-8832.	6.6	74
217	Iron(ii) and cobalt(ii) complexes based on anionic phenanthroline-imidazolate ligands: reversible single-crystal-to-single-crystal transformations. CrystEngComm, 2018, 20, 4141-4150.	1.3	0
218	Harnessing Structural Dynamics in a 2D Manganese–Benzoquinoid Framework To Dramatically Accelerate Metal Transport in Diffusion-Limited Metal Exchange Reactions. Journal of the American Chemical Society, 2018, 140, 11444-11453.	6.6	31
219	From Zn(II) to Cu(II) framework via single-crystal to single-crystal metathesis with superior gas uptake and heterogeneous catalytic properties. Inorganica Chimica Acta, 2018, 482, 925-934.	1.2	8
220	Synthesis and characterization of two one-dimensional Cd ^{II} coordination polymers (CPs) with 5-amino-2,4,6-tribromoisophthalic acid and flexible N-donor bipyridyl ligands. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 951-960.	0.2	3
221	Preparation of a bispyridine based porous organic polymer as a new platform for Cu(ii) catalyst and its use in heterogeneous olefin epoxidation. New Journal of Chemistry, 2018, 42, 14067-14070.	1.4	3

		CITATION REPORT		
#	Article		IF	Citations
222	Photonic functional metal–organic frameworks. Chemical Society Reviews, 2018, 47	², 5740-5785 .	18.7	528
223	Generating and optimizing the catalytic activity in UiO-66 for aerobic oxidation of alke post-synthetic exchange Ti atoms combined with ligand substitution. Journal of Catalys 450-463.	nes by sis, 2018, 365,	3.1	29
224	Synthesis and Crystal Structure of a Zn(II)-Based MOF Bearing Neutral N-Donor Linker Anion. Crystals, 2018, 8, 37.	and SiF62â^	1.0	16
225	Coordination driven architectures based on metalloligands offering appended carboxyl groups. Journal of Chemical Sciences, 2018, 130, 1.	lic acid	0.7	6
226	Adsorptive desulfurization from the model fuels by functionalized UiO-66(Zr). Fuel, 20	18, 234, 256-262.	3.4	98
227	Interior Decoration of Stable Metal–Organic Frameworks. Langmuir, 2018, 34, 1379	5-13807.	1.6	34
228	Zn/Co ZIF family: MW synthesis, characterization and stability upon halogen sorption. 2018, 154, 457-464.	Polyhedron,	1.0	44
229	Analytical STEM Investigation of the Post-Synthetic Modification (PMS) of Metal-Orgar (MOFs): Metal- and Ligand-Exchange in UiO-66. Microscopy and Microanalysis, 2018, 2	nic Frameworks 24, 1970-1971.	0.2	3
230	The role of the counter-ion in metal-organic frameworks' chemistry and application Chemistry Reviews, 2018, 376, 319-347.	ıs. Coordination	9.5	177
231	Exposed Equatorial Positions of Metal Centers via Sequential Ligand Elimination and In MOFs. Journal of the American Chemical Society, 2018, 140, 10814-10819.	istallation in	6.6	70
232	Metal organic framework laden poly(ethylene oxide) based composite electrolytes for a Li-S and Li-metal polymer batteries. Electrochimica Acta, 2018, 285, 355-364.	all-solid-state	2.6	118
233	Metalâ€organic Frameworks Incorporating Multiple Metal Elements. Israel Journal of C 58, 1036-1043.	hemistry, 2018,	1.0	24
234	Rational Design of Catalytic Centers in Crystalline Frameworks. Advanced Materials, 20	018, 30, e1707582.	11.1	103
235	Exploring the catalytic performance of a series of bimetallic MIL-100(Fe, Ni) MOFs. Jour Chemistry A, 2019, 7, 20285-20292.	rnal of Materials	5.2	69
236	A Collection of Recent Examples of Catalysis Using Carboxylate-Based Metalâ~'Organic ACS Symposium Series, 2019, , 167-197.	: Frameworks.	0.5	1
237	Frontiers and progress in cation-uptake and exchange chemistry of polyoxometalate-ba compounds. Chemical Science, 2019, 10, 7670-7679.	ased	3.7	57
238	Metal-organic framework encapsulated single-atom Pt catalysts for efficient photocata hydrogen evolution. Journal of Catalysis, 2019, 375, 351-360.	alytic	3.1	86
239	Porous metal-organic frameworks for gas storage and separation: Status and challenge EnergyChem, 2019, 1, 100006.	25.	10.1	434

	CITATION REI	PORT	
# 240	ARTICLE A new synthetic approach for substitutional solid solutions in a 3D coordination polymer: Cation vacancy, and tunable photoluminescence. Journal of Solid State Chemistry, 2019, 279, 120948.	IF 1.4	CITATIONS 6
241	Templating metastable Pd2 carboxylate aggregates. Chemical Science, 2019, 10, 1823-1830.	3.7	15
242	An Ionâ€Exchangeable MOF with Reversible Dehydration and Dynamic Structural Behavior (NH 4) 2 [Zn 2 (O 3 PCH 2 CH 2 COO) 2]â‹5 H 2 O (BIRMâ€1). Chemistry - A European Journal, 2019, 25, 13865-13868.	1.7	1
243	Cation-induced chirality in a bifunctional metal-organic framework for quantitative enantioselective recognition. Nature Communications, 2019, 10, 5117.	5.8	150
244	The Anisotropic Responses of a Flexible Metal–Organic Framework Constructed from Asymmetric Flexible Linkers and Heptanuclear Zinc Carboxylate Secondary Building Units. Crystal Growth and Design, 2019, 19, 5604-5618.	1.4	6
245	Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture. Nature Reviews Materials, 2019, 4, 708-725.	23.3	214
246	Modulating the basicity of Zn-MOF-74 <i>via</i> cation exchange with calcium ions. Dalton Transactions, 2019, 48, 14971-14974.	1.6	24
247	Lead–Organic Frameworks Containing Trimesic Acid: Facile Dissolution–Crystallization and Near-White Light Emission. Crystal Growth and Design, 2019, 19, 6274-6282.	1.4	12
248	Dichotomy between frustrated local spins and conjugated electrons in a two-dimensional metal–organic framework. Nanoscale, 2019, 11, 955-961.	2.8	34
249	Rare metal-ion metathesis of a tetrahedral Zn(<scp>ii</scp>) core of a noncentrosymmetric (3,4)-connected 3D MOF. Dalton Transactions, 2019, 48, 1950-1954.	1.6	7
250	Post synthetic exchange enables orthogonal click chemistry in a metal organic framework. Dalton Transactions, 2019, 48, 45-49.	1.6	17
251	Tuning the Ionicity of Stable Metal–Organic Frameworks through Ionic Linker Installation. Journal of the American Chemical Society, 2019, 141, 3129-3136.	6.6	70
252	Fabrication of Desired Metal–Organic Frameworks via Postsynthetic Exchange and Sequential Linker Installation. Crystal Growth and Design, 2019, 19, 1454-1470.	1.4	57
253	Our journey of developing multifunctional metal-organic frameworks. Coordination Chemistry Reviews, 2019, 384, 21-36.	9.5	126
254	MOF transmetalation beyond cation substitution: defective distortion of IRMOF-9 in the spotlight. CrystEngComm, 2019, 21, 827-834.	1.3	16
256	Mixed precious-group metal–organic frameworks: a case study of the HKUST-1 analogue [Ru _x Rh _{3â~'x} (BTC) ₂]. Dalton Transactions, 2019, 48, 12031-12039.	1.6	31
257	Phosphonium zwitterions for lighter and chemically-robust MOFs: highly reversible H ₂ S capture and solvent-triggered release. Journal of Materials Chemistry A, 2019, 7, 16842-16849.	5.2	22
258	Metal-organic frameworks as emerging platform for supporting isolated single-site catalysts. Nano Today, 2019, 27, 178-197.	6.2	66

	Сітл	CITATION REPORT	
#	Article	IF	Citations
259	Metal- and covalent-organic frameworks as solid-state electrolytes for metal-ion batteries. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180225.	1.6	51
260	A Ca ²⁺ MOF combining highly efficient sorption and capability for voltammetric determination of heavy metal ions in aqueous media. Journal of Materials Chemistry A, 2019, 7, 15432-15443.	5.2	72
261	Oneâ€Pot Synthesis of Heterobimetallic Metal–Organic Frameworks (MOFs) for Multifunctional Catalysis. Chemistry - A European Journal, 2019, 25, 10490-10498.	1.7	99
262	<i>Quo vadis niobium</i> ? Divergent coordination behavior of early-transition metals towards MOF-5. Chemical Science, 2019, 10, 5906-5910.	3.7	15
263	Metal-Organic Frameworks. Green Energy and Technology, 2019, , 137-172.	0.4	7
264	A Single-Crystal Open-Capsule Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 7906-7916.	6.6	179
265	Nanoporous Materials for Gas Storage. Green Energy and Technology, 2019, , .	0.4	14
266	Density Functional Theory Studies of Catalytic Sites in Metal- Organic Frameworks. , 0, , .		3
267	Tandem magnetization and postâ€synthetic metal ion exchange of metal–organic framework: Synthe characterization and catalytic study. Applied Organometallic Chemistry, 2019, 33, e4819.	esis, 1.7	9
268	Metal ion exchange in Prussian blue analogues: Cu(<scp>ii</scp>)-exchanged Zn–Co PBAs as highly selective catalysts for A ³ coupling. Dalton Transactions, 2019, 48, 3946-3954.	1.6	17
269	MOF-templated synthesis of nano Ag2O/ZnO/CuO heterostructure for photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 376, 279-287.	2.0	67
270	Metalâ^'Organic Frameworks for Highâ€Energy Lithium Batteries with Enhanced Safety: Recent Progres and Future Perspectives. Batteries and Supercaps, 2019, 2, 591-626.	^{3S} 2.4	45
272	Crisscrossing coordination networks: ligand doping to control the chemomechanical properties of stimuli-responsive metallogels. Chemical Science, 2019, 10, 3864-3872.	3.7	11
273	Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4. Coordination Chemistry Reviews, 2019, 387, 79-120.	9.5	298
274	Postsynthetic Metal Exchange in a Metal–Organic Framework Assembled from Co(III) Diphosphine Pincer Complexes. Inorganic Chemistry, 2019, 58, 3227-3236.	1.9	23
275	A fivefold linker length reduction in an interpenetrated metal–organic framework <i>via</i> sequential solvent-assisted linker exchange. Chemical Communications, 2019, 55, 12671-12674.	2.2	22
276	Nano-based smart pesticide formulations: Emerging opportunities for agriculture. Journal of Controlled Release, 2019, 294, 131-153.	4.8	424
277	A Single-Crystal to Single-Crystal Conversion Scheme for a Two-Dimensional Metal–Organic Framework Bearing Linear Cd ₃ Secondary Building Units. Crystal Growth and Design, 2019, 19, 724-729.	1.4	24

#		IE	CITATIONS
#	ARTICLE	IF	CHATIONS
278	Advanced Sustainable Systems, 2019, 3, 1800080.	2.7	217
279	Encoding Metal–Cation Arrangements in Metal–Organic Frameworks for Programming the Composition of Electrocatalytically Active Multimetal Oxides. Journal of the American Chemical Society, 2019, 141, 1766-1774.	6.6	32
280	Metal ion induced single-crystal-to-single-crystal transformation and luminescent sensing properties of resorcin[4]arene-based metal–organic frameworks. Polyhedron, 2019, 161, 145-153.	1.0	6
281	Catalysis through Dynamic Spacer Installation of Multivariate Functionalities in Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 2589-2593.	6.6	98
282	Metalâ€ion Tuning in Triple‧tranded Helicateâ€Based Metallosupramolecules. Chemistry - A European Journal, 2019, 25, 2472-2476.	1.7	7
283	Recent advances in post-synthetic modification of metal–organic frameworks: New types and tandem reactions. Coordination Chemistry Reviews, 2019, 378, 500-512.	9.5	428
284	An anionic In(III)-based metal-organic framework with Lewis basic sites for the selective adsorption and separation of organic cationic dyes. Chinese Chemical Letters, 2019, 30, 234-238.	4.8	39
285	A Dye@MOF composite as luminescent sensory material for selective and sensitive recognition of Fe(III) ions in water. Inorganica Chimica Acta, 2020, 500, 119205.	1.2	34
286	Pt ²⁺ -Exchanged ZIF-8 nanocube as a solid-state precursor for L1 ₀ -PtZn intermetallic nanoparticles embedded in a hollow carbon nanocage. Nanoscale, 2020, 12, 1118-1127.	2.8	10
287	Alterations to secondary building units of metal–organic frameworks for the development of new functions. Inorganic Chemistry Frontiers, 2020, 7, 12-27.	3.0	60
288	Lanthanide coordination polymers of viologen carboxylic acid: Crystal structures and luminescence response tuning. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 390, 112296.	2.0	4
289	Strategies for Pore Engineering in Zirconium Metal-Organic Frameworks. CheM, 2020, 6, 2902-2923.	5.8	91
290	Multiple catalytic sites in MOF-based hybrid catalysts for organic reactions. Organic and Biomolecular Chemistry, 2020, 18, 8508-8525.	1.5	11
291	Recent Progress on Microfine Design of Metal–Organic Frameworks: Structure Regulation and Gas Sorption and Separation. Advanced Materials, 2020, 32, e2002563.	11.1	160
292	Two-step gas adsorption induced by the transmetallation in a two-dimensional metal–organic framework. Chemical Communications, 2020, 56, 9727-9730.	2.2	2
293	Tuning Electrical―and Photoâ€Conductivity by Cation Exchange within a Redoxâ€Active Tetrathiafulvaleneâ€Based Metal–Organic Framework. Angewandte Chemie, 2020, 132, 18922-18926.	1.6	24
294	Tuning Electrical―and Photoâ€Conductivity by Cation Exchange within a Redoxâ€Active Tetrathiafulvaleneâ€Based Metal–Organic Framework. Angewandte Chemie - International Edition, 2020, 59, 18763-18767.	7.2	29
295	A Mixedâ€Metal Porphyrinic Framework Promoting Gasâ€Phase CO ₂ Photoreduction without Organic Sacrificial Agents. ChemSusChem, 2020, 13, 6273-6277.	3.6	26

#	Article	IF	CITATIONS
296	Single rystalâ€to‧ingleâ€Crystal Installation of Ln 4 (OH) 4 Cubanes in an Anionic Metallosupramolecular Framework. Angewandte Chemie - International Edition, 2020, 59, 18048-18053.	7.2	12
297	Soft Mode Metal-Linker Dynamics in Carboxylate MOFs Evidenced by Variable-Temperature Infrared Spectroscopy. Journal of the American Chemical Society, 2020, 142, 19291-19299.	6.6	38
298	Mixed-Metal Cu-BTC Metal–Organic Frameworks as a Strong Adsorbent for Molecular Hydrogen at Low Temperatures. ACS Omega, 2020, 5, 28493-28499.	1.6	45
299	Singleâ€Crystalâ€ŧoâ€6ingleâ€Crystal Installation of Ln 4 (OH) 4 Cubanes in an Anionic Metallosupramolecular Framework. Angewandte Chemie, 2020, 132, 18204-18209.	1.6	Ο
300	Impact of solvent substitution on kinetically controlled transmetalation behaviours in a MOF. New Journal of Chemistry, 2020, 44, 14679-14685.	1.4	5
301	Steric Effect of a Capping Ligand on the Formation of Supramolecular Coordination Networks of Ni(II): Solid-State Entrapment of Cyclic Water Dimer. ACS Omega, 2020, 5, 21873-21882.	1.6	5
302	Spectroscopy, microscopy, diffraction and scattering of archetypal MOFs: formation, metal sites in catalysis and thin films. Chemical Society Reviews, 2020, 49, 6694-6732.	18.7	71
303	Isomorphous Substitution Synthesis and Photoelectric Properties of Spinel AgInSnS ₄ Nanosheets. Chemistry of Materials, 2020, 32, 9713-9720.	3.2	12
304	MOF water harvesters. Nature Nanotechnology, 2020, 15, 348-355.	15.6	400
305	Exploring the Tunability of Trimetallic MOF Nodes for Partial Oxidation of Methane to Methanol. ACS Applied Materials & Interfaces, 2020, 12, 28217-28231.	4.0	46
306	Cu(ii)Cl2 containing bispyridine-based porous organic polymer support prepared via alkyne–azide cycloaddition as a heterogeneous catalyst for oxidation of various olefins. New Journal of Chemistry, 2020, 44, 9149-9152.	1.4	3
307	A Heterometallic Three-Dimensional Metalâ`'Organic Framework Bearing an Unprecedented One-Dimensional Branched-Chain Secondary Building Unit. Molecules, 2020, 25, 2190.	1.7	6
308	Pore Chemistry of Metal–Organic Frameworks. Advanced Functional Materials, 2020, 30, 2000238.	7.8	245
309	The 50-Fold Enhanced Proton Conductivity Brought by Aqueous-Phase Single-Crystal-to-Single-Crystal Central Metal Exchange. Inorganic Chemistry, 2020, 59, 8361-8368.	1.9	14
310	Cation exchange in metal-organic frameworks (MOFs): The hard-soft acid-base (HSAB) principle appraisal. Inorganica Chimica Acta, 2020, 511, 119801.	1.2	75
311	A new 1D Zn(II) coordination polymer containing 2-amino-4,6-dimethoxypyrimidine ligand: crystal structure, Hirshfeld surface analysis, and physicochemical studies. Journal of Molecular Structure, 2020, 1216, 128309.	1.8	2
312	Unconventional Pyridyl Ligand Inclusion within a Flexible Metalâ€Organic Framework Bearing an N , N ′â€Diethylformamide (DEF)â€Solvated Cd 5 Cluster Secondary Building Unit. ChemPlusChem, 2020, 85, 503-509.	1.3	6
313	Insensitivity of Magnetic Coupling to Ligand Substitution in a Series of Tetraoxolene Radical-Bridged Fe2 Complexes. Inorganic Chemistry, 2020, 59, 4634-4649.	1.9	14

#	Article	IF	CITATIONS
314	Exchange reactions in metal-organic frameworks: New advances. Coordination Chemistry Reviews, 2020, 421, 213421.	9.5	66
315	Porous Aromatic Frameworks (PAFs). Chemical Reviews, 2020, 120, 8934-8986.	23.0	389
316	Buffering-like cationic coordination polymer AgM-CP for adsorptive removal of chromate anions from aqueous solution: Isotherm and thermodynamics. Journal of Solid State Chemistry, 2020, 286, 121271.	1.4	6
317	A novel spectroscopic probe for detecting food preservative NO2â^': Citric acid functionalized metal-organic framework and luminescence sensing. Microchemical Journal, 2020, 155, 104768.	2.3	20
318	Metal–Organic Framework Magnets. Chemical Reviews, 2020, 120, 8716-8789.	23.0	369
319	Construction of a Succinate-Bridged Cd(II)-Based Two-Dimensional Coordination Polymer for Efficient Optoelectronic Device Fabrication and Explosive Sensing Application. Crystal Growth and Design, 2020, 20, 765-776.	1.4	57
320	Multicolour barcoding in one MOF crystal through rational postsynthetic transmetalation. Journal of Materials Chemistry C, 2020, 8, 3176-3182.	2.7	6
321	Bioinspired chemistry at MOF secondary building units. Chemical Science, 2020, 11, 1728-1737.	3.7	63
322	Xâ€ray structure of hostâ€guest nanosized organotin supramolecular coordination polymer based on cobalt cyanide and quinoxaline as an efficient catalyst for treatment of waste water. Applied Organometallic Chemistry, 2020, 34, e5521.	1.7	8
323	Metal–Diamidobenzoquinone Frameworks via Post-Synthetic Linker Exchange. Journal of the American Chemical Society, 2020, 142, 4705-4713.	6.6	17
324	Metal–Organic Framework-Based Catalysts with Single Metal Sites. Chemical Reviews, 2020, 120, 12089-12174.	23.0	692
325	An <i>N</i> , <i>N</i> ′-diethylformamide solvent-induced conversion cascade within a metal–organic framework single crystal. Chemical Communications, 2020, 56, 5877-5880.	2.2	10
326	Electrically Conductive Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8536-8580.	23.0	989
327	Isolating reactive metal-based species in Metal–Organic Frameworks – viable strategies and opportunities. Chemical Science, 2020, 11, 4031-4050.	3.7	59
328	Bimetallic metal–organic frameworks and their derivatives. Chemical Science, 2020, 11, 5369-5403.	3.7	285
329	Biomimetic nanoscale metal–organic framework harnesses hypoxia for effective cancer radiotherapy and immunotherapy. Chemical Science, 2020, 11, 7641-7653.	3.7	78
330	Effective Removal of Mercury Ions in Aqueous Solutions: A Review. Current Nanoscience, 2020, 16, 363-375.	0.7	23
331	Metal-organic frameworks as a versatile platform for radionuclide management. Coordination Chemistry Reviews, 2021, 427, 213473.	9.5	74

#	Article	IF	CITATIONS
332	Postâ€6ynthetic Modification of Metal–Organic Frameworks Toward Applications. Advanced Functional Materials, 2021, 31, 2006291.	7.8	266
333	The state of the field: from inception to commercialization of metal–organic frameworks. Faraday Discussions, 2021, 225, 9-69.	1.6	70
334	Synthesis of a palladium based MOF <i>via</i> an effective post-synthetic modification approach and its catalytic activity towards Heck type coupling reactions. Inorganic Chemistry Frontiers, 2021, 8, 693-699.	3.0	16
335	Recent advances in bimetallic metal-organic framework as a potential candidate for supercapacitor electrode material. Coordination Chemistry Reviews, 2021, 430, 213660.	9.5	106
336	Applications of reticular diversity in metal–organic frameworks: An ever-evolving state of the art. Coordination Chemistry Reviews, 2021, 430, 213655.	9.5	56
337	Design and preparation of new luminescent metal–organic frameworks and different doped isomers: sensing pollution ions and enhancement of gas capture capacity. Inorganic Chemistry Frontiers, 2021, 8, 286-295.	3.0	25
338	Microwave-assisted synthesis of metal–organic framework MIL-47 for effective adsorptive removal of dibenzothiophene from model fuel. Journal of the Iranian Chemical Society, 2021, 18, 709-717.	1.2	19
339	Rational Design of Nanogels for Overcoming the Biological Barriers in Various Administration Routes. Angewandte Chemie - International Edition, 2021, 60, 14760-14778.	7.2	44
340	Current Trends in the Postsynthetic Modification of Framework Materials. , 2021, , 1055-1073.		1
341	Titanium-based metal-organic frameworks for photocatalytic applications. , 2021, , 37-63.		2
342	A trinuclear Zn(<scp>ii</scp>) Schiff base azido compound: synthesis, structure and exploration of antimicrobial activity. New Journal of Chemistry, 2021, 45, 12296-12304.	1.4	4
343	Post-synthetic modifications (PSM) on metal–organic frameworks (MOFs) for visible-light-initiated photocatalysis. Dalton Transactions, 2021, 50, 13201-13215.	1.6	32
344	Mononuclear copper(<scp>ii</scp>) Schiff base complex: synthesis, structure, electrical analysis and protein binding study. New Journal of Chemistry, 2021, 45, 2995-3006.	1.4	11
345	Recent progress in the design and synthesis of zeolite-like metal–organic frameworks (ZMOFs). Dalton Transactions, 2021, 50, 3450-3458.	1.6	8
346	Intermediate snapshots of a 116-nuclear metallosupramolecular cage-of-cage in a homogeneous single-crystal-to-single-crystal transformation. Chemical Communications, 2021, 57, 6090-6093.	2.2	3
347	Metal-Organic Frameworks for Catalytic Applications. , 2021, , 228-259.		2
348	Porous Coordination Polymers/Metal-Organic Frameworks. , 2021, , 314-327.		0
349	Metal–organic frameworks of linear trinuclear cluster secondary building units: structures and applications. Dalton Transactions, 2021, 50, 12692-12707.	1.6	12

#	Article	IF	CITATIONS
350	Ultra-trace level detection of Cu ²⁺ in an aqueous medium by novel Zn(<scp>ii</scp>)-dicarboxylato–pyridyl coordination polymers and cell imaging with HepG2 cells. New Journal of Chemistry, 2021, 45, 13941-13948.	1.4	8
351	Thermal Cycling of a MOF-Based NO Disproportionation Catalyst. Journal of the American Chemical Society, 2021, 143, 681-686.	6.6	32
352	Rational strategies for proton-conductive metal–organic frameworks. Chemical Society Reviews, 2021, 50, 6349-6368.	18.7	174
353	Leveraging Exchange Kinetics for the Synthesis of Atomically Precise Porous Catalysts. ChemCatChem, 2021, 13, 2117-2131.	1.8	6
355	Facile and Fast Transformation of Nonluminescent to Highly Luminescent Metal–Organic Frameworks: Acetone Sensing for Diabetes Diagnosis and Lead Capture from Polluted Water. ACS Applied Materials & Interfaces, 2021, 13, 7801-7811.	4.0	20
356	MOF-on-MOF hybrids: Synthesis and applications. Coordination Chemistry Reviews, 2021, 432, 213743.	9.5	231
357	What Lies beneath a Metal–Organic Framework Crystal Structure? New Design Principles from Unexpected Behaviors. Journal of the American Chemical Society, 2021, 143, 6705-6723.	6.6	48
358	Retention of a Four-Fold Interpenetrating Cadmium–Organic Framework through a Three-Step Single Crystal Transformation. Inorganic Chemistry, 2021, 60, 8331-8338.	1.9	4
359	A new bismuth coordination polymer with proton conductivity and orange-red photoluminescence. Journal of Coordination Chemistry, 2021, 74, 1810-1822.	0.8	3
360	A Practice of Reticular Chemistry: Construction of a Robust Mesoporous Palladium Metal–Organic Framework via Metal Metathesis. Journal of the American Chemical Society, 2021, 143, 9901-9911.	6.6	60
361	Using Postsynthetic X-Type Ligand Exchange to Enhance CO ₂ Adsorption in Metal–Organic Frameworks with Kuratowski-Type Building Units. Inorganic Chemistry, 2021, 60, 11784-11794.	1.9	11
362	Ammonia Capture via an Unconventional Reversible Guest-Induced Metal-Linker Bond Dynamics in a Highly Stable Metal–Organic Framework. Chemistry of Materials, 2021, 33, 6186-6192.	3.2	26
363	25 Jahre retikulÃ r e Chemie. Angewandte Chemie, 2021, 133, 24142.	1.6	6
364	Cation-exchanged conductive Mn2DSBDC metal–organic frameworks: Synthesis, structure, and THz conductivity. Polyhedron, 2021, 203, 115182.	1.0	7
365	An Overview of Metal–Organic Frameworks for Green Chemical Engineering. Engineering, 2021, 7, 1115-1139.	3.2	94
366	Pebax Mixed-Matrix Membrane with Highly Dispersed ZIF-8@CNTs to Enhance CO ₂ /N ₂ Separation. ACS Omega, 2021, 6, 18566-18575.	1.6	46
367	25 Years of Reticular Chemistry. Angewandte Chemie - International Edition, 2021, 60, 23946-23974.	7.2	204
368	Chiral metal–organic frameworks based on asymmetric synthetic strategies and applications. Coordination Chemistry Reviews, 2021, 445, 214083.	9.5	65

#	Article	IF	CITATIONS
369	Evaluating equilibrium and kinetics of CO2 and N2 adsorption into amine-functionalized metal-substituted MIL-101 frameworks using molecular simulation. Fuel, 2022, 308, 121965.	3.4	12
370	Metal organic frameworks (MOFs) in aiding water purification from emerging and ionic contaminants. , 2022, , 651-668.		0
371	The chemistry and applications of hafnium and cerium(<scp>iv</scp>) metal–organic frameworks. Chemical Society Reviews, 2021, 50, 4629-4683.	18.7	135
372	The Amazing Chemistry of Metal-Organic Frameworks. , 2017, , 339-369.		3
373	Coordination-bond-directed synthesis of hydrogen-bonded organic frameworks from metal–organic frameworks as templates. Chemical Science, 2021, 12, 14254-14259.	3.7	20
375	Metal Organic Frameworks: From Material Chemistry to Catalytic Applications. RSC Energy and Environment Series, 2020, , 235-303.	0.2	3
376	Mixed component metal-organic frameworks: Heterogeneity and complexity at the service of application performances. Coordination Chemistry Reviews, 2022, 451, 214273.	9.5	70
377	Conductive MOFs based on Thiol-functionalized Linkers: Challenges, Opportunities, and Recent Advances. Coordination Chemistry Reviews, 2022, 450, 214235.	9.5	42
378	Elemental Depth Profiling of Intact Metal–Organic Framework Single Crystals by Scanning Nuclear Microprobe. Journal of the American Chemical Society, 2021, 143, 18626-18634.	6.6	4
379	A novel core-shell coordination assembled hybrid via postsynthetic metal exchange for simultaneous detection and removal of tetracycline. Analytica Chimica Acta, 2022, 1190, 339247.	2.6	10
380	Substituent Controlled Framework Transformation Based on Solvent-Assisted Linker Exchange. Crystal Growth and Design, 2022, 22, 37-42.	1.4	7
381	Connectivity Replication of Neutral Eu ³⁺ - and Tb ³⁺ -Based Metal–Organic Frameworks (MOFs) from Anionic Cd ²⁺ -Based MOF Crystallites. Inorganic Chemistry, 2021, 60, 18614-18619.	1.9	3
383	MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chemical Society Reviews, 2022, 51, 1045-1097.	18.7	148
384	Preparation of ionic liquid-type UiO-66 and its adsorption desulfurization performance. Fuel, 2022, 312, 122945.	3.4	10
385	Factors Affecting the Mechanism of 1,3-Butadiene Polymerization at Open Metal Sites in Co-MFU-4l. Organometallics, 2022, 41, 169-177.	1.1	3
386	A Preinstalled Protic Cation as a Switch for Superprotonic Conduction in a Metal–Organic Framework. Jacs Au, 2022, 2, 109-115.	3.6	18
387	Metal imidazolate sulphate frameworks as a variation of zeolitic imidazolate frameworks. Chemical Communications, 2022, 58, 2983-2986.	2.2	1
388	Perspectives of ionic covalent organic frameworks for rechargeable batteries. Coordination Chemistry Reviews, 2022, 458, 214431.	9.5	27

#	Article	IF	CITATIONS
389	Coordination Polymers in Adsorptive Remediation of Environmental Contaminants. SSRN Electronic Journal, 0, , .	0.4	0
390	A multifunctional anionic metal–organic framework for high proton conductivity and photoreduction of CO ₂ induced by cation exchange. Dalton Transactions, 2022, 51, 4798-4805.	1.6	7
391	Spatial distribution modulation of mixed building blocks in metal-organic frameworks. Nature Communications, 2022, 13, 1027.	5.8	13
392	Upgrading the Hydrogen Storage of MOF-5 by Post-Synthetic Exchange with Divalent Metal Ions. Applied Sciences (Switzerland), 2021, 11, 11687.	1.3	10
393	Two isostructural metal–organic frameworks with unique nickel clusters for C ₂ H ₂ /C ₂ /C ₂ /C ₂ H ₄ separation. Journal of Materials Chemistry A, 2022, 10, 12497-12502.	5.2	12
394	Recent advances in the tuning of the organic framework materials – The selections of ligands, reaction conditions, and post-synthesis approaches. Journal of Colloid and Interface Science, 2022, 623, 378-404.	5.0	7
395	Engineering of catalytically active sites in photoactive metal–organic frameworks. Coordination Chemistry Reviews, 2022, 465, 214561.	9.5	22
396	Effect of Different Parameters on Lithium Ion Transfer through PVDF-UIO-66 Cation Selective Hybrid Membrane via Electrodialysis Technique. Materials Science Forum, 0, 1060, 89-94.	0.3	1
397	Mixedâ€Ligand Metalâ€Organic Frameworks: Synthesis and Characterization of New MOFs Containing Pyridineâ€2,6â€dimethanolate and Benzeneâ€1,4â€dicarboxylate Ligands. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	3
398	Directing the Morphology, Packing, and Properties of Chiral Metal–Organic Frameworks by Cation Exchange**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	8
399	Directing the Morphology, Packing, and Properties of Chiral MetalOrganic Frameworks by Cation Exchange. Angewandte Chemie, 0, , .	1.6	3
400	Postsynthetic Modification (PSM) in Metalâ^'Organic Frameworks (MOFs): Icing on the Cake. ACS Symposium Series, 0, , 83-115.	0.5	3
401	Water vapour induced reversible switching between a 1-D coordination polymer and a 0-D aqua complex. Chemical Communications, 2022, 58, 8218-8221.	2.2	5
402	Preparation of an interpenetrating bimetal metal–organic framework <i>via</i> metal metathesis used for promoting gas adsorption. Inorganic Chemistry Frontiers, 2022, 9, 5434-5443.	3.0	3
403	Summary and prospects. , 2022, , 503-518.		0
404	Metal-organic frameworks (MOFs), rare earth MOFs, and rare earth functionalized MOF hybrid materials. , 2022, , 3-40.		0
405	Pore space partition of metal-organic frameworks for gas storage and separation. EnergyChem, 2022, 4, 100080.	10.1	35
406	Coordination polymers in adsorptive remediation of environmental contaminants. Coordination Chemistry Reviews, 2022, 470, 214694.	9.5	16

#	Article	IF	CITATIONS
407	N2-selective adsorbents and membranes for natural gas purification. Separation and Purification Technology, 2022, 300, 121808.	3.9	9
408	The chemical stability of metal-organic frameworks in water treatments: Fundamentals, effect of water matrix and judging methods. Chemical Engineering Journal, 2022, 450, 138215.	6.6	39
409	Heterometallic Molecular Complexes Act as Messenger Building Units to Encode Desired Metal-Atom Combinations to Multivariate Metal–Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 16262-16266.	6.6	8
410	Structural engineering of metal-organic frameworks. , 2022, , 159-177.		0
411	Post-synthetically modified metal–porphyrin framework GaTCPP for carbon dioxide adsorption and energy storage in Li–S batteries. RSC Advances, 2022, 12, 23989-24002.	1.7	5
412	Metal-organic framework-based single-atom catalysts for efficient electrocatalytic CO2 reduction reactions. Catalysis Today, 2023, 410, 68-84.	2.2	13
413	Desolvation-Degree-Induced Structural Dynamics in a Rigid Cerium–Organic Framework Exhibiting Tandem Purification of Ethylene from Acetylene and Ethane. ACS Applied Materials & Interfaces, 2022, 14, 44460-44469.	4.0	11
414	The Dynamic Formation from Metalâ€Organic Frameworks of Highâ€Density Platinum Singleâ€Atom Catalysts with Metalâ€Metal Interactions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	29
415	Visible-light-induced photocatalytic CO2 reduction over zirconium metal organic frameworks modified with different functional groups. Journal of Environmental Sciences, 2023, 132, 22-30.	3.2	9
416	The Dynamic Formation from Metalâ€Organic Frameworks of Highâ€Density Platinum Singleâ€Atom Catalysts with Metalâ€Metal Interactions. Angewandte Chemie, 2022, 134, .	1.6	8
417	Molecular dynamics simulation of hydration and free energy of ions in nanochannels of polyelectrolyte threaded metal organic framework and the impacts on selective ion transport. Journal of Molecular Liquids, 2022, 367, 120553.	2.3	2
418	Use of the Advantages of Titanium in the Metal: Organic Framework. , 0, , .		0
419	trans-[Ni(pdm)2]2+ (pdm = 2-pyridinemethanol) as a reliable synthon for isoreticular metal–organic frameworks of linear dicarboxylates. Journal of Solid State Chemistry, 2023, 317, 123721.	1.4	2
420	Exploration of Variable Temperature Magnetism and Electrical Properties of a Pyridyl-isonicotinoyl Hydrazone Bridged Three-Dimensional Mn-Metal–Organic Framework with a Thiophene Dicarboxylato Link. Crystal Growth and Design, 2022, 22, 7143-7152.	1.4	5
421	Constructing multiple sites of metal-organic frameworks for efficient adsorption and selective separation of CO2. Separation and Purification Technology, 2023, 307, 122725.	3.9	17
422	Spectrophotometric Determination of Trace Amount of Total Fe ^{II} /Fe ^{III} and Live Cell Imaging of a Carboxylato Zn(II) Coordination Polymer. Inorganic Chemistry, 2022, 61, 19790-19799.	1.9	2
423	Metal–Organic Framework-Based Biosensing Platforms for the Sensitive Determination of Trace Elements and Heavy Metals: A Comprehensive Review. Industrial & Engineering Chemistry Research, 2023, 62, 4611-4627.	1.8	15
424	Atomically Precise Integration of Multiple Functional Motifs in Catalytic Metal–Organic Frameworks for Highly Efficient Nitrate Electroreduction. Jacs Au, 2022, 2, 2765-2777.	3.6	8

#	Article	IF	CITATIONS
425	Guest-dependent bond flexibility in UiO-66, a "stable―MOF. Chemical Communications, 2023, 59, 1309-1312.	2.2	4
426	Metal-Organic Framework Materials for Oil/Water Separation. ACS Symposium Series, 0, , 245-282.	0.5	2
427	Engineering Catalysis within a Saturated In(III)-Based MOF Possessing Dynamic Ligand–Metal Bonding. ACS Applied Materials & Interfaces, 2023, 15, 1410-1417.	4.0	15
428	Post-synthetic Modification and Engineering of Metal Nodes and Organic Ligands of MOFs for Catalytic Applications. , 2023, , 83-129.		0
430	Enhancement of the intrinsic fluorescence of ZIF-8 via post-synthetic cation exchange with Cd2+ and its incorporation into PDMS films for selective sulfide optical sensing. Materials Today Chemistry, 2023, 28, 101366.	1.7	1
432	Niâ€based metal organic frameworks: An efficient catalyst for the amidation reaction to obtain Nâ€(pyridinâ€2â€yl)arylamides. Journal of Chemical Technology and Biotechnology, 0, , .	1.6	1
433	Metalâ€Organic Framework Based Polymer Fibers: Review on Synthesis and Applications. Advanced Materials Technologies, 2023, 8, .	3.0	2
434	Synthesis and Peroxide Activation Mechanism of Bimetallic MOF for Water Contaminant Degradation: A Review. Molecules, 2023, 28, 3622.	1.7	8
443	Macroscopic alignment of metal–organic framework crystals in specific crystallographic orientations. Materials Chemistry Frontiers, 0, , .	3.2	0
445	Recent Advances in Multifunctional Reticular Framework Nanoparticles: A Paradigm Shift in Materials Science Road to a Structured Future. Nano-Micro Letters, 2023, 15, .	14.4	3
450	The green synthesis and applications of biological metal–organic frameworks for targeted drug delivery and tumor treatments. Journal of Materials Chemistry B, 0, , .	2.9	0
457	Impact of nanopesticides in the environment: Solutions, threats, and opportunities. , 2024, , 251-292.		0
458	Role of porous coordination polymers as chemical and bio-sensors in the remediation of environmental contaminants. , 2024, , 65-99.		0