Activated STING in a Vascular and Pulmonary Syndrom

New England Journal of Medicine 371, 507-518 DOI: 10.1056/nejmoa1312625

Citation Report

#	Article	IF	CITATIONS
1	Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. Journal of Clinical Investigation, 2014, 124, 5516-5520.	8.2	435
2	STING-Associated Vasculopathy with Onset in Infancy — A New Interferonopathy. New England Journal of Medicine, 2014, 371, 568-571.	27.0	77
3	Vasculitis in children. Nephrology Dialysis Transplantation, 2015, 30 Suppl 1, i94-103.	0.7	24
4	A new STING-associated monogenic autoinflammatory disease. Nature Reviews Rheumatology, 2014, 10, 512-512.	8.0	3
5	STING-Mediated DNA Sensing Promotes Antitumor and Autoimmune Responses to Dying Cells. Journal of Immunology, 2014, 193, 6124-6134.	0.8	153
7	Self-DNA, STING-dependent signaling and the origins of autoinflammatory disease. Current Opinion in Immunology, 2014, 31, 121-126.	5.5	116
8	The STING controlled cytosolic-DNA activated innate immune pathway and microbial disease. Microbes and Infection, 2014, 16, 998-1001.	1.9	26
9	When less is more. Current Opinion in Allergy and Clinical Immunology, 2014, 14, 491-500.	2.3	29
10	Immune sensing of nucleic acids in inflammatory skin diseases. Seminars in Immunopathology, 2014, 36, 519-529.	6.1	11
12	Monogenic lupus. International Journal of Clinical Rheumatology, 2014, 9, 543-546.	0.3	4
14	Linking classification and therapeutic management of vasculitides. Arthritis Research and Therapy, 2015, 17, 138.	3.5	5
15	Systemic Lupus Erythematosus – A Disease with A Dysregulated Type I Interferon System. Scandinavian Journal of Immunology, 2015, 82, 199-207.	2.7	91
16	Interstitial Lung Disease in Childhood: Clinical and Genetic Aspects. Clinical Medicine Insights: Circulatory, Respiratory and Pulmonary Medicine, 2015, 9s1, CCRPM.S23282.	0.9	18
18	Treatment of CNS Vasculitis in Children. Current Treatment Options in Rheumatology, 2015, 1, 365-380.	1.4	3
19	The transcriptional profile of coronary arteritis in Kawasaki disease. BMC Genomics, 2015, 16, 1076.	2.8	63
20	The autoimmune conundrum in common variable immunodeficiency disorders. Current Opinion in Allergy and Clinical Immunology, 2015, 15, 514-524.	2.3	20
21	Advances in lupus genetics. Current Opinion in Rheumatology, 2015, 27, 440-447.	4.3	44
22	Newly recognized Mendelian disorders with rheumatic manifestations. Current Opinion in Rheumatology, 2015, 27, 511-519.	4.3	23

2

#	Article	IF	CITATIONS
23	Unusual cutaneous features associated with a heterozygous gain-of-function mutation in <i>IFIH1</i> : overlap between Aicardi-Goutières and Singleton-Merten syndromes. British Journal of Dermatology, 2015, 173, 1505-1513.	1.5	76
24	To Extinguish the Fire from Outside the Cell or to Shutdown the Gas Valve Inside? Novel Trends in Anti-Inflammatory Therapies. International Journal of Molecular Sciences, 2015, 16, 21277-21293.	4.1	5
25	Animal Models of Interferon Signature Positive Lupus. Frontiers in Immunology, 2015, 6, 291.	4.8	66
26	NOD2 mosaicism in Blau syndrome. Pediatric Rheumatology, 2015, 13, P59.	2.1	1
27	Defective removal of ribonucleotides from DNA promotes systemic autoimmunity. Journal of Clinical Investigation, 2015, 125, 413-424.	8.2	190
28	Stimulator of Interferon Genes–Associated Vasculopathy With Onset in Infancy. JAMA Dermatology, 2015, 151, 872.	4.1	108
29	What matters for patients with vasculitis?. Presse Medicale, 2015, 44, e267-e272.	1.9	5
30	Aicardi–Goutières syndrome and the type I interferonopathies. Nature Reviews Immunology, 2015, 15, 429-440.	22.7	705
31	Type I interferonopathies—an expanding disease spectrum of immunodysregulation. Seminars in Immunopathology, 2015, 37, 349-357.	6.1	43
33	Venous thromboembolism in systemic autoimmune diseases: A narrative review with emphasis on primary systemic vasculitides. Vascular Medicine, 2015, 20, 369-376.	1.5	36
35	Translating nucleic acid-sensing pathways into therapies. Nature Reviews Immunology, 2015, 15, 529-544.	22.7	130
36	STING, nanoparticles, autoimmune disease and cancer: a novel paradigm for immunotherapy?. Expert Review of Clinical Immunology, 2015, 11, 155-165.	3.0	18
37	Use of ruxolitinib to successfully treat chronic mucocutaneous candidiasis caused by gain-of-function signal transducer and activator of transcription 1 (STAT1) mutation. Journal of Allergy and Clinical Immunology, 2015, 135, 551-553.e3.	2.9	154
38	Diverse roles of STING-dependent signaling on the development of cancer. Oncogene, 2015, 34, 5302-5308.	5.9	108
39	Immunological loss-of-function due to genetic gain-of-function in humans: autosomal dominance of the third kind. Current Opinion in Immunology, 2015, 32, 90-105.	5.5	69
40	Suppression of systemic autoimmunity by the innate immune adaptor STING. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E710-7.	7.1	139
41	Cutting Edge: AIM2 and Endosomal TLRs Differentially Regulate Arthritis and Autoantibody Production in DNase Il–Deficient Mice. Journal of Immunology, 2015, 194, 873-877.	0.8	88
42	Positive feedback regulation of type I interferon by the interferonâ€stimulated gene <scp>STING</scp> . EMBO Reports, 2015, 16, 202-212.	4.5	109

#	Article	IF	CITATIONS
43	Stimulator of Interferon Genes–Associated Vasculitis of Infancy. Arthritis and Rheumatology, 2015, 67, 808-808.	5.6	45
44	Molecular Mechanisms in Genetically Defined Autoinflammatory Diseases: Disorders of Amplified Danger Signaling. Annual Review of Immunology, 2015, 33, 823-874.	21.8	230
45	Redox distress and genetic defects conspire in systemic autoinflammatory diseases. Nature Reviews Rheumatology, 2015, 11, 670-680.	8.0	26
46	STING Activation by Translocation from the ER Is Associated with Infection and Autoinflammatory Disease. Cell Host and Microbe, 2015, 18, 157-168.	11.0	424
47	Idiopathic inflammatory myopathies and the lung. European Respiratory Review, 2015, 24, 216-238.	7.1	125
48	Optimizing treatment in paediatric rheumatology—lessons from oncology. Nature Reviews Rheumatology, 2015, 11, 493-499.	8.0	4
49	The autoinflammatory diseases: a fashion with blurred boundaries!. Seminars in Immunopathology, 2015, 37, 359-362.	6.1	3
50	OASes and STING: Adaptive Evolution in Concert. Genome Biology and Evolution, 2015, 7, 1016-1032.	2.5	57
51	The Broad-Spectrum Antiviral Protein ZAP Restricts Human Retrotransposition. PLoS Genetics, 2015, 11, e1005252.	3.5	120
52	From bench to bedside and back again: translational research in autoinflammation. Nature Reviews Rheumatology, 2015, 11, 573-585.	8.0	60
53	Human Disease Phenotypes Associated With Mutations in TREX1. Journal of Clinical Immunology, 2015, 35, 235-243.	3.8	154
54	RNA degradation in antiviral immunity and autoimmunity. Trends in Immunology, 2015, 36, 179-188.	6.8	76
55	New monogenic autoinflammatory diseases—a clinical overview. Seminars in Immunopathology, 2015, 37, 387-394.	6.1	37
56	Dysfunction in protein clearance by the proteasome: impact on autoinflammatory diseases. Seminars in Immunopathology, 2015, 37, 323-333.	6.1	64
57	Advances in basic and clinical immunology in 2014. Journal of Allergy and Clinical Immunology, 2015, 135, 1132-1141.	2.9	18
58	Recent advances in understanding the pathophysiology of primary T cell immunodeficiencies. Trends in Molecular Medicine, 2015, 21, 408-416.	6.7	18
59	Perception of self: distinguishing autoimmunity from autoinflammation. Nature Reviews Rheumatology, 2015, 11, 483-492.	8.0	88
60	Activation and Regulation of DNA-Driven Immune Responses. Microbiology and Molecular Biology Reviews, 2015, 79, 225-241.	6.6	100

#	Article	IF	CITATIONS
61	The STING pathway and the T cell-inflamed tumor microenvironment. Trends in Immunology, 2015, 36, 250-256.	6.8	190
62	Innate immune recognition of DNA: A recent history. Virology, 2015, 479-480, 146-152.	2.4	197
63	Monogenic autoinflammatory diseases: Cytokinopathies. Cytokine, 2015, 74, 237-246.	3.2	32
64	Update on genetics and pathogenesis of autoinflammatory diseases: the last 2Âyears. Seminars in Immunopathology, 2015, 37, 395-401.	6.1	17
65	Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5699-705.	7.1	497
66	Molecular Pathways: Targeting the Stimulator of Interferon Genes (STING) in the Immunotherapy of Cancer. Clinical Cancer Research, 2015, 21, 4774-4779.	7.0	145
67	Activated STING enhances Tregs infiltration in the HPV-related carcinogenesis of tongue squamous cells via the c-jun/CCL22 signal. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2494-2503.	3.8	112
68	The Next Hurdle in Cancer Immunotherapy: Overcoming the Non–T-Cell–Inflamed Tumor Microenvironment. Seminars in Oncology, 2015, 42, 663-671.	2.2	388
70	Inherited anomalies of innate immune receptors in pediatric-onset inflammatory diseases. Autoimmunity Reviews, 2015, 14, 1147-1153.	5.8	13
71	Novel monogenic diseases causing human autoimmunity. Current Opinion in Immunology, 2015, 37, 1-5.	5.5	18
72	The regional function of cGAS/STING signal in multiple organs: One of culprit behind systemic lupus erythematosus?. Medical Hypotheses, 2015, 85, 846-849.	1.5	25
73	Nucleic Acid–Sensing Receptors: Rheostats of Autoimmunity and Autoinflammation. Journal of Immunology, 2015, 195, 3507-3512.	0.8	68
74	Akt Kinase-Mediated Checkpoint of cGAS DNA Sensing Pathway. Cell Reports, 2015, 13, 440-449.	6.4	160
75	STING Signaling the enERGIC Way. Cell Host and Microbe, 2015, 18, 137-139.	11.0	12
76	Immunogenetics of systemic lupus erythematosus: A comprehensive review. Journal of Autoimmunity, 2015, 64, 125-136.	6.5	182
77	Dectin-1 Exerts Dual Control in the Gut. Cell Host and Microbe, 2015, 18, 139-141.	11.0	12
78	Somatic NOD2 mosaicism in Blau syndrome. Journal of Allergy and Clinical Immunology, 2015, 136, 484-487.e2.	2.9	59
79	Type I interferon dysregulation and neurological disease. Nature Reviews Neurology, 2015, 11, 515-523.	10.1	43

#	Article		CITATIONS
80	Practice parameter for the diagnosis and management of primary immunodeficiency. Journal of Allergy and Clinical Immunology, 2015, 136, 1186-1205.e78.	2.9	564
81	Immunotherapeutic Biologic Agents in Autoimmune and Autoinflammatory Diseases. Immunological Investigations, 2015, 44, 777-802.	2.0	18
82	STING: infection, inflammation and cancer. Nature Reviews Immunology, 2015, 15, 760-770.	22.7	950
83	Targeting of type I interferon in systemic autoimmune diseases. Translational Research, 2015, 165, 296-305.	5.0	95
84	Type I interferonopathies: Mendelian type I interferon up-regulation. Current Opinion in Immunology, 2015, 32, 7-12.	5.5	160
85	New players driving inflammation in monogenic autoinflammatory diseases. Nature Reviews Rheumatology, 2015, 11, 11-20.	8.0	57
86	Origin of Autoantibodies. , 2016, , 199-205.		0
87	Dendritic Cells in Systemic Lupus Erythematosus: From Pathogenic Players to Therapeutic Tools. Mediators of Inflammation, 2016, 2016, 1-12.	3.0	43
88	Lung Involvement in Children with Hereditary Autoinflammatory Disorders. International Journal of Molecular Sciences, 2016, 17, 2111.	4.1	17
90	Severe Early-Onset Combined Immunodeficiency due to Heterozygous Gain-of-Function Mutations in STAT1. Journal of Clinical Immunology, 2016, 36, 641-648.	3.8	81
91	Design of Switchable Chimeric Antigen Receptor T Cells Targeting Breast Cancer. Angewandte Chemie, 2016, 128, 7646-7650.	2.0	7
92	Mitochondrial DNA sensing by STING signaling participates in inflammation, cancer and beyond. International Journal of Cancer, 2016, 139, 736-741.	5.1	65
93	Autoinflammatory Disorders in Children. Handbook of Systemic Autoimmune Diseases, 2016, , 267-304.	0.1	0
94	JAK inhibition in STING-associated interferonopathy. Annals of the Rheumatic Diseases, 2016, 75, e75-e75.	0.9	22
95	Response to: â€JAK inhibition in STING-associated interferonopathy' by Crow <i>et al</i> . Annals of the Rheumatic Diseases, 2016, 75, e76-e76.	0.9	23
96	The role of the inflammasome in patients with autoinflammatory diseases. Journal of Allergy and Clinical Immunology, 2016, 138, 3-14.	2.9	73
97	Autoimmunity and Primary Immunodeficiency Disorders. Journal of Clinical Immunology, 2016, 36, 57-67.	3.8	48
98	Copa Syndrome: a Novel Autosomal Dominant Immune Dysregulatory Disease. Journal of Clinical Immunology, 2016, 36, 377-387.	3.8	141

# 99	ARTICLE A human inborn error connects the α's. Nature Immunology, 2016, 17, 472-474.	IF 14.5	Citations
100	A dendritic cell subset designed for oral tolerance. Nature Immunology, 2016, 17, 474-476.	14.5	14
101	Recognition of Endogenous Nucleic Acids by the Innate Immune System. Immunity, 2016, 44, 739-754.	14.3	390
102	Therapeutic advances in the treatment of vasculitis. Pediatric Rheumatology, 2016, 14, 26.	2.1	25
103	Targeted therapeutics in SLE: emerging strategies to modulate the interferon pathway. Clinical and Translational Immunology, 2016, 5, e79.	3.8	72
104	The role of cGAS in innate immunity and beyond. Journal of Molecular Medicine, 2016, 94, 1085-1093.	3.9	46
105	Insights from Mendelian Interferonopathies: Comparison of CANDLE, SAVI with AGS, Monogenic Lupus. Journal of Molecular Medicine, 2016, 94, 1111-1127.	3.9	101
106	Enho Mutations Causing Low Adropin: A Possible Pathomechanism of MPO-ANCA Associated Lung Injury. EBioMedicine, 2016, 9, 324-335.	6.1	29
107	Newly Described Autoinflammatory Diseases in Pediatric Dermatology. Pediatric Dermatology, 2016, 33, 602-614.	0.9	10
108	Genetically defined autoinflammatory diseases. Oral Diseases, 2016, 22, 591-604.	3.0	22
109	The proteasome — victim or culprit in autoimmunity. Clinical Immunology, 2016, 172, 83-89.	3.2	12
110	Interstitial Lung Disease Caused by STING-associated Vasculopathy with Onset in Infancy. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 639-642.	5.6	58
111	Exploring Autoimmunity in a Cohort of Children with Genetically Confirmed Aicardi–GoutiÃ ⁻ res Syndrome. Journal of Clinical Immunology, 2016, 36, 693-699.	3.8	21
112	Autoinflammatory associated vasculitis. Seminars in Arthritis and Rheumatism, 2016, 46, 367-371.	3.4	7
113	Efficacy of the Janus kinase 1/2 inhibitor ruxolitinib in the treatment of vasculopathy associated with TMEM173 -activating mutations in 3 children. Journal of Allergy and Clinical Immunology, 2016, 138, 1752-1755.	2.9	192
114	RIG-I-Mediated STING Upregulation Restricts Herpes Simplex Virus 1 Infection. Journal of Virology, 2016, 90, 9406-9419.	3.4	69
115	Nucleic Acid Sensing and Innate Immunity: Signaling Pathways Controlling Viral Pathogenesis and Autoimmunity. Current Clinical Microbiology Reports, 2016, 3, 132-141.	3.4	14
116	New insights into the immunopathogenesis of systemic lupus erythematosus. Nature Reviews Rheumatology, 2016, 12, 716-730.	8.0	909

#	Article	IF	CITATIONS
118	Nucleic acid-mediated autoinflammation and autoimmunity—type I interferonopathies. Journal of Molecular Medicine, 2016, 94, 1081-1084.	3.9	6
119	STING Requires the Adaptor TRIF to Trigger Innate Immune Responses to Microbial Infection. Cell Host and Microbe, 2016, 20, 329-341.	11.0	77
120	Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nature Immunology, 2016, 17, 1142-1149.	14.5	1,379
121	Autoinflammatory Syndromes. , 2016, , 189-216.		0
122	TRIM14 Inhibits cGAS Degradation Mediated by Selective Autophagy Receptor p62 to Promote Innate Immune Responses. Molecular Cell, 2016, 64, 105-119.	9.7	277
123	Cytoreductive surgery for head and neck squamous cell carcinoma in the new age of immunotherapy. Oral Oncology, 2016, 61, 166-176.	1.5	11
124	Severe Pulmonary Fibrosis as the First Manifestation of Interferonopathy (TMEM173 Mutation). Chest, 2016, 150, e65-e71.	0.8	112
125	Discriminating self from non-self in nucleic acid sensing. Nature Reviews Immunology, 2016, 16, 566-580.	22.7	438
126	Lymphopenia and autoimmunity: A double-edged sword. Human Immunology, 2016, 77, 921-929.	2.4	31
127	Type I interferonopathies in pediatric rheumatology. Pediatric Rheumatology, 2016, 14, 35.	2.1	104
128	The expanding regulatory network of STING-mediated signaling. Current Opinion in Microbiology, 2016, 32, 144-150.	5.1	12
129	iRhom2 is essential for innate immunity to DNA viruses by mediating trafficking and stability of the adaptor STING. Nature Immunology, 2016, 17, 1057-1066.	14.5	200
130	cGAS GAMP TING: The three musketeers of cytosolic DNA sensing and signaling. IUBMB Life, 2016, 68, 858-870.	3.4	107
131	Activation of STING requires palmitoylation at the Golgi. Nature Communications, 2016, 7, 11932.	12.8	436
132	Type I interferon–mediated monogenic autoinflammation: The type I interferonopathies, a conceptual overview. Journal of Experimental Medicine, 2016, 213, 2527-2538.	8.5	359
133	Monogenic Lupus. Current Rheumatology Reports, 2016, 18, 71.	4.7	53
134	Design of Switchable Chimeric Antigen Receptor T Cells Targeting Breast Cancer. Angewandte Chemie - International Edition, 2016, 55, 7520-7524.	13.8	92
135	Old Dogs, New Tricks: Monogenic Autoinflammatory Disease Unleashed. Annual Review of Genomics and Human Genetics, 2016, 17, 245-272.	6.2	45

#	Article		CITATIONS
136	Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. Journal of Experimental Medicine, 2016, 213, 1163-1174.	8.5	224
137	Therapeutic options for cutaneous lupus erythematosus: recent advances and future prospects. Expert Review of Clinical Immunology, 2016, 12, 1109-1121.	3.0	14
138	Rare autoimmune disorders with Mendelian inheritance. Autoimmunity, 2016, 49, 285-297.	2.6	4
140	Brief Report: First Identification of Intrafamilial Recurrence of Blau Syndrome due to Gonosomal <i>NOD2</i> Mosaicism. Arthritis and Rheumatology, 2016, 68, 1039-1044.	5.6	46
141	Sequence analysis of <i>TMEM173</i> exon 5 in patients with systemic autoimmune diseases. Autoimmunity, 2016, 49, 12-16.	2.6	6
142	Synergy between Hematopoietic and Radioresistant Stromal Cells Is Required for Autoimmune Manifestations of DNase Ilâ^'/â^'IFNaRâ^'/â^' Mice. Journal of Immunology, 2016, 196, 1348-1354.	0.8	11
143	Pharmacological approaches to CNS vasculitis: where are we at now?. Expert Review of Clinical Pharmacology, 2016, 9, 109-116.	3.1	8
144	Importance of Nucleic Acid Recognition in Inflammation and Autoimmunity. Annual Review of Medicine, 2016, 67, 323-336.	12.2	135
145	Neutrophilic dermatoses and autoinflammatory diseases with skin involvement—innate immune disorders. Seminars in Immunopathology, 2016, 38, 45-56.	6.1	36
146	Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nature Reviews Rheumatology, 2016, 12, 25-36.	8.0	468
147	Spondyloenchondrodysplasia Due to Mutations in ACP5: A Comprehensive Survey. Journal of Clinical Immunology, 2016, 36, 220-234.	3.8	71
148	Microbial pathogenesis and type III interferons. Cytokine and Growth Factor Reviews, 2016, 29, 45-51.	7.2	17
149	Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses. Nature Communications, 2016, 7, 10680.	12.8	169
150	Recurrent Fevers for the Pediatric Immunologist: It's Not All Immunodeficiency. Current Allergy and Asthma Reports, 2016, 16, 2.	5.3	9
152	Shaping the spectrum — From autoinflammation to autoimmunity. Clinical Immunology, 2016, 165, 21-28.	3.2	76
153	Stimulator of interferon genes (STING): A "new chapter―in virus-associated cancer research. Lessons from wild-derived mouse models of innate immunity. Cytokine and Growth Factor Reviews, 2016, 29, 83-91.	7.2	16
154	Failure to thrive, interstitial lung disease, and progressive digital necrosis with onset in infancy. Journal of the American Academy of Dermatology, 2016, 74, 186-189.	1.2	64
155	Radiotherapy Combined with Novel STING-Targeting Oligonucleotides Results in Regression of Established Tumors. Cancer Research, 2016, 76, 50-61.	0.9	196

#	Article	IF	CITATIONS
156	Submicron-sized hydrogels incorporating cyclic dinucleotides for selective delivery and elevated cytokine release in macrophages. Acta Biomaterialia, 2016, 29, 271-281.	8.3	39
157	Autoinflammatory Disorders. , 2016, , 133-142.e3.		0
158	Familial chilblain lupus due to a gain-of-function mutation in STING. Annals of the Rheumatic Diseases, 2017, 76, 468-472.	0.9	247
159	Understanding Human Autoimmunity and Autoinflammation Through Transcriptomics. Annual Review of Immunology, 2017, 35, 337-370.	21.8	69
160	Ruxolitinib reverses dysregulated T helper cell responses and controls autoimmunity caused by a novel signal transducer and activator of transcription 1 (STAT1) gain-of-function mutation. Journal of Allergy and Clinical Immunology, 2017, 139, 1629-1640.e2.	2.9	147
161	A systematic approach to autoinflammatory syndromes: a spelling booklet for the beginner. Expert Review of Clinical Immunology, 2017, 13, 571-597.	3.0	57
162	Disease-associated mutations identify a novel region in human STING necessary for the control of type I interferon signaling. Journal of Allergy and Clinical Immunology, 2017, 140, 543-552.e5.	2.9	159
163	Cerebrospinal Fluid Cytokines Correlate With Aseptic Meningitis and Blood–Brain Barrier Function in Neonatalâ€Onset Multisystem Inflammatory Disease: Central Nervous System Biomarkers in Neonatalâ€Onset Multisystem Inflammatory Disease Correlate With Central Nervous System Inflammation. Arthritis and Rheumatology. 2017. 69. 1325-1336.	5.6	50
164	Intracellular Nucleic Acid Detection in Autoimmunity. Annual Review of Immunology, 2017, 35, 313-336.	21.8	176
166	Brief Report: Blockade of TANKâ€Binding Kinase 1/IKKÉ› Inhibits Mutant Stimulator of Interferon Genes (STING)–Mediated Inflammatory Responses in Human Peripheral Blood Mononuclear Cells. Arthritis and Rheumatology, 2017, 69, 1495-1501.	5.6	22
167	Ubiquitination of STING at lysine 224 controls IRF3 activation. Science Immunology, 2017, 2, .	11.9	115
168	Immune Diseases Associated with TREX1 and STING Dysfunction. Journal of Interferon and Cytokine Research, 2017, 37, 198-206.	1.2	71
169	Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes. Journal of Experimental Medicine, 2017, 214, 1769-1785.	8.5	202
170	The changing face of polyarteritis nodosa and necrotizing vasculitis. Nature Reviews Rheumatology, 2017, 13, 381-386.	8.0	77
171	Primary Immunodeficiency Diseases. , 2017, , .		22
172	Dermatologic Manifestations of Monogenic Autoinflammatory Diseases. Dermatologic Clinics, 2017, 35, 21-38.	1.7	38
173	Posttranslational Modification as a Critical Determinant of Cytoplasmic Innate Immune Recognition. Physiological Reviews, 2017, 97, 1165-1209.	28.8	63
174	Management of suspected monogenic lung fibrosis in a specialised centre. European Respiratory Review, 2017, 26, 160122.	7.1	54

#	Article	IF	Citations
175	Regulating STING in health and disease. Journal of Inflammation, 2017, 14, 11.	3.4	72
176	Microglial Interferon Signaling and White Matter. Neurochemical Research, 2017, 42, 2625-2638.	3.3	42
177	USP13 negatively regulates antiviral responses by deubiquitinating STING. Nature Communications, 2017, 8, 15534.	12.8	138
178	Paediatric systemic lupus erythematosus: insights from translational research. Rheumatology, 2017, 56, i24-i31.	1.9	6
179	No shortcuts: new findings reinforce why nuance is the rule in genetic autoinflammatory syndromes. Current Opinion in Rheumatology, 2017, 29, 506-515.	4.3	6
180	Musculoskeletal Disease in MDA5â€Related Type I Interferonopathy: A Mendelian Mimic of Jaccoud's Arthropathy. Arthritis and Rheumatology, 2017, 69, 2081-2091.	5.6	44
181	Interstitial lung disease in newborns. Seminars in Fetal and Neonatal Medicine, 2017, 22, 227-233.	2.3	75
182	Cytosolic nucleic acid sensors and innate immune regulation. International Reviews of Immunology, 2017, 36, 74-88.	3.3	68
183	IL-26 Confers Proinflammatory Properties to Extracellular DNA. Journal of Immunology, 2017, 198, 3650-3661.	0.8	69
184	STINC–IRF3 Triggers Endothelial Inflammation in Response to Free Fatty Acid-Induced Mitochondrial Damage in Diet-Induced Obesity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 920-929.	2.4	189
185	The Common R71H-G230A-R293Q Human <i>TMEM173</i> Is a Null Allele. Journal of Immunology, 2017, 198, 776-787.	0.8	62
186	Tofacitinib relieves symptoms of stimulator of interferon genes (STING)–associated vasculopathy with onset in infancy caused by 2 de novo variants in TMEM173. Journal of Allergy and Clinical Immunology, 2017, 139, 1396-1399.e12.	2.9	70
187	Assessment of Type I Interferon Signaling in Pediatric Inflammatory Disease. Journal of Clinical Immunology, 2017, 37, 123-132.	3.8	163
188	Monogenic lupus: it's all new!. Current Opinion in Immunology, 2017, 49, 87-95.	5.5	51
189	The effect of V155M mutation on the complex of hSTING and 2′3′-cGAMP: an in silico study case. RSC Advances, 2017, 7, 39185-39196.	3.6	5
190	Human B cells fail to secrete type I interferons upon cytoplasmic DNA exposure. Molecular Immunology, 2017, 91, 225-237.	2.2	34
191	Updates in Lupus Genetics. Current Rheumatology Reports, 2017, 19, 68.	4.7	99
192	STINC-associated vasculopathy develops independently of IRF3 in mice. Journal of Experimental Medicine, 2017, 214, 3279-3292.	8.5	155

#	Article		CITATIONS
193	The DNA Inflammasome in Human Myeloid Cells Is Initiated by a STING-Cell Death Program Upstream of NLRP3. Cell, 2017, 171, 1110-1124.e18.	28.9	431
194	Lack of Trex1 Causes Systemic Autoimmunity despite the Presence of Antiretroviral Drugs. Journal of Immunology, 2017, 199, 2261-2269.	0.8	31
195	Familial Chilblain Lupus - What Can We Learn from Type I Interferonopathies?. Current Rheumatology Reports, 2017, 19, 61.	4.7	36
196	Cryopyrin-associated Periodic Syndromes in Italian Patients: Evaluation of the Rate of Somatic NLRP3 Mosaicism and Phenotypic Characterization. Journal of Rheumatology, 2017, 44, 1667-1673.	2.0	28
197	Activation of the Innate Immune Receptors: Guardians of the Micro Galaxy. Advances in Experimental Medicine and Biology, 2017, 1024, 1-35.	1.6	15
198	NEMO–IKKβ Are Essential for IRF3 and NF-κB Activation in the cGAS–STING Pathway. Journal of Immunology, 2017, 199, 3222-3233.	0.8	169
199	Signalling strength determines proapoptotic functions of STING. Nature Communications, 2017, 8, 427.	12.8	321
200	Genomics of Systemic Lupus Erythematosus. Rheumatic Disease Clinics of North America, 2017, 43, 415-434.	1.9	36
201	The monogenic autoinflammatory diseases define new pathways in human innate immunity and inflammation. Nature Immunology, 2017, 18, 832-842.	14.5	301
202	STING signalling: an emerging common pathway in autoimmunity and cancer. Immunopharmacology and Immunotoxicology, 2017, 39, 253-258.	2.4	9
203	Enfermedades autoinflamatorias en dermatologÃa pediátrica. Parte 2: sÃndromes histiocÃŧico-macrofágicos y sÃndromes vasculopáticos. Actas Dermo-sifiliográficas, 2017, 108, 620-629.	0.4	2
204	Autoinflammatory Diseases in Pediatric Dermatology–Part 2: Histiocytic, Macrophage Activation, and Vasculitis Syndromes. Actas Dermo-sifiliográficas, 2017, 108, 620-629.	0.4	1
205	Genomics, Biology, andÂHuman Illness. Rheumatic Disease Clinics of North America, 2017, 43, 327-345.	1.9	24
206	Does type-l interferon drive systemic autoimmunity?. Autoimmunity Reviews, 2017, 16, 897-902.	5.8	40
207	Type I interferonopathy in a young adult. Rheumatology, 2017, 56, 2241-2243.	1.9	17
208	Methods of Assessing STING Activation and Trafficking. Methods in Molecular Biology, 2017, 1656, 167-174.	0.9	7
209	Emerging roles of rhomboidâ€like pseudoproteases in inflammatory and innate immune responses. FEBS Letters, 2017, 591, 3182-3189.	2.8	12
210	Crosstalk Between Apoptosis and Autophagy: Environmental Genotoxins, Infection, and Innate Immunity. Journal of Cell Death, 2017, 10, 117967071668508.	0.8	22

-			_	
C^{-1}	TAT	ON	DED	ODT
	IAL		KEP	ORT

#	Article	IF	CITATIONS
211	Therapeutic Management of CNS Vasculitis. Current Treatment Options in Rheumatology, 2017, 3, 220-229.	1.4	0
212	Type I interferon-mediated autoinflammation and autoimmunity. Current Opinion in Immunology, 2017, 49, 96-102.	5.5	68
213	THU0525â€Safety of adalimumab ± methotrexate for the treatment of polyarticular juvenile idiopathic arthritis (PJIA): strive registry. , 2017, , .		1
214	IRF3 and type I interferons fuel a fatal response to myocardial infarction. Nature Medicine, 2017, 23, 1481-1487.	30.7	358
215	STING-mediated DNA sensing in cancer immunotherapy. Science China Life Sciences, 2017, 60, 563-574.	4.9	12
216	Palmitic acid dysregulates the Hippo–YAP pathway and inhibits angiogenesis by inducing mitochondrial damage and activating the cytosolic DNA sensor cGAS–STING–IRF3 signaling mechanism. Journal of Biological Chemistry, 2017, 292, 15002-15015.	3.4	103
219	STING Contributes to Abnormal Bone Formation Induced by Deficiency of DNase II in Mice. Arthritis and Rheumatology, 2017, 69, 460-471.	5.6	27
220	The Type I Interferonopathies. Annual Review of Medicine, 2017, 68, 297-315.	12.2	163
221	Taking the STING out of TLR-driven autoimmune diseases: good, bad, or indifferent?. Journal of Leukocyte Biology, 2017, 101, 121-126.	3.3	12
222	Recurrent lipoatrophic panniculitis of children. Journal of the European Academy of Dermatology and Venereology, 2017, 31, 536-543.	2.4	20
223	Sensing of dangerous DNA. Mechanisms of Ageing and Development, 2017, 165, 33-46.	4.6	33
224	The burgeoning field of innate immuneâ€mediated disease and autoinflammation. Journal of Pathology, 2017, 241, 123-139.	4.5	62
225	When to Suspect Autoinflammatory/Recurrent Fever Syndromes. Pediatric Clinics of North America, 2017, 64, 111-125.	1.8	9
226	An Update on the Use of Immunomodulators in Primary Immunodeficiencies. Clinical Reviews in Allergy and Immunology, 2017, 52, 287-303.	6.5	39
227	Genetic interferonopathies: An overview. Best Practice and Research in Clinical Rheumatology, 2017, 31, 441-459.	3.3	31
228	Activation of the STINC-Dependent Type I Interferon Response Reduces Microglial Reactivity and Neuroinflammation. Neuron, 2017, 96, 1290-1302.e6.	8.1	107
229	Periodic fever syndromes. Best Practice and Research in Clinical Rheumatology, 2017, 31, 596-609.	3.3	84
230	Cancer Immunotherapy Targets Based on Understanding the T Cell-Inflamed Versus Non-T Cell-Inflamed Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2017, 1036, 19-31.	1.6	212

#	Article	IF	CITATIONS
231	THU0527â€Pediatrician and adult rheumatologist collaborating in a multidisciplinary reuma-ped clinic. is this transitional care model effective?. , 2017, , .		0
232	Juvenile-onset systemic lupus erythematosus (jSLE) – Pathophysiological concepts and treatment options. Best Practice and Research in Clinical Rheumatology, 2017, 31, 488-504.	3.3	62
233	Immunotherapeutic Biologic Agents to Treat Autoinflammatory Diseases. , 0, , .		0
234	cGAS/STING Pathway in Cancer: Jekyll and Hyde Story of Cancer Immune Response. International Journal of Molecular Sciences, 2017, 18, 2456.	4.1	50
235	Monogenic Autoinflammatory Diseases with Mendelian Inheritance: Genes, Mutations, and Genotype/Phenotype Correlations. Frontiers in Immunology, 2017, 8, 344.	4.8	37
236	Late-Onset Cryopyrin-Associated Periodic Syndromes Caused by Somatic NLRP3 Mosaicism—UK Single Center Experience. Frontiers in Immunology, 2017, 8, 1410.	4.8	109
237	Stimulator of Interferon Genes Deficiency in Acute Exacerbation of Idiopathic Pulmonary Fibrosis. Frontiers in Immunology, 2017, 8, 1756.	4.8	27
238	Toll-Like Receptor 3 Signal in Dendritic Cells Benefits Cancer Immunotherapy. Frontiers in Immunology, 2017, 8, 1897.	4.8	55
239	Discovery of PF-06928215 as a high affinity inhibitor of cGAS enabled by a novel fluorescence polarization assay. PLoS ONE, 2017, 12, e0184843.	2.5	99
240	Le malattie infiammatorie immuno-mediate (IMID) di interesse internistico: fisiopatologia, aspetti clinici e prospettive di terapia. Italian Journal of Medicine, 2017, 5, 1.	0.3	0
241	Etiology and Pathogenesis of Systemic Lupus Erythematosus. , 2017, , 1329-1344.		7
242	Delicate regulation of the cGAS–MITA-mediated innate immune response. Cellular and Molecular Immunology, 2018, 15, 666-675.	10.5	21
243	Genetic causes and clinical management of pediatric interstitial lung diseases. Current Opinion in Pulmonary Medicine, 2018, 24, 253-259.	2.6	30
244	Attenuation of c <scp>GAS</scp> ― <scp>STING</scp> signaling is mediated by a p62/ <scp>SQSTM</scp> 1â€dependent autophagy pathway activated by TBK1. EMBO Journal, 2018, 37, .	7.8	283
246	Therapeutic Approaches to Type I Interferonopathies. Current Rheumatology Reports, 2018, 20, 32.	4.7	23
247	Activation of stimulator of interferon genes (STING) induces ADAM17-mediated shedding of the immune semaphorin SEMA4D. Journal of Biological Chemistry, 2018, 293, 7717-7726.	3.4	22
248	The cGAS–cGAMP–STING pathway connects DNA damage to inflammation, senescence, and cancer. Journal of Experimental Medicine, 2018, 215, 1287-1299.	8.5	786
249	Development of a Validated Interferon Score Using NanoString Technology. Journal of Interferon and Cytokine Research, 2018, 38, 171-185.	1.2	120

	CITATION R	EPORT	
#	Article	IF	CITATIONS
251	Update on Autoinflammatory Syndromes. Current Treatment Options in Rheumatology, 2018, 4, 73-84.	1.4	0
252	A developing portrait of hereditary periodic fevers in childhood. Expert Opinion on Orphan Drugs, 2018, 6, 47-55.	0.8	19
253	Chronic interstitial lung disease in children. European Respiratory Review, 2018, 27, 170100.	7.1	50
254	Review: Cell Death, Nucleic Acids, and Immunity. Arthritis and Rheumatology, 2018, 70, 805-816.	5.6	64
255	The cGAS/STING Pathway Detects Streptococcus pneumoniae but Appears Dispensable for Antipneumococcal Defense in Mice and Humans. Infection and Immunity, 2018, 86, .	2.2	18
256	Autoimmunity and primary immunodeficiency: two sides of the same coin?. Nature Reviews Rheumatology, 2018, 14, 7-18.	8.0	103
257	Type I IFN–related NETosis in ataxia telangiectasia and Artemis deficiency. Journal of Allergy and Clinical Immunology, 2018, 142, 246-257.	2.9	47
258	Rash, Fever, and Pulmonary Hypertension in a 6‥earâ€Old Female. Arthritis Care and Research, 2018, 70, 785-790.	3.4	7
259	Extrinsic Phagocyte-Dependent STING Signaling Dictates the Immunogenicity of Dying Cells. Cancer Cell, 2018, 33, 862-873.e5.	16.8	133
260	Pro-inflammation Associated with a Gain-of-Function Mutation (R284S) in the Innate Immune Sensor STING. Cell Reports, 2018, 23, 1112-1123.	6.4	92
261	Type I interferon in rheumatic diseases. Nature Reviews Rheumatology, 2018, 14, 214-228.	8.0	226
262	The Regulation of cGAS. Virologica Sinica, 2018, 33, 117-124.	3.0	15
263	A novel transcript isoform of STING that sequesters cGAMP and dominantly inhibits innate nucleic acid sensing. Nucleic Acids Research, 2018, 46, 4054-4071.	14.5	54
264	A High Content Screen in Macrophages Identifies Small Molecule Modulators of STING-IRF3 and NFkB Signaling. ACS Chemical Biology, 2018, 13, 1066-1081.	3.4	21
266	Geoepidemiology and Immunologic Features of Autoinflammatory Diseases: a Comprehensive Review. Clinical Reviews in Allergy and Immunology, 2018, 54, 454-479.	6.5	27
267	Vasculitis and vasculitis-like manifestations in monogenic autoinflammatory syndromes. Rheumatology International, 2018, 38, 13-24.	3.0	36
268	Type I interferon pathway activation in COPA syndrome. Clinical Immunology, 2018, 187, 33-36.	3.2	98
269	Bone involvement in monogenic autoinflammatory syndromes. Rheumatology, 2018, 57, 606-618.	1.9	15

ARTICLE IF CITATIONS # New mosaic tiles in childhood hereditary autoinflammatory disorders. Immunology Letters, 2018, 193, 270 2.5 19 67-76. Characteristics and outcome of intractable vasculitis syndrome in children: Nation-wide survey in 271 1.8 Japan. Modern Rheumatology, 2018, 28, 697-702. 272 Autophagy dysfunction in autoinflammatory diseases. Journal of Autoimmunity, 2018, 88, 11-20. 6.5 16 Pharmacokinetics, Pharmacodynamics, and Proposed Dosing of the Oral JAK1 and JAK2 Inhibitor Baricitinib in Pediatric and Young Adult CANDLE and SAVI Patients. Clinical Pharmacology and Therapeutics, 2018, 104, 364-373. 93 Vasculitis update: pathogenesis and biomarkers. Pediatric Nephrology, 2018, 33, 187-198. 274 1.7 45 JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. Journal of 8.2 Clinical Investigation, 2018, 128, 3041-3052. 276 Monogenic Autoimmune Diseases. Journal of Rheumatic Diseases, 2018, 25, 213. 1.1 7 Sensing Self and Non-Self DNA by Innate Immune Receptors and Their Signaling Pathways. Critical Reviews in Immunology, 2018, 38, 279-301. JAK Inhibitors in Rheumatology: Implications for Paediatric Syndromes?. Current Rheumatology 278 4.7 29 Reports, 2018, 20, 83. 279 Mitochondria, Oxidative Stress and Innate Immunity. Frontiers in Physiology, 2018, 9, 1487. 2.8 Autoinflammatory Disease-Associated Vasculitis/Vasculopathy. Current Rheumatology Reports, 2018, 280 10 4.720, 87. STING-mediated type-I interferons contribute to the neuroinflammatory process and detrimental effects following traumatic brain injury. Journal of Neuroinflammation, 2018, 15, 323. Updates on autoinflammatory diseases. Current Opinion in Immunology, 2018, 55, 97-105. 282 5.5 33 Monogenic Lupus: A Developing Paradigm of Disease. Frontiers in Immunology, 2018, 9, 2496. 4.8 Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature, 2018, 564, 284 27.8 505 439-443. Antineutrophil Cytoplasmic Antibody–Associated Lung Fibrosis. Seminars in Respiratory and Critical Care Medicine, 2018, 39, 465-470. 286 Nail Disorders in Childhood., 2018, , 297-336. 0 New autoinflammatory diseases. Current Opinion in Pediatrics, 2018, 30, 837-847.

#	Article	IF	CITATIONS
288	STING-dependent sensing of self-DNA drives silica-induced lung inflammation. Nature Communications, 2018, 9, 5226.	12.8	176
289	Therapeutic Targeting of IRFs: Pathway-Dependence or Structure-Based?. Frontiers in Immunology, 2018, 9, 2622.	4.8	35
290	Vasculitis in Systemic Autoinflammatory Diseases. Frontiers in Pediatrics, 2018, 6, 377.	1.9	47
291	The Goldilocks Zone of Type I IFNs: Lessons from Human Genetics. Journal of Immunology, 2018, 201, 3479-3485.	0.8	26
292	NLRP3 inflammasome activation in inflammaging. Seminars in Immunology, 2018, 40, 61-73.	5.6	109
293	Genetic Interstitial Lung Disease. , 2018, , 1-24.		1
294	Pediatric forms of vasculitis. Best Practice and Research in Clinical Rheumatology, 2018, 32, 137-147.	3.3	11
295	Chronic interstitial lung diseases in children: diagnosis approaches. Expert Review of Respiratory Medicine, 2018, 12, 1051-1060.	2.5	16
296	Reply: A child with severe juvenile dermatomyositis treated with ruxolitinib. Brain, 2018, 141, e81-e81.	7.6	4
297	The classification, genetic diagnosis and modelling of monogenic autoinflammatory disorders. Clinical Science, 2018, 132, 1901-1924.	4.3	22
299	Aicardi goutières syndrome is associated with pulmonary hypertension. Molecular Genetics and Metabolism, 2018, 125, 351-358.	1.1	35
300	Nrf2 negatively regulates STING indicating a link between antiviral sensing and metabolic reprogramming. Nature Communications, 2018, 9, 3506.	12.8	192
301	Association of Abnormal Elevations in <scp>IFIT</scp> 3 With Overactive Cyclic <scp>GMP</scp> â€ <scp>AMP</scp> Synthase/Stimulator of Interferon Genes Signaling in Human Systemic Lupus Erythematosus Monocytes. Arthritis and Rheumatology, 2018, 70, 2036-2045.	5.6	57
302	An Update on Autoinflammatory Diseases: Interferonopathies. Current Rheumatology Reports, 2018, 20, 38.	4.7	50
303	Monogenic systemic lupus erythematosus: insights in pathophysiology. Rheumatology International, 2018, 38, 1763-1775.	3.0	18
304	STING agonists enable antiviral cross-talk between human cells and confer protection against genital herpes in mice. PLoS Pathogens, 2018, 14, e1006976.	4.7	43
305	The mitochondria in lung fibrosis: friend or foe?. Translational Research, 2018, 202, 1-23.	5.0	38
306	Apoptosis-derived membrane vesicles drive the cGAS–STING pathway and enhance type I IFN production in systemic lupus erythematosus. Annals of the Rheumatic Diseases, 2018, 77, 1507-1515.	0.9	164

#	Article	IF	CITATIONS
307	Targeting STING with covalent small-molecule inhibitors. Nature, 2018, 559, 269-273.	27.8	601
308	Nitro-fatty acids are formed in response to virus infection and are potent inhibitors of STING palmitoylation and signaling. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7768-E7775.	7.1	150
309	Mosaicism in autoinflammatory diseases: Cryopyrin-associated periodic syndromes (CAPS) and beyond. A systematic review. Critical Reviews in Clinical Laboratory Sciences, 2018, 55, 432-442.	6.1	45
310	Primary angiitis of the central nervous system: diagnosis and treatment. Therapeutic Advances in Neurological Disorders, 2018, 11, 175628641878507.	3.5	74
311	A Mutation Outside the Dimerization Domain Causing Atypical STING-Associated Vasculopathy With Onset in Infancy. Frontiers in Immunology, 2018, 9, 1535.	4.8	90
312	Effect of Ciprofloxacin on Susceptibility to Aortic Dissection and Rupture in Mice. JAMA Surgery, 2018, 153, e181804.	4.3	82
313	Cutaneous Vasculitis and Recurrent Infection Caused by Deficiency in Complement Factor I. Frontiers in Immunology, 2018, 9, 735.	4.8	17
314	Host-Intrinsic Interferon Status in Infection and Immunity. Trends in Molecular Medicine, 2018, 24, 658-668.	6.7	16
315	Systemic autoinflammation with intractable epilepsy managed with interleukin-1 blockade. Journal of Neuroinflammation, 2018, 15, 38.	7.2	75
316	Vasculitis Pathogenesis: Can We Talk About Precision Medicine?. Frontiers in Immunology, 2018, 9, 1892.	4.8	18
317	Cytoplasmic Mechanisms of Recognition and Defense of Microbial Nucleic Acids. Annual Review of Cell and Developmental Biology, 2018, 34, 357-379.	9.4	75
319	Combination and inducible adjuvants targeting nucleic acid sensors. Current Opinion in Pharmacology, 2018, 41, 104-113.	3.5	36
320	The binding of TBK1 to STING requires exocytic membrane traffic from the ER. Biochemical and Biophysical Research Communications, 2018, 503, 138-145.	2.1	66
321	Innate Immunity and Inflammation: The Molecular Mechanisms Governing the Cross-Talk Between Innate Immune and Endothelial Cells. , 2018, , 33-56.		Ο
322	Severe combined immunodeficiency in stimulator of interferon genes (STING) V154M/wild-type mice. Journal of Allergy and Clinical Immunology, 2019, 143, 712-725.e5.	2.9	74
323	Constitutive interferon signaling maintains critical threshold of MLKL expression to license necroptosis. Cell Death and Differentiation, 2019, 26, 332-347.	11.2	129
324	Pulmonary Involvement in the Systemic Inflammatory Diseases of Childhood. , 2019, , 850-875.e7.		0
325	TMEM173 variants and potential importance to human biology and disease. Genes and Immunity, 2019, 20, 82-89.	4.1	87

#	Article	IF	CITATIONS
326	Nucleic Acid Immunity in the Pathogenesis of Cutaneous Lupus Erythematosus. Frontiers in Immunology, 2019, 10, 1636.	4.8	13
327	STING modulators: Predictive significance in drug discovery. European Journal of Medicinal Chemistry, 2019, 182, 111591.	5.5	31
328	Monogenic lupus: Dissecting heterogeneity. Autoimmunity Reviews, 2019, 18, 102361.	5.8	74
329	Interrupting cyclic dinucleotide-cGAS–STING axis with small molecules. MedChemComm, 2019, 10, 1999-2023.	3.4	19
330	DNA sensing by the cGAS–STING pathway in health and disease. Nature Reviews Genetics, 2019, 20, 657-674.	16.3	801
331	HER2 joins AKT to inhibit STING immunity. Nature Cell Biology, 2019, 21, 917-918.	10.3	5
332	Migrasomes take center stage. Nature Cell Biology, 2019, 21, 918-920.	10.3	33
333	Update on the Genetics of Autoinflammatory Disorders. Current Allergy and Asthma Reports, 2019, 19, 41.	5.3	3
334	HER2 recruits AKT1 to disrupt STING signalling and suppress antiviral defence and antitumour immunity. Nature Cell Biology, 2019, 21, 1027-1040.	10.3	163
335	TMEM203 is a binding partner and regulator of STING-mediated inflammatory signaling in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16479-16488.	7.1	43
336	Self-DNA at the Epicenter of SLE: Immunogenic Forms, Regulation, and Effects. Frontiers in Immunology, 2019, 10, 1601.	4.8	33
337	Self-DNA Sensing in Lung Inflammatory Diseases. Trends in Immunology, 2019, 40, 719-734.	6.8	54
338	PP2A Facilitates Porcine Reproductive and Respiratory Syndrome Virus Replication by Deactivating irf3 and Limiting Type I Interferon Production. Viruses, 2019, 11, 948.	3.3	6
339	Reply: Treatment of anti-MDA5 autoantibody-positive juvenile dermatomyositis using tofacitinib. Brain, 2019, 142, e60-e60.	7.6	3
340	The role of nucleic acid sensors and type I IFNs in patient populations and animal models of autoinflammation. Current Opinion in Immunology, 2019, 61, 74-79.	5.5	5
341	STING activation in cancer immunotherapy. Theranostics, 2019, 9, 7759-7771.	10.0	150
342	Autophagy Regulation of Innate Immunity. Advances in Experimental Medicine and Biology, 2019, , .	1.6	3
343	Somatic Variants: New Kids on the Block in Human Immunogenetics. Trends in Genetics, 2019, 35, 935-947.	6.7	29

ARTICLE IF CITATIONS # Stimulator of interferon genes agonists attenuate type I diabetes progression in NOD mice. 344 4.4 18 Immunology, 2019, 158, 353-361. Dermatologic and Dermatopathologic Features of Monogenic Autoinflammatory Diseases. Frontiers 345 4.8 29 in Immunology, 2019, 10, 2448. 346 Pulmonary Fibrosis in Children. Journal of Clinical Medicine, 2019, 8, 1312. 2.4 19 Systemic Lupus Erythematosus and DNA Degradation and Elimination Defects. Frontiers in 347 4.8 Immunology, 2019, 10, 1697. ER-localized Hrd1 ubiquitinates and inactivates Usp15 to promote TLR4-induced inflammation during 348 13.3 39 bacterial infection. Nature Microbiology, 2019, 4, 2331-2346. Inborn Errors of Immunity With Immune Dysregulation: From Bench to Bedside. Frontiers in 349 Pediatrics, 2019, 7, 353. 350 Structures of STING protein illuminate this key regulator of inflammation. Nature, 2019, 567, 321-322. 27.8 8 YIPF5 Is Essential for Innate Immunity to DNA Virus and Facilitates COPII-Dependent STING Trafficking. 0.8 44 Journal of Immunology, 2019, 203, 1560-1570. Stimulator of interferon genes (STING) activation exacerbates experimental colitis in mice. Scientific 352 3.3 54 Reports, 2019, 9, 14281. Autoinflammatory diseases: State of the art. Presse Medicale, 2019, 48, e25-e48. 1.9 44 The EF-Hand Protein CALML6 Suppresses Antiviral Innate Immunity by Impairing IRF3 Dimerization. Cell 354 6.4 14 Reports, 2019, 26, 1273-1285.e5. Biochemistry of Autoinflammatory Diseases: Catalyzing Monogenic Disease. Frontiers in Immunology, 4.8 2019, 10, 101. How to prescribe a genetic test for the diagnosis of autoinflammatory diseases?. Presse Medicale, 356 1.9 7 2019, 48, e49-e59. Interferons \hat{I}_{\pm} and \hat{I}^2 in cancer: therapeutic opportunities from new insights. Nature Reviews Drug 46.4 Discovery, 2019, 18, 219-234. STING Polymer Structure Reveals Mechanisms for Activation, Hyperactivation, and Inhibition. Cell, 359 28.9 212 2019, 178, 290-301.e10. Efficacy and Adverse Events During Janus Kinase Inhibitor Treatment of SAVI Syndrome. Journal of Clinical Immunology, 2019, 39, 476-485. Low-frequency mosaicism in cryopyrin-associated periodic fever syndrome: mosaicism in systemic 361 4.0 16 autoinflammatory diseases. International Immunology, 2019, 31, 649-655. When neonatal inflammation does not mean infection: an early-onset mevalonate kinase deficiency 3.2 with interstitial lung disease. Clinical Immunology, 2019, 205, 25-28.

#	Article	IF	CITATIONS
363	Autoinflammatory Disorders: A Review and Update on Pathogenesis and Treatment. American Journal of Clinical Dermatology, 2019, 20, 539-564.	6.7	38
364	A STING to inflammation and autoimmunity. Journal of Leukocyte Biology, 2019, 106, 171-185.	3.3	75
365	STING-mediated disruption of calcium homeostasis chronically activates ER stress and primes T cell death. Journal of Experimental Medicine, 2019, 216, 867-883.	8.5	182
366	A microparticle platform for STING-targeted immunotherapy enhances natural killer cell- and CD8+ T cell-mediated anti-tumor immunity. Biomaterials, 2019, 205, 94-105.	11.4	67
367	Mechanism-Based Precision Therapy for the Treatment of Primary Immunodeficiency and Primary Immunodysregulatory Diseases. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 761-773.	3.8	37
368	Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP–AMP. Nature, 2019, 567, 389-393.	27.8	392
369	cGAS in action: Expanding roles in immunity and inflammation. Science, 2019, 363, .	12.6	602
370	First Egyptian patient with STING-associated vasculopathy with onset in infancy. Scandinavian Journal of Rheumatology, 2019, 48, 338-339.	1.1	6
371	STIM1 holds a STING in its (N-terminal) tail. Cell Calcium, 2019, 80, 192-193.	2.4	5
372	STING-associated lung disease in mice relies on T cells but not type I interferon. Journal of Allergy and Clinical Immunology, 2019, 144, 254-266.e8.	2.9	85
373	Healthâ€related quality of life in infants and children with interstitial lung disease. Pediatric Pulmonology, 2019, 54, 828-836.	2.0	13
374	Innate immunity signalling and membrane trafficking. Current Opinion in Cell Biology, 2019, 59, 1-7.	5.4	77
375	Innate sensors that regulate vaccine responses. Current Opinion in Immunology, 2019, 59, 31-41.	5.5	21
376	High-level expression of STING restricts susceptibility to HBV by mediating type III IFN induction. FASEB BioAdvances, 2019, 1, 67-80.	2.4	12
377	Hierarchy of clinical manifestations in SAVI N153S and V154M mouse models. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7941-7950.	7.1	83
378	USP49 negatively regulates cellular antiviral responses via deconjugating K63-linked ubiquitination of MITA. PLoS Pathogens, 2019, 15, e1007680.	4.7	43
379	Novel proteasome assembly chaperone mutations in PSMG2/PAC2 cause the autoinflammatory interferonopathy CANDLE/PRAAS4. Journal of Allergy and Clinical Immunology, 2019, 143, 1939-1943.e8.	2.9	82
380	STING palmitoylation as a therapeutic target. Cellular and Molecular Immunology, 2019, 16, 236-241.	10.5	57

#	Article	IF	CITATIONS
381	Autoinflammation: Past, Present, and Future. , 2019, , 3-15.		3
382	Classification of Genetically Defined Autoinflammatory Diseases. , 2019, , 167-201.		6
383	Genetic Aspects of Investigating and Understanding Autoinflammation. , 2019, , 19-48.		3
384	Genetic Interferonopathies. , 2019, , 433-453.		1
385	Pattern Recognition Receptors in Autoinflammation. , 2019, , 61-87.		2
386	Cytokines in Autoinflammation. , 2019, , 111-122.		Ο
387	Disruption of Protein Homeostasis and Activation of Cellular Stress Pathways in Autoinflammation. , 2019, , 137-147.		0
388	STAT3 inhibition enhances CDN-induced STING signaling and antitumor immunity. Cancer Letters, 2019, 450, 110-122.	7.2	45
389	<p>Genetics of COPA syndrome</p> . The Application of Clinical Genetics, 2019, Volume 12, 11-18.	3.0	17
390	JAK-inhibitors. New players in the field of immune-mediated diseases, beyond rheumatoid arthritis. Rheumatology, 2019, 58, i43-i54.	1.9	221
391	USP20 Promotes Cellular Antiviral Responses via Deconjugating K48-Linked Ubiquitination of MITA. Journal of Immunology, 2019, 202, 2397-2406.	0.8	23
392	Acetylation Blocks cGAS Activity and Inhibits Self-DNA-Induced Autoimmunity. Cell, 2019, 176, 1447-1460.e14.	28.9	213
393	Toxic epidermal necrolysis–like dermatomyositis associated with antimelanoma differentiation antigen 5. JAAD Case Reports, 2019, 5, 91-93.	0.8	5
394	Surfactant protein C dysfunction with new clinical insights for diffuse alveolar hemorrhage and autoimmunity. Pediatric Investigation, 2019, 3, 201-206.	1.4	3
396	The genetics of interstitial lung diseases. European Respiratory Review, 2019, 28, 190053.	7.1	41
397	Gene Expression Metaâ€Analysis Reveals Concordance in Gene Activation, Pathway, and Cellâ€Type Enrichment in Dermatomyositis Target Tissues. ACR Open Rheumatology, 2019, 1, 657-666.	2.1	16
398	Novel TMEM173 Mutation and the Role of Disease Modifying Alleles. Frontiers in Immunology, 2019, 10, 2770.	4.8	45
399	Interferon target-gene expression and epigenomic signatures in health and disease. Nature Immunology, 2019, 20, 1574-1583.	14.5	316

		CITATION REPORT		
#	Article		IF	CITATIONS
400	Too much of a good thing: Detrimental effects of interferon. Seminars in Immunology,	2019, 43, 101282.	5.6	12
401	Current and future advances in genetic testing in systemic autoinflammatory diseases. 2019, 58, vi44-vi55.	Rheumatology,	1.9	21
402	Hereditary systemic autoinflammatory diseases and Schnitzler's syndrome. Rheum vi31-vi43.	atology, 2019, 58,	1.9	21
403	Secondary C1q Deficiency in Activated PI3KδSyndrome Type 2. Frontiers in Immunolog	gy, 2019, 10, 2589.	4.8	7
404	Current State of Precision Medicine in Primary Systemic Vasculitides. Frontiers in Immu 10, 2813.	unology, 2019,	4.8	10
405	The Challenge of Diagnosing SAVI: Case Studies. Pediatric, Allergy, Immunology, and Pi 2019, 32, 167-172.	ulmonology,	0.8	8
406	The Role of Mitochondrial DNA in the Development of Ischemia Reperfusion Injury. Shc 52-59.	ock, 2019, 51,	2.1	20
407	Treatment of Two Boys Suffering From Deficiency of Adenosine Deaminase Type 2 (DA TNF-Inhibitor Etanercept. Journal of Clinical Rheumatology, 2021, 27, S509-S512.	DA2) With	0.9	6
409	What's new in autoinflammation?. Pediatric Nephrology, 2019, 34, 2449-2456.		1.7	8
410	Genetics of Human SLE. , 2019, , 54-68.			5
411	The relationship between type 1 IFN and vasculopathy in anti-MDA5 antibody-positive patients. Rheumatology, 2019, 58, 786-791.	dermatomyositis	1.9	49
412	Auto-Inflammatory Syndromes. , 2019, , .			8
413	Innate Immune Signaling and Its Role in Metabolic and Cardiovascular Diseases. Physic 2019, 99, 893-948.	logical Reviews,	28.8	57
414	Negative Regulation of Cytosolic Sensing of DNA. International Review of Cell and Mol 2019, 344, 91-115.	ecular Biology,	3.2	18
415	Hereditary Autoinflammatory Disorders. Immunology and Allergy Clinics of North Amer 13-29.	·ica, 2019, 39,	1.9	17
416	A Human Gain-of-Function STING Mutation Causes Immunodeficiency and Gammaherp Pulmonary Fibrosis in Mice. Journal of Virology, 2019, 93, .	esvirus-Induced	3.4	40
417	Self-Awareness: Nucleic Acid–Driven Inflammation and the Type I Interferonopathies. Immunology, 2019, 37, 247-267.	. Annual Review of	21.8	111
418	Immunology of Auto-inflammatory Syndromes. , 2019, , 1-16.			0

		CITATION R	EPORT	
# 419	ARTICLE Type I Interferonopathies: From Pathophysiology to Clinical Expression. , 2019, , 125-1	45.	IF	Citations
420	The Ca2+ sensor STIM1 regulates the type I interferon response by retaining the signal STING at the endoplasmic reticulum. Nature Immunology, 2019, 20, 152-162.	ing adaptor	14.5	228
421	DNA-stimulated cell death: implications for host defence, inflammatory diseases and ca Reviews Immunology, 2019, 19, 141-153.	ancer. Nature	22.7	123
422	Childhood Vasculitis. Frontiers in Pediatrics, 2018, 6, 421.		1.9	45
423	Recurrent Fever Syndromes. Rare Rheumatic Diseases, 2019, , 27-58.		0.0	0
424	Unexpected relevant role of gene mosaicism in patients with primary immunodeficienc Journal of Allergy and Clinical Immunology, 2019, 143, 359-368.	y diseases.	2.9	53
425	Targeting cytokines to treat autoinflammatory diseases. Clinical Immunology, 2019, 20)6, 23-32.	3.2	32
426	G3BP1 promotes DNA binding and activation of cGAS. Nature Immunology, 2019, 20,	18-28.	14.5	186
427	Comparison of RT-qPCR and Nanostring in the measurement of blood interferon respo diagnosis of type I interferonopathies. Cytokine, 2019, 113, 446-452.	nse for the	3.2	51
428	The Role of Nucleic Acid Sensing in Controlling Microbial and Autoimmune Disorders. I Review of Cell and Molecular Biology, 2019, 345, 35-136.	nternational	3.2	26
429	Cytokines 2017 in Kanazawa: Looking beyond the horizon of integrated cytokine resea of Japan. Cytokine and Growth Factor Reviews, 2019, 50, 75-82.	arch from the sea	7.2	1
430	B cell MHC class II signaling: A story of life and death. Human Immunology, 2019, 80, 3	37-43.	2.4	25
431	The influence of interferon on healthy and diseased skin. Cytokine, 2020, 132, 154605	i.	3.2	29
432	Mitochondria at the interface between neurodegeneration and neuroinflammation. Se and Developmental Biology, 2020, 99, 163-171.	minars in Cell	5.0	74
433	Baricitinib experience on STINC-associated vasculopathy with onset in infancy: A repres from Turkey. Clinical Immunology, 2020, 212, 108273.	sentative case	3.2	38
434	Targeted Therapy with Biologicals and Small Molecules in Primary Immunodeficiencies. Principles and Practice, 2020, 29, 101-112.	Medical	2.4	15
435	239th ENMC International Workshop: Classification of dermatomyositis, Amsterdam, t 14–16 December 2018. Neuromuscular Disorders, 2020, 30, 70-92.	he Netherlands,	0.6	148
436	Toward a better understanding of type I interferonopathies: a brief summary, update a World Journal of Pediatrics, 2020, 16, 44-51.	nd beyond.	1.8	28

#	Article	IF	CITATIONS
437	Platelets and IgE: Shaping the Innate Immune Response in Systemic Lupus Erythematosus. Clinical Reviews in Allergy and Immunology, 2020, 58, 194-212.	6.5	15
438	Monogenic autoinflammatory disorders: beyond the periodic fever. Internal Medicine Journal, 2020, 50, 151-164.	0.8	6
439	STING-Associated Vasculopathy with Onset in Infancy in Three Children with New Clinical Aspect and Unsatisfactory Therapeutic Responses to Tofacitinib. Journal of Clinical Immunology, 2020, 40, 114-122.	3.8	44
440	The triggers of the cGAS-STING pathway and the connection with inflammatory and autoimmune diseases. Infection, Genetics and Evolution, 2020, 77, 104094.	2.3	31
441	Protective and Pathogenic Effects of Interferon Signaling During Pregnancy. Viral Immunology, 2020, 33, 3-11.	1.3	33
442	A clinical score to guide in decision making for monogenic type I IFNopathies. Pediatric Research, 2020, 87, 745-752.	2.3	16
443	Critical Role of Cytosolic DNA and Its Sensing Adaptor STING in Aortic Degeneration, Dissection, and Rupture. Circulation, 2020, 141, 42-66.	1.6	123
444	Periodic fever syndromes and the autoinflammatory diseases (AIDs). Journal of Translational Autoimmunity, 2020, 3, 100031.	4.0	10
445	APOL1-Associated Collapsing Focal Segmental Glomerulosclerosis in a Patient With Stimulator of Interferon Genes (STING)-Associated Vasculopathy With Onset in Infancy (SAVI). American Journal of Kidney Diseases, 2020, 75, 287-290.	1.9	48
446	Bioactive modulators targeting STING adaptor in cGAS-STING pathway. Drug Discovery Today, 2020, 25, 230-237.	6.4	40
447	Targeting Stimulator of Interferon Genes (STING): A Medicinal Chemistry Perspective. Journal of Medicinal Chemistry, 2020, 63, 3785-3816.	6.4	85
448	Design, Synthesis, and Biological Evaluation of Amidobenzimidazole Derivatives as Stimulator of Interferon Genes (STING) Receptor Agonists. Journal of Medicinal Chemistry, 2020, 63, 260-282.	6.4	39
449	Regulation of cGAS- and RLR-mediated immunity to nucleic acids. Nature Immunology, 2020, 21, 17-29.	14.5	219
450	Discovery of Small-Molecule Cyclic GMP-AMP Synthase Inhibitors. Journal of Organic Chemistry, 2020, 85, 1579-1600.	3.2	48
451	Agonists and inhibitors of the STING pathway: Potential agents for immunotherapy. Medicinal Research Reviews, 2020, 40, 1117-1141.	10.5	90
452	Autoinflammatory Disorders with Perinatal Onset. Clinics in Perinatology, 2020, 47, 41-52.	2.1	0
453	Anti-MDA5 juvenile idiopathic inflammatory myopathy: a specific subgroup defined by differentially enhanced interferon-α signalling. Rheumatology, 2020, 59, 1927-1937.	1.9	26
454	The role of dysregulated immune responses in COVID-19 pathogenesis. Virus Research, 2020, 290, 198197.	2.2	55

#	Article	IF	CITATIONS
455	MYSM1 Represses Innate Immunity and Autoimmunity through Suppressing the cGAS-STING Pathway. Cell Reports, 2020, 33, 108297.	6.4	44
456	When STING Meets Viruses: Sensing, Trafficking and Response. Frontiers in Immunology, 2020, 11, 2064.	4.8	20
457	Challenges and Opportunities in the Clinical Development of STING Agonists for Cancer Immunotherapy. Journal of Clinical Medicine, 2020, 9, 3323.	2.4	131
458	IFN Regulatory Factor 3 in Health and Disease. Journal of Immunology, 2020, 205, 1981-1989.	0.8	39
459	The intrinsic and extrinsic elements regulating inflammation. Life Sciences, 2020, 260, 118258.	4.3	23
460	Animal Models for the Study of Nucleic Acid Immunity: Novel Tools and New Perspectives. Journal of Molecular Biology, 2020, 432, 5529-5543.	4.2	9
461	STEEP mediates STING ER exit and activation of signaling. Nature Immunology, 2020, 21, 868-879.	14.5	82
462	Phenotype variability of autoinflammatory disorders in the pediatric patient: A pictorial overview. Journal of Evidence-Based Medicine, 2020, 13, 227-245.	1.8	11
463	Structures and Mechanisms in the cGAS-STING Innate Immunity Pathway. Immunity, 2020, 53, 43-53.	14.3	325
464	Severe Autoinflammatory Manifestations and Antibody Deficiency Due to Novel Hypermorphic PLCG2 Mutations. Journal of Clinical Immunology, 2020, 40, 987-1000.	3.8	41
465	The innate immune system and cell death in autoinflammatory and autoimmune disease. Current Opinion in Immunology, 2020, 67, 95-105.	5.5	39
466	Molecular and spatial mechanisms governing STING signalling. FEBS Journal, 2021, 288, 5504-5529.	4.7	27
467	The Role of Cutaneous Type I IFNs in Autoimmune and Autoinflammatory Diseases. Journal of Immunology, 2020, 205, 2941-2950.	0.8	8
468	Development of small molecule inhibitors/agonists targeting STING for disease. Biomedicine and Pharmacotherapy, 2020, 132, 110945.	5.6	20
469	DNA-PK deficiency potentiates cGAS-mediated antiviral innate immunity. Nature Communications, 2020, 11, 6182.	12.8	70
470	Regulation of an adaptor protein STING by Hsp90Î ² to enhance innate immune responses against microbial infections. Cellular Immunology, 2020, 356, 104188.	3.0	6
472	Familial Interstitial Lung Disease Caused by Mutation of the STING1 Gene. Frontiers in Pediatrics, 2020, 8, 543.	1.9	12
473	PPP6C Negatively Regulates STING-Dependent Innate Immune Responses. MBio, 2020, 11, .	4.1	17

#	Article	IF	CITATIONS
474	Adult-Onset ANCA-Associated Vasculitis in SAVI: Extension of the Phenotypic Spectrum, Case Report and Review of the Literature. Frontiers in Immunology, 2020, 11, 575219.	4.8	32
475	Monogenic autoinflammatory disorders: Conceptual overview, phenotype, and clinical approach. Journal of Allergy and Clinical Immunology, 2020, 146, 925-937.	2.9	89
476	A defect in COPI-mediated transport of STING causes immune dysregulation in COPA syndrome. Journal of Experimental Medicine, 2020, 217, .	8.5	110
477	Mutations in <i>COPA</i> lead to abnormal trafficking of STING to the Golgi and interferon signaling. Journal of Experimental Medicine, 2020, 217, .	8.5	130
478	Sensing of endogenous nucleic acids by ZBP1 induces keratinocyte necroptosis and skin inflammation. Journal of Experimental Medicine, 2020, 217, .	8.5	71
479	Notch signaling protects CD4 T cells from STING-mediated apoptosis during acute systemic inflammation. Science Advances, 2020, 6, .	10.3	29
480	Inflammatory cutaneous lesions and pulmonary manifestations in a new patient with autosomal recessive ISG15 deficiency case report. Allergy, Asthma and Clinical Immunology, 2020, 16, 77.	2.0	7
481	The role of IL-6 and other mediators in the cytokine storm associated with SARS-CoV-2 infection. Journal of Allergy and Clinical Immunology, 2020, 146, 518-534.e1.	2.9	180
482	The cCASâ€ 5 TING pathway: The role of selfâ€DNA sensing in inflammatory lung disease. FASEB Journal, 2020, 34, 13156-13170.	0.5	60
483	Case Report: Acute Thrombotic Microangiopathy in a Patient with STING-Associated Vasculopathy with Onset in Infancy (SAVI). Journal of Clinical Immunology, 2020, 40, 1111-1115.	3.8	7
484	Tumor-Derived cGAMP Regulates Activation of the Vasculature. Frontiers in Immunology, 2020, 11, 2090.	4.8	37
485	Long nonâ€coding RNA MALAT1 targeting STING transcription promotes bronchopulmonary dysplasia through regulation of CREB. Journal of Cellular and Molecular Medicine, 2020, 24, 10478-10492.	3.6	16
486	A novel STING1 variant causes a recessive form of STING-associated vasculopathy with onset in infancy (SAVI). Journal of Allergy and Clinical Immunology, 2020, 146, 1204-1208.e6.	2.9	45
487	Lymphocyte Changes in Severe COVID-19: Delayed Over-Activation of STINC?. Frontiers in Immunology, 2020, 11, 607069.	4.8	38
488	Stimulator of Interferon Genes-Associated Vasculopathy With Onset in Infancy: A Systematic Review of Case Reports. Frontiers in Pediatrics, 2020, 8, 577918.	1.9	11
489	Molecular mechanisms and cellular functions of cGAS–STING signalling. Nature Reviews Molecular Cell Biology, 2020, 21, 501-521.	37.0	846
490	Interstitial Lung Disease and Psoriasis in a Child With Aicardi-Goutières Syndrome. Frontiers in Immunology, 2020, 11, 985.	4.8	22
492	Basic mechanism of immune system activation by mitochondria. Immunological Medicine, 2020, 43, 142-147.	2.6	26

# 493	ARTICLE Type 1 interferonopathy presenting as juvenile idiopathic arthritis with interstitial lung disease: report of a new phenotype. Pediatric Rheumatology, 2020, 18, 37.	IF 2.1	Citations 27
494	Dephosphorylation of cGAS by PPP6C impairs its substrate binding activity and innate antiviral response. Protein and Cell, 2020, 11, 584-599.	11.0	25
495	Selective reactivation of STING signaling to target Merkel cell carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13730-13739.	7.1	39
496	Type I interferon-independent T cell impairment in a Tmem173 N153S/WT mouse model of STING associated vasculopathy with onset in infancy (SAVI). Clinical Immunology, 2020, 216, 108466.	3.2	24
497	COVID-19 as a STING disorder with delayed over-secretion of interferon-beta. EBioMedicine, 2020, 56, 102801.	6.1	51
498	Redox homeostasis maintained by GPX4 facilitates STING activation. Nature Immunology, 2020, 21, 727-735.	14.5	188
499	Old dogs, new trick: classic cancer therapies activate cGAS. Cell Research, 2020, 30, 639-648.	12.0	104
500	Celastrol ameliorates autoimmune disorders in Trex1-deficient mice. Biochemical Pharmacology, 2020, 178, 114090.	4.4	14
501	Interstitial lung diseases in children. Presse Medicale, 2020, 49, 103909.	1.9	26
502	Kawasaki-like diseases and thrombotic coagulopathy in COVID-19: delayed over-activation of the STING pathway?. Emerging Microbes and Infections, 2020, 9, 1514-1522.	6.5	56
503	Balancing STING in antimicrobial defense and autoinflammation. Cytokine and Growth Factor Reviews, 2020, 55, 1-14.	7.2	13
504	Type I Interferonopathies: from a Novel Concept to Targeted Therapeutics. Current Rheumatology Reports, 2020, 22, 32.	4.7	30
505	Type I Interferons in the Pathogenesis and Treatment of Autoimmune Diseases. Clinical Reviews in Allergy and Immunology, 2020, 59, 248-272.	6.5	81
506	Deficiency of STING Promotes Collagen-Specific Antibody Production and B Cell Survival in Collagen-Induced Arthritis. Frontiers in Immunology, 2020, 11, 1101.	4.8	12
507	STING Gain-of-Function Disrupts Lymph Node Organogenesis and Innate Lymphoid Cell Development in Mice. Cell Reports, 2020, 31, 107771.	6.4	18
508	New Horizons in the Genetic Etiology of Systemic Lupus Erythematosus and Lupus-Like Disease: Monogenic Lupus and Beyond. Journal of Clinical Medicine, 2020, 9, 712.	2.4	81
509	Inhibition of mTOR suppresses IFNα production and the STING pathway in monocytes from systemic lupus erythematosus patients. Rheumatology, 2020, 59, 2992-3002.	1.9	35
510	Targeting Toll-like receptor 3 in dendritic cells for cancer immunotherapy. Expert Opinion on Biological Therapy, 2020, 20, 937-946.	3.1	19

		CITATION REPC	DRT	
#	Article	II	F	CITATIONS
511	TMEM173 Drives Lethal Coagulation in Sepsis. Cell Host and Microbe, 2020, 27, 556-570.e6	j. 1	1.0	119
512	Interferon-Independent Activities of Mammalian STING Mediate Antiviral Response and Tume Evasion. Immunity, 2020, 53, 115-126.e5.	or Immune 1	4.3	179
513	Pulmonary Involvement in a Mouse Model of Sjögren's Syndrome Induced by STING Ac International Journal of Molecular Sciences, 2020, 21, 4512.	tivation. 4	l.1	10
514	Nucleic Acid Sensors as Therapeutic Targets for Human Disease. Immunity, 2020, 53, 78-97.	1	.4.3	44
515	Primary immunodeficiencies in cytosolic patternâ€recognition receptor pathways: Toward h treatment strategies. Immunological Reviews, 2020, 297, 247-272.	ostâ€directed 6	5.0	10
516	Pulmonary alveolar proteinosis in children. Breathe, 2020, 16, 200001.	1	3	16
517	Key pathways in primary immune deficiencies. , 2020, , 99-114.			0
518	Autoinflammatory diseases affecting bone and joints, and autoinflammatory interferonopatl 2020, , 685-720.	nies. ,		1
519	Mendelian disorders of immunity related to an upregulation of type I interferon. , 2020, , 75	1-772.		2
520	Moving towards a systems-based classification of innate immune-mediated diseases. Nature Rheumatology, 2020, 16, 222-237.	Reviews 8	3.0	58
521	PYHIN1 regulates pro-inflammatory cytokine induction rather than innate immune DNA sens airway epithelial cells. Journal of Biological Chemistry, 2020, 295, 4438-4450.	sing in 3	3.4	15
522	Structural Insights into STING Signaling. Trends in Cell Biology, 2020, 30, 399-407.	7	7.9	30
523	Epithelial Cells in Endometriosis and Adenomyosis Upregulate STING Expression. Reproducti Sciences, 2020, 27, 1276-1284.	ve 2	2.5	14
524	Etiologic spectrum of interstitial lung diseases in Chinese children older than $2\hat{a}\in$ ‰years of Orphanet Journal of Rare Diseases, 2020, 15, 25.	age. 2	2.7	12
525	T Cell Co-stimulation and Functional Modulation by Innate Signals. Trends in Immunology, 2 200-212.	020, 41, 6	5.8	50
526	Childhood vasculitis. Rheumatology, 2020, 59, iii95-iii100.	1	9	18
527	A patient with stimulator of interferon genes–associated vasculopathy with onset in infan skin vasculopathy. Rheumatology, 2020, 59, 905-907.	cy without 1	.9	11
528	Research Advances in How the cGAS-STING Pathway Controls the Cellular Inflammatory Res Frontiers in Immunology, 2020, 11, 615.	ponse. 4	. .8	143

#	Article	IF	Citations
529	TBK1 and IKKε Act Redundantly to Mediate STING-Induced NF-κB Responses in Myeloid Cells. Cell Reports, 2020, 31, 107492.	6.4	223
530	STING couples with PI3K to regulate actin reorganization during BCR activation. Science Advances, 2020, 6, eaax9455.	10.3	19
532	Expression of interferon-regulated genes in juvenile dermatomyositis versus Mendelian autoinflammatory interferonopathies. Arthritis Research and Therapy, 2020, 22, 69.	3.5	39
533	Mitochondrial <scp>DNA</scp> in inflammation and immunity. EMBO Reports, 2020, 21, e49799.	4.5	446
534	The lung in systemic lupus erythematosus. , 2021, , 427-438.		0
535	RNA/DNA sensing in SLE—Toll-like receptors and beyond. , 2021, , 159-170.		0
536	Monogenic lupus. , 2021, , 97-104.		0
537	Origin of autoantibodies. , 2021, , 223-229.		0
538	Overview of the rarest causes of fever in newborns: handy hints for the neonatologist. Journal of Perinatology, 2021, 41, 372-382.	2.0	7
540	STING regulates BCR signaling in normal and malignant B cells. Cellular and Molecular Immunology, 2021, 18, 1016-1031.	10.5	19
541	α-Cyperone inhibitory effects on tumor-derived DNA trigger microglia by STING pathway. Journal of Ethnopharmacology, 2021, 264, 113246.	4.1	6
542	cCAS-STING signaling in cancer immunity and immunotherapy. Biomedicine and Pharmacotherapy, 2021, 133, 110972.	5.6	45
543	Functional Asplenia and Specific Polysaccharide Antibody Deficiency in a Girl with SAVI. Journal of Clinical Immunology, 2021, 41, 495-497.	3.8	1
544	Overview of STING-Associated Vasculopathy with Onset in Infancy (SAVI) Among 21 Patients. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 803-818.e11.	3.8	98
545	Is it time to re-think juvenile-onset Rheumatic and Musculoskeletal Diseases? – First steps towards individualised treatments to meet agreed targets. Clinical Immunology, 2021, 223, 108647.	3.2	2
546	STING, a promising target for small molecular immune modulator: A review. European Journal of Medicinal Chemistry, 2021, 211, 113113.	5.5	37
547	The emerging roles of ZDHHCs-mediated protein palmitoylation in the antiviral innate immune responses. Critical Reviews in Microbiology, 2021, 47, 34-43.	6.1	11
548	Deforming Polyarthritis in a North Indian Family—Clinical Expansion of STING-Associated Vasculopathy with Onset in Infancy (SAVI). Journal of Clinical Immunology, 2021, 41, 209-211.	3.8	3

#	Article	IF	CITATIONS
549	The Third Man: DNA sensing as espionage in pulmonary vascular health and disease. Pulmonary Circulation, 2021, 11, 1-16.	1.7	3
550	Mitochondrial Damageâ€Induced Innate Immune Activation in Vascular Smooth Muscle Cells Promotes Chronic Kidney Diseaseâ€Associated Plaque Vulnerability. Advanced Science, 2021, 8, 2002738.	11.2	42
551	STING, the Endoplasmic Reticulum, and Mitochondria: Is Three a Crowd or a Conversation?. Frontiers in Immunology, 2020, 11, 611347.	4.8	46
552	Differential Expression of Interferon-Alpha Protein Provides Clues to Tissue Specificity Across Type I Interferonopathies. Journal of Clinical Immunology, 2021, 41, 603-609.	3.8	16
553	Emerging Roles of the Innate Immune System Regulated by DNA Sensors in the Development of Vascular and Metabolic Diseases. Journal of Atherosclerosis and Thrombosis, 2022, 29, 297-307.	2.0	4
554	Homeostatic regulation of STING by retrograde membrane traffic to the ER. Nature Communications, 2021, 12, 61.	12.8	80
555	STING-associated vasculopathy with onset in infancy: a familial case series report and literature review. Annals of Translational Medicine, 2021, 9, 176-176.	1.7	29
556	Weiterentwicklung in der Therapie rheumatischer Erkrankungen bei Kindern und Jugendlichen. Springer Reference Medizin, 2021, , 1-19.	0.0	0
557	Deficiency of the innate immune adaptor STING promotes autoreactive T cell expansion in NOD mice. Diabetologia, 2021, 64, 878-889.	6.3	6
558	Immune Dysfunction and Drug Targets in Autoinflammatory Syndromes. , 2021, , .		0
558 559	Immune Dysfunction and Drug Targets in Autoinflammatory Syndromes. , 2021, , . A Novel Biallelic STING1 Gene Variant Causing SAVI in Two Siblings. Frontiers in Immunology, 2020, 11, 599564.	4.8	0
558 559 560	Immune Dysfunction and Drug Targets in Autoinflammatory Syndromes. , 2021, , . A Novel Biallelic STING1 Gene Variant Causing SAVI in Two Siblings. Frontiers in Immunology, 2020, 11, 599564. cGAS phase separation inhibits TREX1-mediated DNA degradation and enhances cytosolic DNA sensing. Molecular Cell, 2021, 81, 739-755.e7.	4.8 9.7	0 12 98
558 559 560 561	Immune Dysfunction and Drug Targets in Autoinflammatory Syndromes., 2021, , . A Novel Biallelic STING1 Gene Variant Causing SAVI in Two Siblings. Frontiers in Immunology, 2020, 11, 599564. cGAS phase separation inhibits TREX1-mediated DNA degradation and enhances cytosolic DNA sensing. Molecular Cell, 2021, 81, 739-755.e7. Cyclic Guanosine Monophosphate–Adenosine Monophosphate Synthase (cGAS), a Multifaceted Platform of Intracellular DNA Sensing. Frontiers in Immunology, 2021, 12, 637399.	4.8 9.7 4.8	0 12 98 8
558 559 560 561 562	Immune Dysfunction and Drug Targets in Autoinflammatory Syndromes. , 2021, , . A Novel Biallelic STING1 Gene Variant Causing SAVI in Two Siblings. Frontiers in Immunology, 2020, 11, 599564. cGAS phase separation inhibits TREX1-mediated DNA degradation and enhances cytosolic DNA sensing. Molecular Cell, 2021, 81, 739-755.e7. Cyclic Guanosine Monophosphate–Adenosine Monophosphate Synthase (cGAS), a Multifaceted Platform of Intracellular DNA Sensing. Frontiers in Immunology, 2021, 12, 637399. STING-Mediated Lung Inflammation and Beyond. Journal of Clinical Immunology, 2021, 41, 501-514.	4.8 9.7 4.8 3.8	0 12 98 8 48
5558 5559 560 561 562	Immune Dysfunction and Drug Targets in Autoinflammatory Syndromes. , 2021, , . A Novel Biallelic STING1 Gene Variant Causing SAVI in Two Siblings. Frontiers in Immunology, 2020, 11, 599564. cGAS phase separation inhibits TREX1-mediated DNA degradation and enhances cytosolic DNA sensing. Molecular Cell, 2021, 81, 739-755.e7. Cyclic Guanosine Monophosphate–Adenosine Monophosphate Synthase (cGAS), a Multifaceted Platform of Intracellular DNA Sensing. Frontiers in Immunology, 2021, 12, 637399. STING-Mediated Lung Inflammation and Beyond. Journal of Clinical Immunology, 2021, 41, 501-514. The Trinity of cGAS, TLR9, and ALRs Guardians of the Cellular Galaxy Against Host-Derived Self-DNA. Frontiers in Immunology, 2020, 11, 624597.	4.8 9.7 4.8 3.8 4.8	0 12 98 8 48 40
5558 5559 560 561 562 563	Immune Dysfunction and Drug Targets in Autoinflammatory Syndromes. , 2021, , . A Novel Biallelic STING1 Gene Variant Causing SAVI in Two Siblings. Frontiers in Immunology, 2020, 11, 599564. cGAS phase separation inhibits TREX1-mediated DNA degradation and enhances cytosolic DNA sensing. Molecular Cell, 2021, 81, 739-755.e7. Cyclic Guanosine Monophosphate–Adenosine Monophosphate Synthase (cGAS), a Multifaceted Platform of Intracellular DNA Sensing. Frontiers in Immunology, 2021, 12, 637399. STING-Mediated Lung Inflammation and Beyond. Journal of Clinical Immunology, 2021, 41, 501-514. The Trinity of cGAS, TLR9, and ALRs Guardians of the Cellular Galaxy Against Host-Derived Self-DNA. Frontiers in Immunology, 2020, 11, 624597. Cellular Metabolites Regulate Central Nucleic Acid Sensing Pathways. Frontiers in Immunology, 2021, 12, 635738.	4.8 9.7 4.8 3.8 4.8 4.8	0 12 98 8 48 40 3
 558 559 560 561 562 563 564 565 	Immune Dysfunction and Drug Targets in Autoinflammatory Syndromes. , 2021, , . A Novel Biallelic STING1 Gene Variant Causing SAVI in Two Siblings. Frontiers in Immunology, 2020, 11, 599564. CGAS phase separation inhibits TREX1-mediated DNA degradation and enhances cytosolic DNA sensing. Molecular Cell, 2021, 81, 739-755.e7. Cyclic Guanosine Monophosphate–Adenosine Monophosphate Synthase (cGAS), a Multifaceted Platform of Intracellular DNA Sensing. Frontiers in Immunology, 2021, 12, 637399. STING-Mediated Lung Inflammation and Beyond. Journal of Clinical Immunology, 2021, 41, 501-514. The Trinity of cGAS, TLR9, and ALRS Guardians of the Cellular Galaxy Against Host-Derived Self-DNA. Frontiers in Immunology, 2020, 11, 624597. Cellular Metabolites Regulate Central Nucleic Acid Sensing Pathways. Frontiers in Immunology, 2021, 19, 400-426.	4.8 9.7 4.8 3.8 4.8 4.8 4.8 0.8	0 12 98 8 48 40 3

#	Article	IF	CITATIONS
567	Systematic evaluation of nine monogenic autoinflammatory diseases reveals common and disease-specific correlations with allergy-associated features. Annals of the Rheumatic Diseases, 2021, 80, 788-795.	0.9	12
568	The Complexity of the cGAS-STING Pathway in CNS Pathologies. Frontiers in Neuroscience, 2021, 15, 621501.	2.8	28
569	Genetic Testing for Neonatal Respiratory Disease. Children, 2021, 8, 216.	1.5	5
570	Unique and complementary suppression of cGAS-STING and RNA sensing- triggered innate immune responses by SARS-CoV-2 proteins. Signal Transduction and Targeted Therapy, 2021, 6, 123.	17.1	89
573	cGAS-STING Pathway Does Not Promote Autoimmunity in Murine Models of SLE. Frontiers in Immunology, 2021, 12, 605930.	4.8	30
575	Case Report: Novel SAVI-Causing Variants in STING1 Expand the Clinical Disease Spectrum and Suggest a Refined Model of STING Activation. Frontiers in Immunology, 2021, 12, 636225.	4.8	18
576	The role of cGAS/STING in intestinal immunity. European Journal of Immunology, 2021, 51, 785-797.	2.9	22
577	Type I Interferonopathies in Children: An Overview. Frontiers in Pediatrics, 2021, 9, 631329.	1.9	42
578	Type I interferon activation and endothelial dysfunction in caveolin-1 insufficiency-associated pulmonary arterial hypertension. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	19
579	Immune Regulation of the cGAS-STING Signaling Pathway in the Tumor Microenvironment and Its Clinical Application. OncoTargets and Therapy, 2021, Volume 14, 1501-1516.	2.0	12
580	Retinal vasculopathy in STING-associated vasculitis of infancy (SAVI). Rheumatology, 2021, 60, e351-e353.	1.9	5
581	UNC93B1 curbs cytosolic DNA signaling by promoting STING degradation. European Journal of Immunology, 2021, 51, 1672-1685.	2.9	8
582	Efficacy and Safety of Janus Kinase Inhibitors in Type I Interferon-Mediated Monogenic Autoinflammatory Disorders: A Scoping Review. Dermatology and Therapy, 2021, 11, 733-750.	3.0	21
583	Innate Immunity in Diabetic Wound Healing: Focus on the Mastermind Hidden in Chronic Inflammatory. Frontiers in Pharmacology, 2021, 12, 653940.	3.5	48
584	Pinpointing cysteine oxidation sites by high-resolution proteomics reveals a mechanism of redox-dependent inhibition of human STING. Science Signaling, 2021, 14, .	3.6	15
585	The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nature Reviews Immunology, 2021, 21, 548-569.	22.7	714
587	Balasubramide derivative 3C attenuates atherosclerosis in apolipoprotein E-deficient mice: role of AMPK-STAT1-STING signaling pathway. Aging, 2021, 13, 12160-12178.	3.1	9
588	Stimulator of Interferon Genes-associated Vasculopathy with an Onset in Infancy Diagnosed after the Development of Atypical Pulmonary Lesions During Treatment as Juvenile Idiopathic Arthritis. Internal Medicine, 2021, 60, 1109-1114.	0.7	4

#	Article	IF	CITATIONS
589	A STING antagonist modulating the interaction with STIM1 blocks ER-to-Golgi trafficking and inhibits lupus pathology. EBioMedicine, 2021, 66, 103314.	6.1	31
590	The STING phase-separator suppresses innate immune signalling. Nature Cell Biology, 2021, 23, 330-340.	10.3	96
591	Pulmonary granulomatosis of genetic origin. European Respiratory Review, 2021, 30, 200152.	7.1	4
593	Genetic Mosaicism as a Cause of Inborn Errors of Immunity. Journal of Clinical Immunology, 2021, 41, 718-728.	3.8	24
594	The everchanging framework of autoinflammation. Internal and Emergency Medicine, 2021, 16, 1759-1770.	2.0	13
595	STING Operation at the ER/Golgi Interface. Frontiers in Immunology, 2021, 12, 646304.	4.8	37
596	Golgi apparatus-synthesized sulfated glycosaminoglycans mediate polymerization and activation of the cGAMP sensor STING. Immunity, 2021, 54, 962-975.e8.	14.3	76
597	Vasculitis, Autoimmunity, and Cytokines: How the Immune System Can Harm the Brain. International Journal of Environmental Research and Public Health, 2021, 18, 5585.	2.6	1
598	Transferrable protection by gut microbes against STING-associated lung disease. Cell Reports, 2021, 35, 109113.	6.4	10
599	The role of interferons type I, II and III in myositis: A review. Brain Pathology, 2021, 31, e12955.	4.1	44
600	Molecular mechanisms of phenotypic variability in monogenic autoinflammatory diseases. Nature Reviews Rheumatology, 2021, 17, 405-425.	8.0	40
601	STING Agonists as Cancer Therapeutics. Cancers, 2021, 13, 2695.	3.7	181
602	Augmentation of Stimulator of Interferon Genes–Induced Type I Interferon Production in COPA Syndrome. Arthritis and Rheumatology, 2021, 73, 2105-2115.	5.6	19
603	The cGAS–STING signaling in cardiovascular and metabolic diseases: Future novel target option for pharmacotherapy. Acta Pharmaceutica Sinica B, 2022, 12, 50-75.	12.0	92
604	Type I and II interferons toward ideal vaccine and immunotherapy. Expert Review of Vaccines, 2021, 20, 527-544.	4.4	4
605	Radiation-Induced Immunity and Toxicities: The Versatility of the cGAS-STING Pathway. Frontiers in Immunology, 2021, 12, 680503.	4.8	31
606	The relationship between defects in DNA repair genes and autoinflammatory diseases. Rheumatology International, 2022, 42, 1-13.	3.0	3
607	Dysbiosis exacerbates colitis by promoting ubiquitination and accumulation of the innate immune adaptor STING in myeloid cells. Immunity, 2021, 54, 1137-1153.e8.	14.3	46

#	Article	IF	CITATIONS
608	Emerging mechanisms of immunocoagulation in sepsis and septic shock. Trends in Immunology, 2021, 42, 508-522.	6.8	51
609	A Case Report of SAVI Mimicking Early-Onset ANCA Vasculitis. Journal of Clinical Immunology, 2021, 41, 1652-1655.	3.8	1
610	Monogenic Autoinflammatory Diseases: State of the Art and Future Perspectives. International Journal of Molecular Sciences, 2021, 22, 6360.	4.1	28
611	Teleost-Specific MxG, a Traitor in the Mx Family, Negatively Regulates Antiviral Responses by Targeting IPS-1 for Proteasomal Degradation and STING for Lysosomal Degradation. Journal of Immunology, 2021, 207, 281-295.	0.8	4
612	Incidence and Prevalence of Children's Diffuse Lung Disease in Spain. Archivos De Bronconeumologia, 2022, 58, 22-29.	0.8	15
613	A cell-free assay implicates a role of sphingomyelin and cholesterol in STING phosphorylation. Scientific Reports, 2021, 11, 11996.	3.3	14
614	The Evolution of STING Signaling and Its Involvement in Cancer. Trends in Biochemical Sciences, 2021, 46, 446-460.	7.5	38
615	Endothelial STING controls Tcell transmigration in an IFN-I dependent manner. JCI Insight, 2021, 6, .	5.0	18
616	Histologic Patterns and Clues to Autoinflammatory Diseases in Children: What a Cutaneous Biopsy Can Tell Us. Dermatopathology (Basel, Switzerland), 2021, 8, 202-220.	1.5	4
618	Heterozygous <i>OAS1</i> gain-of-function variants cause an autoinflammatory immunodeficiency. Science Immunology, 2021, 6, .	11.9	36
619	STING inhibitors target the cyclic dinucleotide binding pocket. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	84
620	Small molecule approaches to treat autoimmune and inflammatory diseases (Part II): Nucleic acid sensing antagonists and inhibitors. Bioorganic and Medicinal Chemistry Letters, 2021, 44, 128101.	2.2	7
621	Circulating mitochondrial DNA-triggered autophagy dysfunction via STING underlies sepsis-related acute lung injury. Cell Death and Disease, 2021, 12, 673.	6.3	47
622	Molecular mechanisms of nonself nucleic acid recognition by the innate immune system. European Journal of Immunology, 2021, 51, 1897-1910.	2.9	27
623	STING, a cytosolic DNA sensor, plays a critical role in atherogenesis: a link between innate immunity and chronic inflammation caused by lifestyle-related diseases. European Heart Journal, 2021, 42, 4336-4348.	2.2	61
624	The Innate Immune cGAS-STING-Pathway in Cardiovascular Diseases – A Mini Review. Frontiers in Cardiovascular Medicine, 2021, 8, 715903.	2.4	15
626	mRNA-encoded, constitutively active STINGV155M is a potent genetic adjuvant of antigen-specific CD8+ TÂcell response. Molecular Therapy, 2021, 29, 2227-2238.	8.2	42
627	Recent Advances in Pediatric Vasculitis. Rheumatic Disease Clinics of North America, 2021, 47, 781-796.	1.9	2

#	Article	IF	CITATIONS
628	Successful treatment of a novel type I interferonopathy due to a de novo PSMB9 gene mutation with a Janus kinase inhibitor. Journal of Allergy and Clinical Immunology, 2021, 148, 639-644.	2.9	23
629	Autophagy receptor CCDC50 tunes the STING-mediated interferon response in viral infections and autoimmune diseases. Cellular and Molecular Immunology, 2021, 18, 2358-2371.	10.5	26
630	TrendyGenes, a computational pipeline for the detection of literature trends in academia and drug discovery. Scientific Reports, 2021, 11, 15747.	3.3	4
631	JAK inhibition in the type I interferonopathies. Journal of Allergy and Clinical Immunology, 2021, 148, 991-993.	2.9	19
632	cGASâ€STING pathway: postâ€translational modifications and functions in sterile inflammatory diseases. FEBS Journal, 2022, 289, 6187-6208.	4.7	20
633	Somatic Mutations in <i>UBA1</i> Define a Distinct Subset of Relapsing Polychondritis Patients With VEXAS. Arthritis and Rheumatology, 2021, 73, 1886-1895.	5.6	125
634	Myeloperoxidase and associated lung disease: Review of the latest developments. International Journal of Rheumatic Diseases, 2021, 24, 1460-1466.	1.9	8
635	Earlyâ€onset, fatal interstitial lung disease in STAT3 gainâ€ofâ€function patients. Pediatric Pulmonology, 2021, 56, 3934-3941.	2.0	9
636	Leaked Mitochondrial C1QBP Inhibits Activation of the DNA Sensor cGAS. Journal of Immunology, 2021, 207, ji2100392.	0.8	6
637	Nucleic Acid Sensing in the Tumor Vasculature. Cancers, 2021, 13, 4452.	3.7	7
638	Emerging Place of JAK Inhibitors in the Treatment of Inborn Errors of Immunity. Frontiers in Immunology, 2021, 12, 717388.	4.8	23
639	Function of Protein S-Palmitoylation in Immunity and Immune-Related Diseases. Frontiers in Immunology, 2021, 12, 661202.	4.8	17
640	cGAS-STING-mediated IFN-I Response in Host Defense and Neuroinflammatory Diseases. Current Neuropharmacology, 2022, 20, 362-371.	2.9	22
641	Abnormalities of the type I interferon signaling pathway in lupus autoimmunity. Cytokine, 2021, 146, 155633.	3.2	24
642	STING Signaling and Sterile Inflammation. Frontiers in Immunology, 2021, 12, 753789.	4.8	26
643	The role of cGAS-STING signalling in liver diseases. JHEP Reports, 2021, 3, 100324.	4.9	29
644	STING pathway and modulation for cancer immunotherapy. , 2022, , 353-373.		0
645	Diffuse Parenchymal Lung Disease in Early Childhood. , 2022, , 229-243.		0

#	Article	IF	CITATIONS
646	Delivery strategies for STING agonists. , 2022, , 333-357.		0
647	The Genetics of Interstitial Lung Diseases. , 2022, , 96-113.		0
648	Pediatric interstitial lung disease. , 0, 2, 18-32.		4
649	Moonlighting Proteins Are Important Players in Cancer Immunology. Frontiers in Immunology, 2020, 11, 613069.	4.8	19
650	Evolution and diversification of the nuclear envelope. Nucleus, 2021, 12, 21-41.	2.2	6
651	Autoinflammatory Disorders. Rare Diseases of the Immune System, 2021, , 279-313.	0.1	0
652	STING negatively regulates allogeneic T-cell responses by constraining antigen-presenting cell function. Cellular and Molecular Immunology, 2021, 18, 632-643.	10.5	5
653	Signaling Through Nucleic Acid Sensors and Their Roles in Inflammatory Diseases. Frontiers in Immunology, 2020, 11, 625833.	4.8	58
654	Type I interferonopathies with novel compound heterozygous TREX1 mutations in two siblings with different symptoms responded to tofacitinib. Pediatric Rheumatology, 2021, 19, 1.	2.1	18
656	Protective Role of the Nucleic Acid Sensor STING in Pulmonary Fibrosis. Frontiers in Immunology, 2020, 11, 588799.	4.8	13
657	RNA Editing in Interferonopathies. Methods in Molecular Biology, 2021, 2181, 269-286.	0.9	3
658	Autoinflammatory Disorders. , 2017, , 393-435.		1
659	The Interplay Between Pattern Recognition Receptors and Autophagy in Inflammation. Advances in Experimental Medicine and Biology, 2019, 1209, 79-108.	1.6	39
660	Impact of genetic factors on fibrosing interstitial lung diseases. Incidence and clinical presentation in adults. Presse Medicale, 2020, 49, 104024.	1.9	9
665	Innate immunity during SARS-CoV-2: evasion strategies and activation trigger hypoxia and vascular damage. Clinical and Experimental Immunology, 2020, 202, 193-209.	2.6	83
666	JAK inhibitors in autoinflammation. Journal of Clinical Investigation, 2018, 128, 2760-2762.	8.2	16
667	STING activation reprograms tumor vasculatures and synergizes with VEGFR2 blockade. Journal of Clinical Investigation, 2019, 129, 4350-4364.	8.2	178
668	Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases. Journal of Clinical Investigation, 2020, 130, 1669-1682.	8.2	142

#	Article	IF	Citations
669	Insights from human genetic studies of lung and organ fibrosis. Journal of Clinical Investigation, 2018, 128, 36-44.	8.2	31
670	Pulmonary manifestations of systemic vasculitis in childhood. Breathe, 2020, 16, 200211.	1.3	2
672	Recent advances in primary immunodeficiency: from molecular diagnosis to treatment. F1000Research, 2020, 9, 194.	1.6	21
673	Single Amino Acid Change in STING Leads to Constitutive Active Signaling. PLoS ONE, 2015, 10, e0120090.	2.5	23
674	PDGF-BB Promotes Type I IFN-Dependent Vascular Alterations and Monocyte Recruitment in a Model of Dermal Fibrosis. PLoS ONE, 2016, 11, e0162758.	2.5	13
675	The common HAQ STING variant impairs cGAS-dependent antibacterial responses and is associated with susceptibility to Legionnaires' disease in humans. PLoS Pathogens, 2018, 14, e1006829.	4.7	43
676	Mechanisms of transcriptional activation of the stimulator of interferon genes by transcription factors CREB and c-Myc. Oncotarget, 2016, 7, 85049-85057.	1.8	14
677	cGAS-STING pathway in oncogenesis and cancer therapeutics. Oncotarget, 2020, 11, 2930-2955.	1.8	36
678	STING Activation and its Application in Immuno-Oncology. Current Topics in Medicinal Chemistry, 2019, 19, 2205-2227.	2.1	11
679	Spectrum of Genetic Autoinflammatory Diseases Presenting with Cutaneous Symptoms. Acta Dermato-Venereologica, 2020, 100, adv00091-151.	1.3	9
680	An update on the pathophysiology of acute and recurrent pericarditis. Panminerva Medica, 2021, 63, 249-260.	0.8	17
681	Monogenetic causes of chilblains, panniculitis and vasculopathy: the Type I interferonopathies. Giornale Italiano Di Dermatologia E Venereologia, 2020, 155, 590-598.	0.8	6
682	Expression of a constitutively active human <i>STING</i> mutant in hematopoietic cells produces an <i>Ifnar1</i> -dependent vasculopathy in mice. Life Science Alliance, 2019, 2, e201800215.	2.8	16
683	Attenuation of cGAS/STING activity during mitosis. Life Science Alliance, 2020, 3, e201900636.	2.8	17
684	STING-Mediated Autophagy Is Protective against H2O2-Induced Cell Death. International Journal of Molecular Sciences, 2020, 21, 7059.	4.1	7
685	Baricitinib in therapy of COPA syndrome in a 15-year-old girl. European Journal of Rheumatology, 2020, 7, 78-81.	0.6	32
686	Reactive oxygen species oxidize STING and suppress interferon production. ELife, 2020, 9, .	6.0	50
687	Le interferonopatie di tipo I. Medico E Bambino, 2021, 40, 509-514.	0.1	Ο

#	Article	IF	CITATIONS
688	Type I interferon response and vascular alteration in chilblainâ€like lesions during the COVIDâ€19 outbreak*. British Journal of Dermatology, 2021, 185, 1176-1185.	1.5	33
689	Molecular mechanisms of vasculopathy and coagulopathy in COVID-19. Biological Chemistry, 2021, 402, 1505-1518.	2.5	10
691	STING inhibition accelerates the bone healing process while enhancing type H vessel formation. FASEB Journal, 2021, 35, e21964.	0.5	12
692	No Longer A One-Trick Pony: STING Signaling Activity Beyond Interferon. Journal of Molecular Biology, 2022, 434, 167257.	4.2	13
693	Inherited Autoinflammatory Syndromes. Annual Review of Pathology: Mechanisms of Disease, 2022, 17, 227-249.	22.4	15
694	Molecular biology of autoinflammatory diseases. Inflammation and Regeneration, 2021, 41, 33.	3.7	11
696	The type I interferonopathies: 10 years on. Nature Reviews Immunology, 2022, 22, 471-483.	22.7	164
697	Autoimmune Diseases Arising out of Single Gene Defects. , 2016, , 142-149.		0
698	Pediatric Vasculitis: Classification and Clinical Approach. , 2017, , 433-440.		0
699	Diseases Caused by Genetic or Congenital Defects in the Immune System or Skin Immune System. , 2017, , 259-277.		0
700	Skin manifestations in autoinflammatory diseases. Dermatologie Pro Praxi, 2017, 11, 192-198.	0.0	0
703	STING-Associated Vasculopathy with Onset in Infancy (SAVI). , 2019, , 1-6.		Ο
704	Episodische Fiebersyndrome – autoinflammatorische Syndrome. Springer Reference Medizin, 2019, , 1-11.	0.0	0
706	Development of the doctrine of auto-inflammatory diseases in the XXI century. Nauchno-Prakticheskaya Revmatologiya, 0, 56, 5-18.	1.0	8
708	Telomere syndrome and the lung. , 2019, , 391-403.		0
710	TLR Stimulation Produces IFN-β as the Primary Driver of IFN Signaling in Nonlymphoid Primary Human Cells. ImmunoHorizons, 2020, 4, 332-338.	1.8	2
712	Phase I Dose-Escalation Trial of MIW815 (ADU-S100), an Intratumoral STING Agonist, in Patients with Advanced/Metastatic Solid Tumors or Lymphomas. Clinical Cancer Research, 2022, 28, 677-688.	7.0	119
713	Signaling Pathways Governing Activation of Innate Immune Cells. , 2020, , 93-131.		0

#	Article	IF	CITATIONS
714	Cutaneous clues to diagnose autoinflammatory diseases. Giornale Italiano Di Dermatologia E Venereologia, 2020, 155, 551-566.	0.8	3
715	Lung involvement in monogenic interferonopathies. European Respiratory Review, 2020, 29, 200001.	7.1	7
716	Safety, Tolerability, and Pharmacokinetics of PFâ€06823859, an Anti–Interferon β Monoclonal Antibody: A Randomized, Phase I, Single―and Multipleâ€Ascendingâ€Dose Study. Clinical Pharmacology in Drug Development, 2021, 10, 307-316.	1.6	3
717	STING-Associated Vasculopathy with Onset in Infancy (SAVI). , 2020, , 609-614.		0
718	Differential Diagnosis of Diffuse Pulmonary Disorders Using Genetics. Respiratory Medicine, 2020, , 11-23.	0.1	0
722	Immunopathology and Immunopathogenesis of COVID-19, what we know and what we should learn. Gene Reports, 2021, 25, 101417.	0.8	15
723	Identification of Candidate Predictors of Lupus Flare. Transactions of the American Clinical and Climatological Association, 2015, 126, 184-96.	0.5	1
724	An unexpected role for RNA-sensing toll-like receptors in a murine model of DNA accrual. Clinical and Experimental Rheumatology, 2015, 33, S70-3.	0.8	3
725	Childhood Interstitial Lung Disease. Radiologic Clinics of North America, 2022, 60, 83-111.	1.8	5
726	Systemic Autoinflammatory Diseases. Rheumatic Disease Clinics of North America, 2022, 48, 371-395.	1.9	7
728	ALG2 regulates type I interferon responses by inhibiting STING trafficking. Journal of Cell Science, 2021, 134, .	2.0	7
729	Congenital deficiency reveals critical role of ISG15 in skin homeostasis. Journal of Clinical Investigation, 2022, 132, .	8.2	16
730	The Alternatively Spliced Isoforms of Key Molecules in the cGAS-STING Signaling Pathway. Frontiers in Immunology, 2021, 12, 771744.	4.8	9
731	Monogenic Adult-Onset Inborn Errors of Immunity. Frontiers in Immunology, 2021, 12, 753978.	4.8	20
732	A Novel Mutation c.841C>T in COPA Syndrome of an 11-Year-Old Boy: A Case Report and Short Literature Review. Frontiers in Pediatrics, 2021, 9, 773112.	1.9	7
734	2′,3′â€Cyclic GMPâ€AMP Dinucleotides for STINGâ€Mediated Immune Modulation: Principles, Immunotherapeutic Potential, and Synthesis. ChemMedChem, 2022, 17, .	3.2	5
735	Monogenic Systemic Autoinflammatory Diseases. , 2021, , .		0
738	Regulation of cGAS-STINC pathway - Implications for systemic lupus erythematosus. Rheumatology and Immunology Research, 2021, 2, 173-184.	0.8	6

#	Article	IF	CITATIONS
740	Therapeutic Interventions Targeting Innate Immune Receptors: A Balancing Act. Chemical Reviews, 2022, 122, 3414-3458.	47.7	10
741	The cGAS–STING pathway drives type I IFN immunopathology in COVID-19. Nature, 2022, 603, 145-151.	27.8	272
742	The transmembrane endoplasmic reticulum–associated E3 ubiquitin ligase TRIM13 restrains the pathogenic-DNA–triggered inflammatory response. Science Advances, 2022, 8, eabh0496.	10.3	14
744	Intervention of cGAS‒STING signaling in sterile inflammatory diseases. Journal of Molecular Cell Biology, 2022, 14, .	3.3	11
745	The 2021 European Alliance of Associations for Rheumatology/American College of Rheumatology points to consider for diagnosis and management of autoinflammatory type I interferonopathies: CANDLE/PRAAS, SAVI and AGS. Annals of the Rheumatic Diseases, 2022, 81, 601-613.	0.9	31
746	Lung Inflammation in STING-Associated Vasculopathy with Onset in Infancy (SAVI). Cells, 2022, 11, 318.	4.1	28
747	Neuroinflammation Associated With Inborn Errors of Immunity. Frontiers in Immunology, 2021, 12, 827815.	4.8	14
748	Mécanismes physiopathologiques du lupus systémique. Bulletin De L'Academie Nationale De Medecine, 2022, 206, 7-16.	0.0	1
749	Type I Interferons in Autoimmunity. Journal of Investigative Dermatology, 2022, 142, 793-803.	0.7	21
750	The volume-regulated anion channel LRRC8C suppresses T cell function by regulating cyclic dinucleotide transport and STING–p53 signaling. Nature Immunology, 2022, 23, 287-302.	14.5	40
751	The STING pathway: An uncharacterized angle beneath the gut–retina axis. Experimental Eye Research, 2022, 217, 108970.	2.6	2
752	Regulation and function of the cGAS-MITA/STING axis in health and disease. , 2022, 1, 100001.		15
753	Specific association of TBK1 with the trans-Golgi network following STING stimulation. Cell Structure and Function, 2022, 47, 19-30.	1.1	12
754	Above the Regular Tide: Primary Immune Regulatory Disorders (PIRD) Diagnosis and Treatment Considerations. , 2022, , .		0
755	Systemic lupus erythematosus as a genetic disease. Clinical Immunology, 2022, 236, 108953.	3.2	18
757	Role of Mitochondrial Nucleic Acid Sensing Pathways in Health and Patho-Physiology. Frontiers in Cell and Developmental Biology, 2022, 10, 796066.	3.7	14
759	Biological Treatments and Target Therapies for Pediatric Respiratory Medicine: Not Only Asthma. Frontiers in Pediatrics, 2022, 10, 837667.	1.9	3
761	The Interactions Between Autoinflammation and Type 2 Immunity: From Mechanistic Studies to Epidemiologic Associations. Frontiers in Immunology, 2022, 13, 818039.	4.8	8

#	Article	IF	CITATIONS
762	Discordance in STING-Induced Activation and Cell Death Between Mouse and Human Dendritic Cell Populations. Frontiers in Immunology, 2022, 13, 794776.	4.8	10
763	Mechanisms of vascular inflammation in deficiency of adenosine deaminase 2 (DADA2). Seminars in Immunopathology, 2022, 44, 269-280.	6.1	20
764	Type I Interferon Response Is Mediated by NLRX1-cGAS-STING Signaling in Brain Injury. Frontiers in Molecular Neuroscience, 2022, 15, 852243.	2.9	11
766	A partial form of inherited human USP18 deficiency underlies infection and inflammation. Journal of Experimental Medicine, 2022, 219, .	8.5	28
767	The 2021 European Alliance of Associations for Rheumatology/American College of Rheumatology Points to Consider for Diagnosis and Management of Autoinflammatory Type I Interferonopathies: <scp>CANDLE</scp> / <scp>PRAAS</scp> , <scp>SAVI</scp> , and <scp>AGS</scp> . Arthritis and Rheumatology, 2022, 74, 735-751.	5.6	23
769	Pathogenic insights from genetic causes of autoinflammatory inflammasomopathies and interferonopathies. Journal of Allergy and Clinical Immunology, 2022, 149, 819-832.	2.9	19
770	STING Agonists/Antagonists: Their Potential as Therapeutics and Future Developments. Cells, 2022, 11, 1159.	4.1	21
772	Human rhinovirus promotes STING trafficking to replication organelles to promote viral replication. Nature Communications, 2022, 13, 1406.	12.8	15
773	Evaluating the use of JAK inhibitors in inflammatory connective tissue diseases in pediatric patients: an update. Expert Review of Clinical Immunology, 2022, 18, 263-272.	3.0	2
774	Pharmacologic Activation of STING in the Bladder Induces Potent Antitumor Immunity in Non–Muscle Invasive Murine Bladder Cancer. Molecular Cancer Therapeutics, 2022, 21, 914-924.	4.1	9
775	STINGing type I IFN-mediated immunopathology in COVID-19. Nature Immunology, 2022, 23, 478-480.	14.5	15
776	Insights into the Pathogenesis of Pulmonary Fibrosis from Genetic Diseases. American Journal of Respiratory Cell and Molecular Biology, 2022, , .	2.9	6
777	Autoinflammation: Interferonopathies and Other Autoinflammatory Diseases. Journal of Investigative Dermatology, 2022, 142, 781-792.	0.7	4
779	cGAS-STING signaling in ischemic diseases. Clinica Chimica Acta, 2022, 531, 177-182.	1.1	10
780	The selective STING inhibitor H-151 preserves myocardial function and ameliorates cardiac fibrosis in murine myocardial infarction. International Immunopharmacology, 2022, 107, 108658.	3.8	26
781	pH-Responsive Oxygen and Hydrogen Peroxide Self-Supplying Nanosystem for Photodynamic and Chemodynamic Therapy of Wound Infection. ACS Applied Materials & Interfaces, 2021, 13, 59720-59730.	8.0	43
782	Somatic mutations in rheumatological diseases: VEXAS syndrome and beyond. Rheumatology, 2022, 61, 3149-3160.	1.9	16
783	STING inhibitor ameliorates LPS-induced ALI by preventing vascular endothelial cells-mediated immune cells chemotaxis and adhesion. Acta Pharmacologica Sinica, 2022, 43, 2055-2066.	6.1	35

ARTICLE IF CITATIONS # Rare Autoinflammatory Diseases., 2021, 57, 18-25. 3 784 Cutaneous manifestations of autoinflammatory diseases. Rheumatology and Immunology Research, 0.8 2021, 2, 217-225. Human Cytomegalovirus UL138 Protein Inhibits the STING Pathway and Reduces Interferon Beta mRNA 786 13 4.1 Accumulation during Lytic and Latent Infections. MBio, 2021, 12, e0226721. The cGAS-STING Pathway: A Promising Immunotherapy Target. Frontiers in Immunology, 2021, 12, 795048. 787 4.8 The cGAS–STING pathway: more than fighting against viruses and cancer. Cell and Bioscience, 2021, 11, 788 4.8 22 209. A 16-year-old boy with arthritis, rash, and hemoptysis: Beyond "undifferentiated connective tissue 790 0.8 disease�. Rheumatology and Immunology Research, 2022, 3, 46-50. Genetic diagnosis of immune dysregulation can lead to targeted therapy for interstitial lung disease: 791 2.0 4 A case series and single center approach. Pediatric Pulmonology, 2022, 57, 1577-1587. CDK inhibitor Palbociclib targets STING to alleviate autoinflammation. EMBO Reports, 2022, 23, e53932. 792 4.5 24 Thymidine starvation promotes c-di-AMP-dependent inflammation during pathogenic bacterial 793 11.0 10 infection. Cell Host and Microbe, 2022, 30, 961-974.e6. Novel CRBN-Recruiting Proteolysis-Targeting Chimeras as Degraders of Stimulator of Interferon 819 6.4 Genes with In Vivo Anti-Inflammatory Efficacy. Journal of Medicinal Chemistry, 2022, 65, 6593-6611. Identification in synovial fluid of a new potential pathogenic player in arthropathies. Experimental 820 3 2.4 Biology and Medicine, 2022, 247, 1061-1066. Autoinflammatory disorders., 2022, , 389-421. Polyethylenimine/cGAMP Nanocomplexes for STING-Mediated Cancer Immunotherapy: Formulation and 822 2.8 3 Characterization Using Orthogonal Techniques. Processes, 2022, 10, 882. Deficiency in coatomer complex I causes aberrant activation of STING signalling. Nature 12.8 Communications, 2022, 13, 2321. A non-canonical cGASâ€"STINGâ€"PERK pathway facilitates the translational program critical for 824 10.3 84 senescence and organ fibrosis. Nature Cell Biology, 2022, 24, 766-782. Pathophysiological functions of self-derived DNA. International Reviews of Immunology, 2023, 42, 274-286. STING controls energy stress-induced autophagy and energy metabolism via STX17. Journal of Cell 826 5.221 Biology, 2022, 221, . Induced Pluripotent Stem Cell-Derived Monocytes/Macrophages in Autoinflammatory Diseases. 4.8 Frontiers in Immunology, 2022, 13, .

	CITATION	REPORT	
#	Article	IF	CITATIONS
828	Disorders of ubiquitylation: unchained inflammation. Nature Reviews Rheumatology, 2022, 18, 435-447.	8.0	36
829	Complex Allele with Additive Gain-of-Function STING1 Variants in a Patient with Cavitating Lung Lesions and Aspergillosis. Journal of Clinical Immunology, 2022, 42, 1156-1159.	3.8	4
830	Innate immune signaling and immunothrombosis: New insights and therapeutic opportunities. European Journal of Immunology, 2022, 52, 1024-1034.	2.9	12
831	Collagen Vascular Disorders. , 2016, , 509-539.e8.		0
832	Skin Signs of Other Systemic Diseases. , 2016, , 573-591.e6.		2
833	UNC93B1 attenuates the cGAS–STING signaling pathway by targeting STING for autophagy–lysosome degradation. Journal of Medical Virology, 2022, 94, 4490-4501.	5.0	16
834	Small molecules targeting cGAS-STING pathway for autoimmune disease. European Journal of Medicinal Chemistry, 2022, 238, 114480.	5.5	7
835	1,25(<scp>OH</scp>) <scp>₂D₃</scp> blocks <scp>IFNÎ²</scp> production through regulating <scp>STING</scp> in epithelial layer of oral lichen planus. Journal of Cellular and Molecular Medicine, 2022, 26, 3751-3759.	3.6	5
836	Anti-Inflammatory Effects of Red Rice Bran Extract Ameliorate Type I Interferon Production via STING Pathway. Foods, 2022, 11, 1622.	4.3	8
837	Dysregulation of the cGAS-STING Pathway in Monogenic Autoinflammation and Lupus. Frontiers in Immunology, 0, 13, .	4.8	10
838	STING as an emerging therapeutic target for drug discovery: Perspectives from the global patent landscape. Journal of Advanced Research, 2023, 44, 119-133.	9.5	20
839	Intracellular Sensing of <scp>DNA</scp> in Autoinflammation and Autoimmunity. Arthritis and Rheumatology, 2022, 74, 1615-1624.	5.6	5
843	How Fragile We Are: Influence of Stimulator of Interferon Genes (STING) Variants on Pathogen Recognition and Immune Response Efficiency. Journal of Chemical Information and Modeling, 2022, 62, 3096-3106.	5.4	4
844	The cCAS-STING Pathway Affects Vertebral Bone but Does Not Promote Intervertebral Disc Cell Senescence or Degeneration. Frontiers in Immunology, 0, 13, .	4.8	5
845	Radioresistant cells initiate lymphocyte-dependent lung inflammation and IFNγ-dependent mortality in STING gain-of-function mice. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	13
846	Pathophysiological Role of Nucleic Acid-Sensing Pattern Recognition Receptors in Inflammatory Diseases. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	3
847	Role of the cGAS–STING pathway in systemic and organ-specific diseases. Nature Reviews Nephrology, 2022, 18, 558-572.	9.6	59
848	Ginsenoside Rb3 attenuates skin flap ischemia-reperfusion damage by inhibiting STING-IRF3 signaling. Journal of Molecular Histology, 2022, 53, 763-772.	2.2	4

		CITATION R	EPORT	
#	Article		IF	CITATIONS
849	Can the cGAS-STING Pathway Play a Role in the Dry Eye?. Frontiers in Immunology, 0, 1	.3, .	4.8	5
850	The STING1-MYD88 complex drives ACOD1/IRG1 expression and function in lethal inna IScience, 2022, 25, 104561.	ite immunity.	4.1	12
851	å©ç"¶å…ç−«å…³é"®ä¿jå•蛋白MITAçš"å'现åŠå…¶æ"빉. Scientia Sinica Vitae, 20)22, , .	0.3	0
854	Autoimmune and autoinflammatory diseases with mucocutaneous manifestations: A prheumatology perspective. International Journal of Dermatology, 2023, 62, 723-736.	ediatric	1.0	1
855	Activation of STING Based on Its Structural Features. Frontiers in Immunology, 0, 13, .		4.8	13
856	ISG15 deficiency features a complex cellular phenotype that responds to treatment wi derivatives. Clinical and Translational Medicine, 2022, 12, .	th itaconate and	4.0	20
857	Link between sterile inflammation and cardiovascular diseases: Focus on cGAS-STING pathogenesis and therapeutic prospect. Frontiers in Cardiovascular Medicine, 0, 9, .	oathway in the	2.4	4
858	Polygenic autoimmune disease risk alleles impacting B cell tolerance act in concert acr molecular networks in mouse and in humans. Frontiers in Immunology, 0, 13, .	oss shared	4.8	5
859	Transcription-independent regulation of STING activation and innate immune response monocytes. Nature Communications, 2022, 13, .	es by IRF8 in	12.8	12
860	Central nervous system manifestations of monogenic autoinflammatory disorders and neurotropic features of SARS-CoV-2: Drawing the parallels. Frontiers in Pediatrics, 0, 10	the), .	1.9	2
863	STING-associated vasculopathy with onset in infancy: the first case in Bulgaria and revi literature. Biotechnology and Biotechnological Equipment, 2022, 36, 773-781.	ew of the	1.3	0
865	Expanding role of deoxyribonucleic acid-sensing mechanism in the development of life diseases. Frontiers in Cardiovascular Medicine, 0, 9, .	style-related	2.4	2
866	Post-Translational Modifications of cGAS-STING: A Critical Switch for Immune Regulation 11, 3043.	on. Cells, 2022,	4.1	12
867	The IFN- \hat{I}^3 receptor promotes immune dysregulation and disease in STING gain-of-function lnsight, 2022, 7, .	tion mice. JCl	5.0	7
868	The role of exome sequencing in childhood interstitial or diffuse lung disease. Orphane Rare Diseases, 2022, 17, .	t Journal of	2.7	4
869	Inhibitory targeting cGAS-STING-TBK1 axis: Emerging strategies for autoimmune diseas Frontiers in Immunology, 0, 13, .	ses therapy.	4.8	6
870	Alternative pathways driven by STINC: From innate immunity to lipid metabolism. Cyto Factor Reviews, 2022, 68, 54-68.	kine and Growth	7.2	4
871	<pre><scp>UNC13D</scp> inhibits <scp>STING</scp> signaling by attenuating its oligoment endoplasmic reticulum. EMBO Reports, 2022, 23, .</pre>	ization on the	4.5	4

#	Article	IF	CITATIONS
872	Phenotypic spectrum in recessive STING-associated vasculopathy with onset in infancy: Four novel cases and analysis of previously reported cases. Frontiers in Immunology, 0, 13, .	4.8	5
873	MITA/STINC-mediated antiviral immunity and autoimmunity: the evolution, mechanism, and intervention. Current Opinion in Immunology, 2022, 78, 102248.	5.5	6
874	Activation of Stimulator of IFN Genes (STING) Causes Proteinuria and Contributes to Glomerular Diseases. Journal of the American Society of Nephrology: JASN, 2022, 33, 2153-2173.	6.1	23
875	Medicinal chemistry perspective on cGAS-STING signaling pathway with small molecule inhibitors. European Journal of Medicinal Chemistry, 2022, 244, 114791.	5.5	13
876	Skin biopsies: their utility to allergists and immunologists. , 2022, , 543-578.		0
877	Periodic fever syndromes and autoinflammatory diseases. , 2022, , 791-828.		0
878	Interstitial lung disease in autoinflammatory disease in childhood: A systematic review of the literature. Pediatric Pulmonology, 2023, 58, 367-373.	2.0	2
879	Constitutively active STING causes neuroinflammation and degeneration of dopaminergic neurons in mice. ELife, 0, 11, .	6.0	17
880	Clathrin-associated AP-1 controls termination of STING signalling. Nature, 2022, 610, 761-767.	27.8	42
881	Paradigm shift in monogenic autoinflammatory diseases and systemic vasculitis: The VEXAS syndrome. Medicina ClÂnica (English Edition), 2022, 159, 489-496.	0.2	0
882	MPYS Modulates Fatty Acid Metabolism and Immune Tolerance at Homeostasis Independent of Type I IFNs. Journal of Immunology, 2022, 209, 2114-2132.	0.8	4
883	The activity of disease-causative STING variants can be suppressed by wild-type STING through heterocomplex formation. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	2
884	Role of smooth muscle YAP and TAZ in protection against phenotypic modulation, inflammation, and aneurysm development. Biochemical Pharmacology, 2022, 206, 115307.	4.4	5
885	A 17-Year-Old Girl Diagnosed With STING-Associated Vasculopathy With Onset in Infancy (SAVI) After Lung Transplantation. Chest, 2022, 162, e249-e252.	0.8	2
886	Interruption of post-Golgi STING trafficking activates tonic interferon signaling. Nature Communications, 2022, 13, .	12.8	14
887	Low-dose ganciclovir ameliorates dextran sulfate sodium-induced ulcerative colitis through inhibiting macrophage STING activation in mice. Frontiers in Pharmacology, 0, 13, .	3.5	3
888	Hyperlipidemia induces proinflammatory responses by activating STING pathway through IRE1α-XBP1 in retinal endothelial cells. Journal of Nutritional Biochemistry, 2023, 112, 109213.	4.2	9
889	Recent advances in the development of STING inhibitors: an updated patent review. Expert Opinion on Therapeutic Patents, 2022, 32, 1131-1143.	5.0	4

ARTICLE IF CITATIONS # STING Targeting in Lung Diseases. Cells, 2022, 11, 3483. 890 4.1 2 Human induced pluripotent stem cells generated from STING-associated vasculopathy with onset in infancy (SAVI) patients with a heterozygous mutation in the STING gene. Stem Cell Research, 2022, 65, 102974. 892 The Irritable Infant. , 2023, , 500-511.e2. 0 Epigenetically suppressed tumor cell intrinsic STING promotes tumor immune escape. Biomedicine and Pharmacotherapy, 2023, 157, 114033. Protein-coding gene interaction network prediction of bioactive plant compound action against 894 SARS-CoV-2: a novel hypothesis using bioinformatics analysis. Anais Da Academia Brasileira De Ciencias, 0.8 0 2022, 94, . Autoinflammatory disorders., 2023,, 399-419. Synergistically targeting synovium STING pathway for rheumatoid arthritis treatment. Bioactive 896 15.6 9 Materials, 2023, 24, 37-53. <i>TMEM173</i> rs7447927 genetic polymorphism and susceptibility to severe enterovirus 71 infection 897 2.7 in Chinese children. Immunity, Inflammation and Disease, 2022, 10, . STING Suppresses Mitochondrial VDAC2 to Govern RCC Growth Independent of Innate Immunity. 898 11.2 8 Advanced Science, 2023, 10, . Interferon in systemic lupus erythematosusâ€"A halfway between monogenic autoinflammatory and 899 3.2 autoimmune disease. Heliyon, 2022, 8, e11741. Genetics in Idiopathic Pulmonary Fibrosis: A Clinical Perspective. Diagnostics, 2022, 12, 2928. 900 2.6 6 Innate immunity, cytokine storm, and inflammatory cell death in COVID-19. Journal of Translational 4.4 29 Medicine, 2022, 20, . Molecular Function of cGAS-STING in SARS-CoV-2: A Novel Approach to COVID-19 Treatment. BioMed 902 1.9 3 Research International, 2022, 2022, 1-10. Cellular functions of cGAS-STING signaling. Trends in Cell Biology, 2023, 33, 630-648. Lipid Nanoparticles Delivering Constitutively Active STING mRNA to Stimulate Antitumor Immunity. 905 4.1 5 International Journal of Molecular Sciences, 2022, 23, 14504. TEN mimics: Classification and practical approach to toxic epidermal necrolysis-like dermatoses. Indian Journal of Dermatology, Venereology and Leprology, Ö, . Dermatologic Manifestations of Noninflammasome-Mediated Autoinflammatory Diseases. JID 908 2.4 3 Innovations, 2023, 3, 100176. 909 Editorial: DADA2 and other monogenic vasculitides. Frontiers in Immunology, 0, 13, . 4.8

#	Article	IF	CITATIONS
910	Use of Tofacitinib for infant-onset STING-associated vasculopathy: A case report from China. Medicine (United States), 2022, 101, e31832.	1.0	3
912	The effect of the cyclic GMP-AMP synthase-stimulator of interferon genes signaling pathway on organ inflammatory injury and fibrosis. Frontiers in Pharmacology, 0, 13, .	3.5	0
913	Multifaceted functions of STING in human health and disease: from molecular mechanism to targeted strategy. Signal Transduction and Targeted Therapy, 2022, 7, .	17.1	27
914	The cGAS–STING pathway and cancer. Nature Cancer, 2022, 3, 1452-1463.	13.2	76
916	Structural insights into a shared mechanism of human STING activation by a potent agonist and an autoimmune disease-associated mutation. Cell Discovery, 2022, 8, .	6.7	13
917	Selective STING stimulation in dendritic cells primes antitumor T cell responses. Science Immunology, 2023, 8, .	11.9	21
918	Osteonecrosis in patients with juvenile dermatomyositis: is it associated with anti-MDA5 autoantibody?. Rheumatology, 0, , .	1.9	0
919	Current understanding of the cGAS-STING signaling pathway: Structure, regulatory mechanisms, and related diseases. Zoological Research, 2023, 44, 183-218.	2.1	10
920	STING controls T cell memory fitness during infection through T cell-intrinsic and IDO-dependent mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	5
921	Targeting STING: From antiviral immunity to treat osteoporosis. Frontiers in Immunology, 0, 13, .	4.8	3
922	STING-Associated Vasculopathy with Onset in infancy (SAVI) Presenting as Massive Intra Alveolar Hemorrhage. Journal of Clinical Immunology, 0, , .	3.8	2
923	Type-1 interferon-dependent and -independent mechanisms in cyclic GMP–AMP synthase–stimulator of interferon genes-driven auto-inflammation. Current Opinion in Immunology, 2023, 80, 102280.	5.5	6
924	Model for predicting age-dependent safety and immunomodulatory effects of STING ligands in non-human primates. Molecular Therapy - Methods and Clinical Development, 2023, 28, 99-115.	4.1	1
925	Unique ulcerative undefined autoinflammatory disease mistaken for factitious disorder. Annals of Allergy, Asthma and Immunology, 2023, 130, 359-362.	1.0	1
926	Interstitial Lung Disease in Immunocompromised Children. Diagnostics, 2023, 13, 64.	2.6	3
927	STING trafficking as a new dimension of immune signaling. Journal of Experimental Medicine, 2023, 220, .	8.5	14
928	Design and syntheses of a bimolecular STING agonist based on the covalent STING antagonist. European Journal of Medicinal Chemistry, 2023, 250, 115184.	5.5	2
929	Renal Vasculitis in Children. , 2023, , 707-736.		0

#	Article	IF	CITATIONS
930	Genetic and Familial Pulmonary Fibrosis Related to Monogenic Diseases. , 2023, , 423-439.		0
931	Immunothrombosis: Molecular Aspects and New Therapeutic Perspectives. Journal of Clinical Medicine, 2023, 12, 1399.	2.4	5
932	ARMH3-mediated recruitment of PI4KB directs Golgi-to-endosome trafficking and activation of the antiviral effector STING. Immunity, 2023, 56, 500-515.e6.	14.3	17
933	STING-dependent interferon signatures restrict osteoclast differentiation and bone loss in mice. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	5
934	Somatic mosaicism in inborn errors of immunity: Current knowledge, challenges, and future perspectives. Seminars in Immunology, 2023, 67, 101761.	5.6	4
935	Treatment of STING-associated vasculopathy with onset in infancy in patients carrying a novel mutation in the TMEM173 gene with the JAK3-inhibitor tofacitinib. Archives of Rheumatology, 2023, 38, 461-467.	0.9	0
936	ESCRT-dependent STING degradation inhibits steady-state and cGAMP-induced signalling. Nature Communications, 2023, 14, .	12.8	25
937	A path towards personalized medicine for autoinflammatory and related diseases. Nature Reviews Rheumatology, 2023, 19, 182-189.	8.0	5
939	STING Agonist-Induced Skin Inflammation Is Exacerbated with Prior Systemic Innate Immune Activation. International Journal of Molecular Sciences, 2023, 24, 4128.	4.1	2
940	Origins and immunopathogenesis of autoimmune central nervous system disorders. Nature Reviews Neurology, 2023, 19, 172-190.	10.1	9
941	Idiopathic Inflammatory Myopathies. , 2023, , 37-72.		0
942	Current Concepts and Future Prospects in Immune-Mediated Myopathies. , 2023, , 161-189.		0
943	Diagnostic workup of childhood interstitial lung disease. European Respiratory Review, 2023, 32, 220188.	7.1	12
944	RELA tunes innate-like interferon I/III responses in human T cells. Journal of Experimental Medicine, 2023, 220, .	8.5	5
945	NFκB signaling in T cell memory. Frontiers in Immunology, 0, 14, .	4.8	5
946	Association between Systemic Immunity-Inflammation Index and Hyperlipidemia: A Population-Based Study from the NHANES (2015–2020). Nutrients, 2023, 15, 1177.	4.1	32
947	NF-κB activation enhances STING signaling by altering microtubule-mediated STING trafficking. Cell Reports, 2023, 42, 112185.	6.4	29
948	An Emerging Role for Type I Interferons as Critical Regulators of Blood Coagulation. Cells, 2023, 12, 778.	4.1	6

#	Article	IF	CITATIONS
949	Inducible generalized activation of hSTING-N154S expression in mice leads to lethal hypercytokinemia: a model for "cytokine storm― Journal of Leukocyte Biology, 2023, 113, 326-333.	3.3	0
950	DNA sensing via the cGAS/STING pathway activates the immunoproteasome and adaptive T ell immunity. EMBO Journal, 2023, 42, .	7.8	3
951	Synthetic enforcement of STING signaling in cancer cells appropriates the immune microenvironment for checkpoint inhibitor therapy. Science Advances, 2023, 9, .	10.3	5
952	STAM transports STING oligomers into extracellular vesicles, downâ€regulating the innate immune response. Journal of Extracellular Vesicles, 2023, 12, .	12.2	7
953	The ubiquitin E3 ligase TRIM10 promotes STING aggregation and activation in the Golgi apparatus. Cell Reports, 2023, 42, 112306.	6.4	12
954	STING antagonists, synthesized <i>via</i> Povarov–Doebner type multicomponent reaction. RSC Medicinal Chemistry, 2023, 14, 1101-1113.	3.9	1
955	Pathophysiological Roles of the cGAS-STING Inflammatory Pathway. Physiology, 2023, 38, 167-177.	3.1	3
956	Newly synthesized AIFM1 determines the hypersensitivity of T lymphocytes to STING activation-induced cell apoptosis. Cell Reports, 2023, 42, 112327.	6.4	3
957	Potential Therapeutic Value of the STING Inhibitors. Molecules, 2023, 28, 3127.	3.8	5
958	Nuclear translocation of cGAS orchestrates VEGF-A-mediated angiogenesis. Cell Reports, 2023, 42, 112328.	6.4	4
959	STAT2 hinders STING intracellular trafficking and reshapes its activation in response to DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	5
960	Cytoplasmic DNAs: Sources, sensing, and roles in the development of lung inflammatory diseases and cancer. Frontiers in Immunology, 0, 14, .	4.8	1
961	The Regulation and Double-Edged Roles of the Deubiquitinase OTUD5. Cells, 2023, 12, 1161.	4.1	0
962	The mechanism of STING autoinhibition and activation. Molecular Cell, 2023, 83, 1502-1518.e10.	9.7	16
963	Efficacy and safety of baricitinib in Japanese patients with autoinflammatory type I interferonopathies (NNS/CANDLE, SAVI, And AGS). Pediatric Rheumatology, 2023, 21, .	2.1	5
964	Thymidine phosphorylase facilitates retinoic acid inducible gene-I induced endothelial dysfunction. Cell Death and Disease, 2023, 14, .	6.3	1
965	Genetic testing for diffuse lung diseases in children. Pediatric Pulmonology, 0, , .	2.0	0
966	Structure-based mechanisms of 2′3′-cGAMP intercellular transport in the cGAS–STING immune pathway. Trends in Immunology, 2023, 44, 450-467.	6.8	3

#	Article	IF	CITATIONS
967	Lethal Interstitial Lung Disease Associated with a Gain-of-Function Mutation in IFIH1. Journal of Clinical Immunology, 2023, 43, 1143-1146.	3.8	2
968	How to outsmart the cold tumor microenvironment: Design of STING ligand nanoparticles for improved cancer immunotherapy. OpenNano, 2023, 12, 100157.	4.8	0
970	SEL1L–HRD1 endoplasmic reticulum-associated degradation controls STING-mediated innate immunity by limiting the size of the activable STING pool. Nature Cell Biology, 2023, 25, 726-739.	10.3	17
971	Mini-review: the distinct roles of STING signaling in tumor immunity—recent progress. Journal of Leukocyte Biology, 0, , .	3.3	1
973	cGAMP the travelling messenger. Frontiers in Immunology, 0, 14, .	4.8	3
974	Regulation of cGAS and STING signaling during inflammation and infection. Journal of Biological Chemistry, 2023, 299, 104866.	3.4	5
976	Case report: marfan syndrome (MFS) mimicking cutaneous vasculitis. Frontiers in Pediatrics, 0, 11, .	1.9	0
977	Targeting the cGAS-STING pathway as an inflammatory crossroad in coronavirus disease 2019 (COVID-19). Immunopharmacology and Immunotoxicology, 2023, 45, 639-649.	2.4	2
978	Treatment of STINGâ€associated vasculopathy with onset in infancy. Rheumatology & Autoimmunity, 2023, 3, 125-128.	0.8	1
979	Beyond DNA sensing: expanding the role of cGAS/STING in immunity and diseases. Archives of Pharmacal Research, 2023, 46, 500-534.	6.3	4
981	Case report: Durable response to ruxolitinib in a child with TREX1-related disorder. Frontiers in Pediatrics, 0, 11, .	1.9	0
982	STING/TBK1 Regulates Inflammation in Macrophages and Titanium Particles-Induced Osteolysis. ACS Biomaterials Science and Engineering, 2023, 9, 3273-3284.	5.2	1
983	LncRNA ZNF593-AS alleviates diabetic cardiomyopathy via suppressing IRF3 signaling pathway. Molecular Therapy - Nucleic Acids, 2023, 32, 689-703.	5.1	2
984	The cGAS–STING pathway in diabetic retinopathy and age-related macular degeneration. Future Medicinal Chemistry, 2023, 15, 717-729.	2.3	0
985	Single cell transcriptomics of bone marrow derived macrophages reveals Ccl5 as a biomarker of direct IFNAR-independent responses to DNA sensing. Frontiers in Immunology, 0, 14, .	4.8	1
986	The Many Ways to Deal with STING. International Journal of Molecular Sciences, 2023, 24, 9032.	4.1	2
987	The metabolic effects of APOL1 in humans. Pflugers Archiv European Journal of Physiology, 2023, 475, 911-932.	2.8	0
988	Aicardiâ€Goutières syndrome presenting with pneumocystis jirovecii pneumonia. Pediatric Allergy and Immunology, 2023, 34, .	2.6	0

#	Article	IF	CITATIONS
989	Sâ€palmitoylation regulates innate immune signaling pathways: molecular mechanisms and targeted therapies. European Journal of Immunology, 2023, 53, .	2.9	0
990	Recent trends in STING modulators: Structures, mechanisms, and therapeutic potential. Drug Discovery Today, 2023, 28, 103694.	6.4	2
991	A surgically optimized intraoperative poly(I:C)-releasing hydrogel prevents cancer recurrence. Cell Reports Medicine, 2023, 4, 101113.	6.5	2
992	DWL-4-140: A allene small molecule targeting STING that alleviates lupus-like phenotype in Trex1â^'/â^' mice. Biomedicine and Pharmacotherapy, 2023, 165, 115188.	5.6	0
993	Mitochondrial Dysfunction Associated with mtDNA in Metabolic Syndrome and Obesity. International Journal of Molecular Sciences, 2023, 24, 12012.	4.1	1
996	High-efficiency transgene integration by homology-directed repair in human primary cells using DNA-PKcs inhibition. Nature Biotechnology, 0, , .	17.5	12
998	Membrane traffic governs the STING inflammatory signalling. Journal of Biochemistry, 0, , .	1.7	0
999	Interferonopathies masquerading as non-Mendelian autoimmune diseases: pattern recognition for early diagnosis. Frontiers in Pediatrics, 0, 11, .	1.9	0
1001	Non-canonical STING–PERK pathway dependent epigenetic regulation of vascular endothelial dysfunction via integrating IRF3 and NF-κB in inflammatory response. Acta Pharmaceutica Sinica B, 2023, 13, 4765-4784.	12.0	3
1002	Significance of the cGAS-STING Pathway in Health and Disease. International Journal of Molecular Sciences, 2023, 24, 13316.	4.1	4
1003	Monogenic autoinflammatory syndromes with features of systemic vasculitis: a new field of rheumatology. Nauchno-Prakticheskaya Revmatologiya, 2023, 61, 458-465.	1.0	1
1004	Endothelial type I interferon response and brain diseases: identifying STING as a therapeutic target. Frontiers in Cell and Developmental Biology, 0, 11, .	3.7	3
1005	Development of LB244, an Irreversible STING Antagonist. Journal of the American Chemical Society, 2023, 145, 20273-20288.	13.7	2
1006	cGAS–STING pathway in ischemia-reperfusion injury: a potential target to improve transplantation outcomes. Frontiers in Immunology, 0, 14, .	4.8	0
1007	cGAS-STING signaling pathway in intestinal homeostasis and diseases. Frontiers in Immunology, 0, 14, .	4.8	0
1008	Inborn errors of immunity: an expanding universe of disease and genetic architecture. Nature Reviews Genetics, 2024, 25, 184-195.	16.3	2
1009	Lung Transplantation under a Janus Kinase Inhibitor in Three Patients with SAVI Syndrome. Journal of Clinical Immunology, 0, , .	3.8	0
1010	Type I Interferonopathies. Rheumatic Disease Clinics of North America, 2023, 49, 741-756.	1.9	0

#	Article	IF	CITATIONS
1011	Development of cyclopeptide inhibitors of cGAS targeting protein-DNA interaction and phase separation. Nature Communications, 2023, 14, .	12.8	0
1012	Targeting the loss of <scp>cGAS</scp> / <scp>STING</scp> signaling in cancer. Cancer Science, 2023, 114, 3806-3815.	3.9	3
1013	How to Build a Fire: The Genetics of Autoinflammatory Diseases. Annual Review of Genetics, 2023, 57, .	7.6	0
1014	Inhibitors of Stimulator of Interferon Genes from 2019 to July 2022: An Overview of the Structure and Bioactivity. Current Drug Targets, 2023, 24, 959-980.	2.1	0
1015	Auto-inflammation et phénotype osseux. , 2022, , 193-200.		0
1016	Genomic DNA activates the AIM2 inflammasome and STING pathways to induce inflammation in lacrimal gland myoepithelial cells. Ocular Surface, 2023, 30, 263-275.	4.4	1
1017	Effector memory TÂcells induce innate inflammation by triggering DNA damage and a non-canonical STING pathway in dendritic cells. Cell Reports, 2023, 42, 113180.	6.4	1
1020	TAK1 is an essential kinase for STING trafficking. Molecular Cell, 2023, 83, 3885-3903.e5.	9.7	3
1021	Investigation of immune-related diseases using patient-derived induced pluripotent stem cells. Inflammation and Regeneration, 2023, 43, .	3.7	0
1022	The role of cCAS-STING signaling in pulmonary fibrosis and its therapeutic potential. Frontiers in Immunology, 0, 14, .	4.8	3
1023	Case report: JAK1/2 inhibition with baricitinib in the treatment of STING-associated vasculopathy with onset in infancy. Pediatric Rheumatology, 2023, 21, .	2.1	0
1024	ARF1 prevents aberrant type I interferon induction by regulating STING activation and recycling. Nature Communications, 2023, 14, .	12.8	4
1025	Phase separation in cGAS-STING signaling. Frontiers of Medicine, 2023, 17, 855-866.	3.4	1
1026	Mitochondrial DNA-triggered innate immune response: mechanisms and diseases. , 2023, 20, 1403-1412.		2
1027	Emerging Treatments for Childhood Interstitial Lung Disease. Paediatric Drugs, 0, , .	3.1	1
1028	The Role of Environmental Factors in the Development of Idiopathic Inflammatory Myopathies: a Narrative Review. Current Rheumatology Reports, 0, , .	4.7	0
1029	Ultrafine mapping of chromosome conformation at hundred basepair resolution reveals regulatory genome architecture. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	0
1030	Role of cGAS-STING in colorectal cancer: A new window for treatment strategies. Cytokine, 2024, 173, 156422.	3.2	1

			0
#	ARTICLE	IF	CHATIONS
1031	Treatment Options. Journal of Molecular Pathology, 2023, 4, 294-306.	1.2	0
1032	Activating STING/TBK1 suppresses tumor growth via degrading HPV16/18 E7 oncoproteins in cervical cancer. Cell Death and Differentiation, 2024, 31, 78-89.	11.2	1
1033	STING signaling in the brain: Molecular threats, signaling activities, and therapeutic challenges. Neuron, 2024, 112, 539-557.	8.1	0
1034	Non–Interferon-Dependent Role of STING Signaling in Pulmonary Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 0, , .	2.4	0
1035	Polyarteritis Nodosa: Old Disease, New Etiologies. International Journal of Molecular Sciences, 2023, 24, 16668.	4.1	0
1036	Genetic testing of Behçet's disease using next-generation sequencing to identify monogenic mimics and HLA-B*51. Rheumatology, 0, , .	1.9	1
1037	Nuclear localization of STING1 competes with canonical signaling to activate AHR for commensal and intestinal homeostasis. Immunity, 2023, 56, 2736-2754.e8.	14.3	1
1040	Proteasome disorders and inborn errors of immunity. Immunological Reviews, 0, , .	6.0	0
1041	Dithioethanol (DTE)-Conjugated Deoxyribose Cyclic Dinucleotide Prodrugs (DTE-dCDNs) as STING Agonist. International Journal of Molecular Sciences, 2024, 25, 86.	4.1	0
1042	Trafficking and effect of released DNA on cGAS-STING signaling pathway and cardiovascular disease. Frontiers in Immunology, 0, 14, .	4.8	1
1043	Design, synthesis, and cell-based <i>in vitro</i> assay of deoxyinosine-mixed SATE-dCDN prodrugs that activate all common STING variants. Organic and Biomolecular Chemistry, 0, , .	2.8	0
1044	Single-cell RNA-sequencing of PBMCs from SAVI patients reveals disease-associated monocytes with elevated integrated stress response. Cell Reports Medicine, 2023, 4, 101333.	6.5	1
1045	Apoptosis-resistant megakaryocytes produce large and hyperreactive platelets in response to radiation injury. Military Medical Research, 2023, 10, .	3.4	0
1046	Hyperglycemia-induced STING signaling activation leads to aortic endothelial injury in diabetes. Cell Communication and Signaling, 2023, 21, .	6.5	0
1047	STING activation in cardiomyocytes drives hypertrophy-associated heart failure via NF-κB-mediated inflammatory response. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2024, 1870, 166997.	3.8	0
1048	Vascular damage in systemic lupus erythematosus. Nature Reviews Nephrology, 2024, 20, 251-265.	9.6	1
1049	IUPHAR ECR review: The cGAS-STING pathway: Novel functions beyond innate immune and emerging therapeutic opportunities. Pharmacological Research, 2024, 201, 107063.	7.1	0
1050	Disulfiram ameliorates STING/MITA-dependent inflammation and autoimmunity by targeting RNF115. , 2024, 21, 275-291.		0

#	Article	IF	CITATIONS
1051	Single-molecule localization microscopy reveals STING clustering at the trans-Golgi network through palmitoylation-dependent accumulation of cholesterol. Nature Communications, 2024, 15, .	12.8	1
1052	A rare manifestation of STING-associated vasculopathy with onset in infancy: a case report. Pediatric Rheumatology, 2024, 22, .	2.1	0
1053	Cellular models in autoinflammatory disease research. Clinical and Translational Immunology, 2024, 13, .	3.8	0
1054	Advancements in tyrosine kinase-mediated regulation of innate nucleic acid sensing. Zhejiang Da Xue Xue Bao Yi Xue Ban = Journal of Zhejiang University Medical Sciences, 2024, 53, 35-46.	0.3	0
1055	Impaired STING Activation Due to a Variant in the E3 Ubiquitin Ligase AMFR in a Patient with Severe VZV Infection and Hemophagocytic Lymphohistiocytosis. Journal of Clinical Immunology, 2024, 44, .	3.8	1
1056	Vasculitis and vasculopathy associated with inborn errors of immunity: an overview. Frontiers in Pediatrics, 0, 11, .	1.9	0
1057	cGAS–STINGâ€mediated novel nonclassic antiviral activities. Journal of Medical Virology, 2024, 96, .	5.0	0
1058	STING guides the STX17-SNAP29-VAMP8 complex assembly to control autophagy. , 2024, 3, 100147.		2
1059	Fibrotic lung diseases in children. Pediatric Pulmonology, 2024, 59, 1165-1174.	2.0	0
1060	A case of <scp>STING</scp> â€associated vasculopathy with onset in infancy with novel <scp>STING1</scp> variant. Pediatric Dermatology, 0, , .	0.9	0
1061	Development of STING degrader with double covalent ligands. Bioorganic and Medicinal Chemistry Letters, 2024, 102, 129677.	2.2	0
1063	Genetically transitional disease: conceptual understanding and applicability to rheumatic disease. Nature Reviews Rheumatology, 2024, 20, 301-310.	8.0	0
1064	ER: a critical hub for STING signaling regulation. Trends in Cell Biology, 2024, , .	7.9	0
1065	Interaction between the SFTSV envelope glycoprotein Gn and STING inhibits the formation of the STING-TBK1 complex and suppresses the NF-IºB signaling pathway. Journal of Virology, 2024, 98, .	3.4	0
1066	Non-canonical isoforms of the mRNA polyadenylation factor WDR33 regulate STING-mediated immune responses. Cell Reports, 2024, 43, 113886.	6.4	0
1067	Revitalizing antitumor immunity: Leveraging nucleic acid sensors as therapeutic targets. Cancer Letters, 2024, 588, 216729.	7.2	0
1068	SAM68 directs STING signaling to apoptosis in macrophages. Communications Biology, 2024, 7, .	4.4	0
1070	Glucagon-like peptide-1 receptor agonists rescued diabetic vascular endothelial damage through	12.0	0

~			~	
(CII	τάτι	ON	REDO	RT

#	Article	IF	CITATIONS
1071	Genetic and epigenetic dysregulation of innate immune mechanisms in autoinflammatory diseases. FEBS Journal, 0, , .	4.7	0
1073	5,6-dimethylxanthenone-4-acetic acid (DMXAA), a partial STING agonist, competes for human STING activation. Frontiers in Immunology, 0, 15, .	4.8	0
1074	Autoinflammatory Diseases Due to Defects in Degradation orÂTransport of Intracellular Proteins. Advances in Experimental Medicine and Biology, 2024, , 83-95.	1.6	0