Hypoxia Modulates the Differentiation Potential of Ster

Journal of Endodontics 40, 1410-1418 DOI: 10.1016/j.joen.2014.04.008

Citation Report

#	Article	IF	CITATIONS
1	Fibrin hydrogels to deliver dental stem cells of the apical papilla for regenerative medicine. Regenerative Medicine, 2015, 10, 153-167.	0.8	21
2	Dental Apical Papilla as Therapy for Spinal Cord Injury. Journal of Dental Research, 2015, 94, 1575-1581.	2.5	45
3	Stem Cells of Dental Origin: Current Research Trends and Key Milestones towards Clinical Application. Stem Cells International, 2016, 2016, 1-20.	1.2	65
4	The Neurovascular Properties of Dental Stem Cells and Their Importance in Dental Tissue Engineering. Stem Cells International, 2016, 2016, 1-17.	1.2	40
5	Dental Stem Cells for Bone Tissue Engineering. Pancreatic Islet Biology, 2016, , 197-216.	0.1	0
6	The effects of hypoxia on in vitro culture of dental-derived stem cells. Archives of Oral Biology, 2016, 68, 13-20.	0.8	39
7	Comparison of stem cell behaviors between indigenous high and low-CD24 percentage expressing cells of stem cells from apical papilla (SCAPs). Tissue and Cell, 2016, 48, 397-406.	1.0	17
9	Dental Stem Cells: Their Potential in Neurogenesis and Angiogenesis. Pancreatic Islet Biology, 2016, , 217-241.	0.1	0
10	Cryopreservation and Banking of Dental Stem Cells. Advances in Experimental Medicine and Biology, 2016, 951, 199-235.	0.8	25
11	An Overview of Protocols for the Neural Induction of Dental and Oral Stem Cells <i>In Vitro</i> . Tissue Engineering - Part B: Reviews, 2016, 22, 220-250.	2.5	49
12	Exploiting the Bioactive Properties of the Dentin-Pulp Complex in Regenerative Endodontics. Journal of Endodontics, 2016, 42, 47-56.	1.4	144
13	Dental Pulp Tissue Regeneration Using Dental Pulp Stem Cells Isolated and Expanded in Human Serum. Journal of Endodontics, 2017, 43, 568-574.	1.4	49
14	Survival of the Apical Papilla and Its Resident Stem Cells in a Case of Advanced Pulpal Necrosis and Apical Periodontitis. Journal of Endodontics, 2017, 43, 561-567.	1.4	92
15	Hypoxia-based strategies for regenerative dentistry—Views from the different dental fields. Archives of Oral Biology, 2017, 81, 121-130.	0.8	18
16	Characterization of a Vascular Endothelial Growth Factor–loaded Bioresorbable Delivery System for Pulp Regeneration. Journal of Endodontics, 2017, 43, 77-83.	1.4	44
17	Regenerative Endodontic Procedures: A Perspective from Stem Cell Niche Biology. Journal of Endodontics, 2017, 43, 52-62.	1.4	24
18	Microbial Modulation of Stem Cells and Future Directions in Regenerative Endodontics. Journal of Endodontics, 2017, 43, S95-S101.	1.4	73
19	Pulp Vascularization during Tooth Development, Regeneration, and Therapy. Journal of Dental Research, 2017, 96, 137-144.	2.5	104

CITATION REPORT

#	Article	IF	CITATIONS
20	Influence of Partial Oâ,, Pressure on the Adhesion, Proliferation, and Osteogenic Differentiation of Human Dental Pulp Stem Cells on β-Tricalcium Phosphate Scaffold. International Journal of Oral and Maxillofacial Implants, 2017, 32, 1251-1256.	0.6	12
21	The Angiogenic Potential of DPSCs and SCAPs in an <i>In Vivo</i> Model of Dental Pulp Regeneration. Stem Cells International, 2017, 2017, 1-14.	1.2	74
22	Disclosing the physiology of pulp tissue for vital pulp therapy. International Endodontic Journal, 2018, 51, 829-846.	2.3	80
23	Stem cells from human apical papilla decrease neuro-inflammation and stimulate oligodendrocyte progenitor differentiation via activin-A secretion. Cellular and Molecular Life Sciences, 2018, 75, 2843-2856.	2.4	34
24	Guanine and nucleotide binding protein 3 promotes odonto/osteogenic differentiation of apical papilla stem cells via JNK and ERK signaling pathways. International Journal of Molecular Medicine, 2019, 43, 382-392.	1.8	5
25	Top-cited Articles in Regenerative Endodontics: A Bibliometric Analysis. Journal of Endodontics, 2018, 44, 1650-1664.	1.4	68
26	Dental Tissue-Derived Mesenchymal Stem Cells: Applications in Tissue Engineering. Critical Reviews in Biomedical Engineering, 2018, 46, 429-468.	0.5	36
27	A fully automated bioreactor system for precise control of stem cell proliferation and differentiation. Biochemical Engineering Journal, 2019, 150, 107258.	1.8	14
28	Does Apical Papilla Survive and Develop in Apical Periodontitis Presence after Regenerative Endodontic Procedures?. Applied Sciences (Switzerland), 2019, 9, 3942.	1.3	47
29	Mesenchymal Stem Cell Marker Expression in Periapical Abscess. Journal of Endodontics, 2019, 45, 716-723.	1.4	12
30	Analysis of the characteristics and expression profiles of coding and noncoding RNAs of human dental pulp stem cells in hypoxic conditions. Stem Cell Research and Therapy, 2019, 10, 89.	2.4	19
31	Stem Cells from the Apical Papilla: A Promising Source for Stem Cell-Based Therapy. BioMed Research International, 2019, 2019, 1-8.	0.9	87
32	Calcific metamorphosis of pulp after extrusive luxation. Dental Traumatology, 2019, 35, 87-94.	0.8	4
33	The Role of Hypoxia on the Neuronal Differentiation of Gingival Mesenchymal Stem Cells: A Transcriptional Study. Cell Transplantation, 2019, 28, 538-552.	1.2	14
34	Hypoxia upregulates the expression of the pluripotency markers in the stem cells from human deciduous teeth. Clinical Oral Investigations, 2019, 23, 199-207.	1.4	10
35	Secreted frizzledâ€related protein 2 promotes the osteo/odontogenic differentiation and paracrine potentials of stem cells from apical papilla under inflammation and hypoxia conditions. Cell Proliferation, 2020, 53, e12694.	2.4	23
36	Neuro-regenerative potential of dental stem cells: a concise review. Cell and Tissue Research, 2020, 382, 267-279.	1.5	2
37	CDR1as regulated by hnRNPM maintains stemness of periodontal ligament stem cells via miRâ€7/KLF4. Journal of Cellular and Molecular Medicine, 2021, 25, 4501-4515.	1.6	16

CITATION REPORT

#	Article	IF	CITATIONS
38	Sinking Our Teeth in Getting Dental Stem Cells to Clinics for Bone Regeneration. International Journal of Molecular Sciences, 2021, 22, 6387.	1.8	11
39	Angiogenesis in Regenerative Dentistry: Are We Far Enough for Therapy?. International Journal of Molecular Sciences, 2021, 22, 929.	1.8	10
40	Dental Mesenchymal Stem Cells in Inflamed Microenvironment: Potentials and Challenges for Regeneration. Current Stem Cell Research and Therapy, 2015, 10, 412-421.	0.6	11
41	Priming strategies for controlling stem cell fate: Applications and challenges in dental tissue regeneration. World Journal of Stem Cells, 2021, 13, 1628-1649.	1.3	0
42	Priming strategies for controlling stem cell fate: Applications and challenges in dental tissue regeneration. World Journal of Stem Cells, 2021, 13, 1625-1646.	1.3	6
43	<i>In vitro</i> evaluation of periapical lesionâ€derived stem cells for dental pulp tissue engineering. FEBS Open Bio, 2022, 12, 270-284.	1.0	4
44	Dental mesenchymal stromal/stem cells in different microenvironments— implications in regenerative therapy. World Journal of Stem Cells, 2021, 13, 1863-1880.	1.3	4
45	Hypoxia‑induced mitophagy regulates proliferation, migration and odontoblastic differentiation of humanÂdental pulp cells through FUN14 domain‑containing 1. International Journal of Molecular Medicine, 2022, 49, .	1.8	6
46	Integrative Analysis of ceRNA Networks in human periodontal ligament stem cells under hypoxia. Oral Diseases, 2023, 29, 1197-1213.	1.5	4
47	Hypoxia-Inducible Non-coding RNAs in Mesenchymal Stem Cell Fate and Regeneration. Frontiers in Dental Medicine, 2021, 2, .	0.5	2
48	Maturogenesis of an immature necrotic tooth with an extensive perirapical lesion using platelet rich fibrin. Acta Marisiensis - Seria Medica, 2022, 68, 39-44.	0.2	0
50	The human dental apical papilla promotes spinal cord repair through a paracrine mechanism. Cellular and Molecular Life Sciences, 2022, 79, 252.	2.4	3
51	Combined Transcriptomic and Protein Array Cytokine Profiling of Human Stem Cells from Dental Apical Papilla Modulated by Oral Bacteria. International Journal of Molecular Sciences, 2022, 23, 5098.	1.8	3
52	N-Acetylcysteine Protects the Stem Cells of the Apical Papilla. Frontiers in Dental Medicine, 2022, 3, .	0.5	Ο
53	Exosomes derived from stem cells from apical papilla promote angiogenesis via <scp>miR</scp> â€126 under hypoxia. Oral Diseases, 2023, 29, 3408-3419.	1.5	4
54	The hypoxia-dependent angiogenic process in dental pulp. Journal of Oral Biosciences, 2022, 64, 381-391.	0.8	6
55	Hepatocyte Growth Factor Promotes Differentiation Potential and Stress Response of Human Stem Cells from Apical Papilla. Cells Tissues Organs, 2024, 213, 40-54.	1.3	0
56	The Effect of Liquid-Phase Exfoliated Graphene Film on Neurodifferentiation of Stem Cells from Apical Papilla. Nanomaterials, 2022, 12, 3116.	1.9	7

#	Article	IF	CITATIONS
57	Insight into the effect of biomaterials on osteogenic differentiation of mesenchymal stem cells: A review from a mitochondrial perspective. Acta Biomaterialia, 2023, 164, 1-14.	4.1	3

CITATION REPORT