Correlations between Mass Activity and Physicochemic for the ORR in PEM Fuel Cell via ⁵⁷Fe Mös Techniques

Journal of the American Chemical Society 136, 978-985 DOI: 10.1021/ja410076f

Citation Report

#	Article	IF	CITATIONS
3	A New Catalytic Site for the Electroreduction of Oxygen?. ChemCatChem, 2014, 6, 1866-1867.	1.8	48
4	Analyzing Structural Changes of Fe–N–C Cathode Catalysts in PEM Fuel Cell by Mößbauer Spectroscopy of Complete Membrane Electrode Assemblies. Journal of Physical Chemistry Letters, 2014, 5, 3750-3756.	2.1	85
5	Degradation of Fe/N/C catalysts upon high polarization in acid medium. Physical Chemistry Chemical Physics, 2014, 16, 18454-18462.	1.3	182
6	Nitrogen-doped hierarchically porous carbon as efficient oxygen reduction electrocatalysts in acid electrolyte. Journal of Materials Chemistry A, 2014, 2, 17047-17057.	5.2	62
7	An animal liver derived non-precious metal catalyst for oxygen reduction with high activity and stability. RSC Advances, 2014, 4, 32811.	1.7	37
8	Effect of iron-carbide formation on the number of active sites in Fe–N–C catalysts for the oxygen reduction reaction in acidic media. Journal of Materials Chemistry A, 2014, 2, 2663-2670.	5.2	108
9	Use of H ₂ S to Probe the Active Sites in FeNC Catalysts for the Oxygen Reduction Reaction (ORR) in Acidic Media. ACS Catalysis, 2014, 4, 3454-3462.	5.5	81
10	Influence of the electrolyte for the oxygen reduction reaction with Fe/N/C and Fe/N/CNT electrocatalysts. Journal of Power Sources, 2014, 271, 87-96.	4.0	40
11	Facile synthesis of hollow Fe–N–C hybrid nanostructures for oxygen reduction reactions. Inorganica Chimica Acta, 2014, 422, 3-7.	1.2	9
13	Nitrogenâ€Doped Carbon Electrocatalysts Decorated with Transition Metals for the Oxygen Reduction Reaction. ChemCatChem, 2015, 7, 3808-3817.	1.8	69
15	Metalâ€Doped Nitrogenated Carbon as an Efficient Catalyst for Direct CO ₂ Electroreduction to CO and Hydrocarbons. Angewandte Chemie - International Edition, 2015, 54, 10758-10762.	7.2	504
16	Recent Progress on Fe/N/C Electrocatalysts for the Oxygen Reduction Reaction in Fuel Cells. Catalysts, 2015, 5, 1167-1192.	1.6	68
17	Effect of ZIF-8 Crystal Size on the O2 Electro-Reduction Performance of Pyrolyzed Fe–N–C Catalysts. Catalysts, 2015, 5, 1333-1351.	1.6	42
19	Enhancement in Kinetics of the Oxygen Reduction Reaction on a Nitrogen-Doped Carbon Catalyst by Introduction of Iron via Electrochemical Methods. Langmuir, 2015, 31, 5529-5536.	1.6	37
20	Experimental Observation of Redox-Induced Fe–N Switching Behavior as a Determinant Role for Oxygen Reduction Activity. ACS Nano, 2015, 9, 12496-12505.	7.3	499
21	N-doped hierarchically macro/mesoporous carbon with excellent electrocatalytic activity and durability for oxygen reduction reaction. Carbon, 2015, 86, 108-117.	5.4	145
22	Activity, Performance, and Durability for the Reduction of Oxygen in PEM Fuel Cells, of Fe/N/C Electrocatalysts Obtained from the Pyrolysis of Metal-Organic-Framework and Iron Porphyrin Precursors. Electrochimica Acta, 2015, 159, 184-197.	2.6	129
23	3-Dimensional porous N-doped graphene foam as a non-precious catalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 3343-3350.	5.2	163

TION RED

#	Article	IF	CITATIONS
24	Properties of Pyrolyzed Carbon-Supported Cobalt-Polypyrrole as Electrocatalyst toward Oxygen Reduction Reaction in Alkaline Media. Journal of the Electrochemical Society, 2015, 162, F359-F365.	1.3	11
25	Controlling the Nitrogen Content of Metal-Nitrogen-Carbon Based Non-Precious-Metal Electrocatalysts via Selenium Addition. Journal of the Electrochemical Society, 2015, 162, F475-F482.	1.3	28
26	Non-PGM membrane electrode assemblies: Optimization for performance. International Journal of Hydrogen Energy, 2015, 40, 14676-14682.	3.8	29
27	Bottom-up synthesis of high-performance nitrogen-enriched transition metal/graphene oxygen reduction electrocatalysts both in alkaline and acidic solution. Nanoscale, 2015, 7, 14707-14714.	2.8	29
28	Synthesis and Characterization of Iron–Nitrogen-Doped Graphene/Core–Shell Catalysts: Efficient Oxidative Dehydrogenation of <i>N</i> -Heterocycles. Journal of the American Chemical Society, 2015, 137, 10652-10658.	6.6	265
29	Nanodiamond/nitrogen-doped graphene (core/shell) as an effective and stable metal-free electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 2015, 174, 1017-1022.	2.6	19
30	Nano-structured non-platinum catalysts for automotive fuel cell application. Nano Energy, 2015, 16, 293-300.	8.2	190
31	Shape Fixing via Salt Recrystallization: A Morphology-Controlled Approach To Convert Nanostructured Polymer to Carbon Nanomaterial as a Highly Active Catalyst for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2015, 137, 5414-5420.	6.6	364
32	Gelatin-derived sustainable carbon-based functional materials for energy conversion and storage with controllability of structure and component. Science Advances, 2015, 1, e1400035.	4.7	144
33	A highly active and durable Co–N–C electrocatalyst synthesized using exfoliated graphitic carbon nitride nanosheets. Nanoscale, 2015, 7, 10334-10339.	2.8	61
34	Structure-activity relationship in high-performance iron-based electrocatalysts for oxygen reduction reaction. Journal of Power Sources, 2015, 300, 279-284.	4.0	68
35	Effect of pyrolysis pressure on activity of Fe–N–C catalysts for oxygen reduction. Journal of Materials Chemistry A, 2015, 3, 21494-21500.	5.2	27
36	Hydrophilic non-precious metal nitrogen-doped carbon electrocatalysts for enhanced efficiency in oxygen reduction reaction. Chemical Communications, 2015, 51, 17285-17288.	2.2	56
37	Chemistry of Multitudinous Active Sites for Oxygen Reduction Reaction in Transition Metal–Nitrogen–Carbon Electrocatalysts. Journal of Physical Chemistry C, 2015, 119, 25917-25928.	1.5	433
38	Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts. Nature Communications, 2015, 6, 8618.	5.8	461
39	Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped grapheneÂmaterials. Nature Materials, 2015, 14, 937-942.	13.3	1,714
40	Bimetallic porous porphyrin polymer-derived non-precious metal electrocatalysts for oxygen reduction reactions. Journal of Materials Chemistry A, 2015, 3, 23799-23808.	5.2	93
41	Fe ₃ C-based oxygen reduction catalysts: synthesis, hollow spherical structures and applications in fuel cells. Journal of Materials Chemistry A, 2015, 3, 1752-1760.	5.2	116

#	Article	IF	CITATIONS
42	Noble metal-free electrocatalysts for the oxygen reduction reaction based on iron and nitrogen-doped porous graphene. Journal of Materials Chemistry A, 2015, 3, 1058-1067.	5.2	40
43	On the relationship between N content, textural properties and catalytic performance for the oxygen reduction reaction of N/CNT. Applied Catalysis B: Environmental, 2015, 162, 420-429.	10.8	44
44	Synthesis highly active and durable non-precious-metal catalyst with 2,2-pyridylbenzimidazole as novel nitrogen coordination compound for oxygen reduction reaction. Catalysis Communications, 2015, 58, 112-116.	1.6	8
45	PGM-free Fe-N-C catalysts for oxygen reduction reaction: Catalyst layer design. Journal of Power Sources, 2016, 326, 43-49.	4.0	79
46	Evolution of N-Coordinated Iron–Carbon (FeNC) Catalysts and Their Oxygen Reduction (ORR) Performance in Acidic Media at Various Stages of Catalyst Synthesis: An Attempt at Benchmarking. Catalysis Letters, 2016, 146, 1749-1770.	1.4	40
47	CO Poisoning Effects on FeNC and CN _{<i>x</i>} ORR Catalysts: A Combined Experimental–Computational Study. Journal of Physical Chemistry C, 2016, 120, 15173-15184.	1.5	57
48	Cumulative effect of transition metals on nitrogen and fluorine co-doped graphite nanofibers: an efficient and highly durable non-precious metal catalyst for the oxygen reduction reaction. Nanoscale, 2016, 8, 14650-14664.	2.8	61
49	Tailoring Copper Nanocrystals towards C ₂ Products in Electrochemical CO ₂ Reduction. Angewandte Chemie, 2016, 128, 5883-5886.	1.6	90
50	Hybrid polymer matrix composite containing polyaniline and Nafion as novel precursor of the enhanced catalyst for oxygen reduction reaction. RSC Advances, 2016, 6, 59961-59969.	1.7	3
51	Tailoring Copper Nanocrystals towards C ₂ Products in Electrochemical CO ₂ Reduction. Angewandte Chemie - International Edition, 2016, 55, 5789-5792.	7.2	667
52	Synthesis and study of catalysts of electrochemical oxygen reduction reaction based on polymer complexes of nickel and cobalt with Schiff bases. Russian Journal of Electrochemistry, 2016, 52, 1183-1190.	0.3	12
53	Enhanced oxygen reduction reaction activity of nitrogen-doped graphene/multi-walled carbon nanotube catalysts in alkaline media. International Journal of Hydrogen Energy, 2016, 41, 22510-22519.	3.8	74
54	Noble Metal-Free Oxygen Reduction Reaction Catalysts Derived from Prussian Blue Nanocrystals Dispersed in Polyaniline. ACS Applied Materials & Interfaces, 2016, 8, 8436-8444.	4.0	76
55	Spectroscopic insights into the nature of active sites in iron–nitrogen–carbon electrocatalysts for oxygen reduction in acid. Nano Energy, 2016, 29, 65-82.	8.2	269
56	Heat-Treated Non-precious Metal Catalysts for Oxygen Reduction. , 2016, , 41-68.		12
57	Non-noble Metal (NNM) Catalysts for Fuel Cells: Tuning the Activity by a Rational Step-by-Step Single Variable Evolution. , 2016, , 69-101.		8
58	Directly converting Fe-doped metal–organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid. Nano Energy, 2016, 25, 110-119.	8.2	434
59	Volatilizable template-assisted scalable preparation of honeycomb-like porous carbons for efficient oxygen electroreduction. Journal of Materials Chemistry A, 2016, 4, 10820-10827.	5.2	54

#	Article	IF	CITATIONS
60	Highly Efficient Oxygen Reduction Electrocatalyst Derived from a New Three-Dimensional PolyPorphyrin. ACS Applied Materials & Interfaces, 2016, 8, 25875-25880.	4.0	36
61	Electrocatalysis of oxygen reduction on iron- and cobalt-containing nitrogen-doped carbon nanotubes in acid media. Electrochimica Acta, 2016, 218, 303-310.	2.6	42
62	Nitrogen-doped ordered mesoporous carbon: Effect of carbon precursor on oxygen reduction reactions. Chinese Journal of Catalysis, 2016, 37, 1562-1567.	6.9	27
63	Catalytic performance of a pyrolyzed graphene supported Fe–N–C composite and its application for acid direct methanol fuel cells. RSC Advances, 2016, 6, 90797-90805.	1.7	6
64	Recent Progress in Synthesis, Characterization and Evaluation of Nonâ€Precious Metal Catalysts for the Oxygen Reduction Reaction. Fuel Cells, 2016, 16, 4-22.	1.5	108
65	Probing the Oxygen Reduction Reaction Active Sites over Nitrogen-Doped Carbon Nanostructures (CN _{<i>x</i>}) in Acidic Media Using Phosphate Anion. ACS Catalysis, 2016, 6, 7249-7259.	5.5	123
66	Nitrogen Functionalized Few Layer Graphene Derived from Metal-Organic Compound: A Catalyst for Oxygen Reduction Reaction. Electrochimica Acta, 2016, 216, 457-466.	2.6	13
67	Construction of Highly Catalytic Porous TiOPC Nanocomposite Counter Electrodes for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 26030-26040.	4.0	28
68	Nitrogen-doped amorphous carbon with effective electrocatalytic activity toward oxygen reduction reaction. Materials Research Bulletin, 2016, 84, 118-123.	2.7	12
69	Nonâ€Pt Nanostructured Catalysts for Oxygen Reduction Reaction: Synthesis, Catalytic Activity and its Key Factors. Advanced Energy Materials, 2016, 6, 1600458.	10.2	160
70	Performance of Fe–N/C Oxygen Reduction Electrocatalysts toward NO ₂ [–] , NO, and NH ₂ OH Electroreduction: From Fundamental Insights into the Active Center to a New Method for Environmental Nitrite Destruction. Journal of the American Chemical Society, 2016, 138, 16056-16068.	6.6	111
71	A General Approach to Preferential Formation of Active Fe–N _{<i>x</i>} Sites in Fe–N/C Electrocatalysts for Efficient Oxygen Reduction Reaction. Journal of the American Chemical Society, 2016, 138, 15046-15056.	6.6	663
72	Rational design of common transition metal-nitrogen-carbon catalysts for oxygen reduction reaction in fuel cells. Nano Energy, 2016, 30, 443-449.	8.2	114
73	In situ electrochemical quantification of active sites in Fe–N/C non-precious metal catalysts. Nature Communications, 2016, 7, 13285.	5.8	349
74	Rationally Designed 3D Fe and N Codoped Graphene with Superior Electrocatalytic Activity toward Oxygen Reduction. Small, 2016, 12, 2549-2553.	5.2	33
75	Structural and mechanistic basis for the high activity of Fe–N–C catalysts toward oxygen reduction. Energy and Environmental Science, 2016, 9, 2418-2432.	15.6	472
76	A Fe-N-C catalyst with highly dispersed iron in carbon for oxygen reduction reaction and its application in direct methanol fuel cells. Chinese Journal of Catalysis, 2016, 37, 539-548.	6.9	36
77	Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chemical Society Reviews, 2016, 45, 1273-1307.	18.7	589

#	Article	IF	CITATIONS
78	Manganese oxide-induced strategy to high-performance iron/nitrogen/carbon electrocatalysts with highly exposed active sites. Nanoscale, 2016, 8, 8480-8485.	2.8	33
79	Highly Active and Durable Non-Precious Metal Catalyst for the Oxygen Reduction Reaction in Acidic Medium. Journal of the Electrochemical Society, 2016, 163, F539-F547.	1.3	32
80	Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chemical Reviews, 2016, 116, 3594-3657.	23.0	3,233
81	One-step synthesis of shell/core structural boron and nitrogen co-doped graphitic carbon/nanodiamond as efficient electrocatalyst for the oxygen reduction reaction in alkaline media. Electrochimica Acta, 2016, 194, 161-167.	2.6	34
82	Probing active sites in iron-based catalysts for oxygen electro-reduction: A temperature-dependent 57 Fe Mössbauer spectroscopy study. Catalysis Today, 2016, 262, 110-120.	2.2	70
83	On an Easy Way To Prepare Metal–Nitrogen Doped Carbon with Exclusive Presence of MeN ₄ -type Sites Active for the ORR. Journal of the American Chemical Society, 2016, 138, 635-640.	6.6	420
84	On the structural composition and stability of Fe–N–C catalysts prepared by an intermediate acid leaching. Journal of Solid State Electrochemistry, 2016, 20, 969-981.	1.2	39
85	Transition metal–nitrogen–carbon nanostructured catalysts for the oxygen reduction reaction: From mechanistic insights to structural optimization. Nano Research, 2017, 10, 1449-1470.	5.8	144
86	Metal–Organic-Framework-Derived Fe-N/C Electrocatalyst with Five-Coordinated Fe-N _{<i>x</i>} Sites for Advanced Oxygen Reduction in Acid Media. ACS Catalysis, 2017, 7, 1655-1663.	5.5	483
87	Iron-chelated hydrogel-derived bifunctional oxygen electrocatalyst for high-performance rechargeable Zn–air batteries. Nano Research, 2017, 10, 4436-4447.	5.8	98
88	Fe-N/C catalysts for oxygen reduction reaction supported on different carbonaceous materials. Performance in acidic and alkaline direct alcohol fuel cells. Applied Catalysis B: Environmental, 2017, 205, 637-653.	10.8	115
89	Fe ₉ S ₁₀ -decorated N, S co-doped graphene as a new and efficient electrocatalyst for oxygen reduction and oxygen evolution reactions. Catalysis Science and Technology, 2017, 7, 1181-1192.	2.1	37
90	Platinum group metal-free electrocatalysts: Effects of synthesis on structure and performance in proton-exchange membrane fuel cell cathodes. Journal of Power Sources, 2017, 348, 30-39.	4.0	60
91	Nitrogen-doped graphene-wrapped iron nanofragments for high-performance oxygen reduction electrocatalysts. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	36
92	Highly active and stable non noble metal catalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2017, 42, 10423-10434.	3.8	29
93	"Wiring―Feâ€N _{<i>x</i>} â€Embedded Porous Carbon Framework onto 1D Nanotubes for Efficient Oxygen Reduction Reaction in Alkaline and Acidic Media. Advanced Materials, 2017, 29, 1606534.	11.1	342
94	The role of iron nitrides in the Fe–N–C catalysis system towards the oxygen reduction reaction. Nanoscale, 2017, 9, 7641-7649.	2.8	96
95	Active and efficient Co-N/C catalysts derived from cobalt porphyrin for selective oxidation of alkylaromatics. Applied Surface Science, 2017, 419, 98-106.	3.1	56

#	Article	IF	CITATIONS
96	Role of Local Carbon Structure Surrounding FeN ₄ Sites in Boosting the Catalytic Activity for Oxygen Reduction. Journal of Physical Chemistry C, 2017, 121, 11319-11324.	1.5	150
97	Effect of metal species on the stability of Me-N-C catalysts during accelerated stress tests mimicking the start-up and shut-down conditions. Electrochimica Acta, 2017, 243, 183-196.	2.6	60
98	ls iron nitride or carbide highly active for oxygen reduction reaction in acidic medium?. Catalysis Science and Technology, 2017, 7, 51-55.	2.1	50
99	Graphene-derived Fe/Co-N-C catalyst in direct methanol fuel cells: Effects of the methanol concentration and ionomer content on cell performance. Journal of Power Sources, 2017, 358, 76-84.	4.0	38
100	Unraveling the Nature of Sites Active toward Hydrogen Peroxide Reduction in Feâ€N Catalysts. Angewandte Chemie, 2017, 129, 8935-8938.	1.6	16
101	Fe–N–C Catalyst Graphitic Layer Structure and Fuel Cell Performance. ACS Energy Letters, 2017, 2, 1489-1493.	8.8	104
102	Nitrogen-Coordinated Ironâ^Carbon as Efficient Bifunctional Electrocatalysts for the Oxygen Reduction and Oxygen Evolution Reactions in Acidic Media. Energy & Fuels, 2017, 31, 6541-6547.	2.5	34
103	Unraveling the Nature of Sites Active toward Hydrogen Peroxide Reduction in Feâ€Nâ€C Catalysts. Angewandte Chemie - International Edition, 2017, 56, 8809-8812.	7.2	176
104	Low-Temperature and Gram-Scale Synthesis of Two-Dimensional Fe–N–C Carbon Sheets for Robust Electrochemical Oxygen Reduction Reaction. Chemistry of Materials, 2017, 29, 2890-2898.	3.2	55
105	Nâ€Doped 3D Carbon Aerogel with Trace Fe as an Efficient Catalyst for the Oxygen Reduction Reaction. ChemElectroChem, 2017, 4, 514-520.	1.7	43
106	Nitrogen doped amorphous carbon as metal free electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2017, 42, 876-885.	3.8	66
107	High-performance oxygen reduction catalysts in both alkaline and acidic fuel cells based on pre-treating carbon material and iron precursor. Science Bulletin, 2017, 62, 1602-1608.	4.3	7
108	Investigation of Chloride Poisoning Resistance for Nitrogen-Doped Carbon Nanostructures as Oxygen Depolarized Cathode Catalysts in Acidic Media. Catalysis Letters, 2017, 147, 2903-2909.	1.4	32
109	Ionically dispersed Fe(<scp>ii</scp>)–N and Zn(<scp>ii</scp>)–N in porous carbon for acidic oxygen reduction reactions. Chemical Communications, 2017, 53, 11453-11456.	2.2	22
110	Fabrication of a mesoporous Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3â~îî} perovskite as a low-cost and efficient catalyst for oxygen reduction. Dalton Transactions, 2017, 46, 13903-13911.	1.6	18
111	Kinetic isotope effect in the oxygen reduction reaction (ORR) over Fe-N/C catalysts under acidic and alkaline conditions. Electrochemistry Communications, 2017, 83, 67-71.	2.3	43
112	Active sites and factors influencing them for efficient oxygen reduction reaction in metal-N coordinated pyrolyzed and non-pyrolyzed catalysts: a review. Journal of Materials Chemistry A, 2017, 5, 20095-20119.	5.2	108
113	Transition metal-nitrogen co-doped carbide-derived carbon catalysts for oxygen reduction reaction in alkaline direct methanol fuel cell. Applied Catalysis B: Environmental, 2017, 219, 276-286.	10.8	72

#	Article	IF	CITATIONS
114	Air plasma etching towards rich active sites in Fe/N-porous carbon for the oxygen reduction reaction with superior catalytic performance. Journal of Materials Chemistry A, 2017, 5, 16605-16610.	5.2	45
115	Electrocatalysts Derived from Metal–Organic Frameworks for Oxygen Reduction and Evolution Reactions in Aqueous Media. Small, 2017, 13, 1701143.	5.2	150
116	3D polymer hydrogel for high-performance atomic iron-rich catalysts for oxygen reduction in acidic media. Applied Catalysis B: Environmental, 2017, 219, 629-639.	10.8	111
117	MOF derived Mesoporous Nitrogen doped Carbons with high Activity towards Oxygen Reduction. Electrochimica Acta, 2017, 251, 638-650.	2.6	42
118	Out-of-plane Fe ^{II} –N ₄ moiety modified Fe–N co-doped porous carbons as high-performance electrocatalysts for the oxygen reduction reaction. Catalysis Science and Technology, 2017, 7, 4017-4023.	2.1	32
119	Thermodynamic Stability in Acid Media of FeN ₄ -Based Catalytic Sites Used for the Reaction of Oxygen Reduction in PEM Fuel Cells. Journal of the Electrochemical Society, 2017, 164, F948-F957.	1.3	34
120	Fe/N/C Nanotubes with Atomic Fe Sites: A Highly Active Cathode Catalyst for Alkaline Polymer Electrolyte Fuel Cells. ACS Catalysis, 2017, 7, 6485-6492.	5.5	141
121	Recent advances in Fe (or Co)/N/C electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells. Journal of Materials Chemistry A, 2017, 5, 18933-18950.	5.2	146
122	Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science, 2017, 357, 479-484.	6.0	1,273
123	Multi-Scaled Porous Fe-N/C Nanofibrous Catalysts for the Cathode Electrodes of Direct Methanol Fuel Cells. Journal of the Electrochemical Society, 2017, 164, F1556-F1565.	1.3	19
124	Two-step pyrolysis of ZIF-8 functionalized with ammonium ferric citrate for efficient oxygen reduction reaction. Journal of Energy Chemistry, 2017, 26, 1174-1180.	7.1	30
125	A Combined Probe-Molecule, Mössbauer, Nuclear Resonance Vibrational Spectroscopy, and Density Functional Theory Approach for Evaluation of Potential Iron Active Sites in an Oxygen Reduction Reaction Catalyst. Journal of Physical Chemistry C, 2017, 121, 16283-16290.	1.5	75
126	Elucidating the Origin of Hydrogen Evolution Reaction Activity in Mono- and Bimetallic Metal- and Nitrogen-Doped Carbon Catalysts (Me–N–C). ACS Applied Materials & Interfaces, 2017, 9, 25184-25193.	4.0	32
127	High-index faceted CuFeS ₂ nanosheets with enhanced behavior for boosting hydrogen evolution reaction. Nanoscale, 2017, 9, 9230-9237.	2.8	70
128	Advancements in rationally designed PGM-free fuel cell catalysts derived from metal–organic frameworks. Materials Horizons, 2017, 4, 20-37.	6.4	139
129	Modeling Fe/N/C Catalysts in Monolayer Graphene. ACS Catalysis, 2017, 7, 139-145.	5.5	100
130	Effect of Protonated Amine Molecules on the Oxygen Reduction Reaction on Metal-Nitrogen-Carbon-Based Catalysts. Electrocatalysis, 2017, 8, 74-85.	1.5	9
131	Nitrogen-doped cobalt nanoparticles/nitrogen-doped plate-like ordered mesoporous carbons composites as noble-metal free electrocatalysts for oxygen reduction reaction. Journal of Energy Chemistry, 2017, 26, 63-71.	7.1	34

#	Article	IF	CITATIONS
132	Engineering nanostructures of PGM-free oxygen-reduction catalysts using metal-organic frameworks. Nano Energy, 2017, 31, 331-350.	8.2	317
133	Synthesis of a Square [5]Catenane by Simple Amineâ€Aldehyde Condensation. ChemistrySelect, 2017, 2, 11977-11980.	0.7	2
134	Nitrogen Doped Carbon Wrapped Fe3O4 as an Efficient Bifunctional Oxygen Electrocatalyst. International Journal of Electrochemical Science, 2017, , 6129-6136.	0.5	1
135	Microporous Framework Induced Synthesis of Single-Atom Dispersed Fe-N-C Acidic ORR Catalyst and Its in Situ Reduced Fe-N ₄ Active Site Identification Revealed by X-ray Absorption Spectroscopy. ACS Catalysis, 2018, 8, 2824-2832.	5.5	433
136	In Situ Generated Dual-Template Method for Fe/N/S Co-Doped Hierarchically Porous Honeycomb Carbon for High-Performance Oxygen Reduction. ACS Applied Materials & Interfaces, 2018, 10, 8721-8729.	4.0	83
137	Engineering phosphorus-doped LaFeO3-δ perovskite oxide as robust bifunctional oxygen electrocatalysts in alkaline solutions. Nano Energy, 2018, 47, 199-209.	8.2	202
138	Structure and activity of metal-centered coordination sites in pyrolyzed metal–nitrogen–carbon catalysts for the electrochemical reduction of O2. Current Opinion in Electrochemistry, 2018, 9, 198-206.	2.5	51
139	Crab Shellâ€Templated Fe and N Co–Doped Mesoporous Carbon Nanofibers as a Highly Efficient Oxygen Reduction Reaction Electrocatalyst. ChemistrySelect, 2018, 3, 3722-3730.	0.7	6
140	Atomic-Level Co ₃ O ₄ Layer Stabilized by Metallic Cobalt Nanoparticles: A Highly Active and Stable Electrocatalyst for Oxygen Reduction. ACS Applied Materials & Interfaces, 2018, 10, 7052-7060.	4.0	45
141	Identification of binuclear Co2N5 active sites for oxygen reduction reaction with more than one magnitude higher activity than single atom CoN4 site. Nano Energy, 2018, 46, 396-403.	8.2	319
142	Recent Progress of Carbonâ€Based Materials in Oxygen Reduction Reaction Catalysis. ChemElectroChem, 2018, 5, 1764-1774.	1.7	66
143	Hydrothermal-microwave synthesis of cobalt oxide incorporated nitrogen-doped graphene composite as an efficient catalyst for oxygen reduction reaction in alkaline medium. Journal of Materials Science: Materials in Electronics, 2018, 29, 6750-6762.	1.1	12
144	Porous carbon electrocatalyst with exclusive metal-coordinate active sites for acidic oxygen reduction reaction. Carbon, 2018, 132, 85-94.	5.4	19
145	Deconvolution of Utilization, Site Density, and Turnover Frequency of Fe–Nitrogen–Carbon Oxygen Reduction Reaction Catalysts Prepared with Secondary N-Precursors. ACS Catalysis, 2018, 8, 1640-1647.	5.5	126
146	Graphene Layersâ€Wrapped Fe/Fe ₅ C ₂ Nanoparticles Supported on Nâ€doped Graphene Nanosheets for Highly Efficient Oxygen Reduction. Advanced Energy Materials, 2018, 8, 1702476.	10.2	205
147	EDTA-derived Co N C and Fe N C electro-catalysts for the oxygen reduction reaction in acid environment. Renewable Energy, 2018, 120, 342-349.	4.3	35
148	Influence of sulfur in the precursor mixture on the structural composition of Fe-N-C catalysts. Hyperfine Interactions, 2018, 239, 1.	0.2	13
149	Strategies for Enhancing the Electrocatalytic Activity of M–N/C Catalysts for the Oxygen Reduction Reaction. Topics in Catalysis, 2018, 61, 1077-1100.	1.3	27

#	Article	IF	CITATIONS
150	Theoretical insight into the catalytic activities of oxygen reduction reaction on transition metal–N ₄ doped graphene. New Journal of Chemistry, 2018, 42, 9620-9625.	1.4	21
151	On the effect of sulfite ions on the structural composition and ORR activity of Fe-N-C catalysts. Hyperfine Interactions, 2018, 239, 1.	0.2	6
152	Rational Design and Synthesis of Low-Temperature Fuel Cell Electrocatalysts. Electrochemical Energy Reviews, 2018, 1, 54-83.	13.1	87
153	Oxygen Reduction Reaction Catalyzed by Small Gold Cluster on h-BN/Au(111) Support. Electrocatalysis, 2018, 9, 182-188.	1.5	14
154	Improved electrochemical performance of Fe-N-C catalysts through ionic liquid modification in alkaline media. Journal of Power Sources, 2018, 375, 222-232.	4.0	66
155	Durability of template-free Fe-N-C foams for electrochemical oxygen reduction in alkaline solution. Journal of Power Sources, 2018, 375, 244-254.	4.0	24
156	Non-noble metal catalyst on carbon ribbon for fuel cell cathode. Journal of Solid State Electrochemistry, 2018, 22, 761-771.	1.2	5
157	57Fe-Mössbauer spectroscopy and electrochemical activities of graphitic layer encapsulated iron electrocatalysts for the oxygen reduction reaction. Applied Catalysis B: Environmental, 2018, 221, 406-412.	10.8	61
158	Unique role of Mössbauer spectroscopy in assessing structural features of heterogeneous catalysts. Applied Catalysis B: Environmental, 2018, 224, 518-532.	10.8	83
159	Electrochemical probing into the active sites of graphitic-layer encapsulated iron oxygen reduction reaction electrocatalysts. Science Bulletin, 2018, 63, 24-30.	4.3	18
160	Synthesis of fct-structured FePt Nanoparticles on Graphene and their electrocatalytic activity toward Oxygen Reduction Reaction. International Journal of Electrochemical Science, 2018, 13, 5963-5970.	0.5	1
161	On the role of hydroxide species in sulphur- and nitrogen-doped cobalt-based carbon catalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 22310-22319.	5.2	12
162	Oxygen Electroreduction Catalysts Based on Polymer Complexes of Nickel with Schiff Bases. Russian Journal of Electrochemistry, 2018, 54, 769-774.	0.3	5
163	Structure of Active Sites of Fe-N-C Nano-Catalysts for Alkaline Exchange Membrane Fuel Cells. Nanomaterials, 2018, 8, 965.	1.9	13
164	Chalcogenide Electrocatalysts for Energy Conversion Fuel Cell. , 2018, , 419-445.		5
165	Effect of Acid-Washing on the Nature of Bulk Characteristics of Nitrogen-Doped Carbon Nanostructures as Oxygen Reduction Reaction Electrocatalysts in Acidic Media. Energy & Fuels, 2018, 32, 11038-11045.	2.5	12
166	Bio-inspired FeN ₅ moieties anchored on a three-dimensional graphene aerogel to improve oxygen reduction catalytic performance. Journal of Materials Chemistry A, 2018, 6, 18488-18497.	5.2	53
167	Emerging Materials in Heterogeneous Electrocatalysis Involving Oxygen for Energy Harvesting. ACS Applied Materials & Interfaces, 2018, 10, 33737-33767.	4.0	52

ARTICLE IF CITATIONS The Marriage of the FeN₄ Moiety and MXene Boosts Oxygen Reduction Catalysis: Fe 3d 11.1 289 168 Electron Delocalization Matters. Advanced Materials, 2018, 30, e1803220. Recent trends on the application of PGM-free catalysts at the cathode of anion exchange membrane 169 2.5 fuel cells. Current Opinion in Electrochemistry, 2018, 9, 240-256. Atomic Iron Catalysis of Polysulfide Conversion in Lithiumâ€"Sulfur Batteries. ACS Applied Materials 170 4.0 152 & Interfaces, 2018, 10, 19311-19317. Towards Highâ€Performance Electrocatalysts for Oxygen Reduction: Inducing Atomic‣evel Reconstruction of Feâ€N<sub><i>x</i>>Site for Atomically Dispersed Fe/Nâ€Doped Hierarchically Porous Carbon. Chemistry - A European Journal, 2018, 24, 8848-8856. 171 Synthesis of highly-active Fe–N–C catalysts for PEMFC with carbide-derived carbons. Journal of 172 5.2 94 Materials Chemistry A, 2018, 6, 14663-14674. Application of Nanomaterials Prepared by Thermolysis of Metal Chelates. Springer Series on Polymer and Composite Materials, 2018, , 459-541. Correlating Fe source with Fe-N-C active site construction: Guidance for rational design of 174 7.1 104 high-performance ORR catalyst. Journal of Energy Chemistry, 2018, 27, 1668-1673. Melamine-sponge-derived non-precious fuel cell electrocatalyst with hierarchical pores and tunable nitrogen chemical states for exceptional oxygen reduction reaction activity. Materials Today Energy, 2.5 2018, 9, 271-278. Nitrogen-doped graphene-based catalyst with metal-reduced organic framework: Chemical analysis 176 5.4 20 and structure control. Carbon, 2018, 139, 933-944. Designing nanographitic domains in N-doped porous carbon foam for high performance 5.4 supercapacitors. Carbon, 2018, 139, 1152-1159. Influence of the Structure-Forming Agent on the Performance of Fe-N-C Catalysts. Catalysts, 2018, 8, 178 6 1.6 260. Surfactantâ€Assisted Fabrication of Cubic Cobalt Oxide Hybrid Hollow Spheres as Catalysts for the 179 Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 2192-2198. A Bimetallic Zn/Fe Polyphthalocyanineâ€Derived Singleâ€Atom Feâ€N₄ Catalytic Site:A Superior Trifunctional Catalyst for Overall Water Splitting and Zn–Air Batteries. Angewandte Chemie, 2018, 180 1.6 51 130, 8750-8754. A Bimetallic Zn/Fe Polyphthalocyanineâ€Derived Singleâ€Atom Feâ€N₄ Catalytic Site:A Superior Trifunctional Catalyst for Overall Water Splitting and Zn–Air Batteries. Angewandte Chemie -International Edition, 2018, 57, 8614-8618. Boosting the Performance of Iron-Phthalocyanine as Cathode Electrocatalyst for Alkaline Polymer Fuel Cells Through Edge-Closed Conjugation. ACS Applied Materials & amp; Interfaces, 2018, 10, 182 4.0 34 28664-28671. Efficient Oxygen Reduction Reaction (ORR) Catalysts Based on Single Iron Atoms Dispersed on a Hierarchically Structured Porous Carbon Framework. Angewandte Chemie, 2018, 130, 9176-9181. Efficient Oxygen Reduction Reaction (ORR) Catalysts Based on Single Iron Atoms Dispersed on a 184 Hierarchically Structured Porous Carbon Framework. Angewandte Chemie - International Edition, 7.2 467 2018, 57, 9038-9043. Fe, N codoped porous carbon nanosheets for efficient oxygen reduction reaction in alkaline andÂacidic 3.8 media. International Journal of Hydrogen Energy, 2018, 43, 14273-14280.

#	Article	IF	CITATIONS
186	High-Temperature Polymer Electrolyte Membrane Fuel Cells. Nanostructure Science and Technology, 2019, , 45-79.	0.1	3
187	Enhancing by nano-engineering: Hierarchical architectures as oxygen reduction/ evolution reactions for zinc-air batteries. Journal of Power Sources, 2019, 438, 226919.	4.0	44
188	Coordination-Engineered Cu–N _{<i>x</i>} Single-Site Catalyst for Enhancing Oxygen Reduction Reaction. ACS Applied Energy Materials, 2019, 2, 6497-6504.	2.5	58
189	Iron/Nitrogen/Phosphorus Co-Doped Three-Dimensional Porous Carbon as a Highly Efficient Electrocatalyst for Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2019, 166, F935-F941.	1.3	11
190	Nitrogen-Doped Porous Carbon Networks with Active Fe–N <i>_x</i> Sites to Enhance Catalytic Conversion of Polysulfides in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 31860-31868.	4.0	39
191	Atomically dispersed Fe-N-C derived from dual metal-organic frameworks as efficient oxygen reduction electrocatalysts in direct methanol fuel cells. Applied Catalysis B: Environmental, 2019, 259, 118042.	10.8	89
192	Fe3C nanoparticles-loaded 3D nanoporous N-doped carbon: A highly efficient electrocatalyst for oxygen reduction in alkaline media. International Journal of Hydrogen Energy, 2019, 44, 21506-21517.	3.8	16
193	Biogenic precursor to size-controlled synthesis of Fe2P nanoparticles in heteroatom-doped graphene-like carbons and their electrocatalytic reduction of oxygen. Journal of Power Sources, 2019, 435, 226770.	4.0	17
194	Stability analysis of switched positive nonlinear systems: an invariant ray approach. Science China Information Sciences, 2019, 62, 1.	2.7	3
196	Voxer—a platform for creating, customizing, and sharing scientific visualizations. Journal of Visualization, 2019, 22, 1161-1176.	1.1	2
197	Improving the Activity of Mâ^'N ₄ Catalysts for the Oxygen Reduction Reaction by Electrolyte Adsorption. ChemSusChem, 2019, 12, 5133-5141.	3.6	33
198	Editorial: Significance of Peri-implant Keratinized Mucosa Width and Soft Tissue Thickness. International Journal of Periodontics and Restorative Dentistry, 2019, 39, 767-768.	0.4	2
199	Direct Growth of Carbon Nanotubes Doped with Single Atomic Fe–N ₄ Active Sites and Neighboring Graphitic Nitrogen for Efficient and Stable Oxygen Reduction Electrocatalysis. Advanced Functional Materials, 2019, 29, 1906174.	7.8	159
200	Electrochemical Reduction of CO 2 on Nitrogenâ€Đoped Carbon Catalysts With and Without Iron. ChemElectroChem, 2019, 6, 4626-4636.	1.7	17
201	Operando Characterization of Iron Phthalocyanine Deactivation during Oxygen Reduction Reaction Using Electrochemical Tip-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2019, 141, 15684-15692.	6.6	102
202	Recent Insights into the Oxygen-Reduction Electrocatalysis of Fe/N/C Materials. ACS Catalysis, 2019, 9, 10126-10141.	5.5	295
203	Designing the 3D Architecture of PGM-Free Cathodes for H ₂ /Air Proton Exchange Membrane Fuel Cells. ACS Applied Energy Materials, 2019, 2, 7211-7222.	2.5	41
204	Volcano Trend in Electrocatalytic CO ₂ Reduction Activity over Atomically Dispersed Metal Sites on Nitrogen-Doped Carbon. ACS Catalysis, 2019, 9, 10426-10439.	5.5	142

#	Article	IF	CITATIONS
205	Fe(CN) ₅ @PIL-derived N-doped porous carbon with FeC _x N _y active sites as a robust electrocatalyst for the oxygen reduction reaction. Catalysis Science and Technology, 2019, 9, 97-105.	2.1	10
206	Tailoring FeN ₄ Sites with Edge Enrichment for Boosted Oxygen Reduction Performance in Proton Exchange Membrane Fuel Cell. Advanced Energy Materials, 2019, 9, 1803737.	10.2	148
207	g-C ₃ N ₄ promoted MOF derived hollow carbon nanopolyhedra doped with high density/fraction of single Fe atoms as an ultra-high performance non-precious catalyst towards acidic ORR and PEM fuel cells. Journal of Materials Chemistry A, 2019, 7, 5020-5030.	5.2	152
208	Fe-N-C catalysts for PEMFC: Progress towards the commercial application under DOE reference. Journal of Energy Chemistry, 2019, 39, 77-87.	7.1	83
209	Heterogeneous iron containing carbon catalyst (Fe-N/C) for epoxidation with molecular oxygen. Journal of Catalysis, 2019, 370, 357-363.	3.1	23
210	Tunable Synthesis of Hollow Metal–Nitrogen–Carbon Capsules for Efficient Oxygen Reduction Catalysis in Proton Exchange Membrane Fuel Cells. ACS Nano, 2019, 13, 8087-8098.	7.3	106
211	Mononuclear iron-dependent electrocatalytic activity of metal-nitrogen-carbon catalysts for efficient oxygen reduction reaction. Applied Catalysis A: General, 2019, 583, 117120.	2.2	8
212	Elucidating the Structural Composition of an Fe–N–C Catalyst by Nuclear―and Electronâ€Resonance Techniques. Angewandte Chemie - International Edition, 2019, 58, 10486-10492.	7.2	90
213	Elucidating the Structural Composition of an Fe–N–C Catalyst by Nuclear―and Electronâ€Resonance Techniques. Angewandte Chemie, 2019, 131, 10596-10602.	1.6	13
214	Iron (II) phthalocyanine/N-doped graphene: A highly efficient non-precious metal catalyst for oxygen reduction. International Journal of Hydrogen Energy, 2019, 44, 18103-18114.	3.8	44
215	Templated growth of Fe/N/C catalyst on hierarchically porous carbon for oxygen reduction reaction in proton exchange membrane fuel cells. Journal of Power Sources, 2019, 431, 31-39.	4.0	41
216	Iron-nitrogen-carbon species for oxygen electro-reduction and Zn-air battery: Surface engineering and experimental probe into active sites. Applied Catalysis B: Environmental, 2019, 254, 601-611.	10.8	78
217	Ultrafine Fe/Fe3C nanoparticles on nitrogen-doped mesoporous carbon by low-temperature synthesis for highly efficient oxygen reduction. Electrochimica Acta, 2019, 313, 255-260.	2.6	14
218	Nitrogen-coordinated cobalt nanocrystals for oxidative dehydrogenation and hydrogenation of N-heterocycles. Chemical Science, 2019, 10, 5345-5352.	3.7	60
219	Pyrolysis of Self-Assembled Iron(III) Porphyrin on Carbon toward Efficient Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2019, 166, F441-F447.	1.3	10
220	Incorporation of CeF3 on single-atom dispersed Fe/N/C with oxophilic interface as highly durable electrocatalyst for proton exchange membrane fuel cell. Journal of Catalysis, 2019, 374, 43-50.	3.1	31
221	Unraveling the high-activity nature of Fe–N–C electrocatalysts for the oxygen reduction reaction: the extraordinary synergy between Fe–N ₄ and Fe ₄ N. Journal of Materials Chemistry A, 2019, 7, 11792-11801.	5.2	84
222	Oxygen Reduction Reactions of Fe-N-C Catalysts: Current Status and the Way Forward. Electrochemical Energy Reviews, 2019, 2, 252-276.	13.1	119

#	ARTICLE	IF	CITATIONS
223	Molecular-level design of Fe-N-C catalysts derived from Fe-dual pyridine coordination complexes for highly efficient oxygen reduction. Journal of Catalysis, 2019, 372, 245-257.	3.1	56
224	Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nature Catalysis, 2019, 2, 259-268.	16.1	958
225	Chemical state of surrounding iron species affects the activity of Fe-Nx for electrocatalytic oxygen reduction. Applied Catalysis B: Environmental, 2019, 251, 240-246.	10.8	101
226	Versatile Strategy for Tuning ORR Activity of a Single Fe-N ₄ Site by Controlling Electron-Withdrawing/Donating Properties of a Carbon Plane. Journal of the American Chemical Society, 2019, 141, 6254-6262.	6.6	509
227	Nitrogen-coordinated single iron atom catalysts derived from metal organic frameworks for oxygen reduction reaction. Nano Energy, 2019, 61, 60-68.	8.2	192
228	Transition Metal–Nitrogen–Carbon (M–N–C) Catalysts for Oxygen Reduction Reaction. Insights on Synthesis and Performance in Polymer Electrolyte Fuel Cells. ChemEngineering, 2019, 3, 16.	1.0	75
229	⁵⁷ Fe Mössbauer Spectroscopy Characterization of Electrocatalysts. Advanced Materials, 2019, 31, e1805623.	11.1	116
230	Ice/Saltâ€Assisted Synthesis of Ultrathin Twoâ€Dimensional Micro/Mesoporous Iron and Nitrogen Coâ€Doped Carbon as an Efficient Electrocatalyst for Oxygen Reduction. Chemistry - A European Journal, 2019, 25, 5768-5776.	1.7	11
231	Fe3C/Fe2O3 heterostructure embedded in N-doped graphene as a bifunctional catalyst for quasi-solid-state zinc–air batteries. Carbon, 2019, 146, 763-771.	5.4	76
232	Progress in the Development of Feâ€Based PGMâ€Free Electrocatalysts for the Oxygen Reduction Reaction. Advanced Materials, 2019, 31, e1806545.	11.1	317
233	Alkaline Polymer Membraneâ€Based Ultrathin, Flexible, and Highâ€Performance Solidâ€State Znâ€Air Battery. Advanced Energy Materials, 2019, 9, 1803628.	10.2	57
234	A review of recent progress on electrocatalysts toward efficient glycerol electrooxidation. Reviews in Chemical Engineering, 2021, 37, 779-811.	2.3	28
235	Preparation of Fe–N–C catalysts with FeN _x (<i>x</i> = 1, 3, 4) active sites and comparison of their activities for the oxygen reduction reaction and performances in proton exchange membrane fuel cells. Journal of Materials Chemistry A, 2019, 7, 26147-26153.	5.2	172
236	Design Principle of Fe–N–C Electrocatalysts: How to Optimize Multimodal Porous Structures?. Journal of the American Chemical Society, 2019, 141, 2035-2045.	6.6	383
237	Synthesis and Active Site Identification of Feâ^'Nâ^'C Singleâ€Atom Catalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 304-315.	1.7	65
238	Semisacrificial Template Growth of Selfâ€Supporting MOF Nanocomposite Electrode for Efficient Electrocatalytic Water Oxidation. Advanced Functional Materials, 2019, 29, 1807418.	7.8	224
239	Well-defined gradient Fe/Zn bimetal organic framework cylinders derived highly efficient iron- and nitrogen- codoped hierarchically porous carbon electrocatalysts towards oxygen reduction. Nano Energy, 2019, 57, 108-117.	8.2	89
240	Robust fused aromatic pyrazine-based two-dimensional network for stably cocooning iron nanoparticles as an oxygen reduction electrocatalyst. Nano Energy, 2019, 56, 581-587.	8.2	35

#	Article	IF	Citations
241	Activity and degradation study of an Fe-N-C catalyst for ORR in Direct Methanol Fuel Cell (DMFC). Applied Catalysis B: Environmental, 2020, 262, 118217.	10.8	113
242	Iron-nitrogen doped carbon with exclusive presence of FexN active sites as an efficient ORR electrocatalyst for Zn-air battery. Applied Catalysis B: Environmental, 2020, 268, 118405.	10.8	80
243	Understanding the Origin of Highly Selective CO ₂ Electroreduction to CO on Ni,Nâ€doped Carbon Catalysts. Angewandte Chemie, 2020, 132, 4072-4079.	1.6	48
244	Understanding the Origin of Highly Selective CO ₂ Electroreduction to CO on Ni,Nâ€doped Carbon Catalysts. Angewandte Chemie - International Edition, 2020, 59, 4043-4050.	7.2	148
245	Single-atom catalysts for electrochemical clean energy conversion: recent progress and perspectives. Sustainable Energy and Fuels, 2020, 4, 996-1011.	2.5	36
246	Iron-Nitrogen-Carbon Catalysts for Proton Exchange Membrane Fuel Cells. Joule, 2020, 4, 33-44.	11.7	264
247	Design and synthesis of carbon-based catalysts for zinc–air batteries. , 2020, , 161-190.		0
248	SiO2-Fe/N/C catalyst with enhanced mass transport in PEM fuel cells. Applied Catalysis B: Environmental, 2020, 264, 118523.	10.8	81
249	Iron encased organic networks with enhanced lithium storage properties. Energy Storage, 2020, 2, e114.	2.3	4
250	Dualâ€Metal Interbonding as the Chemical Facilitator for Singleâ€Atom Dispersions. Advanced Materials, 2020, 32, e2003484.	11.1	90
251	A pyridinic Fe-N4 macrocycle models the active sites in Fe/N-doped carbon electrocatalysts. Nature Communications, 2020, 11, 5283.	5.8	286
252	ZIF-derived Co–N–C ORR catalyst with high performance in proton exchange membrane fuel cells. Progress in Natural Science: Materials International, 2020, 30, 855-860.	1.8	37
253	Upcycling of polyurethane into iron-nitrogen-carbon electrocatalysts active for oxygen reduction reaction. Electrochimica Acta, 2020, 362, 137200.	2.6	36
254	Self-assembly induced metal ionic-polymer derived Fe-Nx/C nanowire as oxygen reduction reaction electrocatalyst. Journal of Catalysis, 2020, 391, 1-10.	3.1	15
255	Exploiting S,N co-doped 3D hierarchical porous carbon with Fell–N4 moiety as an efficient cathode electrocatalyst for advanced Zn–air battery. Electrochimica Acta, 2020, 364, 137301.	2.6	25
256	Identifying the Types and Characterization of the Active Sites on Mâ^'Xâ^'C Singleâ€Atom Catalysts. ChemPhysChem, 2020, 21, 2486-2496.	1.0	12
257	Recent advances of Fe–N–C pyrolyzed catalysts for the oxygen reduction reaction. Current Opinion in Electrochemistry, 2020, 23, 154-161.	2.5	24
258	Fe–N4 engineering of S and N co-doped hierarchical porous carbon-based electrocatalysts for enhanced oxygen reduction in Zn–air batteries. Dalton Transactions, 2020, 49, 14847-14853.	1.6	15

#	Article	IF	CITATIONS
259	Product-to-intermediate relay achieving complete oxygen reduction reaction (cORR) with Prussian blue integrated nanoporous polymer cathode in fuel cells. Nano Energy, 2020, 78, 105125.	8.2	7
260	Synergistic Catalytic Effect of Hollow Carbon Nanosphere and Silver Nanoparticles for Oxygen Reduction Reaction. ChemistrySelect, 2020, 5, 8099-8105.	0.7	11
261	P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction. Nature Materials, 2020, 19, 1215-1223.	13.3	278
262	Identification of the Electronic and Structural Dynamics of Catalytic Centers in Single-Fe-Atom Material. CheM, 2020, 6, 3440-3454.	5.8	231
263	Cobalt/nitrogen codoped carbon nanosheets derived from catkins as a high performance non-noble metal electrocatalyst for oxygen reduction reaction and hydrogen evolution reaction. RSC Advances, 2020, 10, 43248-43255.	1.7	10
264	Inkâ€Assisted Synthetic Strategy for Stable and Advanced Composite Electrocatalysts with Single Fe Sites. Small, 2020, 16, e2006113.	5.2	4
265	A facile synthesis of hierarchically porous carbon derived from serum albumin by a generated-templating method for efficient oxygen reduction reaction. RSC Advances, 2020, 10, 39589-39595.	1.7	0
266	Fe–N–C catalyst derived from solid-state coordination complex as durable oxygen reduction electrocatalyst in alkaline electrolyte. Ionics, 2020, 26, 5685-5696.	1.2	7
267	Surface Coordination Chemistry of Atomically Dispersed Metal Catalysts. Chemical Reviews, 2020, 120, 11810-11899.	23.0	325
268	Advanced Electrocatalysts with Single-Metal-Atom Active Sites. Chemical Reviews, 2020, 120, 12217-12314.	23.0	563
269	Construction of Highly Active Metal ontaining Nanoparticles and FeCoâ€N ₄ Composite Sites for the Acidic Oxygen Reduction Reaction. Angewandte Chemie, 2020, 132, 22160-22163.	1.6	43
270	Direct Characterization of Atomically Dispersed Catalysts: Nitrogenâ€Coordinated Ni Sites in Carbonâ€Based Materials for CO ₂ Electroreduction. Advanced Energy Materials, 2020, 10, 2001836.	10.2	46
271	Engineering hierarchical MOFs-derived Fe–N–C nanostructure with improved oxygen reduction activity for zinc-air battery: the role of iron oxide. Materials Today Energy, 2020, 18, 100500.	2.5	31
272	Construction of Highly Active Metal ontaining Nanoparticles and FeCoâ€N ₄ Composite Sites for the Acidic Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2020, 59, 21976-21979.	7.2	157
273	Nitrogen-doped vertical graphene nanosheets by high-flux plasma enhanced chemical vapor deposition as efficient oxygen reduction catalysts for Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 23248-23256.	5.2	30
274	Heteroatom-doped carbon interpenetrating networks: a signpost to achieve the best performance of non-PGM catalysts for fuel cells. Journal of Materials Chemistry A, 2020, 8, 18767-18777.	5.2	14
275	Immobilizing single atom catalytic sites onto highly reduced carbon hosts: Fe–N ₄ /CNT as a durable oxygen reduction catalyst for Na–air batteries. Journal of Materials Chemistry A, 2020, 8, 18891-18902.	5.2	31
276	Single-Atom Iron-Based Electrocatalysts for High-Temperature Polymer Electrolyte Membrane Fuel Cell: Organometallic Precursor and Pore Texture Tailoring. ACS Applied Energy Materials, 2020, 3, 11164-11176.	2.5	14

#	Article	IF	CITATIONS
277	Single-atom Catalysts for Polymer Electrolyte Membrane Fuel Cells. Chemical Research in Chinese Universities, 2020, 36, 320-328.	1.3	7
278	Defect-rich carbon based bimetallic oxides with abundant oxygen vacancies as highly active catalysts for enhanced 4-aminobenzoic acid ethyl ester (ABEE) degradation toward peroxymonosulfate activation. Chemical Engineering Journal, 2020, 395, 124936.	6.6	69
279	Ordered mesoporous carbon with atomically dispersed Fe-Nx as oxygen reduction reaction electrocatalyst in air-cathode microbial fuel cells. Journal of Power Sources, 2020, 469, 228184.	4.0	35
280	Establishing reactivity descriptors for platinum group metal (PGM)-free Fe–N–C catalysts for PEM fuel cells. Energy and Environmental Science, 2020, 13, 2480-2500.	15.6	205
281	Electrocatalytic Oxygen Reduction at Multinuclear Metal Active Sites Inspired by Metalloenzymes. E-Journal of Surface Science and Nanotechnology, 2020, 18, 81-93.	0.1	10
282	Utilization of the graphene aerogel as PEM fuel cell catalyst support: Effect of polypyrrole (PPy) and polydimethylsiloxane (PDMS) addition. International Journal of Hydrogen Energy, 2020, 45, 34818-34836.	3.8	31
283	Singleâ€Atom Catalysts for Electrocatalytic Applications. Advanced Functional Materials, 2020, 30, 2000768.	7.8	390
284	Misconceptions in interpretation of nitrogen chemistry from x-ray photoelectron spectra. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	96
285	Strategies for Engineering Highâ€Performance PGMâ€Free Catalysts toward Oxygen Reduction and Evolution Reactions. Small Methods, 2020, 4, 2000016.	4.6	70
286	Two-Dimensional Bimetallic Zn/Fe-Metal-Organic Framework (MOF)-Derived Porous Carbon Nanosheets with a High Density of Single/Paired Fe Atoms as High-Performance Oxygen Reduction Catalysts. ACS Applied Materials & Interfaces, 2020, 12, 13878-13887.	4.0	100
287	Identifying Iron–Nitrogen/Carbon Active Structures for Oxygen Reduction Reaction under the Effect of Electrode Potential. Journal of Physical Chemistry Letters, 2020, 11, 2896-2901.	2.1	32
288	Theoretical study of the strain effect on the oxygen reduction reaction activity and stability of FeNC catalyst. New Journal of Chemistry, 2020, 44, 6818-6824.	1.4	12
289	Dual 3D Ceramic Textile Electrodes: Fast Kinetics for Carbon Oxidation Reaction and Oxygen Reduction Reaction in Direct Carbon Fuel Cells at Reduced Temperatures. Advanced Functional Materials, 2020, 30, 1910096.	7.8	14
290	FeN _x and γ-Fe ₂ O ₃ co-functionalized hollow graphitic carbon nanofibers for efficient oxygen reduction in an alkaline medium. Journal of Materials Chemistry A, 2020, 8, 6076-6082.	5.2	40
291	Impact of Surface Functionalization on the Intrinsic Properties of the Resulting Fe–N–C Catalysts for Fuel Cell Applications. Energy Technology, 2020, 8, 2000433.	1.8	14
292	Characterizing Complex Gas–Solid Interfaces with in Situ Spectroscopy: Oxygen Adsorption Behavior on Fe–N–C Catalysts. Journal of Physical Chemistry C, 2020, 124, 16529-16543.	1.5	20
293	Simultaneously Realizing Rapid Electron Transfer and Mass Transport in Jellyfishâ€Like Mott–Schottky Nanoreactors for Oxygen Reduction Reaction. Advanced Functional Materials, 2020, 30, 1910482.	7.8	173
294	Seeded growth of branched iron–nitrogen-doped carbon nanotubes as a high performance and durable non-precious fuel cell cathode. Carbon, 2020, 162, 300-307.	5.4	18

#	Article	IF	CITATIONS
295	Unravelling electrocatalytic properties of metal porphyrin-like complexes hosted in graphene matrices. 2D Materials, 2020, 7, 025017.	2.0	7
296	Iron carbide/nitrogen-doped carbon core-shell nanostrctures: Solution-free synthesis and superior oxygen reduction performance. Journal of Colloid and Interface Science, 2020, 566, 194-201.	5.0	16
297	Controlling the morphology of metal–organic frameworks and porous carbon materials: metal oxides as primary architecture-directing agents. Chemical Society Reviews, 2020, 49, 3348-3422.	18.7	190
298	Unveiling the Axial Hydroxyl Ligand on FeN ₄ C Electrocatalysts and Its Impact on the pHâ€Đependent Oxygen Reduction Activities and Poisoning Kinetics. Advanced Science, 2020, 7, 2000176.	5.6	111
299	Atomically dispersed metal–nitrogen–carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement. Chemical Society Reviews, 2020, 49, 3484-3524.	18.7	453
300	Deactivation of Fe-N-C catalysts during catalyst ink preparation process. Catalysis Today, 2021, 359, 9-15.	2.2	9
301	Multiscale structural engineering of atomically dispersed FeN4 electrocatalyst for proton exchange membrane fuel cells. Journal of Energy Chemistry, 2021, 58, 629-635.	7.1	28
302	Calibration of computational Mössbauer spectroscopy to unravel active sites in FeNC catalysts for the oxygen reduction reaction. International Journal of Quantum Chemistry, 2021, 121, e26394.	1.0	20
303	Highly active sites of low spin FeIIN4 species: The identification and the ORR performance. Nano Research, 2021, 14, 122-130.	5.8	42
304	Atomically-dispersed Fe-Nx and C–S–C ordered mesoporous carbons as efficient catalysts for the oxygen reduction reaction in a microbial fuel cell. Journal of Alloys and Compounds, 2021, 852, 156994.	2.8	27
305	A comparison of single and double Co sites incorporated in N-doped graphene for the oxygen reduction reaction. Journal of Catalysis, 2021, 393, 230-237.	3.1	26
306	Design of Local Atomic Environments in Singleâ€Atom Electrocatalysts for Renewable Energy Conversions. Advanced Materials, 2021, 33, e2003075.	11.1	187
307	Identification of durable and non-durable FeNx sites in Fe–N–C materials for proton exchange membrane fuel cells. Nature Catalysis, 2021, 4, 10-19.	16.1	368
308	Methods for assessment and measurement of the active site density in platinum group metal–free oxygen reduction reaction catalysts. Current Opinion in Electrochemistry, 2021, 25, 100620.	2.5	15
309	Fe–N–C Electrocatalysts' Durability: Effects of Single Atoms' Mobility and Clustering. ACS Catalysis, 2021, 11, 484-494.	5.5	53
310	Multiple catalytic reaction sites induced non-radical/radical pathway with graphene layers encapsulated Fe-N-C toward highly efficient peroxymonosulfate (PMS) activation. Chemical Engineering Journal, 2021, 413, 127507.	6.6	49
311	Effects of Superparamagnetic Iron Nanoparticles on Electrocatalysts for the Reduction of Oxygen. Inorganic Chemistry, 2021, 60, 4236-4242.	1.9	2
312	Single-atom oxygen reduction reaction electrocatalysts of Fe, Si, and N co-doped carbon with 3D interconnected mesoporosity. Journal of Materials Chemistry A, 2021, 9, 4297-4309.	5.2	43

#	Article	IF	CITATIONS
313	Morphology and Structure Controls of Single-Atom Fe–N–C Catalysts Synthesized Using FePc Powders as the Precursor. Processes, 2021, 9, 109.	1.3	2
314	Oxidative dehydrogenation of light alkanes with carbon dioxide. Green Chemistry, 2021, 23, 689-707.	4.6	39
315	Active Site Identification in FeNC Catalysts and Their Assignment to the Oxygen Reduction Reaction Pathway by In Situ ⁵⁷ Fe Mössbauer Spectroscopy. Advanced Energy and Sustainability Research, 2021, 2, 2000064.	2.8	40
316	Ultrathin Metal Silicate Hydroxide Nanosheets with Moderate Metal–Oxygen Covalency Enables Efficient Oxygen Evolution. Energy and Environmental Materials, 2022, 5, 231-237.	7.3	28
317	Catalytically active sites of MOF-derived electrocatalysts: synthesis, characterization, theoretical calculations, and functional mechanisms. Journal of Materials Chemistry A, 2021, 9, 20320-20344.	5.2	37
318	Origin of the Activity of Co–N–C Catalysts for Chemoselective Hydrogenation of Nitroarenes. ACS Catalysis, 2021, 11, 3026-3039.	5.5	105
319	Green synthesis of iron and nitrogen coâ€doped porous carbon via pyrolysing lotus root as a <scp>highâ€performance</scp> electrocatalyst for oxygen reduction reaction. International Journal of Energy Research, 2021, 45, 10393-10408.	2.2	17
320	FeN <i>_X</i> (C)-Coated Microscale Zero-Valent Iron for Fast and Stable Trichloroethylene Dechlorination in both Acidic and Basic pH Conditions. Environmental Science & Technology, 2021, 55, 5393-5402.	4.6	49
321	Electrocatalyst of Co Metal Atom Dispersed on N and S Co-Doped Tremelliform Carbon with Excellent Properties for Oxygen Reduction Reactions. Journal of the Electrochemical Society, 2021, 168, 034512.	1.3	0
322	Universal Method to Fabricate Transition Metal Single-Atom-Anchored Carbon with Excellent Oxygen Reduction Reaction Activity. ACS Applied Materials & Interfaces, 2021, 13, 13534-13540.	4.0	14
323	Recent Advances in Electrocatalysts for Proton Exchange Membrane Fuel Cells and Alkaline Membrane Fuel Cells. Advanced Materials, 2021, 33, e2006292.	11.1	300
324	2021 Roadmap: electrocatalysts for green catalytic processes. JPhys Materials, 2021, 4, 022004.	1.8	57
325	Potentialâ€Induced Spin Changes in Fe/N/C Electrocatalysts Assessed by In Situ Xâ€ray Emission Spectroscopy. Angewandte Chemie, 2021, 133, 11813-11818.	1.6	5
326	Potentialâ€Induced Spin Changes in Fe/N/C Electrocatalysts Assessed by In Situ Xâ€ray Emission Spectroscopy. Angewandte Chemie - International Edition, 2021, 60, 11707-11712.	7.2	36
327	Review—Current Progress of Non-Precious Metal for ORR Based Electrocatalysts Used for Fuel Cells. Journal of the Electrochemical Society, 2021, 168, 044521.	1.3	15
328	Influence of the Metal Center in M–N–C Catalysts on the CO ₂ Reduction Reaction on Gas Diffusion Electrodes. ACS Catalysis, 2021, 11, 5850-5864.	5.5	50
329	Structural Evolution of Atomically Dispersed Fe Species in Fe–N/C Catalysts Probed by X-ray Absorption and ⁵⁷ Fe MA¶ssbauer Spectroscopies. Journal of Physical Chemistry C, 2021, 125, 11928-11938.	1.5	9
330	A Highly Efficient Feâ^'Nâ^'C Electrocatalyst with Atomically Dispersed FeN ₄ Sites for the Oxygen Reduction Reaction. ChemCatChem, 2021, 13, 2683-2690.	1.8	9

#	Article	IF	CITATIONS
331	Novel Mn-/Co-N <i>_x</i> Moieties Captured in N-Doped Carbon Nanotubes for Enhanced Oxygen Reduction Activity and Stability in Acidic and Alkaline Media. ACS Applied Materials & Interfaces, 2021, 13, 23191-23200.	4.0	57
332	Evolution of atomic-scale dispersion of FeNx in hierarchically porous 3D air electrode to boost the interfacial electrocatalysis of oxygen reduction in PEMFC. Nano Energy, 2021, 83, 105734.	8.2	41
333	Application of Nonâ€Precious Bifunctional Catalysts for Metalâ€Air Batteries. Energy Technology, 2021, 9, 2001106.	1.8	10
334	Gelatinâ€Derived 1D Carbon Nanofiber Architecture with Simultaneous Decoration of Single Feâ^'N _{<i>x</i>} Sites and Fe/Fe ₃ C Nanoparticles for Efficient Oxygen Reduction. Chemistry - A European Journal, 2021, 27, 10987-10997.	1.7	8
335	Unveiling the In Situ Generation of a Monovalent Fe(I) Site in the Single-Fe-Atom Catalyst for Electrochemical CO ₂ Reduction. ACS Catalysis, 2021, 11, 7292-7301.	5.5	51
336	Mapping transition metal–nitrogen–carbon catalystÂperformance on the critical descriptorÂdiagram. Current Opinion in Electrochemistry, 2021, 27, 100687.	2.5	34
337	Effect of porosity and active area on the assessment of catalytic activity of non-precious metal electrocatalyst for oxygen reduction. Journal of Physics Condensed Matter, 2021, 33, 324001.	0.7	3
338	Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nature Catalysis, 2021, 4, 615-622.	16.1	336
339	Iron Single Atom Catalyzed Quinoline Synthesis. Advanced Materials, 2021, 33, e2101382.	11.1	39
340	Biomass waste-derived nitrogen and iron co-doped nanoporous carbons as electrocatalysts for the oxygen reduction reaction. Electrochimica Acta, 2021, 387, 138490.	2.6	23
341	Nanostructured Fe-N-C pyrolyzed catalyst for the H2O2 electrochemical sensing. Electrochimica Acta, 2021, 387, 138468.	2.6	11
342	Single-atom M–N–C catalysts for oxygen reduction electrocatalysis. Trends in Chemistry, 2021, 3, 779-794.	4.4	37
343	Systematic study of precursor effects on structure and oxygen reduction reaction activity of FeNC catalysts. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200337.	1.6	1
344	Unraveling the Origin of Sulfurâ€Đoped Feâ€Nâ€C Singleâ€Atom Catalyst for Enhanced Oxygen Reduction Activity: Effect of Iron Spin‧tate Tuning. Angewandte Chemie, 2021, 133, 25608-25614.	1.6	38
345	Mechanochemical Synthesis as a Greener Way to Produce Ironâ€based Oxygen Reduction Catalysts. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	0.6	3
346	Insight into the Role and Strategies of Metal–Organic Frameworks in Direct Methanol Fuel Cells: A Review. Energy & Fuels, 2021, 35, 15265-15284.	2.5	18
347	Unraveling the Origin of Sulfurâ€Doped Feâ€Nâ€C Singleâ€Atom Catalyst for Enhanced Oxygen Reduction Activity: Effect of Iron Spinâ€State Tuning. Angewandte Chemie - International Edition, 2021, 60, 25404-25410.	7.2	177
348	Wood Carbon Based Single-Atom Catalyst for Rechargeable Zn–Air Batteries. ACS Energy Letters, 2021, 6, 3624-3633.	8.8	103

#	Article	IF	CITATIONS
349	M-N-C-based single-atom catalysts for H2, O2 & CO2 electrocatalysis: activity descriptors, active sites identification, challenges and prospects. Fuel, 2021, 304, 121420.	3.4	63
350	Molecular-MN4 vs atomically dispersed Mâ^'N4â^'C electrocatalysts for oxygen reduction reaction. Coordination Chemistry Reviews, 2021, 446, 214122.	9.5	88
351	In situ 57Fe mössbauer study of a porphyrin based FeNC catalyst for ORR. Electrochimica Acta, 2021, 395, 139200.	2.6	14
352	Fe-Nx doped carbon nanotube as a high efficient cathode catalyst for proton exchange membrane fuel cell. Chemical Engineering Journal, 2021, 423, 130241.	6.6	23
353	Recent advances in non-precious metal electrocatalysts for oxygen reduction in acidic media and PEMFCs: an activity, stability and mechanism study. Green Chemistry, 2021, 23, 6898-6925.	4.6	32
354	⁵⁷ Fe-Enrichment effect on the composition and performance of Fe-based O ₂ -reduction electrocatalysts. Physical Chemistry Chemical Physics, 2021, 23, 9147-9157.	1.3	10
355	Pyrolyzed M–N _x catalysts for oxygen reduction reaction: progress and prospects. Energy and Environmental Science, 2021, 14, 2158-2185.	15.6	170
356	Role of Nitrogen Precursor on the Activity Descriptor towards Oxygen Reduction Reaction in Ironâ€Based Catalysts. ChemistrySelect, 2018, 3, 6542-6550.	0.7	9
357	Highly efficient and sustainable non-precious-metal Fe–N–C electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 2527-2539.	5.2	214
358	Recent Progress in the Identification of Active Sites in Pyrolyzed Feâ [~] N/C Catalysts and Insights into Their Role in Oxygen Reduction Reaction. Journal of Electrochemical Science and Technology, 2017, 8, 169-182.	0.9	22
359	Recent Advances in Single-Atom Electrocatalysts for Oxygen Reduction Reaction. Research, 2020, 2020, 9512763.	2.8	45
360	Carbon-based single atom catalysts for tailoring the ORR pathway: a concise review. Journal of Materials Chemistry A, 2021, 9, 24803-24829.	5.2	60
361	A confined thermal transformation strategy to synthesize single atom catalysts supported on nitrogen-doped mesoporous carbon nanospheres for selective hydrogenation. Journal of Materials Chemistry A, 2021, 9, 25488-25494.	5.2	3
362	Atomic Fe–N ₅ catalytic sites embedded in N-doped carbon as a highly efficient oxygen electrocatalyst for zinc–air batteries. Materials Chemistry Frontiers, 2021, 5, 8127-8137.	3.2	13
363	Stabilizing Fe–N–C Catalysts as Model for Oxygen Reduction Reaction. Advanced Science, 2021, 8, e2102209.	5.6	102
364	Fe-N4 Doped Carbon Nanotube Cathode Catalyst for PEM Fuel Cells. ACS Applied Materials & Interfaces, 2021, 13, 48923-48933.	4.0	18
365	Functionalized Iron–Nitrogen–Carbon Electrocatalyst Provides a Reversible Electron Transfer Platform for Efficient Uranium Extraction from Seawater. Advanced Materials, 2021, 33, e2106621.	11.1	184
366	Tuning the pâ€Orbital Electron Structure of sâ€Block Metal Ca Enables a Highâ€Performance Electrocatalyst for Oxygen Reduction. Advanced Materials, 2021, 33, e2107103.	11.1	71

#	Article	IF	Citations
367	Site-density engineering of single-atomic iron catalysts for high-performance proton exchange membrane fuel cells. Applied Catalysis B: Environmental, 2022, 302, 120860.	10.8	42
368	Highly Dispersive Metal Atoms Anchored on Carbon Matrix Obtained by Direct Rapid Pyrolysis of Metal Complexes. CCS Chemistry, 2022, 4, 2968-2979.	4.6	9
369	FeN4-doped carbon nanotubes derived from metal organic frameworks for effective degradation of organic dyes by peroxymonosulfate: Impacts of FeN4 spin states. Chemical Engineering Journal, 2022, 431, 133339.	6.6	13
370	Communication—On the Lack of Correlation between the Voltammetric Redox Couple and ORR Activity of Fe-N-C Catalysts. Journal of the Electrochemical Society, 2020, 167, 134510.	1.3	7
371	Facilitating the acidic oxygen reduction of Fe–N–C catalysts by fluorine-doping. Materials Horizons, 2022, 9, 417-424.	6.4	39
372	Potential of MXene-Based Heterostructures for Energy Conversion and Storage. ACS Energy Letters, 2022, 7, 78-96.	8.8	69
373	Restricted diffusion preparation of fully-exposed Fe single-atom catalyst on carbon nanospheres for efficient oxygen reduction reaction. Applied Catalysis B: Environmental, 2022, 305, 121058.	10.8	42
374	Metal-containing heteroatom doped carbon nanomaterials for ORR, OER, and HER. , 2022, , 169-211.		0
375	Synthetic strategies of single-atoms catalysts and applications in electrocatalysis. Electrochimica Acta, 2022, 409, 139835.	2.6	8
376	Reusable Iron/Iron Oxide-based Nanoparticles Catalyzed Organic Reactions. Current Organic Chemistry, 2022, 26, 399-417.	0.9	2
377	Abrading bulk metal into single atoms. Nature Nanotechnology, 2022, 17, 403-407.	15.6	102
378	Boosting oxygen reduction reaction with Fe and Se dual-atom sites supported by nitrogen-doped porous carbon. Applied Catalysis B: Environmental, 2022, 308, 121206.	10.8	82
379	Electronic engineering of amorphous Fe–Co–S sites in hetero-nanoframes for oxygen evolution and flexible Al–air batteries. Journal of Materials Chemistry A, 2022, 10, 19757-19768.	5.2	11
380	Vicinal Co atom-coordinated Fe–N–C catalysts to boost the oxygen reduction reaction. Journal of Materials Chemistry A, 2022, 10, 9886-9891.	5.2	21
381	Biomass derived Fe-N/C catalyst for efficiently catalyzing oxygen reduction reaction in both alkaline and neutral pH conditions. Chinese Chemical Letters, 2023, 34, 107236.	4.8	5
383	Identification of Catalytic Active Sites for Durable Proton Exchange Membrane Fuel Cell: Catalytic Degradation and Poisoning Perspectives. Small, 2022, 18, e2106279.	5.2	25
384	Fe ₃ O ₄ Templated Pyrolyzed Feâ^'Nâ^'C Catalysts. Understanding the role of Nâ€Functions and Fe ₃ C on the ORR Activity and Mechanism. ChemElectroChem, 2022, 9, .	1.7	6
386	Geometrically Deformed Iron-Based Single-Atom Catalysts for High-Performance Acidic Proton Exchange Membrane Fuel Cells. ACS Catalysis, 2022, 12, 5397-5406.	5.5	43

#	Article	IF	CITATIONS
387	Theoryâ€Guided Regulation of FeN ₄ Spin State by Neighboring Cu Atoms for Enhanced Oxygen Reduction Electrocatalysis in Flexible Metal–Air Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	93
388	Synergistic Modulation of Multiple Active-Sites in Fe-N-C for High-Efficiency Oxygen Reduction Electrocatalysis. SSRN Electronic Journal, 0, , .	0.4	0
389	High loading of single atomic iron sites in Fe–NC oxygen reduction catalysts for proton exchange membrane fuel cells. Nature Catalysis, 2022, 5, 311-323.	16.1	248
390	Theoryâ€Guided Regulation of FeN ₄ Spin State by Neighboring Cu Atoms for Enhanced Oxygen Reduction Electrocatalysis in Flexible Metal–Air Batteries. Angewandte Chemie, 0, , .	1.6	8
391	Seizing gaseous Fe ²⁺ to densify O ₂ -accessible Fe–N ₄ sites for high-performance proton exchange membrane fuel cells. Energy and Environmental Science, 2022, 15, 3033-3040.	15.6	49
392	Promoting oxygen reduction <i>via</i> coordination environment modulation through secondary metal-atom incorporation. Journal of Materials Chemistry A, 2022, 10, 19626-19634.	5.2	9
393	A Stabilized Assisted Method for the Synthesis of Fe-N-C Catalysts for the Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2022, 169, 062501.	1.3	2
394	Synergy of staggered stacking confinement and microporous defect fixation for high-density atomic Fell-N4 oxygen reduction active sites. Chinese Journal of Catalysis, 2022, 43, 1870-1878.	6.9	9
395	Nitrogenâ€Rich Carbonaceous Materials for Advanced Oxygen Electrocatalysis: Synthesis, Characterization, and Activity of Nitrogen Sites. Advanced Functional Materials, 2022, 32, .	7.8	59
396	Oxygen reduction reaction by metallocorroles and metallophthalocyanines. , 2022, , 79-124.		1
397	Identification of a Robust and Durable FeN ₄ C _{<i>x</i>} Catalyst for ORR in PEM Fuel Cells and the Role of the Fifth Ligand. ACS Catalysis, 2022, 12, 7541-7549.	5.5	30
398	Molecularly Engineered Carbon Platform To Anchor Edge-Hosted Single-Atomic M–N/C (M = Fe, Co, Ni,) Tj ETQa	1 ₅ .5 ^{0.784}	1314 rgBT /
399	Insights into MXenes-based electrocatalysts for oxygen reduction. Energy, 2022, 255, 124465.	4.5	15
400	Axial ligand promoted phosphate tolerance of an atomically dispersed Fe catalyst towards the oxygen reduction reaction. Journal of Materials Chemistry A, 2022, 10, 16722-16729.	5.2	6
401	Valorization of the inedible pistachio shells into nanoscale transition metal and nitrogen codoped carbon-based electrocatalysts for hydrogen evolution reaction and oxygen reduction reaction. Materials for Renewable and Sustainable Energy, 2022, 11, 131-141.	1.5	20
402	3D porous carbon conductive network with highly dispersed Fe-Nx sites catalysts for oxygen reduction reaction. Nanotechnology, 0, , .	1.3	2
403	S-doped M-N-C catalysts for the oxygen reduction reaction: Synthetic strategies, characterization, and mechanism. Journal of Electroanalytical Chemistry, 2022, 920, 116637.	1.9	14
404	Kinetic Diagnostics and Synthetic Design of Platinum Group Metal-Free Electrocatalysts for the Oxygen Reduction Reaction Using Reactivity Maps and Site Utilization Descriptors. Journal of the American Chemical Society, 2022, 144, 13487-13498.	6.6	18

#	Article	IF	CITATIONS
405	CeO ₂ Nanoparticles Boosted Feâ€N Sites Derived from Dual Metal Organic Frameworks toward Highly Active and Durable Oxygen Reduction Reaction. Advanced Materials Interfaces, 2022, 9, .	1.9	4
406	Efficient Electrocatalytic Reduction of CO ₂ to Ethane over Nitrogen-Doped Fe ₂ O ₃ . Journal of the American Chemical Society, 2022, 144, 14769-14777.	6.6	41
407	Boosting peroxymonosulfate activation by porous single-atom catalysts with FeN4O1 configuration for efficient organic pollutants degradation. Chemical Engineering Journal, 2022, 450, 138469.	6.6	25
408	Multi-sites synergistic modulation in oxygen reduction electrocatalysis. Journal of Colloid and Interface Science, 2023, 629, 697-705.	5.0	11
409	Mechanism insight into the oxygen reduction reaction on dual FeN ₂ embedded graphene for proton exchange membrane fuel cells. Sustainable Energy and Fuels, 2022, 6, 4024-4033.	2.5	3
410	A Stabilization Synthesis Strategy for Atomically Dispersed Metal-N4 Electrocatalysts Via Aerogel Confinement and Ammonia Pyrolyzing. SSRN Electronic Journal, 0, , .	0.4	0
411	Identification of the Catalytically Dominant Iron Environment in Iron- and Nitrogen-Doped Carbon Catalysts for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2022, 144, 16827-16840.	6.6	35
412	Molecular Degradation of Iron Phthalocyanine during the Oxygen Reduction Reaction in Acidic Media. ACS Catalysis, 2022, 12, 11097-11107.	5.5	16
413	Highly active Nâ€doped nonâ€precious transition metal Fe@ <scp>N–C</scp> catalysts for efficient oxygen reduction reaction in microbial fuel cells. International Journal of Energy Research, 2022, 46, 23234-23243.	2.2	4
414	A stabilization synthesis strategy for atomically dispersed metal-N4 electrocatalysts via aerogel confinement and ammonia pyrolyzing. Nano Energy, 2022, 104, 107869.	8.2	9
415	Heterogeneous M-N-C Catalysts for Aerobic Oxidation Reactions: Lessons from Oxygen Reduction Electrocatalysts. Chemical Reviews, 2023, 123, 6233-6256.	23.0	31
416	Substituent Effects in Iron Porphyrin Catalysts for the Hydrogen Evolution Reaction**. Chemistry - A European Journal, 2023, 29, .	1.7	9
417	Effect of Electrolyte Media on the Catalysis of Fe Phthalocyanine toward the Oxygen Reduction Reaction: Ab Initio Molecular Dynamics Simulations and Experimental Analyses. ACS Catalysis, 2022, 12, 12786-12799.	5.5	14
418	Are Fe–N–C Electrocatalysts an Alternative to Pt-Based Electrocatalysts for the Next Generation of Proton Exchange Membrane Fuel Cells?. ACS Catalysis, 2022, 12, 13853-13875.	5.5	24
419	Pyrolysis temperature-switchable Fe-N sites in pharmaceutical sludge biochar toward peroxymonosulfate activation for efficient pollutants degradation. Water Research, 2023, 228, 119328.	5.3	11
420	Investigation of the Structure of Atomically Dispersed NiN _{<i>x</i>} Sites in Ni and N-Doped Carbon Electrocatalysts by ⁶¹ Ni M¶ssbauer Spectroscopy and Simulations. Journal of the American Chemical Society, 2022, 144, 21741-21750.	6.6	2
421	The Active Sites and Corresponding Stability Challenges of the Mâ€N Catalysts for Proton Exchange Membrane Fuel Cell. Chinese Journal of Chemistry, 2023, 41, 710-724.	2.6	6
422	Fe–Nx active sites in Fe–N–C electrocatalysts synthesized using electron beam irradiation. Journal of the Korean Physical Society, 2023, 82, 286-292.	0.3	1

#	Article	IF	CITATIONS
423	Regulating Spin States in Oxygen Electrocatalysis. Angewandte Chemie - International Edition, 2023, 62,	7.2	20
424	Electrocatalysis Mechanism and Structure–Activity Relationship of Atomically Dispersed Metalâ€Nitrogenâ€Carbon Catalysts for Electrocatalytic Reactions. Small Methods, 2023, 7, .	4.6	7
425	Regulating Spin States in Oxygen Electrocatalysis. Angewandte Chemie, 2023, 135, .	1.6	3
426	Rational Design of Atomically Dispersed Metal Site Electrocatalysts for Oxygen Reduction Reaction. Advanced Science, 2023, 10, .	5.6	14
427	Mass Production of Sulfurâ€Tuned Singleâ€Atom Catalysts for Zn–Air Batteries. Advanced Materials, 0, , 2209948.	11.1	23
428	FeNC Oxygen Reduction Electrocatalyst with High Utilization Pentaâ€Coordinated Sites. Advanced Materials, 2023, 35, .	11.1	22
429	Degradation Mechanisms of Platinum Group Metalâ€Free Oxygen Reduction Reaction Catalyst based on Iron Phthalocyanine. ChemElectroChem, 2023, 10, .	1.7	4
430	Evolution of Stabilized 1Tâ€MoS ₂ by Atomicâ€Interface Engineering of 2Hâ€MoS ₂ /Feâ^'N _{<i>x</i>} towards Enhanced Sodium Ion Storage. Angewandte Chemie, 2023, 135, .	1.6	19
431	Evolution of Stabilized 1Tâ€MoS ₂ by Atomicâ€Interface Engineering of 2Hâ€MoS ₂ /Feâ^'N _{<i>x</i>} towards Enhanced Sodium Ion Storage. Angewandte Chemie - International Edition, 2023, 62, .	7.2	28
432	Influence of the addition of nanoparticles on the oxygen reduction reaction characteristics of FeNC catalysts and the impact on the stability. Journal of Power Sources, 2023, 561, 232713.	4.0	1
433	GDE vs RDE: Impact of operation conditions on intrinsic catalytic parameters of FeNC catalyst for the oxygen reduction reaction. Electrochimica Acta, 2023, 444, 142012.	2.6	11
436	STEM High Angle Annular Dark-Field Imaging. Springer Handbooks, 2023, , 409-448.	0.3	0
445	Application of diamond and super-hard carbide in fuel cell catalysis. Ionics, 2023, 29, 4971-4986.	1.2	0
457	PGM-Free Biomass-Derived Electrocatalysts for Oxygen Reduction in Energy Conversion Devices: Promising Materials. Electrochemical Energy Reviews, 2024, 7, .	13.1	0