Insight into the molecular interaction between the cycli domain and the eag domain of the hERG channel

FEBS Letters 588, 2782-2788

DOI: 10.1016/j.febslet.2014.05.056

Citation Report

#	Article	IF	Citations
1	Structural insight into the transmembrane segments 3 and 4 of the hERG potassium channel. Journal of Peptide Science, 2014, 20, 935-944.	0.8	3
2	C-Linker Accounts for Differential Sensitivity of ERG1 and ERG2 K ⁺ Channels to RPR260243-Induced Slow Deactivation. Molecular Pharmacology, 2015, 88, 19-28.	1.0	5
3	Voltage-Gated Potassium Channels (Kv10–Kv12)â~†., 2015, , .		0
4	Sequence of Gating Charge Movement and Pore Gating in hERG Activation and Deactivation Pathways. Biophysical Journal, 2015, 108, 1435-1447.	0.2	21
5	Ginsenoside Rg3, a Gating Modifier of EAG Family K+ Channels. Molecular Pharmacology, 2016, 90, 469-482.	1.0	5
6	Structure of the Cyclic Nucleotide-Binding Homology Domain of the hERG Channel and Its Insight into Type 2 Long QT Syndrome. Scientific Reports, 2016, 6, 23712.	1.6	9
7	Solution NMR Spectroscopy in Target-Based Drug Discovery. Molecules, 2017, 22, 1399.	1.7	32
8	Structural and ligand-binding analysis of the YAP-binding domain of transcription factor TEAD4. Biochemical Journal, 2018, 475, 2043-2055.	1.7	35
9	Binding of RPR260243 at the intracellular side of the hERG1 channel pore domain slows closure of the helix bundle crossing gate. Frontiers in Molecular Biosciences, 0, 10, .	1.6	2