Peptide–perylene diimide functionalized magnetic na turn-on detection and clearance of bacterial lipopolysad

Chemical Communications 50, 6200-6203

DOI: 10.1039/c4cc01266f

Citation Report

#	Article	IF	Citations
1	Brain-Targeted Delivery of Trans-Activating Transcriptor-Conjugated Magnetic PLGA/Lipid Nanoparticles. PLoS ONE, 2014, 9, e106652.	1.1	38
2	Magnetic Nanoparticles from Magnetospirillum gryphiswaldense Increase the Efficacy of Thermotherapy in a Model of Colon Carcinoma. PLoS ONE, 2014, 9, e108959.	1.1	49
3	Preparation of CTAB-loaded magnetic nanospheres for rapid bacterial capture and decontamination. Materials Letters, 2014, 134, 290-294.	1.3	16
4	Exploring the potential of magnetic antimicrobial agents for water disinfection. Water Research, 2014, 66, 160-168.	5. 3	22
5	Peptide–perylene diimide functionalized magnetic nano-platforms for fluorescence turn-on detection and clearance of bacterial lipopolysaccharides. Chemical Communications, 2014, 50, 6200-6203.	2.2	52
6	Next-generation nanoantibacterial tools developed from peptides. Nanomedicine, 2015, 10, 1643-1661.	1.7	8
7	Selective sensing of citrate by a supramolecular ensemble formed by a phenazine copper(<scp>i</scp>) complex and a perylene diimide derivative. New Journal of Chemistry, 2015, 39, 8948-8955.	1.4	5
8	Fluorescence turn-on for the highly selective detection of nitric oxide in vitro and in living cells. Analyst, The, 2016, 141, 2600-2605.	1.7	24
9	Fluorescent turn-on sensing of bacterial lipopolysaccharide in artificial urine sample with sensitivity down to nanomolar by tetraphenylethylene based aggregation induced emission molecule. Biosensors and Bioelectronics, 2016, 85, 62-67.	5. 3	78
10	Colorimetric detection of lipopolysaccharides based on a lipopolysaccharide-binding peptide and AuNPs. Analytical Methods, 2016, 8, 8079-8083.	1.3	21
11	Noncharged and Charged Monodendronised Perylene Bisimides as Highly Fluorescent Labels and their Bioconjugates. Chemistry - A European Journal, 2017, 23, 4849-4862.	1.7	14
12	Magnetic Bead Separation from Flowing Blood in a Two-Phase Continuous-Flow Magnetophoretic Microdevice: Theoretical Analysis through Computational Fluid Dynamics Simulation. Journal of Physical Chemistry C, 2017, 121, 7466-7477.	1.5	21
13	Dopamine coated Fe ₃ O ₄ nanoparticles as enzyme mimics for the sensitive detection of bacteria. Chemical Communications, 2017, 53, 12306-12308.	2.2	62
14	An aptamer-based fluorescence probe for facile detection of lipopolysaccharide in drinks. RSC Advances, 2017, 7, 54920-54926.	1.7	25
15	Luminescent detection of the lipopolysaccharide endotoxin and rapid discrimination of bacterial pathogens using cationic platinum(<scp>ii</scp>) complexes. RSC Advances, 2017, 7, 32632-32636.	1.7	20
16	Detection of endotoxins using nanomaterials. Toxicology and Environmental Health Sciences, 2017, 9, 259-268.	1.1	9
17	The Reverse of Controlled Release: Controlled Sequestration of Species and Biotoxins into Nanoparticles (NPs). From Biomaterials Towards Medical Devices, 2018, , 207-243.	0.0	9
18	Computational modeling and fluorescence microscopy characterization of a two-phase magnetophoretic microsystem for continuous-flow blood detoxification. Lab on A Chip, 2018, 18, 1593-1606.	3.1	21

#	Article	IF	CITATIONS
19	Lipopolysaccharides detection on a grating-coupled surface plasmon resonance smartphone biosensor. Biosensors and Bioelectronics, 2018, 99, 312-317.	5. 3	91
20	Lipopolysaccharide-affinity copolymer senses the rapid motility of swarmer bacteria to trigger antimicrobial drug release. Nature Communications, 2018, 9, 4277.	5.8	17
21	Harnessing the affinity of magnetic nanoparticles toward dye-labeled DNA and developing it as an universal aptasensor revealed by lipopolysaccharide detection. Analytica Chimica Acta, 2018, 1036, 107-114.	2.6	21
22	Highly Sensitive Endotoxin Assay Combining Peptide/Graphene Oxide and DNA-Modified Gold Nanoparticles. ACS Omega, 2019, 4, 14312-14316.	1.6	13
23	A ratiometric fluorescent probe for sensitive determination of the important glycopeptide antibiotic vancomycin. Analytical and Bioanalytical Chemistry, 2019, 411, 8103-8111.	1.9	11
24	Supramolecular Self-Assembly of Perylene Bisimide Derivatives Assisted by Various Groups. Langmuir, 2019, 35, 342-358.	1.6	41
25	A robust OFF-ON fluorescent biosensor for detection and clearance of bacterial endotoxin by specific peptide based aggregation induced emission. Sensors and Actuators B: Chemical, 2020, 304, 127300.	4.0	29
26	Magnetic Nanoparticle-Based Ligand Replacement Strategy for Chemical Luminescence Determination of Cholesterol. Frontiers in Chemistry, 2020, 8, 601636.	1.8	3
27	Bio-inspired perylene diimide coated super paramagnetic nanoparticles for the effective and efficient removal of lead(<scp>ii</scp>) from aqueous medium. Materials Advances, 2020, 1, 1817-1828.	2.6	3
28	An Integrated Theranostic Nanomaterial for Targeted Photodynamic Therapy of Infectious Endophthalmitis. Cell Reports Physical Science, 2020, 1, 100173.	2.8	16
29	Photocatalytically renewable peptide-based electrochemical impedance method for sensing lipopolysaccharide. Mikrochimica Acta, 2020, 187, 349.	2.5	4
30	Charge-switchable magnetic separation and characterization of food additive titanium dioxide nanoparticles from commercial food. Journal of Hazardous Materials, 2020, 393, 122483.	6.5	20
31	Perylene diimide-tagged <i>N</i> -heterocyclic carbene-stabilized gold nanoparticles: How much ligand desorbs from surface in presence of thiols?. Dalton Transactions, 2021, 50, 5598-5606.	1.6	6
32	Retention of perylene diimide optical properties in solid-state materials through tethering to nanodiamonds. Journal of Materials Chemistry C, 2021, 9, 10317-10323.	2.7	2
33	Poly- <scp>l</scp> -lysine-Functionalized Green-Light-Emitting Carbon Dots as a Fluorescence Turn-on Sensor for Ultrasensitive Detection of Endotoxin. ACS Applied Bio Materials, 2021, 4, 3410-3422.	2.3	23
34	A rapid aptamerâ€based fluorescence assay for the detection of lipopolysaccharides using SYBR Green I. Luminescence, 2021, 36, 1632-1637.	1.5	9
35	A water-soluble and photostable aggregation-induced emission lumogen for imaging Gram-negative bacteria by supramolecular assembly. Dyes and Pigments, 2021, 194, 109653.	2.0	6
36	A photosensitizing perylenediimide dye lights up cell nucleolus through visible light-mediated intracellular translocation. Dyes and Pigments, 2021, 196, 109722.	2.0	4

3

#	Article	IF	CITATIONS
37	Novel and green hydroxyperylene imide based fluorescent polymer for calcium sulfate scale inhibition. Journal of Molecular Liquids, 2021, 344, 117730.	2.3	11
38	A metabolic labeling way to in situ fabricate bacterial FRET Platform for innate immune defence molecule. Sensors and Actuators B: Chemical, 2022, 350, 130913.	4.0	4
39	Small-molecule fluorescent probes: big future for specific bacterial labeling and infection detection. Chemical Communications, 2021, 58, 155-170.	2.2	26
40	Supramolecular Nanostructures Based on Perylene Diimide Bioconjugates: From Self-Assembly to Applications. Nanomaterials, 2022, 12, 1223.	1.9	16
41	Atomic-Resolution Structures and Mode of Action of Clinically Relevant Antimicrobial Peptides. International Journal of Molecular Sciences, 2022, 23, 4558.	1.8	11
43	Peptide functionalized nanomaterials as microbial sensors. , 2022, , 327-348.		2
44	Photoluminescent Inorganic Nanoprobeâ€based Pathogen Detection. Chemistry - an Asian Journal, 2022, 17, .	1.7	2
45	Cu ²⁺ -Mediated Aggregation of Gold Nanoparticles as an Optical Probe for the Detection of Endotoxin. Langmuir, 2022, 38, 10826-10835.	1.6	3
46	Peptide-modified carbon dot aggregates for ultrasensitive detection of lipopolysaccharide through aggregation-induced emission enhancement. Talanta, 2023, 253, 123851.	2.9	4
47	Simple and fast colorimetric detection of lipopolysaccharide based on aptamer and SYBR Green I mediated aggregation of gold nanoparticles. International Journal of Biological Macromolecules, 2022, 223, 231-239.	3.6	2
48	Nanoparticleâ€peptide conjugates for bacterial detection and neutralization: Potential applications in diagnostics and therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, .	3.3	2
49	Metal ionâ€induced assembly of dipeptideâ€attached perylenediimide for fluorometric "turn on―detection of biologically important small molecule. Journal of Peptide Science, 2023, 29, .	0.8	1
52	Advances in endotoxin analysis. Advances in Clinical Chemistry, 2024, , 1-34.	1.8	0