Stable lithium electrodeposition in liquid and nanoporc

Nature Materials 13, 961-969

DOI: 10.1038/nmat4041

Citation Report

#	Article	IF	CITATIONS
5	Observation of Lithium Dendrites at Ambient Temperature and Below. ECS Electrochemistry Letters, 2014, 4, A24-A27.	1.9	126
6	Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure. Nano Letters, 2014, 14, 6889-6896.	4.5	326
7	Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth. Journal of Chemical Physics, 2014, 141, 174710.	1.2	311
8	Ionomer-Liquid Electrolyte Hybrid Ionic Conductor for High Cycling Stability of Lithium Metal Electrodes. Scientific Reports, 2015, 5, 14458.	1.6	81
9	Poreless Separator and Electrolyte Additive for Lithium–Sulfur Batteries with High Areal Energy Densities. ChemNanoMat, 2015, 1, 240-245.	1.5	45
10	Hybrid Electrolytes with Controlled Network Structures for Lithium Metal Batteries. Advanced Materials, 2015, 27, 5995-6001.	11.1	297
11	Dendrite-free lithium metal anodes: stable solid electrolyte interphases for high-efficiency batteries. Journal of Materials Chemistry A, 2015, 3, 7207-7209.	5.2	170
12	Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive. Nano Energy, 2015, 15, 135-144.	8.2	297
13	Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium–Sulfur Batteries. ACS Nano, 2015, 9, 6373-6382.	7.3	297
14	Inorganic–Organic Hybrid Ionic Liquid Electrolytes for Na Secondary Batteries. Journal of the Electrochemical Society, 2015, 162, A1409-A1414.	1.3	30
15	A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nature Communications, 2015, 6, 10101.	5.8	386
16	A highly conductive, non-flammable polymer–nanoparticle hybrid electrolyte. RSC Advances, 2015, 5, 20800-20809.	1.7	61
17	A Dendriteâ€Free Lithium Metal Battery Model Based on Nanoporous Polymer/Ceramic Composite Electrolytes and Highâ€Energy Electrodes. Small, 2015, 11, 2631-2635.	5.2	42
18	Stable Cycling of Lithium Metal Batteries Using High Transference Number Electrolytes. Advanced Energy Materials, 2015, 5, 1402073.	10.2	314
19	Anomalous Localization of Electrochemical Activity in Reversible Charge Transfer at a Weierstrass Fractal Electrode: Local Electrochemical Impedance Spectroscopy. Journal of Physical Chemistry B, 2015, 119, 10876-10887.	1.2	14
20	Structural and Chemical Evolution of Amorphous Nickel Iron Complex Hydroxide upon Lithiation/Delithiation. Chemistry of Materials, 2015, 27, 1583-1589.	3.2	20
21	Pyrite FeS ₂ for high-rate and long-life rechargeable sodium batteries. Energy and Environmental Science, 2015, 8, 1309-1316.	15.6	628
22	Stable lithium electrodeposition in salt-reinforced electrolytes. Journal of Power Sources, 2015, 279, 413-418.	4.0	106

		CITATION RE	PORT	
#	Article		IF	CITATIONS
23	High rate and stable cycling of lithium metal anode. Nature Communications, 2015, 6, 6362.		5.8	1,954
24	Thermal relaxation of lithium dendrites. Physical Chemistry Chemical Physics, 2015, 17, 8000	-8005.	1.3	66
25	Rechargeable Lithium-Iodine Batteries with Iodine/Nanoporous Carbon Cathode. Nano Letters 5982-5987.	s, 2015, 15,	4.5	201
26	A Thermally Conductive Separator for Stable Li Metal Anodes. Nano Letters, 2015, 15, 6149-6	5154.	4.5	313
27	Effect of polyacrylonitrile on triethylene glycol diacetate-2-propenoic acid butyl ester gel poly electrolytes with interpenetrating crosslinked network for flexible lithium ion batteries. Journa Power Sources, 2015, 295, 139-148.	mer al of	4.0	40
28	The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite gro Nature Communications, 2015, 6, 7436.	wth.	5.8	1,250
29	Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive. Ch of Materials, 2015, 27, 2591-2599.	emistry	3.2	494
30	Sandwich-structured nanohybrid paper based on controllable growth of nanostructured MnO ₂ on ionic liquid functionalized graphene paper as a flexible supercapacitor electrode. Nanoscale, 2015, 7, 7790-7801.		2.8	63
31	Review on Liâ€6ulfur Battery Systems: an Integral Perspective. Advanced Energy Materials, 20 1500212.)15, 5,	10.2	641
32	Polymer Nanofiber-Guided Uniform Lithium Deposition for Battery Electrodes. Nano Letters, 2 2910-2916.	.015, 15,	4.5	495
33	Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structur Nano Letters, 2015, 15, 3398-3402.	es.	4.5	115
34	Controlled Lithium Dendrite Growth by a Synergistic Effect of Multilayered Graphene Coating Electrolyte Additive. Chemistry of Materials, 2015, 27, 2780-2787.	and an	3.2	177
35	A Highly Reversible Room-Temperature Sodium Metal Anode. ACS Central Science, 2015, 1, 4	49-455.	5.3	733
36	Nanostructured Electrolytes for Stable Lithium Electrodeposition in Secondary Batteries. Accord of Chemical Research, 2015, 48, 2947-2956.	bunts	7.6	195
37	PVP-Assisted Synthesis of Uniform Carbon Coated Li ₂ S/CB for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2015, 7, 25748-25756.	?	4.0	56
38	A chemistry and material perspective on lithium redox flow batteries towards high-density ele energy storage. Chemical Society Reviews, 2015, 44, 7968-7996.	ctrical	18.7	388
39	Light-guided electrodeposition of non-noble catalyst patterns for photoelectrochemical hydro evolution. Energy and Environmental Science, 2015, 8, 3654-3662.	ogen	15.6	25
40	Accommodating lithium into 3D current collectors with a submicron skeleton towards long-lithium metal anodes. Nature Communications, 2015, 6, 8058.	ē	5.8	1,305

		15	0
#	ARTICLE	IF	CITATIONS
41	Surface Treatments. Chemistry of Materials, 2015, 27, 6457-6462.	3.2	299
42	Density functional theory screening of gas-treatment strategies for stabilization of high energy-density lithium metal anodes. Journal of Power Sources, 2015, 296, 150-161.	4.0	57
43	In Situ Formation of Protective Coatings on Sulfur Cathodes in Lithium Batteries with LiFSIâ€Based Organic Electrolytes. Advanced Energy Materials, 2015, 5, 1401792.	10.2	189
44	High voltage LIB cathodes enabled by salt-reinforced liquid electrolytes. Electrochemistry Communications, 2015, 51, 23-26.	2.3	21
45	Grapheneâ€Based Nanocomposites for Energy Storage. Advanced Energy Materials, 2016, 6, 1502159.	10.2	306
46	Atomic Layer Deposition of Li _{<i>x</i>} Al _{<i>y</i>} S Solid tate Electrolytes for Stabilizing Lithiumâ€Metal Anodes. ChemElectroChem, 2016, 3, 858-863.	1.7	104
47	Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High oncentration Electrolyte Layer. Advanced Energy Materials, 2016, 6, 1502151.	10.2	236
48	Graphene oxide modified metallic lithium electrode and its electrochemical performances in lithium–sulfur full batteries and symmetric lithium–metal coin cells. RSC Advances, 2016, 6, 66161-66168.	1.7	25
49	Dendriteâ€Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries. Advanced Materials, 2016, 28, 2888-2895.	11.1	877
50	Toward Ultrahigh apacity V ₂ O ₅ Lithiumâ€Ion Battery Cathodes via Oneâ€Pot Synthetic Route from Precursors to Electrode Sheets. Advanced Materials Interfaces, 2016, 3, 1600173.	1.9	16
51	Liquid Metal Electrodes for Energy Storage Batteries. Advanced Energy Materials, 2016, 6, 1600483.	10.2	139
52	Lithium Fluoride Additives for Stable Cycling of Lithium Batteries at High Current Densities. Advanced Electronic Materials, 2016, 2, 1500246.	2.6	284
53	Breaking Down the Crystallinity: The Path for Advanced Lithium Batteries. Advanced Energy Materials, 2016, 6, 1501933.	10.2	77
54	Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries. Journal of the American Chemical Society, 2016, 138, 15825-15828.	6.6	399
55	Structural modulation of lithium metal-electrolyte interface with three-dimensional metallic interlayer for high-performance lithium metal batteries. Scientific Reports, 2016, 6, 30830.	1.6	74
56	Performance and Degradation of A Lithium-Bromine Rechargeable Fuel Cell Using Highly Concentrated Catholytes. Electrochimica Acta, 2016, 202, 216-223.	2.6	19
57	Computer Simulations of Ion Transport in Polymer Electrolyte Membranes. Annual Review of Chemical and Biomolecular Engineering, 2016, 7, 349-371.	3.3	84
58	Ultrastrong Polyoxyzole Nanofiber Membranes for Dendrite-Proof and Heat-Resistant Battery Separators. Nano Letters, 2016, 16, 2981-2987.	4.5	139

#	Article	IF	CITATIONS
59	Lithium batteries: Improving solid-electrolyte interphases via underpotential solvent electropolymerization. Chemical Physics Letters, 2016, 661, 65-69.	1.2	18
60	Structure–property study of cross-linked hydrocarbon/poly(ethylene oxide) electrolytes with superior conductivity and dendrite resistance. Chemical Science, 2016, 7, 6832-6838.	3.7	71
61	High-performance polymeric ionic liquid–silica hybrid ionogel electrolytes for lithium metal batteries. Journal of Materials Chemistry A, 2016, 4, 13822-13829.	5.2	51
62	K ⁺ Reduces Lithium Dendrite Growth by Forming a Thin, Less-Resistive Solid Electrolyte Interphase. ACS Energy Letters, 2016, 1, 414-419.	8.8	72
63	Transition of lithium growth mechanisms in liquid electrolytes. Energy and Environmental Science, 2016, 9, 3221-3229.	15.6	1,054
64	High temperature electrical energy storage: advances, challenges, and frontiers. Chemical Society Reviews, 2016, 45, 5848-5887.	18.7	268
65	Anodeâ€Free Rechargeable Lithium Metal Batteries. Advanced Functional Materials, 2016, 26, 7094-7102.	7.8	495
66	Nanostructured energy materials for electrochemical energy conversion and storage: A review. Journal of Energy Chemistry, 2016, 25, 967-984.	7.1	409
67	Cation-Deficient Spinel ZnMn ₂ O ₄ Cathode in Zn(CF ₃ SO ₃) ₂ Electrolyte for Rechargeable Aqueous Zn-Ion Battery. Journal of the American Chemical Society, 2016, 138, 12894-12901.	6.6	1,451
68	In situ confocal microscopic observation on inhibiting the dendrite formation of a-CN _x /Li electrode. Journal of Materials Chemistry A, 2016, 4, 15597-15604.	5.2	45
69	Recent Developments of the Lithium Metal Anode for Rechargeable Nonâ€Aqueous Batteries. Advanced Energy Materials, 2016, 6, 1600811.	10.2	306
70	Designing high-energy lithium–sulfur batteries. Chemical Society Reviews, 2016, 45, 5605-5634.	18.7	2,008
71	A Review of Solid Electrolyte Interphases on Lithium Metal Anode. Advanced Science, 2016, 3, 1500213.	5.6	1,306
72	Lithium–Iron Fluoride Battery with In Situ Surface Protection. Advanced Functional Materials, 2016, 26, 1507-1516.	7.8	73
73	Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials, 2016, 1, .	23.3	3,562
74	A stable room-temperature sodium–sulfur battery. Nature Communications, 2016, 7, 11722.	5.8	459
75	Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nature Energy, 2016, 1, .	19.8	1,339
76	Improved Cycling Performance of Lithium–Oxygen Cells by Use of a Lithium Electrode Protected with Conductive Polymer and Aluminum Fluoride. ACS Applied Materials & Interfaces, 2016, 8, 32300-32306.	4.0	34

#	Article	IF	CITATIONS
77	High-Performance Lithium Metal Negative Electrode with a Soft and Flowable Polymer Coating. ACS Energy Letters, 2016, 1, 1247-1255.	8.8	281
78	Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nature Communications, 2016, 7, 10992.	5.8	745
79	Stabilizing lithium metal using ionic liquids for long-lived batteries. Nature Communications, 2016, 7, ncomms11794.	5.8	361
80	A single-ion conducting and shear-thinning polymer electrolyte based on ionic liquid-decorated PMMA nanoparticles for lithium-metal batteries. Journal of Materials Chemistry A, 2016, 4, 18543-18550.	5.2	66
81	A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries. Scientific Reports, 2016, 6, 21771.	1.6	158
82	Dendrite Suppression by Shock Electrodeposition in Charged Porous Media. Scientific Reports, 2016, 6, 28054.	1.6	45
83	Porous Carbon Paper as Interlayer to Stabilize the Lithium Anode for Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2016, 8, 31684-31694.	4.0	83
84	Stabilizing Lithium Metal Anodes by Uniform Li-Ion Flux Distribution in Nanochannel Confinement. Journal of the American Chemical Society, 2016, 138, 15443-15450.	6.6	386
85	SiO ₂ Hollow Nanosphereâ€Based Composite Solid Electrolyte for Lithium Metal Batteries to Suppress Lithium Dendrite Growth and Enhance Cycle Life. Advanced Energy Materials, 2016, 6, 1502214.	10.2	346
86	An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes. Advanced Materials, 2016, 28, 1853-1858.	11.1	1,291
87	MPInterfaces: A Materials Project based Python tool for high-throughput computational screening of interfacial systems. Computational Materials Science, 2016, 122, 183-190.	1.4	95
88	Extremely Accessible Potassium Nitrate (KNO ₃) as the Highly Efficient Electrolyte Additive in Lithium Battery. ACS Applied Materials & Interfaces, 2016, 8, 15399-15405.	4.0	123
89	Poly(3-hexylthiophene)-multi-walled carbon nanotube (1:1) hybrids: Structure and electrochemical properties. Electrochimica Acta, 2016, 209, 111-120.	2.6	15
90	Free-Standing Copper Nanowire Network Current Collector for Improving Lithium Anode Performance. Nano Letters, 2016, 16, 4431-4437.	4.5	597
91	Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth. Advanced Materials, 2016, 28, 2155-2162.	11.1	591
92	Microâ€Patterned Lithium Metal Anodes with Suppressed Dendrite Formation for Post Lithiumâ€lon Batteries. Advanced Materials Interfaces, 2016, 3, 1600140.	1.9	149
93	"Liquid-in-Solid―and "Solid-in-Liquid―Electrolytes with High Rate Capacity and Long Cycling Life for Lithium-Ion Batteries. Chemistry of Materials, 2016, 28, 848-856.	3.2	100
94	Hybrid Hairy Nanoparticle Electrolytes Stabilizing Lithium Metal Batteries. Chemistry of Materials, 2016, 28, 2147-2157.	3.2	69

#	Article	IF	CITATIONS
95	Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nature Nanotechnology, 2016, 11, 626-632.	15.6	1,557
96	Review of developments in lithium secondary battery technology. Underwater Technology, 2016, 33, 153-163.	0.3	8
97	Selfâ€Regulative Nanogelator Solid Electrolyte: A New Option to Improve the Safety of Lithium Battery. Advanced Science, 2016, 3, 1500306.	5.6	63
98	Natural abundance 17O, 6Li NMR and molecular modeling studies of the solvation structures of lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane liquid electrolytes. Journal of Power Sources, 2016, 307, 231-243.	4.0	58
99	Integrated reduced graphene oxide multilayer/Li composite anode for rechargeable lithium metal batteries. RSC Advances, 2016, 6, 11657-11664.	1.7	31
100	Li 2 S 5 -based ternary-salt electrolyte for robust lithium metal anode. Energy Storage Materials, 2016, 3, 77-84.	9.5	236
101	Zeolite coated polypropylene separators with tunable surface properties for lithium-ion batteries. Microporous and Mesoporous Materials, 2016, 226, 406-414.	2.2	51
102	Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2862-2867.	3.3	755
103	Silicon(lithiated)–sulfur full cells with porous silicon anode shielded by Nafion against polysulfides to achieve high capacity and energy density. Nano Energy, 2016, 19, 68-77.	8.2	77
104	Towards stable lithium-sulfur batteries: Mechanistic insights into electrolyte decomposition on lithium metal anode. Energy Storage Materials, 2017, 8, 194-201.	9.5	171
105	Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries. Advanced Functional Materials, 2017, 27, 1605989.	7.8	1,189
106	Highly Stable Sodium Batteries Enabled by Functional Ionic Polymer Membranes. Advanced Materials, 2017, 29, 1605512.	11.1	214
107	Nanoporous Hybrid Electrolytes for Highâ€Energy Batteries Based on Reactive Metal Anodes. Advanced Energy Materials, 2017, 7, 1602367.	10.2	122
108	Turing pattern formation on the sphere for a morphochemical reaction-diffusion model for electrodeposition. Communications in Nonlinear Science and Numerical Simulation, 2017, 48, 484-508.	1.7	43
109	Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal. Nano Letters, 2017, 17, 1132-1139.	4.5	1,081
110	Dendriteâ€Free, Highâ€Rate, Longâ€Life Lithium Metal Batteries with a 3D Crossâ€Linked Network Polymer Electrolyte. Advanced Materials, 2017, 29, 1604460.	11.1	604
111	Pretreatment of Lithium Surface by Using Iodic Acid (HIO ₃) To Improve Its Anode Performance in Lithium Batteries. ACS Applied Materials & Interfaces, 2017, 9, 7068-7074.	4.0	50
112	Nanostructured Metal Oxides and Sulfides for Lithium–Sulfur Batteries. Advanced Materials, 2017, 29, 1601759.	11.1	1,197

0		 n	
			IDT
\sim	IIAI	NLFU	

#	Article	IF	CITATIONS
113	Regulating Li deposition at artificial solid electrolyte interphases. Journal of Materials Chemistry A, 2017, 5, 3483-3492.	5.2	258
114	Dual Functionalities of Carbon Nanotube Films for Dendrite-Free and High Energy–High Power Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 4605-4613.	4.0	67
115	High performance lithium metal anode: Progress and prospects. Energy Storage Materials, 2017, 7, 115-129.	9.5	160
116	Dendriteâ€Free Lithium Anode via a Homogenous Liâ€Ion Distribution Enabled by a Kimwipe Paper. Advanced Sustainable Systems, 2017, 1, 1600034.	2.7	82
117	A stabilized high-energy Li-polyiodide semi-liquid battery with a dually-protected Li anode. Journal of Power Sources, 2017, 347, 136-144.	4.0	17
118	Advanced Micro/Nanostructures for Lithium Metal Anodes. Advanced Science, 2017, 4, 1600445.	5.6	444
119	Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries. CheM, 2017, 2, 258-270.	5.8	474
120	Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nature Energy, 2017, 2, .	19.8	1,048
121	Batteries: Just a spoonful of LiPF6. Nature Energy, 2017, 2, .	19.8	7
122	Core–Shell Nanoparticle Coating as an Interfacial Layer for Dendrite-Free Lithium Metal Anodes. ACS Central Science, 2017, 3, 135-140.	5.3	162
123	Strategies Based on Nitride Materials Chemistry to Stabilize Li Metal Anode. Advanced Science, 2017, 4, 1600517.	5.6	185
124	Flexible Organic–Inorganic Hybrid Solid Electrolytes Formed via Thiol–Acrylate Photopolymerization. Macromolecules, 2017, 50, 1970-1980.	2.2	89
125	A carbon-based 3D current collector with surface protection for Li metal anode. Nano Research, 2017, 10, 1356-1365.	5.8	200
126	Aluminium-ion batteries: developments and challenges. Journal of Materials Chemistry A, 2017, 5, 6347-6367.	5.2	312
127	Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology, 2017, 12, 194-206.	15.6	4,804
128	<i>In Situ</i> Formation of Stable Interfacial Coating for High Performance Lithium Metal Anodes. Chemistry of Materials, 2017, 29, 3572-3579.	3.2	105
129	Functional metal–organic framework boosting lithium metal anode performance via chemical interactions. Chemical Science, 2017, 8, 4285-4291.	3.7	164
130	Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4613-4618.	3.3	285

#	Article	IF	CITATIONS
131	Fluorinated Endâ€Groups in Electrolytes Induce Ordered Electrolyte/Anode Interface Even at Openâ€Circuit Potential as Revealed by Sum Frequency Generation Vibrational Spectroscopy. Advanced Energy Materials, 2017, 7, 1602060.	10.2	29
132	Hierarchical Chitin Fibers with Aligned Nanofibrillar Architectures: A Nonwoven-Mat Separator for Lithium Metal Batteries. ACS Nano, 2017, 11, 6114-6121.	7.3	133
133	Investigating the effect of ionic strength on the suppression of dendrite formation during metal electrodeposition. Physical Chemistry Chemical Physics, 2017, 19, 14745-14760.	1.3	12
134	Review on Highâ€Loading and Highâ€Energy Lithium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1700260.	10.2	1,307
135	Garnet/polymer hybrid ion-conducting protective layer for stable lithium metal anode. Nano Research, 2017, 10, 4256-4265.	5.8	76
136	Methods for the Stabilization of Nanostructured Electrode Materials for Advanced Rechargeable Batteries. Small Methods, 2017, 1, 1700094.	4.6	50
137	Dendrite-Free Lithium Deposition with Self-Aligned Columnar Structure in a Carbonate–Ether Mixed Electrolyte. ACS Energy Letters, 2017, 2, 1296-1302.	8.8	90
138	Carbonate-based additive for improvement of cycle durability of electrodeposited Si-O-C composite anode in glyme-based ionic liquid electrolyte for use in lithium secondary batteries. Electrochimica Acta, 2017, 243, 65-71.	2.6	18
139	Prestoring Lithium into Stable 3D Nickel Foam Host as Dendriteâ€Free Lithium Metal Anode. Advanced Functional Materials, 2017, 27, 1700348.	7.8	686
140	Stable Artificial Solid Electrolyte Interphases for Lithium Batteries. Chemistry of Materials, 2017, 29, 4181-4189.	3.2	199
141	Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries. Nature Communications, 2017, 8, 14589.	5.8	306
142	A reversible dendrite-free high-areal-capacity lithium metal electrode. Nature Communications, 2017, 8, 15106.	5.8	156
143	Towards a generalized iso-density continuum model for molecular solvents in plane-wave DFT. Modelling and Simulation in Materials Science and Engineering, 2017, 25, 015004.	0.8	4
144	Liquefied gas electrolytes for electrochemical energy storage devices. Science, 2017, 356, .	6.0	271
145	A highly flexible semi-tubular carbon film for stable lithium metal anodes in high-performance batteries. Nano Energy, 2017, 38, 504-509.	8.2	73
146	Lithium Batteries with Nearly Maximum Metal Storage. ACS Nano, 2017, 11, 6362-6369.	7.3	180
147	Improving the cyclability performance of lithium-ion batteries by introducing lithium difluorophosphate (LiPO ₂ F ₂) additive. RSC Advances, 2017, 7, 26052-26059.	1.7	93
148	Nanoscale perspective: Materials designs and understandings in lithium metal anodes. Nano Research, 2017, 10, 4003-4026.	5.8	130

#	Article	IF	CITATIONS
149	Conformal Lithium Fluoride Protection Layer on Three-Dimensional Lithium by Nonhazardous Gaseous Reagent Freon. Nano Letters, 2017, 17, 3731-3737.	4.5	377
150	Lithium metal protected by atomic layer deposition metal oxide for high performance anodes. Journal of Materials Chemistry A, 2017, 5, 12297-12309.	5.2	150
151	2D boron nitride nanoflakes as a multifunctional additive in gel polymer electrolytes for safe, long cycle life and high rate lithium metal batteries. Energy and Environmental Science, 2017, 10, 1911-1916.	15.6	282
152	Lithiophilic Cu–Ni core–shell nanowire network as a stable host for improving lithium anode performance. Energy Storage Materials, 2017, 9, 31-38.	9.5	149
153	Soft X-ray ptychography as a tool for in operando morphochemical studies of electrodeposition processes with nanometric lateral resolution. Journal of Electron Spectroscopy and Related Phenomena, 2017, 220, 147-155.	0.8	10
154	Multinuclear NMR Study of the Solid Electrolyte Interface Formed in Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2017, 9, 14741-14748.	4.0	47
155	Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon Granules with 3D Conducting Skeletons. Journal of the American Chemical Society, 2017, 139, 5916-5922.	6.6	410
156	Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Science Advances, 2017, 3, e1601659.	4.7	647
157	Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications. Advanced Science, 2017, 4, 1700032.	5.6	363
158	Uniform Lithium Deposition Induced by Polyacrylonitrile Submicron Fiber Array for Stable Lithium Metal Anode. ACS Applied Materials & Interfaces, 2017, 9, 10360-10365.	4.0	57
159	Influence of sintering additives on Li + conductivity and electrochemical property of perovskite-type Li 3/8 Sr 7/16 Hf 1/4 Ta 3/4 O 3. Electrochimica Acta, 2017, 234, 1-6.	2.6	21
160	Nanostructured Carbon Nitride Polymer-Reinforced Electrolyte To Enable Dendrite-Suppressed Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2017, 9, 11615-11625.	4.0	109
161	Healing High-Loading Sulfur Electrodes with Unprecedented Long Cycling Life: Spatial Heterogeneity Control. Journal of the American Chemical Society, 2017, 139, 8458-8466.	6.6	198
162	Lithium Metal Anodes with an Adaptive "Solid-Liquid―Interfacial Protective Layer. Journal of the American Chemical Society, 2017, 139, 4815-4820.	6.6	460
163	High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3584-3589.	3.3	412
164	3D Porous Cu Current Collector/Liâ€Metal Composite Anode for Stable Lithiumâ€Metal Batteries. Advanced Functional Materials, 2017, 27, 1606422.	7.8	624
165	Controlled deposition of Li metal. Nano Energy, 2017, 32, 241-246.	8.2	70
166	Strong texturing of lithium metal in batteries. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12138-12143.	3.3	188

#	Article	IF	CITATIONS
167	Free-Standing Hollow Carbon Fibers as High-Capacity Containers for Stable Lithium Metal Anodes. Joule, 2017, 1, 563-575.	11.7	329
168	New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases via Cryogenic TEM. Nano Letters, 2017, 17, 7606-7612.	4.5	308
169	Zirconia-supported solid-state electrolytes for high-safety lithium secondary batteries in a wide temperature range. Journal of Materials Chemistry A, 2017, 5, 24677-24685.	5.2	35
170	Interfacial Chemistry Regulation via a Skin-Grafting Strategy Enables High-Performance Lithium-Metal Batteries. Journal of the American Chemical Society, 2017, 139, 15288-15291.	6.6	255
171	Superior Blends Solid Polymer Electrolyte with Integrated Hierarchical Architectures for All-Solid-State Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 36886-36896.	4.0	106
172	Suppressing Lithium Dendrite Growth by Metallic Coating on a Separator. Advanced Functional Materials, 2017, 27, 1704391.	7.8	141
173	Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries. Nature Communications, 2017, 8, 850.	5.8	240
174	A highly elastic and flexible solid-state polymer electrolyte based on ionic liquid-decorated PMMA nanoparticles for lithium batteries. New Journal of Chemistry, 2017, 41, 13096-13103.	1.4	23
175	Ultrafast Charging High Capacity Asphalt–Lithium Metal Batteries. ACS Nano, 2017, 11, 10761-10767.	7.3	80
176	Dumbbell-Shaped Octasilsesquioxanes Functionalized with Ionic Liquids as Hybrid Electrolytes for Lithium Metal Batteries. Chemistry of Materials, 2017, 29, 9275-9283.	3.2	18
177	Designing solid-liquid interphases for sodium batteries. Nature Communications, 2017, 8, 898.	5.8	303
178	Designing solid-electrolyte interphases for lithium sulfur electrodes using ionic shields. Nano Energy, 2017, 41, 573-582.	8.2	34
179	A lithium–carbon nanotube composite for stable lithium anodes. Journal of Materials Chemistry A, 2017, 5, 23434-23439.	5.2	70
180	Simple and Effective Gas-Phase Doping for Lithium Metal Protection in Lithium Metal Batteries. Chemistry of Materials, 2017, 29, 9182-9191.	3.2	32
181	Understanding the molecular mechanism of pulse current charging for stable lithium-metal batteries. Science Advances, 2017, 3, e1701246.	4.7	112
182	High Areal Capacity and Lithium Utilization in Anodes Made of Covalently Connected Graphite Microtubes. Advanced Materials, 2017, 29, 1700783.	11.1	148
183	Mesoporous NiS ₂ Nanospheres Anode with Pseudocapacitance for Highâ€Rate and Longâ€Life Sodiumâ€Ion Battery. Small, 2017, 13, 1701744.	5.2	168
184	Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability. Journal of the American Chemical Society, 2017, 139, 11550-11558.	6.6	398

	CITATION R	EPORT	
#	Article	IF	CITATIONS
185	Gas treatment protection of metallic lithium anode. Chinese Physics B, 2017, 26, 088202.	0.7	3
186	LiF as an Artificial SEI Layer to Enhance the High-Temperature Cycle Performance of Li ₄ Ti ₅ O ₁₂ . Langmuir, 2017, 33, 11164-11169.	1.6	40
187	Polymeric ionic liquid–ionic plastic crystal all-solid-state electrolytes for wide operating temperature range lithium metal batteries. Journal of Materials Chemistry A, 2017, 5, 21362-21369.	5.2	57
188	Designing Artificial Solid-Electrolyte Interphases for Single-Ion and High-Efficiency Transport in Batteries. Joule, 2017, 1, 394-406.	11.7	202
189	Ultrahigh–current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF ₃ framework. Science Advances, 2017, 3, e1701301.	4.7	199
190	Columnar Lithium Metal Anodes. Angewandte Chemie - International Edition, 2017, 56, 14207-14211.	7.2	199
191	Nanodiamonds suppress the growth of lithium dendrites. Nature Communications, 2017, 8, 336.	5.8	327
192	Columnar Lithium Metal Anodes. Angewandte Chemie, 2017, 129, 14395-14399.	1.6	51
193	Dendrite-Free Lithium Metal Anodes in High Performance Lithium-Sulfur Batteries with Bifunctional Carbon Nanofiber Interlayers. Electrochimica Acta, 2017, 252, 127-137.	2.6	46
194	Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage. Nature Communications, 2017, 8, 462.	5.8	48
195	Tuning the morphologies of fluorine-doped tin oxides in the three-dimensional architecture of graphene for high-performance lithium-ion batteries. Nanotechnology, 2017, 28, 395404.	1.3	20
196	Flexible Ti3C2 MXene-lithium film with lamellar structure for ultrastable metallic lithium anodes. Nano Energy, 2017, 39, 654-661.	8.2	163
197	Protected Lithiumâ€Metal Anodes in Batteries: From Liquid to Solid. Advanced Materials, 2017, 29, 1701169.	11.1	596
198	Waterâ€Soluble Sericin Protein Enabling Stable Solid–Electrolyte Interphase for Fast Charging High Voltage Battery Electrode. Advanced Materials, 2017, 29, 1701828.	11.1	147
199	Advanced Porous Carbon Materials for Highâ€Efficient Lithium Metal Anodes. Advanced Energy Materials, 2017, 7, 1700530.	10.2	208
200	Dendriteâ€Suppressed Lithium Plating from a Liquid Electrolyte via Wetting of Li ₃ N. Advanced Energy Materials, 2017, 7, 1700732.	10.2	190
201	Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chemical Reviews, 2017, 117, 10403-10473.	23.0	4,365
202	A facile surface chemistry route to a stabilized lithium metal anode. Nature Energy, 2017, 2, .	19.8	864

#	Article	IF	CITATIONS
203	Stabilizing Li/electrolyte interface with a transplantable protective layer based on nanoscale LiF domains. Nano Energy, 2017, 39, 662-672.	8.2	143
204	Porous Al Current Collector for Dendrite-Free Na Metal Anodes. Nano Letters, 2017, 17, 5862-5868.	4.5	255
205	Pre-planted nucleation seeds for rechargeable metallic lithium anodes. Journal of Materials Chemistry A, 2017, 5, 18862-18869.	5.2	28
206	Correlating Electrode–Electrolyte Interface and Battery Performance in Hybrid Solid Polymer Electrolyteâ€Based Lithium Metal Batteries. Advanced Energy Materials, 2017, 7, 1701231.	10.2	118
207	Surface graphited carbon scaffold enables simple and scalable fabrication of 3D composite lithium metal anode. Journal of Materials Chemistry A, 2017, 5, 19168-19174.	5.2	55
208	Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport. Angewandte Chemie - International Edition, 2017, 56, 13070-13077.	7.2	151
209	Ultrafine Silver Nanoparticles for Seeded Lithium Deposition toward Stable Lithium Metal Anode. Advanced Materials, 2017, 29, 1702714.	11.1	510
210	Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport. Angewandte Chemie, 2017, 129, 13250-13257.	1.6	11
211	Processable and Moldable Sodiumâ€Metal Anodes. Angewandte Chemie - International Edition, 2017, 56, 11921-11926.	7.2	186
212	Processable and Moldable Sodiumâ€Metal Anodes. Angewandte Chemie, 2017, 129, 12083-12088.	1.6	64
213	Combined effect of alkaline cations and organic additives for iodide ion conducting gel polymer electrolytes to enhance efficiency in dye sensitized solar cells. Electrochimica Acta, 2017, 252, 208-214.	2.6	8
214	A review of flexible lithium–sulfur and analogous alkali metal–chalcogen rechargeable batteries. Chemical Society Reviews, 2017, 46, 5237-5288.	18.7	572
215	An InÂVivo Formed Solid Electrolyte Surface Layer Enables Stable Plating of Li Metal. Joule, 2017, 1, 871-886.	11.7	271
216	Decomposition of Ionic Liquids at Lithium Interfaces. 1. <i>Ab Initio</i> Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2017, 121, 28214-28234.	1.5	68
217	Design of Complex Nanomaterials for Energy Storage: Past Success and Future Opportunity. Accounts of Chemical Research, 2017, 50, 2895-2905.	7.6	258
218	The recent advances in constructing designed electrode in lithium metal batteries. Chinese Chemical Letters, 2017, 28, 2171-2179.	4.8	64
219	Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode. Science Advances, 2017, 3, eaao3170.	4.7	252
220	Reviving Lithiumâ€Metal Anodes for Nextâ€Generation Highâ€Energy Batteries. Advanced Materials, 2017, 29, 1700007.	11.1	908

#	Article	IF	CITATIONS
221	Graphitized Carbon Fibers as Multifunctional 3D Current Collectors for High Areal Capacity Li Anodes. Advanced Materials, 2017, 29, 1700389.	11.1	495
222	Making Li-metal electrodes rechargeable by controlling the dendrite growth direction. Nature Energy, 2017, 2, .	19.8	355
223	Biomimetic ant-nest ionogel electrolyte boosts the performance of dendrite-free lithium batteries. Energy and Environmental Science, 2017, 10, 1660-1667.	15.6	211
224	Dendrite-Free Lithium Deposition for Lithium Metal Anodes with Interconnected Microsphere Protection. Chemistry of Materials, 2017, 29, 5906-5914.	3.2	48
225	Lithiumâ€Metal Foil Surface Modification: An Effective Method to Improve the Cycling Performance of Lithiumâ€Metal Batteries. Advanced Materials Interfaces, 2017, 4, 1700166.	1.9	142
226	Poly(dimethylsiloxane) Thin Film as a Stable Interfacial Layer for Highâ€Performance Lithiumâ€Metal Battery Anodes. Advanced Materials, 2017, 29, 1603755.	11.1	454
227	Passivation of Lithium Metal Anode via Hybrid Ionic Liquid Electrolyte toward Stable Li Plating/Stripping. Advanced Science, 2017, 4, 1600400.	5.6	220
228	Ionic liquid and nanoparticle hybrid systems: Emerging applications. Advances in Colloid and Interface Science, 2017, 244, 54-70.	7.0	148
229	Lithium Metal Anodes and Rechargeable Lithium Metal Batteries. Springer Series in Materials Science, 2017, , .	0.4	70
230	A high-performance all-metallocene-based, non-aqueous redox flow battery. Energy and Environmental Science, 2017, 10, 491-497.	15.6	189
231	High Coulombic Efficiency of Lithium Plating/Stripping and Lithium Dendrite Prevention. Springer Series in Materials Science, 2017, , 45-152.	0.4	3
232	Application of Lithium Metal Anodes. Springer Series in Materials Science, 2017, , 153-188.	0.4	1
233	Towards High‧afe Lithium Metal Anodes: Suppressing Lithium Dendrites via Tuning Surface Energy. Advanced Science, 2017, 4, 1600168.	5.6	399
234	The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection. Energy Storage Materials, 2017, 6, 18-25.	9.5	325
235	Molecular understanding of polyelectrolyte binders that actively regulate ion transport in sulfur cathodes. Nature Communications, 2017, 8, 2277.	5.8	117
235	Molecular understanding of polyelectrolyte binders that actively regulate ion transport in sulfur cathodes. Nature Communications, 2017, 8, 2277. Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes. Angewandte Chemie - International Edition, 2018, 57, 5301-5305.	5.8 7.2	117 601
235 236 237	Molecular understanding of polyelectrolyte binders that actively regulate ion transport in sulfur cathodes. Nature Communications, 2017, 8, 2277. Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes. Angewandte Chemie - International Edition, 2018, 57, 5301-5305. Fluoroethylene Carbonate Enabling a Robust LiFâ€rich Solid Electrolyte Interphase to Enhance the Stability of the MoS ₂ Anode for Lithiumâ€Ion Storage. Angewandte Chemie, 2018, 130, 3718-3722.	5.8 7.2 1.6	117 601 40

#	Article	IF	CITATIONS
239	Engineering of lithium-metal anodes towards a safe and stable battery. Energy Storage Materials, 2018, 14, 22-48.	9.5	213
240	A "cation-anion regulation―synergistic anode host for dendrite-free lithium metal batteries. Science Advances, 2018, 4, eaar4410.	4.7	241
241	Recent progress and perspective on lithium metal anode protection. Energy Storage Materials, 2018, 14, 199-221.	9.5	195
242	Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery. Nanoscale, 2018, 10, 6125-6138.	2.8	215
243	Suppressing Dendritic Lithium Formation Using Porous Media in Lithium Metal-Based Batteries. Nano Letters, 2018, 18, 2067-2073.	4.5	154
244	Li metal batteries and solid state batteries benefiting from halogen-based strategies. Energy Storage Materials, 2018, 14, 100-117.	9.5	108
245	A superior composite gel polymer electrolyte of Li7La3Zr2O12- poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Materials Research Bulletin, 2018, 102, 412-417.	Tf 50 507 2.7	Td (fluoride-h 81
246	A synergistic strategy for stable lithium metal anodes using 3D fluorine-doped graphene shuttle-implanted porous carbon networks. Nano Energy, 2018, 49, 179-185.	8.2	138
247	Mg ₂ B ₂ O ₅ Nanowire Enabled Multifunctional Solid-State Electrolytes with High Ionic Conductivity, Excellent Mechanical Properties, and Flame-Retardant Performance. Nano Letters, 2018, 18, 3104-3112.	4.5	245
248	Nanoporous and lyophilic battery separator from regenerated eggshell membrane with effective suppression of dendritic lithium growth. Energy Storage Materials, 2018, 14, 258-266.	9.5	69
249	Dual‣ayered Film Protected Lithium Metal Anode to Enable Dendriteâ€Free Lithium Deposition. Advanced Materials, 2018, 30, e1707629.	11.1	378
250	Toward High Performance Lithium–Sulfur Batteries Based on Li ₂ S Cathodes and Beyond: Status, Challenges, and Perspectives. Advanced Functional Materials, 2018, 28, 1800154.	7.8	107
251	Perspectives for restraining harsh lithium dendrite growth: Towards robust lithium metal anodes. Energy Storage Materials, 2018, 15, 148-170.	9.5	247
252	Advancing Lithium Metal Batteries. Joule, 2018, 2, 833-845.	11.7	1,052
253	Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes. Nature Communications, 2018, 9, 1339.	5.8	265
254	A bidirectional growth mechanism for a stable lithium anode by a platinum nanolayer sputtered on a polypropylene separator. RSC Advances, 2018, 8, 13034-13039.	1.7	21
255	PEEKâ€WC/Nanosponge Membranes for Lithiumâ€Anode Protection in Rechargeable Liâ^'O 2 Batteries. ChemElectroChem, 2018, 5, 1599-1605.	1.7	14
256	Mesoporous Hybrid Electrolyte for Simultaneously Inhibiting Lithium Dendrites and Polysulfide Shuttle in Liâ \in "S Batteries. Advanced Energy Materials, 2018, 8, 1703124.	10.2	42

#	Article	IF	CITATIONS
257	Exceeding 6500 cycles for LiFePO ₄ /Li metal batteries through understanding pulsed charging protocols. Journal of Materials Chemistry A, 2018, 6, 4746-4751.	5.2	38
258	Dendrite formation in silicon anodes of lithium-ion batteries. RSC Advances, 2018, 8, 5255-5267.	1.7	55
259	Elektrolytadditive für Lithiummetallanoden und wiederaufladbare Lithiummetallbatterien: Fortschritte und Perspektiven. Angewandte Chemie, 2018, 130, 15220-15246.	1.6	54
260	Fluoroethylene Carbonate Enabling a Robust LiFâ€rich Solid Electrolyte Interphase to Enhance the Stability of the MoS ₂ Anode for Lithiumâ€lon Storage. Angewandte Chemie - International Edition, 2018, 57, 3656-3660.	7.2	149
261	3D Flexible Carbon Felt Host for Highly Stable Sodium Metal Anodes. Advanced Energy Materials, 2018, 8, 1702764.	10.2	274
262	Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries. Nature Communications, 2018, 9, 464.	5.8	250
263	Ionic liquids and derived materials for lithium and sodium batteries. Chemical Society Reviews, 2018, 47, 2020-2064.	18.7	452
264	Lithiation-Derived Repellent toward Lithium Anode Safeguard in Quasi-solid Batteries. CheM, 2018, 4, 298-307.	5.8	63
265	Microscale Lithium Metal Stored inside Cellular Graphene Scaffold toward Advanced Metallic Lithium Anodes. Advanced Energy Materials, 2018, 8, 1703152.	10.2	144
266	Phase-field modeling of solid electrolyte interface (SEI) influence on Li dendritic behavior. Electrochimica Acta, 2018, 265, 609-619.	2.6	88
267	Superhierarchical Cobaltâ€Embedded Nitrogenâ€Doped Porous Carbon Nanosheets as Twoâ€inâ€One Hosts for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials, 2018, 30, e1706895.	11.1	300
268	Dendriteâ€Free and Performanceâ€Enhanced Lithium Metal Batteries through Optimizing Solvent Compositions and Adding Combinational Additives. Advanced Energy Materials, 2018, 8, 1703022.	10.2	123
269	2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteries. Nature Nanotechnology, 2018, 13, 337-344.	15.6	624
270	A Material Perspective of Rechargeable Metallic Lithium Anodes. Advanced Energy Materials, 2018, 8, 1702296.	10.2	95
271	Stable Lithium Electrodeposition at Ultraâ€High Current Densities Enabled by 3D PMF/Li Composite Anode. Advanced Energy Materials, 2018, 8, 1703360.	10.2	194
272	Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives. Angewandte Chemie - International Edition, 2018, 57, 15002-15027.	7.2	551
273	High Li ⁺ lonic Flux Separator Enhancing Cycling Stability of Lithium Metal Anode. ACS Sustainable Chemistry and Engineering, 2018, 6, 2961-2968.	3.2	45
274	Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1156-1161.	3.3	512

#	Article	IF	CITATIONS
275	Trapping Lithium into Hollow Silica Microspheres with a Carbon Nanotube Core for Dendrite-Free Lithium Metal Anodes. Nano Letters, 2018, 18, 297-301.	4.5	130
276	Design Principles of Functional Polymer Separators for Highâ€Energy, Metalâ€Based Batteries. Small, 2018, 14, e1703001.	5.2	155
277	Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries. CheM, 2018, 4, 174-185.	5.8	682
278	A Flexible Solid Electrolyte Interphase Layer for Long‣ife Lithium Metal Anodes. Angewandte Chemie, 2018, 130, 1521-1525.	1.6	82
279	3D printed separator for the thermal management of high-performance Li metal anodes. Energy Storage Materials, 2018, 12, 197-203.	9.5	95
280	Lithiophilic Cu uOâ€Ni Hybrid Structure: Advanced Current Collectors Toward Stable Lithium Metal Anodes. Advanced Materials, 2018, 30, 1705830.	11.1	217
281	Do imaging techniques add real value to the development of better post-Li-ion batteries?. Journal of Materials Chemistry A, 2018, 6, 3304-3327.	5.2	36
282	Uniform Lithium Nucleation/Growth Induced by Lightweight Nitrogenâ€Đoped Graphitic Carbon Foams for Highâ€Performance Lithium Metal Anodes. Advanced Materials, 2018, 30, 1706216.	11.1	401
283	Mixed Ionic and Electronic Conductor for Liâ€Metal Anode Protection. Advanced Materials, 2018, 30, 1705105.	11.1	92
284	Poly (dimethylsiloxane) modified lithium anode for enhanced performance of lithium-sulfur batteries. Energy Storage Materials, 2018, 13, 151-159.	9.5	92
285	Artificial Soft–Rigid Protective Layer for Dendriteâ€Free Lithium Metal Anode. Advanced Functional Materials, 2018, 28, 1705838.	7.8	470
286	Design of ionic liquid-based hybrid electrolytes with additive for lithium insertion in graphite effectively and their effects on interfacial properties. Ionics, 2018, 24, 2601-2609.	1.2	4
287	Insight into the effect of lithium-dendrite suppression by lithium bis(fluorosulfony)imide/1,2-dimethoxyethane electrolytes. Electrochimica Acta, 2018, 277, 116-126.	2.6	9
288	Recent Advances in Designing Highâ€Capacity Anode Nanomaterials for Liâ€Ion Batteries and Their Atomicâ€5cale Storage Mechanism Studies. Advanced Science, 2018, 5, 1700902.	5.6	63
289	Vertically Aligned and Continuous Nanoscale Ceramic–Polymer Interfaces in Composite Solid Polymer Electrolytes for Enhanced Ionic Conductivity. Nano Letters, 2018, 18, 3829-3838.	4.5	268
290	Stabilization of Lithium-Metal Batteries Based on the in Situ Formation of a Stable Solid Electrolyte Interphase Layer. ACS Applied Materials & Interfaces, 2018, 10, 17985-17993.	4.0	82
291	Uniform Li deposition regulated <i>via</i> three-dimensional polyvinyl alcohol nanofiber networks for effective Li metal anodes. Nanoscale, 2018, 10, 10018-10024.	2.8	46
292	Stable Li metal anode with protected interface for high-performance Li metal batteries. Energy Storage Materials, 2018, 15, 249-256.	9.5	89

#	Article	IF	CITATIONS
293	Two-Dimensional Phosphorene-Derived Protective Layers on a Lithium Metal Anode for Lithium-Oxygen Batteries. ACS Nano, 2018, 12, 4419-4430.	7.3	115
294	Ladderlike carbon nanoarrays on 3D conducting skeletons enable uniform lithium nucleation for stable lithium metal anodes. Chemical Communications, 2018, 54, 5330-5333.	2.2	38
295	A Universal Organic Cathode for Ultrafast Lithium and Multivalent Metal Batteries. Angewandte Chemie, 2018, 130, 7264-7268.	1.6	51
296	A Universal Organic Cathode for Ultrafast Lithium and Multivalent Metal Batteries. Angewandte Chemie - International Edition, 2018, 57, 7146-7150.	7.2	177
297	Self-heating–induced healing of lithium dendrites. Science, 2018, 359, 1513-1516.	6.0	378
298	High Voltage Operation of Niâ€Rich NMC Cathodes Enabled by Stable Electrode/Electrolyte Interphases. Advanced Energy Materials, 2018, 8, 1800297.	10.2	298
299	Hierarchically Bicontinuous Porous Copper as Advanced 3D Skeleton for Stable Lithium Storage. ACS Applied Materials & Interfaces, 2018, 10, 13552-13561.	4.0	95
300	Progress and Perspective of Solid tate Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1707570.	7.8	194
301	Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3770-3775.	3.3	250
302	Highâ€Voltage Lithiumâ€Metal Batteries Enabled by Localized Highâ€Concentration Electrolytes. Advanced Materials, 2018, 30, e1706102.	11.1	761
303	Insight into the Mechanism of Improved Interfacial Properties between Electrodes and Electrolyte in the Graphite/LiNi _{0.6} Mn _{0.2} Co _{0.2} O _{O₂ Cell via Incorporation of 4-Propyl-[1,3,2]dioxathiolane-2,2-dioxide (PDTD). ACS Applied Materials & amp; Interfaces, 2018, 10, 16400-16409.}	4.0	47
304	In Situ Plating of Porous Mg Network Layer to Reinforce Anode Dendrite Suppression in Li-Metal Batteries. ACS Applied Materials & Interfaces, 2018, 10, 12678-12689.	4.0	88
305	Suppressing Li Dendrite Formation in Li ₂ Sâ€₽ ₂ S ₅ Solid Electrolyte by Lil Incorporation. Advanced Energy Materials, 2018, 8, 1703644.	10.2	303
306	Dendrite-free Li metal anode by lowering deposition interface energy with Cu99Zn alloy coating. Energy Storage Materials, 2018, 14, 143-148.	9.5	99
307	Crumpled Graphene Balls Stabilized Dendrite-free Lithium Metal Anodes. Joule, 2018, 2, 184-193.	11.7	300
308	Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free Li metal anodes. Energy Storage Materials, 2018, 10, 199-205.	9.5	215
309	ZnO/carbon framework derived from metal-organic frameworks as a stable host for lithium metal anodes. Energy Storage Materials, 2018, 11, 191-196.	9.5	122
310	Recent development in lithium metal anodes of liquid-state rechargeable batteries. Journal of Alloys and Compounds, 2018, 730, 135-149.	2.8	44

#	Article	IF	CITATIONS
311	Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries. Advanced Energy Materials, 2018, 8, 1702097.	10.2	704
312	Lowâ€Polarization Lithium–Oxygen Battery Using [DEME][TFSI] Ionic Liquid Electrolyte. ChemSusChem, 2018, 11, 229-236.	3.6	35
313	High Polarity Poly(vinylidene difluoride) Thin Coating for Dendriteâ€Free and Highâ€Performance Lithium Metal Anodes. Advanced Energy Materials, 2018, 8, 1701482.	10.2	259
314	Advances in Interfaces between Li Metal Anode and Electrolyte. Advanced Materials Interfaces, 2018, 5, 1701097.	1.9	200
315	Building Organic/Inorganic Hybrid Interphases for Fast Interfacial Transport in Rechargeable Metal Batteries. Angewandte Chemie - International Edition, 2018, 57, 992-996.	7.2	178
316	A Flexible Solid Electrolyte Interphase Layer for Long‣ife Lithium Metal Anodes. Angewandte Chemie - International Edition, 2018, 57, 1505-1509.	7.2	590
317	Facile fabrication of polyether sulfone (PES) protecting layer on Cu foil for stable Li metal anode. Electrochimica Acta, 2018, 260, 407-412.	2.6	19
318	An ultra-stable and enhanced reversibility lithium metal anode with a sufficient O2 design for Li-O2 battery. Energy Storage Materials, 2018, 12, 176-182.	9.5	41
319	Suppression of Dendritic Lithium Growth by in Situ Formation of a Chemically Stable and Mechanically Strong Solid Electrolyte Interphase. ACS Applied Materials & Interfaces, 2018, 10, 593-601.	4.0	116
320	Building Organic/Inorganic Hybrid Interphases for Fast Interfacial Transport in Rechargeable Metal Batteries. Angewandte Chemie, 2018, 130, 1004-1008.	1.6	55
321	Composite Li metal anode with vertical graphene host for high performance Li-S batteries. Journal of Power Sources, 2018, 374, 205-210.	4.0	45
322	Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes. Energy Storage Materials, 2018, 12, 161-175.	9.5	422
323	Polyethylene separators modified by ultrathin hybrid films enhancing lithium ion transport performance and Li-metal anode stability. Electrochimica Acta, 2018, 259, 386-394.	2.6	56
324	Macroporous Catalytic Carbon Nanotemplates for Sodium Metal Anodes. Advanced Energy Materials, 2018, 8, 1701261.	10.2	79
325	Single-Ion Homopolymer Electrolytes with High Transference Number Prepared by Click Chemistry and Photoinduced Metal-Free Atom-Transfer Radical Polymerization. ACS Energy Letters, 2018, 3, 20-27.	8.8	98
326	Guided Lithium Metal Deposition and Improved Lithium Coulombic Efficiency through Synergistic Effects of LiAsF ₆ and Cyclic Carbonate Additives. ACS Energy Letters, 2018, 3, 14-19.	8.8	161
327	Bendingâ€Tolerant Anodes for Lithiumâ€Metal Batteries. Advanced Materials, 2018, 30, 1703891.	11.1	113
328	Review—Li Metal Anode in Working Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2018, 165, A6058-A6072.	1.3	227

#	Article	IF	CITATIONS
329	Boron Trifluoride Anionic Side Groups in Polyphosphazene Based Polymer Electrolyte with Enhanced Interfacial Stability in Lithium Batteries. Polymers, 2018, 10, 1350.	2.0	11
330	Designing solvate ionogel electrolytes with very high room-temperature conductivity and lithium transference number. Journal of Materials Chemistry A, 2018, 6, 24100-24106.	5.2	12
331	Elastic and Li-ion–percolating hybrid membrane stabilizes Li metal plating. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12389-12394.	3.3	49
332	Li2O-Reinforced Solid Electrolyte Interphase on Three-Dimensional Sponges for Dendrite-Free Lithium Deposition. Frontiers in Chemistry, 2018, 6, 517.	1.8	20
333	Comparing Cycling Characteristics of Symmetric Lithium-Polymer-Lithium Cells with Theoretical Predictions. Journal of the Electrochemical Society, 2018, 165, A3186-A3194.	1.3	51
334	Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Science Advances, 2018, 4, eaau9245.	4.7	521
335	Status, promises, and challenges of nanocomposite solid-state electrolytes for safe and high performance lithium batteries. Materials Today Nano, 2018, 4, 1-16.	2.3	201
336	Incorporating Flexibility into Stiffness: Selfâ€Grown Carbon Nanotubes in Melamine Sponges Enable A Lithiumâ€Metalâ€Anode Capacity of 15 mA h cm ^{â^'2} Cyclable at 15 mA cm ^{â^'2} . Advanc Materials, 2019, 31, e1805654.	eth.1	95
337	Separator Membranes for High Energyâ€Ðensity Batteries. ChemBioEng Reviews, 2018, 5, 346-371.	2.6	29
338	Flexible Ionic Conducting Elastomers for All-Solid-State Room-Temperature Lithium Batteries. ACS Applied Energy Materials, 2018, 1, 6769-6773.	2.5	31
339	Uniform Nucleation of Lithium in 3D Current Collectors via Bromide Intermediates for Stable Cycling Lithium Metal Batteries. Journal of the American Chemical Society, 2018, 140, 18051-18057.	6.6	138
340	Enabling Stable Lithium Metal Anode via 3D Inorganic Skeleton with Superlithiophilic Interphase. Advanced Energy Materials, 2018, 8, 1802350.	10.2	147
341	Poor Man's Atomic Layer Deposition of LiF for Additive-Free Growth of Lithium Columns. Nano Letters, 2018, 18, 7066-7074.	4.5	31
342	An Armored Mixed Conductor Interphase on a Dendriteâ€Free Lithiumâ€Metal Anode. Advanced Materials, 2018, 30, e1804461.	11.1	338
343	Interface engineering of sulfide electrolytes for all-solid-state lithium batteries. Nano Energy, 2018, 53, 958-966.	8.2	227
344	Three-dimensional ordered macroporous Cu current collector for lithium metal anode: Uniform nucleation by seed crystal. Journal of Power Sources, 2018, 403, 82-89.	4.0	50
345	Architected Macroporous Polyelectrolytes That Suppress Dendrite Formation during High-Rate Lithium Metal Electrodeposition. Macromolecules, 2018, 51, 7666-7671.	2.2	9
346	Durable Sodium Battery with a Flexible Na ₃ Zr ₂ Si ₂ PO ₁₂ –PVDF–HFP Composite Electrolyte and Sodium/Carbon Cloth Anode. ACS Applied Materials & Interfaces, 2018, 10, 35039-35046.	4.0	46

#	Article	IF	CITATIONS
347	High-Power Li-Metal Anode Enabled by Metal-Organic Framework Modified Electrolyte. Joule, 2018, 2, 2117-2132.	11.7	227
348	Enabling Lithium-Metal Anode Encapsulated in a 3D Carbon Skeleton with a Superior Rate Performance and Capacity Retention in Full Cells. ACS Applied Materials & Interfaces, 2018, 10, 35296-35305.	4.0	19
349	In Situ Li ₃ PS ₄ Solid‣tate Electrolyte Protection Layers for Superior Longâ€Life and Highâ€Rate Lithiumâ€Metal Anodes. Advanced Materials, 2018, 30, e1804684.	11.1	140
350	A Novel High-Performance Ti/ATONPs-MWCNTs Electrode Based on Screen Printing Technique for Degradation of C.I. Acid Red 73. International Journal of Electrochemical Science, 2018, , 119-135.	0.5	2
351	A high performance lithium-ion–sulfur battery with a free-standing carbon matrix supported Li-rich alloy anode. Chemical Science, 2018, 9, 8829-8835.	3.7	36
352	Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy, 2018, 54, 17-25.	8.2	168
353	Approaches toward lithium metal stabilization. MRS Bulletin, 2018, 43, 752-758.	1.7	12
354	A Li ₂ Sâ€Based Sacrificial Layer for Stable Operation of Lithiumâ€5ulfur Batteries. Energy Technology, 2018, 6, 2210-2219.	1.8	4
355	An Aggregate Clusterâ€Dispersed Electrolyte Guides the Uniform Nucleation and Growth of Lithium at Lithium Metal Anodes. ChemistrySelect, 2018, 3, 11527-11534.	0.7	7
356	Improved Rechargeability of Lithium Metal Anode via Controlling Lithiumâ€lon Flux. Advanced Energy Materials, 2018, 8, 1802352.	10.2	109
357	<i>Bombyx mori</i> Silkworm Cocoon Separators for Lithiumâ€Ion Batteries with Superior Safety and Sustainability. Advanced Sustainable Systems, 2018, 2, 1800098.	2.7	15
358	A proof-of-concept graphite anode with a lithium dendrite suppressing polymer coating. Journal of Power Sources, 2018, 406, 63-69.	4.0	50
359	2D Materials for Lithium/Sodium Metal Anodes. Advanced Energy Materials, 2018, 8, 1802833.	10.2	105
360	Hybrid Electrolytes for Lithium Ion and Post Lithium Ion Batteries. , 2018, , 660-673.		3
361	Mixed Lithium Oxynitride/Oxysulfide as an Interphase Protective Layer To Stabilize Lithium Anodes for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 39695-39704.	4.0	35
362	In Situ Synthesis of a Lithiophilic Ag-Nanoparticles-Decorated 3D Porous Carbon Framework toward Dendrite-Free Lithium Metal Anodes. ACS Sustainable Chemistry and Engineering, 2018, 6, 15219-15227.	3.2	43
363	An Alternative to Lithium Metal Anodes: Nonâ€dendritic and Highly Reversible Sodium Metal Anodes for Li–Na Hybrid Batteries. Angewandte Chemie - International Edition, 2018, 57, 14796-14800.	7.2	102
364	A Bottom-Up Formation Mechanism of Solid Electrolyte Interphase Revealed by Isotope-Assisted Time-of-Flight Secondary Ion Mass Spectrometry. Journal of Physical Chemistry Letters, 2018, 9, 5508-5514.	2.1	29

#	Article	IF	CITATIONS
365	Recent Progress of Hybrid Solid‧tate Electrolytes for Lithium Batteries. Chemistry - A European Journal, 2018, 24, 18293-18306.	1.7	127
366	Effect of diethylenetriamine as additive to stabilize the lithium metal anode. Electrochimica Acta, 2018, 292, 742-748.	2.6	7
367	Recent advances in effective protection of sodium metal anode. Nano Energy, 2018, 53, 630-642.	8.2	191
368	Deposition and Stripping Behavior of Lithium Metal in Electrochemical System: Continuum Mechanics Study. Chemistry of Materials, 2018, 30, 6769-6776.	3.2	74
369	Nanostructured Li-Rich Fluoride Coated by Ionic Liquid as High Ion-Conductivity Solid Electrolyte Additive to Suppress Dendrite Growth at Li Metal Anode. ACS Applied Materials & Interfaces, 2018, 10, 34322-34331.	4.0	97
370	An Alternative to Lithium Metal Anodes: Nonâ €d endritic and Highly Reversible Sodium Metal Anodes for Li–Na Hybrid Batteries. Angewandte Chemie, 2018, 130, 15012-15016.	1.6	14
371	Homogeneous Interface Conductivity for Lithium Dendrite-Free Anode. ACS Energy Letters, 2018, 3, 2259-2266.	8.8	124
372	Artificial lithium fluoride surface coating on silicon negative electrodes for the inhibition of electrolyte decomposition in lithium-ion batteries: visualization of a solid electrolyte interphase using <i>in situ</i>	2.8	35
373	Nâ€Doped Graphene Modified 3D Porous Cu Current Collector toward Microscale Homogeneous Li Deposition for Li Metal Anodes. Advanced Energy Materials, 2018, 8, 1800914.	10.2	155
374	High-Efficiency Lithium Metal Batteries with Fire-Retardant Electrolytes. Joule, 2018, 2, 1548-1558.	11.7	436
375	Ultrathin Al2O3-coated reduced graphene oxide membrane for stable lithium metal anode. Rare Metals, 2018, 37, 510-519.	3.6	32
376	Effect of an organic additive in the electrolyte on suppressing the growth of Li dendrites in Li metal-based batteries. Electrochimica Acta, 2018, 279, 213-223.	2.6	36
377	Three-Dimensional, Solid-State Mixed Electron–Ion Conductive Framework for Lithium Metal Anode. Nano Letters, 2018, 18, 3926-3933.	4.5	175
378	Improvement of Lithium-Ion Battery Performance at Low Temperature by Adopting Ionic Liquid-Decorated PMMA Nanoparticles as Electrolyte Component. ACS Applied Energy Materials, 2018, 1, 2664-2670.	2.5	44
379	Solid–Liquid Electrolyte as a Nanoion Modulator for Dendrite-Free Lithium Anodes. ACS Applied Materials & Interfaces, 2018, 10, 20412-20421.	4.0	17
380	Lithium Dendrite Suppression and Enhanced Interfacial Compatibility Enabled by an Ex Situ SEI on Li Anode for LAGP-Based All-Solid-State Batteries. ACS Applied Materials & Interfaces, 2018, 10, 18610-18618.	4.0	123
381	High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5676-5680.	3.3	209
382	Lithium sulfur batteries with compatible electrolyte both for stable cathode and dendrite-free anode. Energy Storage Materials, 2018, 15, 299-307.	9.5	92

#	Article	IF	CITATIONS
383	Suppression of dendritic lithium growth in lithium metal-based batteries. Chemical Communications, 2018, 54, 6648-6661.	2.2	184
384	Lithium Silicide Surface Enrichment: A Solution to Lithium Metal Battery. Advanced Materials, 2018, 30, e1801745.	11.1	163
385	Effective Suppression of Lithium Dendrite Growth Using a Flexible Singleâ€lon Conducting Polymer Electrolyte. Small, 2018, 14, e1801420.	5.2	129
386	A Natural Biopolymer Film as a Robust Protective Layer to Effectively Stabilize Lithiumâ€Metal Anodes. Small, 2018, 14, e1801054.	5.2	61
387	Stabilizing Lithium Plating by a Biphasic Surface Layer Formed Inâ€Situ. Angewandte Chemie - International Edition, 2018, 57, 9795-9798.	7.2	134
388	Effect of Fluoroethylene Carbonate Electrolytes on the Nanostructure of the Solid Electrolyte Interphase and Performance of Lithium Metal Anodes. ACS Applied Energy Materials, 2018, 1, 3057-3062.	2.5	95
389	Stretchable Lithium Metal Anode with Improved Mechanical and Electrochemical Cycling Stability. Joule, 2018, 2, 1857-1865.	11.7	132
390	Transition metal speciation as a degradation mechanism with the formation of a solid-electrolyte interphase (SEI) in Ni-rich transition metal oxide cathodes. Journal of Materials Chemistry A, 2018, 6, 14449-14463.	5.2	37
391	Stabilizing Lithium Plating by a Biphasic Surface Layer Formed Inâ€Situ. Angewandte Chemie, 2018, 130, 9943-9946.	1.6	39
392	Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes. Energy and Environmental Science, 2018, 11, 2600-2608.	15.6	292
393	All-solid-state interpenetrating network polymer electrolytes for long cycle life of lithium metal batteries. Journal of Materials Chemistry A, 2018, 6, 14847-14855.	5.2	44
394	Robust Current Collector Promoting the Li Metal Anode Cycling with Appropriate Interspaces. Journal of the Electrochemical Society, 2018, 165, A2026-A2031.	1.3	7
395	Dendrite Growth in Mg Metal Cells Containing Mg(TFSI) ₂ /Glyme Electrolytes. Journal of the Electrochemical Society, 2018, 165, A1983-A1990.	1.3	124
396	Lithiophilic Co/Co ₄ N nanoparticles embedded in hollow N-doped carbon nanocubes stabilizing lithium metal anodes for Li–air batteries. Journal of Materials Chemistry A, 2018, 6, 22096-22105.	5.2	55
397	Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy. Nature Communications, 2018, 9, 2942.	5.8	138
398	The influence of stress field on Li electrodeposition in Li-metal battery. MRS Communications, 2018, 8, 1285-1291.	0.8	24
399	Nanocellulose Structured Paper-Based Lithium Metal Batteries. ACS Applied Energy Materials, 2018, 1, 4341-4350.	2.5	45
400	A Versatile Strategy to Fabricate 3D Conductive Frameworks for Lithium Metal Anodes. Advanced Materials Interfaces, 2018, 5, 1800807.	1.9	25

#	Article	IF	CITATIONS
401	Lithium metal stripping beneath the solid electrolyte interphase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8529-8534.	3.3	150
402	Horizontal Centripetal Plating in the Patterned Voids of Li/Graphene Composites for Stable Lithium-Metal Anodes. CheM, 2018, 4, 2192-2200.	5.8	107
403	Lithium phosphide/lithium chloride coating on lithium for advanced lithium metal anode. Journal of Materials Chemistry A, 2018, 6, 15859-15867.	5.2	90
404	An ultrafast rechargeable lithium metal battery. Journal of Materials Chemistry A, 2018, 6, 15517-15522.	5.2	43
405	Fabrication of Lithiophilic Copper Foam with Interfacial Modulation toward High-Rate Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2018, 10, 27764-27770.	4.0	78
406	Elucidating mechanisms of Li plating on Li anodes of lithium-based batteries. Electrochimica Acta, 2018, 284, 485-494.	2.6	19
407	Developing a "Waterâ€Defendable―and "Dendriteâ€Free―Lithiumâ€Metal Anode Using a Simple and P GeCl ₄ Pretreatment Method. Advanced Materials, 2018, 30, e1705711.	romising 11,1	186
408	Stabilizing Protic and Aprotic Liquid Electrolytes at High-Bandgap Oxide Interphases. Chemistry of Materials, 2018, 30, 5655-5662.	3.2	49
409	Ionic liquid electrolyte with highly concentrated LiTFSI for lithium metal batteries. Electrochimica Acta, 2018, 285, 78-85.	2.6	82
410	High-Performance All-Solid-State Polymer Electrolyte with Controllable Conductivity Pathway Formed by Self-Assembly of Reactive Discogen and Immobilized via a Facile Photopolymerization for a Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2018, 10, 25273-25284.	4.0	53
411	Stabilizing Li Metal Anodes through a Novel Self-Healing Strategy. ACS Sustainable Chemistry and Engineering, 2018, 6, 11097-11104.	3.2	30
412	Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nature Nanotechnology, 2018, 13, 715-722.	15.6	964
413	Electrodes-electrolyte interfacial engineering for realizing room temperature lithium metal battery based on garnet structured solid fast Li+ conductors. Journal of Power Sources, 2018, 396, 764-773.	4.0	80
414	Binary Mixtures of Highly Concentrated Tetraglyme and Hydrofluoroether as a Stable and Nonflammable Electrolyte for Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2018, 10, 26312-26319.	4.0	44
415	Lowâ€Weight 3D Al ₂ O ₃ Network as an Artificial Layer to Stabilize Lithium Deposition. ChemSusChem, 2018, 11, 3243-3252.	3.6	24
416	High oulombicâ€Efficiency Carbon/Li Clusters Composite Anode without Precycling or Prelithiation. Small, 2018, 14, e1802226.	5.2	31
417	Straw–Brickâ€Like Carbon Fiber Cloth/Lithium Composite Electrode as an Advanced Lithium Metal Anode. Small Methods, 2018, 2, 1800035.	4.6	106
418	3D Wettable Framework for Dendriteâ€Free Alkali Metal Anodes. Advanced Energy Materials, 2018, 8, 1800635.	10.2	196

#	Article	IF	CITATIONS
419	MoS 2 nanosheets uniformly coated TiO 2 nanowire arrays with enhanced electrochemical performances for lithium-ion batteries. Journal of Alloys and Compounds, 2018, 758, 91-98.	2.8	18
420	All-in-one lithium-sulfur battery enabled by a porous-dense-porous garnet architecture. Energy Storage Materials, 2018, 15, 458-464.	9.5	108
421	Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Suppression of Dendrite Formation in Lithium Metal Anodes. ACS Central Science, 2018, 4, 996-1006.	5.3	158
422	Dendriteâ€Free Epitaxial Growth of Lithium Metal during Charging in Li–O 2 Batteries. Angewandte Chemie, 2018, 130, 13390-13394.	1.6	53
423	Dendriteâ€Free Epitaxial Growth of Lithium Metal during Charging in Li–O ₂ Batteries. Angewandte Chemie - International Edition, 2018, 57, 13206-13210.	7.2	76
424	A LiPO2F2/LiFSI dual-salt electrolyte enabled stable cycling of lithium metal batteries. Journal of Power Sources, 2018, 400, 449-456.	4.0	33
425	Effects of Polymer Coatings on Electrodeposited Lithium Metal. Journal of the American Chemical Society, 2018, 140, 11735-11744.	6.6	307
426	Inhibition of lithium dendrite growth by forming rich polyethylene oxide-like species in a solid-electrolyte interphase in a polysulfide/carbonate electrolyte. Journal of Materials Chemistry A, 2018, 6, 16818-16823.	5.2	7
427	Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries. Nature, 2018, 560, 345-349.	13.7	586
428	Stable Metal Anode enabled by Porous Lithium Foam with Superior Ion Accessibility. Advanced Materials, 2018, 30, e1802156.	11.1	115
429	Lithium Difluorophosphate as a Dendrite-Suppressing Additive for Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2018, 10, 22201-22209.	4.0	143
430	Interfacial Mechanism in Lithium–Sulfur Batteries: How Salts Mediate the Structure Evolution and Dynamics. Journal of the American Chemical Society, 2018, 140, 8147-8155.	6.6	125
431	Confining electrodeposition of metals in structured electrolytes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6620-6625.	3.3	49
432	Remedies of capacity fading in room-temperature sodium-sulfur batteries. Journal of Power Sources, 2018, 396, 304-313.	4.0	45
433	Applications of XPS in the characterization of Battery materials. Journal of Electron Spectroscopy and Related Phenomena, 2019, 231, 2-10.	0.8	101
434	Regulating Li deposition by constructing LiF-rich host for dendrite-free lithium metal anode. Energy Storage Materials, 2019, 16, 411-418.	9.5	247
435	Unique 3D nanoporous/macroporous structure Cu current collector for dendrite-free lithium deposition. Energy Storage Materials, 2019, 17, 253-259.	9.5	110
436	Artificial Interphases for Highly Stable Lithium Metal Anode. Matter, 2019, 1, 317-344.	5.0	508

#	Article	IF	CITATIONS
437	Homogeneous Li deposition through the control of carbon dot-assisted Li-dendrite morphology for high-performance Li-metal batteries. Journal of Materials Chemistry A, 2019, 7, 20325-20334.	5.2	35
438	Ultrathin Bilayer of Graphite/SiO ₂ as Solid Interface for Reviving Li Metal Anode. Advanced Energy Materials, 2019, 9, 1901486.	10.2	128
439	High-Rate Cycling of Lithium-Metal Batteries Enabled by Dual-Salt Electrolyte-Assisted Micropatterned Interfaces. ACS Applied Materials & Interfaces, 2019, 11, 31777-31785.	4.0	20
440	Chemically inert covalently networked triazole-based solid polymer electrolytes for stable all-solid-state lithium batteries. Journal of Materials Chemistry A, 2019, 7, 19691-19695.	5.2	17
441	Highly Reversible Lithium-Metal Anode and Lithium–Sulfur Batteries Enabled by an Intrinsic Safe Electrolyte. ACS Applied Materials & Interfaces, 2019, 11, 33419-33427.	4.0	38
442	Dendrite-Free and Stable Lithium Metal Anodes Enabled by an Antimony-Based Lithiophilic Interphase. Chemistry of Materials, 2019, 31, 7565-7573.	3.2	73
443	A borate decorated anion-immobilized solid polymer electrolyte for dendrite-free, long-life Li metal batteries. Journal of Materials Chemistry A, 2019, 7, 19970-19976.	5.2	32
444	A stable artificial protective layer for high capacity dendrite-free lithium metal anode. Nano Research, 2019, 12, 2535-2542.	5.8	35
445	A single-ion conducting polymer electrolyte based on poly(lithium 4-styrenesulfonate) for high-performance lithium metal batteries. Solid State Ionics, 2019, 341, 115048.	1.3	24
446	Lithiophilic Ag/Li composite anodes <i>via</i> a spontaneous reaction for Li nucleation with a reduced barrier. Journal of Materials Chemistry A, 2019, 7, 20911-20918.	5.2	66
447	Stabilizing Polyether Electrolyte with a 4 V Metal Oxide Cathode by Nanoscale Interfacial Coating. ACS Applied Materials & Interfaces, 2019, 11, 28774-28780.	4.0	33
448	Asymmetric behaviour of Li/Li symmetric cells for Li metal batteries. Chemical Communications, 2019, 55, 9637-9640.	2.2	38
449	Endowing the Lithium Metal Surface with Self-Healing Property via an in Situ Gas–Solid Reaction for High-Performance Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2019, 11, 28878-28884.	4.0	24
450	Rational design of spontaneous reactions for protecting porous lithium electrodes in lithium–sulfur batteries. Nature Communications, 2019, 10, 3249.	5.8	99
451	Stabilizing polymer electrolytes in high-voltage lithium batteries. Nature Communications, 2019, 10, 3091.	5.8	98
452	A safe quasi-solid electrolyte based on a nanoporous ceramic membrane for high-energy, lithium metal batteries. Electrochimica Acta, 2019, 320, 134539.	2.6	6
453	Stable Li metal anode by a polyvinyl alcohol protection layer via modifying solid-electrolyte interphase layer. Nano Energy, 2019, 64, 103893.	8.2	106
454	Robust Lithium Metal Anodes Realized by Lithiophilic 3D Porous Current Collectors for Constructing High-Energy Lithium–Sulfur Batteries. ACS Nano, 2019, 13, 8337-8346.	7.3	152

#	Article	IF	CITATIONS
455	Artificial solid electrolyte interphase based on polyacrylonitrile for homogenous and dendrite-free deposition of lithium metal. Chinese Physics B, 2019, 28, 078202.	0.7	1
456	Li2TiO3/Ni foam composite as high-performance electrode for energy storage and conversion. Heliyon, 2019, 5, e02060.	1.4	16
457	A review of naturally derived nanostructured materials for safe lithium metal batteries. Materials Today Nano, 2019, 8, 100049.	2.3	39
458	Specifics of magnetron sputtering of lithium from liquid-phase target. Vacuum, 2019, 168, 108816.	1.6	5
459	A boron nitride-polyvinylidene fluoride-co-hexafluoropropylene composite gel polymer electrolyte for lithium metal batteries. Journal of Alloys and Compounds, 2019, 803, 1075-1081.	2.8	21
460	Recent advances in understanding dendrite growth on alkali metal anodes. EnergyChem, 2019, 1, 100003.	10.1	146
461	Ice as Solid Electrolyte To Conduct Various Kinds of Ions. Angewandte Chemie - International Edition, 2019, 58, 12569-12573.	7.2	54
462	Excellent Lithium Metal Anode Performance via In Situ Interfacial Layer Induced by Li6.75La3Zr1.75Ta0.25O12@Amorphous Li3OCI Composite Solid Electrolyte. International Journal of Electrochemical Science, 2019, 14, 4781-4798.	0.5	4
463	Ice as Solid Electrolyte To Conduct Various Kinds of Ions. Angewandte Chemie, 2019, 131, 12699-12703.	1.6	10
464	A Semiliquid Lithium Metal Anode. Joule, 2019, 3, 1637-1646.	11.7	51
465	Surface-Based Li ⁺ Complex Enables Uniform Lithium Deposition for Stable Lithium Metal Anodes. ACS Applied Energy Materials, 2019, 2, 4602-4608.	2.5	32
466	An Interfacial Layer Based on Polymers of Intrinsic Microporosity to Suppress Dendrite Growth on Li Metal Anodes. Chemistry - A European Journal, 2019, 25, 12052-12057.	1.7	24
468	Dendriteâ€Free Lithium Deposition via a Superfilling Mechanism for Highâ€Performance Liâ€Metal Batteries. Advanced Materials, 2019, 31, e1903248.	11.1	106
469	Flexible Amalgam Film Enables Stable Lithium Metal Anodes with High Capacities. Angewandte Chemie, 2019, 131, 18637-18641.	1.6	7
470	Constructing Ionic Gradient and Lithiophilic Interphase for Highâ€Rate Liâ€Metal Anode. Small, 2019, 15, e1905171.	5.2	42
471	Effects of oxalic acid concentration on the microstructures and properties of nano-VO2(B). Journal of Solid State Electrochemistry, 2019, 23, 2951-2959.	1.2	9
472	High Dielectric, Robust Composite Protective Layer for Dendriteâ€Free and LiPF ₆ Degradationâ€Free Lithium Metal Anode. Advanced Functional Materials, 2019, 29, 1905078.	7.8	47
473	Lithium Metal Anode Materials Design: Interphase and Host. Electrochemical Energy Reviews, 2019, 2, 509-517.	13.1	156

#	Article	IF	CITATIONS
474	Ultrafine Titanium Nitride Sheath Decorated Carbon Nanofiber Network Enabling Stable Lithium Metal Anodes. Advanced Functional Materials, 2019, 29, 1903229.	7.8	112
475	A Lithiumâ€ion Pump Based on Piezoelectric Effect for Improved Rechargeability of Lithium Metal Anode. Advanced Science, 2019, 6, 1901120.	5.6	36
476	Nanoscaled Lithium Powders with Protection of Ionic Liquid for Highly Stable Rechargeable Lithium Metal Batteries. Advanced Science, 2019, 6, 1901776.	5.6	42
477	Controlling Li Ion Flux through Materials Innovation for Dendriteâ€Free Lithium Metal Anodes. Advanced Functional Materials, 2019, 29, 1905940.	7.8	122
478	Ni-Particle-Embedded Bilayer Gel Polymer Electrolyte for Highly Stable Lithium Metal Batteries. ACS Applied Energy Materials, 2019, 2, 8310-8318.	2.5	5
479	Non-Dendritic Zn Electrodeposition Enabled by Zincophilic Graphene Substrates. ACS Applied Materials & Interfaces, 2019, 11, 44077-44089.	4.0	129
480	Ethylviologen Hexafluorophosphate as Electrolyte Additive for High-Voltage Nickel-Rich Layered Cathode. Journal of Physical Chemistry C, 2019, 123, 28604-28610.	1.5	11
481	A Review of Carbon-Based Materials for Safe Lithium Metal Anodes. Frontiers in Chemistry, 2019, 7, 721.	1.8	30
482	Tuning Solid Electrolyte Interphase Layer Properties through the Integration of Conversion Reaction. ACS Applied Materials & Interfaces, 2019, 11, 44204-44213.	4.0	3
483	Flexible Amalgam Film Enables Stable Lithium Metal Anodes with High Capacities. Angewandte Chemie - International Edition, 2019, 58, 18466-18470.	7.2	67
484	Fluorinated Solid-Electrolyte Interphase in High-Voltage Lithium Metal Batteries. Joule, 2019, 3, 2647-2661.	11.7	432
485	Differentiated Lithium Salt Design for Multilayered PEO Electrolyte Enables a Highâ€Voltage Solid‧tate Lithium Metal Battery. Advanced Science, 2019, 6, 1901036.	5.6	202
486	Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. Nature Communications, 2019, 10, 4930.	5.8	181
487	An Investigation on the Relationship between the Stability of Lithium Anode and Lithium Nitrate in Electrolyte. Journal of the Electrochemical Society, 2019, 166, A3570-A3574.	1.3	5
488	An in Situ-Formed Mosaic Li ₇ Sn ₃ /LiF Interface Layer for High-Rate and Long-Life Garnet-Based Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2019, 11, 34939-34947.	4.0	66
489	Ordered lithiophilic sites to regulate Li plating/stripping behavior for superior lithium metal anodes. Journal of Materials Chemistry A, 2019, 7, 21794-21801.	5.2	71
490	A bifunctional auxiliary electrode for safe lithium metal batteries. Journal of Materials Chemistry A, 2019, 7, 24807-24813.	5.2	4
491	A dual-phase Li–Ca alloy with a patternable and lithiophilic 3D framework for improving lithium anode performance. Journal of Materials Chemistry A, 2019, 7, 22377-22384.	5.2	42

ARTICLE IF CITATIONS # Polymerized Ionic Liquid-Containing Interpenetrating Network Solid Polymer Electrolytes for 492 4.0 43 All-Solid-State Lithium Metal Batteries. ACS Applied Materials & amp; Interfaces, 2019, 11, 34904-34912. Designing solid-state interfaces on lithium-metal anodes: a review. Science China Chemistry, 2019, 62, 1286-1299. 4.2 Molecular Brush with Dense PEG Side Chains: Design of a Well-Defined Polymer Electrolyte for 494 2.2 72 Lithium-Ion Batteries. Macromolecules, 2019, 52, 7234-7243. A salt-derived solid electrolyte interphase by electroreduction of water-in-salt electrolyte for 4.0 uniform lithium deposition. Journal of Power Sources, 2019, 439, 227073. A strategy to stabilize $4\hat{a}\in V$ -class cathode with ether-containing electrolytes in lithium metal batteries. 496 4.0 5 Journal of Power Sources, 2019, 440, 227101. Rational Design of Nanostructured Polymer Electrolytes and Solid–Liquid Interphases for Lithium 497 Batteries. Springer Theses, 2019, , . Solid-state polymer electrolytes for high-performance lithium metal batteries. Nature 498 5.8 137 Communications, 2019, 10, 4398. Toward an Understanding of Deformation Mechanisms in Metallic Lithium and Sodium from 400 3.2 First-Principles. Chemistry of Materials, 2019, 31, 8222-8229. 500 Nucleation and Early Stage Growth of Li Electrodeposits. Nano Letters, 2019, 19, 8191-8200. 4.5 159 Li Alginate-Based Artificial SEI Layer for Stable Lithium Metal Anodes. ACS Applied Materials & amp; Interfaces, 2019, 11, 37726-37731. Realizing stable lithium deposition by <i>in situ</i> grown Cu₂S nanowires inside 502 5.2 72 commercial Cu foam for lithium metal anodes. Journal of Materials Chemistry A, 2019, 7, 727-732. Wrinkled Graphene Cages as Hosts for High-Capacity Li Metal Anodes Shown by Cryogenic Electron 4.5 193 Microscopy. Nano Letters, 2019, 19, 1326-1335. Nanoporous Polymer Films with a High Cation Transference Number Stabilize Lithium Metal Anodes in 504 4.5 59 Light-Weight Batteries for Electrified Transportation. Nano Letters, 2019, 19, 1387-1394. Probing microstructure and electrolyte concentration dependent cell chemistry <i>via operando</i> 15.6 36 small angle neutron scattering. Energy and Environmental Science, 2019, 12, 1866-1877 Activeâ€Oxygenâ€Enhanced Homogeneous Nucleation of Lithium Metal on Ultrathin Layered Double 506 1.6 13 Hydroxide. Ángewandte Chemie, 2019, 131, 4002-4006. Activeâ€Oxygenâ€Enhanced Homogeneous Nucleation of Lithium Metal on Ultrathin Layered Double 44 Hydroxide. Ángewandte Chemie - International Edition, 2019, 58, 3962-3966. Tuning the LUMO Energy of an Organic Interphase to Stabilize Lithium Metal Batteries. ACS Energy 508 8.8 129 Letters, 2019, 4, 644-650. An artificial TiO₂/lithium <i>n</i>-butoxide hybrid SEI layer with facilitated lithium-ion 509 2.8 transportation ability for stable lithium anodes. Nanoscale, 2019, 11, 2194-2201.

#	Article	IF	CITATIONS
510	Li ₇ La ₃ Zr ₂ O ₁₂ ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries. Journal of Materials Chemistry A, 2019, 7, 3391-3398.	5.2	178
511	An air-stable and waterproof lithium metal anode enabled by wax composite packaging. Science Bulletin, 2019, 64, 910-917.	4.3	58
512	Liquid Polydimethylsiloxane Grafting to Enable Dendriteâ€Free Li Plating for Highly Reversible Liâ€Metal Batteries. Advanced Functional Materials, 2019, 29, 1902220.	7.8	137
513	Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nature Nanotechnology, 2019, 14, 705-711.	15.6	773
514	Electrodeposition behavior of lithium metal on carbon substrates with surface silvering. Carbon, 2019, 152, 503-510.	5.4	16
515	Functional Ionic Liquid Modified Core-Shell Structured Fibrous Gel Polymer Electrolyte for Safe and Efficient Fast Charging Lithium-Ion Batteries. Frontiers in Chemistry, 2019, 7, 421.	1.8	9
516	Horizontal Growth of Lithium on Parallelly Aligned MXene Layers towards Dendriteâ€Free Metallic Lithium Anodes. Advanced Materials, 2019, 31, e1901820.	11.1	174
517	Nanocoating inside porous PE separator enables enhanced ionic transport of GPE and stable cycling of Li-metal anode. Research on Chemical Intermediates, 2019, 45, 4959-4973.	1.3	4
518	Towards high energy density lithium battery anodes: silicon and lithium. Chemical Science, 2019, 10, 7132-7148.	3.7	134
519	A 3D Cu current collector with a biporous structure derived by a phase inversion tape casting method for stable Li metal anodes. Journal of Materials Chemistry A, 2019, 7, 17376-17385.	5.2	36
520	Long-Term Stable Lithium Metal Anode in Highly Concentrated Sulfolane-Based Electrolytes with Ultrafine Porous Polyimide Separator. ACS Applied Materials & Interfaces, 2019, 11, 25833-25843.	4.0	72
521	Diatomite derived hierarchical hybrid anode for high performance all-solid-state lithium metal batteries. Nature Communications, 2019, 10, 2482.	5.8	96
522	3D Nanowire Arrayed Cu Current Collector toward Homogeneous Alloying Anode Deposition for Enhanced Sodium Storage. Advanced Energy Materials, 2019, 9, 1900673.	10.2	32
523	Preparation of layered Si materials as anode for lithium-ion batteries. Chemical Physics Letters, 2019, 730, 198-205.	1.2	18
524	Safe Lithiumâ€Metal Anodes for Liâ^'O ₂ Batteries: From Fundamental Chemistry to Advanced Characterization and Effective Protection. Batteries and Supercaps, 2019, 2, 638-658.	2.4	67
525	Dendriteâ€Free Lithium Anodes with Ultraâ€Đeep Stripping and Plating Properties Based on Vertically Oriented Lithium–Copper–Lithium Arrays. Advanced Materials, 2019, 31, e1901310.	11.1	112
526	Ironing Controllable Lithium into Lithiotropic Carbon Fiber Fabric: A Novel Li-Metal Anode with Improved Cyclability and Dendrite Suppression. ACS Applied Materials & Interfaces, 2019, 11, 21584-21592.	4.0	14
527	A highly stable glass fiber host for lithium metal anode behaving enhanced coulombic efficiency. Electrochimica Acta, 2019, 317, 333-340.	2.6	10

#		IF	CITATIONS
# 528	Constructing Self-Protected Li and Non-Li Candidates for Advanced Lithium Ion and Lithium Metal	1.5	5
529	Glyme-based liquid–solid electrolytes for lithium metal batteries. Journal of Materials Chemistry A, 2019, 7, 13331-13338.	5.2	13
530	Charge Transfer and Storage of an Electrochemical Cell and Its Nano Effects. , 2019, , 29-87.		0
531	LiFSI to improve lithium deposition in carbonate electrolyte. Energy Storage Materials, 2019, 23, 350-357.	9.5	65
532	MOF-derived porous Co3O4-NC nanoflake arrays on carbon fiber cloth as stable hosts for dendrite-free Li metal anodes. Energy Storage Materials, 2019, 23, 181-189.	9.5	133
533	Unusual Conformal Li Plating on Alloyable Nanofiber Frameworks to Enable Dendrite Suppression of Li Metal Anode. ACS Applied Energy Materials, 2019, 2, 4379-4388.	2.5	35
534	Functional mechanism analysis and customized structure design of interlayers for high performance Li-S battery. Energy Storage Materials, 2019, 23, 314-349.	9.5	95
535	Thin-Film NASICON-Type Li _{1+<i>x</i>} Al <i>_{<i>x</i>}</i> Solid Electrolyte Directly Fabricated on a Graphite Substrate with a Hydrothermal Method Based on Different Al Sources ACS Sustainable Chemistry and Engineering, 2019, 7, 10751-10762	ub> 3.2	19
536	Nanostructures and Nanomaterials for Batteries. , 2019, , .		12
537	Enhanced ionic conductivity and interface stability of hybrid solid-state polymer electrolyte for rechargeable lithium metal batteries. Energy Storage Materials, 2019, 23, 105-111.	9.5	102
538	Polydopamine Coating Layer Modified Current Collector for Dendrite-Free Li Metal Anode. Energy Storage Materials, 2019, 23, 418-426.	9.5	69
539	Highly Lithiophilic Graphdiyne Nanofilm on 3D Free-Standing Cu Nanowires for High-Energy-Density Electrodes. ACS Applied Materials & Interfaces, 2019, 11, 17678-17685.	4.0	32
540	Electrokinetic Phenomena Enhanced Lithiumâ€lon Transport in Leaky Film for Stable Lithium Metal Anodes. Advanced Energy Materials, 2019, 9, 1900704.	10.2	76
541	Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nature Nanotechnology, 2019, 14, 594-601.	15.6	451
542	Stable Na Metal Anode Enabled by a Reinforced Multistructural SEI Layer. Advanced Functional Materials, 2019, 29, 1901924.	7.8	107
543	Uniform High Ionic Conducting Lithium Sulfide Protection Layer for Stable Lithium Metal Anode. Advanced Energy Materials, 2019, 9, 1900858.	10.2	333
544	Single-ion conducting artificial solid electrolyte interphase layers for dendrite-free and highly stable lithium metal anodes. Journal of Materials Chemistry A, 2019, 7, 13113-13119.	5.2	66
545	The Challenge of Lithium Metal Anodes for Practical Applications. Small Methods, 2019, 3, 1800551.	4.6	74

#	Article	IF	CITATIONS
546	Eliminating Tip Dendrite Growth by Lorentz Force for Stable Lithium Metal Anodes. Advanced Functional Materials, 2019, 29, 1902630.	7.8	85
547	Self-healing composite polymer electrolyte formed <i>via</i> supramolecular networks for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 10354-10362.	5.2	104
548	Deterministic growth of a sodium metal anode on a pre-patterned current collector for highly rechargeable seawater batteries. Journal of Materials Chemistry A, 2019, 7, 9773-9781.	5.2	41
549	Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes. Nature Communications, 2019, 10, 1363.	5.8	268
550	Reducing the Interfacial Resistance in Allâ€Solidâ€State Lithium Batteries Based on Oxide Ceramic Electrolytes. ChemElectroChem, 2019, 6, 2970-2983.	1.7	41
551	Manipulating kinetics of sulfurized polyacrylonitrile with tellurium as eutectic accelerator to prevent polysulfide dissolution in lithium-sulfur battery under dissolution-deposition mechanism. Nano Energy, 2019, 60, 153-161.	8.2	103
552	Additiveâ€Assisted Novel Dualâ€Salt Electrolyte Addresses Wide Temperature Operation of Lithium–Metal Batteries. Small, 2019, 15, e1900269.	5.2	107
553	Suppressing dendrite growth by a functional electrolyte additive for robust Li metal anodes. Energy Storage Materials, 2019, 23, 701-706.	9.5	122
554	Stable Conversion Chemistryâ€Based Lithium Metal Batteries Enabled by Hierarchical Multifunctional Polymer Electrolytes with Nearâ€6ingle Ion Conduction. Angewandte Chemie - International Edition, 2019, 58, 6001-6006.	7.2	167
555	Stable Conversion Chemistryâ€Based Lithium Metal Batteries Enabled by Hierarchical Multifunctional Polymer Electrolytes with Nearâ€5ingle Ion Conduction. Angewandte Chemie, 2019, 131, 6062-6067.	1.6	30
556	Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nature Energy, 2019, 4, 365-373.	19.8	681
557	Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nature Materials, 2019, 18, 384-389.	13.3	587
558	Uniform Lithium Deposition Assisted by Singleâ€Atom Doping toward Highâ€Performance Lithium Metal Anodes. Advanced Energy Materials, 2019, 9, 1804019.	10.2	151
559	Film-forming electrolyte additives for rechargeable lithium-ion batteries: progress and outlook. Journal of Materials Chemistry A, 2019, 7, 8700-8722.	5.2	135
560	Composite lithium electrode with mesoscale skeleton via simple mechanical deformation. Science Advances, 2019, 5, eaau5655.	4.7	79
561	Achieving High Energy Density through Increasing the Output Voltage: A Highly Reversible 5.3ÂV Battery. CheM, 2019, 5, 896-912.	5.8	145
562	Lithium metal batteries capable of stable operation at elevated temperature. Energy Storage Materials, 2019, 23, 646-652.	9.5	87
564	Suppressing Lithium Dendrite Growth via Sinusoidal Ripple Current Produced by Triboelectric Nanogenerators. Advanced Energy Materials, 2019, 9, 1900487.	10.2	21

#	Article	IF	CITATIONS
565	Lithiophilic metallic nitrides modified nickel foam by plasma for stable lithium metal anode. Energy Storage Materials, 2019, 23, 539-546.	9.5	88
566	Porous equipotential body with heterogeneous nucleation sites: A novel 3D composite current collector for lithium metal anode. Electrochimica Acta, 2019, 309, 460-468.	2.6	21
567	Exploiting self-heat in a lithium metal battery for dendrite healing. Energy Storage Materials, 2019, 20, 291-298.	9.5	50
568	Key Aspects of Lithium Metal Anodes for Lithium Metal Batteries. Small, 2019, 15, e1900687.	5.2	253
569	Seeding lithium seeds towards uniform lithium deposition for stable lithium metal anodes. Nano Energy, 2019, 61, 47-53.	8.2	69
570	Prospect of Thermal Shock Induced Healing of Lithium Dendrite. ACS Energy Letters, 2019, 4, 1012-1019.	8.8	59
571	Electrochemically induced highly ion conductive porous scaffolds to stabilize lithium deposition for lithium metal anodes. Journal of Materials Chemistry A, 2019, 7, 11683-11689.	5.2	47
572	Magnetic Field–Suppressed Lithium Dendrite Growth for Stable Lithiumâ€Metal Batteries. Advanced Energy Materials, 2019, 9, 1900260.	10.2	200
573	Designing polymers for advanced battery chemistries. Nature Reviews Materials, 2019, 4, 312-330.	23.3	579
574	Monochromatic "Photoinitibitorâ€â€Mediated Holographic Photopolymer Electrolytes for Lithiumâ€lon Batteries. Advanced Science, 2019, 6, 1900205.	5.6	18
575	Sodium Metal Anodes: Emerging Solutions to Dendrite Growth. Chemical Reviews, 2019, 119, 5416-5460.	23.0	572
576	Multi-ion strategies towards emerging rechargeable batteries with high performance. Energy Storage Materials, 2019, 23, 566-586.	9.5	119
577	Surface engineering of commercial Ni foams for stable Li metal anodes. Energy Storage Materials, 2019, 23, 547-555.	9.5	148
578	High-Safety All-Solid-State Lithium-Metal Battery with High-Ionic-Conductivity Thermoresponsive Solid Polymer Electrolyte. Nano Letters, 2019, 19, 3066-3073.	4.5	108
579	Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery. Nature Communications, 2019, 10, 900.	5.8	297
580	Low-volume-change, dendrite-free lithium metal anodes enabled by lithophilic 3D matrix with LiF-enriched surface. Journal of Materials Chemistry A, 2019, 7, 6090-6098.	5.2	76
581	Sericin protein as a conformal protective layer to enable air-endurable Li metal anodes and high-rate Li-S batteries. Journal of Power Sources, 2019, 419, 72-81.	4.0	80
582	Lithium–Magnesium Alloy as a Stable Anode for Lithium–Sulfur Battery. Advanced Functional Materials, 2019, 29, 1808756.	7.8	148

#	Article	IF	CITATIONS
583	Ligninâ€Derived Holey, Layered, and Thermally Conductive 3D Scaffold for Lithium Dendrite Suppression. Small Methods, 2019, 3, 1800539.	4.6	39
584	Tuning Two Interfaces with Fluoroethylene Carbonate Electrolytes for High-Performance Li/LCO Batteries. ACS Omega, 2019, 4, 3220-3227.	1.6	24
586	Bulk Nanostructured Materials Design for Fractureâ€Resistant Lithium Metal Anodes. Advanced Materials, 2019, 31, e1807585.	11.1	88
587	Single Additive with Dual Functional-Ions for Stabilizing Lithium Anodes. ACS Applied Materials & Interfaces, 2019, 11, 11360-11368.	4.0	49
588	Highâ€Rate and Largeâ€Capacity Lithium Metal Anode Enabled by Volume Conformal and Selfâ€Healable Composite Polymer Electrolyte. Advanced Science, 2019, 6, 1802353.	5.6	133
589	Facile and scalable electrodeposition of copper current collectors for high-performance Li-metal batteries. Nano Energy, 2019, 59, 500-507.	8.2	45
590	Hierarchical Co ₃ O ₄ Nanofiber–Carbon Sheet Skeleton with Superior Na/Liâ€Philic Property Enabling Highly Stable Alkali Metal Batteries. Advanced Functional Materials, 2019, 29, 1808847.	7.8	147
591	Highly dispersed ultrasmall NiS ₂ nanoparticles in porous carbon nanofiber anodes for sodium ion batteries. Nanoscale, 2019, 11, 4688-4695.	2.8	107
592	Lithiophilicity conversion of the Cu surface through facile thermal oxidation: boosting a stable Li–Cu composite anode through melt infusion. Journal of Materials Chemistry A, 2019, 7, 5726-5732.	5.2	34
593	Prospect for Supramolecular Chemistry in High-Energy-Density Rechargeable Batteries. Joule, 2019, 3, 662-682.	11.7	66
594	Catalyst-Free Dynamic Networks for Recyclable, Self-Healing Solid Polymer Electrolytes. Journal of the American Chemical Society, 2019, 141, 18932-18937.	6.6	113
595	Dendrite-free lithium–metal batteries at high rate realized using a composite solid electrolyte with an ester–PO ₄ complex and stable interphase. Journal of Materials Chemistry A, 2019, 7, 23173-23181.	5.2	23
596	Localized high concentration electrolyte behavior near a lithium–metal anode surface. Journal of Materials Chemistry A, 2019, 7, 25047-25055.	5.2	81
597	Lithiophilic NiO hexagonal plates decorated Ni collector guiding uniform lithium plating for stable lithium metal anode. Journal of Materials Chemistry A, 2019, 7, 24262-24270.	5.2	44
598	Ultrathin Al foils to fabricate dendrite-free Li–Al anodes. Journal of Materials Chemistry A, 2019, 7, 25415-25422.	5.2	27
599	Nitrogen-doped graphdiyne nanowall stabilized dendrite-free lithium metal anodes. Journal of Materials Chemistry A, 2019, 7, 27535-27546.	5.2	28
600	Aluminum-Based Metal–Organic Frameworks Derived Al ₂ O ₃ -Loading Mesoporous Carbon as a Host Matrix for Lithium-Metal Anodes. ACS Applied Materials & Interfaces, 2019, 11, 47939-47947.	4.0	26
601	Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition. Nature Communications, 2019, 10, 4973.	5.8	144

#	Article	IF	CITATIONS
602	All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nature Energy, 2019, 4, 882-890.	19.8	557
603	Stable lithium metal anodes enabled by inorganic/organic double-layered alloy and polymer coating. Journal of Materials Chemistry A, 2019, 7, 25369-25376.	5.2	35
604	Harnessing the unique properties of 2D materials for advanced lithium–sulfur batteries. Nanoscale Horizons, 2019, 4, 77-98.	4.1	79
605	First principles studies of self-diffusion processes on metallic lithium surfaces. Journal of Chemical Physics, 2019, 150, 041723.	1.2	34
606	An Interconnected Channelâ€Like Framework as Host for Lithium Metal Composite Anodes. Advanced Energy Materials, 2019, 9, 1802720.	10.2	83
607	Metal–Organic Frameworks as Electrolyte Additives To Enable Ultrastable Plating/Stripping of Li Anode with Dendrite Inhibition. ACS Applied Materials & Interfaces, 2019, 11, 3869-3879.	4.0	84
608	Lithiophilic 3D Nanoporous Nitrogenâ€Doped Graphene for Dendriteâ€Free and Ultrahighâ€Rate Lithiumâ€Metal Anodes. Advanced Materials, 2019, 31, e1805334.	11.1	254
609	Pristine or Highly Defective? Understanding the Role of Graphene Structure for Stable Lithium Metal Plating. Advanced Energy Materials, 2019, 9, 1802918.	10.2	99
610	Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy–O2 batteries. Nature Chemistry, 2019, 11, 64-70.	6.6	265
611	Guiding Uniform Li Plating/Stripping through Lithium–Aluminum Alloying Medium for Longâ€Life Li Metal Batteries. Angewandte Chemie - International Edition, 2019, 58, 1094-1099.	7.2	287
612	Guiding Uniform Li Plating/Stripping through Lithium–Aluminum Alloying Medium for Long‣ife Li Metal Batteries. Angewandte Chemie, 2019, 131, 1106-1111.	1.6	52
613	Infiltrating lithium into carbon cloth decorated with zinc oxide arrays for dendrite-free lithium metal anode. Nano Research, 2019, 12, 525-529.	5.8	79
614	High-Energy Li Metal Battery with Lithiated Host. Joule, 2019, 3, 732-744.	11.7	160
615	Vinyl Ethylene Carbonate as an Effective SEI-Forming Additive in Carbonate-Based Electrolyte for Lithium-Metal Anodes. ACS Applied Materials & Interfaces, 2019, 11, 6118-6125.	4.0	80
616	UV-curable boron nitride nanosheet/ionic liquid-based crosslinked composite polymer electrolyte in lithium metal batteries. Journal of Power Sources, 2019, 414, 283-292.	4.0	30
617	Thermally reduced graphene paper with fast Li ion diffusion for stable Li metal anode. Electrochimica Acta, 2019, 294, 413-422.	2.6	28
618	Triboelectric Nanogenerator-Enabled Dendrite-Free Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2019, 11, 802-810.	4.0	12
619	Porous insulating matrix for lithium metal anode with long cycling stability and high power. Energy Storage Materials, 2019, 17, 31-37.	9.5	36

#	Article	IF	CITATIONS
620	Novel flexible Mn-based carbon nanofiber films as interlayers for stable lithium-metal battery. Chemical Engineering Journal, 2019, 360, 900-911.	6.6	36
621	Nonplanar Electrode Architectures for Ultrahigh Areal Capacity Batteries. ACS Energy Letters, 2019, 4, 271-275.	8.8	32
622	Alkali Metal Anodes for Rechargeable Batteries. CheM, 2019, 5, 313-338.	5.8	170
623	Nanocrevasse-Rich Carbon Fibers for Stable Lithium and Sodium Metal Anodes. Nano Letters, 2019, 19, 1504-1511.	4.5	123
624	Direct Observation and Suppression Effect of Lithium Dendrite Growth for Polyphosphazene Based Polymer Electrolytes in Lithium Metal Cells. ChemElectroChem, 2019, 6, 1166-1176.	1.7	16
625	Ni@Li2O co-axial nanowire based reticular anode: Tuning electric field distribution for homogeneous lithium deposition. Energy Storage Materials, 2019, 18, 155-164.	9.5	59
626	Recent progress in LiF materials for safe lithium metal anode of rechargeable batteries: Is LiF the key to commercializing Li metal batteries?. Ceramics International, 2019, 45, 30-49.	2.3	111
627	Rearrange SEI with artificial organic layer for stable lithium metal anode. Energy Storage Materials, 2020, 24, 618-625.	9.5	65
628	A conductive-dielectric gradient framework for stable lithium metal anode. Energy Storage Materials, 2020, 24, 700-706.	9.5	88
629	Cations and anions regulation through zwitterionic gel electrolytes for stable lithium metal anodes. Energy Storage Materials, 2020, 24, 574-578.	9.5	46
630	Understanding and suppression strategies toward stable Li metal anode for safe lithium batteries. Energy Storage Materials, 2020, 25, 644-678.	9.5	207
631	Pseudocapacitance controlled fast-charging and long-life lithium ion battery achieved via a 3D mutually embedded VPO4/rGO electrode. Journal of Alloys and Compounds, 2020, 812, 152135.	2.8	18
632	Highly stable lithium metal anode with near-zero volume change enabled by capped 3D lithophilic framework. Energy Storage Materials, 2020, 25, 172-179.	9.5	68
633	Sequential Fractionation of Lignocellulosic Biomass Using CO ₂ â€Assisted Hydrolysis Combined with γâ€Valerolactone Treatment. Energy Technology, 2020, 8, 1900949.	1.8	4
634	Direct electroplating of Ag nanowires using superionic conductors. Nanoscale Horizons, 2020, 5, 89-94.	4.1	2
635	Stabilized lithium metal anode by an efficient coating for high-performance Li–S batteries. Energy Storage Materials, 2020, 24, 329-335.	9.5	79
636	Graphene-based composites for electrochemical energy storage. Energy Storage Materials, 2020, 24, 22-51.	9.5	364
637	High performance all-solid-state sodium batteries actualized by polyethylene oxide/Na2Zn2TeO6 composite solid electrolytes. Energy Storage Materials, 2020, 24, 467-471.	9.5	50

#	Article	IF	CITATIONS
638	Formulierung von Elektrolyten mit gemischten Lithiumsalzen für Lithiumâ€Batterien. Angewandte Chemie, 2020, 132, 3426-3442.	1.6	16
639	Formulation of Blendedâ€Lithiumâ€Salt Electrolytes for Lithium Batteries. Angewandte Chemie - International Edition, 2020, 59, 3400-3415.	7.2	129
640	Electrolyte additive maintains high performance for dendrite-free lithium metal anode. Chinese Chemical Letters, 2020, 31, 1217-1220.	4.8	34
641	3D-printed electrodes for lithium metal batteries with high areal capacity and high-rate capability. Energy Storage Materials, 2020, 24, 336-342.	9.5	105
642	Development of a novel quantitative realâ€ŧime PCR assay with lyophilized powder reagent to detect African swine fever virus in blood samples of domestic pigs in China. Transboundary and Emerging Diseases, 2020, 67, 284-297.	1.3	41
643	Engineering interfacial adhesion for high-performance lithium metal anode. Nano Energy, 2020, 67, 104242.	8.2	34
644	Controlling structure of vertically grown graphene sheets on carbon fibers for hosting Li and Na metals as rechargeable battery anodes. Carbon, 2020, 158, 394-405.	5.4	16
645	Latency performance analysis for safetyâ€related information broadcasting in VeMAC. Transactions on Emerging Telecommunications Technologies, 2020, 31, e3751.	2.6	6
646	Revisiting the Electroplating Process for Lithiumâ€Metal Anodes for Lithiumâ€Metal Batteries. Angewandte Chemie, 2020, 132, 6730-6739.	1.6	17
647	Revisiting the Electroplating Process for Lithiumâ€Metal Anodes for Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 6665-6674.	7.2	137
648	Li2S growth on graphene: Impact on the electrochemical performance of Li-S batteries. Journal of Chemical Physics, 2020, 152, 014701.	1.2	10
649	High Interfacial-Energy Interphase Promoting Safe Lithium Metal Batteries. Journal of the American Chemical Society, 2020, 142, 2438-2447.	6.6	195
650	Restructured rimous copper foam as robust lithium host. Energy Storage Materials, 2020, 26, 250-259.	9.5	34
651	Nickel phosphate nanorod-enhanced polyethylene oxide-based composite polymer electrolytes for solid-state lithium batteries. Journal of Colloid and Interface Science, 2020, 565, 110-118.	5.0	47
652	Covalent organic framework-based ultrathin crystalline porous film: manipulating uniformity of fluoride distribution for stabilizing lithium metal anode. Journal of Materials Chemistry A, 2020, 8, 3459-3467.	5.2	75
653	Superlithiophilic graphene-silver enabling ultra-stable hosts for lithium metal anodes. Inorganic Chemistry Frontiers, 2020, 7, 897-904.	3.0	7
654	Synergistic effect of interface layer and mechanical pressure for advanced Li metal anodes. Energy Storage Materials, 2020, 26, 112-118.	9.5	25
655	Synchronous Healing of Li Metal Anode via Asymmetrical Bidirectional Current. IScience, 2020, 23, 100781.	1.9	48

#	Article	IF	CITATIONS
656	Incorporating SnO2 nanodots into wood flour-derived hierarchically porous carbon as low-cost anodes for superior lithium storage. Journal of Electroanalytical Chemistry, 2020, 856, 113654.	1.9	9
657	A Sustainable Solid Electrolyte Interphase for Highâ€Energyâ€Density Lithium Metal Batteries Under Practical Conditions. Angewandte Chemie, 2020, 132, 3278-3283.	1.6	60
658	Three-dimensional polymer networks for solid-state electrochemical energy storage. Chemical Engineering Journal, 2020, 391, 123548.	6.6	44
659	Electrolyte Regulation towards Stable Lithiumâ€Metal Anodes in Lithium–Sulfur Batteries with Sulfurized Polyacrylonitrile Cathodes. Angewandte Chemie - International Edition, 2020, 59, 10732-10745.	7.2	108
660	Revealing Principles for Design of Lean-Electrolyte Lithium Metal Anode via In Situ Spectroscopy. Journal of the American Chemical Society, 2020, 142, 2012-2022.	6.6	142
661	Mechanism of lithium electrodeposition in a magnetic field. Solid State Ionics, 2020, 345, 115171.	1.3	23
662	<i>In situ</i> formation of a LiF and Li–Al alloy anode protected layer on a Li metal anode with enhanced cycle life. Journal of Materials Chemistry A, 2020, 8, 1247-1253.	5.2	61
663	The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium. Proceedings of the United States of America, 2020, 117, 73-79.	3.3	220
664	Co-guiding the dendrite-free plating of lithium on lithiophilic ZnO and fluoride modified 3D porous copper for stable Li metal anode. Journal of Materiomics, 2020, 6, 54-61.	2.8	16
665	Eliminating Dendrites through Dynamically Engineering the Forces Applied during Li Deposition for Stable Lithium Metal Anodes. Advanced Energy Materials, 2020, 10, 1902932.	10.2	34
666	Suppressing Dendrite Growth of a Lithium Metal Anode by Modifying Conventional Polypropylene Separators with a Composite Layer. ACS Applied Energy Materials, 2020, 3, 506-513.	2.5	24
667	Layer-by-Layer Assembly Strategy for Reinforcing the Mechanical Strength of an Ionogel Electrolyte without Affecting Ionic Conductivity. ACS Applied Energy Materials, 2020, 3, 1265-1270.	2.5	12
668	Solid–Liquid Coexisting LiNO ₃ Electrolyte for Extremely Stable Lithium Metal Anodes on a Bare Cu Foil. ACS Sustainable Chemistry and Engineering, 2020, 8, 706-713.	3.2	11
669	Electrolyte Regulation towards Stable Lithiumâ€Metal Anodes in Lithium–Sulfur Batteries with Sulfurized Polyacrylonitrile Cathodes. Angewandte Chemie, 2020, 132, 10821-10834.	1.6	80
670	A Sustainable Solid Electrolyte Interphase for Highâ€Energyâ€Đensity Lithium Metal Batteries Under Practical Conditions. Angewandte Chemie - International Edition, 2020, 59, 3252-3257.	7.2	221
671	Electro-deposition of the lithium metal anode on dendritic copper current collectors for lithium battery application. Applied Surface Science, 2020, 506, 144884.	3.1	27
672	Advances in Artificial Layers for Stable Lithium Metal Anodes. Chemistry - A European Journal, 2020, 26, 4193-4203.	1.7	36
673	Hierarchical Cu fibers induced Li uniform nucleation for dendrite-free lithium metal anode. Chemical Engineering Journal, 2020, 392, 123691.	6.6	42

#	ARTICLE	IF	CITATIONS
674	The origin of sulfuryl-containing components in SEI from sulfate additives for stable cycling of	7.1	63
	ultrathin lithium metal anodes. Journal of Energy Chemistry, 2020, 47, 128-131.		
675	Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nature Communications, 2020, 11, 93.	5.8	312
676	Lithium superionic conduction in α-Li10P4N10: A promising inorganic solid electrolyte candidate. Journal of Power Sources, 2020, 477, 228744.	4.0	3
677	Design principles for self-forming interfaces enabling stable lithium-metal anodes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27195-27203.	3.3	44
678	Boosting the Optimization of Lithium Metal Batteries by Molecular Dynamics Simulations: A Perspective. Advanced Energy Materials, 2020, 10, 2002373.	10.2	56
679	Current status and future perspectives of lithium metal batteries. Journal of Power Sources, 2020, 480, 228803.	4.0	109
680	High-Efficiency Electrolyte for Li-Rich Cathode Materials Achieving Enhanced Cycle Stability and Suppressed Voltage Fading Capable of Practical Applications on a Li-Ion Battery. ACS Applied Materials & Interfaces, 2020, 12, 49666-49679.	4.0	15
681	Highâ€Capacity, Dendriteâ€Free, and Ultrahighâ€Rate Lithiumâ€Metal Anodes Based on Monodisperse Nâ€Dopec Hollow Carbon Nanospheres. Small, 2020, 16, e2004770.	5.2	27
682	Design rules for liquid crystalline electrolytes for enabling dendrite-free lithium metal batteries. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26672-26680.	3.3	26
683	CuO–C modified glass fiber films with a mixed ion and electron-conducting scaffold for highly stable lithium metal anodes. Journal of Materials Chemistry A, 2020, 8, 21961-21967.	5.2	6
684	Revealing and Elucidating ALDâ€Đerived Control of Lithium Plating Microstructure. Advanced Energy Materials, 2020, 10, 2002736.	10.2	37
685	Recent Progress in Designing Stable Composite Lithium Anodes with Improved Wettability. Advanced Science, 2020, 7, 2002212.	5.6	95
686	Challenges, mitigation strategies and perspectives in development of Li metal anode. Nano Select, 2020, 1, 622-638.	1.9	4
687	Liquidâ€Free Allâ€Solidâ€State Zinc Batteries and Encapsulationâ€Free Flexible Batteries Enabled by Inâ€Situ Constructed Polymer Electrolyte. Angewandte Chemie, 2020, 132, 24044-24052.	1.6	45
688	Evaluation on hybridâ^'electrolyte structure using the liquid electrolyte interlayer containing LiBH4 at Li7La3Zr2O12 Li interface at high operating temperature. Journal of Power Sources, 2020, 478, 228751.	4.0	1
689	Designing electrolytes with polymerlike glass-forming properties and fast ion transport at low temperatures. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26053-26060.	3.3	82
690	Organic supramolecular protective layer with rearranged and defensive Li deposition for stable and dendrite-free lithium metal anode. Energy Storage Materials, 2020, 32, 261-271.	9.5	23
691	Unveiling the intrinsic reaction between silicon-graphite composite anode and ionic liquid electrolyte in lithium-ion battery. Journal of Power Sources, 2020, 473, 228481.	4.0	19

#	Article	IF	CITATIONS
692	Inducing ordered Li deposition on a PANI-decorated Cu mesh for an advanced Li anode. Journal of Materials Chemistry A, 2020, 8, 17056-17064.	5.2	20
693	From ion to atom to dendrite: Formation and nanomechanical behavior of electrodeposited lithium. MRS Bulletin, 2020, 45, 891-904.	1.7	9
694	Phase-field simulation of Li dendrites with multiple parameters influence. Computational Materials Science, 2020, 183, 109919.	1.4	30
695	On-Site Fluorination for Enhancing Utilization of Lithium in a Lithium–Sulfur Full Battery. ACS Applied Materials & Interfaces, 2020, 12, 53860-53868.	4.0	12
696	A functionalized metal organic framework-laden nanoporous polymer electrolyte for exceptionally stable lithium electrodeposition. Chemical Communications, 2020, 56, 15533-15536.	2.2	20
697	Research progress in Li-argyrodite-based solid-state electrolytes. Journal of Materials Chemistry A, 2020, 8, 25663-25686.	5.2	68
698	A robust and lithiophilic three-dimension framework of CoO nanorod arrays on carbon cloth for cycling-stable lithium metal anodes. Materials Today Energy, 2020, 18, 100520.	2.5	27
699	Ultrathin Li _{6.75} La ₃ Zr _{1.75} Ta _{0.25} O ₁₂ -Based Composite Solid Electrolytes Laminated on Anode and Cathode Surfaces for Anode-free Lithium Metal Batteries. ACS Applied Energy Materials, 2020, 3, 11713-11723.	2.5	35
700	Stable metal anodes enabled by a labile organic molecule bonded to a reduced graphene oxide aerogel. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30135-30141.	3.3	17
701	The effects of polybenzimidazole nanofiber separator on the safety and performance of lithium-ion batteries: Characterization and analysis from the perspective of mechanism. Journal of Power Sources, 2020, 475, 228624.	4.0	37
702	Rational Tuning of a Li ₄ SiO ₄ -Based Hybrid Interface with Unique Stepwise Prelithiation for Dendrite-Proof and High-Rate Lithium Anodes. ACS Applied Materials & Interfaces, 2020, 12, 39362-39371.	4.0	23
703	Biomolecule-guided cation regulation for dendrite-free metal anodes. Science Advances, 2020, 6, eabb1342.	4.7	117
704	Thermodynamic Understanding of Li-Dendrite Formation. Joule, 2020, 4, 1864-1879.	11.7	252
705	Stabilizing Liquid Electrolytes in a Porous PVDF Matrix Incorporated with Star Polymers with Linear PEG Arms and CycloPEG Cores. Langmuir, 2020, 36, 9616-9625.	1.6	5
706	A flexible composite solid electrolyte with a highly stable interphase for dendrite-free and durable all-solid-state lithium metal batteries. Journal of Materials Chemistry A, 2020, 8, 18043-18054.	5.2	77
708	Facile <i>ex situ</i> formation of a LiF–polymer composite layer as an artificial SEI layer on Li metal by simple roll-press processing for carbonate electrolyte-based Li metal batteries. Journal of Materials Chemistry A, 2020, 8, 17229-17237.	5.2	63
709	Recent progress on electrolyte additives for stable lithium metal anode. Energy Storage Materials, 2020, 32, 306-319.	9.5	126
710	Facile Synthesis of Antâ€Nestâ€Like Porous Duplex Copper as Deeply Cycling Host for Lithium Metal Anodes. Small, 2020, 16, e2001784.	5.2	33

#	Article	IF	CITATIONS
711	Anisotropic ion transport in 2D polymer single crystal-based solid polymer electrolytes. Giant, 2020, 2, 100021.	2.5	18
712	An interconnected silver coated carbon cloth framework as a host to reduce lithium nucleation over-potential for dendrite-free lithium metal anodes. Journal of Electroanalytical Chemistry, 2020, 878, 114569.	1.9	21
713	Regulating the Li ⁺ â€Solvation Structure of Ester Electrolyte for Highâ€Energyâ€Density Lithium Metal Batteries. Small, 2020, 16, e2004688.	5.2	34
714	Reversible Deposition of Lithium Particles Enabled by Ultraconformal and Stretchable Graphene Film for Lithium Metal Batteries. Advanced Materials, 2020, 32, e2005763.	11.1	64
715	Inducing uniform lithium nucleation by integrated lithium-rich li-in anode with lithiophilic 3D framework. Energy Storage Materials, 2020, 33, 423-431.	9.5	56
716	Ultrathin, Compacted Gel Polymer Electrolytes Enable Highâ€Energy and Stableâ€Cycling 4 V Lithiumâ€Metal Batteries. ChemElectroChem, 2020, 7, 3656-3662.	1.7	5
717	Opportunities and Challenges of High-Energy Lithium Metal Batteries for Electric Vehicle Applications. ACS Energy Letters, 2020, 5, 3140-3151.	8.8	196
718	A Review of Solid-State Lithium–Sulfur Battery: Ion Transport and Polysulfide Chemistry. Energy & Fuels, 2020, 34, 11942-11961.	2.5	83
719	Interface stability of LiCl-rich argyrodite Li6PS5Cl with propylene carbonate boosts high-performance lithium batteries. Electrochimica Acta, 2020, 363, 137128.	2.6	26
720	Safe, superionic conductive and flexible "polymer-in-plastic salts―electrolytes for dendrite-free lithium metal batteries. Energy Storage Materials, 2020, 33, 442-451.	9.5	22
721	Synthesis and Characterization of Li-C Nanocomposite for Easy and Safe Handling. Nanomaterials, 2020, 10, 1483.	1.9	9
722	Stereolithography Three-Dimensional Printing Solid Polymer Electrolytes for All-Solid-State Lithium Metal Batteries. Nano Letters, 2020, 20, 7136-7143.	4.5	79
723	500 Wh kg ^{â^'1} Class Li Metal Battery Enabled by a Selfâ€Organized Core–Shell Composite Anode. Advanced Materials, 2020, 32, e2004793.	11.1	86
724	Photo-crosslinked Polymer Electrolytes Containing Solvate Ionic Liquids: An Approach to Achieve Both Good Mechanical and Electrochemical Performances for Rechargeable Lithium Ion Batteries. Chemistry Letters, 2020, 49, 1465-1469.	0.7	4
725	Robustness-Heterogeneity-Induced Ultrathin 2D Structure in Li Plating for Highly Reversible Li–Metal Batteries. ACS Applied Materials & Interfaces, 2020, 12, 46132-46145.	4.0	29
726	Liquidâ€Free Allâ€Solidâ€State Zinc Batteries and Encapsulationâ€Free Flexible Batteries Enabled by Inâ€Situ Constructed Polymer Electrolyte. Angewandte Chemie - International Edition, 2020, 59, 23836-23844.	7.2	102
727	Polymer–Inorganic Nanocomposite Coating with High Ionic Conductivity and Transference Number for a Stable Lithium Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 41620-41626.	4.0	24
728	Intrinsic self-healing polymers for advanced lithium-based batteries: Advances and strategies. Applied Physics Reviews, 2020, 7, .	5.5	58

		CITATION REPORT		
#	Article		IF	Citations
729	A polymeric composite protective layer for stable Li metal anodes. Nano Convergence,	2020, 7, 21.	6.3	17
730	Ice-Templated Free-Standing Reduced Graphene Oxide for Dendrite-Free Lithium Metal Applied Energy Materials, 2020, 3, 11053-11060.	Batteries. ACS	2.5	18
731	Guided dendrite-free lithium deposition through titanium nitride additive in Li metal ba International Journal of Hydrogen Energy, 2020, 45, 28294-28302.	tteries.	3.8	9
732	Advanced Current Collectors for Alkali Metal Anodes. Chemical Research in Chinese Un 2020, 36, 386-401.	iversities,	1.3	24
733	Sacrificial Poly(propylene carbonate) Membrane for Dispersing Nanoparticles and Prepa Solid Electrolyte Interphase on Li Metal Anode. ACS Applied Materials & Interfaces 27087-27094.	aring Artificial 5, 2020, 12,	4.0	8
734	Unveiling the mechanisms of lithium dendrite suppression by cationic polymer film induse solid–electrolyte interphase modification. Energy and Environmental Science, 2020,	uced 13, 1832-1842.	15.6	45
735	Selective Lithium Deposition on 3D Porous Heterogeneous Lithiophilic Skeleton for Ult Lithium Metal Anodes. ChemNanoMat, 2020, 6, 1200-1207.	rastable	1.5	10
736	Effect of Electrolyte Concentration on the Solvation Structure of Gold/LITFSI–DMSO Interface. Journal of Physical Chemistry C, 2020, 124, 12381-12389.	Solution	1.5	25
737	Designing Polymeric Interphases for Stable Lithium Metal Deposition. Nano Letters, 20	20, 20, 5749-5758.	4.5	23
738	A dendrite-free and stable anode for high-performance Li–O ₂ batteries l reduced graphene oxide coated three-dimensional nickel foam. Chemical Communicati 7645-7648.	by prestoring Li in ons, 2020, 56,	2.2	6
740	In-situ growth of hierarchical N-doped CNTs/Ni Foam scaffold for dendrite-free lithium r Energy Storage Materials, 2020, 29, 332-340.	netal anode.	9.5	80
741	Reliable liquid electrolytes for lithium metal batteries. Energy Storage Materials, 2020,	30, 113-129.	9.5	92
742	Tuning the stability of electrochemical interfaces by electron transfer reactions. Journal Physics, 2020, 152, 184703.	of Chemical	1.2	19
743	Doubleâ€&helled C@MoS 2 Structures Preloaded with Sulfur: An Additive Reservo Metal Anodes. Angewandte Chemie, 2020, 132, 15973-15977.	ir for Stable Lithium	1.6	11
744	Decorating carbon felt with oxides by dipping as dendrite-free host for lithium metal ar 2020, 26, 4381-4390.	iode. Ionics,	1.2	3
745	Recently developed strategies to restrain dendrite growth of Li metal anodes for rechan batteries. Rare Metals, 2020, 39, 616-635.	geable	3.6	89
746	Double‣helled C@MoS ₂ Structures Preloaded with Sulfur: An Add Stable Lithium Metal Anodes. Angewandte Chemie - International Edition, 2020, 59, 15	tive Reservoir for 839-15843.	7.2	79
747	Nanocomposite solid polymer electrolytes based on semi-interpenetrating hybrid polyn for high performance lithium metal batteries. Electrochimica Acta, 2020, 353, 136481.	ner networks	2.6	19

#	Article	IF	Citations
748	Tiny amounts of fluorinated carbon nanotubes remove sodium dendrites for high-performance sodium–oxygen batteries. Sustainable Energy and Fuels, 2020, 4, 4108-4116.	2.5	3
749	Kinetic- versus Diffusion-Driven Three-Dimensional Growth in Magnesium Metal Battery Anodes. Joule, 2020, 4, 1324-1336.	11.7	98
750	Effective suppression of lithium dendrite growth using fluorinated polysulfonamide-containing single-ion conducting polymer electrolytes. Materials Advances, 2020, 1, 873-879.	2.6	11
751	Three-Dimensional Ordered Macro/Mesoporous Cu/Zn as a Lithiophilic Current Collector for Dendrite-Free Lithium Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 31542-31551.	4.0	60
752	Magnetic field assisted high capacity durable Li-ion battery using magnetic α-Fe2O3 nanoparticles decorated expired drug derived N-doped carbon anode. Scientific Reports, 2020, 10, 9945.	1.6	31
753	Gel polymer electrolyte with high performances based on polyacrylonitrile composite natural polymer of lignocellulose in lithium ion battery. Journal of Materials Science, 2020, 55, 12249-12263.	1.7	25
754	Resolving Nanoscopic and Mesoscopic Heterogeneity of Fluorinated Species in Battery Solid-Electrolyte Interphases by Cryogenic Electron Microscopy. ACS Energy Letters, 2020, 5, 1128-1135.	8.8	199
755	An ultrastable lithium metal anode enabled by designed metal fluoride spansules. Science Advances, 2020, 6, eaaz3112.	4.7	157
756	Organosulfur Compounds Enable Uniform Lithium Plating and Long-Term Battery Cycling Stability. Nano Letters, 2020, 20, 2594-2601.	4.5	29
757	Interfacial engineering for stabilizing polymer electrolytes with 4V cathodes in lithium metal batteries at elevated temperature. Nano Energy, 2020, 72, 104655.	8.2	68
758	Facile fabrication of a hybrid polymer electrolyte <i>via</i> initiator-free thiol–ene photopolymerization for high-performance all-solid-state lithium metal batteries. Polymer Chemistry, 2020, 11, 2732-2739.	1.9	22
759	Understanding composition and morphology of solid-electrolyte interphase in mesocarbon microbeads electrodes with nano-conducting additives. Electrochimica Acta, 2020, 341, 136015.	2.6	12
760	Crystal Structure Influences Migration along Li and Mg Surfaces. Journal of Physical Chemistry Letters, 2020, 11, 2891-2895.	2.1	13
761	Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries. Chemical Society Reviews, 2020, 49, 2701-2750.	18.7	310
762	Advanced Liquid Electrolytes for Rechargeable Li Metal Batteries. Advanced Functional Materials, 2020, 30, 1910777.	7.8	201
763	Dendrite-free lithium metal solid battery with a novel polyester based triblock copolymer solid-state electrolyte. Nano Energy, 2020, 72, 104690.	8.2	76
764	3D-flower MoS2/Polyimide Heterostructures with Enhanced Electrochemical Properties for Lithium Storage. International Journal of Electrochemical Science, 2020, , 2354-2363.	0.5	0
765	Flaky and Dense Lithium Deposition Enabled by a Nanoporous Copper Surface Layer on Lithium Metal Anode. , 2020, 2, 358-366.		19

#	Article	IF	CITATIONS
766	Achieving Uniform Lithium Electrodeposition in Cross-Linked Poly(ethylene oxide) Networks: "Soft― Polymers Prevent Metal Dendrite Proliferation. Macromolecules, 2020, 53, 5445-5454.	2.2	22
767	Recent advances in research on anodes for safe and efficient lithium–metal batteries. Nanoscale, 2020, 12, 15528-15559.	2.8	31
768	PVDF-HFP/LiF Composite Interfacial Film to Enhance the Stability of Li-Metal Anodes. ACS Applied Energy Materials, 2020, 3, 7191-7199.	2.5	33
769	Recent advances in the mitigation of dendrites in lithium-metal batteries. Journal of Applied Physics, 2020, 128, .	1.1	14
770	Effect of Urea as Electrolyte Additive for Stabilization of Lithium Metal Electrodes. ACS Sustainable Chemistry and Engineering, 2020, 8, 11123-11132.	3.2	17
771	Low-temperature fusion fabrication of Li-Cu alloy anode with in situ formed 3D framework of inert LiCu nanowires for excellent Li storage performance. Science Bulletin, 2020, 65, 1907-1915.	4.3	50
772	Revisiting the strategies for stabilizing lithium metal anodes. Journal of Materials Chemistry A, 2020, 8, 13874-13895.	5.2	54
773	Aluminum electrolysis derivative spent cathodic carbon for dendrite-free Li metal anode. Materials Today Energy, 2020, 17, 100465.	2.5	8
774	In Situ Construction of a LiFâ€Enriched Interface for Stable Allâ€Solidâ€State Batteries and its Origin Revealed by Cryoâ€TEM. Advanced Materials, 2020, 32, e2000223.	11.1	278
775	Regulated lithium ionic flux through well-aligned channels for lithium dendrite inhibition in solid-state batteries. Energy Storage Materials, 2020, 31, 344-351.	9.5	48
776	Ionic liquid enhanced composite solid electrolyte for high-temperature/long-life/dendrite-free lithium metal batteries. Journal of Membrane Science, 2020, 612, 118424.	4.1	31
777	Understanding the molecular mechanism of lithium deposition for practical high-energy lithium-metal batteries. Journal of Materials Chemistry A, 2020, 8, 6229-6237.	5.2	29
778	In situ healing of dendrites in a potassium metal battery. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5588-5594.	3.3	79
779	High-conductivity open framework fluorinated electrolyte bonded by solidified ionic liquid wires for solid-state Li metal batteries. Energy Storage Materials, 2020, 28, 37-46.	9.5	58
780	Current Challenges and Routes Forward for Nonaqueous Lithium–Air Batteries. Chemical Reviews, 2020, 120, 6558-6625.	23.0	356
781	Review—Emerging Trends in the Design of Electrolytes for Lithium and Post-Lithium Batteries. Journal of the Electrochemical Society, 2020, 167, 050508.	1.3	89
782	Slurry-like hybrid electrolyte with high lithium-ion transference number for dendrite-free lithium metal anode. Journal of Energy Chemistry, 2020, 48, 375-382.	7.1	23
783	Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nature Communications, 2020, 11, 829.	5.8	246

#	Article	IF	CITATIONS
784	Rechargeable Lithium Metal Batteries with an Inâ€Built Solidâ€State Polymer Electrolyte and a High Voltage/Loading Niâ€Rich Layered Cathode. Advanced Materials, 2020, 32, e1905629.	11.1	140
785	Ion conduction in the comb-branched polyether electrolytes with controlled network structures. Soft Matter, 2020, 16, 1979-1988.	1.2	14
786	A Highly Reversible, Dendriteâ€Free Lithium Metal Anode Enabled by a Lithiumâ€Fluorideâ€Enriched Interphase. Advanced Materials, 2020, 32, e1906427.	11.1	168
787	Effect of conductor materials in lithium composite anode on plating and stripping of lithium. Ionics, 2020, 26, 3307-3314.	1.2	3
788	Advanced nanoporous separators for stable lithium metal electrodeposition at ultra-high current densities in liquid electrolytes. Journal of Materials Chemistry A, 2020, 8, 5095-5104.	5.2	47
789	Nitrogenâ€doped nanoarrayâ€modified 3D hierarchical graphene as a cofunction host for highã€performance flexible Liâ€6 battery. EcoMat, 2020, 2, e12010.	6.8	50
790	Ultrathin Defective C–N Coating to Enable Nanostructured Li Plating for Li Metal Batteries. ACS Nano, 2020, 14, 1866-1878.	7.3	83
791	Bi-containing Electrolyte Enables Robust and Li Ion Conductive Solid Electrolyte Interphase for Advanced Lithium Metal Anodes. Frontiers in Chemistry, 2020, 7, 952.	1.8	14
792	A Singleâ€lon Conducting Borate Network Polymer as a Viable Quasiâ€Solid Electrolyte for Lithium Metal Batteries. Advanced Materials, 2020, 32, e1905771.	11.1	121
793	A Versatile Snâ€6ubstituted Argyrodite Sulfide Electrolyte for Allâ€6olidâ€6tate Li Metal Batteries. Advanced Energy Materials, 2020, 10, 1903422.	10.2	183
794	In-situ organic SEI layer for dendrite-free lithium metal anode. Energy Storage Materials, 2020, 27, 69-77.	9.5	70
795	Largeâ€Scale Modification of Commercial Copper Foil with Lithiophilic Metal Layer for Li Metal Battery. Small, 2020, 16, e1905620.	5.2	71
796	Nâ€Doped Graphdiyne Coating for Dendriteâ€Free Lithium Metal Batteries. Chemistry - A European Journal, 2020, 26, 5434-5440.	1.7	22
797	Layered MXene Protected Lithium Metal Anode as an Efficient Polysulfide Blocker for Lithiumâ€ S ulfur Batteries. Batteries and Supercaps, 2020, 3, 892-899.	2.4	22
798	Enhanced ionic conductivity and mechanical properties via dynamic-covalent boroxine bonds in solid polymer electrolytes. Journal of Membrane Science, 2020, 608, 118218.	4.1	32
799	Dendrite-free, wide temperature range lithium metal batteries enabled by hybrid network ionic liquids. Energy Storage Materials, 2020, 29, 273-280.	9.5	55
800	Design of a Multifunctional Interlayer for NASCIONâ€Based Solidâ€State Li Metal Batteries. Advanced Functional Materials, 2020, 30, 2001444.	7.8	109
801	Tortuosity Effects in Lithium-Metal Host Anodes. Joule, 2020, 4, 938-952.	11.7	150

#	Article	IF	CITATIONS
802	Porous membrane with improved dendrite resistance for high-performance lithium metal-based battery. Journal of Membrane Science, 2020, 605, 118108.	4.1	52
803	Poly(ε-caprolactone)-block-poly(ethylene glycol)-block-poly(ε-caprolactone)-based hybrid polymer electrolyte for lithium metal batteries. Journal of Membrane Science, 2020, 607, 118132.	4.1	41
804	A super-lithiophilic nanocrystallization strategy for stable lithium metal anodes. Nano Energy, 2020, 73, 104731.	8.2	36
805	Role of a Solid–Electrolyte Interphase in the Dendritic Electrodeposition of Lithium: A Brownian Dynamics Simulation Study. Journal of Physical Chemistry C, 2020, 124, 9134-9141.	1.5	9
806	Reductive Decomposition of Solvents and Additives toward Solid-Electrolyte Interphase Formation in Lithium-Ion Battery. Journal of Physical Chemistry C, 2020, 124, 9099-9108.	1.5	30
807	Realizing Dendrite-Free Lithium Deposition with a Composite Separator. Nano Letters, 2020, 20, 3798-3807.	4.5	66
808	All solid state electrochromic devices based on the LiF electrolyte. Chemical Communications, 2020, 56, 5018-5021.	2.2	36
809	Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries. Nature Materials, 2020, 19, 758-766.	13.3	110
810	Robust pure copper framework by extrusion 3D printing for advanced lithium metal anodes. Journal of Materials Chemistry A, 2020, 8, 9058-9067.	5.2	51
811	Theoretical formulation of Li _{3a+b} N _a X _b (X = halogen) as a potential artificial solid electrolyte interphase (ASEI) to protect the Li anode. Physical Chemistry Chemical Physics, 2020, 22, 12918-12928.	1.3	12
812	Structure and Interface Design Enable Stable Li-Rich Cathode. Journal of the American Chemical Society, 2020, 142, 8918-8927.	6.6	151
813	Highâ€Performance Threeâ€Dimensional Li Anode Scaffold Enabled by Homogeneous Zn Nanoclusters. Small, 2020, 16, e2001257.	5.2	25
814	Lithium fluoride additive for inorganic LiAlCl4·3SO2 electrolyte toward stable lithium metal anode. Electrochimica Acta, 2020, 345, 136193.	2.6	6
815	High-performance lithium metal batteries with ultraconformal interfacial contacts of quasi-solid electrolyte to electrodes. Energy Storage Materials, 2020, 29, 149-155.	9.5	57
816	Control of Dendritic Growth of the Lithium Metal in All-Solid-State Lithium Metal Batteries: Effect of the Current Collector with Microsized Pores. ACS Applied Materials & Interfaces, 2020, 12, 22798-22803.	4.0	18
817	Towards practical lithium-metal anodes. Chemical Society Reviews, 2020, 49, 3040-3071.	18.7	473
818	Dendrite-free and air-stable lithium metal batteries enabled by electroless plating with aluminum fluoride. Journal of Materials Chemistry A, 2020, 8, 9218-9227.	5.2	16
819	Block copolymer electrolyte with adjustable functional units for solid polymer lithium metal battery. Journal of Energy Chemistry, 2021, 52, 67-74.	7.1	43

#	Article	IF	CITATIONS
820	Ag-modified hydrogen titanate nanowire arrays for stable lithium metal anode in a carbonate-based electrolyte. Journal of Energy Chemistry, 2021, 54, 282-290.	7.1	16
821	Constructing a uniform lithium iodide layer for stabilizing lithium metal anode. Journal of Energy Chemistry, 2021, 55, 129-135.	7.1	44
822	Electrolyte additives: Adding the stability of lithium metal anodes. Nano Select, 2021, 2, 16-36.	1.9	28
823	Stabilizing Effect of Polysulfides on Lithium Metal Anodes in Sparingly Solvating Solvents. Batteries and Supercaps, 2021, 4, 347-358.	2.4	10
824	Structure Code for Advanced Polymer Electrolyte in Lithiumâ€lon Batteries. Advanced Functional Materials, 2021, 31, 2008208.	7.8	77
825	Incorporation of LiF into functionalized polymer fiber networks enabling high capacity and high rate cycling of lithium metal composite anodes. Chemical Engineering Journal, 2021, 404, 126508.	6.6	21
826	Porous conductive interlayer for dendrite-free lithium metal battery. Journal of Energy Chemistry, 2021, 53, 412-418.	7.1	13
827	Elongating the cycle life of lithium metal batteries in carbonate electrolyte with gradient solid electrolyte interphase layer. Energy Storage Materials, 2021, 34, 241-249.	9.5	52
828	Hierarchical Composite‣olidâ€Electrolyte with High Electrochemical Stability and Interfacial Regulation for Boosting Ultraâ€Stable Lithium Batteries. Advanced Functional Materials, 2021, 31, .	7.8	57
829	Electrolytes enriched by potassium perfluorinated sulfonates for lithium metal batteries. Science Bulletin, 2021, 66, 685-693.	4.3	149
830	Probing Lithium Metals in Batteries by Advanced Characterization and Analysis Tools. Advanced Energy Materials, 2021, 11, 2003039.	10.2	30
831	Advanced electrolyte design for stable lithium metal anode: From liquid to solid. Nano Energy, 2021, 80, 105516.	8.2	111
832	Direct Ink Writing of Polymer Composite Electrolytes with Enhanced Thermal Conductivities. Advanced Functional Materials, 2021, 31, 2006683.	7.8	63
833	Atomic Layer Deposition of Highâ€Capacity Anodes for Nextâ€Generation Lithiumâ€Ion Batteries and Beyond. Energy and Environmental Materials, 2021, 4, 363-391.	7.3	43
834	Li-ion conductivity and stability of hot-pressed LiTa2PO8 solid electrolyte for all-solid-state batteries. Journal of Materials Science, 2021, 56, 2425-2434.	1.7	20
835	Planar Li growth on Li21Si5 modified Li metal for the stabilization of anode. Journal of Materials Science and Technology, 2021, 76, 156-165.	5.6	6
836	Design principles of MOF-related materials for highly stable metal anodes in secondary metal-based batteries. Materials Today Energy, 2021, 19, 100608.	2.5	30
837	Ionic liquids for high performance lithium metal batteries. Journal of Energy Chemistry, 2021, 59, 320-333.	7.1	155

#	Article	IF	CITATIONS
838	Recent developments in nanotechnology-based printing electrode systems for electrochemical sensors. Talanta, 2021, 225, 121951.	2.9	64
839	A dendrite-free composite Li metal anode enabled by lithiophilic Co, N codoped porous carbon nanofibers. Journal of Power Sources, 2021, 483, 229188.	4.0	26
840	Artificial Solidâ€Electrolyte Interphase for Lithium Metal Batteries. Batteries and Supercaps, 2021, 4, 445-455.	2.4	56
841	Nonâ€Flammable Liquid and Quasiâ€Solid Electrolytes toward Highlyâ€Safe Alkali Metalâ€Based Batteries. Advanced Functional Materials, 2021, 31, 2008644.	7.8	127
842	Sustained Releaseâ€Driven Formation of Ultrastable SEI between Li ₆ PS ₅ Cl and Lithium Anode for Sulfideâ€Based Solidâ€State Batteries. Advanced Energy Materials, 2021, 11, 2002545.	10.2	87
843	Modifying an ultrathin insulating layer to suppress lithium dendrite formation within garnet solid electrolytes. Journal of Materials Chemistry A, 2021, 9, 3576-3583.	5.2	36
844	Two-dimensional lithiophilic YFδ enabled lithium dendrite removal for quasi-solid-state lithium batteries. Journal of Materiomics, 2021, 7, 355-365.	2.8	7
845	Recent development of Na metal anodes: Interphase engineering chemistries determine the electrochemical performance. Chemical Engineering Journal, 2021, 409, 127943.	6.6	38
846	A two-dimension laminar composite protective layer for dendrite-free lithium metal anode. Journal of Energy Chemistry, 2021, 56, 391-394.	7.1	26
847	High Performance Li Metal Anode Enabled by Robust Covalent Triazine Frameworkâ€Based Protective Layer. Advanced Functional Materials, 2021, 31, 2006159.	7.8	36
848	Lithium/Sulfide Allâ€Solidâ€State Batteries using Sulfide Electrolytes. Advanced Materials, 2021, 33, e2000751.	11.1	356
849	Suppressing Al dendrite growth towards a long-life Al-metal battery. Energy Storage Materials, 2021, 34, 194-202.	9.5	54
850	Advanced liquid electrolytes enable practical applications of high-voltage lithium–metal full batteries. Chemical Communications, 2021, 57, 840-858.	2.2	27
851	Solution-processable Li ₁₀ GeP ₂ S ₁₂ solid electrolyte for a composite electrode in all-solid-state lithium batteries. Sustainable Energy and Fuels, 2021, 5, 1211-1221.	2.5	13
852	High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chemical Society Reviews, 2021, 50, 10486-10566.	18.7	391
853	Modulating the electrical conductivity of a graphene oxide-coated 3D framework for guiding bottom-up lithium growth. Journal of Materials Chemistry A, 2021, 9, 1822-1834.	5.2	22
854	Single-ion conducting polymer electrolytes as a key jigsaw piece for next-generation battery applications. Chemical Science, 2021, 12, 13248-13272.	3.7	62
855	C–F-rich oil drop as a non-expendable fluid interface modifier with low surface energy to stabilize a Li metal anode. Energy and Environmental Science, 2021, 14, 3621-3631.	15.6	91

#	Article	IF	CITATIONS
856	Stable alkali metal anodes enabled by crystallographic optimization – a review. Journal of Materials Chemistry A, 2021, 9, 20957-20984.	5.2	32
857	Lithium ion diffusion mechanism on the inorganic components of the solid–electrolyte interphase. Journal of Materials Chemistry A, 2021, 9, 10251-10259.	5.2	66
858	Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes. Chemical Society Reviews, 2021, 50, 3178-3210.	18.7	126
859	Introduction to lithium-ion battery design. , 2021, , 1-19.		0
860	Flame-retardant single-ion conducting polymer electrolytes based on anion acceptors for high-safety lithium metal batteries. Journal of Materials Chemistry A, 2021, 9, 7692-7702.	5.2	33
861	Polymeric one-side conductive Janus separator with preferably oriented pores for enhancing lithium metal battery safety. Journal of Materials Chemistry A, 2021, 9, 3409-3417.	5.2	13
862	Slow surface diffusion on Cu substrates in Li metal batteries. Journal of Materials Chemistry A, 2021, 9, 11042-11048.	5.2	15
863	From Dendrites to Hemispheres: Changing Lithium Deposition by Highly Ordered Charge Transfer Channels. ACS Applied Materials & Interfaces, 2021, 13, 6249-6256.	4.0	10
864	Interfacial modification enabled room temperature solid-state lithium–metal batteries. Ionics, 2021, 27, 1569-1578.	1.2	2
865	Strategies towards enabling lithium metal in batteries: interphases and electrodes. Energy and Environmental Science, 2021, 14, 5289-5314.	15.6	156
866	Lithium Salt-Induced <i>In Situ</i> Living Radical Polymerizations Enable Polymer Electrolytes for Lithium-Ion Batteries. Macromolecules, 2021, 54, 874-887.	2.2	44
867	Polymer-based hybrid battery electrolytes: theoretical insights, recent advances and challenges. Journal of Materials Chemistry A, 2021, 9, 6050-6069.	5.2	40
868	Reactivity and Evolution of Ionic Phases in the Lithium Solid–Electrolyte Interphase. ACS Energy Letters, 2021, 6, 877-885.	8.8	22
869	In situ Construction of Robust Biphasic Surface Layers on Lithium Metal for Lithium–Sulfide Batteries with Long Cycle Life. Angewandte Chemie, 2021, 133, 7343-7350.	1.6	12
870	Synergistic Effects on Lithium Metal Batteries by Preferential Ionic Interactions in Concentrated Bisalt Electrolytes. Advanced Energy Materials, 2021, 11, 2003520.	10.2	33
871	Efficient Lithium Metal Cycling over a Wide Range of Pressures from an Anion-Derived Solid-Electrolyte Interphase Framework. ACS Energy Letters, 2021, 6, 816-825.	8.8	46
872	Stamping Flexible Li Alloy Anodes. Advanced Materials, 2021, 33, e2005305.	11.1	58
873	Strategy to Enhance the Cycling Stability of the Metallic Lithium Anode in Li-Metal Batteries. Nano Letters, 2021, 21, 1896-1901.	4.5	25

#	Article	IF	CITATIONS
874	In situ Construction of Robust Biphasic Surface Layers on Lithium Metal for Lithium–Sulfide Batteries with Long Cycle Life. Angewandte Chemie - International Edition, 2021, 60, 7267-7274.	7.2	63
875	Understanding the Reductive Decomposition of Highly Concentrated Li Salt/Sulfolane Electrolytes during Li Deposition and Dissolution. ACS Applied Energy Materials, 2021, 4, 1851-1859.	2.5	24
876	Interplay of Lithium Intercalation and Plating on a Single Graphite Particle. Joule, 2021, 5, 393-414.	11.7	168
877	Nitrogenâ€Doped Amorphous Zn–Carbon Multichannel Fibers for Stable Lithium Metal Anodes. Angewandte Chemie - International Edition, 2021, 60, 8515-8520.	7.2	115
878	A Growing Appreciation for the Role of LiF in the Solid Electrolyte Interphase. Advanced Energy Materials, 2021, 11, 2100046.	10.2	401
879	Creating New Battery Configuration Associated with the Functions of Primary and Rechargeable Lithium Metal Batteries. Advanced Energy Materials, 2021, 11, 2003746.	10.2	19
880	HKUST-1@IL-Li Solid-state Electrolyte with 3D Ionic Channels and Enhanced Fast Li+ Transport for Lithium Metal Batteries at High Temperature. Nanomaterials, 2021, 11, 736.	1.9	18
881	Systematic Evaluation of Carbon Hosts for High-Energy Rechargeable Lithium-Metal Batteries. ACS Energy Letters, 0, , 1550-1559.	8.8	20
882	Bifunctional In Situ Polymerized Interface for Stable LAGPâ€Based Lithium Metal Batteries. Advanced Materials Interfaces, 2021, 8, 2100072.	1.9	22
883	Nitrogenâ€Doped Amorphous Zn–Carbon Multichannel Fibers for Stable Lithium Metal Anodes. Angewandte Chemie, 2021, 133, 8596-8601.	1.6	17
884	Stable cycling and uniform lithium deposition in anode-free lithium-metal batteries enabled by a high-concentration dual-salt electrolyte with high LiNO3 content. Journal of Power Sources, 2021, 490, 229504.	4.0	41
885	Lithium Metal Batteries Enabled by Synergetic Additives in Commercial Carbonate Electrolytes. ACS Energy Letters, 2021, 6, 1839-1848.	8.8	200
886	Flexible Nanocomposite Polymer Electrolyte Based on UV-Cured Polyurethane Acrylate for Lithium Metal Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 5631-5641.	3.2	17
887	Polymorph Evolution Mechanisms and Regulation Strategies of Lithium Metal Anode under Multiphysical Fields. Chemical Reviews, 2021, 121, 5986-6056.	23.0	165
888	Extraordinary dendrite-free Li deposition on highly uniform facet wrinkled Cu substrates in carbonate electrolytes. Nano Energy, 2021, 82, 105736.	8.2	24
889	Stabilizing electrode/electrolyte interface in Li-S batteries using liquid/solid Li2S-P2S5 hybrid electrolyte. Applied Surface Science, 2021, 546, 149034.	3.1	14
890	In situ formed three-dimensional (3D) lithium–boron (Li–B) alloy as a potential anode for next-generation lithium batteries. Rare Metals, 2021, 40, 3494-3500.	3.6	37
891	Chemomechanical Simulation of LiF-Rich Solid–Electrolyte Interphase Formed from Fluoroethylene Carbonate on a Silicon Anode. ACS Applied Energy Materials, 2021, 4, 3231-3239.	2.5	2

#	Article	IF	CITATIONS
892	Ultrathin Layered Double Hydroxide Nanosheets Enabling Composite Polymer Electrolyte for Allâ€Solidâ€State Lithium Batteries at Room Temperature. Advanced Functional Materials, 2021, 31, 2101168.	7.8	75
893	Insights into the Electrochemical Stability and Lithium Conductivity of Li ₄ MS ₄ (M = Si, Ge, and Sn). ACS Applied Materials & Interfaces, 2021, 13, 22438-22447.	4.0	7
894	A Polar and Ordered-Channel Composite Separator Enables Antidendrite and Long-Cycle Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 25890-25897.	4.0	7
895	A highly stable lithium metal anode enabled by Ag nanoparticle–embedded nitrogen-doped carbon macroporous fibers. Science Advances, 2021, 7, .	4.7	212
896	Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium–sulfur batteries. Materials Today, 2021, 45, 62-76.	8.3	152
897	Recent progress in flame-retardant separators for safe lithium-ion batteries. Energy Storage Materials, 2021, 37, 628-647.	9.5	94
898	Cooperative stabilization of bi-electrodes with robust interphases for high-voltage lithium-metal batteries. Energy Storage Materials, 2021, 37, 521-529.	9.5	54
899	3D-structured organic-inorganic hybrid solid-electrolyte-interface layers for Lithium metal anode. Energy Storage Materials, 2021, 37, 567-575.	9.5	21
900	Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule, 2021, 5, 1119-1142.	11.7	233
901	Planting CuGa2 seeds assisted with liquid metal for selective wrapping deposition of lithium. Energy Storage Materials, 2021, 37, 466-475.	9.5	38
902	A compact tube-in-tube microsized lithium-ion battery as an independent microelectric power supply unit. Cell Reports Physical Science, 2021, 2, 100429.	2.8	7
903	Highly Conductive, Flexible, and Nonflammable Double-Network Poly(ionic liquid)-Based Ionogel Electrolyte for Flexible Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 25410-25420.	4.0	41
904	Templateâ€Sacrificed Hot Fusion Construction and Nanoseed Modification of 3D Porous Copper Nanoscaffold Host for Stableâ€Cycling Lithium Metal Anodes. Advanced Functional Materials, 2021, 31, 2102735.	7.8	51
905	Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways. Nature Materials, 2021, 20, 1255-1263.	13.3	110
906	Nanoâ€Scale Complexions Facilitate Li Dendriteâ€Free Operation in LATP Solidâ€State Electrolyte. Advanced Energy Materials, 2021, 11, 2100707.	10.2	36
907	Dualâ€Solvent Liâ€Ion Solvation Enables Highâ€Performance Liâ€Metal Batteries. Advanced Materials, 2021, 33, e2008619.	11.1	123
908	In Situ Monitoring of Lithium Metal Anodes and Their Solid Electrolyte Interphases by Transmission Electron Microscopy. Small Structures, 2021, 2, 2100018.	6.9	27
909	Consecutive Nucleation and Confinement Modulation towards Li Plating in Seeded Capsules for Durable Liâ€Metal Batteries. Angewandte Chemie, 2021, 133, 14159-14169.	1.6	16

	CITATION RE	PORT	
#	Article	IF	CITATIONS
910	Effects of Components in Solvent-Enhanced PVDF-HFP-Based Polymer Electrolyte on Its Electrochemical Performance. Journal of Electronic Materials, 2021, 50, 5049.	1.0	3
911	Lithiophilic MXeneâ€Guided Lithium Metal Nucleation and Growth Behavior. Advanced Functional Materials, 2021, 31, 2101261.	7.8	28
912	Electrolyte Chemistry in 3D Metal Oxide Nanorod Arrays Deciphers Lithium Dendrite-Free Plating/Stripping Behaviors for High-Performance Lithium Batteries. Journal of Physical Chemistry Letters, 2021, 12, 4857-4866.	2.1	19
913	Consecutive Nucleation and Confinement Modulation towards Li Plating in Seeded Capsules for Durable Liâ€Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 14040-14050.	7.2	70
914	Zinc dendrite growth and inhibition strategies. Materials Today Energy, 2021, 20, 100692.	2.5	131
915	Ultrathin Yet Robust Single Lithiumâ€lon Conducting Quasiâ€Solidâ€State Polymerâ€Brush Electrolytes Enable Ultralongâ€Life and Dendriteâ€Free Lithiumâ€Metal Batteries. Advanced Materials, 2021, 33, e2100943.	11.1	88
916	Recent smart lithium anode configurations for high-energy lithium metal batteries. Energy Storage Materials, 2021, 38, 262-275.	9.5	47
917	Anionic Effect on Enhancing the Stability of a Solid Electrolyte Interphase Film for Lithium Deposition on Graphite. Nano Letters, 2021, 21, 5316-5323.	4.5	46
918	Hexafluoroisopropyl Trifluoromethanesulfonateâ€Driven Easily Li ⁺ Desolvated Electrolyte to Afford Li NCM811 Cells with Efficient Anode/Cathode Electrolyte Interphases. Advanced Functional Materials, 2021, 31, 2104395.	7.8	74
919	Optimized Electrode/Electrolyte Interface of MWCNT/SnO ₂ Composite through Gas–Solid Fluorination. ACS Applied Materials & Interfaces, 2021, 13, 28150-28163.	4.0	2
920	Hydroxyapatite functionalization of solid polymer electrolytes for high-conductivity solid-state lithium-ion batteries. Materials Today Energy, 2021, 20, 100694.	2.5	20
921	Self-standing carbon nanotube aerogels with amorphous carbon coating as stable host for lithium anodes. Carbon, 2021, 177, 181-188.	5.4	30
922	Inâ€plane Defect Engineering Enabling Ultraâ€stable Graphene Paperâ€based Hosts for Lithium Metal Anodes. ChemElectroChem, 2021, 8, 3273-3281.	1.7	5
923	Currentâ€Density Regulating Lithium Metal Directional Deposition for Long Cycleâ€Life Li Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 19306-19313.	7.2	35
924	Introducing Crown Ether as a Functional Additive for High-Performance Dendrite-free Li Metal Batteries. ACS Applied Energy Materials, 2021, 4, 7829-7838.	2.5	11
925	Designing Cation–Solvent Fully Coordinated Electrolyte for Highâ€Energyâ€Density Lithium–Sulfur Full Cell Based On Solid–Solid Conversion. Angewandte Chemie, 2021, 133, 17867-17875.	1.6	11
926	Complex Growth Behavior of Li Dendrites in Al ₂ O ₃ Nanoparticlesâ€Driven Viscoelastic Electrolytes for Lithium Metal Batteries: Dynamic versus Quasistatic Rheology. Advanced Materials Interfaces, 2021, 8, 2100687.	1.9	5
927	Electrochemical and Nanomechanical Properties of TiO ₂ Ceramic Filler Liâ€lon Composite Gel Polymer Electrolytes for Li Metal Batteries. Advanced Materials Interfaces, 2021, 8, 2100669.	1.9	16

#	Article	IF	CITATIONS
928	In Situâ€Formed Dualâ€Conductive Protecting Layer for Dendriteâ€Free Li Metal Anodes in Allâ€Solidâ€State Batteries. Energy Technology, 2021, 9, 2100087.	1.8	12
929	Intermetallic interphases in lithium metal and lithium ion batteries. InformaÄnÃ-Materiály, 2021, 3, 1083-1109.	8.5	35
930	Effects of a nanometrically formed lithiophilic silver@copper current collector on the electrochemical nucleation and growth behaviors of lithium metal anodes. Applied Surface Science, 2021, 554, 149578.	3.1	11
931	Currentâ€Density Regulating Lithium Metal Directional Deposition for Long Cycleâ€Life Li Metal Batteries. Angewandte Chemie, 2021, 133, 19455-19462.	1.6	2
932	In-Situ synthesized Non-flammable gel polymer electrolyte enable highly safe and Dendrite-Free lithium metal batteries. Chemical Engineering Journal, 2021, 415, 128846.	6.6	59
933	Ultraâ€Stable Cycling of High Capacity Room Temperature Sodiumâ€Sulfur Batteries Based on Sulfurated Poly(acrylonitrile). Batteries and Supercaps, 2021, 4, 1636-1646.	2.4	16
934	A Synergetic Effect Between Lithium Polysulfide Anchoring and Lithium Dendrite Suppression for High-performance Lithium- Sulfur Batteries Using Cellulose Paper. International Journal of Electrochemical Science, 2021, 16, 210763.	0.5	1
935	A critical review on thermophysical and electrochemical properties of Ionanofluids (nanoparticles) Tj ETQq1 1 0.78 Engineers, 2021, 124, 391-423.	84314 rgB 2.7	T /Overlock 33
936	Designing Cation–Solvent Fully Coordinated Electrolyte for Highâ€Energyâ€Density Lithium–Sulfur Full Cell Based On Solid–Solid Conversion. Angewandte Chemie - International Edition, 2021, 60, 17726-17734.	7.2	50
937	Accelerated Growth of Electrically Isolated Lithium Metal during Battery Cycling. ACS Applied Materials & amp; Interfaces, 2021, 13, 35750-35758.	4.0	18
938	High Interfacialâ€Energy and Lithiophilic Janus Interphase Enables Stable Lithium Metal Anodes. Small, 2021, 17, e2102196.	5.2	15
939	Lithiophilic coating layer modify three-dimensional Cu foam for stable and dendrite-free lithium metal anode. Journal of Physics: Conference Series, 2021, 2009, 012080.	0.3	0
940	A Dual-Functional Fibrous Skeleton Implanted with Single-Atomic Co–N _{<i>x</i>} Dispersions for Longevous Li–S Full Batteries. ACS Nano, 2021, 15, 14105-14115.	7.3	72
941	Uniform Deposition and Effective Confinement of Lithium in Three-Dimensional Interconnected Microchannels for Stable Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2021, 13, 39311-39321.	4.0	15
942	Coupling a 3D Lithophilic Skeleton with a Fluorine-Enriched Interface to Enable Stable Lithium Metal Anode. ACS Applied Materials & Interfaces, 2021, 13, 37162-37171.	4.0	18
943	Revisiting the degradation of solid/electrolyte interfaces of magnesium metal anodes: Decisive role of interfacial composition. Nano Energy, 2021, 86, 106087.	8.2	55
944	Safety-Enhanced Flexible Polypropylene Oxide–ZrO ₂ Composite Solid Electrolyte Film with High Room-Temperature Ionic Conductivity. ACS Sustainable Chemistry and Engineering, 2021, 9, 11118-11126.	3.2	22
945	Flame-Retardant and Polysulfide-Suppressed Ether-Based Electrolytes for High-Temperature Li–S Batteries. ACS Applied Materials & Interfaces, 2021, 13, 38296-38304.	4.0	21

#	Article	IF	CITATIONS
946	Investigation of Polymer/Ceramic Composite Solid Electrolyte System: The Case of PEO/LGPS Composite Electrolytes. ACS Sustainable Chemistry and Engineering, 2021, 9, 11314-11322.	3.2	32
947	Significant Reduction in Interface Resistance and Super-Enhanced Performance of Lithium-Metal Battery by In Situ Construction of Poly(vinylidene fluoride)-Based Solid-State Membrane with Dual Ceramic Fillers. ACS Applied Energy Materials, 2021, 4, 8604-8614.	2.5	15
948	Expounding the Initial Alloying Behavior of Na–K Liquid Alloy Electrodes. ACS Applied Materials & Interfaces, 2021, 13, 40118-40126.	4.0	7
949	Fabrication of Elastic Cyclodextrin-Based Triblock Polymer Electrolytes for All-Solid-State Lithium Metal Batteries. ACS Applied Energy Materials, 2021, 4, 9402-9411.	2.5	16
950	Review—Electrolyte and Electrode Designs for Enhanced Ion Transport Properties to Enable High Performance Lithium Batteries. Journal of the Electrochemical Society, 2021, 168, 090501.	1.3	33
951	Lithium Ion Repulsionâ€Enrichment Synergism Induced by Core–Shell Ionic Complexes to Enable High‣oading Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 23444.	1.6	2
952	Si/ZnO framework: 3D lithiophilic structure for dendrite-free lithium metal batteries. Journal of Alloys and Compounds, 2021, 876, 160188.	2.8	6
953	Abrasive Blasting of Lithium Metal Surfaces Yields Clean and 3Dâ€ S tructured Lithium Metal Anodes with Superior Properties. Energy Technology, 2021, 9, 2100455.	1.8	3
954	Lithium Ion Repulsionâ€Enrichment Synergism Induced by Core–Shell Ionic Complexes to Enable High‣oading Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 23256-23266.	7.2	55
955	Self-leveling electrolyte enabled dendrite-free lithium deposition for safer and stable lithium metal batteries. Chemical Engineering Journal, 2021, 419, 129494.	6.6	11
956	Multifunctional high-fluorine-content molecule with high dipole moment as electrolyte additive for high performance lithium metal batteries. Rare Metals, 2022, 41, 726-729.	3.6	12
957	Dendrite-Free Solid-State Li Metal Batteries Enabled by Bifunctional Polymer Gel Electrolytes. ACS Applied Energy Materials, 2021, 4, 9420-9430.	2.5	10
958	Lithium Fluoride in Electrolyte for Stable and Safe Lithiumâ€Metal Batteries. Advanced Materials, 2021, 33, e2102134.	11.1	91
959	In-situ construction of stable cathode/Li interfaces simultaneously via different electron density azo compounds for solid-state lithium metal batteries. Energy Storage Materials, 2021, 40, 394-401.	9.5	20
960	Strategies for Dendrite-Free lithium metal Anodes: A Mini-review. Journal of Electroanalytical Chemistry, 2021, 897, 115499.	1.9	20
961	Diphenyl Azidophosphate as a Functional Electrolyte Additive for High-Conductivity Film Construction over Lithium Metal Battery. Journal of the Electrochemical Society, 2021, 168, 090530.	1.3	3
962	Carbon materials for stable Li metal anodes: Challenges, solutions, and outlook. , 2021, 3, 957-975.		64
963	A solid–liquid hybrid electrolyte for lithium ion batteries enabled by a single-body polymer/indium tin oxide architecture. Journal Physics D: Applied Physics, 2021, 54, 475501.	1.3	3

#	Article	IF	CITATIONS
964	Uncovering the critical impact of the solid electrolyte interphase structure on the interfacial stability. InformaÄnÃ-Materiály, 2022, 4, .	8.5	19
965	Shining Light on Porous Liquids: From Fundamentals to Syntheses, Applications and Future Challenges. Advanced Functional Materials, 2022, 32, 2104162.	7.8	40
966	Electrospun Li-confinable hollow carbon fibers for highly stable Li-metal batteries. Chemical Engineering Journal, 2021, 422, 130017.	6.6	33
967	Nonflammable highly-fluorinated polymer electrolytes with enhanced interfacial compatibility for dendrite-free lithium metal batteries. Journal of Power Sources, 2021, 510, 230411.	4.0	29
968	High-voltage lithium-metal battery with three-dimensional mesoporous carbon anode host and ether/carbonate binary electrolyte. Carbon, 2021, 184, 752-763.	5.4	10
969	Lithium- gel polymer electrolyte composite anode with large electrolyte-lithium interface for solid-state battery. Electrochimica Acta, 2021, 394, 139123.	2.6	4
970	Importance of structures and interactions in ionic liquid-nanomaterial composite systems as a novel approach for their utilization in safe lithium metal batteries: A review. Journal of Molecular Liquids, 2021, 339, 116736.	2.3	17
971	Flexible, nonflammable, highly conductive and high-safety double cross-linked poly(ionic liquid) as quasi-solid electrolyte for high performance lithium-ion batteries. Chemical Engineering Journal, 2021, 421, 130000.	6.6	56
972	Rational design of fireproof fiber-network reinforced 3D composite solid electrolyte for dendrite-free solid-state batteries. Chemical Engineering Journal, 2021, 421, 127771.	6.6	18
973	Functional polymers for lithium metal batteries. Progress in Polymer Science, 2021, 122, 101453.	11.8	39
974	Doubling the cyclic stability of 3D hierarchically structured composites of 1T-MoS2/polyaniline/graphene through the formation of LiF-rich solid electrolyte interphase. Applied Surface Science, 2021, 565, 150582.	3.1	13
975	Dendrite-free lithium deposition enabled by a vertically aligned graphene pillar architecture. Carbon, 2021, 185, 152-160.	5.4	14
976	Structured solid electrolyte interphase enable reversible Li electrodeposition in flame-retardant phosphate-based electrolyte. Energy Storage Materials, 2021, 42, 628-635.	9.5	34
977	Combined density functional theory/kinetic Monte Carlo investigation of surface morphology during cycling of Li-Cu electrodes. Electrochimica Acta, 2021, 397, 139272.	2.6	3
978	Appreciating the role of polysulfides in lithium-sulfur batteries and regulation strategies by electrolytes engineering. Energy Storage Materials, 2021, 42, 645-678.	9.5	36
979	An ultrahigh-energy-density lithium metal capacitor. Energy Storage Materials, 2021, 42, 154-163.	9.5	13
980	Coupling two-dimensional fillers with polymer chains in solid polymer electrolyte for room-temperature dendrite-free lithium-metal batteries. Energy Storage Materials, 2021, 43, 358-364.	9.5	30
981	Local electric field effect of montmorillonite in solid polymer electrolytes for lithium metal batteries. Nano Energy, 2021, 90, 106490.	8.2	38

#	Article	IF	CITATIONS
982	Stable all-solid-state lithium metal batteries with Li3N-LiF-enriched interface induced by lithium nitrate addition. Energy Storage Materials, 2021, 43, 229-237.	9.5	75
983	3D composite lithium metal with multilevel micro-nano structure combined with surface modification for stable lithium metal anodes. Applied Surface Science, 2021, 570, 151159.	3.1	7
984	Long-cycling lithium-oxygen batteries enabled by tailoring Li nucleation and deposition via lithiophilic oxygen vacancy in Vo-TiO2/Ti3C2T composite anodes. Journal of Energy Chemistry, 2022, 65, 654-665.	7.1	34
985	Dendrite-free lithium anode achieved under lean-electrolyte condition through the modification of separators with F-functionalized Ti3C2 nanosheets. Journal of Energy Chemistry, 2022, 66, 366-373.	7.1	21
986	Stabilization of lithium metal anodes by conductive metal–organic framework architectures. Journal of Materials Chemistry A, 2021, 9, 12099-12108.	5.2	10
987	Anisotropic mass transport using ionic liquid crystalline electrolytes to suppress lithium dendrite growth. Sustainable Energy and Fuels, 2021, 5, 1488-1497.	2.5	9
988	Nano-zirconia boosting the ionic conductivity and lithium dendrite inhibition ability of a poly(1,3-dioxolane) solid electrolyte for high-voltage solid-state lithium batteries. Sustainable Energy and Fuels, 2021, 5, 5461-5470.	2.5	5
989	A Protective Layer for Lithium Metal Anode: Why and How. Small Methods, 2021, 5, e2001035.	4.6	55
990	Avoiding dendrite formation by confining lithium deposition underneath Li–Sn coatings. Journal of Materials Research, 2021, 36, 797-811.	1.2	4
991	Review on Li Deposition in Working Batteries: From Nucleation to Early Growth. Advanced Materials, 2021, 33, e2004128.	11.1	205
992	Rapid Oxidation and Reduction of Lithium for Improved Cycling Performance and Increased Homogeneity. ACS Applied Materials & amp; Interfaces, 2021, 13, 2654-2661.	4.0	9
993	Stable, high-performance, dendrite-free, seawater-based aqueous batteries. Nature Communications, 2021, 12, 237.	5.8	174
994	Unraveling the Mechanisms of Lithium Metal Plating/Stripping via In Situ/Operando Analytical Techniques. Advanced Energy Materials, 2021, 11, 2003004.	10.2	49
995	Highly Stable and Ultrahighâ€Rate Li Metal Anode Enabled by Fluorinated Carbon Fibers. Small, 2021, 17, e2006002.	5.2	47
996	A Highly Reversible Room-Temperature Lithium Metal Battery Based on Cross-Linked Hairy Nanoparticles. Springer Theses, 2019, , 35-57.	0.0	7
997	Lithium Fluoride Additives for Stable Cycling of Lithium Batteries at High Current Densities. Springer Theses, 2019, , 81-94.	0.0	4
998	Cell failures of all-solid-state lithium metal batteries with inorganic solid electrolytes: Lithium dendrites. Energy Storage Materials, 2020, 33, 309-328.	9.5	63
999	New Concepts in Electrolytes. Chemical Reviews, 2020, 120, 6783-6819.	23.0	554

#	Article	IF	CITATIONS
1000	Building Better Li Metal Anodes in Liquid Electrolyte: Challenges and Progress. ACS Applied Materials & Interfaces, 2021, 13, 18-33.	4.0	41
1001	Concentration polarization and metal dendrite initiation in isolated electrolyte microchannels. Energy and Environmental Science, 2020, 13, 3504-3513.	15.6	40
1002	Synergistic Effects of Salt Concentration and Working Temperature towards Dendrite-Free Lithium Deposition. Research, 2019, 2019, 7481319.	2.8	10
1003	A scaffold membrane of solid polymer electrolytes for realizing high-stability and dendrite-free lithium-metal batteries. Journal of Materials Chemistry A, 2021, 9, 25408-25417.	5.2	13
1004	A two-dimensional porous conjugated porphyrin polymer for uniform lithium deposition. Dalton Transactions, 2021, 50, 15849-15854.	1.6	10
1005	A highly conductive quasi-solid-state electrolyte based on helical silica nanofibers for lithium batteries. RSC Advances, 2021, 11, 33858-33866.	1.7	4
1006	Synthesis design of a 3D interfacial structure for highly reversible lithium deposition. Journal of Materials Chemistry A, 2021, 9, 25004-25012.	5.2	6
1007	Coexistence of (O ₂) ^{<i>n</i>â^'} and Trapped Molecular O ₂ as the Oxidized Species in P2-Type Sodium 3d Layered Oxide and Stable Interface Enabled by Highly Fluorinated Electrolyte. Journal of the American Chemical Society, 2021, 143, 18652-18664.	6.6	55
1008	Improving the Durability of Lithium-Metal Anode via In situ Constructed Multilayer SEI. ACS Applied Materials & Interfaces, 2021, 13, 49445-49452.	4.0	18
1009	Lithium Cyano Tris(2,2,2-trifluoroethyl) Borate as a Multifunctional Electrolyte Additive for High-Performance Lithium Metal Batteries. ACS Energy Letters, 2021, 6, 3851-3857.	8.8	37
1010	Enhanced electrochemical performance of Si/C electrode through surface modification using SrF2 particle. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 1621-1628.	2.4	5
1011	High-Rate Lithium Metal Plating and Stripping on Solid Electrolytes Using a Porous Current Collector with a High Aperture Ratio. ACS Applied Energy Materials, 2021, 4, 12613-12622.	2.5	4
1012	Design of a LiFâ€Rich Solid Electrolyte Interphase Layer through Highly Concentrated LiFSI–THF Electrolyte for Stable Lithium Metal Batteries. Small, 2021, 17, e2103375.	5.2	42
1013	Dendrite-Free Non-Newtonian Semisolid Lithium Metal Anode. ACS Energy Letters, 2021, 6, 3761-3768.	8.8	19
1014	Nanocrevass-Rich Carbon Fibers for Stable Lithium and Sodium Metal Anodes. SSRN Electronic Journal, 0, , .	0.4	0
1015	Stabilizing Polymer Electrolytes in High-Voltage Lithium Batteries. Springer Theses, 2019, , 199-227.	0.0	0
1016	Hybrid Hairy Nanoparticle Electrolytes Stabilize Lithium Metal Batteries. Springer Theses, 2019, , 13-33.	0.0	0
1017	Designing Solid-Liquid Interphases for Sodium Batteries. Springer Theses, 2019, , 95-116.	0.0	0

		CITATION REP	ORT	
#	Article		IF	CITATIONS
1019	Solid Polymer Interphases for Lithium Metal Batteries. Springer Theses, 2019, , 183-198.		0.0	0
1020	Confining Electrodeposition of Metals in Structured Electrolytes. Springer Theses, 2019, ,	59-79.	0.0	1
1021	Electroless Formation of Hybrid Lithium Anodes for High Interfacial Ion Transport. Springe 2019, , 117-135.	r Theses,	0.0	0
1022	Electrodeposition of a dendriteâ€free 3D Al anode for improving cycling of an aluminumâ battery. , 2022, 4, 155-169.	€"graphite		16
1023	Physicochemically dendrite-suppressed three-dimensional fluoridation solid-state electroly high-rate lithium metal battery. Cell Reports Physical Science, 2021, 2, 100644.	rte for	2.8	18
1024	Nanoscale electrodeposition: Dimension control and 3D conformality. Exploration, 2021,	1,.	5.4	46
1025	Unraveling the Rateâ€Dependent Stability of Metal Anodes and Its Implication in Designir Protocol. Advanced Functional Materials, 2022, 32, 2107584.	ıg Cycling	7.8	63
1026	High ionic conductivity PEO-based electrolyte with 3D framework for Dendrite-free solid-s lithium metal batteries at ambient temperature. Chemical Engineering Journal, 2022, 431	tate 133352.	6.6	61
1027	Understanding Solid Electrolyte Interphase Nucleation and Growth on Lithium Metal Surf Batteries, 2021, 7, 73.	aces.	2.1	3
1028	Lithiophilic NiF2 coating inducing LiF-rich solid electrolyte interphase by a novel NF3 plasr treatment for highly stable Li metal anode. Electrochimica Acta, 2022, 402, 139561.	na	2.6	9
1029	The Functions and Applications of Fluorinated Interface Engineering in Liâ€Based Seconda Small Science, 2021, 1, 2100066.	ary Batteries.	5.8	21
1030	Cross-Linked Polypropylene Oxide Solid Electrolyte Film with Enhanced Mechanical, Thern Electrochemical Properties via Additive Modification. ACS Applied Polymer Materials, 202	nal, and 1, 3, 6539-6547.	2.0	9
1031	Electrochemical Dealloying-Enabled 3D Hierarchical Porous Cu Current Collector of Lithiu Anodes for Dendrite Growth Inhibition. ACS Applied Energy Materials, 2021, 4, 13903-13	n Metal 911.	2.5	12
1032	High-Dielectric Polymer Coating for Uniform Lithium Deposition in Anode-Free Lithium Ba Energy Letters, 2021, 6, 4416-4425.	cteries. ACS	8.8	63
1033	Heterostructured Gel Polymer Electrolyte Enabling Long-Cycle Quasi-Solid-State Lithium N Batteries. ACS Energy Letters, 2022, 7, 42-52.	1etal	8.8	53
1034	Crystal structure and copper ion emission properties of Rb4Cu16I7Cl13 solid electrolyte. 2022, 196, 110742.	Vacuum,	1.6	2
1035	Hybrid poly-ether/carbonate ester electrolyte engineering enables high oxidative stability quasi-solid-state lithium metal batteries. Materials Today Energy, 2022, 23, 100893.	or	2.5	24
1036	Constructing stable lithium interfaces via coordination of fluorinated ether and liquid crys room-temperature solid-state lithium metal batteries. Chemical Engineering Journal, 2022	tal for , 433, 133562.	6.6	8

#	Article	IF	CITATIONS
1037	Interface coating of iron nitride on carbon cloth for reversible lithium redox in rechargeable battery. Chemical Engineering Journal, 2022, 431, 133961.	6.6	15
1038	Cationic Size Effect Promoting Dissolution of Nitrate Anion in Ester Electrolyte for Lithium–Metal Batteries. ACS Energy Letters, 2022, 7, 569-576.	8.8	37
1039	Upgrading Carbonate Electrolytes for Ultraâ€stable Practical Lithium Metal Batteries. Angewandte Chemie, 2022, 134, e202116214.	1.6	9
1040	A polymeric separator membrane with chemoresistance and high Li-ion flux for high-energy-density lithium metal batteries. Energy Storage Materials, 2022, 45, 941-951.	9.5	39
1041	A nonflammable phosphate-based localized high-concentration electrolyte for safe and high-voltage lithium metal batteries. Sustainable Energy and Fuels, 2022, 6, 1281-1288.	2.5	11
1042	"Soft Shorts―Hidden in Zinc Metal Anode Research. Joule, 2022, 6, 273-279.	11.7	192
1043	Upgrading Carbonate Electrolytes for Ultraâ€stable Practical Lithium Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, e202116214.	7.2	38
1044	Lithium reduction reaction for interfacial regulation of lithium metal anode. Chemical Communications, 2022, 58, 2597-2611.	2.2	14
1045	Liquid electrolyte: The nexus of practical lithium metal batteries. Joule, 2022, 6, 588-616.	11.7	191
1046	Fast Charging Limits of Ideally Stable Metal Anodes in Liquid Electrolytes. Advanced Energy Materials, 2022, 12, .	10.2	14
1047	A self-regulated gradient interphase for dendrite-free solid-state Li batteries. Energy and Environmental Science, 2022, 15, 1325-1333.	15.6	98
1048	Mechanistic and nanoarchitectonics insight into Li–host interactions in carbon hosts for reversible Li metal storage. Nano Energy, 2022, 95, 106999.	8.2	22
1049	Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries. Nature Materials, 2022, 21, 445-454.	13.3	155
1050	Ultraâ€High Fluorine Enhanced Homogeneous Nucleation of Lithium Metal on Stepped Carbon Nanosheets with Abundant Edge Sites. Advanced Energy Materials, 2022, 12, .	10.2	22
1051	A Self-Supporting Covalent Organic Framework Separator with Desolvation Effect for High Energy Density Lithium Metal Batteries. ACS Energy Letters, 2022, 7, 885-896.	8.8	76
1052	A Valence Gradient Protective Layer for Dendriteâ€Free and Highly Stable Lithium Metal Anodes. Advanced Energy Materials, 2022, 12, .	10.2	26
1053	Highly stable lithium metal composite anode with a flexible 3D lithiophilic skeleton. Nano Energy, 2022, 95, 107013.	8.2	19
1054	A novel thioctic acid-functionalized hybrid network for solid-state batteries. Energy Storage Materials, 2022, 46, 570-576.	9.5	13

#	Article	IF	Citations
1055	Highly stable lithium metal anode enabled by lithiophilic and spatial-confined spherical-covalent organic framework. Energy Storage Materials, 2022, 46, 374-383.	9.5	45
1056	Scalable hierarchical lithiophilic engineering of metal foam enables stable lithium metal batteries. Chemical Engineering Journal, 2022, 435, 134643.	6.6	23
1057	Regulating Li uniform deposition by lithiophilic interlayer as Li-ion redistributor for highly stable lithium metal batteries. Chemical Engineering Journal, 2022, 436, 134945.	6.6	24
1058	An Allâ€Fluorinated Electrolyte Toward High Voltage and Long Cycle Performance Dualâ€Ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	27
1059	Multiscale Simulation of Solid Electrolyte Interface Formation in Fluorinated Diluted Electrolytes with Lithium Anodes. ACS Applied Materials & amp; Interfaces, 2022, 14, 7972-7979.	4.0	10
1060	Electrochemical Role of Transition Metals in Sn–Fe Alloy Revealed by Operando Magnetometry. Chinese Physics Letters, 2022, 39, 028202.	1.3	1
1061	A review of concepts and contributions in lithium metal anode development. Materials Today, 2022, 53, 173-196.	8.3	74
1062	Ultralong-Life Lithium Metal Anodes Enabled by Decorating Robust Hybrid Interphases on 3D Layered Frameworks. SSRN Electronic Journal, 0, , .	0.4	0
1063	Nonflammable Quasi-Solid Electrolyte for Energy-Dense and Long-Cycling Lithium Metal Batteries with High-Voltage Ni-Rich Layered Cathodes. SSRN Electronic Journal, 0, , .	0.4	0
1064	Effectively raising the rate performance and cyclability of a graphite anode <i>via</i> hydrothermal modification with melamine and its electrochemical derivatives. New Journal of Chemistry, 2022, 46, 7968-7978.	1.4	6
1065	Precise construction of lithiophilic sites by diyne-linked phthalocyanine polymer for suppressing metallic lithium dendrite. Dalton Transactions, 2022, 51, 5828-5833.	1.6	3
1066	Practical Highâ€Voltage Lithium Metal Batteries Enabled by Tuning the Solvation Structure in Weakly Solvating Electrolyte. Small, 2022, 18, e2107492.	5.2	73
1067	An Electrochemically Polymerized Protective Layer for a Magnesium Metal Anode. ACS Applied Energy Materials, 2022, 5, 2613-2620.	2.5	13
1068	Outsideâ€In Nanostructure Fabricated on LiCoO ₂ Surface for Highâ€Voltage Lithiumâ€Ion Batteries. Advanced Science, 2022, 9, e2104841.	5.6	51
1069	Controlling Li deposition below the interface. EScience, 2022, 2, 47-78.	25.0	110
1071	Sacrificial Co-solvent Electrolyte to Construct a Stable Solid Electrolyte Interphase in Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2022, 14, 10327-10336.	4.0	6
1072	Effects of the Separator MOF-Al ₂ O ₃ Coating on Battery Rate Performance and Solid–Electrolyte Interphase Formation. ACS Applied Materials & Interfaces, 2022, 14, 13722-13732.	4.0	20
1073	Anion Immobilization Enabled by Cationâ€Selective Separators for Dendriteâ€Free Lithium Metal Batteries. Advanced Functional Materials, 2022, 32, .	7.8	46

	CITATION R	EPORT	
# 1074	ARTICLE Janus Membranes with Graphene Meshes and ZnO Rods for Controlling Dendritic Growth in High-Performance Li Metal Anodes. ACS Applied Energy Materials, 2022, 5, 4413-4420.	lF 2.5	CITATIONS
1075	Guiding Uniform Li Deposition through Interfacial Adsorption of Thin Polymer Films on the Anode for High Stability Lithium Metal Batteries. ACS Applied Energy Materials, 2022, 5, 4513-4521.	2.5	1
1076	A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments. Nature Communications, 2022, 13, 1510.	5.8	93
1077	Inverted Anode Structure for Longâ€Life Lithium Metal Batteries. Advanced Energy Materials, 2022, 12, .	10.2	29
1078	Improving Cyclability of Allâ€Solidâ€State Batteries via Stabilized Electrolyte–Electrode Interface with Additive in Poly(propylene carbonate) Based Solid Electrolyte. Advanced Science, 2022, 9, e2105448.	5.6	18
1079	Integrating high ionic conductive PDOL solid/gel composite electrolyte for enhancement of interface combination and lithium dentrite inhibition of solid-state lithium battery. Journal of Colloid and Interface Science, 2022, 620, 199-208.	5.0	20
1080	Insideâ€Outside Li Deposition Achieved by the Unusual Strategy of Constructing the Hierarchical Lithiophilicity for Dendriteâ€Free and Durable Li Metal Anode. Batteries and Supercaps, 0, , .	2.4	2
1081	Intrinsic Nonflammable Ether Electrolytes for Ultrahighâ€Voltage Lithium Metal Batteries Enabled by Chlorine Functionality. Angewandte Chemie - International Edition, 2022, 61, .	7.2	64
1082	Stable Lithium Metal Plating/Stripping in a Localized High-Concentration Cyclic Carbonate-Based Electrolyte. Electrochemistry, 2022, 90, 047001-047001.	0.6	5
1083	Comparative Study of the Electrochemical Performance of Different Separators in Aprotic Li–O ₂ Batteries. Energy & Fuels, 2022, 36, 4609-4615.	2.5	2
1084	Intrinsic Nonflammable Ether Electrolytes for Ultrahighâ€Voltage Lithium Metal Batteries Enabled by Chlorine Functionality. Angewandte Chemie, 0, , .	1.6	1
1085	Nonflammable quasi-solid electrolyte for energy-dense and long-cycling lithium metal batteries with high-voltage Ni-rich layered cathodes. Energy Storage Materials, 2022, 47, 542-550.	9.5	34
1086	Synthesis design of interfacial nanostructure for nickel-rich layered cathodes. Nano Energy, 2022, 97, 107119.	8.2	14
1087	In-situ polymerization with dual-function electrolyte additive toward future lithium metal batteries. Materials Today Energy, 2022, 26, 100984.	2.5	18
1088	A graphdiyne analogue for dendrite-free lithium metal anode. Electrochimica Acta, 2022, 416, 140286.	2.6	2
1089	Interface defect chemistry enables dendrite-free lithium metal anodes. Chemical Engineering Journal, 2022, 437, 135109.	6.6	6
1090	Separators Based on the Dynamic Tipâ€Occupying Electrostatic Shield Effect for Dendriteâ€Free Lithiumâ€Metal Batteries. Advanced Sustainable Systems, 2022, 6, 2100386.	2.7	1
1091	Lithiophilic 3D Copperâ€Based Magnetic Current Collector for Lithiumâ€Free Anode to Realize Deep Lithium Deposition. Advanced Functional Materials, 2022, 32, .	7.8	43

#	Article	IF	CITATIONS
1092	Interfacial and Ionic Modulation of Poly (Ethylene Oxide) Electrolyte Via Localized Iodization to Enable Dendriteâ€Free Lithium Metal Batteries. Advanced Functional Materials, 2022, 32, .	7.8	77
1093	Negating the Interfacial Resistance between Solid and Liquid Electrolytes for Next-Generation Lithium Batteries. ACS Applied Materials & Interfaces, 2022, 14, 633-646.	4.0	5
1094	Highâ€Polarity Fluoroalkyl Ether Electrolyte Enables Solvationâ€Free Li ⁺ Transfer for Highâ€Rate Lithium Metal Batteries. Advanced Science, 2022, 9, e2104699.	5.6	54
1095	Remedies to Avoid Failure Mechanisms of Lithium-Metal Anode in Li-Ion Batteries. Inorganics, 2022, 10, 5.	1.2	4
1096	Multilayered Solid Polymer Electrolytes with Sacrificial Coating for Suppressing Lithium Dendrite Growth. ACS Applied Materials & amp; Interfaces, 2022, 14, 484-491.	4.0	4
1097	Stable Li–Metal Batteries Enabled by in Situ Gelation of an Electrolyte and In-Built Fluorinated Solid Electrolyte Interface. ACS Applied Materials & Interfaces, 2021, 13, 60054-60062.	4.0	21
1098	Local surface crystal structure fluctuation on Li, Na and Mg metal anodes. Molecular Physics, 0, , .	0.8	1
1099	Suppression of lithium dendrites in all-solid-state lithium batteries by using a Janus-structured composite solid electrolyte. Chemical Engineering Journal, 2022, 443, 136479.	6.6	13
1100	Direct-ink writing 3D printed energy storage devices: From material selectivity, design and optimization strategies to diverse applications. Materials Today, 2022, 54, 110-152.	8.3	66
1101	Combining Organic Plastic Salts with a Bicontinuous Electrospun PVDF–HFP/Li ₇ La ₃ Zr ₂ O ₁₂ Membrane: LiF-Rich Solid-Electrolyte Interphase Enabling Stable Solid-State Lithium Metal Batteries. ACS Applied Materials &: Interfaces. 2022. 14. 18922-18934.	4.0	15
1102	PI-LATP-PEO Electrolyte with High Safety Performance in Solid-State Lithium Metal Batteries. ACS Applied Energy Materials, 2022, 5, 5277-5286.	2.5	19
1103	Resolving anodic and cathodic interface-incompatibility in solid-state lithium metal battery via interface infiltration of designed liquid electrolytes. Journal of Power Sources, 2022, 535, 231425.	4.0	9
1104	Stable cycling of high nickel Li-metal batteries with limited Li anode in fluorine rich flame retardant electrolytes. Applied Surface Science, 2022, 593, 153434.	3.1	3
1108	Defect-Abundant Commercializable 3d Carbon Papers for Fabricating Composite Li Anode with High Loading and Long Life. SSRN Electronic Journal, 0, , .	0.4	0
1109	A Polymerizedâ€lonicâ€Liquidâ€Based Polymer Electrolyte with High Oxidative Stability for 4 and 5ÂV Class Solidâ€State Lithium Metal Batteries. Advanced Energy Materials, 2022, 12, .	10.2	34
1110	Review of the electrochemical performance and interfacial issues of high-nickel layered cathodes in inorganic all-solid-state batteries. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 1003-1018.	2.4	7
1111	Molecular Insights into the Structure and Property Variation of the Pressure-Induced Solid Electrolyte Interphase on a Lithium Metal Anode. ACS Applied Materials & Interfaces, 2022, 14, 24875-24885.	4.0	6
1112	Thermodynamic Analysis of Initial Steps for Void Formation at Lithium/Solid Electrolyte Interphase Interfaces. ACS Energy Letters, 2022, 7, 1953-1959.	8.8	7

#	Article	IF	CITATIONS
1113	Dynamic observation of dendrite growth on lithium metal anode during battery charging/discharging cycles. Npj Computational Materials, 2022, 8, .	3.5	21
1114	Overlimiting ion transport dynamic toward Sand's time in solid polymer electrolytes. Materials Today Energy, 2022, 27, 101037.	2.5	4
1115	Metal carbodiimides-derived organic-inorganic interface protective layer for practical high energy lithium metal batteries. Journal of Power Sources, 2022, 536, 231479.	4.0	7
1116	Hierarchical nanostructure of three-dimensional Au/carbon nanotube-graphene foam for high performance lithium metal anode. Solid State Ionics, 2022, 380, 115941.	1.3	13
1117	Lithium difluoro(bisoxalato) phosphate-based multi-salt low concentration electrolytes for wide-temperature lithium metal batteries: Experiments and theoretical calculations. Chemical Engineering Journal, 2022, 445, 136802.	6.6	17
1118	F-GDY and F-GDY/Graphene as anodes in lithium-ion batteries: A first-principle investigation. Applied Surface Science, 2022, 595, 153543.	3.1	6
1119	Defect-abundant commercializable 3D carbon papers for fabricating composite Li anode with high loading and long life. Energy Storage Materials, 2022, 50, 407-416.	9.5	4
1120	CF ₄ Plasmaâ€Generated LiFâ€Li ₂ C ₂ Artificial Layers for Dendriteâ€Free Lithiumâ€Metal Anodes. Advanced Science, 2022, 9, .	5.6	37
1121	Effects of Interfacial Solvation Structures on the Morphological Stability of Potassium Metal Anodes Revealed by <i>Operando</i> Diagnosis. ACS Applied Energy Materials, 2022, 5, 7124-7133.	2.5	6
1122	Electrochemical Polishing: An Effective Strategy for Eliminating Li Dendrites. Advanced Functional Materials, 2022, 32, .	7.8	9
1123	First-principles prediction of anomalously strong phase dependence of transport and mechanical properties of lithium fluoride. Acta Materialia, 2022, 235, 118077.	3.8	10
1124	Sweetening Lithium Metal Interface by High Surface and Adhesive Energy Coating of Crystalline αâ€ <scp>d</scp> â€Glucose Film to Inhibit Dendrite Growth. Small, 2022, 18, .	5.2	5
1125	A non-flammable, flexible and UV-cured gel polymer electrolyte with crosslinked polymer network for dendrite-suppressing lithium metal batteries. Ionics, 2022, 28, 3743-3759.	1.2	6
1126	Quasi-Solid-State Electrolyte Membranes Based on Helical Mesoporous Polysilsesquioxane Nanofibers for High-Performance Lithium Batteries. Journal of the Taiwan Institute of Chemical Engineers, 2022, 135, 104399.	2.7	4
1127	The Role of Active Passivated Interface in Poly (Ethylene Oxide) Electrolyte for 4.2 V Solid-State Lithium Metal Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1128	In-situ embedding CoTe catalyst into 1D–2D nitrogen-doped carbon to didirectionally regulate lithium-sulfur batteries. Nano Research, 2022, 15, 8972-8982.	5.8	31
1129	Effects of Carbonate Solvents and Lithium Salts in High-Concentration Electrolytes on Lithium Anode. Journal of the Electrochemical Society, 2022, 169, 060548.	1.3	5
1130	One-Dimensional Porous Li-Confinable Hosts for High-Rate and Stable Li-Metal Batteries. ACS Nano, 2022, 16, 11892-11901.	7.3	22

ARTICLE IF CITATIONS Constructing Bimetallic ZIFâ€Derived Zn,Coâ€Containing Nâ€Doped Porous Carbon Nanocube as the 1131 2 3.6 Lithiophilic Host to Stabilize Li Metal Anodes in Liâ[~]O₂Batteries. ChemSusChem, 2022, 15, . Ultralong-life lithium metal batteries enabled by decorating robust hybrid interphases on 3D layered 4.8 framworks. Chinese Chemical Letters, 2023, 34, 107602. A dual force cross-linked Î3-PGA-PAA binder enhancing the cycle stability of silicon-based anodes for 1133 2.6 15 lithium-ion batteries. Electrochimica Acta, 2022, 425, 140704. Pre-pulverizing Ni-rich layered oxide cathodes via "liquid explosive―infiltration toward highly 1134 endurable 4.5 V lithium batteries. Energy Storage Materials, 2022, 50, 819-828. Modification of Cu current collectors for lithium metal batteries $\hat{a} \in A$ review. Progress in Materials 1135 16.0 56 Science, 2022, 130, 100996. In-situ construction of dual lithium-ion migration channels in polymer electrolytes for lithium metal 6.6 batteries. Chemical Engineering Journal, 2022, 448, 137661. Residual Stress-Tailored Lithium Deposition and Dissolution Behaviors for Safe Lithium Metal Anode. 1137 0.4 0 SSRN Electronic Journal, 0, , . Regulation of Dendrite-Free Li Plating via Lithiophilic Sites on Lithium-Alloy Surface. ACS Applied Materials & amp; Interfaces, 2022, 14, 33952-33959. 4.0 High voltage and robust lithium metal battery enabled by highly-fluorinated interphases. Energy 1140 9.5 22 Storage Materials, 2022, 51, 317-326. Chemical Substitutionâ€Grown Lithiumâ€Magnesium Alloy as Ion Redistributor and Surface Protector for 1141 2.4 Highly Stable Lithiumâ€Metal Anode. Batteries and Supercaps, 2022, 5, . Expansion-Tolerant Lithium Anode with Built-In LiF-Rich Interface for Stable 400 Wh kg^{â€"1} 1142 32 Lithium Metal Pouch Cells. , 2022, 4, 1516-1522. Visualization of battery materials and their interfaces/interphases using cryogenic electron 8.3 microscopy. Materials Today, 2022, 58, 238-274. A Low-Cost Liquid-Phase Method of Synthesizing High-Performance Li₆PS₅Cl 1144 4.0 11 Solid-Electrolyte. ACS Applied Materials & amp; Interfaces, 2022, 14, 30824-30838. Achieving Electronic Engineering of Vanadium Oxide-Based 3D Lithiophilic Sandwiched-Aerogel Framework for Ultrastable Lithium Metal Batteries. ACS Applied Materials & amp; Interfaces, 2022, 14, 1145 4.0 33306-33314. Differentiating the dominant intrinsic kinetics for lithium dendrite growth under different 1146 1.4 0 circumstances by computational study. Computational Materials Science, 2022, 213, 111637. Engineering an Insoluble Cathode Electrolyte Interphase Enabling High Performance NCM811//Graphite 1147 43 Pouch Cell at 60 °C. Advanced Energy Materials, 2022, 12, . Lean-electrolyte lithium-sulfur batteries: Recent advances in the design of cell components. Chemical 1148 6.6 19 Engineering Journal, 2022, 450, 138209. Electrosynthesis of ammonia with high selectivity and high rates via engineering of the 1149 11.7 solid-electrolyte interphase. Joule, 2022, 6, 2083-2101.

#	Article	IF	CITATIONS
1150	Residual stress-tailored lithium deposition and dissolution behaviors for safe lithium metal anode. Journal of Alloys and Compounds, 2022, 927, 166776.	2.8	1
1152	Interfacial engineering on metal anodes in rechargeable batteries. EnergyChem, 2022, 4, 100089.	10.1	12
1153	Correlating electrochemical performance and heat generation of Li plating for lithium-ion battery with fluoroethylene carbonate additive. Journal of Energy Chemistry, 2022, 74, 446-453.	7.1	7
1154	Research progress and prospect in typical sulfide solid-state electrolytes. Journal of Energy Storage, 2022, 55, 105382.	3.9	11
1155	The role of active passivated interface in poly (ethylene oxide) electrolyte for 4.2ÂV solid-state lithium metal batteries. Chemical Engineering Journal, 2023, 451, 138680.	6.6	3
1156	Thermally Stable and Dendriteâ€Resistant Separators toward Highly Robust Lithium Metal Batteries. Advanced Energy Materials, 2022, 12, .	10.2	17
1157	Rational design of electrolyte solvation structure for stable cycling and fast charging lithium metal batteries. Journal of Power Sources, 2022, 548, 232106.	4.0	9
1158	Triazine crosslinked polyionic liquid: An electrolyte-stable, lithiophilic and electrostatic shielding layer for uniform lithium plating/stripping. Nano Energy, 2022, 103, 107828.	8.2	9
1159	Mesoporous copper-based metal glass as current collector for Li metal anode. Chemical Engineering Journal, 2023, 451, 138910.	6.6	21
1160	Performance Evaluation of Composite Electrolyte with GQD for All-Solid-State Lithium Batteries. Computers, Materials and Continua, 2023, 74, 55-66.	1.5	0
1161	Ternary-salt solid polymer electrolyte for high-rate and long-life lithium metal batteries. Chemical Communications, 2022, 58, 10973-10976.	2.2	9
1162	A solid–solution-based Li–Mg alloy for highly stable lithium metal anodes. Sustainable Energy and Fuels, 2022, 6, 4137-4145.	2.5	2
1163	Eco-friendly electrolytes <i>via</i> a robust bond design for high-energy Li metal batteries. Energy and Environmental Science, 2022, 15, 4349-4361.	15.6	53
1164	A review on modified polymer composite electrolytes for solid-state lithium batteries. Sustainable Energy and Fuels, 2022, 6, 5019-5044.	2.5	8
1165	Dualâ€Functional Stacked Polymer Fibers for Stable Lithium Metal Batteries in Carbonateâ€Based Electrolytes. Small Structures, 2022, 3, .	6.9	7
1166	Perspective—Does the Sand Equation Reliably Predict the Onset of Morphological Evolution in Lithium Electrodeposition?. Journal of the Electrochemical Society, 2022, 169, 092519.	1.3	11
1167	Designing Stable Electrode Interfaces from a Pyrrolidine-Based Electrolyte for Improving LiNi _{0.8} Co _{0.1} Mn _{0.1} C ₂ Batteries. Industrial & Engineering Chemistry Research, 2022, 61, 14173-14180.	1.8	5
1168	Organic batteries for a greener rechargeable world. Nature Reviews Materials, 2023, 8, 54-70.	23.3	109

#	Article	IF	CITATIONS
1169	Critical perspective on smart thermally self-protective lithium batteries. Materials Today, 2022, 60, 271-286.	8.3	15
1170	Bulk and interface-strengthened Li7P2.9Sb0.1S10.65O0.15I0.2 electrolyte via dual-source doping for all-solid-state lithium-sulfur batteries. Science China Materials, 2023, 66, 513-521.	3.5	3
1171	Serrated lithium fluoride nanofibers-woven interlayer enables uniform lithium deposition for lithium-metal batteries. National Science Review, 2022, 9, .	4.6	31
1172	Lithiumâ€Metal Batteries via Suppressing Li Dendrite Growth and Improving Coulombic Efficiency. Small Structures, 2022, 3, .	6.9	26
1173	Effect of fluoroethylene carbonate additive on the low–temperature performance of lithium–ion batteries. Journal of Electroanalytical Chemistry, 2022, 925, 116870.	1.9	6
1174	Solvation Structure-Tunable Phase Change Electrolyte for Stable Lithium Metal Batteries. ACS Energy Letters, 2022, 7, 3761-3769.	8.8	12
1175	Enhancing MRR and accuracy with magnetized graphite tool in electrochemical micromachining of copper. Chemical Industry and Chemical Engineering Quarterly, 2022, , 27-27.	0.4	0
1176	Achieving a dendrite-free lithium metal anode through lithiophilic surface modification with sodium diethyldithiocarbamate. Inorganic Chemistry Frontiers, 2022, 9, 6498-6509.	3.0	3
1177	Lithium deposition mechanism on Si and Cu substrates in the carbonate electrolyte. Energy and Environmental Science, 2022, 15, 5284-5299.	15.6	18
1178	A strongly complexed solid polymer electrolyte enables a stable solid state high-voltage lithium metal battery. Energy and Environmental Science, 2022, 15, 5149-5158.	15.6	40
1179	The beneficial effects of black phosphorous modification of the anode current collector in Li-metal free Li2S-based batteries. Materials Today Energy, 2022, 30, 101179.	2.5	4
1180	A high ionic conductive PDOL/LAGP composite solid electrolyte film for Interfacial Stable solid-state lithium batteries. Ceramics International, 2023, 49, 5510-5517.	2.3	11
1181	Impact of LiF Particle Morphology on Overpotential and Structure of Li Metal Deposition. Journal of the Electrochemical Society, 2022, 169, 100523.	1.3	9
1182	Intrinsic Zn in Brass Enables Li Anode Dendriteâ€free. Batteries and Supercaps, 0, , .	2.4	0
1183	Toward Understanding the Effect of Fluoride Ions on the Solvation Structure in Lithium Metal Batteries: Insights from First-Principles Simulations. ACS Applied Materials & Interfaces, 2022, 14, 48762-48769.	4.0	3
1184	Fluorinated Strategies Among Allâ€Solidâ€State Lithium Metal Batteries from Microperspective. Small Structures, 2023, 4, .	6.9	23
1185	Synergy of an In Situ-Polymerized Electrolyte and a Li ₃ N–LiF-Reinforced Interface Enables Long-Term Operation of Li-Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 49811-49819.	4.0	8
1186	<i>x</i> Li ₆ PS ₅ Cl/(1 – <i>x</i>)(Perfluoropolyethers-ethoxy-diol/Lithium) Tj ETQq1 1 Anode. ACS Applied Energy Materials, 2022, 5, 13243-13253.	0.784314 2.5	rgBT /Overlo

	Стат	ion Report	
# 1187	ARTICLE Durable Lithium Metal Anodes Enabled by Interfacial Layers Based on Mechanically Interlocked Networks Capable of Energy Dissipation. Angewandte Chemie - International Edition, 2022, 61, .	IF 7.2	CITATIONS 32
1188	In Situ Construction of Composite Artificial Solid Electrolyte Interphase for High-Performance Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 50982-50991.	4.0	8
1189	Durable Lithium Metal Anodes Enabled by Interfacial Layers Based on Mechanically Interlocked Networks Capable of Energy Dissipation. Angewandte Chemie, 2022, 134, .	1.6	2
1190	A poly(ether block amide) based solid polymer electrolyte for solid-state lithium metal batteries. Journal of Colloid and Interface Science, 2023, 630, 595-603.	5.0	5
1191	A Li2CO3 sacrificial agent for anode-free lithium metal batteries. Chemical Engineering Journal, 2023, 454, 140029.	6.6	6
1192	Separators with reactive metal oxide coatings for dendrite-free lithium metal anodes. Journal of Power Sources, 2023, 555, 232336.	4.0	9
1193	Focus on the Electroplating Chemistry of Li Ions in Nonaqueous Liquid Electrolytes: Toward Stable Lithium Metal Batteries. Electrochemical Energy Reviews, 2022, 5, .	13.1	29
1194	Molecular/Ionic Designs in the Electrolyte and Interphases for Lithium Metal Anode. Batteries and Supercaps, 2023, 6, .	2.4	4
1195	Deep-learning based parameter identification enables rationalization of battery material evolution in complex electrochemical systems. Journal of Computational Science, 2023, 66, 101900.	1.5	5
1196	Hollow Microscale and Nanoscale Structures as Anode Materials for Lithium-Ion Batteries. Chemistry of Materials, 2022, 34, 9803-9822.	3.2	3
1197	Regulating Solvation Structures Enabled by the Mesoporous Material MCM-41 for Rechargeable Lithium Metal Batteries. ACS Nano, 2022, 16, 20891-20901.	7.3	10
1198	An in-situ formed bifunctional layer for suppressing Li dendrite growth and stabilizing the solid electrolyte interphase layer of anode free lithium metal batteries. Journal of Energy Storage, 2022, 56, 105955.	3.9	5
1199	Enhanced and evenly-distributed Li+ transport in well-aligned nanochannels enables stable lithium metal anode. Electrochemistry Communications, 2022, 144-145, 107395.	2.3	2
1200	Cooperative stabilization by highly efficient nanoseeds and reinforced interphase toward practical Li metal batteries. Energy Storage Materials, 2023, 55, 517-526.	9.5	10
1201	In-situ formation of LiF-rich solid-electrolyte interphases on 3D lithiophilic skeleton for stable lithium metal anode. Energy Storage Materials, 2023, 55, 301-311.	9.5	11
1202	A π-conjugated dual-functional redox mediator facilitates the construction of dendrite-free lithium–oxygen batteries. Journal of Materials Chemistry A, 2023, 11, 937-942.	5.2	4
1203	An ultrastrong 3D architecture interface with fast and smooth Li-ion deposition for high-capacity Li metal anode. Journal of Alloys and Compounds, 2023, 938, 168494.	2.8	0
1204	Diluent decomposition-assisted formation of LiF-rich solid-electrolyte interfaces enables high-energy Li-metal batteries. Journal of Energy Chemistry, 2023, 78, 71-79.	7.1	26

#	Article	IF	CITATIONS
1205	Microspherical assembly of selectively pyridinic N-doped nanoperforated graphene for stable Li-metal anodes: Synergistic coupling of lithiophilic pyridinic N on perforation edges and low tortuosity via graphene nanoperforation. Chemical Engineering Journal, 2023, 455, 140770.	6.6	3
1206	Polyacrylonitrile-Polyvinyl Alcohol-Based Composite Gel-Polymer Electrolyte for All-Solid-State Lithium-Ion Batteries. Polymers, 2022, 14, 5327.	2.0	5
1207	Fluorinated Solid‣tate Electrolytes for Lithium Batteries: Interface Design and Ion Conduction Mechanisms. Advanced Engineering Materials, 2023, 25, .	1.6	2
1208	Ultrathin thiol-ene crosslinked polymeric electrolyte for solid-state and high-performance lithium metal batteries. Science China Materials, 2023, 66, 1332-1340.	3.5	2
1209	Insights into the Importance of Native Passivation Layer and Interface Reactivity of Metallic Lithium by Electrochemical Impedance Spectroscopy. Small, 2023, 19, .	5.2	12
1210	Crossover effects of transition metal ions in high-voltage lithium metal batteries. Nano Research, 2023, 16, 8417-8424.	5.8	2
1211	Designing better electrolytes. Science, 2022, 378, .	6.0	146
1212	A Selfâ€Healing and Nonflammable Crossâ€Linked Network Polymer Electrolyte with the Combination of Hydrogen Bonds and Dynamic Disulfide Bonds for Lithium Metal Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	4
1213	Gradient design for constructing artificial SEI layer towards high-performace Lithium metal batteries. Electrochimica Acta, 2023, 442, 141914.	2.6	3
1214	A 3D multifunctional host anode from commercial carbon cloth for lithium metal batteries. Journal of Materials Chemistry A, 2023, 11, 4205-4219.	5.2	10
1215	Long-cycling High-voltage lithium metal batteries enabled by Anion-concentrated plastic crystal electrolytes. Chemical Engineering Journal, 2023, 461, 141382.	6.6	1
1216	Negatively Charged Laponite Sheets Enhanced Solid Polymer Electrolytes for Long-Cycling Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2023, 15, 4044-4052.	4.0	9
1217	Multifunctional organic corncob lignin and inorganic lithium nitride composite films as artificial protective layer to achieve high-performance Li metal anodes. Industrial Crops and Products, 2023, 193, 116127.	2.5	3
1218	Dendriteâ€Free 3D Lithium Metal Anode Formed in a Cellulose Based Separator for Lithiumâ€Metal Batteries. ChemElectroChem, 2023, 10, .	1.7	4
1219	Enhancing the Interfacial Stability of the Li ₂ S–SiS ₂ –P ₂ S ₅ Solid Electrolyte toward Metallic Lithium Anode by Lil Incorporation. ACS Applied Materials & Interfaces, 2023, 15, 1392-1400.	4.0	1
1220	Revealing the Multifunctions of Li ₃ N in the Suspension Electrolyte for Lithium Metal Batteries. ACS Nano, 2023, 17, 3168-3180.	7.3	38
1221	Enhancing Performance of LiFePO4 Battery by Using a Novel Gel Composite Polymer Electrolyte. Batteries, 2023, 9, 51.	2.1	1
1222	Tailoring polymer electrolyte ionic conductivity for production of low- temperature operating quasi-all-solid-state lithium metal batteries. Nature Communications, 2023, 14, .	5.8	47

#	Article	IF	CITATIONS
1223	Prolonged lifespan of initial-anode-free lithium-metal battery by pre-lithiation in Li-rich Li ₂ Ni _{0.5} Mn _{1.5} O ₄ spinel cathode. Chemical Science, 2023, 14, 2183-2191.	3.7	17
1224	Localized Recrystallization of a Lithium-Metal Anode during Fast Stripping in High-Activity Liquid Electrolytes. ACS Applied Materials & Interfaces, 2023, 15, 6639-6646.	4.0	4
1225	Real-Time Visualizing Nucleation and Growth of Electrodes for Post-Lithium-Ion Batteries. Accounts of Chemical Research, 2023, 56, 440-451.	7.6	4
1226	Prospects and future perspective of nanomaterials for energy storage applications. , 2023, , 569-578.		0
1227	SnS2 quantum dot as bifunctional "electrolyte additive―for lithium metal anode. Applied Surface Science, 2023, 620, 156849.	3.1	2
1228	Construction of high elastic artificial SEI for air-stable and long-life lithium metal anode. Journal of Colloid and Interface Science, 2023, 642, 193-203.	5.0	12
1229	Electrodeposition of Li-Ion Cathode Materials: The Fascinating Alternative for Li-Ion Micro-Batteries Fabrication. Journal of the Electrochemical Society, 2023, 170, 020509.	1.3	3
1230	Multi-chain hydrophobic polymer protective layer with high elasticity for stable lithium metal anode. Journal of Materials Science, 2023, 58, 2713-2720.	1.7	1
1231	Electrolytes in Organic Batteries. Chemical Reviews, 2023, 123, 1712-1773.	23.0	57
1232	Understanding and quantifying capacity loss in storage aging of Ahâ€level Li metal pouch cells. InformaÄnÃ-Materiály, 2023, 5, .	8.5	3
1233	A Robust Dualâ€Polymer@Inorganic Networks Composite Polymer Electrolyte Toward Ultra‣ong‣ife and Highâ€Voltage Li/Liâ€Rich Metal Battery. Advanced Functional Materials, 2023, 33, .	7.8	28
1234	Construction of Lithium Metal Anode with High Lithium Utilization and its Application in Lithium-Sulfur Batteries. Hans Journal of Nanotechnology, 2023, 13, 7-28.	0.1	Ο
1235	Thermal stable polymer-based solid electrolytes: Design strategies and corresponding stable mechanisms for solid-state Li metal batteries. Sustainable Materials and Technologies, 2023, 36, e00587.	1.7	2
1236	Research Progress of Stable Lithium Metal Anodes. Advances in Analytical Chemistry, 2023, 13, 11-26.	0.1	Ο
1237	Plasma Enhanced Lithium Coupled with Cobalt Fibers Arrays for Advanced Energy Storage. Advanced Functional Materials, 2023, 33, .	7.8	6
1238	Anomalous doping effects on stabilizing unusual phases of lithium fluoride for enhanced rechargeable battery interfaces. Acta Materialia, 2023, 248, 118813.	3.8	4
1239	Li-growth and SEI engineering for anode-free Li-metal rechargeable batteries: A review of current advances. Energy Storage Materials, 2023, 57, 508-539.	9.5	39
1240	Functional materials for modifying interfaces between solid electrolytes and lithium electrodes of all-solid-state lithium metal batteries. Journal of the Korean Ceramic Society, 2023, 60, 591-613.	1.1	6

#	Article	IF	CITATIONS
1241	Lithium Nitrate/Amide-Based Localized High Concentration Electrolyte for Rechargeable Lithium–Oxygen Batteries under High Current Density and High Areal Capacity Conditions. ACS Applied Energy Materials, 2023, 6, 3357-3365.	2.5	1
1242	Naked metallic skin for homo-epitaxial deposition in lithium metal batteries. Nature Communications, 2023, 14, .	5.8	28
1243	Ultra-long-life and ultrathin quasi-solid electrolytes fabricated by solvent-free technology for safe lithium metal batteries. Energy Storage Materials, 2023, 58, 132-141.	9.5	11
1244	Lipoic Acid-Assisted In Situ Integration of Ultrathin Solid-State Electrolytes. ACS Applied Energy Materials, 2023, 6, 3321-3328.	2.5	3
1245	Eutectic electrolytes with leveling effects achieving high depth-of-discharge of rechargeable zinc batteries. Energy Storage Materials, 2023, 58, 9-19.	9.5	23
1246	Development of metal-organic framework materials as solid-state polymer electrolytes for lithium-metal batteries: A review. Functional Materials Letters, 0, , .	0.7	Ο
1247	All-Solid-State Thin Film Li-Ion Batteries: New Challenges, New Materials, and New Designs. Batteries, 2023, 9, 186.	2.1	8
1248	A Solid-State Lithium Battery with PVDF–HFP-Modified Fireproof Ionogel Polymer Electrolyte. ACS Applied Energy Materials, 2023, 6, 4016-4026.	2.5	6
1249	Reconstruction of Solid Electrolyte Interphase with Srl ₂ Reactivates Dead Li for Durable Anodeâ€Free Liâ€Metal Batteries. Angewandte Chemie, 2023, 135, .	1.6	2
1250	Reconstruction of Solid Electrolyte Interphase with SrI ₂ Reactivates Dead Li for Durable Anodeâ€Free Liâ€Metal Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	13
1251	Influence of Lithium Metal Deposition on Thermal Stability: Combined DSC and Morphology Analysis of Cyclic Aged Lithium Metal Batteries. Journal of the Electrochemical Society, 0, , .	1.3	1
1252	New Concepts and Tools. , 2023, , 714-764.		Ο
1253	Integrative design of laser-induced graphene array with lithiophilic MnOx nanoparticles enables superior lithium metal batteries. EScience, 2023, 3, 100134.	25.0	8
1254	Lithium Plating and Stripping: Toward Anodeâ€Free Solidâ€State Batteries. Advanced Energy and Sustainability Research, 0, , .	2.8	2
1255	Bioderived freestanding film as a robust interfacial protective layer for advanced lithium metal anodes. Energy Technology, 0, , .	1.8	0
1256	Interfacial Interaction of Multifunctional GQDs Reinforcing Polymer Electrolytes For Allâ€Solidâ€State Li Battery. Small, 2023, 19, .	5.2	5
1257	Studies on the Application of Polyimidobenzimidazole Based Nanofiber Material as the Separation Membrane of Lithium-Ion Battery. Polymers, 2023, 15, 1954.	2.0	0
1270	Recent advances of structural/interfacial engineering for Na metal anode protection in liquid/solid-state electrolytes. Nanoscale, 0, , .	2.8	1

#	Article	IF	CITATIONS
1276	A polythiourea protective layer for stable lithium metal anodes. Journal of Materials Chemistry A, 2023, 11, 10155-10163.	5.2	2
1277	Interphase-driven ion conduction in organic ionic plastic crystal-based solid electrolytes: A review of symmetric cell studies. , 2024, , 743-775.		2
1280	Ion modulation engineering toward stable lithium metal anodes. Materials Horizons, 2023, 10, 3218-3236.	6.4	2
1286	Self-healing polymers through hydrogen-bond cross-linking: synthesis and electronic applications. Materials Horizons, 2023, 10, 4000-4032.	6.4	9
1307	Halogen chemistry of solid electrolytes in all-solid-state batteries. Nature Reviews Chemistry, 2023, 7, 826-842.	13.8	4
1324	The progress of <i>in situ</i> technology for lithium metal batteries. Materials Chemistry Frontiers, 0, , .	3.2	0
1326	From Liquid to Solid-State Lithium Metal Batteries: Fundamental Issues and Recent Developments. Nano-Micro Letters, 2024, 16, .	14.4	1