Energy–Water Nexus Analysis of Enhanced Water Sug of Tampa Bay, Florida, and San Diego, California

Environmental Science & amp; Technology 48, 5883-5891 DOI: 10.1021/es405648x

Citation Report

#	Article	IF	CITATIONS
1	Governing jurisdictional fragmentation: Tracing patterns of water governance in Ontario, Canada. Geoforum, 2014, 56, 192-200.	1.4	17
2	The energy and emissions footprint of water supply for Southern California. Environmental Research Letters, 2015, 10, 114002.	2.2	28
3	Understanding the influence of climate change on the embodied energy of water supply. Water Research, 2016, 95, 220-229.	5.3	35
4	The Urban Water–Energy Nexus: Building Resilience for Global Change in the "Urban Century― , 2016, , 113-140.		11
5	Energy-Water Nexus in Urban Industrial System. Energy Procedia, 2016, 88, 212-217.	1.8	17
6	Energy–water nexus of urban agglomeration based on multiregional input–output tables and ecological network analysis: A case study of the Beijing–Tianjin–Hebei region. Applied Energy, 2016, 178, 773-783.	5.1	223
7	Energy consumption for water use cycles in different countries: A review. Applied Energy, 2016, 178, 868-885.	5.1	218
8	Modeling the influence of various water stressors on regional water supply infrastructures and their embodied energy. Environmental Research Letters, 2016, 11, 064018.	2.2	5
9	Urban energy–water nexus: A network perspective. Applied Energy, 2016, 184, 905-914.	5.1	274
10	The vulnerability of thermoelectric power generation to water scarcity in China: Current status and future scenarios for power planning and climate change. Applied Energy, 2016, 171, 444-455.	5.1	79
11	Impacts of Groundwater Constraints on Saudi Arabia's Low-Carbon Electricity Supply Strategy. Environmental Science & Technology, 2016, 50, 1653-1662.	4.6	23
12	Pressure-retarded osmosis for power generation from salinity gradients: is it viable?. Energy and Environmental Science, 2016, 9, 31-48.	15.6	289
13	Life cycle assessment of water supply alternatives in water-receiving areas of the South-to-North Water Diversion Project in China. Water Research, 2016, 89, 9-19.	5.3	110
14	The energy trade-offs of adapting to a water-scarce future: case study of Los Angeles. International Journal of Water Resources Development, 2016, 32, 362-378.	1.2	17
15	Renewable hydropower generation as a co-benefit of balanced urban water portfolio management and flood risk mitigation. Renewable and Sustainable Energy Reviews, 2017, 68, 1076-1087.	8.2	28
16	Linkage analysis for the water–energy nexus of city. Applied Energy, 2017, 189, 770-779.	5.1	207
17	Influence of the Mixing Energy Consumption Affecting Coagulation and Floc Aggregation. Environmental Science & Technology, 2017, 51, 3480-3489.	4.6	12
18	A technology-based analysis of the water-energy-emission nexus of China's steel industry. Resources, Conservation and Recycling, 2017, 124, 116-128.	5.3	61

#	Article	IF	CITATIONS
19	Energy intensity of treating drinking water: Understanding the influence of factors. Applied Energy, 2017, 202, 275-281.	5.1	38
20	Integrated modeling approach for optimal management of water, energy and food security nexus. Advances in Water Resources, 2017, 101, 1-10.	1.7	171
21	Energy use for water provision in cities. Journal of Cleaner Production, 2017, 143, 699-709.	4.6	109
22	Life-cycle energy impacts for adapting an urban water supply system to droughts. Water Research, 2017, 127, 139-149.	5.3	13
23	Freshwater Vulnerability beyond Local Water Stress: Heterogeneous Effects of Water-Electricity Nexus Across the Continental United States. Environmental Science & Technology, 2017, 51, 9899-9910.	4.6	38
24	Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks. Applied Energy, 2017, 205, 589-601.	5.1	192
25	Innovation and the growth of human population. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160415.	1.8	24
26	Embodied energy as key parameter for sustainable materials selection: The case of reusing coal fly ash for removing anionic surfactants. Journal of Cleaner Production, 2017, 141, 230-236.	4.6	50
27	Evaluating the electricity intensity of evolving water supply mixes: the case of California's water network. Environmental Research Letters, 2017, 12, 114005.	2.2	31
29	The State of U.S. Urban Water: Data and the Energyâ€Water Nexus. Water Resources Research, 2018, 54, 1796-1811.	1.7	106
30	Global land-water nexus: Agricultural land and freshwater use embodied in worldwide supply chains. Science of the Total Environment, 2018, 613-614, 931-943.	3.9	93
31	Nexus Strength: A Novel Metric for Assessing the Clobal Resource Nexus. Journal of Industrial Ecology, 2018, 22, 1473-1486.	2.8	33
32	Sustainability of mega water diversion projects: Experience and lessons from China. Science of the Total Environment, 2018, 619-620, 721-731.	3.9	69
33	Sustainable and Resilient Design of Interdependent Water and Energy Systems: A Conceptual Modeling Framework for Tackling Complexities at the Infrastructure-Human-Resource Nexus. Sustainability, 2018, 10, 1845.	1.6	7
34	Impacts of groundwater management on energy resources and greenhouse gas emissions in California. Water Research, 2018, 141, 196-207.	5.3	13
35	Spatial optimization of the food, energy, and water nexus: A life cycle assessment-based approach. Energy Policy, 2018, 119, 502-514.	4.2	60
36	Integrated multi-objective optimization framework for urban water supply systems under alternative climates and future policy. Journal of Cleaner Production, 2018, 195, 640-650.	4.6	28
37	The water-energy nexus at water supply and its implications on the integrated water and energy management. Science of the Total Environment, 2018, 636, 1257-1267.	3.9	51

#	Article	IF	CITATIONS
38	Developing a water-energy-GHG emissions modeling framework: Insights from an application to California's water system. Environmental Modelling and Software, 2018, 109, 54-65.	1.9	38
39	Influences of water quality and climate on the water-energy nexus: A spatial comparison of two water systems. Journal of Environmental Management, 2018, 218, 613-621.	3.8	19
40	Quantifying the energy, water and food nexus: A review of the latest developments based on life-cycle assessment. Journal of Cleaner Production, 2018, 193, 300-314.	4.6	152
41	Saving Energy From Urban Water Demand Management. Water Resources Research, 2018, 54, 4265-4276.	1.7	24
42	Evaluation of potential environmental benefits from seawater toilet flushing. Water Research, 2019, 162, 505-515.	5.3	29
43	The economics of aquifer protection plans under climate water stress: New insights from hydroeconomic modeling. Journal of Hydrology, 2019, 576, 667-684.	2.3	33
44	Economic Dispatch Optimization of Multi-Water Resources: A Case Study of an Island in South Korea. Sustainability, 2019, 11, 5964.	1.6	8
45	Decentralized water collection systems for households and communities: Household preferences in Atlanta and Boston. Water Research, 2019, 167, 115134.	5.3	26
46	Direct and embodied energy-water-carbon nexus at an inter-regional scale. Applied Energy, 2019, 251, 113401.	5.1	80
47	A flexible framework for assessing the sustainability of alternative water supply options. Science of the Total Environment, 2019, 671, 1257-1268.	3.9	25
48	Modeling the urban water-energy nexus: A case study of Xiamen, China. Journal of Cleaner Production, 2019, 215, 680-688.	4.6	30
49	Insights into water-energy cobenefits and trade-offs in water resource management. Journal of Cleaner Production, 2019, 213, 1188-1203.	4.6	22
50	Performance assessment of water reuse strategies using integrated framework of urban water metabolism and water-energy-pollution nexus. Environmental Science and Pollution Research, 2020, 27, 4582-4597.	2.7	45
51	Assessing water, energy and emissions reduction from water conservation measures in buildings: a methodological approach. Environmental Science and Pollution Research, 2020, 27, 4612-4629.	2.7	15
52	Examination of the relationship between the exploitation of geothermal sources and regional economies: a Beijing case study. Water and Environment Journal, 2020, 34, 95-105.	1.0	1
53	A review of the energy–carbon–water nexus: Concepts, research focuses, mechanisms, and methodologies. Wiley Interdisciplinary Reviews: Energy and Environment, 2020, 9, e358.	1.9	24
54	Combining the highest degradation efficiency with the lowest environmental impact in zinc oxide based photocatalytic systems. Journal of Cleaner Production, 2020, 252, 119762.	4.6	13
55	Water and Carbon Footprints of Electricity Are Sensitive to Geographical Attribution Methods. Environmental Science & Technology, 2020, 54, 7533-7541.	4.6	16

#	Article	IF	CITATIONS
56	The Energy Climate Water Nexus: A Global Sustainability Impact Assessment of U.S. Manufacturing. EMJ - Engineering Management Journal, 2020, 32, 298-315.	1.4	5
57	Scaling Analysis of Energy in Great Lakes Water Supplies. Environmental Science & Technology, 2020, 54, 5071-5080.	4.6	3
58	Energy use for urban water management by utilities and households in Los Angeles. Environmental Research Communications, 2020, 2, 015003.	0.9	13
59	Integrated water, waste and energy management systems – A case study from Curauma, Chile. Resources, Conservation and Recycling, 2020, 156, 104725.	5.3	14
60	Integrated Analysis of the Water–Energy–Environmental Pollutant Nexus in the Petrochemical Industry. Environmental Science & Technology, 2020, 54, 14830-14842.	4.6	17
61	A review of water–energy nexus trend, methods, challenges and future prospects. International Journal of Energy and Water Resources, 2020, 4, 91-107.	1.3	24
62	LEAP-WEAP analysis of urban energy-water dynamic nexus in Beijing (China). Renewable and Sustainable Energy Reviews, 2021, 136, 110369.	8.2	21
63	Energy-water nexus in seawater desalination project: A typical water production system in China. Journal of Cleaner Production, 2021, 279, 123412.	4.6	28
64	Bridging global socioeconomic scenarios with policy adaptations to examine energy-water tradeoffs. Energy Policy, 2021, 149, 111911.	4.2	5
65	Energy prediction for community water supply: An integrative application of scaling analysis and life cycle assessment. Water-Energy Nexus, 2021, 4, 1-9.	1.7	2
66	Economic and environmental sustainability of the optimal water resources application for coastal and inland regions. Journal of Cleaner Production, 2021, 296, 126247.	4.6	10
67	Guiding urban water management towards 1.5 °C. Npj Clean Water, 2021, 4, .	3.1	7
68	A Review of Urban Green and Blue Infrastructure from the Perspective of Food-Energy-Water Nexus. Energies, 2021, 14, 4583.	1.6	14
69	Modeling spatial diffusion of decentralized water technologies and impacts on the urban water systems. Journal of Cleaner Production, 2021, 315, 128169.	4.6	11
70	A review of energy-for-water data in energy-water nexus publications. Environmental Research Letters, 2021, 15, 123011.	2.2	13
71	Water-energy nexus and energy efficiency: A systematic analysis of urban water systems. Renewable and Sustainable Energy Reviews, 2020, 134, 110381.	8.2	48
72	Life cycle environmental and economic implications of small drinking water system upgrades to reduce disinfection byproducts. Water Research, 2018, 143, 155-164.	5.3	17
73	Quantifying water-energy nexus for urban water systems: A case study of Addis Ababa city. AIMS Environmental Science, 2020, 7, 486-504.	0.7	6

#	Article	IF	CITATIONS
74	Water and Energy Nexus in China: Current Situation and Future Perspective in Energy Industry, Water Industry and Agriculture. Journal of Fundamentals of Renewable Energy and Applications, 2017, 04, .	0.2	3
75	Water use and electricity-for-water savings trends in three representative U.S. cities. Environmental Research Letters, 2020, 15, 084048.	2.2	2
76	The role of climate change and decentralization in urban water services: A dynamic energy-water nexus analysis. Water Research, 2021, 207, 117830.	5.3	22
77	Progress in Research on the Influences of Climatic Changes on the Industrial Economy in China. Journal of Resources and Ecology, 2020, 11, 1.	0.2	1
78	Water- and Energy-Efficient Appliances for Circular Water Economy: Conceptual Framework Development and Analysis of Greenhouse Gas Emissions and Water Consumption. ACS ES&T Engineering, 2022, 2, 409-422.	3.7	4
79	Managing Apparent Loss and Real Loss from the Nexus Perspective Using System Dynamics. Water (Switzerland), 2022, 14, 231.	1.2	4
80	Identifying critical energy-water paths and clusters within the urban agglomeration using machine learning algorithm. Energy, 2022, 250, 123880.	4.5	8
81	Toward Carbon-Neutral Water Systems: Insights from Global Cities. Engineering, 2022, 14, 77-85.	3.2	10
82	Nexus analysis and life cycle assessment of regional water supply systems: A case study from Italy. Resources, Conservation and Recycling, 2022, 185, 106446.	5.3	10
83	Assessment of water-energy-emissions nexus in wastewater treatment plants using emergy analysis. Environment, Development and Sustainability, 2023, 25, 11905-11929.	2.7	1
84	Estimating the cost efficiency and marginal cost of carbon reductions in the production of drinking water. Sustainable Cities and Society, 2022, 85, 104091.	5.1	4
85	Environmental Life Cycle Assessment (LCA) of Treating PFASs with Ion Exchange and Electrochemical Oxidation Technology. ACS ES&T Water, 2022, 2, 1555-1564.	2.3	6
87	Carbon peaks of water systems in Chinese cities under varying water demand dynamics and energy transition pathways. Journal of Cleaner Production, 2022, 379, 134695.	4.6	3