Review of underhood aerothermal management: Towar

Applied Thermal Engineering 73, 842-858

DOI: 10.1016/j.applthermaleng.2014.08.037

Citation Report

#	Article	IF	Citations
1	Innovative approach of determining the overall heat transfer coefficient of heat exchangers $\hat{a} \in \text{Application}$ to cross-flow water-air types. Applied Thermal Engineering, 2016, 99, 1086-1092.	6.0	16
2	Effect of air temperature non-uniformity on water–air heat exchanger thermal performance – Toward innovative control approach for energy consumption reduction. Applied Energy, 2016, 173, 481-493.	10.1	20
3	A simulation approach of under-hood thermal management. Advances in Engineering Software, 2016, 100, 43-52.	3.8	17
4	A methodology for thermal analysis of complex integrated systems: Application to a micro-CHP plant. Applied Thermal Engineering, 2017, 112, 1510-1522.	6.0	7
5	Advances in Integrated Vehicle Thermal Management and Numerical Simulation. Energies, 2017, 10, 1636.	3.1	44
6	Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery. Energy, 2018, 149, 1010-1021.	8.8	23
7	Enhancing the performance of vehicle cooling modules using diffusers. Case Studies in Thermal Engineering, 2018, 11, 120-124.	5.7	1
8	Full vehicle CFD investigations on the influence of front-end configuration on radiator performance and cooling drag. Applied Thermal Engineering, 2018, 130, 1328-1340.	6.0	43
9	A New Control Approach on Positioning of Heat Exchangers in Automotive Front End Cooling Module. , 2018, , .		0
10	Impact of underhood leakage zones on the aerothermal situation – Experimental simulations and physical analysis. Applied Thermal Engineering, 2018, 145, 507-515.	6.0	5
11	A Novel DoE based Front-End Airflow Target Setting Approach for Optimum HVAC Cool DownÂPerformance. , 0, , .		2
12	Use of parabolic troughs in HVAC applications – Design calculations and analysis. Case Studies in Thermal Engineering, 2018, 12, 285-291.	5.7	7
13	Thermal Management of Automotive Heat Exchanger Under Obstructed Cooling Airflow Path: A Case Study. Iranian Journal of Science and Technology - Transactions of Mechanical Engineering, 2019, 43, 495-506.	1.3	2
14	Enhanced Residential Water Heater: Experiments and Analysis. Energy Procedia, 2019, 162, 164-170.	1.8	O
15	Numerical Calculation Method of Model Predictive Control for Integrated Vehicle Thermal Management Based on Underhood Coupling Thermal Transmission. Energies, 2019, 12, 259.	3.1	14
16	Air dryer using waste heat of HVAC systems – Code development and experimental validation. Applied Thermal Engineering, 2019, 147, 302-311.	6.0	13
17	Domestic thermoelectric cogeneration drying system: Thermal modeling and case study. Energy, 2019, 170, 1036-1050.	8.8	14
18	Study of hybrid energy system coupling fuel cell, solar thermal system and photovoltaic cell. International Journal of Hydrogen Energy, 2020, 45, 13564-13574.	7.1	32

#	Article	IF	CITATIONS
19	A Review of Thermal Management System and Control Strategy for Automotive Engines. Journal of Energy Engineering - ASCE, 2021, 147, .	1.9	28
20	Suitability Assessment of an Uncalibrated Body Force Based Fan Modeling Approach to Predict Automotive Underhood Airflows. , 0, , .		0
21	The Effect of Blade Count on Body Force Model Performance for Axial Fans. Journal of Turbomachinery, $2021,143,.$	1.7	2
22	Application of boundary layer theory to enhanced heat transfer design of clean gas bus cabin. , 2021, , .		0
23	Development of a new method for estimating the overall heat transfer coefficient of heat exchangers $\hat{a} \in \text{``Validation'}$ in automotive applications. Case Studies in Thermal Engineering, 2021, 28, 101434.	5 . 7	7
24	Analysis on the waste heat recovery in a light duty vehicle. Energy, 2022, 238, 121696.	8.8	4
25	Application of the multi-field coupling enhanced heat transfer principle to the engine compartment design of clean gas bus. Mechanical Sciences, 2020, 11, 205-220.	1.0	2
26	Chamber Air Flow Control Before the Radiator. Lecture Notes in Mechanical Engineering, 2022, , 367-379.	0.4	0
27	Research of Influence of Air Intake Openings and Pre-radiator Chamber Design on Airflow Distribution. Lecture Notes in Mechanical Engineering, 2022, , 381-394.	0.4	0
28	Research on the Coupling Simulation Method of Engine Room Temperature Field. Mechanical Engineering and Technology, 2020, 09, 131-142.	0.1	0
29	An intelligent loader-digger heat balance system based on simulation and wireless sensor networks. Eurasip Journal on Wireless Communications and Networking, 2020, 2020, .	2.4	0
30	Design and Optimization of an SUV Engine Compartment Bottom Shield Based on Kriging Interpolation and Multi-Island Genetic Algorithm. , 0, , .		1
31	Improving aero-thermal environment in vehicle under-hood through small modification upstream the cooling module. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 0, , 095440702210859.	1.9	1
32	Numerical simulation on fluid flow and temperature prediction of motorcycles based on CFD. AEJ - Alexandria Engineering Journal, 2022, 61, 12943-12963.	6.4	5
33	Eco-Efficient Vehicle Cooling Modules with Integrated Diffusersâ€"Thermal, Energy, and Environmental Analyses. Energies, 2022, 15, 7917.	3.1	11
34	Simulation and Optimization for an SUV Cooling System. Lecture Notes in Electrical Engineering, 2023, , $1\text{-}13$.	0.4	0
35	The influence of the non-uniform airflow on the energy and cooling performance of the simplified electric vehicle front end cooling module. Applied Thermal Engineering, 2023, 233, 121216.	6.0	0