Nanostructured hydrotreating catalysts for electrocher

Chemical Society Reviews 43, 6555 DOI: 10.1039/c3cs60468c

Citation Report

#	Article	IF	CITATIONS
4	Design of Two-Dimensional, Ultrathin MoS ₂ Nanoplates Fabricated Within One-Dimensional Carbon Nanofibers With Thermosensitive Morphology: High-Performance Electrocatalysts For The Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2014, 6, 22126-22137.	4.0	102
5	Electrochemical Tuning of MoS ₂ Nanoparticles on Three-Dimensional Substrate for Efficient Hydrogen Evolution. ACS Nano, 2014, 8, 4940-4947.	7.3	566
6	Molybdenum Phosphosulfide: An Active, Acid‣table, Earthâ€Abundant Catalyst for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2014, 53, 14433-14437.	7.2	908
7	Photoelectrochemical Hydrogen Production in Alkaline Solutions Using Cu ₂ O Coated with Earthâ€Abundant Hydrogen Evolution Catalysts. Angewandte Chemie - International Edition, 2015, 54, 664-667.	7.2	134
8	Enhanced Electrocatalytic Activity of MoS _{<i>x</i>} on TCNQ-Treated Electrode for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2014, 6, 17679-17685.	4.0	78
9	Amorphous Molybdenum Sulfides as Hydrogen Evolution Catalysts. Accounts of Chemical Research, 2014, 47, 2671-2681.	7.6	529
10	S-rich single-layered MoS ₂ nanoplates embedded in N-doped carbon nanofibers: efficient co-electrocatalysts for the hydrogen evolution reaction. Chemical Communications, 2014, 50, 15435-15438.	2.2	118
11	Molybdenum phosphide: a new highly efficient catalyst for the electrochemical hydrogen evolution reaction. Chemical Communications, 2014, 50, 11683-11685.	2.2	226
12	Surface Polarization Matters: Enhancing the Hydrogenâ€Evolution Reaction by Shrinking Pt Shells in Pt–Pd–Graphene Stack Structures. Angewandte Chemie - International Edition, 2014, 53, 12120-12124.	7.2	436
13	FeP nanoparticles grown on graphene sheets as highly active non-precious-metal electrocatalysts for hydrogen evolution reaction. Chemical Communications, 2014, 50, 11554-11557.	2.2	187
14	Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution. Chemical Science, 2014, 5, 4615-4620.	3.7	455
15	Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy and Environmental Science, 2014, 7, 3519-3542.	15.6	1,151
16	Metal non-oxide nanostructures developed from organic–inorganic hybrids and their catalytic application. Nanoscale, 2014, 6, 14106-14120.	2.8	52
19	Porous Nickel–Iron Oxide as a Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. Advanced Science, 2015, 2, 1500199.	5.6	241
20	Three-dimensional Nitrogen-Doped Graphene Supported Molybdenum Disulfide Nanoparticles as an Advanced Catalyst for Hydrogen Evolution Reaction. Scientific Reports, 2015, 5, 17542.	1.6	156
21	Charge-Transfer Induced High Efficient Hydrogen Evolution of MoS2/graphene Cocatalyst. Scientific Reports, 2015, 5, 18730.	1.6	105
22	Nickelâ€Containing Kegginâ€Type Polyoxometalates as Hydrogen Evolution Catalysts: Photochemical Structure–Activity Relationships. ChemPlusChem, 2015, 80, 1389-1398.	1.3	45
25	Electrocatalytic Hydrogen Production by an Aluminum(III) Complex: Ligandâ€Based Proton and Electron Transfer. Angewandte Chemie - International Edition, 2015, 54, 11642-11646.	7.2	118

#	Article	IF	CITATIONS
26	MoS ₂ Nanosheets Supported on 3D Graphene Aerogel as a Highly Efficient Catalyst for Hydrogen Evolution. Chemistry - A European Journal, 2015, 21, 15908-15913.	1.7	99
27	Hierarchical Transitionâ€Metal Dichalcogenide Nanosheets for Enhanced Electrocatalytic Hydrogen Evolution. Advanced Materials, 2015, 27, 7426-7431.	11.1	123
28	Defectâ€Rich CoP/Nitrogenâ€Doped Carbon Composites Derived from a Metal–Organic Framework: Highâ€Performance Electrocatalysts for the Hydrogen Evolution Reaction. ChemCatChem, 2015, 7, 1920-1925.	1.8	88
29	Hierarchical βâ€Mo ₂ C Nanotubes Organized by Ultrathin Nanosheets as a Highly Efficient Electrocatalyst for Hydrogen Production. Angewandte Chemie - International Edition, 2015, 54, 15395-15399.	7.2	546
30	Electrodepositionâ€Assisted Synthesis of Ni ₂ P Nanosheets on 3D Graphene/Ni Foam Electrode and Its Performance for Electrocatalytic Hydrogen Production. ChemElectroChem, 2015, 2, 1665-1671.	1.7	74
31	Structural Engineering of Electrocatalysts for the Hydrogen Evolution Reaction: Order or Disorder?. ChemCatChem, 2015, 7, 2568-2580.	1.8	144
32	Metalâ€Phosphideâ€Containing Porous Carbons Derived from an Ionicâ€Polymer Framework and Applied as Highly Efficient Electrochemical Catalysts for Water Splitting. Advanced Functional Materials, 2015, 25, 3899-3906.	7.8	176
33	Facile Synthesis of Highly Dispersed WO ₃ ·H ₂ O and WO ₃ Nanoplates for Electrocatalytic Hydrogen Evolution. Journal of Nanomaterials, 2015, 2015, 1-6.	1.5	22
34	Synthesis of tungsten carbide and tungsten disulfide on vertically aligned multi-walled carbon nanotube forests and their application as non-Pt electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 14609-14616.	5.2	60
35	Metal–organic frameworks derived Co _x Fe _{1â^x} P nanocubes for electrochemical hydrogen evolution. Nanoscale, 2015, 7, 11055-11062.	2.8	203
36	Electrocatalytic Hydrogen Evolution Reaction on Edges of a Few Layer Molybdenum Disulfide Nanodots. ACS Applied Materials & Interfaces, 2015, 7, 14113-14122.	4.0	295
37	Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 14942-14962.	5.2	1,061
38	Nanostructured cobalt phosphide-based films as bifunctional electrocatalysts for overall water splitting. RSC Advances, 2015, 5, 105814-105819.	1.7	25
39	Phase-Programmed Nanofabrication: Effect of Organophosphite Precursor Reactivity on the Evolution of Nickel and Nickel Phosphide Nanocrystals. Chemistry of Materials, 2015, 27, 8021-8031.	3.2	44
40	Rational Design of Efficient Electrocatalysts for Hydrogen Evolution Reaction: Single Layers of WS ₂ Nanoplates Anchored to Hollow Nitrogen-Doped Carbon Nanofibers. ACS Applied Materials & Interfaces, 2015, 7, 28116-28121.	4.0	92
41	Highly Active Catalyst of Two-Dimensional CoS2/Graphene Nanocomposites for Hydrogen Evolution Reaction. Nanoscale Research Letters, 2015, 10, 488.	3.1	29
42	High Turnover Frequency of Hydrogen Evolution Reaction on Amorphous MoS ₂ Thin Film Directly Grown by Atomic Layer Deposition. Langmuir, 2015, 31, 1196-1202.	1.6	183
43	Amorphous MoS _x Cl _y electrocatalyst supported by vertical graphene for efficient electrochemical and photoelectrochemical hydrogen generation. Energy and Environmental Science, 2015, 8, 862-868.	15.6	183

	CITATION R	EPORT	
#	Article	IF	CITATIONS
44	Solution Synthesis of Metal Silicide Nanoparticles. Inorganic Chemistry, 2015, 54, 707-709.	1.9	45
46	Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chemical Society Reviews, 2015, 44, 2060-2086.	18.7	4,323
47	Bacteriorhodopsin/Ag Nanoparticle-Based Hybrid Nano-Bio Electrocatalyst for Efficient and Robust H ₂ Evolution from Water. Journal of the American Chemical Society, 2015, 137, 2840-2843.	6.6	59
48	Novel Molybdenum Carbide–Tungsten Carbide Composite Nanowires and Their Electrochemical Activation for Efficient and Stable Hydrogen Evolution. Advanced Functional Materials, 2015, 25, 1520-1526.	7.8	325
49	Misfitâ€Layered Bi _{1.85} Sr ₂ Co _{1.85} O _{7.7â^²<i>δ</i>} for the Hydrogen Evolution Reaction: Beyond van der Waals Heterostructures. ChemPhysChem, 2015, 16, 769-774.	1.0	10
50	Modifying candle soot with FeP nanoparticles into high-performance and cost-effective catalysts for the electrocatalytic hydrogen evolution reaction. Nanoscale, 2015, 7, 4400-4405.	2.8	83
51	Ni ₂ P Nanosheets/Ni Foam Composite Electrode for Long-Lived and pH-Tolerable Electrochemical Hydrogen Generation. ACS Applied Materials & Interfaces, 2015, 7, 2376-2384.	4.0	216
52	Polymorphic CoSe ₂ with Mixed Orthorhombic and Cubic Phases for Highly Efficient Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2015, 7, 1772-1779.	4.0	249
53	Enhanced electrocatalytic activity of MoP microparticles for hydrogen evolution by grinding and electrochemical activation. Journal of Materials Chemistry A, 2015, 3, 4368-4373.	5.2	100
54	From Water Oxidation to Reduction: Homologous Ni–Co Based Nanowires as Complementary Water Splitting Electrocatalysts. Advanced Energy Materials, 2015, 5, 1402031.	10.2	448
55	Synthesizing Nanoparticles of Co-P-Se compounds as Electrocatalysts for the Hydrogen Evolution Reaction. Electrochimica Acta, 2015, 165, 206-210.	2.6	54
56	Nitrogen Doped Reduced Graphene Oxide Based Pt–TiO ₂ Nanocomposites for Enhanced Hydrogen Evolution. Journal of Physical Chemistry C, 2015, 119, 19117-19125.	1.5	81
57	Room temperature synthesis of an amorphous MoS ₂ based composite stabilized by N-donor ligands and its light-driven photocatalytic hydrogen production. RSC Advances, 2015, 5, 67742-67751.	1.7	14
58	Atomically Precise Growth of Catalytically Active Cobalt Sulfide on Flat Surfaces and within a Metal–Organic Framework <i>via</i> Atomic Layer Deposition. ACS Nano, 2015, 9, 8484-8490.	7.3	158
59	Chemical composition, structure and light reflectance of W–Se and W–Se–C films prepared by pulsed laser deposition in rare and reactive buffer gases. Vacuum, 2015, 119, 19-29.	1.6	7
60	Porous Two-Dimensional Nanosheets Converted from Layered Double Hydroxides and Their Applications in Electrocatalytic Water Splitting. Chemistry of Materials, 2015, 27, 5702-5711.	3.2	291
61	WSe ₂ and W(Se _x S _{1â^x}) ₂ nanoflakes grown on carbon nanofibers for the electrocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 18090-18097.	5.2	107
62	MOF-derived surface modified Ni nanoparticles as an efficient catalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 16435-16439.	5.2	146

#	Article	IF	CITATIONS
63	Nickel-based cocatalysts for photocatalytic hydrogen production. Applied Surface Science, 2015, 351, 779-793.	3.1	213
64	Highly Active Hydrogen Evolution Electrodes via Co-Deposition of Platinum and Polyoxometalates. ACS Applied Materials & Interfaces, 2015, 7, 11648-11653.	4.0	46
65	Solar Hydrogen Production by Amorphous Silicon Photocathodes Coated with a Magnetron Sputter Deposited Mo ₂ C Catalyst. Journal of the American Chemical Society, 2015, 137, 7035-7038.	6.6	80
66	Flower-like Fe2O3@MoS2 nanocomposite decorated glassy carbon electrode for the determination of nitrite. Sensors and Actuators B: Chemical, 2015, 220, 749-754.	4.0	84
67	SDBS-assisted hydrothermal preparation and electrocatalytic properties of few-layer and edge-rich MoS2 nanospheres. Superlattices and Microstructures, 2015, 83, 112-120.	1.4	7
68	Highly active and inexpensive iron phosphide nanorods electrocatalyst towards hydrogen evolution reaction. International Journal of Hydrogen Energy, 2015, 40, 14272-14278.	3.8	63
69	Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 2015, 44, 5148-5180.	18.7	4,776
70	Ultrathin MoS2-coated carbon nanospheres asÂhighly efficient electrocatalyts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2015, 40, 6552-6558.	3.8	104
71	Hydrogen evolution at nanoporous gold/tungsten sulfide composite film and its optimization. Electrochimica Acta, 2015, 173, 393-398.	2.6	32
72	Insight into the electrochemical activation of carbon-based cathodes for hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 13080-13086.	5.2	198
73	Synthesis of Ultrafine Pt/Pd Bimetallic Nanoparticles and Their Decoration on MWCNTs for Hydrogen Evolution. Journal of the Electrochemical Society, 2015, 162, H415-H418.	1.3	27
74	Ni@Pd/PEI–rGO stack structures with controllable Pd shell thickness as advanced electrodes for efficient hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 11261-11268.	5.2	64
75	CoSe ₂ necklace-like nanowires supported by carbon fiber paper: a 3D integrated electrode for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 9415-9420.	5.2	125
76	Ultrathin MoS _{2(1–<i>x</i>)} Se _{2<i>x</i>} Alloy Nanoflakes For Electrocatalytic Hydrogen Evolution Reaction. ACS Catalysis, 2015, 5, 2213-2219.	5.5	473
77	Widely available active sites on Ni ₂ P for electrochemical hydrogen evolution – insights from first principles calculations. Physical Chemistry Chemical Physics, 2015, 17, 10823-10829.	1.3	118
78	Amorphous nickel/cobalt tungsten sulfide electrocatalysts for high-efficiency hydrogen evolution reaction. Applied Surface Science, 2015, 341, 149-156.	3.1	76
79	Synthesis of nanostructured clean surface molybdenum carbides on graphene sheets as efficient and stable hydrogen evolution reaction catalysts. Chemical Communications, 2015, 51, 8323-8325.	2.2	138
80	Efficient hydrogen evolution reaction catalyzed by molybdenum carbide and molybdenum nitride nanocatalysts synthesized via the urea glass route. Journal of Materials Chemistry A, 2015, 3, 8361-8368.	5.2	364

#	Article	IF	CITATIONS
81	Design and Synthesis of Highly Active Al–Ni–P Foam Electrode for Hydrogen Evolution Reaction. ACS Catalysis, 2015, 5, 6503-6508.	5.5	98
82	Facile synthesis of MoS2/RGO in dimethyl-formamide solvent as highly efficient catalyst for hydrogen evolution. Materials Letters, 2015, 161, 120-123.	1.3	45
83	Pulsed laser deposition of nanocomposite MoSe /Mo thin-film catalysts for hydrogen evolution reaction. Thin Solid Films, 2015, 592, 175-181.	0.8	29
84	Enhanced hydrogen evolution catalysis in MoS ₂ nanosheets by incorporation of a metal phase. Journal of Materials Chemistry A, 2015, 3, 24414-24421.	5.2	88
85	MOF-derived nanostructured cobalt phosphide assemblies for efficient hydrogen evolution reaction. RSC Advances, 2015, 5, 90265-90271.	1.7	61
86	Hydrothermal synthesis of 2D MoS ₂ nanosheets for electrocatalytic hydrogen evolution reaction. RSC Advances, 2015, 5, 89389-89396.	1.7	110
87	Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting. Nanoscale, 2015, 7, 19764-19788.	2.8	327
88	Wireless Solar Water Splitting Device with Robust Cobalt-Catalyzed, Dual-Doped BiVO ₄ Photoanode and Perovskite Solar Cell in Tandem: A Dual Absorber Artificial Leaf. ACS Nano, 2015, 9, 11820-11829.	7.3	219
89	Sulfur-Decorated Molybdenum Carbide Catalysts for Enhanced Hydrogen Evolution. ACS Catalysis, 2015, 5, 6956-6963.	5.5	208
90	Surface Oxidized Cobalt-Phosphide Nanorods As an Advanced Oxygen Evolution Catalyst in Alkaline Solution. ACS Catalysis, 2015, 5, 6874-6878.	5.5	441
91	Microwave-Assisted Reactant-Protecting Strategy toward Efficient MoS ₂ Electrocatalysts in Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2015, 7, 23741-23749.	4.0	107
92	Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nature Communications, 2015, 6, 7873.	5.8	526
93	Physical vapor deposition of amorphous MoS ₂ nanosheet arrays on carbon cloth for highly reproducible large-area electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 19277-19281.	5.2	97
94	Reduced graphene oxide nanosheets decorated with Au, Pd and Au–Pd bimetallic nanoparticles as highly efficient catalysts for electrochemical hydrogen generation. Journal of Materials Chemistry A, 2015, 3, 20254-20266.	5.2	146
95	Beneficial effect of Re doping on the electrochemical HER activity of MoS ₂ fullerenes. Dalton Transactions, 2015, 44, 16399-16404.	1.6	66
96	High-Performance Electrocatalysis for Hydrogen Evolution Reaction Using Se-Doped Pyrite-Phase Nickel Diphosphide Nanostructures. ACS Catalysis, 2015, 5, 6355-6361.	5.5	258
97	Nanostructured nickel sulfides: phase evolution, characterization and electrocatalytic properties for the hydrogen evolution reaction. RSC Advances, 2015, 5, 104740-104749.	1.7	61
99	Advancing the Electrochemistry of the Hydrogenâ€Evolution Reaction through Combining Experiment and Theory. Angewandte Chemie - International Edition, 2015, 54, 52-65.	7.2	1,616

#	Article	IF	CITATIONS
100	Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 1656-1665.	5.2	549
101	Nanostructured Metallic Electrocatalysts for Carbon Dioxide Reduction. ChemCatChem, 2015, 7, 38-47.	1.8	233
102	Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catalysis Science and Technology, 2015, 5, 1360-1384.	2.1	824
104	Mesoporous MoO _{3–} <i>_x</i> Material as an Efficient Electrocatalyst for Hydrogen Evolution Reactions. Advanced Energy Materials, 2016, 6, 1600528.	10.2	353
105	Water Splitting Progress in Tandem Devices: Moving Photolysis beyond Electrolysis. Advanced Energy Materials, 2016, 6, 1600602.	10.2	268
106	Advanced Highâ€Voltage Aqueous Lithiumâ€Ion Battery Enabled by "Waterâ€inâ€Bisalt―Electrolyte. Angewandte Chemie, 2016, 128, 7252-7257.	1.6	459
107	Singly versus Doubly Reduced Nickel Porphyrins for Proton Reduction: Experimental and Theoretical Evidence for a Homolytic Hydrogenâ€Evolution Reaction. Angewandte Chemie - International Edition, 2016, 55, 5457-5462.	7.2	148
108	Singly versus Doubly Reduced Nickel Porphyrins for Proton Reduction: Experimental and Theoretical Evidence for a Homolytic Hydrogenâ€Evolution Reaction. Angewandte Chemie, 2016, 128, 5547-5552.	1.6	30
109	Hierarchical NiMo-based 3D electrocatalysts for highly-efficient hydrogen evolution in alkaline conditions. Nano Energy, 2016, 27, 247-254.	8.2	196
110	Cobaltâ€Doping in Molybdenumâ€Carbide Nanowires Toward Efficient Electrocatalytic Hydrogen Evolution. Advanced Functional Materials, 2016, 26, 5590-5598.	7.8	400
111	Chalcogenide and Phosphide Solid‣tate Electrocatalysts for Hydrogen Generation. ChemPlusChem, 2016, 81, 1045-1055.	1.3	74
112	Porous MoO ₂ Nanosheets as Nonâ€noble Bifunctional Electrocatalysts for Overall Water Splitting. Advanced Materials, 2016, 28, 3785-3790.	11.1	729
113	Recent Advances in Controlling Syntheses and Energy Related Applications of MX ₂ and MX ₂ /Graphene Heterostructures. Advanced Energy Materials, 2016, 6, 1600459.	10.2	43
114	Ruthenium/Graphene-like Layered Carbon Composite as an Efficient Hydrogen Evolution Reaction Electrocatalyst. ACS Applied Materials & Amp; Interfaces, 2016, 8, 35132-35137.	4.0	92
115	The Role of Transition Metal and Nitrogen in Metal–N–C Composites for Hydrogen Evolution Reaction at Universal pHs. Journal of Physical Chemistry C, 2016, 120, 29047-29053.	1.5	69
116	Enhanced hydrogen evolution performance of ultra thin nanoslice/nanopetal structured XS2 (X = W,) T	i ETQq1 1	0.784314 rg
117	Nanoparticle-Catalysts for Hydrogen Storage Based on Small Molecules. Recyclable Catalysis, 2016, 2, .	0.1	3
118	Transition Metal Nitrides for Electrocatalytic Energy Conversion: Opportunities and Challenges. Chemistry - A European Journal, 2016, 22, 3588-3598.	1.7	305

# 119	ARTICLE Two-dimensional TaC nanosheets on a reduced graphene oxide hybrid as an efficient and stable electrocatalyst for water splitting. Chemical Communications, 2016, 52, 8810-8813.	IF 2.2	CITATIONS 35
120	Surface-Oxidized Dicobalt Phosphide Nanoneedles as a Nonprecious, Durable, and Efficient OER Catalyst. ACS Energy Letters, 2016, 1, 169-174.	8.8	251
121	Robust and stable ruthenium alloy electrocatalysts for hydrogen evolution by seawater splitting. Electrochimica Acta, 2016, 208, 180-187.	2.6	99
122	Metal Doping Effect of the M–Co ₂ P/Nitrogen-Doped Carbon Nanotubes (M = Fe, Ni, Cu) Hydrogen Evolution Hybrid Catalysts. ACS Applied Materials & Interfaces, 2016, 8, 13890-13901.	4.0	172
123	An efficient WSe ₂ /Co _{0.85} Se/graphene hybrid catalyst for electrochemical hydrogen evolution reaction. RSC Advances, 2016, 6, 51725-51731.	1.7	51
124	Template-directed approach to two-dimensional molybdenum phosphide–carbon nanocomposites with high catalytic activities in the hydrogen evolution reaction. New Journal of Chemistry, 2016, 40, 6015-6021.	1.4	25
125	General Formation of M–MoS ₃ (M = Co, Ni) Hollow Structures with Enhanced Electrocatalytic Activity for Hydrogen Evolution. Advanced Materials, 2016, 28, 92-97.	11.1	364
126	Photo-Promoted Platinum Nanoparticles Decorated MoS ₂ @Graphene Woven Fabric Catalyst for Efficient Hydrogen Generation. ACS Applied Materials & Interfaces, 2016, 8, 10866-10873.	4.0	72
127	Ni3Se2 nanoforest/Ni foam as a hydrophilic, metallic, and self-supported bifunctional electrocatalyst for both H2 and O2 generations. Nano Energy, 2016, 24, 103-110.	8.2	377
128	Tuning the Magnetic Properties of MoS ₂ Single Nanolayers by 3d Metals Edge Doping. Journal of Physical Chemistry C, 2016, 120, 10691-10697.	1.5	52
129	Hydrogen and CO2 Reduction Reactions: Mechanisms and Catalysts. , 2016, , 105-160.		11
130	Active and Durable Hydrogen Evolution Reaction Catalyst Derived from Pd-Doped Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2016, 8, 13378-13383.	4.0	103
131	Electrochemically assisted ethylene (co-)polymerization with a vanadium-based Ziegler-Natta catalyst. Catalysis Communications, 2016, 83, 39-42.	1.6	6
132	Ultrafine Co ₂ P nanoparticles encapsulated in nitrogen and phosphorus dual-doped porous carbon nanosheet/carbon nanotube hybrids: high-performance bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2016, 4, 15501-15510.	5.2	90
133	MoS ₂ as a co atalyst for photocatalytic hydrogen production from water. Energy Science and Engineering, 2016, 4, 285-304.	1.9	205
134	Relation between Hydrogen Evolution and Hydrodesulfurization Catalysis. ChemCatChem, 2016, 8, 3334-3337.	1.8	20
135	Sn-doped few-layer MoS 2 /graphene hybrids with rich active sites and their enhanced catalytic performance for hydrogen generation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509, 140-148.	2.3	9
136	Lamellar structured CoSe 2 nanosheets directly arrayed on Ti plate as an efficient electrochemical catalyst for hydrogen evolution. Electrochimica Acta, 2016, 217, 156-162.	2.6	45

#	Article	IF	CITATIONS
137	Graphene sheets wrapped carbon nanofibers as a highly conductive three-dimensional framework for perpendicularly anchoring of MoS 2 : Advanced electrocatalysts for hydrogen evolution reaction. Electrochimica Acta, 2016, 219, 604-613.	2.6	39
138	Nickel phosphide nanosphere: A high-performance and cost-effective catalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2016, 41, 20515-20522.	3.8	25
139	Wafer Scale Phaseâ€Engineered 1T―and 2Hâ€MoSe ₂ /Mo Core–Shell 3Dâ€Hierarchical Nanostructures toward Efficient Electrocatalytic Hydrogen Evolution Reaction. Advanced Materials, 2016, 28, 9831-9838.	11.1	208
140	Nanostructured Bifunctional Redox Electrocatalysts. Small, 2016, 12, 5656-5675.	5.2	174
141	Electrospun carbon nanofiber@CoS ₂ core/sheath hybrid as an efficient all-pH hydrogen evolution electrocatalyst. Inorganic Chemistry Frontiers, 2016, 3, 1280-1288.	3.0	37
142	Synthesis of layer-expanded MoS2 nanosheets/carbon fibers nanocomposites for electrochemical hydrogen evolution reaction. Materials Chemistry and Physics, 2016, 183, 18-23.	2.0	18
143	Mo ₂ C quantum dot embedded chitosan-derived nitrogen-doped carbon for efficient hydrogen evolution in a broad pH range. Chemical Communications, 2016, 52, 12753-12756.	2.2	138
144	Vertical 2D MoO ₂ /MoSe ₂ Core–Shell Nanosheet Arrays as Highâ€Performance Electrocatalysts for Hydrogen Evolution Reaction. Advanced Functional Materials, 2016, 26, 8537-8544.	7.8	167
145	Self-supported porous Ni-Fe-P composite as an efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline medium. Electrochimica Acta, 2016, 219, 194-203.	2.6	97
146	Electrospun MnCo ₂ O ₄ nanofibers for efficient hydrogen evolution reaction. Materials Research Express, 2016, 3, 095018.	0.8	18
147	Coupling Mo ₂ C Nanoparticles with Graphite Nanosheets as Durable Electrocatalysts for Hydrogen Evolution Reaction. Journal of the Electrochemical Society, 2016, 163, H1060-H1065.	1.3	8
148	Driving electrocatalytic activity by interface electronic structure control in a metalloprotein hybrid catalyst for efficient hydrogen evolution. Physical Chemistry Chemical Physics, 2016, 18, 23220-23230.	1.3	6
149	Metal–organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting. Nano Research, 2016, 9, 2234-2243.	5.8	215
150	Electrospun transition/alkaline earth metal oxide composite nanofibers under mild condition for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2016, 41, 13915-13922.	3.8	24
151	Toward Inexpensive Photocatalytic Hydrogen Evolution: A Nickel Sulfide Catalyst Supported on a High-Stability Metal–Organic Framework. ACS Applied Materials & Interfaces, 2016, 8, 20675-20681.	4.0	151
152	Electrochemical Partial Reforming of Ethanol into Ethyl Acetate Using Ultrathin Co ₃ O ₄ Nanosheets as a Highly Selective Anode Catalyst. ACS Central Science, 2016, 2, 538-544.	5.3	120
153	Cobalt-doped edge-rich MoS2/nitrogenated graphene composite as an electrocatalyst for hydrogen evolution reaction. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 212, 30-38.	1.7	46
154	Metal–semiconductor double shell hollow nanocubes for highly stable hydrogen generation photocatalysts. Journal of Materials Chemistry A, 2016, 4, 13414-13418.	5.2	30

#	Article	IF	CITATIONS
155	Synthesis, Characterization, and Properties of Metal Phosphide Catalysts for the Hydrogen-Evolution Reaction. Chemistry of Materials, 2016, 28, 6017-6044.	3.2	519
156	Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy, 2016, 28, 29-43.	8.2	603
157	Solution Growth of Vertical VS ₂ Nanoplate Arrays for Electrocatalytic Hydrogen Evolution. Chemistry of Materials, 2016, 28, 5587-5591.	3.2	173
158	Electropolymerized supermolecule derived N, P co-doped carbon nanofiber networks as a highly efficient metal-free electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 13726-13730.	5.2	131
159	Two-step synthesis of binary Ni–Fe sulfides supported on nickel foam as highly efficient electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 13499-13508.	5.2	250
161	Controllable synthesis of molybdenum carbide nanoparticles embedded in porous graphitized carbon matrixes as efficient electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2016, 215, 357-365.	2.6	48
162	An efficient nanostructured copper(I) sulfide-based hydrogen evolution electrocatalyst at neutral pH. Electrochimica Acta, 2016, 215, 366-373.	2.6	62
163	Multifunctional high-activity and robust electrocatalyst derived from metal–organic frameworks. Journal of Materials Chemistry A, 2016, 4, 17288-17298.	5.2	123
164	Formation of thin catalytic WSe x layer on graphite electrodes for activation of hydrogen evolution reaction in aqueous acid. Inorganic Materials: Applied Research, 2016, 7, 285-291.	0.1	9
165	3D Graphene Aerogels Decorated with Cobalt Phosphide Nanoparticles as Electrocatalysts for the Hydrogen Evolution Reaction. ChemSusChem, 2016, 9, 3049-3053.	3.6	54
166	Atomic‧ized Pores Enhanced Electrocatalysis of TaS ₂ Nanosheets for Hydrogen Evolution. Advanced Materials, 2016, 28, 8945-8949.	11.1	167
167	Ultrasmall tungsten phosphide nanoparticles embedded in nitrogen-doped carbon as a highly active and stable hydrogen-evolution electrocatalyst. Journal of Materials Chemistry A, 2016, 4, 15327-15332.	5.2	116
168	Aluminum Titania Nanoparticle Composites as Nonprecious Catalysts for Efficient Electrochemical Generation of H ₂ . ACS Applied Materials & Interfaces, 2016, 8, 23655-23667.	4.0	25
169	Mo ₂ C Nanoparticles Dispersed on Hierarchical Carbon Microflowers for Efficient Electrocatalytic Hydrogen Evolution. ACS Nano, 2016, 10, 11337-11343.	7.3	483
170	Phase and Interface Engineering of Platinum–Nickel Nanowires for Efficient Electrochemical Hydrogen Evolution. Angewandte Chemie - International Edition, 2016, 55, 12859-12863.	7.2	311
171	Phase and Interface Engineering of Platinum–Nickel Nanowires for Efficient Electrochemical Hydrogen Evolution. Angewandte Chemie, 2016, 128, 13051-13055.	1.6	73
172	From water reduction to oxidation: Janus Co-Ni-P nanowires as high-efficiency and ultrastable electrocatalysts for over 3000Âh water splitting. Journal of Power Sources, 2016, 330, 156-166.	4.0	190
173	Inexpensive electrochemical synthesis of nickel iron sulphides on nickel foam: super active and ultra-durable electrocatalysts for alkaline electrolyte membrane water electrolysis. Journal of Materials Chemistry A, 2016, 4, 16394-16402.	5.2	206

#	Article	IF	CITATIONS
174	Vertically aligned oxygen-doped molybdenum disulfide nanosheets grown on carbon cloth realizing robust hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2016, 3, 1160-1166.	3.0	55
175	Metal–organic framework-guided growth of Mo ₂ C embedded in mesoporous carbon as a high-performance and stable electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 16225-16232.	5.2	102
176	Pomegranate-like N,P-Doped Mo ₂ C@C Nanospheres as Highly Active Electrocatalysts for Alkaline Hydrogen Evolution. ACS Nano, 2016, 10, 8851-8860.	7.3	575
177	Stabilizing Active Edge Sites in Semicrystalline Molybdenum Sulfide by Anchorage on Nitrogenâ€Doped Carbon Nanotubes for Hydrogen Evolution Reaction. Advanced Functional Materials, 2016, 26, 6766-6776.	7.8	110
178	Electrochemical Activity of Iron Phosphide Nanoparticles in Hydrogen Evolution Reaction. ACS Catalysis, 2016, 6, 5441-5448.	5.5	197
179	NiSe@NiOOH Core–Shell Hyacinth-like Nanostructures on Nickel Foam Synthesized by in Situ Electrochemical Oxidation as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2016, 8, 20057-20066.	4.0	221
180	Nitrogen, phosphorus co-doped carbon dots/CoS ₂ hybrid for enhanced electrocatalytic hydrogen evolution reaction. RSC Advances, 2016, 6, 66893-66899.	1.7	21
181	Mo Doping Induced More Active Sites in Urchinâ€Like W ₁₈ O ₄₉ Nanostructure with Remarkably Enhanced Performance for Hydrogen Evolution Reaction. Advanced Functional Materials, 2016, 26, 5778-5786.	7.8	177
182	Composition and Interface Engineering of Alloyed MoS ₂ <i>_x</i> Se _{2(1–} <i>_x</i> ₎ Nanotubes for Enhanced Hydrogen Evolution Reaction Activity. Small, 2016, 12, 4379-4385.	5.2	72
183	Engineering water dissociation sites in MoS ₂ nanosheets for accelerated electrocatalytic hydrogen production. Energy and Environmental Science, 2016, 9, 2789-2793.	15.6	503
184	Progress on Electrocatalysts of Hydrogen Evolution Reaction Based on Carbon Fiber Materials. Chinese Journal of Analytical Chemistry, 2016, 44, 1447-1457.	0.9	33
185	Enhanced Catalytic Activities of Metal-Phase-Assisted 1T@2H-MoSe 2 Nanosheets for Hydrogen Evolution. Electrochimica Acta, 2016, 217, 181-186.	2.6	83
186	Gold Nanofiber-Based Electrodes for Plasmon-Enhanced Electrocatalysis. Journal of the Electrochemical Society, 2016, 163, H1132-H1135.	1.3	16
187	Electrochemically activated NiSe-Ni x S y hybrid nanorods as efficient electrocatalysts for oxygen evolution reaction. Electrochimica Acta, 2016, 220, 536-544.	2.6	60
188	A highly active molybdenum multisulfide electrocatalyst for the hydrogen evolution reaction. RSC Advances, 2016, 6, 107158-107162.	1.7	14
189	Hydrogenation-controlled phase transition on two-dimensional transition metal dichalcogenides and their unique physical and catalytic properties. Scientific Reports, 2016, 6, 34186.	1.6	61
190	Operando Raman Spectroscopy of Amorphous Molybdenum Sulfide (MoS _{<i>x</i>}) during the Electrochemical Hydrogen Evolution Reaction: Identification of Sulfur Atoms as Catalytically Active Sites for H ⁺ Reduction. ACS Catalysis, 2016, 6, 7790-7798.	5.5	210
191	Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution. Nature Communications, 2016, 7, 13216.	5.8	334

ARTICLE IF CITATIONS Experimental and First-Principles Investigation of MoWS₂ with High Hydrogen Evolution 192 4.0 49 Performance. ACS Applied Materials & amp; Interfaces, 2016, 8, 29442-29451. Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous 5.8 312 nickel diselenide foam. Nature Communications, 2016, 7, 12765. Ni–Mo Nanocatalysts on N-Doped Graphite Nanotubes for Highly Efficient Electrochemical Hydrogen 194 7.3 125 Evolution in Acid. ACS Nano, 2016, 10, 10397-10403. A rhodium/silicon co-electrocatalyst design concept to surpass platinum hydrogen evolution activity 5.8 272 at high overpotentials. Nature Communications, 2016, 7, 12272. Ammonia intercalated flower-like MoS2 nanosheet film as electrocatalyst for high efficient and 196 1.6 76 stable hydrogen evolution. Scientific Reports, 2016, 6, 31092. Synthesis of Co-doped MoS₂/graphene hybrids as enhanced electrocatalysts for the hydrogen evolution reaction. RSC Advances, 2016, 6, 104925-104932. 1.7 Highly Efficient Hydrogen Evolution from Edge-Oriented WS_{2(1–<i>x</i>)}Se_{2<i>x</i>>/i>} Particles on Three-Dimensional Porous NiSe₂ Foam. Nano Letters, 2016, 16, 7604-7609. 198 4.5 121 Metallic Cobalt Nanoparticles Encapsulated in Nitrogenâ€Enriched Graphene Shells: Its Bifunctional Electrocatalysis and Application in Zinc–Air Batteries. Advanced Functional Materials, 2016, 26, 100 7.8 350 4397-4404. Solutionâ€Processed Twoâ€Dimensional Metal Dichalcogenideâ€Based Nanomaterials for Energy Storage 200 11.1 438 and Conversion. Advanced Materials, 2016, 28, 6167-6196. Controlling the Morphology and Efficiency of Nanostructured Molybdenum Nitride Electrocatalysts 1.8 for the Hydrogen Evolution Reaction. ChemCatChem, 2016, 8, 1218-1225. Nanostructured MoS₂ Nanorose/Graphene Nanoplatelet Hybrids for Electrocatalysis. 202 1.7 14 Chemistry - A European Journal, 2016, 22, 5969-5975. A Cuâ€Based Nanoparticulate Film as Superâ€Active and Robust Catalyst Surpasses Pt for Electrochemical H₂ Production from Neutral and Weak Acidic Aqueous Solutions. Advanced Energy 10.2 36 Materials, 2016, 6, 1502319. Advanced Highâ€Voltage Aqueous Lithiumâ€Ion Battery Enabled by "Waterâ€Inâ€Bisalt―Electrolyte. 204 7.2 571 Angewandte Chemie - International Edition, 2016, 55, 7136-7141. Strongly Coupled Architectures of Cobalt Phosphide Nanoparticles Assembled on Graphene as 1.7 Bifunctional Electrocatalysts for Water Splitting. ChemElectroChem, 2016, 3, 719-725. Triethylenetetramine-assisted hydrothermal synthesis of sulfur-doped few-layer MoSe 2 /nitrogenated graphene hybrids and their catalytic activity for hydrogen evolution reaction. Advanced Powder 206 2.0 9 Technology, 2016, 27, 1560-1567. Monocrystalline Ni₁₂P₅hollow spheres with ultrahigh specific surface areas as advanced electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 9755-9759. Contributions of Phase, Sulfur Vacancies, and Edges to the Hydrogen Evolution Reaction Catalytic 208 Activity of Porous Molybdenum Disulfide Nanosheets. Journal of the American Chemical Society, 2016, 6.6 1,055 138, 7965-7972. Differently structured MoS2 for the hydrogen production application and a mechanism investigation. 209 2.8 Journal of Alloys and Compounds, 2016, 685, 65-69.

#	Article	IF	CITATIONS
210	Vanadium carbide nanoparticles encapsulated in graphitic carbon network nanosheets: A high-efficiency electrocatalyst for hydrogen evolution reaction. Nano Energy, 2016, 26, 603-609.	8.2	120
211	Universal Strategy to Fabricate a Two-Dimensional Layered Mesoporous Mo ₂ C Electrocatalyst Hybridized on Graphene Sheets with High Activity and Durability for Hydrogen Generation. ACS Applied Materials & Interfaces, 2016, 8, 18107-18118.	4.0	71
212	Activation Effect of Electrochemical Cycling on Gold Nanoparticles towards the Hydrogen Evolution Reaction in Sulfuric Acid. Electrochimica Acta, 2016, 209, 440-447.	2.6	32
213	Synthesis and development of nano WO3 catalyst incorporated Ni–P coating for electrocatalytic hydrogen evolution reaction. International Journal of Hydrogen Energy, 2016, 41, 10090-10102.	3.8	33
214	Enhanced CO selectivity and stability for electrocatalytic reduction of CO 2 on electrodeposited nanostructured porous Ag electrode. Journal of CO2 Utilization, 2016, 15, 41-49.	3.3	43
215	Molybdenum carbide supported by N-doped carbon: Controlled synthesis and application in electrocatalytic hydrogen evolution reaction. Materials Letters, 2016, 176, 101-105.	1.3	20
216	Tension-Enhanced Hydrogen Evolution Reaction on Vanadium Disulfide Monolayer. Nanoscale Research Letters, 2016, 11, 113.	3.1	37
217	The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nature Materials, 2016, 15, 1003-1009.	13.3	687
218	Mo <i>_x</i> W _{1â^'} <i>_x</i> (S <i>_y</i> Se _{1â^'} <i>< Alloy Nanoflakes for Highâ€Performance Electrocatalytic Hydrogen Evolution. Particle and Particle Systems Characterization, 2016, 33, 576-582.</i>	sub>y1.2	b>) _{ 24}
219	Composition-Dependent Catalytic Activities of Noble-Metal-Free NiS/Ni ₃ S ₄ for Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2016, 120, 14581-14589.	1.5	94
220	Cluster-like molybdenum phosphide anchored on reduced graphene oxide for efficient hydrogen evolution over a broad pH range. Chemical Communications, 2016, 52, 9530-9533.	2.2	102
221	2D Transitionâ€Metalâ€Dichalcogenideâ€Nanosheetâ€Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions. Advanced Materials, 2016, 28, 1917-1933.	11.1	1,214
222	Trimetallic TriStar Nanostructures: Tuning Electronic and Surface Structures for Enhanced Electrocatalytic Hydrogen Evolution. Advanced Materials, 2016, 28, 2077-2084.	11.1	181
223	Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chemical Society Reviews, 2016, 45, 1529-1541.	18.7	2,664
224	Ternary Platinum–Copper–Nickel Nanoparticles Anchored to Hierarchical Carbon Supports as Free-Standing Hydrogen Evolution Electrodes. ACS Applied Materials & Interfaces, 2016, 8, 3464-3472.	4.0	93
225	Ultrathin cobalt phosphide nanosheets as efficient bifunctional catalysts for a water electrolysis cell and the origin for cell performance degradation. Green Chemistry, 2016, 18, 2287-2295.	4.6	108
226	Decoration of the inert basal plane of defect-rich MoS ₂ with Pd atoms for achieving Pt-similar HER activity. Journal of Materials Chemistry A, 2016, 4, 4025-4031.	5.2	122
227	Iron triad (Fe, co, Ni) trinary phosphide nanosheet arrays as high-performance bifunctional electrodes for full water splitting in basic and neutral conditions. RSC Advances, 2016, 6, 9647- <u>9655.</u>	1.7	64

#	Article	IF	CITATIONS
228	Three-Dimensional Assembly of Yttrium Oxide Nanosheets into Luminescent Aerogel Monoliths with Outstanding Adsorption Properties. ACS Nano, 2016, 10, 2467-2475.	7.3	84
229	FeP and FeP ₂ nanowires for efficient electrocatalytic hydrogen evolution reaction. Chemical Communications, 2016, 52, 2819-2822.	2.2	245
230	Facet-controlled hollow Rh ₂ S ₃ hexagonal nanoprisms as highly active and structurally robust catalysts toward hydrogen evolution reaction. Energy and Environmental Science, 2016, 9, 850-856.	15.6	118
231	Exploration of the electrochemical mechanism of ultrasmall multiple phases molybdenum carbides nanocrystals for hydrogen evolution reaction. RSC Advances, 2016, 6, 9240-9246.	1.7	48
232	Hollow Cobalt-Based Bimetallic Sulfide Polyhedra for Efficient All-pH-Value Electrochemical and Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2016, 138, 1359-1365.	6.6	656
233	Morphology–activity correlation in hydrogen evolution catalyzed by cobalt sulfides. Inorganic Chemistry Frontiers, 2016, 3, 279-285.	3.0	33
234	Novel cobalt quantum dot/graphene nanocomposites as highly efficient electrocatalysts for water splitting. Nanoscale, 2016, 8, 1485-1492.	2.8	62
235	Co–Ni–B nanocatalyst for efficient hydrogen evolution reaction in wide pH range. Applied Catalysis B: Environmental, 2016, 192, 126-133.	10.8	231
236	Amorphous flower-like molybdenum-sulfide-@-nitrogen-doped-carbon-nanofiber film for use in the hydrogen-evolution reaction. Journal of Colloid and Interface Science, 2016, 472, 69-75.	5.0	31
237	Low-Cost Nanostructured Iron Sulfide Electrocatalysts for PEM Water Electrolysis. ACS Catalysis, 2016, 6, 2626-2631.	5.5	105
238	Porous nanoMoC@graphite shell derived from a MOFs-directed strategy: an efficient electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 6006-6013.	5.2	195
239	A facile approach to fabricate free-standing hydrogen evolution electrodes: riveting tungsten carbide nanocrystals to graphite felt fabrics by carbon nanosheets. Journal of Materials Chemistry A, 2016, 4, 5817-5822.	5.2	39
240	Microwave-assisted synthesis of multiply-twinned Au–Ag nanocrystals on reduced graphene oxide for high catalytic performance towards hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 3865-3871.	5.2	32
241	A facile preparation of CoFe ₂ O ₄ nanoparticles on polyaniline-functionalised carbon nanotubes as enhanced catalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 4472-4478.	5.2	168
242	Heteronanowires of MoC–Mo ₂ C as efficient electrocatalysts for hydrogen evolution reaction. Chemical Science, 2016, 7, 3399-3405.	3.7	532
243	Enhanced electrocatalytic hydrogen evolution reaction: Supramolecular assemblies of metalloporphyrins on glassy carbon electrodes. Applied Catalysis B: Environmental, 2016, 188, 169-176.	10.8	38
244	Defect-Rich Metallic Titania (TiO _{1.23})—An Efficient Hydrogen Evolution Catalyst for Electrochemical Water Splitting. ACS Catalysis, 2016, 6, 2222-2229.	5.5	86
245	Well-dispersed CoS ₂ nano-octahedra grown on a carbon fibre network as efficient electrocatalysts for hydrogen evolution reaction. Catalysis Science and Technology, 2016, 6, 4545-4553.	2.1	62

ARTICLE IF CITATIONS # Indented Cu₂MoS₄ nanosheets with enhanced electrocatalytic and photocatalytic activities realized through edge engineering. Physical Chemistry Chemical Physics, 246 1.3 47 2016, 18, 6713-6721. Electroless plated Ni–B films as highly active electrocatalysts for hydrogen production from water over a wide pH range. Nano Energy, 2016, 19, 98-107. 247 8.2 143 Hollow Structured Micro/Nano MoS₂ Spheres for High Electrocatalytic Activity 248 4.0 190 Hydrogen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2016, 8, 5517-5525. CoSe₂ and NiSe₂ Nanocrystals as Superior Bifunctional Catalysts for Electrochemical and Photoelectrochemical Water Splitting. ACS Applied Materials & amp; Interfaces, 249 2016, 8, 5327-5334. A comprehensive study on atomic layer deposition of molybdenum sulfide for electrochemical 250 2.8 48 hydrogen evolution. Nanoscale, 2016, 8, 7180-7188. Effect of annealing and nanostructuring on pulsed laser deposited WS2 for HER catalysis. Applied 2.2 Catalysis A: General, 2016, 510, 156-160. Polyoxometalate-based metalâ€"organic framework-derived hybrid electrocatalysts for highly efficient 252 5.2 165 hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 1202-1207. Reduced Graphene Oxide/O-MWCNT Hybrids Functionalized with p-Phenylenediamine as High-Performance MoS₂ Électrocatalyst Support for Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2016, 120, 1478-1487. 1.5 49 Metalâ& organic framework-based CoP/reduced graphene oxide: high-performance bifunctional 254 3.7 745 electrocatalyst for overall water splitting. Chemical Science, 2016, 7, 1690-1695. Quantitative Two-Dimensional (2D) Morphology–Selectivity Relationship of CoMoS Nanolayers: A Combined High-Resolution High-Angle Annular Dark Field Scanning Transmission Electron Microscopy (HR HAADF-STEM) and Density Functional Theory (DFT) Study. ACS Catalysis, 2016, 6, 1081-1092. 5.5 Superior performance of borocarbonitrides, B_xC_yN_z, as stable, low-cost metal-free electrocatalysts for the hydrogen evolution reaction. Energy and Environmental 256 205 15.6Science, 2016, 9, 95-101. Enhanced Activity for Hydrogen Evolution Reaction over CoFe Catalysts by Alloying with Small 4.0 126 Amount of Pt. AĆS Applied Materials & amp; Interfaces, 2017, 9, 3596-3601. Electrodeposited MoSx films assisted by liquid crystal template with ultrahigh electrocatalytic 258 activity for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 3.8 78 5132-5138. Electrochemical cycling and beyond: unrevealed activation of MoO₃ for electrochemical 259 2.2 hydrogen evolution reactions. Chemical Communications, 2017, 53, 2245-2248. Graphene-coated hybrid electrocatalysts derived from bimetallic metal–organic frameworks for 260 5.292 efficient hydrogen generation. Journal of Materials Chemistry A, 2017, 5, 5000-5006. Gas-solid phase growth of hierarchical nanoporous nanoplates for water splitting in acidic conditions. Journal of Alloys and Compounds, 2017, 701, 122-126. Symmetrical synergy of hybrid Co9S8-MoSx electrocatalysts for hydrogen evolution reaction. Nano 262 8.2 116 Energy, 2017, 32, 470-478. Synthesis and application of transition metal phosphides as electrocatalyst for water splitting. 4.3 179 Science Bulletin, 2017, 62, 633-644.

#	Article	IF	CITATIONS
264	Coral-Shaped MoS ₂ Decorated with Graphene Quantum Dots Performing as a Highly Active Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 3653-3660.	4.0	98
265	Boosting Visibleâ€Lightâ€Driven Photocatalytic Hydrogen Evolution with an Integrated Nickel Phosphide–Carbon Nitride System. Angewandte Chemie, 2017, 129, 1675-1679.	1.6	57
266	Boosting Visibleâ€Lightâ€Driven Photocatalytic Hydrogen Evolution with an Integrated Nickel Phosphide–Carbon Nitride System. Angewandte Chemie - International Edition, 2017, 56, 1653-1657.	7.2	261
267	Reduced graphene oxide and MoP composite as highly efficient and durable electrocatalyst for hydrogen evolution in both acidic and alkaline media. Catalysis Science and Technology, 2017, 7, 668-676.	2.1	85
268	Facile preparation of carbon sphere supported molybdenum compounds (P, C and S) as hydrogen evolution electrocatalysts in acid and alkaline electrolytes. Nano Energy, 2017, 32, 511-519.	8.2	143
269	Cracked monolayer 1T MoS ₂ with abundant active sites for enhanced electrocatalytic hydrogen evolution. Catalysis Science and Technology, 2017, 7, 718-724.	2.1	83
270	High-efficiency electrochemical hydrogen evolution based on the intermetallic Pt ₂ Si compound prepared by magnetron-sputtering. RSC Advances, 2017, 7, 1553-1560.	1.7	37
271	Emerging nanostructured electrode materials for water electrolysis and rechargeable beyond Li-ion batteries. Advances in Physics: X, 2017, 2, 211-253.	1.5	25
272	Rh–Ag–Si ternary composites: highly active hydrogen evolution electrocatalysts over Pt–Ag–Si. Journal of Materials Chemistry A, 2017, 5, 1623-1628.	5.2	28
273	NixWO2.72 nanorods as an efficient electrocatalyst for oxygen evolution reaction. Green Energy and Environment, 2017, 2, 119-123.	4.7	15
274	Sub-1.1 nm ultrathin porous CoP nanosheets with dominant reactive {200} facets: a high mass activity and efficient electrocatalyst for the hydrogen evolution reaction. Chemical Science, 2017, 8, 2769-2775.	3.7	243
275	Ni nanoparticles supported on graphene layers: An excellent 3D electrode for hydrogen evolution reaction in alkaline solution. Journal of Power Sources, 2017, 347, 220-228.	4.0	146
276	Highly conductive carbon black supported amorphous molybdenum disulfide for efficient hydrogen evolution reaction. Journal of Power Sources, 2017, 347, 210-219.	4.0	76
277	Hydrogen evolution electrocatalysis with binary-nonmetal transition metal compounds. Journal of Materials Chemistry A, 2017, 5, 5995-6012.	5.2	142
278	MoS ₂ –Ni ₃ S ₂ Heteronanorods as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting. ACS Catalysis, 2017, 7, 2357-2366.	5.5	963
279	A stepwise-designed Rh-Au-Si nanocomposite that surpasses Pt/C hydrogen evolution activity at high overpotentials. Nano Research, 2017, 10, 1749-1755.	5.8	37
280	Efficient Electrocatalytic Hydrogen Evolution from MoS ₂ -Functionalized Mo ₂ N Nanostructures. ACS Applied Materials & Interfaces, 2017, 9, 19455-19461.	4.0	81
281	Pt-like electrocatalytic behavior of Ru–MoO ₂ nanocomposites for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 5475-5485.	5.2	213

#	Article	IF	CITATIONS
282	A novel flower-like architecture of FeCo@NC-functionalized ultra-thin carbon nanosheets as a highly efficient 3D bifunctional electrocatalyst for full water splitting. Journal of Materials Chemistry A, 2017, 5, 5413-5425.	5.2	124
283	Three-dimensional hollow porous Co6Mo6C nanoframe as an highly active and durable electrocatalyst for water splitting. Journal of Catalysis, 2017, 347, 63-71.	3.1	39
284	A Heterostructure Coupling of Exfoliated Ni–Fe Hydroxide Nanosheet and Defective Graphene as a Bifunctional Electrocatalyst for Overall Water Splitting. Advanced Materials, 2017, 29, 1700017.	11.1	845
285	Highly efficient and stable MoP-RGO nanoparticles as electrocatalysts for hydrogen evolution. Electrochimica Acta, 2017, 232, 254-261.	2.6	66
286	Nickel–Cobalt Diselenide 3D Mesoporous Nanosheet Networks Supported on Ni Foam: An Allâ€pH Highly Efficient Integrated Electrocatalyst for Hydrogen Evolution. Advanced Materials, 2017, 29, 1606521.	11.1	370
287	Defect-rich MoS2 nanowall catalyst for efficient hydrogen evolution reaction. Nano Research, 2017, 10, 1178-1188.	5.8	177
288	Synthesis of hierarchical MoO ₂ /MoS ₂ nanofibers for electrocatalytic hydrogen evolution. Nanotechnology, 2017, 28, 105605.	1.3	33
289	Boronâ€Dependency of Molybdenum Boride Electrocatalysts for the Hydrogen Evolution Reaction. Angewandte Chemie, 2017, 129, 5667-5670.	1.6	50
290	Boronâ€Đependency of Molybdenum Boride Electrocatalysts for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2017, 56, 5575-5578.	7.2	259
291	Graphene Decorated with Uniform Ultrathin (CoP) <i>_x</i> –(FeP) _{1–} <i>_x</i> Nanorods: A Robust Nonâ€Nobleâ€Metal Catalyst for Hydrogen Evolution. Small, 2017, 13, 1700092.	5.2	39
292	Amorphous Molybdenum Sulfide/Carbon Nanotubes Hybrid Nanospheres Prepared by Ultrasonic Spray Pyrolysis for Electrocatalytic Hydrogen Evolution. Small, 2017, 13, 1700111.	5.2	70
293	Recent Advances in Earth-Abundant Heterogeneous Electrocatalysts for Photoelectrochemical Water Splitting. Small Methods, 2017, 1, 1700090.	4.6	106
294	Fe ₂ P/reduced graphene oxide/Fe ₂ P sandwich-structured nanowall arrays: a high-performance non-noble-metal electrocatalyst for hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 8608-8615.	5.2	118
295	Highly stable and efficient non-precious metal electrocatalysts of tantalum dioxyfluoride used for the oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 8287-8291.	5.2	29
296	Well dispersed Fe ₂ N nanoparticles on surface of nitrogen-doped reduced graphite oxide for highly efficient electrochemical hydrogen evolution. Journal of Materials Research, 2017, 32, 1770-1776.	1.2	19
297	Solvothermal access to rich nitrogen-doped molybdenum carbide nanowires as efficient electrocatalyst for hydrogen evolution reaction. Journal of Alloys and Compounds, 2017, 714, 26-34.	2.8	34
298	Binary platinum alloy electrodes for hydrogen and oxygen evolutions by seawater splitting. Applied Surface Science, 2017, 413, 72-82.	3.1	42
299	Phosphorus-Mo ₂ C@carbon nanowires toward efficient electrochemical hydrogen evolution: composition, structural and electronic regulation. Energy and Environmental Science, 2017, 10, 1262-1271.	15.6	379

#	Article	IF	CITATIONS
300	In situ growth of ultrathin Ni–Fe LDH nanosheets for high performance oxygen evolution reaction. Inorganic Chemistry Frontiers, 2017, 4, 1173-1181.	3.0	57
301	General Formation of Monodisperse IrM (M = Ni, Co, Fe) Bimetallic Nanoclusters as Bifunctional Electrocatalysts for Acidic Overall Water Splitting. Advanced Functional Materials, 2017, 27, 1700886.	7.8	321
302	Recent Methods for the Synthesis of Noble-Metal-Free Hydrogen-Evolution Electrocatalysts: From Nanoscale to Sub-nanoscale. Small Methods, 2017, 1, 1700118.	4.6	96
303	A 3D-composite structure of FeP nanorods supported by vertically aligned graphene for the high-performance hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 11301-11308.	5.2	87
305	Recent advances in metal–nitrogen–carbon catalysts for electrochemical water splitting. Materials Chemistry Frontiers, 2017, 1, 2155-2173.	3.2	109
306	Molybdenum Carbideâ€Based Electrocatalysts for Hydrogen Evolution Reaction. Chemistry - A European Journal, 2017, 23, 10947-10961.	1.7	267
307	3D-hierarchical MoSe ₂ nanoarchitecture as a highly efficient electrocatalyst for hydrogen evolution. 2D Materials, 2017, 4, 025092.	2.0	78
308	Cu, Coâ€Embedded Nâ€Enriched Mesoporous Carbon for Efficient Oxygen Reduction and Hydrogen Evolution Reactions. Advanced Energy Materials, 2017, 7, 1700193.	10.2	487
309	Interlayer expanded lamellar CoSe 2 on carbon paper as highly efficient and stable overall water splitting electrodes. Electrochimica Acta, 2017, 241, 106-115.	2.6	48
310	Carbon nitride frameworks padded with graphene as efficient metal-free catalyst for HER in acidic and alkali electrolytes. Materials Research Express, 2017, 4, 055602.	0.8	8
311	MoSe ₂ Nanosheets Grown on Polydopamineâ€Derived Porous Fibers: A Highâ€Performance Catalyst for Hydrogen Evolution Reaction. Advanced Materials Interfaces, 2017, 4, 1600825.	1.9	24
312	Ternary MnO 2 /NiCo 2 O 4 /NF with hierarchical structure and synergistic interaction as efficient electrocatalysts for oxygen evolution reaction. Journal of Alloys and Compounds, 2017, 719, 314-321.	2.8	57
313	Graphene Oxide-Directed Tunable Assembly of MoS2 Ultrathin Nanosheets for Electrocatalytic Hydrogen Evolution. ChemistrySelect, 2017, 2, 4696-4704.	0.7	5
314	Enhancing the reactivity of nickel(<scp>ii</scp>) in hydrogen evolution reactions (HERs) by β-hydrogenation of porphyrinoid ligands. Chemical Science, 2017, 8, 5953-5961.	3.7	64
315	Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nature Communications, 2017, 8, 15437.	5.8	813
316	Outstanding hydrogen evolution reaction catalyzed by porous nickel diselenide electrocatalysts. Energy and Environmental Science, 2017, 10, 1487-1492.	15.6	176
317	Earth-abundant amorphous catalysts for electrolysis of water. Chinese Journal of Catalysis, 2017, 38, 991-1005.	6.9	66
318	Pt nanocrystals on nitrogen-doped graphene for the hydrogen evolution reaction using Si nanowires as a sacrificial template. Nanoscale, 2017, 9, 10138-10144.	2.8	73

#	Article	IF	CITATIONS
319	Cactus‣ike Hollow Cu _{2â€} <i>_x</i> S@Ru Nanoplates as Excellent and Robust Electrocatalysts for the Alkaline Hydrogen Evolution Reaction. Small, 2017, 13, 1700052.	5.2	86
320	Field-Effect Tuned Adsorption Dynamics of VSe ₂ Nanosheets for Enhanced Hydrogen Evolution Reaction. Nano Letters, 2017, 17, 4109-4115.	4.5	134
321	In situ cathodic activation of V-incorporated Ni _x S _y nanowires for enhanced hydrogen evolution. Nanoscale, 2017, 9, 12353-12363.	2.8	143
322	Solvent-Mediated Shape Tuning of Well-Defined Rhodium Nanocrystals for Efficient Electrochemical Water Splitting. Chemistry of Materials, 2017, 29, 5009-5015.	3.2	91
323	Novel WS2/WO3 heterostructured nanosheets as efficient electrocatalyst for hydrogen evolution reaction. Materials Chemistry and Physics, 2017, 197, 123-128.	2.0	59
324	Oxide-derived nanostructured metallic-glass electrodes for efficient electrochemical hydrogen generation. RSC Advances, 2017, 7, 27058-27064.	1.7	17
325	One-pot synthesis of hollow AgPt alloyed nanocrystals with enhanced electrocatalytic activity for hydrogen evolution and oxygen reduction reactions. Journal of Colloid and Interface Science, 2017, 505, 307-314.	5.0	40
326	IrO ₂ –TiO ₂ electrocatalysts for the hydrogen evolution reaction in acidic water electrolysis without activation. New Journal of Chemistry, 2017, 41, 6152-6159.	1.4	34
327	Progress in Developing Metal Oxide Nanomaterials for Photoelectrochemical Water Splitting. Advanced Energy Materials, 2017, 7, 1700555.	10.2	455
328	Earth-abundant Ni2P/g-C3N4 lamellar nanohydrids for enhanced photocatalytic hydrogen evolution and bacterial inactivation under visible light irradiation. Applied Catalysis B: Environmental, 2017, 217, 570-580.	10.8	311
329	Molybdenum Disulfide–Black Phosphorus Hybrid Nanosheets as a Superior Catalyst for Electrochemical Hydrogen Evolution. Nano Letters, 2017, 17, 4311-4316.	4.5	211
330	First-principles calculation of electronic energy level alignment at electrochemical interfaces. Applied Surface Science, 2017, 412, 335-341.	3.1	5
331	Ternary CoS 2 /MoS 2 /RGO electrocatalyst with CoMoS phase for efficient hydrogen evolution. Applied Surface Science, 2017, 412, 138-145.	3.1	84
332	Cage-Confinement Pyrolysis Route to Ultrasmall Tungsten Carbide Nanoparticles for Efficient Electrocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2017, 139, 5285-5288.	6.6	336
333	Enhanced hydrogen evolution reaction on hybrids of cobalt phosphide and molybdenum phosphide. Royal Society Open Science, 2017, 4, 161016.	1.1	16
334	Efficient Electrocatalyst for the Hydrogen Evolution Reaction Derived from Polyoxotungstate/Polypyrrole/Graphene. ChemSusChem, 2017, 10, 2402-2407.	3.6	41
335	Selfâ€Supported NiS Nanoparticleâ€Coupled Ni ₂ P Nanoflake Array Architecture: An Advanced Catalyst for Electrochemical Hydrogen Evolution. ChemElectroChem, 2017, 4, 1341-1348.	1.7	17
336	Emerging two-dimensional nanomaterials for electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 8187-8208.	5.2	229

#	Article	IF	CITATIONS
337	A straight forward approach to electrodeposit tungsten disulfide/poly(3,4-ethylenedioxythiophene) composites onto nanoporous gold for the hydrogen evolution reaction. Applied Surface Science, 2017, 410, 308-314.	3.1	23
338	Gas-templating of hierarchically structured Ni–Co–P for efficient electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 7564-7570.	5.2	47
339	High-Performance Rh ₂ P Electrocatalyst for Efficient Water Splitting. Journal of the American Chemical Society, 2017, 139, 5494-5502.	6.6	343
340	Nano-porous Mo 2 C in-situ grafted on macroporous carbon electrode as an efficient 3D hydrogen evolution cathode. Journal of Alloys and Compounds, 2017, 712, 103-110.	2.8	22
341	A review on methane transformation to hydrogen and nanocarbon: Relevance of catalyst characteristics and experimental parameters on yield. Renewable and Sustainable Energy Reviews, 2017, 76, 743-767.	8.2	79
342	Fe(<scp>iii</scp>) doped NiS ₂ nanosheet: a highly efficient and low-cost hydrogen evolution catalyst. Journal of Materials Chemistry A, 2017, 5, 10173-10181.	5.2	137
343	Seawater splitting for high-efficiency hydrogen evolution by alloyed PtNi x electrocatalysts. Applied Surface Science, 2017, 413, 360-365.	3.1	59
344	Synthesis and characterization of an IrO ₂ –Fe ₂ O ₃ electrocatalyst for the hydrogen evolution reaction in acidic water electrolysis. RSC Advances, 2017, 7, 20252-20258.	1.7	26
345	New insights into high-valence state Mo in molybdenum carbide nanobelts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 10880-10890.	3.8	29
346	Au nanoparticle incorporated Co(OH) 2 hybrid thin film with high electrocatalytic activity and stability for overall water splitting. Journal of Electroanalytical Chemistry, 2017, 794, 28-35.	1.9	36
347	High-efficient and low-cost catalyst for hydrogen evolution reaction: Nickel phosphide nano-spheres. Journal of Renewable and Sustainable Energy, 2017, 9, .	0.8	6
348	Ultrafast Formation of Amorphous Bimetallic Hydroxide Films on 3D Conductive Sulfide Nanoarrays for Largeâ€Currentâ€Density Oxygen Evolution Electrocatalysis. Advanced Materials, 2017, 29, 1700404.	11.1	462
349	Roles of Two-Dimensional Transition Metal Dichalcogenides as Cocatalysts in Photocatalytic Hydrogen Evolution and Environmental Remediation. Industrial & Engineering Chemistry Research, 2017, 56, 4611-4626.	1.8	103
350	Ni/nitrogen-doped graphene nanotubes acted as a valuable tailor for remarkably enhanced hydrogen evolution performance of platinum-based catalysts. Journal of Materials Chemistry A, 2017, 5, 16249-16254.	5.2	25
351	Electrospinning Heteroâ€Nanofibers of Fe ₃ Câ€Mo ₂ C/Nitrogenâ€Doped arbon as Efficient Electrocatalysts for Hydrogen Evolution. ChemSusChem, 2017, 10, 2597-2604.	3.6	100
352	In-situ anion exchange synthesis of copper selenide electrode as electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 10925-10930.	3.8	17
353	Recent Advances in Sensing Applications of Twoâ€Đimensional Transition Metal Dichalcogenide Nanosheets and Their Composites. Advanced Functional Materials, 2017, 27, 1605817.	7.8	206
354	Effect of Ligand Coverage on Hydrogen Evolution Catalyzed by Colloidal WSe ₂ . ACS Catalysis, 2017, 7, 2815-2820.	5.5	62

#	Article	IF	CITATIONS
355	Engineering the surface charge states of nanostructures for enhanced catalytic performance. Materials Chemistry Frontiers, 2017, 1, 1951-1964.	3.2	63
356	Nano-structured hybrid molybdenum carbides/nitrides generated in situ for HER applications. Journal of Materials Chemistry A, 2017, 5, 7764-7768.	5.2	64
357	Highly thermal-stable paramagnetism by rolling up MoS ₂ nanosheets. Nanoscale, 2017, 9, 503-508.	2.8	32
358	Oneâ€Dimensional Earthâ€Abundant Nanomaterials for Waterâ€5plitting Electrocatalysts. Advanced Science, 2017, 4, 1600380.	5.6	253
359	CoP nanoparticles combined with WS2 nanosheets as efficient electrocatalytic hydrogen evolution reaction catalyst. International Journal of Hydrogen Energy, 2017, 42, 3947-3954.	3.8	50
360	Porous molybdenum carbide microspheres as efficient binder-free electrocatalysts for suspended hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 6448-6454.	3.8	24
361	Dualâ€Functional N Dopants in Edges and Basal Plane of MoS ₂ Nanosheets Toward Efficient and Durable Hydrogen Evolution. Advanced Energy Materials, 2017, 7, 1602086.	10.2	286
362	Spontaneous decoration of silicon surfaces with MoO _x nanoparticles for the sunlight-assisted hydrogen evolution reaction. Nanoscale, 2017, 9, 1799-1804.	2.8	20
363	Quaternary pyrite-structured nickel/cobalt phosphosulfide nanowires on carbon cloth as efficient and robust electrodes for water electrolysis. Nano Research, 2017, 10, 814-825.	5.8	71
364	In Situ Growth of Snâ€Doped Ni ₃ S ₂ Nanosheets on Ni Foam as Highâ€Performance Electrocatalyst for Hydrogen Evolution Reaction. ChemElectroChem, 2017, 4, 594-600.	1.7	64
365	Modeling the active sites of Co-promoted MoS ₂ particles by DFT. Physical Chemistry Chemical Physics, 2017, 19, 2017-2024.	1.3	25
366	Field Effect Enhanced Hydrogen Evolution Reaction of MoS ₂ Nanosheets. Advanced Materials, 2017, 29, 1604464.	11.1	148
367	Double Nanoporous Structure with Nanoporous PtFe Embedded in Graphene Nanopores: Highly Efficient Bifunctional Electrocatalysts for Hydrogen Evolution and Oxygen Reduction. Advanced Materials Interfaces, 2017, 4, 1601029.	1.9	36
368	An Electrodeposited NiSe for Electrocatalytic Hydrogen and Oxygen Evolution Reactions in Alkaline Solution. Electrochimica Acta, 2017, 224, 412-418.	2.6	130
369	Towards Versatile and Sustainable Hydrogen Production through Electrocatalytic Water Splitting: Electrolyte Engineering. ChemSusChem, 2017, 10, 1318-1336.	3.6	154
370	Vertical Growth of 2D Amorphous FePO ₄ Nanosheet on Ni Foam: Outer and Inner Structural Design for Superior Water Splitting. Advanced Materials, 2017, 29, 1704574.	11.1	278
371	Highly active two dimensional α-MoO _{3â^'x} for the electrocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 24223-24231.	5.2	166
372	A newly synthesized single crystal zinc complex as molecular electrocatalyst for efficient hydrogen generation from neutral aqueous solutions. International Journal of Hydrogen Energy, 2017, 42, 25980-25995.	3.8	11

#	Article	IF	Citations
373	Encased Copper Boosts the Electrocatalytic Activity of N-Doped Carbon Nanotubes for Hydrogen Evolution. ACS Applied Materials & 2017, 10, 2017, 9, 36857-36864.	4.0	75
374	Cationic Vacancy Defects in Iron Phosphide: A Promising Route toward Efficient and Stable Hydrogen Evolution by Electrochemical Water Splitting. ChemSusChem, 2017, 10, 4544-4551.	3.6	63
375	Ultrathin molybdenum boride films for highly efficient catalysis of the hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 23471-23475.	5.2	104
376	Highly efficient hydrogen evolution electrocatalysts based on coupled molybdenum phosphide and reduced graphene oxide derived from MOFs. Chemical Communications, 2017, 53, 12576-12579.	2.2	64
377	Three electron channels toward two types of active sites in MoS ₂ @Pt nanosheets for hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 22654-22661.	5.2	42
378	Structure Confined Porous Mo ₂ C for Efficient Hydrogen Evolution. Advanced Functional Materials, 2017, 27, 1703933.	7.8	148
379	Engineering a nanotubular mesoporous cobalt phosphide electrocatalyst by the Kirkendall effect towards highly efficient hydrogen evolution reactions. Nanoscale, 2017, 9, 16313-16320.	2.8	43
380	Powerful synergy: efficient Pt–Au–Si nanocomposites as state-of-the-art catalysts for electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 21903-21908.	5.2	19
381	Metallic Cobalt@Nitrogen-Doped Carbon Nanocomposites: Carbon-Shell Regulation toward Efficient Bi-Functional Electrocatalysis. ACS Applied Materials & Interfaces, 2017, 9, 37721-37730.	4.0	59
382	Rapid Adsorption Enables Interface Engineering of PdMnCo Alloy/Nitrogen-Doped Carbon as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 38419-38427.	4.0	34
383	Precious metal-free approach to hydrogen electrocatalysis for energy conversion: From mechanism understanding to catalyst design. Nano Energy, 2017, 42, 69-89.	8.2	157
384	Characterization of Electrocatalytic Water Splitting and CO ₂ Reduction Reactions Using In Situ/Operando Raman Spectroscopy. ACS Catalysis, 2017, 7, 7873-7889.	5.5	196
385	Design of Core–Shellâ€Structured ZnO/ZnS Hybridized with Graphiteâ€Like C ₃ N ₄ for Highly Efficient Photoelectrochemical Water Splitting. Advanced Materials Interfaces, 2017, 4, 1700681.	1.9	91
386	Edge-On MoS ₂ Thin Films by Atomic Layer Deposition for Understanding the Interplay between the Active Area and Hydrogen Evolution Reaction. Chemistry of Materials, 2017, 29, 7604-7614.	3.2	82
387	Symmetric synergy of hybrid CoS ₂ –WS ₂ electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 15552-15558.	5.2	81
388	Decoration of Carbon Nitride Surface with Bimetallic Nanoparticles (Ag/Pt, Ag/Pd, and Ag/Au) via Galvanic Exchange for Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2017, 121, 19548-19558.	1.5	63
389	Improved catalytic activity of Mo _{1â^'x} W _x Se ₂ alloy nanoflowers promotes efficient hydrogen evolution reaction in both acidic and alkaline aqueous solutions. Nanoscale, 2017, 9, 13998-14005.	2.8	59
390	Hydrogen generation by water splitting using MoS2 and other transition metal dichalcogenides. Nano Energy, 2017, 41, 49-65.	8.2	248

щ		15	CITATIONS
#	ARTICLE	IF	CHATIONS
391	Hydrogen and Oxygen Evolution. Chemistry of Materials, 2017, 29, 8539-8547.	3.2	279
392	PVP-assisted synthesis of porous CoO prisms with enhanced electrocatalytic oxygen evolution properties. Journal of Energy Chemistry, 2017, 26, 1210-1216.	7.1	26
393	Defective MoS2 electrocatalyst for highly efficient hydrogen evolution through a simple ball-milling method. Science China Materials, 2017, 60, 849-856.	3.5	23
394	Mo2C@NC@MoSx porous nanospheres with sandwich shell based on MoO42–polymer precursor for efficient hydrogen evolution in both acidic and alkaline media. Carbon, 2017, 124, 555-564.	5.4	57
395	Robust Catalysis on 2D Materials Encapsulating Metals: Concept, Application, and Perspective. Advanced Materials, 2017, 29, 1606967.	11.1	334
396	An efficient Co3S4/CoP hybrid catalyst for electrocatalytic hydrogen evolution. Scientific Reports, 2017, 7, 11891.	1.6	45
397	Graphene- and Phosphorene-like Boron Layers with Contrasting Activities in Highly Active Mo ₂ B ₄ for Hydrogen Evolution. Journal of the American Chemical Society, 2017, 139, 12915-12918.	6.6	104
398	Core–shell and alloy integrating PdAu bimetallic nanoplates on reduced graphene oxide for efficient and stable hydrogen evolution catalysts. RSC Advances, 2017, 7, 43373-43379.	1.7	8
399	Surface anion-rich NiS ₂ hollow microspheres derived from metal–organic frameworks as a robust electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 20985-20992.	5.2	257
400	Iron-Doped Nickel Phosphide Nanosheet Arrays: An Efficient Bifunctional Electrocatalyst for Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 26001-26007.	4.0	200
401	Hydrogen evolution reaction at PdNPs decorated 1:1 clay minerals and application to the electrocatalytic determination of p-nitrophenol. Journal of Electroanalytical Chemistry, 2017, 801, 49-56.	1.9	23
402	Copper Cobalt Sulfide Nanosheets Realizing a Promising Electrocatalytic Oxygen Evolution Reaction. ACS Catalysis, 2017, 7, 5871-5879.	5.5	437
403	Highly efficient hydrogen evolution reaction by strain and phase engineering in composites of Pt and MoS ₂ nano-scrolls. Physical Chemistry Chemical Physics, 2017, 19, 18356-18365.	1.3	48
404	Hierarchical Nanostructures: Design for Sustainable Water Splitting. Advanced Energy Materials, 2017, 7, 1700559.	10.2	247
405	Theoretical evaluation of the structure–activity relationship in graphene-based electrocatalysts for hydrogen evolution reactions. RSC Advances, 2017, 7, 27033-27039.	1.7	21
406	Nitrogenâ€Ðoped Graphene with a Threeâ€Ðimensional Architecture Assisted by Carbon Nitride Tetrapods as an Efficient Metalâ€Free Electrocatalyst for Hydrogen Evolution. ChemElectroChem, 2017, 4, 2643-2652.	1.7	29
407	Supercriticalâ€Fluidâ€Assisted Decoration of MoS ₂ @ MWCNTs and Their Superior Performance in the Electrochemical Hydrogen Evolution Reaction. ChemistrySelect, 2017, 2, 5978-5983.	0.7	5
408	Use of an intermediate solid-state electrode to enable efficient hydrogen production from dilute organic matter. Nano Energy, 2017, 39, 499-505.	8.2	7

#	Article	IF	CITATIONS
409	Formation of Mo–Polydopamine Hollow Spheres and Their Conversions to MoO ₂ /C and Mo ₂ C/C for Efficient Electrochemical Energy Storage and Catalyst. Small, 2017, 13, 1701246.	5.2	126
410	Microbial-Phosphorus-Enabled Synthesis of Phosphide Nanocomposites for Efficient Electrocatalysts. Journal of the American Chemical Society, 2017, 139, 11248-11253.	6.6	70
411	Decoration of Pd and Pt nanoparticles on a carbon nitride (C ₃ N ₄) surface for nitro-compounds reduction and hydrogen evolution reaction. New Journal of Chemistry, 2017, 41, 9658-9667.	1.4	41
412	Mo doped Ni ₂ P nanowire arrays: an efficient electrocatalyst for the hydrogen evolution reaction with enhanced activity at all pH values. Nanoscale, 2017, 9, 16674-16679.	2.8	179
413	Metal Free Composite Electrodes for Hydrogen Evolution Reaction. Materials Today: Proceedings, 2017, 4, 5116-5121.	0.9	0
414	Grapheneâ€Supported Pyreneâ€Modified Cobalt Corrole with Axial Triphenylphosphine for Enhanced Hydrogen Evolution in pHâ€0–14 Aqueous Solutions. ChemSusChem, 2017, 10, 4632-4641.	3.6	77
415	2D–Materialsâ€Based Quantum Dots: Gateway Towards Nextâ€Generation Optical Devices. Advanced Optical Materials, 2017, 5, 1700257.	3.6	64
416	Porous Cobalt Phosphide Polyhedrons with Iron Doping as an Efficient Bifunctional Electrocatalyst. Small, 2017, 13, 1701167.	5.2	82
417	Electronic and Optical Properties of TiO ₂ Solid-Solution Nanosheets for Bandgap Engineering: A Hybrid Functional Study. Journal of Physical Chemistry C, 2017, 121, 18683-18691.	1.5	5
418	Imaging Dynamic Collision and Oxidation of Single Silver Nanoparticles at the Electrode/Solution Interface. Journal of the American Chemical Society, 2017, 139, 12274-12282.	6.6	89
419	Hierarchical Porous Co ₉ S ₈ /Nitrogen-Doped Carbon@MoS ₂ Polyhedrons as pH Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 28394-28405.	4.0	179
420	Tuning the Composition and Structure of Amorphous Molybdenum Sulfide/Carbon Black Nanocomposites by Radiation Technique for Highly Efficient Hydrogen Evolution. Scientific Reports, 2017, 7, 16048.	1.6	42
421	Ultrathin N-Doped Mo ₂ C Nanosheets with Exposed Active Sites as Efficient Electrocatalyst for Hydrogen Evolution Reactions. ACS Nano, 2017, 11, 12509-12518.	7.3	350
422	An amorphous dual action electrocatalyst based on oxygen doped cobalt sulfide for the hydrogen and oxygen evolution reactions. RSC Advances, 2017, 7, 54995-55004.	1.7	41
423	A novel two-dimensional hierarchical Mo2C/C-N hybrid fabricated via ionothermal route as a robust electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2017, 258, 970-978.	2.6	16
424	Rational Bottom-Up Engineering of Electrocatalysts by Atomic Layer Deposition: A Case Study of Fe _{<i>x</i>} Co _{1–<i>x</i>} S _{<i>y</i>} -Based Catalysts for Electrochemical Hydrogen Evolution. ACS Energy Letters, 2017, 2, 2778-2785.	8.8	61
425	Diethylenetriamine-mediated self-assembly of three-dimensional hierarchical nanoporous CoP nanoflowers/pristine graphene interconnected networks as efficient electrocatalysts toward hydrogen evolution. Sustainable Energy and Fuels, 2017, 1, 2172-2180.	2.5	35
426	Engineering transition metal phosphide nanomaterials as highly active electrocatalysts for water splitting. Dalton Transactions, 2017, 46, 16770-16773.	1.6	28

#	Article	IF	CITATIONS
427	Hierarchical Ni/NiTiO ₃ derived from NiTi LDHs: a bifunctional electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 24767-24774.	5.2	44
428	Enhanced hydrogen evolution reaction of MoO /Mo cathode by loading small amount of Pt nanoparticles in alkaline solution. International Journal of Hydrogen Energy, 2017, 42, 17030-17037.	3.8	19
429	Pd–Ni nanoparticles supported on reduced graphene oxides as catalysts for hydrogen generation from hydrazine. RSC Advances, 2017, 7, 32310-32315.	1.7	18
430	Cu@C nanoporous composites containing little copper oxides derived from dimethyl imidazole modified MOF199 as electrocatalysts for hydrogen evolution reaction. Applied Surface Science, 2017, 425, 663-673.	3.1	17
431	Macroporous Inverse Opal-like Mo _{<i>x</i>} C with Incorporated Mo Vacancies for Significantly Enhanced Hydrogen Evolution. ACS Nano, 2017, 11, 7527-7533.	7.3	102
432	Os/Si nanocomposites as excellent hydrogen evolution electrocatalysts with thermodynamically more favorable hydrogen adsorption free energy than platinum. Nano Energy, 2017, 39, 284-290.	8.2	40
433	Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today, 2017, 15, 26-55.	6.2	560
434	Highly Active, Nonprecious Electrocatalyst Comprising Borophene Subunits for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2017, 139, 12370-12373.	6.6	335
435	Bifunctional Iron–Nickel Nitride Nanoparticles as Flexible and Robust Electrode for Overall Water Splitting. Electrochimica Acta, 2017, 247, 666-673.	2.6	92
436	The controllable synthesis of porous MoN nanorods/carbon for highly efficient electrochemical hydrogen evolution. Research on Chemical Intermediates, 2017, 43, 5557-5568.	1.3	3
437	Porphyrinic Metal–Organic Framework-Templated Fe–Ni–P/Reduced Graphene Oxide for Efficient Electrocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 23852-23858.	4.0	115
438	Doped Amorphous Ti Oxides To Deoptimize Oxygen Reduction Reaction Catalysis. Journal of Physical Chemistry C, 2017, 121, 16825-16830.	1.5	19
439	Highly dispersed few-layer MoS2 nanosheets on S, N co-doped carbon for electrocatalytic H2 production. Chinese Journal of Catalysis, 2017, 38, 1028-1037.	6.9	19
440	Integrated design and construction of WP/W nanorod array electrodes toward efficient hydrogen evolution reaction. Chemical Engineering Journal, 2017, 327, 705-712.	6.6	72
441	Synthetic Development of Low Dimensional Materials. Chemistry of Materials, 2017, 29, 168-175.	3.2	28
442	Energy-Related Small Molecule Activation Reactions: Oxygen Reduction and Hydrogen and Oxygen Evolution Reactions Catalyzed by Porphyrin- and Corrole-Based Systems. Chemical Reviews, 2017, 117, 3717-3797.	23.0	1,042
443	Effect of edge structure on the activity for hydrogen evolution reaction in MoS2 nanoribbons. Applied Surface Science, 2017, 396, 138-143.	3.1	28
444	Tungsten carbide nanowalls as electrocatalyst for hydrogen evolution reaction: New approach to durability issue. Applied Catalysis B: Environmental, 2017, 203, 684-691.	10.8	74

#	Article	IF	CITATIONS
445	A one-dimensional porous carbon-supported Ni/Mo ₂ C dual catalyst for efficient water splitting. Chemical Science, 2017, 8, 968-973.	3.7	372
446	Template-assisted synthesis of highly dispersed MoS2 nanosheets with enhanced activity for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 2054-2060.	3.8	40
447	One-dimensional hierarchical structured MoS2with an ordered stacking of nanosheets: a facile template-free hydrothermal synthesis strategy and application as an efficient hydrogen evolution electrocatalyst. CrystEngComm, 2017, 19, 218-223.	1.3	5
448	Synthesis of a MoS2(1â^'x)Se2x ternary alloy on carbon nanofibers as the high efficient water splitting electrocatalyst. International Journal of Hydrogen Energy, 2017, 42, 1912-1918.	3.8	30
449	Activation of electrocatalytic properties of a-C films by doping with MoSe _{<i>x</i>} clusters. Journal of Physics: Conference Series, 2017, 941, 012065.	0.3	0
450	2D Transition Metal Dichalcogenides and Graphene-Based Ternary Composites for Photocatalytic Hydrogen Evolution and Pollutants Degradation. Nanomaterials, 2017, 7, 62.	1.9	33
451	A Porous Cobalt (II) Metal–Organic Framework with Highly Efficient Electrocatalytic Activity for the Oxygen Evolution Reaction. Polymers, 2017, 9, 676.	2.0	27
452	Engineering Pyrite-Type Bimetallic Ni-Doped CoS2 Nanoneedle Arrays over a Wide Compositional Range for Enhanced Oxygen and Hydrogen Electrocatalysis with Flexible Property. Catalysts, 2017, 7, 366.	1.6	28
453	Recent advances in unveiling active sites in molybdenum sulfide-based electrocatalysts for the hydrogen evolution reaction. Nano Convergence, 2017, 4, 19.	6.3	49
454	Electrodeposited amorphous Co–P–B ternary catalyst for hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 6282-6288.	5.2	83
455	Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting. Nano Energy, 2018, 47, 494-502.	8.2	383
456	Ultrathin NiCo ₂ P _x nanosheets strongly coupled with CNTs as efficient and robust electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2018, 6, 7420-7427.	5.2	302
457	Monocrystalline platinum–nickel branched nanocages with enhanced catalytic performance towards the hydrogen evolution reaction. Nanoscale, 2018, 10, 5072-5077.	2.8	39
458	Controlled Synthesis of Eutectic NiSe/Ni ₃ Se ₂ Self‣upported on Ni Foam: An Excellent Bifunctional Electrocatalyst for Overall Water Splitting. Advanced Materials Interfaces, 2018, 5, 1701507.	1.9	67
459	Recent development on carbon based heterostructures for their applications in energy and environment: A review. Journal of Industrial and Engineering Chemistry, 2018, 64, 16-59.	2.9	146
460	Porous superstructures constructed from ultrafine FeP nanoparticles for highly active and exceptionally stable hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 6387-6392.	5.2	79
461	Nanohybrid of Carbon Quantum Dots/Molybdenum Phosphide Nanoparticle for Efficient Electrochemical Hydrogen Evolution in Alkaline Medium. ACS Applied Materials & Interfaces, 2018, 10, 9460-9467.	4.0	80
462	Nanoscale engineering MoP/Fe2P/RGO toward efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 13939-13945.	3.8	33

#	Article	IF	CITATIONS
463	Anchoring PdCu Amorphous Nanocluster on Graphene for Electrochemical Reduction of N ₂ to NH ₃ under Ambient Conditions in Aqueous Solution. Advanced Energy Materials, 2018, 8, 1800124.	10.2	454
464	Spatially Confined Assembly of Monodisperse Ruthenium Nanoclusters in a Hierarchically Ordered Carbon Electrode for Efficient Hydrogen Evolution. Angewandte Chemie, 2018, 130, 5950-5954.	1.6	12
465	Spatially Confined Assembly of Monodisperse Ruthenium Nanoclusters in a Hierarchically Ordered Carbon Electrode for Efficient Hydrogen Evolution. Angewandte Chemie - International Edition, 2018, 57, 5848-5852.	7.2	135
466	In situ loading of Ni2P on Cd0.5Zn0.5S with red phosphorus for enhanced visible light photocatalytic H2 evolution. Applied Surface Science, 2018, 447, 822-828.	3.1	118
467	Vertically Aligned Oxygenated-CoS ₂ –MoS ₂ Heteronanosheet Architecture from Polyoxometalate for Efficient and Stable Overall Water Splitting. ACS Catalysis, 2018, 8, 4612-4621.	5.5	290
468	Paragenesis of Mo2C nanocrystals in mesoporous carbon nanofibers for electrocatalytic hydrogen evolution. Electrochimica Acta, 2018, 274, 23-30.	2.6	29
469	A highly efficient Ni–Mo bimetallic hydrogen evolution catalyst derived from a molybdate incorporated Ni-MOF. Journal of Materials Chemistry A, 2018, 6, 9228-9235.	5.2	83
470	Enhanced hydrogen evolution reaction activity of hydrogen-annealed vertical MoS ₂ nanosheets. RSC Advances, 2018, 8, 14369-14376.	1.7	36
471	General Synthetic Strategy for Libraries of Supported Multicomponent Metal Nanoparticles. ACS Nano, 2018, 12, 4594-4604.	7.3	66
472	Enhanced electrocatalytic performance for the hydrogen evolution reaction through surface enrichment of platinum nanoclusters alloying with ruthenium <i>in situ</i> embedded in carbon. Energy and Environmental Science, 2018, 11, 1232-1239.	15.6	230
473	Revealing the Contribution of Individual Factors to Hydrogen Evolution Reaction Catalytic Activity. Advanced Materials, 2018, 30, e1706076.	11.1	86
474	Nickelâ€Borate/Reduced Graphene Oxide Nanohybrid: A Robust and Efficient Electrocatalyst for Oxygen Evolution Reaction in Alkaline and Near Neutral Media. ChemCatChem, 2018, 10, 2826-2832.	1.8	21
475	Prereduction of Metal Oxides via Carbon Plasma Treatment for Efficient and Stable Electrocatalytic Hydrogen Evolution. Small, 2018, 14, e1800340.	5.2	39
476	Application of Siliconâ€Initiated Water Splitting for the Reduction of Organic Substrates. ChemPlusChem, 2018, 83, 375-382.	1.3	20
477	Polyvinyl alcohol protected Mo2C/Mo2N multicomponent electrocatalysts with controlled morphology for hydrogen evolution reaction in acid and alkaline medium. Electrochimica Acta, 2018, 273, 239-247.	2.6	44
478	Well-Dispersed Ruthenium in Mesoporous Crystal TiO ₂ as an Advanced Electrocatalyst for Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2018, 140, 5719-5727.	6.6	224
479	Cobalt disulfide nanosphere dispersed on multi-walled carbon nanotubes: an efficient and stable electrocatalyst for hydrogen evolution reaction. Ionics, 2018, 24, 3591-3599.	1.2	14
480	Constructing hierarchical mushroom-like bifunctional NiCo/NiCo2S4@NiCo/Ni foam electrocatalysts for efficient overall water splitting in alkaline media. Electrochimica Acta, 2018, 265, 19-31.	2.6	66

#	Article	IF	CITATIONS
481	Ultrathin Alumina Mask-Assisted Nanopore Patterning on Monolayer MoS ₂ for Highly Catalytic Efficiency in Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2018, 10, 8026-8035.	4.0	55
482	In Situ Synthesis of Efficient Water Oxidation Catalysts in Laser-Induced Graphene. ACS Energy Letters, 2018, 3, 677-683.	8.8	91
483	Nanocatalysts for hydrogen evolution reactions. Physical Chemistry Chemical Physics, 2018, 20, 6777-6799.	1.3	100
484	Bifunctional Heterostructure Assembly of NiFe LDH Nanosheets on NiCoP Nanowires for Highly Efficient and Stable Overall Water Splitting. Advanced Functional Materials, 2018, 28, 1706847.	7.8	584
485	A Type of 1 nm Molybdenum Carbide Confined within Carbon Nanomesh as Highly Efficient Bifunctional Electrocatalyst. Advanced Functional Materials, 2018, 28, 1705967.	7.8	78
486	Improving the catalytic activity of amorphous molybdenum sulfide for hydrogen evolution reaction using polydihydroxyphenylalanine modified MWCNTs. Applied Surface Science, 2018, 439, 343-349.	3.1	21
487	Template-directed synthesis of sulphur doped NiCoFe layered double hydroxide porous nanosheets with enhanced electrocatalytic activity for the oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 3224-3230.	5.2	170
488	Nâ€Modified NiO Surface for Superior Alkaline Hydrogen Evolution. ChemSusChem, 2018, 11, 1020-1024.	3.6	12
489	Tunable 3D hierarchical Ni ₃ S ₂ superstructures as efficient and stable bifunctional electrocatalysts for both H ₂ and O ₂ generation. Journal of Materials Chemistry A, 2018, 6, 4485-4493.	5.2	88
490	Nanoceria-Supported Ruthenium(0) Nanoparticles: Highly Active and Stable Catalysts for Hydrogen Evolution from Water. ACS Applied Materials & Interfaces, 2018, 10, 6299-6308.	4.0	80
491	Engineered MoSe ₂ â€Based Heterostructures for Efficient Electrochemical Hydrogen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1703212.	10.2	152
492	MoS _x -coated NbS ₂ nanoflakes grown on glass carbon: an advanced electrocatalyst for the hydrogen evolution reaction. Nanoscale, 2018, 10, 3444-3450.	2.8	24
493	Cobalt-vanadium bimetal-based nanoplates for efficient overall water splitting. Science China Materials, 2018, 61, 80-90.	3.5	52
494	Mace-like hierarchical MoS 2 /NiCo 2 S 4 composites supported by carbon fiber paper: An efficient electrocatalyst for the hydrogen evolution reaction. Journal of Power Sources, 2018, 377, 142-150.	4.0	94
495	Mutually beneficial Co ₃ O ₄ @MoS ₂ heterostructures as a highly efficient bifunctional catalyst for electrochemical overall water splitting. Journal of Materials Chemistry A, 2018, 6, 2067-2072.	5.2	178
496	Ni-Se nanostructrures dependent on different solvent as efficient electrocatalysts for hydrogen evolution reaction in alkaline media. Materials Chemistry and Physics, 2018, 207, 389-395.	2.0	16
497	Synthesis, electrochemical properties and catalytic behavior for electrochemical hydrogen production of [Ni(1,3-bis(diphenylphosphino)propane)((2-mercaptopyridinate)-κN,S)]BF4. Polyhedron, 2018, 141, 267-270.	1.0	2
498	Ni ₃ S ₂ Nanosheets in Situ Epitaxially Grown on Nanorods as High Active and Stable Homojunction Electrocatalyst for Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 2474-2481.	3.2	72

#	Article	IF	CITATIONS
499	Langmuir–Blodgett Nanoassemblies of the MoS ₂ –Au Composite at the Air–Water Interface for Dengue Detection. ACS Applied Materials & Interfaces, 2018, 10, 3020-3028.	4.0	45
500	Alkaline–Acid Zn–H ₂ O Fuel Cell for the Simultaneous Generation of Hydrogen and Electricity. Angewandte Chemie - International Edition, 2018, 57, 3910-3915.	7.2	92
501	Origamiâ€Inspired 3D Interconnected Molybdenum Carbide Nanoflakes. Advanced Materials Interfaces, 2018, 5, 1701113.	1.9	13
502	Achieving the Widest Range of Syngas Proportions at High Current Density over Cadmium Sulfoselenide Nanorods in CO ₂ Electroreduction. Advanced Materials, 2018, 30, 1705872.	11.1	145
503	Metal-Free Electrocatalytic Aerobic Hydroxylation of Arylboronic Acids. Organic Letters, 2018, 20, 361-364.	2.4	29
504	Tungsten-Assisted Phase Tuning of Molybdenum Carbide for Efficient Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2018, 10, 2451-2459.	4.0	33
505	Chemical induced fragmentation of MOFs for highly efficient Ni-based hydrogen evolution catalysts. Nanoscale Horizons, 2018, 3, 218-225.	4.1	30
506	Colloidal Synthesis of Mo–Ni Alloy Nanoparticles as Bifunctional Electrocatalysts for Efficient Overall Water Splitting. Advanced Materials Interfaces, 2018, 5, 1800359.	1.9	42
507	Confined Molybdenum Phosphide in P-Doped Porous Carbon as Efficient Electrocatalysts for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2018, 10, 17140-17146.	4.0	173
508	Ultrafine CoPS nanoparticles encapsulated in N, P, and S tri-doped porous carbon as an efficient bifunctional water splitting electrocatalyst in both acid and alkaline solutions. Journal of Materials Chemistry A, 2018, 6, 10433-10440.	5.2	72
509	Activity Origins in Nanocarbons for the Electrocatalytic Hydrogen Evolution Reaction. Small, 2018, 14, e1800235.	5.2	68
510	Dimensional construction and morphological tuning of heterogeneous MoS ₂ /NiS electrocatalysts for efficient overall water splitting. Journal of Materials Chemistry A, 2018, 6, 9833-9838.	5.2	114
511	Synergetic combination of 1D-2D g-C3N4 heterojunction nanophotocatalyst for hydrogen production via water splitting under visible light irradiation. Renewable Energy, 2018, 127, 433-443.	4.3	46
512	B, N Codoped and Defectâ€Rich Nanocarbon Material as a Metalâ€Free Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions. Advanced Science, 2018, 5, 1800036.	5.6	202
513	In Situ Generation of Bifunctional, Efficient Fe-Based Catalysts from Mackinawite Iron Sulfide for Water Splitting. CheM, 2018, 4, 1139-1152.	5.8	271
514	Study of cobalt boride-derived electrocatalysts for overall water splitting. International Journal of Hydrogen Energy, 2018, 43, 6076-6087.	3.8	86
515	Ternary hybrids as efficient bifunctional electrocatalysts derived from bimetallic metal–organic-frameworks for overall water splitting. Journal of Materials Chemistry A, 2018, 6, 5789-5796.	5.2	102
516	Boosting hydrogen evolution <i>via</i> optimized hydrogen adsorption at the interface of CoP ₃ and Ni ₂ P. Journal of Materials Chemistry A, 2018, 6, 5560-5565.	5.2	107

#	Article	IF	CITATIONS
517	Ni ₂ P hollow microspheres for electrocatalytic oxygen evolution and reduction reactions. Catalysis Science and Technology, 2018, 8, 2289-2293.	2.1	42
518	One-dimensional hierarchical MoO ₂ –MoS _x hybrids as highly active and durable catalysts in the hydrogen evolution reaction. Dalton Transactions, 2018, 47, 6041-6048.	1.6	22
519	Comparative investigation of the molybdenum sulphide doped with cobalt and selenium towards hydrogen evolution reaction. Electrochimica Acta, 2018, 271, 211-219.	2.6	30
520	Engineering Ultrathin C ₃ N ₄ Quantum Dots on Graphene as a Metal-Free Water Reduction Electrocatalyst. ACS Catalysis, 2018, 8, 3965-3970.	5.5	130
521	Effectively enhanced photocatalytic hydrogen production performance of one-pot synthesized MoS2 clusters/CdS nanorod heterojunction material under visible light. Chemical Engineering Journal, 2018, 345, 404-413.	6.6	128
522	Regulating the Charge and Spin Ordering of Two-Dimensional Ultrathin Solids for Electrocatalytic Water Splitting. CheM, 2018, 4, 1263-1283.	5.8	219
523	A transition metal oxysulfide cathode for the proton exchange membrane water electrolyzer. Applied Catalysis B: Environmental, 2018, 232, 93-100.	10.8	40
524	Two-dimensional Co3W3C nanosheets on graphene nanocomposition: An Pt-like electrocatalyst toward hydrogen evolution reaction in wide pH range. Materials Today Energy, 2018, 8, 65-72.	2.5	21
525	One-step synthesis of cobalt-doped MoS ₂ nanosheets as bifunctional electrocatalysts for overall water splitting under both acidic and alkaline conditions. Chemical Communications, 2018, 54, 3859-3862.	2.2	196
526	Highâ€Performance Electrocatalysts for Hydrogen Evolution Reaction Using Flexible Electrodes Made up of Chemically Modified Polyester Films. ChemistrySelect, 2018, 3, 2738-2746.	0.7	2
527	Scalable synthesis of heterostructure molybdenum and nickel sulfides nanosheets for efficient hydrogen generation in alkaline electrolyte. Catalysis Today, 2018, 316, 171-176.	2.2	28
528	Three-dimensional reduced graphene oxide–Mn 3 O 4 nanosheet hybrid decorated with palladium nanoparticles for highly efficient hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 3369-3377.	3.8	18
529	Solarâ€ŧoâ€Hydrogen Energy Conversion Based on Water Splitting. Advanced Energy Materials, 2018, 8, 1701620.	10.2	429
530	Co(OH) ₂ hollow nanoflowers as highly efficient electrocatalysts for oxygen evolution reaction. Journal of Materials Research, 2018, 33, 568-580.	1.2	22
531	Controllable Synthesis of CoS ₂ @N/S odoped Porous Carbon Derived from ZIFâ€67 for as a Highly Efficient Catalyst for the Hydrogen Evolution Reaction. ChemCatChem, 2018, 10, 796-803.	1.8	43
532	Advanced catalysts for sustainable hydrogen generation and storage via hydrogen evolution and carbon dioxide/nitrogen reduction reactions. Progress in Materials Science, 2018, 92, 64-111.	16.0	195
533	A NiCo ₂ O ₄ Shell on a Hollow Ni Nanorod Array Core for Water Splitting with Enhanced Electrocatalytic Performance. ChemNanoMat, 2018, 4, 124-131.	1.5	34
534	Fast formation of single-unit-cell-thick and defect-rich layered double hydroxide nanosheets with highly enhanced oxygen evolution reaction for water splitting. Nano Research, 2018, 11, 1883-1894.	5.8	165

#	Article	IF	CITATIONS
535	Comparative studies on the electrocatalytic hydrogen evolution property of Cu 2 SnS 3 and Cu 4 SnS 4 ternary alloys prepared by solvothermal method. International Journal of Hydrogen Energy, 2018, 43, 3967-3975.	3.8	29
536	Metal–organic frameworks for electrocatalysis. Coordination Chemistry Reviews, 2018, 373, 22-48.	9.5	360
537	Nickel–Copper Alloy Encapsulated in Graphitic Carbon Shells as Electrocatalysts for Hydrogen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1701759.	10.2	225
538	Electrospun three dimensional Co/CoP@nitrogen-doped carbon nanofibers network for efficient hydrogen evolution. Energy Storage Materials, 2018, 12, 44-53.	9.5	152
539	Ultrahigh electrocatalytic oxygen evolution by iron-nickel sulfide nanosheets/reducedÂgraphene oxide nanohybrids with an optimized autoxidation process. Nano Energy, 2018, 43, 300-309.	8.2	88
540	Covalent Organic Framework Electrocatalysts for Clean Energy Conversion. Advanced Materials, 2018, 30, 1703646.	11.1	309
541	Promoting Active Sites in Core–Shell Nanowire Array as Mott–Schottky Electrocatalysts for Efficient and Stable Overall Water Splitting. Advanced Functional Materials, 2018, 28, 1704447.	7.8	225
542	Unraveling Geometrical Site Confinement in Highly Efficient Ironâ€Doped Electrocatalysts toward Oxygen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1701686.	10.2	125
543	Phosphorusâ€Đoped MoS ₂ Nanosheets Supported on Carbon Cloths as Efficient Hydrogenâ€Generation Electrocatalysts. ChemCatChem, 2018, 10, 1571-1577.	1.8	55
544	Generalized Synthesis of Ultrathin Cobaltâ€Based Nanosheets from Metallophthalocyanineâ€Modulated Selfâ€Assemblies for Complementary Water Electrolysis. Small, 2018, 14, 1702896.	5.2	34
545	Novel strongly coupled tungsten-carbon-nitrogen complex for efficient hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 16-23.	3.8	41
546	Dentritic platinum-palladium/palladium core-shell nanocrystals/reduced graphene oxide: One-pot synthesis and excellent electrocatalytic performances. Journal of Colloid and Interface Science, 2018, 514, 93-101.	5.0	18
547	Fabrication of Pt nanoparticles on nitrogen-doped carbon/Ni nanofibers for improved hydrogen evolution activity. Journal of Colloid and Interface Science, 2018, 514, 199-207.	5.0	42
548	ELECTROCATALYTIC PROCESSES IN ENERGY TECHNOLOGIES. , 2018, , 291-341.		0
549	Interfacial Interactions as an Electrochemical Tool To Understand Mo-Based Catalysts for the Hydrogen Evolution Reaction. ACS Catalysis, 2018, 8, 828-836.	5.5	34
550	Nitrogen-doped mesoporous carbon-armored cobalt nanoparticles as efficient hydrogen evolving electrocatalysts. Journal of Colloid and Interface Science, 2018, 514, 281-288.	5.0	12
551	Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. Nanoscale Horizons, 2018, 3, 90-204.	4.1	309
552	Au Ni alloy nanoparticles supported on reduced graphene oxide as highly efficient electrocatalysts for hydrogen evolution and oxygen reduction reactions. International Journal of Hydrogen Energy, 2018, 43, 1424-1438.	3.8	42

#	Article	IF	CITATIONS
553	Hydrogen oxidation reaction in alkaline media: From mechanism to recent electrocatalysts. Nano Energy, 2018, 44, 288-303.	8.2	216
554	High-efficiency and stable alloyed nickel based electrodes for hydrogen evolution by seawater splitting. Journal of Alloys and Compounds, 2018, 732, 248-256.	2.8	49
555	Ruthenium Ion omplexed Graphitic Carbon Nitride Nanosheets Supported on Reduced Graphene Oxide as Highâ€₽erformance Catalysts for Electrochemical Hydrogen Evolution. ChemSusChem, 2018, 11, 130-136.	3.6	76
556	Facile formation of 2D Co 2 P@Co 3 O 4 microsheets through in-situ toptactic conversion and surface corrosion: Bifunctional electrocatalysts towards overall water splitting. Journal of Power Sources, 2018, 374, 142-148.	4.0	102
557	Bimetal metal-organic frameworks derived Co0.4Fe0.28P and Co0.37Fe0.26S nanocubes for enhanced oxygen evolution reaction. Electrochimica Acta, 2018, 263, 576-584.	2.6	35
558	Organicâ °lnorganicâ€Hybridâ€Đerived Molybdenum Carbide Nanoladders: Impacts of Surface Oxidation for Hydrogen Evolution Reaction. ChemNanoMat, 2018, 4, 194-202.	1.5	23
559	Defective molybdenum sulfide quantum dots as highly active hydrogen evolution electrocatalysts. Nano Research, 2018, 11, 751-761.	5.8	83
560	Thiourea sensor development based on hydrothermally prepared CMO nanoparticles for environmental safety. Biosensors and Bioelectronics, 2018, 99, 586-592.	5.3	46
561	Alkaline–Acid Zn–H ₂ O Fuel Cell for the Simultaneous Generation of Hydrogen and Electricity. Angewandte Chemie, 2018, 130, 3974-3979.	1.6	52
562	Electrochemically activated Cu ₂ O/Co ₃ O ₄ nanocomposites on defective carbon nanotubes for the hydrogen evolution reaction. New Journal of Chemistry, 2018, 42, 19400-19406.	1.4	14
563	Synergic effect on oxygen reduction reaction of strapped iron porphyrins polymerized around carbon nanotubes. New Journal of Chemistry, 2018, 42, 19749-19754.	1.4	13
564	Tungsten nitride/carbide nanocomposite encapsulated in nitrogen-doped carbon shell as an effective and durable catalyst for hydrogen evolution reaction. New Journal of Chemistry, 2018, 42, 19557-19563.	1.4	14
565	Identification of Stabilizing High-Valent Active Sites by Operando High-Energy Resolution Fluorescence-Detected X-ray Absorption Spectroscopy for High-Efficiency Water Oxidation. Journal of the American Chemical Society, 2018, 140, 17263-17270.	6.6	92
566	Layered Ternary and Quaternary Transition Metal Chalcogenide Based Catalysts for Water Splitting. Catalysts, 2018, 8, 551.	1.6	45
567	Carbon Nanotube with Vertical 2D Molybdenum Sulphoselenide Nanosheet Arrays for Boosting Electrocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2018, 1, 7035-7045.	2.5	32
568	Ultrafine Co6Mo6C nanocrystals on reduced graphene oxide as efficient and highly stable electrocatalyst for hydrogen generation. International Journal of Hydrogen Energy, 2018, 43, 20323-20331.	3.8	11
569	Tuning the Hydrogen Evolution Reaction on Metals by Lithium Salt. ACS Applied Energy Materials, 2018, 1, 7116-7122.	2.5	13
570	Synthesis of Airâ€stable 1T Phase of Molybdenum Disulfide for Efficient Electrocatalytic Hydrogen Evolution. ChemCatChem, 2019, 11, 707-714.	1.8	10

#	Article	IF	CITATIONS
571	Bio-inspired Z-scheme g-C3N4/Ag2CrO4 for efficient visible-light photocatalytic hydrogen generation. Scientific Reports, 2018, 8, 16504.	1.6	60
572	Recent developments in earth-abundant and non-noble electrocatalysts for water electrolysis. Materials Today Physics, 2018, 7, 121-138.	2.9	203
573	Pt–C Interfaces Based on Electronegativity-Functionalized Hollow Carbon Spheres for Highly Efficient Hydrogen Evolution. ACS Applied Materials & Interfaces, 2018, 10, 43561-43569.	4.0	32
574	Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nature Catalysis, 2018, 1, 985-992.	16.1	1,236
575	Hierarchical MoS2/Ni3S2 core-shell nanofibers for highly efficient and stable overall-water-splitting in alkaline media. Materials Today Energy, 2018, 10, 214-221.	2.5	16
576	Walnut-like Transition Metal Carbides with Three-Dimensional Networks by a Versatile Electropolymerization-Assisted Method for Efficient Hydrogen Evolution. ACS Applied Materials & Interfaces, 2018, 10, 36824-36833.	4.0	18
577	Improving the electrocatalytic property of CoP for hydrogen evolution by constructing porous ternary CeO2-CoP-C hybrid nanostructure via ionic exchange of MOF. International Journal of Hydrogen Energy, 2018, 43, 20372-20381.	3.8	45
578	One-pot synthesis of graphene- cobalt hydroxide composite nanosheets (Co/G NSs) for electrocatalytic water oxidation. Scientific Reports, 2018, 8, 13772.	1.6	9
579	A bifunctional and stable Ni–Co–S/Ni–Co–P bistratal electrocatalyst for 10.8%-efficient overall solar water splitting. Journal of Materials Chemistry A, 2018, 6, 20297-20303.	5.2	47
580	Controllable synthesis of Co2P nanorods as high-efficiency bifunctional electrocatalyst for overall water splitting. Journal of Power Sources, 2018, 402, 345-352.	4.0	51
581	The Effect of Metal Components in the Quaternary Electrocatalysts on the Morphology and Catalytic Performance of Transition Metal Phosphides. Electroanalysis, 2018, 30, 2584-2588.	1.5	4
582	Stable Sulfurâ€Intercalated 1T′ MoS ₂ on Graphitic Nanoribbons as Hydrogen Evolution Electrocatalyst. Advanced Functional Materials, 2018, 28, 1802744.	7.8	79
583	Ligand-free gold nanoparticles supported on mesoporous carbon as electrocatalysts for CO2 reduction. Journal of CO2 Utilization, 2018, 28, 50-58.	3.3	16
584	A "MOFs plus MOFs―strategy toward Co–Mo ₂ N tubes for efficient electrocatalytic overall water splitting. Journal of Materials Chemistry A, 2018, 6, 20100-20109.	5.2	131
585	O2 plasma and cation tuned nickel phosphide nanosheets for highly efficient overall water splitting. Nano Energy, 2018, 54, 82-90.	8.2	116
586	Strongly enhanced visible light photoelectrocatalytic hydrogen evolution reaction in an n-doped MoS ₂ /TiO ₂ (B) heterojunction by selective decoration of platinum nanoparticles at the MoS ₂ edge sites. Journal of Materials Chemistry A, 2018, 6, 22681-22696.	5.2	49
587	First-Principles Determination of Active Sites of Ni Metal-Based Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2018, 10, 39624-39630.	4.0	41
588	Two-Dimensional Sandwich-Structured Mesoporous Mo ₂ C/Carbon/Graphene Nanohybrids for Efficient Hydrogen Production Electrocatalysts. ACS Applied Materials & Interfaces, 2018, 10, 40800-40807.	4.0	44

#	Article	IF	CITATIONS
589	N and V Coincorporated Ni Nanosheets for Enhanced Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 16525-16531.	3.2	25
590	Hollow Bimetallic Zinc Cobalt Phosphosulfides for Efficient Overall Water Splitting. Chemistry - A European Journal, 2019, 25, 621-626.	1.7	29
591	Transition Metalâ€Doped Edgeâ€Terminated MoS ₂ Superstructures as Efficient Catalysts for H ₂ Production. Advanced Materials Interfaces, 2018, 5, 1801370.	1.9	13
592	One-step synthesis of Fe-Ni hydroxide nanosheets derived from bimetallic foam for efficient electrocatalytic oxygen evolution and overall water splitting. Chinese Chemical Letters, 2018, 29, 1875-1878.	4.8	66
593	Liquid Crystal Template Assisted Electrodeposition of Molybdenum Sulfide Nanoparticles Supported on Carbon Fiber as Efficient Electrocatalyst for Hydrogen Evolution Reaction. International Journal of Electrochemical Science, 2018, 13, 5488-5496.	0.5	1
594	Mechanochemically Assisted Synthesis of a Ru Catalyst for Hydrogen Evolution with Performance Superior to Pt in Both Acidic and Alkaline Media. Advanced Materials, 2018, 30, e1803676.	11.1	173
595	Subâ€1.5 nm Ultrathin CoP Nanosheet Aerogel: Efficient Electrocatalyst for Hydrogen Evolution Reaction at All pH Values. Small, 2018, 14, e1802824.	5.2	99
596	Ultrasmall Ru/Cuâ€doped RuO ₂ Complex Embedded in Amorphous Carbon Skeleton as Highly Active Bifunctional Electrocatalysts for Overall Water Splitting. Small, 2018, 14, e1803009.	5.2	151
597	Pyrite FeS ₂ /C nanoparticles as an efficient bi-functional catalyst for overall water splitting. Dalton Transactions, 2018, 47, 14917-14923.	1.6	68
598	Coâ€Moâ€P Based Electrocatalyst for Superior Reactivity in the Alkaline Hydrogen Evolution Reaction. ChemCatChem, 2018, 10, 4832-4837.	1.8	33
600	Hydrogenâ€Generating Ru/Pt Bimetallic Photocatalysts Based on Phenylâ€Phenanthroline Peripheral Ligands. ChemPhysChem, 2018, 19, 3084-3091.	1.0	7
601	Scalable Solidâ€6tate Synthesis of Highly Dispersed Uncapped Metal (Rh, Ru, Ir) Nanoparticles for Efficient Hydrogen Evolution. Advanced Energy Materials, 2018, 8, 1801698.	10.2	149
602	Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water splitting. Frontiers of Chemical Science and Engineering, 2018, 12, 838-854.	2.3	40
603	Construction of Porous Mo ₃ P/Mo Nanobelts as Catalysts for Efficient Water Splitting. Angewandte Chemie, 2018, 130, 14335-14339.	1.6	58
604	Construction of Porous Mo ₃ P/Mo Nanobelts as Catalysts for Efficient Water Splitting. Angewandte Chemie - International Edition, 2018, 57, 14139-14143.	7.2	70
605	Synergistic modulation in MX ₂ (whereÂM = Mo or W or V, and X = S or Se) for an enhanced hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 21847-21858.	5.2	39
606	Molybdenum carbide nanoparticle decorated hierarchical tubular carbon superstructures with vertical nanosheet arrays for efficient hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 18833-18838.	5.2	18
607	Lithium Electrochemical Tuning for Electrocatalysis. Advanced Materials, 2018, 30, e1800978.	11.1	51

#	Article	IF	CITATIONS
608	Fe ₂ O ₃ â€Nâ€doped Honeycombâ€like Porous Carbon Derived from Nature Silk Sericin as Electrocatalysts for Oxygen Evolution Reaction. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 1103-1107.	0.6	11
609	Controlling the adsorption behavior of hydrogen at the interface of polycrystalline CVD graphene. International Journal of Hydrogen Energy, 2018, 43, 18735-18744.	3.8	7
610	FeS ₂ /CoS ₂ Interface Nanosheets as Efficient Bifunctional Electrocatalyst for Overall Water Splitting. Small, 2018, 14, e1801070.	5.2	273
611	Cobalt Covalent Doping in MoS ₂ to Induce Bifunctionality of Overall Water Splitting. Advanced Materials, 2018, 30, e1801450.	11.1	402
612	Highly stable and efficient non-precious metal electrocatalysts of Mo-doped NiOOH nanosheets for oxygen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 12140-12145.	3.8	26
613	Evaluating the Stability of Co ₂ P Electrocatalysts in the Hydrogen Evolution Reaction for Both Acidic and Alkaline Electrolytes. ACS Energy Letters, 2018, 3, 1360-1365.	8.8	291
614	Nitrogenâ€Ðoped CoP Electrocatalysts for Coupled Hydrogen Evolution and Sulfur Generation with Low Energy Consumption. Advanced Materials, 2018, 30, e1800140.	11.1	336
615	Coupled molybdenum carbide and nitride on carbon nanosheets: An efficient and durable hydrogen evolution electrocatalyst in both acid and alkaline media. Electrochimica Acta, 2018, 280, 323-331.	2.6	52
616	Activating rhodium phosphide-based catalysts for the pH-universal hydrogen evolution reaction. Nanoscale, 2018, 10, 12407-12412.	2.8	89
617	Highly efficient hydrogen evolution triggered by a multi-interfacial Ni/WC hybrid electrocatalyst. Energy and Environmental Science, 2018, 11, 2114-2123.	15.6	224
618	Mechanistic Insights into Homogeneous Electrocatalytic and Photocatalytic Hydrogen Evolution Catalyzed by High-Spin Ni(II) Complexes with S ₂ N ₂ -Type Tetradentate Ligands. Inorganic Chemistry, 2018, 57, 7180-7190.	1.9	47
619	An overview on Pd-based electrocatalysts for the hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2018, 5, 2060-2080.	3.0	213
620	Molten salt synthesis of Co-entrapped, N-doped mesoporous carbon with CoCl2 as template for hydrogen evolution. Microporous and Mesoporous Materials, 2018, 270, 274-280.	2.2	7
621	Electrodeposited P Co nanoparticles in deep eutectic solvents and their performance in water splitting. International Journal of Hydrogen Energy, 2018, 43, 10448-10457.	3.8	22
622	Intercalation Synthesis of Prussian Blue Analogue Nanocone and Their Conversion into Fe-Doped Co _{<i>x</i>} P Nanocone for Enhanced Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2018, 6, 8150-8158.	3.2	40
623	Recent Advances on Black Phosphorus for Energy Storage, Catalysis, and Sensor Applications. Advanced Materials, 2018, 30, e1800295.	11.1	215
624	Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes. Frontiers of Chemical Science and Engineering, 2018, 12, 494-508.	2.3	42
625	3D Ni-Co sulfoxide nanosheet arrays electrodeposited on Ni foam: A bifunctional electrocatalyst towards efficient and stable water splitting. Electrochimica Acta, 2018, 292, 347-356.	2.6	40

#	Article	IF	Citations
626	A superior dye adsorbent towards the hydrogen evolution reaction combining active sites and phase-engineering of (1T/2H) MoS ₂ /l±-MoO ₃ hybrid heterostructured nanoflowers. Journal of Materials Chemistry A, 2018, 6, 15320-15329.	5.2	86
627	Solvothermally Controlled Synthesis of Organic–Inorganic Hybrid Nanosheets as Efficient pHâ€Universal Hydrogenâ€Evolution Electrocatalysts. ChemSusChem, 2018, 11, 2828-2836.	3.6	29
628	Magnetic-field-induced rapid synthesis of defect-enriched Ni-Co nanowire membrane as highly efficient hydrogen evolution electrocatalyst. Nano Energy, 2018, 51, 349-357.	8.2	72
629	Hollow Rh nanoparticles with nanoporous shell as efficient electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2018, 282, 853-859.	2.6	35
630	Synthesis of sulfur-rich MoS2 nanoflowers for enhanced hydrogen evolution reaction performance. Electrochimica Acta, 2018, 283, 306-312.	2.6	62
631	Defect-rich MoS2 nanosheets vertically grown on graphene-protected Ni foams for high efficient electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 14087-14095.	3.8	25
632	Moâ€Doped Ni ₃ S ₂ Nanowires as Highâ€Performance Electrocatalysts for Overall Water Splitting. ChemElectroChem, 2018, 5, 2564-2570.	1.7	38
633	Well-patterned Au nanodots on MoS2/TiO2 hybrids for enhanced hydrogen evolution activity. Electrochimica Acta, 2018, 283, 419-427.	2.6	16
634	Transition-metal-doped NiSe2 nanosheets towards efficient hydrogen evolution reactions. Nano Research, 2018, 11, 6051-6061.	5.8	72
635	Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity. Nature Energy, 2018, 3, 773-782.	19.8	542
636	A metallic MoS ₂ nanosheet array on graphene-protected Ni foam as a highly efficient electrocatalytic hydrogen evolution cathode. Journal of Materials Chemistry A, 2018, 6, 16458-16464.	5.2	33
637	Cobalt and nitrogen-codoped ordered mesoporous carbon as highly efficient bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Journal of Materials Chemistry A, 2018, 6, 17067-17074.	5.2	41
638	Boosting electrocatalytic activity of ultrathin MoSe2/C composites for hydrogen evolution via a surfactant assisted hydrothermal method. International Journal of Hydrogen Energy, 2018, 43, 15749-15761.	3.8	19
639	Oxygen Doping to Optimize Atomic Hydrogen Binding Energy on NiCoP for Highly Efficient Hydrogen Evolution. Small, 2018, 14, e1800421.	5.2	122
640	N, P (S) Co-doped Mo2C/C hybrid electrocatalysts for improved hydrogen generation. Carbon, 2018, 139, 845-852.	5.4	97
641	Pt-like catalytic behavior of MoNi decorated CoMoO ₃ cuboid arrays for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 15558-15563.	5.2	39
642	The Subâ€Nanometer Scale as a New Focus in Nanoscience. Advanced Materials, 2018, 30, e1802031.	11.1	99
643	Highâ€Efficient, Stable Electrocatalytic Hydrogen Evolution in Acid Media by Amorphous Fe <i>_x</i> P Coating Fe ₂ N Supported on Reduced Graphene Oxide. Small, 2018, 14, e1801717.	5.2	72
#	ARTICLE	IF	Citations
-----	--	------	-----------
645	Electronic structure tuning during facile construction of two-phase tungsten based electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2018, 283, 834-841.	2.6	16
646	Engineering the Electronic Structure of MoS ₂ Nanorods by N and Mn Dopants for Ultra-Efficient Hydrogen Production. ACS Catalysis, 2018, 8, 7585-7592.	5.5	180
647	Tailored transition metal-doped nickel phosphide nanoparticles for the electrochemical oxygen evolution reaction (OER). Chemical Communications, 2018, 54, 8630-8633.	2.2	73
648	Effect of Ni Nanoparticles on HG Sheets Modified by GO on the Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 10335-10343.	3.2	18
649	Hierarchically Structured CuCo ₂ S ₄ Nanowire Arrays as Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 11877-11883.	3.2	105
650	Recent advances in hydrogen evolution reaction catalysts on carbon/carbon-based supports in acid media. Journal of Power Sources, 2018, 398, 9-26.	4.0	163
651	Electronic modulation of carbon-encapsulated NiSe composites <i>via</i> Fe doping for synergistic oxygen evolution. Chemical Communications, 2018, 54, 9075-9078.	2.2	26
652	Metallic and superhydrophilic nickel cobalt diselenide nanosheets electrodeposited on carbon cloth as a bifunctional electrocatalyst. Journal of Materials Chemistry A, 2018, 6, 17353-17360.	5.2	100
653	Hydrogen Evolution Reaction Property of Molybdenum Disulfide/Nickel Phosphide Hybrids in Alkaline Solution. Metals, 2018, 8, 359.	1.0	21
654	Iron Vacancies Induced Bifunctionality in Ultrathin Feroxyhyte Nanosheets for Overall Water Splitting. Advanced Materials, 2018, 30, e1803144.	11.1	225
655	Nitrogen-rich 1T′-MoS ₂ layered nanostructures using alkyl amines for high catalytic performance toward hydrogen evolution. Nanoscale, 2018, 10, 14726-14735.	2.8	39
656	Sulfur-Doped Nickel Phosphide Nanoplates Arrays: A Monolithic Electrocatalyst for Efficient Hydrogen Evolution Reactions. ACS Applied Materials & Interfaces, 2018, 10, 26303-26311.	4.0	97
657	Metal-doped molybdenum nitride films for enhanced hydrogen evolution in near-neutral strongly buffered aerobic media. Electrochimica Acta, 2018, 283, 1525-1533.	2.6	39
658	Titania, zirconia and hafnia supported ruthenium(0) nanoparticles: Highly active hydrogen evolution catalysts. Journal of Colloid and Interface Science, 2018, 531, 570-577.	5.0	15
659	Ultralow Overpotential of Hydrogen Evolution Reaction using Feâ€Doped Defective Graphene: A Density Functional Study. ChemCatChem, 2018, 10, 4450-4455.	1.8	22
660	Applications Perspectives of Nanodispersed Chalcogenides of Transition Metals in Photocatalysis. Springer Proceedings in Physics, 2018, , 99-113.	0.1	1
661	A facet-controlled Rh ₃ Pb ₂ S ₂ nanocage as an efficient and robust electrocatalyst toward the hydrogen evolution reaction. Nanoscale, 2018, 10, 9845-9850.	2.8	28
662	Controllable Synthesis of Ordered Mesoporous Mo ₂ C@Graphitic Carbon Core–Shell Nanowire Arrays for Efficient Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2018, 10, 18761-18770.	4.0	46

#	Article	IF	CITATIONS
663	Surface engineering-modulated porous N-doped rod-like molybdenum phosphide catalysts: towards high activity and stability for hydrogen evolution reaction over a wide pH range. RSC Advances, 2018, 8, 26871-26879.	1.7	20
664	Transition Metal Carbide Complex Architectures for Energyâ€Related Applications. Chemistry - A European Journal, 2018, 24, 16716-16736.	1.7	27
665	MoS2 nanoparticles coupled to SnS2 nanosheets: The structural and electronic modulation for synergetic electrocatalytic hydrogen evolution. Journal of Catalysis, 2018, 366, 8-15.	3.1	48
666	Interconnected Hollow Cobalt Phosphide Grown on Carbon Nanotubes for Hydrogen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2018, 10, 29407-29416.	4.0	73
667	Scalable Synthesis of a Ruthenium-Based Electrocatalyst as a Promising Alternative to Pt for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2018, 10, 32171-32179.	4.0	33
668	Enhancing Durability and Photoelectrochemical Performance of the Earth Abundant Ni–Mo/TiO ₂ /CdS/CIGS Photocathode under Various pH Conditions. ChemSusChem, 2018, 11, 3679-3688.	3.6	17
669	Metal–Organic-Framework-Derived Hollow CoS _{<i>x</i>} @MoS ₂ Microcubes as Superior Bifunctional Electrocatalysts for Hydrogen Evolution and Oxygen Evolution Reactions. ACS Sustainable Chemistry and Engineering, 2018, 6, 12961-12968.	3.2	89
670	Two Novel Polyoxometalate-Encapsulated Metal–Organic Nanotube Frameworks as Stable and Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2018, 10, 31498-31504.	4.0	73
671	Assessment of Electrocatalytic Performance of Metal-Free C-Doped BN Nanoflakes for Oxygen Reduction and Hydrogen Evolution Reactions: A Comparative Study. Journal of Physical Chemistry C, 2018, 122, 21124-21131.	1.5	10
672	Feâ€CoP Electrocatalyst Derived from a Bimetallic Prussian Blue Analogue for Largeâ€Currentâ€Density Oxygen Evolution and Overall Water Splitting. Advanced Science, 2018, 5, 1800949.	5.6	318
673	Freeâ€Sustaining Threeâ€Dimensional S235 Steelâ€Based Porous Electrocatalyst for Highly Efficient and Durable Oxygen Evolution. ChemSusChem, 2018, 11, 3661-3671.	3.6	24
674	Rationally Dispersed Molybdenum Phosphide on Carbon Nanotubes for the Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 11414-11423.	3.2	46
675	Tuning the catalytic activity of heterogeneous two-dimensional transition metal dichalcogenides for hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 20005-20014.	5.2	63
676	On the stochastic modelling of surface reactions through reflected chemical Langevin equations. Computers and Chemical Engineering, 2018, 117, 145-158.	2.0	4
677	Ultrafine MoP Nanoparticles Well Embedded in Carbon Nanosheets as Electrocatalyst with High Active Site Density for Hydrogen Evolution. ChemElectroChem, 2018, 5, 2256-2262.	1.7	23
678	The synergistic effect of Ni promoter on Mo-S/CNT catalyst towards hydrodesulfurization and hydrogen evolution reactions. Fuel, 2018, 232, 36-44.	3.4	30
679	Mechanistic Insight into Enhanced Hydrogen Evolution Reaction Activity of Ultrathin Hexagonal Boron Nitride-Modified Pt Electrodes. ACS Catalysis, 2018, 8, 6636-6644.	5.5	63
680	Facile synthesis of silk-cocoon S-rich cobalt polysulfide as an efficient catalyst for the hydrogen evolution reaction. Energy and Environmental Science, 2018, 11, 2467-2475.	15.6	91

#	Article	IF	CITATIONS
681	An ultrafine platinum–cobalt alloy decorated cobalt nanowire array with superb activity toward alkaline hydrogen evolution. Nanoscale, 2018, 10, 12302-12307.	2.8	199
682	Superhydrophilic amorphous Co–B–P nanosheet electrocatalysts with Pt-like activity and durability for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 22062-22069.	5.2	156
683	Efficient and Robust Hydrogen Evolution: Phosphorus Nitride Imide Nanotubes as Supports for Anchoring Single Ruthenium Sites. Angewandte Chemie, 2018, 130, 9639-9644.	1.6	31
684	MOF-derived metal/carbon materials as oxygen evolution reaction catalysts. Inorganic Chemistry Communication, 2018, 94, 57-74.	1.8	52
685	Porous Co ₉ S ₈ /Nitrogen, Sulfur-Doped Carbon@Mo ₂ C Dual Catalyst for Efficient Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 22291-22302.	4.0	96
686	Efficient electrocatalytic hydrogen gas evolution by a cobalt–porphyrin-based crystalline polymer. Dalton Transactions, 2018, 47, 8801-8806.	1.6	19
687	Colloidal Synthesis of NiWSe Nanosheets for Efficient Electrocatalytic Hydrogen Evolution Reaction in Alkaline Media. Chemistry - an Asian Journal, 2018, 13, 2040-2045.	1.7	17
688	In Situ Hydrothermal Synthesis MoS ₂ /Guar Gum Carbon Nanoflowers as Advanced Electrocatalysts for Electrocatalytic Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2018, 6, 8688-8696.	3.2	34
689	Efficient and Robust Hydrogen Evolution: Phosphorus Nitride Imide Nanotubes as Supports for Anchoring Single Ruthenium Sites. Angewandte Chemie - International Edition, 2018, 57, 9495-9500.	7.2	205
690	Self-Supported Earth-Abundant Nanoarrays as Efficient and Robust Electrocatalysts for Energy-Related Reactions. ACS Catalysis, 2018, 8, 6707-6732.	5.5	320
691	MOF-derived, CeO x -modified CoP/carbon composites for oxygen evolution and hydrogen evolution reactions. Journal of Materials Science, 2018, 53, 12123-12131.	1.7	20
692	In-situ electrochemical activation designed hybrid electrocatalysts for water electrolysis. Science Bulletin, 2018, 63, 853-876.	4.3	107
693	Recent Approaches to Design Electrocatalysts Based on Metal–Organic Frameworks and Their Derivatives. Chemistry - an Asian Journal, 2019, 14, 3474-3501.	1.7	34
694	Nanoporous Nickel Phosphide Cathode for a High-Performance Proton Exchange Membrane Water Electrolyzer. ACS Applied Materials & Interfaces, 2019, 11, 30774-30785.	4.0	29
695	Electrodeposited Rhodium Phosphide with High Activity for Hydrogen Evolution Reaction in Acidic Medium. ACS Sustainable Chemistry and Engineering, 2019, 7, 14041-14050.	3.2	29
696	Edge-Contact Geometry and Anion-Deficit Construction for Activating Ultrathin MoS ₂ on W ₁₇ O ₄₇ in the Hydrogen Evolution Reaction. Inorganic Chemistry, 2019, 58, 11241-11247.	1.9	10
697	N-enriched porous carbon encapsulated bimetallic phosphides with hierarchical structure derived from controlled electrodepositing multilayer ZIFs for electrochemical overall water splitting. Applied Catalysis B: Environmental, 2019, 259, 118053.	10.8	72
698	Superaerophobic Quaternary Ni–Co–S–P Nanoparticles for Efficient Overall Water-Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 14639-14646.	3.2	56

#	Article	IF	CITATIONS
699	A bifunctional electrode engineered by sulfur vacancies for efficient electrocatalysis. Nanoscale, 2019, 11, 16658-16666.	2.8	22
700	Cation-tunable flower-like (Ni _x Fe _{1â^'x}) ₂ P@graphitized carbon films as ultra-stable electrocatalysts for overall water splitting in alkaline media. Journal of Materials Chemistry A, 2019, 7, 20357-20368.	5.2	17
701	Synthesis of Pt nano catalyst in the presence of carbon monoxide: Superior activity towards hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 23969-23974.	3.8	15
702	Hierarchical Assembly of Prussian Blue Derivatives for Superior Oxygen Evolution Reaction. Advanced Functional Materials, 2019, 29, 1904955.	7.8	65
703	Cu ₃ P–Ni ₂ P Hybrid Hexagonal Nanosheet Arrays for Efficient Hydrogen Evolution Reaction in Alkaline Solution. Inorganic Chemistry, 2019, 58, 11630-11635.	1.9	47
704	Electron directed migration cooperated with thermodynamic regulation over bimetallic NiFeP/g-C3N4 for enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 259, 118078.	10.8	113
705	Hybrid Ni(OH) ₂ /FeOOH@NiFe Nanosheet Catalysts toward Highly Efficient Oxygen Evolution Reaction with Ultralong Stability over 1000 Hours. ACS Sustainable Chemistry and Engineering, 2019, 7, 14601-14610.	3.2	39
706	Phosphorus Doped MoS ₂ Nanosheet Promoted with Nitrogen, Sulfur Dual Doped Reduced Graphene Oxide as an Effective Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 6184-6194.	2.5	78
707	Continuous Network of Phase-Tuned Nickel Sulfide Nanostructures for Electrocatalytic Water Splitting. ACS Applied Nano Materials, 2019, 2, 5061-5070.	2.4	48
708	High-performance alkaline hydrogen evolution of NiMoP2 nanowire boosted by bimetallic synergic effect. International Journal of Hydrogen Energy, 2019, 44, 23066-23073.	3.8	21
709	Metal–Nonmetal One-Dimensional Electrocatalyst: AuPdP Nanowires for Ambient Nitrogen Reduction to Ammonia. ACS Sustainable Chemistry and Engineering, 2019, 7, 15772-15777.	3.2	37
710	Hydrogen production by photocatalytic water splitting of aqueous hydrogen iodide over Pt/alkali metal tantalates. Sustainable Energy and Fuels, 2019, 3, 3021-3028.	2.5	16
711	The Origin of High Activity of Amorphous MoS ₂ in the Hydrogen Evolution Reaction. ChemSusChem, 2019, 12, 4383-4389.	3.6	90
712	Boron nitride nanosheets decorated with Au, Au-Ni, Au-Cu, or Au-Co nanoparticles as efficient electrocatalysts for hydrogen evolution reaction. Journal of Electroanalytical Chemistry, 2019, 848, 113312.	1.9	18
713	Recent progress in the electrochemical ammonia synthesis under ambient conditions. EnergyChem, 2019, 1, 100011.	10.1	151
714	NiFe Hydroxide Supported on Hierarchically Porous Nickel Mesh as a Highâ€Performance Bifunctional Electrocatalyst for Water Splitting at Large Current Density. ChemSusChem, 2019, 12, 4038-4045.	3.6	50
715	Unconventional molybdenum carbide phases with high electrocatalytic activity for hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 18030-18038.	5.2	64
716	Asphaltene-Derived Metal-Free Carbons for Electrocatalytic Hydrogen Evolution. ACS Applied Materials & amp; Interfaces, 2019, 11, 27697-27705.	4.0	9

#	Article	IF	CITATIONS
717	High loading accessible active sites <i>via</i> designable 3D-printed metal architecture towards promoting electrocatalytic performance. Journal of Materials Chemistry A, 2019, 7, 18338-18347.	5.2	35
718	Controlled self-assembly synthesis of CuCo2O4/rGO for improving the morphology-dependent electrochemical oxygen evolution performance. Applied Surface Science, 2019, 493, 710-718.	3.1	21
719	Polymorph nickel titanate nanofibers as bifunctional electrocatalysts towards hydrogen and oxygen evolution reactions. Dalton Transactions, 2019, 48, 12684-12698.	1.6	9
720	Double-catalytic-site engineering of nickel-based electrocatalysts by group VB metals doping coupling with in-situ cathodic activation for hydrogen evolution. Applied Catalysis B: Environmental, 2019, 258, 117984.	10.8	29
721	Synthesis of 3D flower-like nickel-molybdenum-sulfur microspheres as efficient and stable electrocatalyst for hydrogen and oxygen evolution reactions. Electrochimica Acta, 2019, 320, 134614.	2.6	25
722	Minimum and well-dispersed platinum nanoparticles on 3D porous nickel for highly efficient electrocatalytic hydrogen evolution reaction enabled by atomic layer deposition. Applied Surface Science, 2019, 494, 1091-1099.	3.1	20
723	Sucrose leavening-induced hierarchically porous carbon enhanced the hydrogen evolution reaction performance of Pt nanoparticles. Electrochimica Acta, 2019, 320, 134603.	2.6	38
724	Nitrogen and Sulfur Coâ€Doped Mesoporous Carbon Embedded with Co ₉ S ₈ Nanoparticles: Efficient Electrocatalysts for Hydrogen Evolution. ChemPlusChem, 2019, 84, 1604-1609.	1.3	5
725	Highly Efficient and Self-Standing Nanoporous NiO/Al ₃ Ni ₂ Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 7913-7922.	2.5	38
726	Interface engineering of Ni5P2 nanoparticles and a mesoporous PtRu film heterostructure on Ni foam for enhanced hydrogen evolution. Nanotechnology, 2019, 30, 485403.	1.3	1
727	Interface Engineering of an RGO/MoS ₂ /Pd 2D Heterostructure for Electrocatalytic Overall Water Splitting in Alkaline Medium. ACS Applied Materials & Interfaces, 2019, 11, 42094-42103.	4.0	62
728	Carbonâ€Based Nanocages: A New Platform for Advanced Energy Storage and Conversion. Advanced Materials, 2020, 32, e1904177.	11.1	84
729	Cu ₂ Oâ^'Cu ₂ Se Mixedâ€Phase Nanoflake Arrays: pHâ€Universal Hydrogen Evolution Reactions with Ultralow Overpotential. ChemElectroChem, 2019, 6, 5014-5021.	1.7	8
730	Unveiling the Origin of the High Catalytic Activity of Ultrathin 1T/2H MoSe ₂ Nanosheets for the Hydrogen Evolution Reaction: A Combined Experimental and Theoretical Study. ChemSusChem, 2019, 12, 5015-5022.	3.6	48
731	The effects of fine and coarse particulate matter on lung function among the elderly. Scientific Reports, 2019, 9, 14790.	1.6	49
732	Construction of Ni@Pt/N-doped nanoporous carbon, derived from pyrolysis of nickel metal organic framework, and application for HER in alkaline and acidic solutions. Electrochimica Acta, 2019, 327, 134895.	2.6	19
733	Electrodeposition of cedar leaf-like graphene Oxide@Ni–Cu@Ni foam electrode as a highly efficient and ultra-stable catalyst for hydrogen evolution reaction. Electrochimica Acta, 2019, 326, 134949.	2.6	52
734	Two-dimensional transition-metal dichalcogenides for electrochemical hydrogen evolution reaction. FlatChem, 2019, 18, 100140.	2.8	39

#	Article	IF	Citations
735	N-doped carbon matrix supported Fe3Ni6S8 hierarchical architecture with excellent sodium storage capability and electrocatalytic properties. Electrochimica Acta, 2019, 325, 134925.	2.6	15
736	Recent Trends in Synthesis and Investigation of Nickel Phosphide Compound/Hybrid-Based Electrocatalysts Towards Hydrogen Generation from Water Electrocatalysis. Topics in Current Chemistry, 2019, 377, 29.	3.0	26
737	Ultrafine Ag Nanoparticles as Active Catalyst for Electrocatalytic Hydrogen Production. ChemCatChem, 2019, 11, 5976-5981.	1.8	21
738	Current Status of Selfâ€5upported Catalysts for Robust and Efficient Water Splitting for Commercial Electrolyzer. ChemCatChem, 2019, 11, 5898-5912.	1.8	47
739	Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2019, 7, 764-774.	5.2	123
740	Amorphous Rutheniumâ€Sulfide with Isolated Catalytic Sites for Ptâ€Like Electrocatalytic Hydrogen Production Over Whole pH Range. Small, 2019, 15, e1904043.	5.2	71
741	Interfacial aspect of ZnTe/In ₂ Te ₃ heterostructures as an efficient catalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 27441-27449.	5.2	41
742	Solidâ€State Conversion Synthesis of Advanced Electrocatalysts for Water Splitting. Chemistry - A European Journal, 2020, 26, 3961-3972.	1.7	8
743	NiMoFe and NiMoFeP as Complementary Electrocatalysts for Efficient Overall Water Splitting and Their Application in PVâ€Electrolysis with STH 12.3%. Small, 2019, 15, e1905501.	5.2	55
744	Boosting hydrogen evolution activity and durability of Pd–Ni–P nanocatalyst via crystalline degree and surface chemical state modulations. International Journal of Hydrogen Energy, 2019, 44, 31053-31061.	3.8	18
745	Fluorine-Anion-Modulated Electron Structure of Nickel Sulfide Nanosheet Arrays for Alkaline Hydrogen Evolution. ACS Energy Letters, 2019, 4, 2905-2912.	8.8	159
746	Mechanistic insight into high yield electrochemical nitrogen reduction to ammonia using lithium ions. Materials Today Communications, 2019, 21, 100700.	0.9	10
747	Porous Molybdenum Carbide Nanostructures Synthesized on Carbon Cloth by CVD for Efficient Hydrogen Production. Chemistry - A European Journal, 2019, 25, 16106-16113.	1.7	24
748	Highly dispersed Ni2â^'Mo P nanoparticles on oxygen-defect-rich NiMoO4â^' nanosheets as an active electrocatalyst for alkaline hydrogen evolution reaction. Journal of Power Sources, 2019, 444, 227311.	4.0	32
749	Sol-gel electrospun ZnMn ₂ O ₄ nanofibers as bifunctional electrocatalysts for hydrogen and oxygen evolution reactions. Materials Research Express, 2019, 6, 1150g7.	0.8	3
750	Tungsten phosphide nanosheets seamlessly grown on tungsten foils toward efficient hydrogen evolution reaction in basic and acidic media. International Journal of Hydrogen Energy, 2019, 44, 27483-27491.	3.8	10
751	Transforming Energy with Single-Atom Catalysts. Joule, 2019, 3, 2897-2929.	11.7	216
752	Pitaya-like cobalt/molybdenum carbide encapsulated in N-doped carbon nanospheres toward efficient hydrogen evolution. AIP Conference Proceedings, 2019, , .	0.3	0

#	Article	IF	CITATIONS
753	Graphene Nanoarchitectonics: Recent Advances in Grapheneâ€Based Electrocatalysts for Hydrogen Evolution Reaction. Advanced Materials, 2019, 31, e1903415.	11.1	289
754	Tuning the hydrogen activation reactivity on topological insulator heterostructures. Nano Energy, 2019, 58, 40-46.	8.2	49
755	Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics. Nature Communications, 2019, 10, 3899.	5.8	355
756	Solution-based synthesis of NiSb nanoparticles for electrochemical activity in hydrogen evolution reaction. Chinese Journal of Chemical Physics, 2019, 32, 373-378.	0.6	8
757	MoS ₂ nanotubes loaded with TiO ₂ nanoparticles for enhanced electrocatalytic hydrogen evolution. RSC Advances, 2019, 9, 26487-26494.	1.7	12
758	Role of Hydroxyl Species in Hydrogen Oxidation Reaction: A DFT Study. Journal of Physical Chemistry C, 2019, 123, 23931-23939.	1.5	35
759	Balancing hydrogen adsorption/desorption by orbital modulation for efficient hydrogen evolution catalysis. Nature Communications, 2019, 10, 4060.	5.8	131
760	Hydrogen evolution reaction mechanism on 2H-MoS2 electrocatalyst. Applied Surface Science, 2019, 498, 143869.	3.1	65
761	Advanced electrospun nanomaterials for highly efficient electrocatalysis. Inorganic Chemistry Frontiers, 2019, 6, 3012-3040.	3.0	60
762	MAX and MAB Phases: Two-Dimensional Layered Carbide and Boride Nanomaterials for Electrochemical Applications. ACS Applied Nano Materials, 2019, 2, 6010-6021.	2.4	47
763	Electrospun Cobalt-Doped MoS ₂ Nanofibers for Electrocatalytic Hydrogen Evolution. Journal of the Electrochemical Society, 2019, 166, F996-F999.	1.3	8
764	Template-Directed Bifunctional Dodecahedral CoP/CN@MoS ₂ Electrocatalyst for High Efficient Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 36649-36657.	4.0	70
765	Combined Experimental and Theoretical Molecular Approach of the Catalytically Active Hydrotreating MoS ₂ Phases Promoted by 3d Transition Metals. Journal of Physical Chemistry C, 2019, 123, 24659-24669.	1.5	8
766	Recent Advances and Prospective in Ruthenium-Based Materials for Electrochemical Water Splitting. ACS Catalysis, 2019, 9, 9973-10011.	5.5	491
767	NiS2/MoS2 on carbon cloth as a bifunctional electrocatalyst for overall water splitting. Electrochimica Acta, 2019, 326, 134983.	2.6	52
768	1T/2H MoSe2-on-MXene heterostructure as bifunctional electrocatalyst for efficient overall water splitting. Electrochimica Acta, 2019, 326, 134976.	2.6	125
769	The Critical Role of Electrolyte Gating on the Hydrogen Evolution Performance of Monolayer MoS ₂ . Nano Letters, 2019, 19, 8118-8124.	4.5	33
770	Carved nanoframes of cobalt–iron bimetal phosphide as a bifunctional electrocatalyst for efficient overall water splitting. Chemical Science, 2019, 10, 464-474.	3.7	238

#	Article	IF	CITATIONS
771	Recent progress of transition metal nitrides for efficient electrocatalytic water splitting. Sustainable Energy and Fuels, 2019, 3, 366-381.	2.5	305
772	3D porous Ni-Co-P nanosheets on carbon fiber cloth for efficient hydrogen evolution reaction. Electrochimica Acta, 2019, 300, 217-224.	2.6	48
773	Pd–Co nanoalloys nested on CuO nanosheets for efficient electrocatalytic N2 reduction and room-temperature Suzuki–Miyaura coupling reaction. Nanoscale, 2019, 11, 1379-1385.	2.8	40
774	Ni Strongly Coupled with Mo ₂ C Encapsulated in Nitrogenâ€Đoped Carbon Nanofibers as Robust Bifunctional Catalyst for Overall Water Splitting. Advanced Energy Materials, 2019, 9, 1803185.	10.2	306
775	Solid-state synthesis of MoS2 nanorod from molybdenum-organic framework for efficient hydrogen evolution reaction. Science China Materials, 2019, 62, 965-972.	3.5	37
776	Nickel phosphide polymorphs with an active (001) surface as excellent catalysts for water splitting. CrystEngComm, 2019, 21, 1143-1149.	1.3	19
777	Ultra-small Mo ₂ C nanodots encapsulated in nitrogen-doped porous carbon for pH-universal hydrogen evolution: insights into the synergistic enhancement of HER activity by nitrogen doping and structural defects. Journal of Materials Chemistry A, 2019, 7, 4734-4743.	5.2	90
778	Aligned Heterointerfaceâ€Induced 1Tâ€MoS ₂ Monolayer with Nearâ€Ideal Gibbs Free for Stable Hydrogen Evolution Reaction. Small, 2019, 15, e1804903.	5.2	63
779	Approaching the Volcano Top: Iridium/Silicon Nanocomposites as Efficient Electrocatalysts for the Hydrogen Evolution Reaction. ACS Nano, 2019, 13, 2786-2794.	7.3	106
780	A universal synthesis strategy for P-rich noble metal diphosphide-based electrocatalysts for the hydrogen evolution reaction. Energy and Environmental Science, 2019, 12, 952-957.	15.6	397
781	Non-Monotonic Trends of Hydrogen Adsorption on Single Atom Doped g-C3N4. Catalysts, 2019, 9, 84.	1.6	19
782	CoP nanoparticles encapsulated in three-dimensional N-doped porous carbon for efficient hydrogen evolution reaction in a broad pH range. Applied Surface Science, 2019, 476, 749-756.	3.1	47
783	Graphene dot armored PtMo nanosponge as a highly efficient and stable electrocatalyst for hydrogen evolution reactions in both acidic and alkaline media. Carbon, 2019, 146, 116-124.	5.4	33
784	Advances in constructing polymeric carbon-nitride-based nanocomposites and their applications in energy chemistry. Sustainable Energy and Fuels, 2019, 3, 611-655.	2.5	47
785	Advanced Electrocatalysts for Hydrogen Evolution Reaction Based on Core–Shell MoS ₂ /TiO ₂ Nanostructures in Acidic and Alkaline Media. ACS Applied Energy Materials, 2019, 2, 2053-2062.	2.5	67
786	One-step controllable synthesis of amorphous (Ni-Fe)S /NiFe(OH) hollow microtube/sphere films as superior bifunctional electrocatalysts for quasi-industrial water splitting at large-current-density. Applied Catalysis B: Environmental, 2019, 246, 337-348.	10.8	169
787	Mesoporous nickel selenide N-doped carbon as a robust electrocatalyst for overall water splitting. Electrochimica Acta, 2019, 300, 93-101.	2.6	70
788	Combining Co ₃ S ₄ and Ni:Co ₃ S ₄ nanowires as efficient catalysts for overall water splitting: an experimental and theoretical study. Nanoscale, 2019, 11, 2202-2210.	2.8	79

#	Article	IF	CITATIONS
789	Artesunate enhances adriamycin cytotoxicity by inhibiting glycolysis in adriamycin-resistant chronic myeloid leukemia K562/ADR cells. RSC Advances, 2019, 9, 1004-1014.	1.7	3
790	<i>In situ</i> nitridated porous nanosheet networked Co ₃ O ₄ –Co ₄ N heteronanostructures supported on hydrophilic carbon cloth for highly efficient electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 775-782.	5.2	63
791	Asymmetric electrodes with a transition metal disulfide heterostructure and amorphous bimetallic hydroxide for effective alkaline water electrolysis. Journal of Materials Chemistry A, 2019, 7, 2895-2900.	5.2	31
792	Catalysis of hydrogen evolution reaction by Ni ₁₂ P ₅ single crystalline nanoplates and spherical nanoparticles. CrystEngComm, 2019, 21, 228-235.	1.3	14
793	Cracked eight-awn star TaS ₂ with fractal structures used as an efficient electrocatalyst for the hydrogen evolution reaction. CrystEngComm, 2019, 21, 3517-3524.	1.3	5
794	Nickel-iron selenide polyhedral nanocrystal with optimized surface morphology as a high-performance bifunctional electrocatalyst for overall water splitting. Applied Surface Science, 2019, 488, 326-334.	3.1	47
795	Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chemical Society Reviews, 2019, 48, 4178-4280.	18.7	810
796	Tungsten-inert gas welding electrodes as low-cost, green and pH-universal electrocatalysts for the hydrogen evolution reaction. New Journal of Chemistry, 2019, 43, 11529-11542.	1.4	3
797	A silicon-doped iridium electrode prepared by magnetron-sputtering as an advanced electrocatalyst for overall water splitting in acidic media. Sustainable Energy and Fuels, 2019, 3, 2321-2328.	2.5	9
798	Converting surface-oxidized cobalt phosphides into Co ₂ (P ₂ O ₇)-CoP heterostructures for efficient electrocatalytic hydrogen evolution. Nanotechnology, 2019, 30, 394001.	1.3	10
799	Aminophenyl-substituted cobalt(<scp>iii</scp>) corrole: a bifunctional electrocatalyst for the oxygen and hydrogen evolution reactions. Dalton Transactions, 2019, 48, 11345-11351.	1.6	28
800	Hydrogen evolution reaction efficiency of carbon nanohorn incorporating molybdenum sulfide and polydopamine/palladium nanoparticles. Journal of the Taiwan Institute of Chemical Engineers, 2019, 102, 378-386.	2.7	16
801	Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy and Environmental Science, 2019, 12, 2620-2645.	15.6	1,052
802	A Cobaltâ€Based Amorphous Bifunctional Electrocatalysts for Waterâ€Splitting Evolved from a Singleâ€Source Lazulite Cobalt Phosphate. Advanced Functional Materials, 2019, 29, 1808632.	7.8	157
803	Amorphous Ni/C nanocomposites from tandem plasma reaction for hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 18115-18122.	3.8	4
804	O species-decorated graphene shell encapsulating iridium–nickel alloy as an efficient electrocatalyst towards hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 15079-15088.	5.2	36
805	Highâ€Currentâ€Density HER Electrocatalysts: Grapheneâ€like Boron Layer and Tungsten as Key Ingredients in Metal Diborides. ChemSusChem, 2019, 12, 3726-3731.	3.6	41
806	Construction of alternating layered quasi-three-dimensional electrode Ag NWs/CoO for water splitting: A discussion of catalytic mechanism. Electrochimica Acta, 2019, 317, 468-477.	2.6	22

#	Article	IF	CITATIONS
807	Designing Pd/O co-doped MoS _x for boosting the hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 15599-15606.	5.2	22
808	Highâ€Performance Hydrogen Evolution by Ru Single Atoms and Nitridedâ€Ru Nanoparticles Implanted on Nâ€Doped Graphitic Sheet. Advanced Energy Materials, 2019, 9, 1900931.	10.2	224
809	Catalytic hydrogen evolution reaction on "metal-free―graphene: key role of metallic impurities. Nanoscale, 2019, 11, 11083-11085.	2.8	19
810	Nickel phosphide decorated with trace amount of platinum as an efficient electrocatalyst for the alkaline hydrogen evolution reaction. Sustainable Energy and Fuels, 2019, 3, 2006-2014.	2.5	23
811	Effect of the Solvent Ratio (Ethylene Glycol/Water) on the Preparation of an Iron Sulfide Electrocatalyst and Its Activity towards Overall Water Splitting. ChemElectroChem, 2019, 6, 3199-3208.	1.7	17
812	Increasing the electrochemical activity of basal plane sites in porous 3D edge rich MoS2 thin films for the hydrogen evolution reaction. Materials Today Energy, 2019, 13, 134-144.	2.5	31
813	High-efficiency bifunctional electrocatalyst based on 3D freestanding Cu foam in situ armored CoNi alloy nanosheet arrays for overall water splitting. Journal of Power Sources, 2019, 427, 184-193.	4.0	47
814	Multifunctional Dicyandiamide Blowing-Induced Formation of Electrocatalysts for the Hydrogen Evolution Reaction. ACS Omega, 2019, 4, 10347-10353.	1.6	7
815	Modulation of Molecular Spatial Distribution and Chemisorption with Perforated Nanosheets for Ethanol Electroâ€oxidation. Advanced Materials, 2019, 31, e1900528.	11.1	111
816	Aqueous substitution synthesis of platinum modified amorphous nickel hydroxide on nickel foam composite electrode for efficient and stable hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 14258-14265.	3.8	19
817	Enhanced electrochemical properties of cellular CoPS@C nanocomposites for HER, OER and Li-ion batteries. RSC Advances, 2019, 9, 14859-14867.	1.7	10
818	A surface carbonization strategy towards MoS ₂ microspheres with enhanced electrochemical hydrogen evolution activity. New Journal of Chemistry, 2019, 43, 9583-9588.	1.4	6
819	RGO induced one-dimensional bimetallic carbide nanorods: An efficient and pH-universal hydrogen evolution reaction electrocatalyst. Nano Energy, 2019, 62, 85-93.	8.2	53
820	Atomic Pillar Effect in PdxNbS2 To Boost Basal Plane Activity for Stable Hydrogen Evolution. Chemistry of Materials, 2019, 31, 4726-4731.	3.2	32
821	Layered Crystalline and Amorphous Platinum Disulfide (PtS ₂): Contrasting Electrochemistry. Chemistry - A European Journal, 2019, 25, 7330-7338.	1.7	20
822	Fabrication of nanoporous gold-islands via hydrogen bubble template: An efficient electrocatalyst for oxygen reduction and hydrogen evolution reactions. International Journal of Hydrogen Energy, 2019, 44, 15001-15008.	3.8	26
823	Beyond 1Tâ€phase? Synergistic Electronic Structure and Defects Engineering in 2Hâ€MoS _{2x} Se _{2(1â€x)} Nanosheets for Enhanced Hydrogen Evolution Reaction and Sodium Storage. ChemCatChem, 2019, 11, 3200-3211.	1.8	21
824	3D Interdigitated Microsupercapacitors with Record Areal Cell Capacitance. Small, 2019, 15, 1901224.	5.2	27

#	Article	IF	CITATIONS
825	Promoting hydrogen-evolution activity and stability of perovskite oxides via effectively lattice doping of molybdenum. Electrochimica Acta, 2019, 312, 128-136.	2.6	52
826	The Holy Grail in Platinumâ€Free Electrocatalytic Hydrogen Evolution: Molybdenumâ€Based Catalysts and Recent Advances. ChemElectroChem, 2019, 6, 3570-3589.	1.7	72
827	Advances in nanostructures fabricated <i>via</i> spray pyrolysis and their applications in energy storage and conversion. Chemical Society Reviews, 2019, 48, 3015-3072.	18.7	260
829	Foam–like Co9S8/Ni3S2 heterostructure nanowire arrays for efficient bifunctional overall water–splitting. Applied Catalysis B: Environmental, 2019, 253, 246-252.	10.8	138
830	Enhanced Electrocatalytic Activity of Trace Pt in Ternary CuCoPt Alloy Nanoparticles for Hydrogen Evolution. Inorganic Chemistry, 2019, 58, 6529-6533.	1.9	24
831	Three-dimensionally hierarchical MoS2/graphene architecture for high-performance hydrogen evolution reaction. Nano Energy, 2019, 61, 611-616.	8.2	127
832	Facile construction of N-doped Mo2C@CNT composites with 3D nanospherical structures as an efficient electrocatalyst for hydrogen evolution reaction. Ionics, 2019, 25, 4273-4283.	1.2	19
833	Hierarchical Graphdiyne@NiFe layered double hydroxide heterostructures as a bifunctional electrocatalyst for overall water splitting. Journal of Alloys and Compounds, 2019, 794, 261-267.	2.8	56
834	Recent Progress in Bifunctional Electrocatalysts for Overall Water Splitting under Acidic Conditions. ChemElectroChem, 2019, 6, 3244-3253.	1.7	79
835	Surface intercalated spherical MoS _{2x} Se _{2(1â~x)} nanocatalysts for highly efficient and durable hydrogen evolution reactions. Dalton Transactions, 2019, 48, 8279-8287.	1.6	89
836	Electrospun SiO ₂ /WO ₃ /NiWO ₄ decorated carbon nanofibers for an efficient electrocatalytic hydrogen evolution. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 506-513.	1.0	15
837	Decoupling half-reactions of electrolytic water splitting by integrating a polyaniline electrode. Journal of Materials Chemistry A, 2019, 7, 13149-13153.	5.2	53
838	Anionâ€Modulated HER and OER Activities of 3D Ni–Vâ€Based Interstitial Compound Heterojunctions for Highâ€Efficiency and Stable Overall Water Splitting. Advanced Materials, 2019, 31, e1901174.	11.1	479
839	Freestanding and Hierarchically Structured Au-Dendrites/3D-Graphene Scaffold Supports Highly Active and Stable Ni ₃ S ₂ Electrocatalyst toward Overall Water Splitting. ACS Applied Energy Materials, 2019, 2, 3708-3716.	2.5	29
840	Nitrogen-Doped Cobalt Phosphide for Enhanced Hydrogen Evolution Activity. ACS Applied Materials & Interfaces, 2019, 11, 17359-17367.	4.0	40
841	Semiconductor polymeric graphitic carbon nitride photocatalysts: the "holy grail―for the photocatalytic hydrogen evolution reaction under visible light. Energy and Environmental Science, 2019, 12, 2080-2147.	15.6	803
842	Core Effect on the Performance of N/P Codoped Carbon Encapsulating Noble-Metal Phosphide Nanostructures for Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 2645-2653.	2.5	25
843	Electrospun PW ₁₂ Ni ₅ O _{43.5} (isogenous) nanocomposites for highly efficient hydrogen evolution reaction. Materials Research Express, 2019, 6, 075015.	0.8	3

#	Article	IF	CITATIONS
844	Soft magnetic Fe5C2–Fe3C@C as an electrocatalyst for the hydrogen evolution reaction. Dalton Transactions, 2019, 48, 4636-4642.	1.6	21
845	Synthesis and performance optimization of ultrathin two-dimensional CoFePt alloy materials <i>via in situ</i> topotactic conversion for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 9517-9522.	5.2	17
846	Nitrogen treatment generates tunable nanohybridization of Ni5P4 nanosheets with nickel hydr(oxy)oxides for efficient hydrogen production in alkaline, seawater and acidic media. Applied Catalysis B: Environmental, 2019, 251, 181-194.	10.8	260
847	Plasma modification of a Ni based metal–organic framework for efficient hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 8129-8135.	5.2	32
848	Ag-Based nanocomposites: synthesis and applications in catalysis. Nanoscale, 2019, 11, 7062-7096.	2.8	215
849	Three-Dimensional Structure of PANI/CdS NRs-SiO2 Hydrogel for Photocatalytic Hydrogen Evolution with High Activity and Stability. Nanomaterials, 2019, 9, 427.	1.9	14
850	Carbon Nanotube-Supported MoSe ₂ Holey Flake:Mo ₂ C Ball Hybrids for Bifunctional pH-Universal Water Splitting. ACS Nano, 2019, 13, 3162-3176.	7.3	120
851	Support and Interface Effects in Waterâ€splitting Electrocatalysts. Advanced Materials, 2019, 31, e1808167.	11.1	531
852	Irâ€Au Bimetallic Nanoparticle Modified Silicon Nanowires with Ultralow Content of Ir for Hydrogen Evolution Reaction. ChemCatChem, 2019, 11, 2126-2130.	1.8	15
853	Facile and Largeâ€Scale Fabrication of Subâ€3â€nm PtNi Nanoparticles Supported on Porous Carbon Sheet: A Bifunctional Material for the Hydrogen Evolution Reaction and Hydrogenation. Chemistry - A European Journal, 2019, 25, 7191-7200.	1.7	18
854	Structural Evolution and Chemical Bonding in Bi-nuclear Niobium Sulfide Clusters: Nb2S n â^'/O (n = 4–7). Journal of Cluster Science, 2019, 30, 735-746.	1.7	1
855	Mesoporous cobalt selenide/nitrogen-doped carbon hybrid as bifunctional electrocatalyst for hydrogen evolution and oxygen reduction reactions. Journal of Power Sources, 2019, 423, 1-8.	4.0	38
856	<i>Hybrid implanted hybrid</i> hollow nanocube electrocatalyst facilitates efficient hydrogen evolution activity. Journal of Materials Chemistry A, 2019, 7, 11150-11159.	5.2	48
857	Microscopic insights into the catalytic mechanisms of monolayer MoS2 and its heterostructures in hydrogen evolution reaction. Nano Research, 2019, 12, 2140-2149.	5.8	33
858	Plasma enabled non-thermal phosphorization for nickel phosphide hydrogen evolution catalysts. Chemical Communications, 2019, 55, 4202-4205.	2.2	20
859	Reduced graphene oxide-supported Ni-MoxC electrocatalyst for hydrogen evolution reaction prepared by ultrasonication and lyophilization. International Journal of Hydrogen Energy, 2019, 44, 9328-9337.	3.8	18
860	Hydrogen evolution reaction enhanced by water-soluble metallopyridinoporphyrazine complex adsorbed on highly oriented pyrolytic graphite. International Journal of Hydrogen Energy, 2019, 44, 11431-11440.	3.8	4
861	Synthesis of Au-nanoparticle-loaded 1T@2H-MoS2 nanosheets with high photocatalytic performance. Journal of Materials Science, 2019, 54, 9656-9665.	1.7	44

#	Article	IF	CITATIONS
862	Chemical activation of nitrogen and sulfur co-doped graphene as defect-rich carbocatalyst for electrochemical water splitting. Carbon, 2019, 148, 540-549.	5.4	61
863	Ternary metal sulfides for electrocatalytic energy conversion. Journal of Materials Chemistry A, 2019, 7, 9386-9405.	5.2	225
864	Chemical Dopants on Edge of Holey Graphene Accelerate Electrochemical Hydrogen Evolution Reaction. Advanced Science, 2019, 6, 1900119.	5.6	90
865	Structure Effects of Metal Corroles on Energy-Related Small Molecule Activation Reactions. ACS Catalysis, 2019, 9, 4320-4344.	5.5	138
866	Phosphate Doped Ultrathin FeP Nanosheets as Efficient Electrocatalysts for the Hydrogen Evolution Reaction in Acid Media. ChemCatChem, 2019, 11, 2484-2489.	1.8	17
867	Controlled growth of small and uniformly dispersed Mo2C on carbon nanotubes as high performance electrocatalyst for the hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 11797-11807.	3.8	25
868	Nanostructured Rhenium–Carbon Composites as Hydrogen-Evolving Catalysts Effective over the Entire pH Range. ACS Applied Nano Materials, 2019, 2, 2725-2733.	2.4	24
869	Vertically standing MoP nanosheet arrays on Mo substrate: An integrated binder-free electrode for highly efficient and stable hydrogen evolution. Journal of Alloys and Compounds, 2019, 792, 732-741.	2.8	21
870	Ultrathin transition-metal dichalcogenide nanosheet-based colorimetric sensor for sensitive and label-free detection of DNA. Sensors and Actuators B: Chemical, 2019, 290, 565-572.	4.0	43
871	Morphology ontrolled Metal Sulfides and Phosphides for Electrochemical Water Splitting. Advanced Materials, 2019, 31, e1806682.	11.1	500
872	Nanoarchitectonics for Transitionâ€Metalâ€Sulfideâ€Based Electrocatalysts for Water Splitting. Advanced Materials, 2019, 31, e1807134.	11.1	998
873	Millisecond synthesis of CoS nanoparticles for highly efficient overall water splitting. Nano Research, 2019, 12, 2259-2267.	5.8	85
874	Cu dendrites induced by the Anderson-type polyoxometalate NiMo6O24 as a promising electrocatalyst for enhanced hydrogen evolution. Applied Catalysis B: Environmental, 2019, 249, 163-171.	10.8	62
875	Transition-metal-based NiCoS/C-dot nanoflower asÂa stable electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 8214-8222.	3.8	30
876	Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nature Communications, 2019, 10, 631.	5.8	423
877	Remote ion-pair interactions in Fe-porphyrin-based molecular catalysts for the hydrogen evolution reaction. Catalysis Science and Technology, 2019, 9, 1301-1308.	2.1	24
878	Co3O4-nanoparticle-entrapped nitrogen and boron codoped mesoporous carbon as an efficient electrocatalyst for hydrogen evolution. Dalton Transactions, 2019, 48, 7261-7266.	1.6	3
879	Interface Engineering of Co(OH) ₂ /Ag/FeP Hierarchical Superstructure as Efficient and Robust Electrocatalyst for Overall Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 7936-7945.	4.0	68

#	Article	IF	CITATIONS
880	Obstacles of solar-powered photocatalytic water splitting for hydrogen production: A perspective from energy flow and mass flow. Energy, 2019, 172, 1079-1086.	4.5	99
881	Surface chemical-functionalization of ultrathin two-dimensional nanomaterials for electrocatalysis. Materials Today Energy, 2019, 12, 250-268.	2.5	48
882	Monolithic electrode integrated of ultrathin NiFeP on 3D strutted graphene for bifunctionally efficient overall water splitting. Nano Energy, 2019, 58, 870-876.	8.2	166
883	Metal Chalcogenides on Silicon Photocathodes for Efficient Water Splitting: A Mini Overview. Catalysts, 2019, 9, 149.	1.6	56
884	Ultra-small RuPx nanoparticles on graphene supported schiff-based networks for all pH hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 5717-5724.	3.8	10
885	Engineering Two-Dimensional Transition Metal Dichalcogenide Electrocatalysts for Water Splitting Hydrogen Generation. , 2019, , 1845-1873.		1
886	Surface-clean, phase-pure multi-metallic carbides for efficient electrocatalytic hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2019, 6, 940-947.	3.0	29
887	Coupling PtNi Ultrathin Nanowires with MXenes for Boosting Electrocatalytic Hydrogen Evolution in Both Acidic and Alkaline Solutions. Small, 2019, 15, e1805474.	5.2	113
888	Highly-dispersed Ru nanoparticles sputtered on graphene for hydrogen production. International Journal of Hydrogen Energy, 2019, 44, 7320-7325.	3.8	26
889	Enhancing the electrocatalytic activity of 2H-WS ₂ for hydrogen evolution <i>via</i> defect engineering. Physical Chemistry Chemical Physics, 2019, 21, 6071-6079.	1.3	60
890	Generation of Hydrogen by Water Splitting. , 2019, , 376-398.		1
891	Activating inert basal plane of MoS2 for H2O dissociation and HER via formation of vacancy defects: A DFT study*. , 2019, , .		0
892	First-principles and experimental investigation of carbon-coated MoS ₂ hollow nanosphere heterogeneous structures with enhanced hydrogen evolution performance. New Journal of Chemistry, 2019, 43, 17502-17510.	1.4	2
893	Interfacial engineering of Mo ₂ C–Mo ₃ C ₂ heteronanowires for high performance hydrogen evolution reactions. Nanoscale, 2019, 11, 23318-23329.	2.8	54
894	PdP ₂ nanoparticles–reduced graphene oxide for electrocatalytic N ₂ conversion to NH ₃ under ambient conditions. Journal of Materials Chemistry A, 2019, 7, 24760-24764.	5.2	81
895	Interface engineering: few-layer MoS ₂ coupled to a NiCo-sulfide nanosheet heterostructure as a bifunctional electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2019, 7, 27594-27602.	5.2	80
896	Constructing Mono-/Di-/Tri-Types of Active Sites in MoS ₂ Film toward Understanding Their Electrocatalytic Activity for the Hydrogen Evolution. ACS Applied Energy Materials, 2019, 2, 8974-8984.	2.5	8
897	Nitrogen-Plasma-Treated Continuous Monolayer MoS ₂ for Improving Hydrogen Evolution Reaction. ACS Omega, 2019, 4, 21509-21515.	1.6	34

#	Article	IF	CITATIONS
898	Coating of Ni on Fe (oxy)hydroxide: Superior Catalytic Activity for Oxygen-Involved Reaction During Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 19832-19838.	3.2	17
899	Engineering the Electronic Structure of Submonolayer Pt on Intermetallic Pd ₃ Pb via Charge Transfer Boosts the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2019, 141, 19964-19968.	6.6	99
900	CoO-Mo2N hollow heterostructure for high-efficiency electrocatalytic hydrogen evolution reaction. NPG Asia Materials, 2019, 11, .	3.8	65
901	Crucial Effect of Halogen on the Photocatalytic Hydrogen Evolution for Bi ₁₉ X ₃ S ₂₇ (X = Cl, Br) Nanomaterials. Industrial & Engineering Chemistry Research, 2019, 58, 22958-22966.	1.8	15
902	Nanosheets of MoSe2@M (M =â€ ⁻ Pd and Rh) function as widespread pH tolerable hydrogen evolution catalyst. Journal of Colloid and Interface Science, 2019, 534, 131-141.	5.0	30
903	Gallium Oxide Nanofibers for Hydrogen Evolution and Oxygen Reduction. ACS Applied Nano Materials, 2019, 2, 64-74.	2.4	24
904	Exceptional Performance of Hierarchical Ni–Fe (hydr)oxide@NiCu Electrocatalysts for Water Splitting. Advanced Materials, 2019, 31, e1806769.	11.1	124
905	One-Pot Synthesis of Co-Doped VSe ₂ Nanosheets for Enhanced Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 644-653.	2.5	59
906	Improved bi-functional ORR and OER catalytic activity of reduced graphene oxide supported ZnCo2O4 microsphere. International Journal of Hydrogen Energy, 2019, 44, 1565-1578.	3.8	83
907	Networkâ€Like Ni _{1â^'x} Mo _x Nanosheets: Multiâ€Functional Electrodes for Overall Water Splitting and Supercapacitor. ChemElectroChem, 2019, 6, 1338-1343.	1.7	16
908	Metallic FePSe3 nanoparticles anchored on N-doped carbon framework for All-pH hydrogen evolution reaction. Nano Energy, 2019, 57, 222-229.	8.2	115
909	Chemically activated MoS2 for efficient hydrogen production. Nano Energy, 2019, 57, 535-541.	8.2	95
910	Rationally design of monometallic NiO-Ni3S2/NF heteronanosheets as bifunctional electrocatalysts for overall water splitting. Journal of Catalysis, 2019, 369, 345-351.	3.1	84
911	Platinum Nanocrystals Decorated on Defect-Rich MoS ₂ Nanosheets for pH-Universal Hydrogen Evolution Reaction. Crystal Growth and Design, 2019, 19, 60-65.	1.4	39
912	Hierarchical free-standing networks of MnCo2S4 as efficient Electrocatalyst for oxygen evolution reaction. Journal of Industrial and Engineering Chemistry, 2019, 71, 452-459.	2.9	37
913	Emerging opportunities for black phosphorus in energy applications. Materials Today Energy, 2019, 12, 1-25.	2.5	88
914	Synthesis, characterization and applications of pH controlled Fe ₂ O ₃ nanoparticles for electrocatalytic hydrogen evolution reaction. Materials Research Express, 2019, 6, 025516.	0.8	6
915	Quantum dots for light conversion, therapeutic and energy storage applications. Journal of Solid State Chemistry, 2019, 270, 71-84.	1.4	16

#	Article	IF	CITATIONS
916	Selectivity regulation of CO2 electroreduction through contact interface engineering on superwetting Cu nanoarray electrodes. Nano Research, 2019, 12, 345-349.	5.8	80
917	Recent advances in emerging single atom confined two-dimensional materials for water splitting applications. Materials Today Energy, 2019, 11, 1-23.	2.5	189
918	Optimizing hydrogen evolution activity of nanoporous electrodes by dual-step surface engineering. Applied Catalysis B: Environmental, 2019, 244, 87-95.	10.8	22
919	Carbon-Encapsulated Electrocatalysts for the Hydrogen Evolution Reaction. Electrochemical Energy Reviews, 2019, 2, 105-127.	13.1	136
920	Modulated electrochemical oxygen evolution catalyzed by MoS ₂ nanoflakes from atomic layer deposition. Nanotechnology, 2019, 30, 095402.	1.3	22
921	A novel Lindqvist intercalation compound: Synthesis, crystal structure and hydrogen evolution reaction performance. Inorganic Chemistry Communication, 2019, 99, 64-69.	1.8	11
922	Zn-doped MoSe2 nanosheets as high-performance electrocatalysts for hydrogen evolution reaction in acid media. Electrochimica Acta, 2019, 296, 701-708.	2.6	70
923	Enhanced hydrogen evolution reaction of WS2–CoS2 heterostructure by synergistic effect. International Journal of Hydrogen Energy, 2019, 44, 809-818.	3.8	60
924	Activating MoS ₂ Basal Plane with Ni ₂ P Nanoparticles for Ptâ€Like Hydrogen Evolution Reaction in Acidic Media. Advanced Functional Materials, 2019, 29, 1809151.	7.8	114
925	Electrochemical fabrication of Fe-based binary and ternary phosphide cathodes for proton exchange membrane water electrolyzer. Journal of Alloys and Compounds, 2019, 807, 148813.	2.8	24
926	Cobalt/Molybdenum Phosphide and Oxide Heterostructures Encapsulated in N-Doped Carbon Nanocomposite for Overall Water Splitting in Alkaline Media. ACS Applied Materials & Interfaces, 2019, 11, 6890-6899.	4.0	91
927	Efficient Hydrogen Evolution Activity and Overall Water Splitting of Metallic Co ₄ N Nanowires through Tunable d-Orbitals with Ultrafast Incorporation of FeOOH. ACS Applied Materials & Interfaces, 2019, 11, 5152-5158.	4.0	120
928	Facile synthesis of ultrathin interconnected carbon nanosheets as a robust support for small and uniformly-dispersed iron phosphide for the hydrogen evolution reaction. Carbon, 2019, 144, 764-771.	5.4	53
929	Earth abundant materials beyond transition metal dichalcogenides: A focus on electrocatalyzing hydrogen evolution reaction. Nano Energy, 2019, 58, 244-276.	8.2	298
930	Ultrafine Ruthenium Oxide Nanoparticles Supported on Molybdenum Oxide Nanosheets as Highly Efficient Electrocatalyst for Hydrogen Evolution in Acidic Medium. ChemCatChem, 2019, 11, 1495-1502.	1.8	22
931	Synthesis of a MoS <i>_x</i> –O–PtO <i>_x</i> Electrocatalyst with High Hydrogen Evolution Activity Using a Sacrificial Counterâ€Electrode. Advanced Science, 2019, 6, 1801663. 	5.6	21
932	2D Metallic Transitional Metal Dichalcogenides for Electrochemical Hydrogen Evolution. Energy Technology, 2019, 7, 1801025.	1.8	10
933	Heterostructured MoC-MoP/N-doped carbon nanofibers as efficient electrocatalysts for hydrogen evolution reaction. Electrochimica Acta, 2019, 299, 708-716.	2.6	48

#	Article	IF	CITATIONS
934	Synthesis of Niâ€Doped Copper Cobalt Sulfide Nanoparticles and its Enhanced Properties as an Electrocatalyst for Hydrogen Evolution Reaction. Crystal Research and Technology, 2019, 54, 1800248.	0.6	13
935	N-Doped 3D Porous Ni/C Bifunctional Electrocatalysts for Alkaline Water Electrolysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 3974-3981.	3.2	59
936	Helical cobalt borophosphates to master durable overall water-splitting. Energy and Environmental Science, 2019, 12, 988-999.	15.6	179
937	Holey Ni-Cu phosphide nanosheets as a highly efficient and stable electrocatalyst for hydrogen evolution. Applied Catalysis B: Environmental, 2019, 243, 537-545.	10.8	128
938	Unsaturated Sulfur Edge Engineering of Strongly Coupled MoS ₂ Nanosheet–Carbon Macroporous Hybrid Catalyst for Enhanced Hydrogen Generation. Advanced Energy Materials, 2019, 9, 1802553.	10.2	159
939	One-step hydrothermal synthesis of three-dimensional nitrogen-doped reduced graphene oxide hydrogels anchored PtPd alloyed nanoparticles for ethylene glycol oxidation and hydrogen evolution reactions. Electrochimica Acta, 2019, 293, 504-513.	2.6	146
940	Biohydrogen Production Using Microbial Electrolysis Cell. , 2019, , 843-869.		35
941	Thermally reduced graphite oxide/carbon nanotubes supported molybdenum disulfide as catalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 977-987.	3.8	21
942	Ni-W nanostructure well-marked by Ni selective etching for enhanced hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 880-894.	3.8	28
943	Controlled synthesis of 3D porous structured cobalt-iron based nanosheets by electrodeposition as asymmetric electrodes for ultra-efficient water splitting. Applied Catalysis B: Environmental, 2019, 244, 583-593.	10.8	105
944	Alcohol Oxidation and Hydrogen Evolution. Interface Science and Technology, 2019, 27, 253-301.	1.6	16
945	One-pot hydrothermal synthesis of Al-doped MoS2@graphene aerogel nanocomposite electrocatalysts for enhanced hydrogen evolution reaction. Results in Physics, 2019, 12, 250-258.	2.0	26
946	Bimetallic Ni2-xCoxP/N-doped carbon nanofibers: Solid-solution-alloy engineering toward efficient hydrogen evolution. Applied Catalysis B: Environmental, 2019, 244, 620-627.	10.8	122
947	Steam reforming of acetic acid over Ni KOH/Al2O3 catalyst with low nickel loading: The remarkable promotional effects of KOH on activity. International Journal of Hydrogen Energy, 2019, 44, 729-747.	3.8	31
948	Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2/Ni3S2 nanoforests for efficient water splitting. Applied Catalysis B: Environmental, 2019, 242, 60-66.	10.8	332
949	Datura-like Ni-HG-rGO as highly efficient electrocatalyst for hydrogen evolution reaction in alkaline conditions. Journal of Colloid and Interface Science, 2019, 535, 75-83.	5.0	23
950	Structural Design and Electronic Modulation of Transitionâ€Metalâ€Carbide Electrocatalysts toward Efficient Hydrogen Evolution. Advanced Materials, 2019, 31, e1802880.	11.1	422
951	Synthesis of one-dimensional RuO2 nanorod for hydrogen and oxygen evolution reaction: An efficient and stable electrocatalyst. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 560, 141-148.	2.3	33

#	Article	IF	CITATIONS
952	Phaseâ€Controlled Cobalt Phosphide Nanoparticles Coupled with N, P, S Coâ€Doped Hollow Carbon Polyhedrons as Efficient Catalysts for Both Alkaline and Acidic Hydrogen Evolution. Energy Technology, 2019, 7, 1800757.	1.8	5
953	In-situ growth of graphene decorated Ni3S2 pyramids on Ni foam for high-performance overall water splitting. Applied Surface Science, 2019, 465, 772-779.	3.1	39
954	Ceria supported ruthenium(0) nanoparticles: Highly efficient catalysts in oxygen evolution reaction. Journal of Colloid and Interface Science, 2019, 534, 704-710.	5.0	37
955	Modulierung der elektronischen Strukturen anorganischer Nanomaterialien für eine effiziente elektrokatalytische Wasserspaltung. Angewandte Chemie, 2019, 131, 4532-4551.	1.6	34
956	Modulating Electronic Structures of Inorganic Nanomaterials for Efficient Electrocatalytic Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 4484-4502.	7.2	340
957	Synthesis of CoAl-LDH nanosheets and N-doped graphene nanocomposite via Successive Ionic Layer Deposition method and study of their electrocatalytic properties for hydrogen evolution in alkaline media. Journal of Solid State Chemistry, 2019, 270, 156-161.	1.4	23
958	Transition metal-doped nickel phosphide nanoparticles as electro- and photocatalysts for hydrogen generation reactions. Applied Catalysis B: Environmental, 2019, 242, 186-193.	10.8	120
959	Enhanced hydrogen evolution reaction over molybdenum carbide nanoparticles confined inside single-walled carbon nanotubes. Journal of Energy Chemistry, 2019, 28, 123-127.	7.1	55
960	Three-demensional Ni Co NiCo2O4/NF as an efficient electrode for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 226-232.	3.8	13
961	Nitrogen-doped graphene quantum dots decorated graphite foam as ultra-high active free-standing electrode for electrochemical hydrogen evolution and phenol degradation. Chemical Engineering Science, 2019, 194, 54-57.	1.9	36
962	Low-loading of oxidized platinum nanoparticles into mesoporous titanium dioxide for effective and durable hydrogen evolution in acidic media. Arabian Journal of Chemistry, 2020, 13, 2257-2270.	2.3	16
963	Selfâ€Supported Transitionâ€Metalâ€Based Electrocatalysts for Hydrogen and Oxygen Evolution. Advanced Materials, 2020, 32, e1806326.	11.1	986
964	Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties. Chemical Reviews, 2020, 120, 526-622.	23.0	849
965	A solvent-free strategy for synthesis of Co9S8 nanoparticles entrapped, N, S-codoped mesoporous carbon as hydrogen evolution electrocatalyst. Journal of Colloid and Interface Science, 2020, 558, 155-162.	5.0	13
966	Graphene oxide decorated bimetal (MnNi) oxide nanoflakes used as an electrocatalyst for enhanced oxygen evolution reaction in alkaline media. Arabian Journal of Chemistry, 2020, 13, 4553-4563.	2.3	11
967	Recent Advanced Materials for Electrochemical and Photoelectrochemical Synthesis of Ammonia from Dinitrogen: One Step Closer to a Sustainable Energy Future. Advanced Energy Materials, 2020, 10, 1902020.	10.2	113
968	Multifunctional Transition Metalâ€Based Phosphides in Energyâ€Related Electrocatalysis. Advanced Energy Materials, 2020, 10, 1902104.	10.2	322
969	Nickel–manganese bimetallic phosphides porous nanosheet arrays as highly active bifunctional hydrogen and oxygen evolution electrocatalysts for overall water splitting. Electrochimica Acta, 2020. 329. 135121.	2.6	43

ARTICLE IF CITATIONS Electrochemically Facile Hydrogen Evolution Using Ruthenium Encapsulated Two Dimensional 970 1.5 24 Covalent Organic Framework (2D COF). ChemNanoMat, 2020, 6, 99-106. FexNiyOOH/etched stainless steel mesh with different morphology for water electrolysis. Ionics, 971 1.2 2020, 26, 301-309. Nowotny phase Mo₃₊₂<i>_x</i>Si₃C_{0.6} dispersed in a 972 porous ŚiĊ/C matrix: A novel catalyst for hydrogen evolution reaction. Journal of the American 1.9 15 Ceramic Society, 2020, 103, 508-519. Facile microwave approach towards high performance MoS2/graphene nanocomposite for hydrogen evolution reaction. Science China Materials, 2020, 63, 62-74. Metal-organic framework-derived nanocomposites for electrocatalytic hydrogen evolution reaction. 974 16.0 220 Progress in Materials Science, 2020, 108, 100618. Large scale synthesis of Mo2C nanoparticle incorporated carbon nanosheet (Mo2C–C) for enhanced hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 18623-18634. 3.8 Enhanced activation of peroxymonosulfate with metal-substituted hollow MxCo3-xS4 polyhedrons 976 6.6 72 for superfast degradation of sulfamethazine. Chemical Engineering Journal, 2020, 384, 123302. Fabrication of carbon nanotubes encapsulated cobalt phosphide on graphene: Cobalt promoted 2.6 19 hydrogen evolution reaction performance. Electrochimica Acta, 2020, 3'30, 135213. Interface engineering in transition metal carbides for electrocatalytic hydrogen generation and 978 6.4 61 nitrogen fixation. Materials Horizons, 2020, 7, 32-53. Nafion-assisted synthesis of palladium nanonetworks as efficient electrocatalysts for hydrogen 979 1.2 evolution reaction. lonics, 2020, 26, 1347-1356. Molybdenum-based nanoparticles (Mo2C, MoP and MoS2) coupled heteroatoms-doped carbon 980 nanosheets for efficient hydrogen evolution reaction. Applied Catalysis B: Environmental, 2020, 263, 10.8 124 118352. Ultrathin nickel phosphide nanosheet aerogel electrocatalysts derived from Ni-alginate for hydrogen 2.8 evolution reaction. Journal of Alloys and Compounds, 2020, 817, 152727. Highly dispersive bimetallic sulfides afforded by crystalline polyoxometalate-based coordination polymer precursors for efficient hydrogen evolution reaction. Journal of Power Sources, 2020, 446, 982 4.0 64 227319. Walnut shell-derived hierarchical porous carbon with high performances for electrocatalytic hydrogen evolution and symmetry supercapacitors. International Journal of Hydrogen Energy, 2020, 45, 443-451. 3.8 Quaternary (Fe/Ni)(P/S) mesoporous nanorods templated on stainless steel mesh lead to stable oxygen 984 5.042 evolution reaction for over two months. Journal of Colloid and Interface Science, 2020, 561, 576-584. Enhanced hydrogen evolution reaction catalyzed by carbonâ€rich Mo_{4.8}Si₃C_{0.6}/C/SiC nanocomposites via a PDC approach. Journal 1.9 Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chemical Reviews, 2020, 986 23.0 1,767 120, 851-918. Highly efficient hydrogen evolution reaction of Co3O4 supports on N-doped carbon nanotubes in an 1.2 alkaline solution. Ionics, 2020, 26, 3437-3446.

#	Article	IF	CITATIONS
988	Dealloying Generation of Oxygen Vacancies in the Amorphous Nanoporous Ni–Mo–O for Superior Electrocatalytic Hydrogen Generation. ACS Applied Energy Materials, 2020, 3, 1319-1327.	2.5	28
989	Molten salt strategy to synthesize alkali metal-doped Co9S8 nanoparticles embedded, N, S co-doped mesoporous carbon as hydrogen evolution electrocatalyst. International Journal of Hydrogen Energy, 2020, 45, 6006-6014.	3.8	21
990	Enhanced electrochemical hydrogen evolution performance of WS2 nanosheets by Te doping. Journal of Catalysis, 2020, 382, 204-211.	3.1	51
991	Designing Atomic Active Centers for Hydrogen Evolution Electrocatalysts. Angewandte Chemie - International Edition, 2020, 59, 20794-20812.	7.2	257
992	Recent Advances on Black Phosphorus Based Electrocatalysts for Waterâ€Splitting. ChemCatChem, 2020, 12, 1913-1921.	1.8	17
993	MoS2-supported on free-standing TiO2-nanotubes for efficient hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 4468-4480.	3.8	14
994	Computational screening of transition metal-doped phthalocyanine monolayers for oxygen evolution and reduction. Nanoscale Advances, 2020, 2, 710-716.	2.2	30
995	Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction. Nanoscale Horizons, 2020, 5, 43-56.	4.1	223
996	Tuning the surface segregation composition of a PdCo alloy by the atmosphere for increasing electrocatalytic activity. Sustainable Energy and Fuels, 2020, 4, 380-386.	2.5	13
997	Amorphous RuS ₂ electrocatalyst with optimized active sites for hydrogen evolution. Nanotechnology, 2020, 31, 145401.	1.3	16
998	Photodeposition fabrication of hierarchical layered Co-doped Ni oxyhydroxide (NixCo1â^'xOOH) catalysts with enhanced electrocatalytic performance for oxygen evolution reaction. Nano Research, 2020, 13, 246-254.	5.8	28
999	Dopamine-assisted synthesis of rGO@NiPd@NC sandwich structure for highly efficient hydrogen evolution reaction. Journal of Solid State Electrochemistry, 2020, 24, 137-144.	1.2	5
1000	Recent advances in cobalt-based electrocatalysts for hydrogen and oxygen evolution reactions. Journal of Alloys and Compounds, 2020, 821, 153542.	2.8	191
1001	CuS@defect-rich MoS2 core-shell structure for enhanced hydrogen evolution. Journal of Colloid and Interface Science, 2020, 564, 77-87.	5.0	44
1002	Rational strain engineering in delafossite oxides for highly efficient hydrogen evolution catalysis in acidic media. Nature Catalysis, 2020, 3, 55-63.	16.1	124
1003	Molybdenum Carbideâ€Oxide Heterostructures: In Situ Surface Reconfiguration toward Efficient Electrocatalytic Hydrogen Evolution. Angewandte Chemie, 2020, 132, 3572-3576.	1.6	27
1004	Molybdenum Carbideâ€Oxide Heterostructures: In Situ Surface Reconfiguration toward Efficient Electrocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2020, 59, 3544-3548.	7.2	145
1005	Stable Fe ₂ P ₂ S ₆ Nanocrystal Catalyst for Highâ€Efficiency Water Electrolysis. Small Methods, 2020, 4, 1900632.	4.6	29

#	Article	IF	CITATIONS
1006	Emerged carbon nanomaterials from metal-organic precursors for electrochemical catalysis in energy conversion. , 2020, , 393-423.		8
1007	MoSx-CdS/Cu2ZnSnS4-based thin film photocathode for solar hydrogen evolution from water. Applied Catalysis B: Environmental, 2020, 268, 118438.	10.8	41
1008	A layer-by-layer strategy for the scalable preparation of uniform interfacial electrocatalysts with high structural tunability: a case study of a CoNP/N,P-graphene catalyst complex. Nanoscale, 2020, 12, 145-154.	2.8	1
1009	Direct synthesis of bifunctional nanorods from a Co–adenine–MoO ₃ hybrid for overall water splitting. Materials Chemistry Frontiers, 2020, 4, 546-554.	3.2	17
1010	Stacked Co6W6C nanocrystals anchored on N-doping carbon nanofibers with excellent electrocatalytic performance for HER in wide-range pH. International Journal of Hydrogen Energy, 2020, 45, 1901-1910.	3.8	14
1011	Facile process to utilize carbonaceous waste as a carbon source for the synthesis of low cost electrocatalyst for hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 23908-23919.	3.8	19
1012	One-step Na2S2O3-activation strategy on the construction of CoS–Co(OH)2 nanoflakes@Cu31S16 microrod architectures for alkaline overall water splitting. Electrochimica Acta, 2020, 332, 135526.	2.6	13
1013	Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: A review. Journal of Alloys and Compounds, 2020, 819, 153346.	2.8	253
1014	Bottomâ€up Design of Bimetallic Cobalt–Molybdenum Carbides/Oxides for Overall Water Splitting. Chemistry - A European Journal, 2020, 26, 4157-4164.	1.7	33
1015	Three-Dimensional Heterostructured NiCoP@NiMn-Layered Double Hydroxide Arrays Supported on Ni Foam as a Bifunctional Electrocatalyst for Overall Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 4385-4395.	4.0	117
1016	Synthesis of hollow cobalt phosphide nanocrystals with ultrathin shells anchored on reduced graphene oxide as an electrocatalyst toward hydrogen evolution. Applied Surface Science, 2020, 506, 144975.	3.1	33
1017	Atomically Dispersed Mo Supported on Metallic Co ₉ S ₈ Nanoflakes as an Advanced Nobleâ€Metalâ€Free Bifunctional Water Splitting Catalyst Working in Universal pH Conditions. Advanced Energy Materials, 2020, 10, 1903137.	10.2	162
1018	Rapid growth of amorphous cobalt-iron oxyhydroxide nanosheet arrays onto iron foam: Highly efficient and low-cost catalysts for oxygen evolution. Journal of Electroanalytical Chemistry, 2020, 856, 113621.	1.9	13
1019	Monomeric MoS ₄ ^{2–} -Derived Polymeric Chains with Active Molecular Units for Efficient Hydrogen Evolution Reaction. ACS Catalysis, 2020, 10, 652-662.	5.5	37
1020	Plasma-Engineered MoP with nitrogen doping: Electron localization toward efficient alkaline hydrogen evolution. Applied Catalysis B: Environmental, 2020, 268, 118441.	10.8	69
1021	Fabrication of NiSx/C with a tuned S/Ni molar ratio using Ni2+ ions and Amberlyst for hydrogen evolution reaction (HER). International Journal of Hydrogen Energy, 2020, 45, 24567-24572.	3.8	3
1022	Metal-free photo- and electro-catalysts for hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 23674-23698.	5.2	59
1023	Electrocatalytic Hydrogen Evolution of Ultrathin Coâ€Mo ₅ N ₆ Heterojunction with Interfacial Electron Redistribution. Advanced Energy Materials, 2020, 10, 2002176.	10.2	138

#	Article	IF	CITATIONS
1024	Efficient overall water splitting using nickel boride-based electrocatalysts. International Journal of Hydrogen Energy, 2020, 45, 28616-28625.	3.8	19
1025	Synthesis of binder-free fluffy anemone-like MoS2 for electrocatalytic hydrogen evolution: A Mott-schottky study. International Journal of Hydrogen Energy, 2020, 45, 28696-28705.	3.8	17
1026	Facile Synthesis of Threeâ€dimensional Hierarchical Ni ₃ S ₂ @CoAl‣DHs Nanosheet Arrays and Their Efficient Hydrogen Evolution. ChemCatChem, 2020, 12, 6401-6409.	1.8	5
1027	Tungsten Oxide/Carbide Surface Heterojunction Catalyst with High Hydrogen Evolution Activity. ACS Energy Letters, 2020, 5, 3560-3568.	8.8	70
1028	Electrochemical fabrication of Ni–Mo nanostars with Pt-like catalytic activity for both electrochemical hydrogen and oxygen evolution reactions. International Journal of Hydrogen Energy, 2020, 45, 30533-30546.	3.8	23
1029	Accelerating hydrogen evolution in Ru-doped FeCoP nanoarrays with lattice distortion toward highly efficient overall water splitting. Catalysis Science and Technology, 2020, 10, 8314-8324.	2.1	24
1030	Orbital-regulated interfacial electronic coupling endows Ni3N with superior catalytic surface for hydrogen evolution reaction. Science China Chemistry, 2020, 63, 1563-1569.	4.2	22
1031	Porous cobalt/tungsten nitride polyhedra as efficient bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2020, 8, 22938-22946.	5.2	56
1032	Effect of copper addition on cobalt-molybdenum electrodeposited coatings for the hydrogen evolution reaction in alkaline medium. International Journal of Hydrogen Energy, 2020, 45, 33586-33597.	3.8	22
1033	Facile synthesis of graphitic carbon nitride/chitosan/Au nanocomposite: A catalyst for electrochemical hydrogen evolution. International Journal of Biological Macromolecules, 2020, 164, 3012-3024.	3.6	62
1034	Research progress and surface/interfacial regulation methods for electrophotocatalytic hydrogen production from water splitting. Materials Today Energy, 2020, 18, 100524.	2.5	28
1035	Coralline-like CoP ₃ @Cu as an efficient electrocatalyst for the hydrogen evolution reaction in acidic and alkaline solutions. New Journal of Chemistry, 2020, 44, 18601-18607.	1.4	6
1036	An inclusive review on the synthesis of molybdenum carbide and its hybrids as catalyst for electrochemical water splitting. Molecular Catalysis, 2020, 494, 111116.	1.0	24
1037	Recent advances in metal–organic frameworks for electrocatalytic hydrogen evolution and overall water splitting reactions. Dalton Transactions, 2020, 49, 12483-12502.	1.6	50
1038	TaS ₂ , TaSe ₂ , and Their Heterogeneous Films as Catalysts for the Hydrogen Evolution Reaction. ACS Catalysis, 2020, 10, 3313-3325.	5.5	60
1039	Atom-Pair Catalysts Supported by N-Doped Graphene for the Nitrogen Reduction Reaction: <i>d</i> Band Center-Based Descriptor. Journal of Physical Chemistry Letters, 2020, 11, 6320-6329.	2.1	82
1040	Hydrogen evolution on non-metal oxide catalysts. JPhys Energy, 2020, 2, 042002.	2.3	16
1041	Coupling 0D and 1D Carbons for Electrochemical Hydrogen Production Promoted by a Percolation Mechanism. ChemSusChem, 2020, 13, 4094-4102.	3.6	3

#	Article	IF	CITATIONS
1042	Electrocatalytic Deuteration of Halides with D ₂ O as the Deuterium Source over a Copper Nanowire Arrays Cathode. Angewandte Chemie - International Edition, 2020, 59, 18527-18531.	7.2	68
1043	A review of the electrocatalysts on hydrogen evolution reaction with an emphasis on Fe, Co and Ni-based phosphides. Journal of Materials Science, 2020, 55, 14081-14104.	1.7	80
1044	Recent Advancements and Future Prospects of Noble Metal-Based Heterogeneous Nanocatalysts for Oxygen Reduction and Hydrogen Evolution Reactions. Applied Sciences (Switzerland), 2020, 10, 7708.	1.3	34
1045	Increasing the active sites and intrinsic activity of transition metal chalcogenide electrocatalysts for enhanced water splitting. Journal of Materials Chemistry A, 2020, 8, 25465-25498.	5.2	112
1046	Microwaveâ€Induced Structural Engineering and Pt Trapping in <i>6R</i> â€TaS ₂ for the Hydrogen Evolution Reaction. Small, 2020, 16, e2003372.	5.2	18
1047	Topotactically Transformed Polygonal Mesopores on Ternary Layered Double Hydroxides Exposing Under oordinated Metal Centers for Accelerated Water Dissociation. Advanced Materials, 2020, 32, e2006784.	11.1	186
1048	Facile fabrication of hierarchical Rh ₂ Ir alloy nanodendrites with excellent HER performance in a broad pH range. New Journal of Chemistry, 2020, 44, 21021-21025.	1.4	9
1049	Application of Single-Site Catalysts in the Hydrogen Economy. Trends in Chemistry, 2020, 2, 1114-1125.	4.4	10
1050	Synthesis of MgNiO2/CoNC-Based Ternary Metallic Dual-Active Interfacial Porous Hollow Nanocages as Efficient Oxygen Reduction Reaction and Oxygen Evolution Reaction Bi-Functional Electrocatalysts. Frontiers in Materials, 2020, 7, .	1.2	2
1051	Activity boosting of a metal-organic framework by Fe-Doping for electrocatalytic hydrogen evolution and oxygen evolution. Journal of Solid State Chemistry, 2020, 292, 121696.	1.4	11
1052	Selective Transfer Semihydrogenation of Alkynes with H ₂ 0 (D ₂ 0) as the H (D) Source over a Pdâ€₽ Cathode. Angewandte Chemie - International Edition, 2020, 59, 21170-21175.	7.2	91
1053	Facile electrochemical synthesis of Ni(OH)2/MoS catalyst on oxidized carbon fiber for efficient alkaline hydrogen evolution reaction. Chemical Engineering and Processing: Process Intensification, 2020, 155, 108090.	1.8	5
1054	Seamlessly conductive Co(OH) ₂ tailored atomically dispersed Pt electrocatalyst with a hierarchical nanostructure for an efficient hydrogen evolution reaction. Energy and Environmental Science, 2020, 13, 3082-3092.	15.6	123
1055	Ultrathin exfoliated WS ₂ nanosheets in low-boiling-point solvents for high-efficiency hydrogen evolution reaction. IOP Conference Series: Materials Science and Engineering, 0, 770, 012079.	0.3	11
1056	One-pot synthesis of pure phase molybdenum carbide (Mo2C and MoC) nanoparticles for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 27114-27128.	3.8	43
1057	Electrocatalytic Deuteration of Halides with D ₂ O as the Deuterium Source over a Copper Nanowire Arrays Cathode. Angewandte Chemie, 2020, 132, 18685-18689.	1.6	22
1058	Growth of Multiorientated Polycrystalline MoS2 Using Plasma-Enhanced Chemical Vapor Deposition for Efficient Hydrogen Evolution Reactions. Nanomaterials, 2020, 10, 1465.	1.9	8
1059	Ultrafine nano 1T-MoS2 monolayers with NiOx as dual co-catalysts over TiO2 photoharvester for efficient photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 279, 119387.	10.8	56

#	Article	IF	CITATIONS
1060	An Efficient RuTe ₂ /Graphene Catalyst for Electrochemical Hydrogen Evolution Reaction in Acid Electrolyte. Chemistry - an Asian Journal, 2020, 15, 2886-2891.	1.7	22
1061	Superaerophobic Platinum Nanosheets Arrays on Conductive Microgrids: A Highly Efficient Electrocatalytic Electrode for Hydrogen Evolution Reaction. ChemCatChem, 2020, 12, 5062-5066.	1.8	6
1062	Covalent 0D–2D Heterostructuring of Co ₉ S ₈ –MoS ₂ for Enhanced Hydrogen Evolution in All pH Electrolytes. Advanced Functional Materials, 2020, 30, 2002536.	7.8	114
1063	Superb Hydrogen Evolution by a Pt Nanoparticle-Decorated Ni ₃ S ₂ Microrod Array. ACS Applied Materials & Interfaces, 2020, 12, 39163-39169.	4.0	41
1064	Dual-modulation of phase and electronic structure in hierarchical Ni3Fe/Ni3FeN catalyst by Mo-doping to achieve efficient oxygen evolution reaction. Applied Surface Science, 2020, 529, 147172.	3.1	10
1065	Microbial electrolysis cells for hydrogen production. Chinese Journal of Chemical Physics, 2020, 33, 263-284.	0.6	4
1066	Heterostructural Co/CeO2/Co2P/CoP@NC dodecahedrons derived from CeO2-inserted zeolitic imidazolate framework-67 as efficient bifunctional electrocatalysts for overall water splitting. International Journal of Hydrogen Energy, 2020, 45, 30559-30570.	3.8	28
1067	Ni ₃ N-Coated Ni Nanorod Arrays for Hydrogen and Oxygen Evolution in Electrochemical Water Splitting. ACS Applied Nano Materials, 2020, 3, 10986-10995.	2.4	23
1068	Exploring The Effect of Precursors of Polymeric Carbon Nitride Nanosheets on their Photo and Electrocatalytic Applications. ChemistrySelect, 2020, 5, 12679-12689.	0.7	2
1069	Size effects of platinum particles@CNT on HER and ORR performance. Science China Materials, 2020, 63, 2517-2529.	3.5	52
1070	Enhanced oxygen and hydrogen evolution performance by carbon-coated CoS ₂ –FeS ₂ nanosheets. Dalton Transactions, 2020, 49, 13352-13358.	1.6	30
1071	Recent Progress in Nonâ€Precious Metal Single Atomic Catalysts for Solar and Nonâ€Solar Driven Hydrogen Evolution Reaction. Advanced Sustainable Systems, 2020, 4, 2000151.	2.7	14
1072	Single-Step Chemical Vapor Deposition Growth of Platinum Nanocrystal: Monolayer MoS ₂ Dendrite Hybrid Materials for Efficient Electrocatalysis. Chemistry of Materials, 2020, 32, 8243-8256.	3.2	23
1073	Nonâ€Metal Singleâ€Phosphorusâ€Atom Catalysis of Hydrogen Evolution. Angewandte Chemie, 2020, 132, 23999-24007.	1.6	16
1074	Alkaliâ€Etched Ni(II)â€Based Metal–Organic Framework Nanosheet Arrays for Electrocatalytic Overall Water Splitting. Small, 2020, 16, e1906564.	5.2	84
1075	Single-atom implanted two-dimensional MOFs as efficient electrocatalysts for the oxygen evolution reaction. Inorganic Chemistry Frontiers, 2020, 7, 4661-4668.	3.0	26
1076	Nano/Microscale Integrated Mushroom-Shaped Hydrophilic CoP@Ni-CoP with Optimized Gas Bubble Release for High-Performance Water Splitting Catalysis. ACS Applied Energy Materials, 2020, 3, 9769-9784.	2.5	11
1077	Recent advances in phase, size, and morphology-oriented nanostructured nickel phosphide for overall water splitting. Journal of Materials Chemistry A, 2020, 8, 19196-19245.	5.2	194

#	Article	IF	CITATIONS
1078	Selective Transfer Semihydrogenation of Alkynes with H 2 O (D 2 O) as the H (D) Source over a Pdâ€₽ Cathode. Angewandte Chemie, 2020, 132, 21356-21361.	1.6	15
1079	Acid-directed morphology control of molybdenum carbide embedded in a nitrogen doped carbon matrix for enhanced electrocatalytic hydrogen evolution. Inorganic Chemistry Frontiers, 2020, 7, 3620-3626.	3.0	11
1080	Manipulated Optical Absorption and Accompanied Photocurrent Using Magnetic Field in Charger Transfer Engineered C/ZnO Nanowires. Global Challenges, 2020, 4, 2000025.	1.8	1
1081	Interface engineering of Ag-Ni3S2 heterostructures toward efficient alkaline hydrogen evolution. Nanoscale, 2020, 12, 19333-19339.	2.8	19
1082	Phosphorus-triggered modification of the electronic structure and surface properties of Pd ₄ S nanowires for robust hydrogen evolution electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 19873-19878.	5.2	42
1083	Electrodeposited nickel phosphide supported by copper foam for proton exchange membrane water electrolyzer. Korean Journal of Chemical Engineering, 2020, 37, 1379-1386.	1.2	10
1084	MOF-aided topotactic transformation into nitrogen-doped porous Mo ₂ C mesocrystals for upgrading the pH-universal hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 20429-20435.	5.2	24
1085	Boosting hydrogen evolution performance by using a plasma-sputtered porous monolithic W ₂ C@WC _{1â~x} /Mo film electrocatalyst. Journal of Materials Chemistry A, 2020, 8, 19473-19483.	5.2	15
1086	Regulating the electronic structure of CoMoO ₄ microrod by phosphorus doping: an efficient electrocatalyst for the hydrogen evolution reaction. Dalton Transactions, 2020, 49, 13152-13159.	1.6	17
1087	Nonâ€Metal Singleâ€Phosphorusâ€Atom Catalysis of Hydrogen Evolution. Angewandte Chemie - International Edition, 2020, 59, 23791-23799.	7.2	69
1088	Transitionâ€Metal Phosphides: Activity Origin, Energyâ€Related Electrocatalysis Applications, and Synthetic Strategies. Advanced Functional Materials, 2020, 30, 2004009.	7.8	309
1089	Molybdenum and tungsten carbides can shine too. Catalysis Science and Technology, 2020, 10, 6089-6097.	2.1	20
1090	Singleâ€Atom Inâ€Doped Subnanometer Pt Nanowires for Simultaneous Hydrogen Generation and Biomass Upgrading. Advanced Functional Materials, 2020, 30, 2004310.	7.8	77
1091	Nickel foam supported Cr-doped NiCo2O4/FeOOH nanoneedle arrays as a high-performance bifunctional electrocatalyst for overall water splitting. Nano Research, 2020, 13, 3299-3309.	5.8	88
1092	Modulation of electronic structures in two-dimensional electrocatalysts for the hydrogen evolution reaction. Chemical Communications, 2020, 56, 11910-11930.	2.2	56
1093	Anion-Modulated Platinum for High-Performance Multifunctional Electrocatalysis toward HER, HOR, and ORR. IScience, 2020, 23, 101793.	1.9	45
1094	Enhanced hydrogen evolution reactivity on \$\${mathrm{Mo}}_2{mathrm{C}}\$\$–\$\${mathrm{Mo}}_2{mathrm{N}}\$\$ composites. Bulletin of Materials Science, 2020, 43, 1.	0.8	4
1095	Synthesis of Porous Mo ₂ C/Nitrogenâ€Doped Carbon Nanocomposites for Efficient Hydrogen Evolution Reaction. ChemistrySelect, 2020, 5, 14307-14311.	0.7	6

#	Article	IF	CITATIONS
1096	Prussian Blue Analogue-Derived Metal Oxides as Electrocatalysts for Oxygen Evolution Reaction: Tailoring the Molar Ratio of Cobalt to Iron. ACS Applied Energy Materials, 2020, 3, 11752-11762.	2.5	26
1097	Direct conversion of metal organic frameworks into ultrafine phosphide nanocomposites in multicomponent plasma for wide pH hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 10402-10408.	5.2	15
1098	Molybdenum Carbideâ€Embedded Multichannel Hollow Carbon Nanofibers as Bifunctional Catalysts for Water Splitting. Chemistry - an Asian Journal, 2020, 15, 1957-1962.	1.7	7
1099	Stable Rhodium (IV) Oxide for Alkaline Hydrogen Evolution Reaction. Advanced Materials, 2020, 32, e1908521.	11.1	115
1100	Advancement of Platinum (Pt)-Free (Non-Pt Precious Metals) and/or Metal-Free (Non-Precious-Metals) Electrocatalysts in Energy Applications: A Review and Perspectives. Energy & Fuels, 2020, 34, 6634-6695.	2.5	100
1101	Crystalline Cobalt/Amorphous LaCoO <i>_x</i> Hybrid Nanoparticles Embedded in Porous Nitrogen-Doped Carbon as Efficient Electrocatalysts for Hydrazine-Assisted Hydrogen Production. ACS Applied Materials & Interfaces, 2020, 12, 24701-24709.	4.0	56
1102	Phosphine vapor-assisted construction of heterostructured Ni ₂ P/NiTe ₂ catalysts for efficient hydrogen evolution. Energy and Environmental Science, 2020, 13, 1799-1807.	15.6	105
1103	Synergistically enhanced hydrogen evolution reaction by ruthenium nanoparticles dispersed on N-doped carbon hollow nanospheres. Chemical Communications, 2020, 56, 6802-6805.	2.2	26
1104	Canonicâ€Like HER Activity of Cr _{1–} <i>_x</i> Mo <i>_x</i> B ₂ Solid Solution: Overpowering Pt/C at High Current Density. Advanced Materials, 2020, 32, e2000855.	11.1	61
1105	Regulating the charge diffusion of two-dimensional cobalt–iron hydroxide/graphene composites for high-rate water oxidation. Journal of Materials Chemistry A, 2020, 8, 11573-11581.	5.2	18
1106	Mechanistic study on nickel-molybdenum based electrocatalysts for the hydrogen evolution reaction. Journal of Catalysis, 2020, 388, 122-129.	3.1	32
1107	Role of anionic vacancy for active hydrogen evolution in WTe2. Applied Surface Science, 2020, 515, 145972.	3.1	34
1108	Improvement of oxygen reduction capacity by activated carbon doped with broccoli-like Co-Ni2P in microbial fuel cells. Chemical Engineering Journal, 2020, 399, 125601.	6.6	16
1109	A general method for large-scale fabrication of metal nanoparticles embedded N-doped carbon fiber cloth with highly efficient hydrogen production in all pH range. Electrochimica Acta, 2020, 353, 136475.	2.6	9
1110	Original Synthesis of Molybdenum Nitrides Using Metal Cluster Compounds as Precursors: Applications in Heterogeneous Catalysis. Chemistry of Materials, 2020, 32, 6026-6034.	3.2	11
1111	On the understanding of the optoelectronic properties of S-doped MoO ₃ and O-doped MoS ₂ bulk systems: a DFT perspective. Journal of Materials Chemistry C, 2020, 8, 9064-9074.	2.7	44
1112	One-step hydrothermal synthesis of three-dimensional structures of MoS2/Cu2S hybrids via a copper foam-assisted method. Materials Letters, 2020, 273, 127928.	1.3	6
1113	Tuning Single-Atom Catalysts of Nitrogen-Coordinated Transition Metals for Optimizing Oxygen Evolution and Reduction Reactions. Journal of Physical Chemistry C, 2020, 124, 13168-13176.	1.5	43

#	Article	IF	CITATIONS
1114	Fluorine-Induced Dual Defects in Cobalt Phosphide Nanosheets Enhance Hydrogen Evolution Reaction Activity. , 2020, 2, 736-743.		81
1115	Effect of â€~water-in-salt' electrolytes in the electrochemical hydrogen evolution reaction of carbon nanotubes. JPhys Energy, 2020, 2, 034001.	2.3	5
1116	Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chemical Society Reviews, 2020, 49, 4681-4736.	18.7	311
1117	CoNiSe ₂ Nanostructures for Clean Energy Production. ACS Omega, 2020, 5, 14702-14710.	1.6	27
1118	Recent Advances in Transition Metal Phosphide Electrocatalysts for Water Splitting under Neutral pH Conditions. ChemElectroChem, 2020, 7, 3578-3589.	1.7	63
1119	Magnetic and topological properties in hydrogenated transition metal dichalcogenide monolayers. Chinese Journal of Physics, 2020, 66, 15-23.	2.0	25
1120	N-doped carbon embedded Ni3S2 electrocatalyst material towards efficient hydrogen evolution reaction in broad pH range. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125194.	2.3	19
1121	Enhanced alkaline hydrogen evolution performance of ruthenium by synergetic doping of cobalt and phosphorus. Sustainable Energy and Fuels, 2020, 4, 4637-4643.	2.5	2
1122	Cobalt-stabilized oxygen vacancy of V2O5 nanosheet arrays with delocalized valence electron for alkaline water splitting. Chemical Engineering Science, 2020, 227, 115915.	1.9	26
1123	2D MoSe2/CoP intercalated nanosheets for efficient electrocatalytic hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 19246-19256.	3.8	32
1124	Interface Modulation of MoS ₂ /Metal Oxide Heterostructures for Efficient Hydrogen Evolution Electrocatalysis. Small, 2020, 16, e2002212.	5.2	68
1125	Facile Synthesis of Cobalt Oxide as an Efficient Electrocatalyst for Hydrogen Evolution Reaction. Frontiers in Chemistry, 2020, 8, 386.	1.8	26
1126	Boosting Activity on Co ₄ N Porous Nanosheet by Coupling CeO ₂ for Efficient Electrochemical Overall Water Splitting at High Current Densities. Advanced Functional Materials, 2020, 30, 1910596.	7.8	218
1127	Transition metal–based nitrides for energy applications. , 2020, , 493-515.		0
1128	Promoting Alkaline Hydrogen Evolution Catalysis on P-Decorated, Ni-Segregated Pt–Ni–P Nanowires via a Synergetic Cascade Route. Chemistry of Materials, 2020, 32, 3144-3149.	3.2	38
1129	In situ construction of tandem nitrogen-doped MoP nanocrystals for high-efficient electrocatalytic hydrogen evolution. Electrochimica Acta, 2020, 342, 136059.	2.6	11
1130	Recent progress in electrode fabrication for electrocatalytic hydrogen evolution reaction: A mini review. Chemical Engineering Journal, 2020, 393, 124726.	6.6	150
1131	Highly efficient electrocatalytic hydrogen evolution promoted by O–Mo–C interfaces of ultrafine β-Mo ₂ C nanostructures. Chemical Science, 2020, 11, 3523-3530.	3.7	54

#	Article	IF	CITATIONS
1132	Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency. Nature Communications, 2020, 11, 1278.	5.8	340
1133	Strain Effect on the Hydrogen Evolution Reaction of V _{Mo} -SLMoS ₂ . IEEE Nanotechnology Magazine, 2020, 19, 192-196.	1.1	3
1134	Transition Metal Phosphideâ€Based Materials for Efficient Electrochemical Hydrogen Evolution: A Critical Review. ChemSusChem, 2020, 13, 3357-3375.	3.6	218
1135	PVP Functionalized Marigold-like MoS2 as a New Electrocatalyst for Highly Efficient Electrochemical Hydrogen Evolution. Electrocatalysis, 2020, 11, 383-392.	1.5	6
1136	Micro-nanoporous MoO2@CoMo heterostructure catalyst for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2020, 270, 118895.	10.8	63
1137	Efficient Energy Conversion and Storage Based on Robust Fluorideâ€Free Selfâ€Assembled 1D Niobium Carbide in 3D Nanowire Network. Advanced Science, 2020, 7, 1903680.	5.6	74
1138	Doubleâ€Solvent Induced Ultrafine Ruthenium Nanoparticles on Porous Carbon for Highly Efficient Hydrogen Evolution Reaction. ChemCatChem, 2020, 12, 2880-2885.	1.8	7
1139	Construction and Application of Interfacial Inorganic Nanostructures. Chinese Journal of Chemistry, 2020, 38, 772-786.	2.6	13
1140	Engineering the hydrogen evolution reaction of transition metals: effect of Li ions. Journal of Materials Chemistry A, 2020, 8, 15795-15808.	5.2	14
1141	2D Fe-doped NiO nanosheets with grain boundary defects for the advanced oxygen evolution reaction. Dalton Transactions, 2020, 49, 6355-6362.	1.6	32
1142	Highly efficient ternary hierarchical NiV2S4 nanosphere as hydrogen evolving electrocatalyst. International Journal of Hydrogen Energy, 2020, 45, 21308-21318.	3.8	8
1143	Metal organic framework-derived porous Fe2N nanocubes by rapid-nitridation for efficient photocatalytic hydrogen evolution. Materials Advances, 2020, 1, 1161-1167.	2.6	22
1144	Efficient Electrocatalytic Performance of WP Nanorods Propagated on WS ₂ /C for Hydrogen Evolution Reduction. ChemElectroChem, 2020, 7, 3082-3088.	1.7	9
1145	Ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO ₂ nanosheets for highly efficient water splitting at large current density. Journal of Materials Chemistry A, 2020, 8, 14545-14554.	5.2	110
1146	Two-Dimensional Layered Materials: High-Efficient Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Nano Materials, 2020, 3, 6270-6296.	2.4	70
1147	Synthesis of molybdenum carbide catalyst by DC arc plasma in ambient air for hydrogen evolution. Materials Chemistry and Physics, 2020, 254, 123509.	2.0	9
1148	<i>In situ</i> templating synthesis of mesoporous Ni–Fe electrocatalyst for oxygen evolution reaction. RSC Advances, 2020, 10, 23321-23330.	1.7	11
1149	Facile synthesis of NiS2–MoS2 heterostructured nanoflowers for enhanced overall water splitting performance. Journal of Materials Science, 2020, 55, 13892-13904.	1.7	28

#	Article	IF	CITATIONS
1150	Crystallized RuTe2 as unexpected bifunctional catalyst for overall water splitting. Applied Catalysis B: Environmental, 2020, 278, 119281.	10.8	161
1151	MoS _{<i>x</i>} on Nitrogen-Doped Graphene for High-Efficiency Hydrogen Evolution Reaction: Unraveling the Mechanisms of Unique Interfacial Bonding for Efficient Charge Transport and Stability. ACS Applied Materials & Interfaces, 2020, 12, 34825-34836.	4.0	20
1152	Single Ni Atoms and Clusters Embedded in Nâ€Đoped Carbon "Tubes on Fibers―Matrix with Bifunctional Activity for Water Splitting at High Current Densities. Small, 2020, 16, e2002511.	5.2	38
1153	Defect-rich engineering and F dopant Co-modulated NiO hollow dendritic skeleton as a self-supported electrode for high-current density hydrogen evolution reaction. Chemical Engineering Journal, 2020, 401, 126037.	6.6	43
1154	Hierarchical Nanorods of MoS ₂ /MoP Heterojunction for Efficient Electrocatalytic Hydrogen Evolution Reaction. Small, 2020, 16, e2002482.	5.2	85
1155	High volume hydrogen evolution from KBH4 hydrolysis with palladium complex catalyst. Renewable Energy, 2020, 161, 257-264.	4.3	23
1156	Core–shell nanostructured electrocatalysts for water splitting. Nanoscale, 2020, 12, 15944-15969.	2.8	83
1157	Polyoxometalateâ€Based Compounds for Photo―and Electrocatalytic Applications. Angewandte Chemie, 2020, 132, 20963-20977.	1.6	38
1158	Polyoxometalateâ€Based Compounds for Photo―and Electrocatalytic Applications. Angewandte Chemie - International Edition, 2020, 59, 20779-20793.	7.2	222
1159	Ambient Temperature Synthesis of Iron-Doped Porous Nickel Pyrophosphate Nanoparticles with Long-Term Chemical Stability for High-Performance Oxygen Evolution Reaction Catalysis and Supercapacitors. ACS Sustainable Chemistry and Engineering, 2020, 8, 2843-2853.	3.2	46
1160	Synergistic Effect of Molybdenum and Tungsten in Highly Mixed Carbide Nanoparticles as Effective Catalysts in the Hydrogen Evolution Reaction under Alkaline and Acidic Conditions. ChemElectroChem, 2020, 7, 983-988.	1.7	13
1161	Phosphorus Vacancies that Boost Electrocatalytic Hydrogen Evolution by Two Orders of Magnitude. Angewandte Chemie, 2020, 132, 8258-8263.	1.6	28
1162	Strong interfacial interaction significantly improving hydrogen evolution reaction performances of MoS2/Ti4O7 composite catalysts. Electrochimica Acta, 2020, 337, 135850.	2.6	21
1163	Synthesis of Ruâ€Doped VN by a Softâ€Urea Pathway as an Efficient Catalyst for Hydrogen Evolution. ChemElectroChem, 2020, 7, 1201-1206.	1.7	11
1164	In-situ optimizing the valence configuration of vanadium sites in NiV-LDH nanosheet arrays for enhanced hydrogen evolution reaction. Journal of Energy Chemistry, 2020, 47, 263-271.	7.1	66
1165	Novel self-supported MoS2/FeS2 nanocomposite as an excellent electrocatalyst for hydrogen evolution. Solid State Sciences, 2020, 101, 106156.	1.5	8
1166	Metal free triad from red phosphorous, reduced graphene oxide and graphitic carbon nitride (red) Tj ETQq0 0 0 r 2020, 338, 135851.	gBT /Overl 2.6	ock 10 Tf 50 33

1167	Electrocatalytic hydrogen evolution using triaryl corrole cobalt complex. Applied Organometallic Chemistry, 2020, 34, e5583.	1.7	13
------	--	-----	----

ARTICLE IF CITATIONS # Transition metal M (M = Co, Ni, and Fe) and boron co-modulation in Rh-based aerogels for highly efficient and pH-universal hydrogen evolution electrocatalysis. Journal of Materials Chemistry A, 1168 5.2 30 2020, 8, 5595-5600. MXenes: Applications in electrocatalytic, photocatalytic hydrogen evolution reaction and CO2 1.0 reduction. Molecular Catalysis, 2020, 486, 110850. Design and modulation principles of molybdenum carbide-based materials for green hydrogen 1170 7.1 39 evolution. Journal of Energy Chemistry, 2020, 48, 398-423. Engineering MoS₂ nanostructures from various MoO₃ precursors towards 1171 hydrogen evolution reaction. CrystEngComm, 2020, 22, 2258-2267. ZIF-derived porous carbon composites coated on NiCo₂S₄ nanotubes array 1172 1.38 toward efficient water splitting. Nanotechnology, 2020, 31, 195402. <i>In situ</i> surface-derivation of AgPdMo/MoS₂ nanowires for synergistic hydrogen 2.8 evolution catalysis in alkaline solution. Nanoscale, 2020, 12, 6472-6479. Relevance of Chemical vs. Electrochemical Oxidation of Tunable Carbene Iridium Complexes for 1174 1.0 16 Catalytic Water Oxidation. European Journal of Inorganic Chemistry, 2020, 2020, 801-812. CoNi-based metal–organic framework nanoarrays supported on carbon cloth as bifunctional 1.4 21 electrocatalysts for efficient water-splitting. New Journal of Chemistry, 2020, 44, 1694-1698. General anion-exchange reaction derived amorphous mixed-metal oxides hollow nanoprisms for 1176 10.8 68 highly efficient water oxidation electrocatalysis. Applied Catalysis B: Environmental, 2020, 266, 118642. Defect engineering in two-dimensional electrocatalysts for hydrogen evolution. Nanoscale, 2020, 12, 2.8 4283-4294. Iron-doped nickle cobalt ternary phosphide hyperbranched hierarchical arrays for efficient overall 1178 2.6 38 water splitting. Electrochimica Acta, 2020, 334, 135633. Boosting electrocatalytic water splitting via metal-metalloid combined modulation in quaternary 1179 5.8 Ni-Fe-P-B amorphous compound. Nano Research, 2020, 13, 447-454. In Situ Growth of Ru Nanoparticles on (Fe,Ni)(OH)₂ to Boost Hydrogen Evolution Activity 1180 4.6 82 at High Current Density in Alkaline Media. Small Methods, 2020, 4, 1900796. Synchronously integration of Co, Fe dual-metal doping in Ru@C and CDs for boosted water splitting performances in alkaline media. Applied Catalysis B: Environmental, 2020, 267, 118657. 10.8 Octapod-Shaped CdSe Nanocrystals Hosting Pt with High Mass Activity for the Hydrogen Evolution 1182 3.2 26 Reaction. Chemistry of Materials, 2020, 32, 2420-2429. Supported dual-atom catalysts: Preparation, characterization, and potential applications. Chinese 174 Journal of Catalysis, 2020, 41, 783-798. The H₂O Dissociation and Hydrogen Evolution Performance of Monolayer 1184 MoS₂ Containing Single Mo Vacancy: A Theoretical Study. IEEE Nanotechnology Magazine, 1.1 6 2020, 19, 163-167. Ultrathin Ni(0)â€Embedded Ni(OH)₂ Heterostructured Nanosheets with Enhanced 11.1 259 Electrochemical Overall Water Splitting. Advanced Materials, 2020, 32, e1906915.

#	Article	IF	CITATIONS
1186	Phosphorus Vacancies that Boost Electrocatalytic Hydrogen Evolution by Two Orders of Magnitude. Angewandte Chemie - International Edition, 2020, 59, 8181-8186.	7.2	183
1187	Design aktiver atomarer Zentren für HERâ€Elektrokatalysatoren. Angewandte Chemie, 2020, 132, 20978-20998.	1.6	18
1188	Manganese oxides transformed from orthorhombic phase to birnessite with enhanced electrochemical performance as supercapacitor electrodes. Journal of Materials Chemistry A, 2020, 8, 3746-3753.	5.2	22
1189	Prussian blue analog nanocubes tuning synthesis of coral-like Ni3S2@MIL-53(NiFeCo) core-shell nanowires array and boosting oxygen evolution reaction. Journal of Power Sources, 2020, 451, 227295.	4.0	22
1190	Recent advancements in heterostructured interface engineering for hydrogen evolution reaction electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 6926-6956.	5.2	158
1191	Ligandâ€Exchangeâ€Induced Amorphization of Pd Nanomaterials for Highly Efficient Electrocatalytic Hydrogen Evolution Reaction. Advanced Materials, 2020, 32, e1902964.	11.1	164
1192	Fundamental aspects and recent advances in transition metal nitrides as electrocatalysts for hydrogen evolution reaction: A review. Current Opinion in Solid State and Materials Science, 2020, 24, 100805.	5.6	262
1193	Synergetic effect between MoS2 and N, S- doped reduced graphene oxide supported palladium nanoparticles for hydrogen evolution reaction. Materials Chemistry and Physics, 2020, 251, 123106.	2.0	23
1194	Electron Density Modulation of Metallic MoO ₂ by Ni Doping to Produce Excellent Hydrogen Evolution and Oxidation Activities in Acid. ACS Energy Letters, 2020, 5, 1908-1915.	8.8	110
1195	Enhancing hydrogen evolution reaction through modulating electronic structure of self-supported NiFe LDH. Catalysis Science and Technology, 2020, 10, 4184-4190.	2.1	53
1196	Enhanced electrocatalytic hydrogen evolution on a plasmonic electrode: the importance of the Ti/TiO2 adhesion layer. Journal of Materials Chemistry A, 2020, 8, 13980-13986.	5.2	10
1197	Interconnected porous nanoflakes of CoMo ₂ S ₄ as an efficient bifunctional electrocatalyst for overall water electrolysis. Inorganic Chemistry Frontiers, 2020, 7, 2241-2247.	3.0	10
1198	Self‣upported Vanadium Carbide by an Electropolymerizationâ€Assisted Method for Efficient Hydrogen Production. ChemSusChem, 2020, 13, 3671-3678.	3.6	22
1199	Stability of 2H- and 1T-MoS ₂ in the presence of aqueous oxidants and its protection by a carbon shell. RSC Advances, 2020, 10, 9324-9334.	1.7	10
1200	Multi-channel V-doped CoP hollow nanofibers as high-performance hydrogen evolution reaction electrocatalysts. Nanoscale, 2020, 12, 9144-9151.	2.8	40
1201	Siloxene, Germanane, and Methylgermanane: Functionalized 2D Materials of Group 14 for Electrochemical Applications. Advanced Functional Materials, 2020, 30, 1910186.	7.8	44
1202	A core-shell structured CoMoO4â‹nH2O@Co1-xFexOOH nanocatalyst for electrochemical evolution of oxygen. Electrochimica Acta, 2020, 345, 136125.	2.6	9
1203	Multi-shelled CoS2–MoS2 hollow spheres as efficient bifunctional electrocatalysts for overall water splitting. International Journal of Hydrogen Energy, 2020, 45, 13290-13299.	3.8	54

#	Article	IF	CITATIONS
1204	Atomically thin PdSeO ₃ nanosheets: a promising 2D photocatalyst produced by quaternary ammonium intercalation and exfoliation. Chemical Communications, 2020, 56, 5504-5507.	2.2	23
1205	An <i>in situ</i> grown lanthanum sulfide/molybdenum sulfide hybrid catalyst for electrochemical hydrogen evolution. Catalysis Science and Technology, 2020, 10, 3247-3254.	2.1	19
1206	Designing transition-metal-boride-based electrocatalysts for applications in electrochemical water splitting. Nanoscale, 2020, 12, 9327-9351.	2.8	88
1207	Layered transition metal dichalcogenide/carbon nanocomposites for electrochemical energy storage and conversion applications. Nanoscale, 2020, 12, 8608-8625.	2.8	32
1208	Biopolymer-Inspired N-Doped Nanocarbon Using Carbonized Polydopamine: A High-Performance Electrocatalyst for Hydrogen-Evolution Reaction. Polymers, 2020, 12, 912.	2.0	19
1209	Interface engineering for enhancing electrocatalytic oxygen evolution of NiFe LDH/NiTe heterostructures. Applied Catalysis B: Environmental, 2020, 273, 119014.	10.8	177
1210	Effective PtAu nanowire network catalysts with ultralow Pt content for formic acid oxidation and methanol oxidation. International Journal of Hydrogen Energy, 2020, 45, 16071-16079.	3.8	27
1211	Synergistic effect of cobalt boride nanoparticles on MoS ₂ nanoflowers for a highly efficient hydrogen evolution reaction in alkaline media. Nanoscale, 2020, 12, 10158-10165.	2.8	24
1212	Recent advances on metal alkoxide-based electrocatalysts for water splitting. Journal of Materials Chemistry A, 2020, 8, 10130-10149.	5.2	43
1213	Highly efficient CoMoS heterostructure derived from vertically anchored Co5Mo10 polyoxometalate for electrocatalytic overall water splitting. Chemical Engineering Journal, 2020, 394, 124849.	6.6	67
1214	Core-shell CoS2@MoS2 nanoparticles as an efficient electrocatalyst for hydrogen evolution reaction. Journal of Alloys and Compounds, 2020, 835, 155264.	2.8	21
1215	Organocatalytic <i>vs.</i> Ru-based electrochemical hydrogenation of nitrobenzene in competition with the hydrogen evolution reaction. Dalton Transactions, 2020, 49, 6446-6456.	1.6	17
1216	Electronic Modulation between Tungsten Nitride and Cobalt Dopants for Enhanced Hydrogen Evolution Reaction at a Wide Range of pH. ChemCatChem, 2020, 12, 2962-2966.	1.8	20
1217	Efficient Co-doped pyrrhotite Fe0.95S1.05 nanoplates for electrochemical water splitting. Chemical Engineering Journal, 2020, 402, 125069.	6.6	49
1218	Effect of Mo content on hydrogen evolution reaction activity of Mo2C/C electrocatalysts. International Journal of Hydrogen Energy, 2020, 45, 12691-12701.	3.8	30
1219	Recent progress of precious-metal-free electrocatalysts for efficient water oxidation in acidic media. Journal of Energy Chemistry, 2020, 51, 113-133.	7.1	66
1220	In situ growth of MoSe2 nanosheets array on Mo foil: An efficient and durable hydrogen evolution electrocatalyst. Materials Letters, 2020, 272, 127828.	1.3	10
1221	Synthesis of Co9S8 nanoparticle embedded, N, S Co-doped mesoporous carbon with salts as templates for electrocatalytic hydrogen evolution. Microporous and Mesoporous Materials, 2020, 302, 110235.	2.2	7

#	Article	IF	CITATIONS
1222	Nanostructured Ni ₂ SeS on Porous-Carbon Skeletons as Highly Efficient Electrocatalyst for Hydrogen Evolution in Acidic Medium. Inorganic Chemistry, 2020, 59, 6018-6025.	1.9	13
1223	Geometric Structure and Electronic Polarization Synergistically Boost Hydrogen Evolution Kinetics in Alkaline Medium. Journal of Physical Chemistry Letters, 2020, 11, 3436-3442.	2.1	18
1224	Highly-dispersed ruthenium precursors <i>via</i> a self-assembly-assisted synthesis of uniform ruthenium nanoparticles for superior hydrogen evolution reaction. RSC Advances, 2020, 10, 14313-14316.	1.7	8
1225	Metal-Organic Framework-Based Engineered Materials—Fundamentals and Applications. Molecules, 2020, 25, 1598.	1.7	75
1226	A NiCo-MOF nanosheet array based electrocatalyst for the oxygen evolution reaction. Nanoscale Advances, 2020, 2, 2073-2079.	2.2	87
1227	2D Transition Metal Dichalcogenides: Design, Modulation, and Challenges in Electrocatalysis. Advanced Materials, 2021, 33, e1907818.	11.1	284
1228	Spatial-controlled etching of coordination polymers. Chinese Chemical Letters, 2021, 32, 635-641.	4.8	9
1229	Conversion of bimetallic MOF to Ru-doped Cu electrocatalysts for efficient hydrogen evolution in alkaline media. Science Bulletin, 2021, 66, 257-264.	4.3	76
1230	Synthesis and electrochemical study of coinage metal nanodendrites for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 2007-2017.	3.8	6
1231	Recent Advances in 1D Electrospun Nanocatalysts for Electrochemical Water Splitting. Small Structures, 2021, 2, 2000048.	6.9	157
1232	An account of the strategies to enhance the water splitting efficiency of noble-metal-free electrocatalysts. Journal of Energy Chemistry, 2021, 59, 160-190.	7.1	48
1233	Inducing two-dimensional single crystal TiN arrays with exposed {1 1 1} facets by a novel chemical vapor deposition with excellent electrocatalytic activity for hydrogen evolution reaction. Chemical Engineering Journal, 2021, 404, 126451.	6.6	5
1234	Multi-site catalyst derived from Cr atoms-substituted CoFe nanoparticles for high-performance oxygen evolution activity. Chemical Engineering Journal, 2021, 404, 126513.	6.6	41
1235	A 3D multi-interface structure of coral-like Fe-Mo-S/Ni3S2@NF using for high-efficiency and stable overall water splitting. Chemical Engineering Journal, 2021, 404, 126483.	6.6	82
1236	Enhanced activity and stability of MoS2 through enriching 1T-phase by covalent functionalization for energy conversion applications. Chemical Engineering Journal, 2021, 403, 126318.	6.6	63
1237	Electrodeposition: Synthesis of advanced transition metal-based catalyst for hydrogen production via electrolysis of water. Journal of Energy Chemistry, 2021, 57, 547-566.	7.1	116
1238	Phosphorus-doped Fe7S8@C nanowires for efficient electrochemical hydrogen and oxygen evolutions: Controlled synthesis and electronic modulation on active sites. Journal of Materials Science and Technology, 2021, 74, 168-175.	5.6	18
1239	CoP-embedded nitrogen and phosphorus co-doped mesoporous carbon nanotube for efficient hydrogen evolution. Applied Surface Science, 2021, 537, 147834.	3.1	17

#	Article	IF	CITATIONS
1240	Anion-mediated transition metal electrocatalysts for efficient water electrolysis: Recent advances and future perspectives. Coordination Chemistry Reviews, 2021, 427, 213552.	9.5	66
1241	Heterogeneous Bimetallic Phosphide Ni ₂ Pâ€Fe ₂ P as an Efficient Bifunctional Catalyst for Water/Seawater Splitting. Advanced Functional Materials, 2021, 31, .	7.8	385
1242	Synergistic Interaction of Double/Simple Perovskite Heterostructure for Efficient Hydrogen Evolution Reaction at High Current Density. Small Methods, 2021, 5, e2000701.	4.6	31
1243	Synchronous Electrocatalytic Design of Architectural and Electronic Structure Based on Bifunctional LDHâ€Co ₃ O ₄ /NF toward Water Splitting. Chemistry - A European Journal, 2021, 27, 3367-3373.	1.7	8
1244	CoS2/MoS2 decorated with nitrogen doped reduced graphene oxide and multiwalled carbon nanotube 3D hybrid as efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 13952-13959.	3.8	30
1245	Self-assembled CuCo2S4 nanosheets with rich surface Co3+ as efficient electrocatalysts for oxygen evolution reaction. Applied Surface Science, 2021, 536, 147826.	3.1	36
1246	Ultrafine Mo2C nanoparticles supported on three-dimensional hierarchical porous carbon architecture toward electrochemical energy storage applications. Journal of Energy Storage, 2021, 33, 101855.	3.9	11
1247	Synthesis of nitrogen and sulfur doped graphene on graphite foam for electro-catalytic phenol degradation and water splitting. Journal of Colloid and Interface Science, 2021, 583, 139-148.	5.0	26
1248	Recent advances in structural engineering of molybdenum disulfide for electrocatalytic hydrogen evolution reaction. Chemical Engineering Journal, 2021, 405, 127013.	6.6	91
1249	"More is Different:―Synergistic Effect and Structural Engineering in Doubleâ€Atom Catalysts. Advanced Functional Materials, 2021, 31, 2007423.	7.8	179
1250	Photoelectrochemical performance of TiO2 nanotube arrays modified with Ni2P Co-catalyst. International Journal of Hydrogen Energy, 2021, 46, 4981-4991.	3.8	15
1251	Surface reconstruction of Ni doped Co–Fe Prussian blue analogues for enhanced oxygen evolution. Catalysis Science and Technology, 2021, 11, 1110-1115.	2.1	22
1252	Local probe investigation of electrocatalytic activity. Chemical Science, 2021, 12, 71-98.	3.7	13
1253	Novel three-dimensional Ni2P-MoS2 heteronanosheet arrays for highly efficient electrochemical overall water splitting. Journal of Alloys and Compounds, 2021, 856, 158094.	2.8	15
1254	Tuning the surface using palladium based metallosurfactant for hydrogen evolution reaction. Journal of Colloid and Interface Science, 2021, 582, 894-905.	5.0	9
1255	WO <i>_x</i> â€6urface Decorated PtNi@Pt Dendritic Nanowires as Efficient pHâ€Universal Hydrogen Evolution Electrocatalysts. Advanced Energy Materials, 2021, 11, 2003192.	10.2	82
1256	Two-dimensional MOS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. Nano Research, 2021, 14, 1985-2002.	5.8	98
1257	Sulfide@hydroxide core–shell nanostructure via a facile heating-electrodeposition method for enhanced electrochemical and photoelectrochemical water oxidation. Journal of Energy Chemistry, 2021, 58, 431-440.	7.1	23

#	Article	IF	Citations
1258	Self-supported electrode of NiCo-LDH/NiCo2S4/CC with enhanced performance for oxygen evolution reaction. Electrochimica Acta, 2021, 367, 137534.	2.6	46
1259	<i>In situ</i> anodic dissolution–cathodic deposition route for preparation of the Pt–SiW ₁₁ Co/SiW ₁₁ Co–CNP/GC electrode: application as an efficient electrode for the hydrogen evolution reaction. Catalysis Science and Technology, 2021, 11, 1098-1109.	2.1	3
1260	Engineering iron phosphide-on-plasmonic Ag/Au-nanoshells as an efficient cathode catalyst in water splitting for hydrogen production. Energy, 2021, 218, 119520.	4.5	9
1261	Building up bimetallic active sites for electrocatalyzing hydrogen evolution reaction under acidic and alkaline conditions. Chemical Engineering Journal, 2021, 413, 128027.	6.6	35
1262	Transitionâ€Metal Carbides as Hydrogen Evolution Reduction Electrocatalysts: Synthetic Methods and Optimization Strategies. Chemistry - A European Journal, 2021, 27, 5074-5090.	1.7	41
1263	Interface engineering of transitional metal sulfide–MoS ₂ heterostructure composites as effective electrocatalysts for water-splitting. Journal of Materials Chemistry A, 2021, 9, 2070-2092.	5.2	136
1264	Solvothermal decoration of <scp>Cu₃SnS₄</scp> on reduced graphene oxide for enhanced electrocatalytic hydrogen evolution reaction. Environmental Progress and Sustainable Energy, 2021, 40, e13558.	1.3	12
1265	Multiatom Catalysts for Energyâ€Related Electrocatalysis. Advanced Sustainable Systems, 2021, 5, 2000213.	2.7	13
1266	Influence of heating rate on formation of nanostructured tungsten carbides during thermo-chemical processing. Advanced Powder Technology, 2021, 32, 121-130.	2.0	5
1267	Spontaneous ruthenium doping in hierarchical flower-like Ni2P/NiO heterostructure nanosheets for superb alkaline hydrogen evolution. Chemical Engineering Journal, 2021, 417, 128069.	6.6	41
1268	Three-dimensional CoMoMg nanomesh based on the nanoscale Kirkendall effect for the efficient hydrogen evolution reaction. Journal of Alloys and Compounds, 2021, 857, 158086.	2.8	17
1269	Dual surfactants applied in synthesis of MoSe2 for high-efficiency hydrogen evolution reaction. Journal of Alloys and Compounds, 2021, 863, 158092.	2.8	13
1270	Integrated transition metal and compounds with carbon nanomaterials for electrochemical water splitting. Journal of Materials Chemistry A, 2021, 9, 3786-3827.	5.2	140
1271	Recent Advances in the Controlled Synthesis and Catalytic Applications of Two-Dimensional Rhodium Nanomaterials. , 2021, 3, 121-133.		28
1272	Bulk phase charge transfer in focus – And in sequential along with surface steps. Catalysis Today, 2021, 364, 2-6.	2.2	8
1273	Two-dimensional transition metal dichalcogenides and their composites for lab-based sensing applications: Recent progress and future outlook. Sensors and Actuators A: Physical, 2021, 318, 112517.	2.0	21
1274	Solutionâ€phaseâ€reconstructed Znâ€based nanowire electrocatalysts for electrochemical reduction of carbon dioxide to carbon monoxide. International Journal of Energy Research, 2021, 45, 7987-7997.	2.2	10
1275	Needle-like CoP/rGO growth on nickel foam as an efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 9690-9698.	3.8	34

#	Article	IF	CITATIONS
1276	Palladium oxide decorated transition metal nitride as efficient electrocatalyst for hydrogen evolution reaction. Journal of Alloys and Compounds, 2021, 855, 157511.	2.8	31
1277	Nanomaterials as electrocatalyst for hydrogen and oxygen evolution reaction: Exploitation of challenges and current progressions. Polyhedron, 2021, 193, 114871.	1.0	23
1278	Dilute molybdenum atoms embedded in hierarchical nanoporous copper accelerate the hydrogen evolution reaction. Scripta Materialia, 2021, 191, 56-61.	2.6	14
1279	Direct electrodeposition of <scp>Niâ€Coâ€S</scp> on carbon paper as an efficient cathode for anion exchange membrane water electrolysers. International Journal of Energy Research, 2021, 45, 1918-1931.	2.2	27
1280	微纳结构过æ,j金属化å•̂物èf½æºè½¬åŒ–电å,¬åŒ–å‰,ç"究进展. Science China Materials, I	2023,64,	1-26.

1281	NiMoCo layered double hydroxides for electrocatalyst and supercapacitor electrode. Science China Materials, 2021, 64, 581-591.	3.5	64	
1282	Toward Active-Site Tailoring in Heterogeneous Catalysis by Atomically Precise Metal Nanoclusters with Crystallographic Structures. Chemical Reviews, 2021, 121, 567-648.	23.0	361	
1283	Mesoporous RhRu Nanosponges with Enhanced Water Dissociation toward Efficient Alkaline Hydrogen Evolution. ACS Applied Materials & Interfaces, 2021, 13, 5052-5060.	4.0	30	
1284	A combined theoretical/experimental study highlighting the formation of carbides on Ru nanoparticles during CO hydrogenation. Nanoscale, 2021, 13, 6902-6915.	2.8	9	
1285	Distinctive MoS ₂ -MoP nanosheet structures anchored on N-doped porous carbon support as a catalyst to enhance the electrochemical hydrogen production. New Journal of Chemistry, 2021, 45, 14042-14049.	1.4	4	
1286	Electrocatalysis of gold-based nanoparticles and nanoclusters. Materials Horizons, 2021, 8, 1657-1682.	6.4	49	
1287	Hierarchical MnCo ₂ O ₄ nanowire@NiFe layered double hydroxide nanosheet heterostructures on Ni foam for overall water splitting. CrystEngComm, 2021, 23, 7141-7150.	1.3	8	
1288	Mechanistic insights into interfaces and nitrogen vacancies in cobalt hydroxide/tungsten nitride catalysts to enhance alkaline hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 11323-11330.	5.2	12	
1289	Atomic heterointerface engineering overcomes the activity limitation of electrocatalysts and promises highly-efficient alkaline water splitting. Energy and Environmental Science, 2021, 14, 5228-5259.	15.6	198	
1290	Gold-based nanoalloys: synthetic methods and catalytic applications. Journal of Materials Chemistry A, 2021, 9, 19025-19053.	5.2	16	
1291	One-dimensional CO9S8-V3S4 heterojunctions as bifunctional electrocatalysts for highly efficient overall water splitting. Science China Materials, 2021, 64, 1396-1407.	3.5	36	
1292	Transition-metal single atoms embedded into defective BC ₃ as efficient electrocatalysts for oxygen evolution and reduction reactions. Nanoscale, 2021, 13, 1331-1339.	2.8	27	
1293	Bimetallic Phosphides as High-Efficient Electrocatalysts for Hydrogen Generation. Inorganic Chemistry, 2021, 60, 1624-1630.	1.9	31	
		CITATION REF	PORT	
------	---	-----------------	------	-----------
#	Article		IF	CITATIONS
1294	In situ transformation of sea urchin-like NixCoyP@NF as an efficient bifunctional electrocatalys overall water splitting. Journal of Materials Science: Materials in Electronics, 2021, 32, 1951-19	: for 61.	1.1	9
1295	Facile synthesis of coral-like Pt nanoparticles/MXene (Ti3C2Tx) with efficient hydrogen evolutic reaction activity. Ionics, 2021, 27, 1221-1231.	n	1.2	18
1296	DNA-based low resistance palladium nano-spheres for effective hydrogen evolution reaction. Catalysis Science and Technology, 2021, 11, 5868-5880.		2.1	5
1297	Metal–organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction. Chemical Society Reviews, 2021, 50, 2663-2695.		18.7	333
1298	Nb ₂ O ₅ –Ni ₃ N heterojunction tuned by interface oxyg engineering for the enhancement of electrocatalytic hydrogen evolution activity. Journal of Materials Chemistry A, 2021, 9, 11563-11570.	en vacancy	5.2	40
1299	CoMn phosphide encapsulated in nitrogen-doped graphene for electrocatalytic hydrogen evolu over a broad pH range. Chemical Communications, 2021, 57, 2400-2403.	tion	2.2	19
1300	Cerium oxide modified iridium nanorods for highly efficient electrochemical water splitting. Chemical Communications, 2021, 57, 8798-8801.		2.2	6
1301	2D-structured V-doped Ni(Co,Fe) phosphides with enhanced charge transfer and reactive sites highly efficient overall water splitting electrocatalysts. Journal of Materials Chemistry A, 2021, 9 12203-12213.	or ,	5.2	45
1302	Nanoporous RuO2 characterized by RuO(OH)2 surface phase as an efficient bifunctional cataly overall water splitting in alkaline solution. Journal of Electroanalytical Chemistry, 2021, 881, 11	st for 4955.	1.9	14
1303	Fluorination activates the basal plane HER activity of ReS ₂ : a combined experiment theoretical study. Journal of Materials Chemistry A, 2021, 9, 14451-14458.	tal and	5.2	21
1304	PMO ₁₂ @ZIF-8/ZnO-derived hierarchical porous molybdenum carbide as efficient electrocatalysts for hydrogen evolution. New Journal of Chemistry, 2021, 45, 9456-9461.		1.4	13
1305	Engineering electrocatalyst nanosurfaces to enrich the activity by inducing lattice strain. Energ Environmental Science, 2021, 14, 3717-3756.	/ and	15.6	98
1306	<i>In situ</i> growth of MOF-derived ultrafine molybdenum carbide nanoparticles supported of foam as efficient hydrogen-evolution electrocatalysts. Journal of Materials Chemistry A, 2021, 9 15246-15253.	ו Ni י,	5.2	17
1307	Highly Efficient Electrocatalytic Water Splitting. , 2021, , 1335-1367.			1
1308	Tuning the interfacial electronic structure <i>via</i> Au clusters for boosting photocatalytic H ₂ evolution. Journal of Materials Chemistry A, 2021, 9, 1759-1769.		5.2	33
1309	Activation Strategy of MoS ₂ as HER Electrocatalyst through Doping-Induced Latti Strain, Band Gap Engineering, and Active Crystal Plane Design. ACS Applied Materials & amp; In 2021, 13, 765-780.	ce cerfaces,	4.0	86
1310	A DFT study of the adsorption energy and electronic interactions of the SO ₂ mole a CoP hydrotreating catalyst. RSC Advances, 2021, 11, 2947-2957.	cule on	1.7	49
1311	Design of Ni ₃ N/Co ₂ N heterojunctions for boosting electrocatalytic a overall water splitting. Journal of Materials Chemistry A, 2021, 9, 10260-10269.	kaline	5.2	57

ARTICLE IF CITATIONS Dual transition-metal atoms doping: an effective route to promote the ORR and OER activity on 1312 26 1.4 MoTe₂. New Journal of Chemistry, 2021, 45, 5589-5595. Heterogeneous Co–CN nanofibers with controlled active terminal N sites for hydrogen evolution 1.4 reaction. New Journal of Chemistry, 2021, 45, 4437-4442. Shape-selective rhodium nano-huddles on DNA for high efficiency hydrogen evolution reaction in 1314 2.7 15 acidic medium. Journal of Materials Chemistry C, 2021, 9, 1709-1720. Bimetallic Metal–Organic Framework-Derived Graphitic Carbon-Coated Small Co/VN Nanoparticles as 4.0 Advanced Trifunctional Electrocatalysts. ACS Applied Materials & amp; Interfaces, 2021, 13, 2462-2471. Partially reduced Ru/RuO₂composites as efficient and pH-universal electrocatalysts for 1316 15.6 73 hydrogen evolution. Energy and Environmental Science, 2021, 14, 5433-5443. Construction of self-supporting, hierarchically structured caterpillar-like NiCo₂S₄ arrays as an efficient trifunctional electrocatalyst for water and 2.8 urea electrolysis. Nanoscale, 2021, 13, 1680-1688. 2D porous molybdenum nitride/cobalt nitride heterojunction nanosheets with interfacial electron 1318 redistribution for effective electrocatalytic overall water splitting. Journal of Materials Chemistry 5.2 72 A, 2021, 9, 8620-8629. Hollow Multiple Noble Metallic Nanoalloys by Mercury-Assisted Galvanic Replacement Reaction for 1319 1.9 Hydrogen Evolution. Inorganic Chemistry, 2021, 60, 3471-3478. Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction in Water Electrolysis. 1320 13.1 224 Electrochemical Energy Reviews, 2021, 4, 473-507. Recent innovations of silk-derived electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and oxygen reduction reaction. International Journal of Hydrogen Energy, 2021, 3.8 46, 7848-7865. Co₂N/Co₂Mo₃O₈ Heterostructure as a Highly Active Electrocatalyst for an Alkaline Hydrogen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 1322 4.050 2021, 13, 8337-8343. Nanocrystalline NiSe₂/MoS₂ heterostructures for electrochemical hydrogen 1.3 evolution reaction. Nanotechnology, 2021, 32, 175602. Fine-tuning interlayer spacing in MoS2 for enriching 1T phase via alkylated ammonium ions for 1324 electrocatalytic hydrogen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 3.8 21 8377-8390. Uncovering the Role of Countercations in Ligand Exchange of WSe₂: Tuning the d-Band Center toward Improved Hydrogen Desorption. ACS Applied Materials & amp; Interfaces, 2021, 13, 4.0 11403-11413. Morphology-controllable nanocrystal Î²-Ni(OH)2/NF designed by hydrothermal etching method as high-efficiency electrocatalyst for overall water splitting. Journal of Electroanalytical Chemistry, 1326 1.9 28 2021, 882, 115035. Potentiostatically deposited bimetallic cobalt–nickel selenide nanostructures on nickel foam for highly efficient overall water splitting. International Journal of Hydrogen Energy, 2021, 46, 7297-7308. Nanoporous Silver Telluride for Active Hydrogen Evolution. ACS Nano, 2021, 15, 6540-6550. 1328 7.3 10 Current progress of molybdenum carbide-based materials for electrocatalysis: potential 1329 1.7 electrocatalysts with diverse applications. Materials Today Chemistry, 2021, 19, 100411.

#	Article	IF	CITATIONS
1330	High Spatial Resolution Electrochemical Microscopic Observation of Enhanced Charging under Bias at Active Sites of N-rGO. ACS Applied Energy Materials, 2021, 4, 3502-3507.	2.5	8
1331	Porous Fe-Co-P nanowire arrays through alkaline etching as self-supported electrodes for efficient hydrogen production. Journal of Solid State Electrochemistry, 2021, 25, 1623-1631.	1.2	4
1332	Activate Fe ₃ S ₄ Nanorods by Ni Doping for Efficient Dye-Sensitized Photocatalytic Hydrogen Production. ACS Applied Materials & Interfaces, 2021, 13, 14198-14206.	4.0	34
1333	Oxygen Evolution on Iron Oxide Nanoparticles: The Impact of Crystallinity and Size on the Overpotential. Journal of the Electrochemical Society, 2021, 168, 034518.	1.3	15
1335	Hybrid Structure of Ionic Liquid and TiO ₂ Nanoclusters for Efficient Hydrogen Evolution Reaction. Journal of Physical Chemistry A, 2021, 125, 2653-2665.	1.1	26
1336	Recent advances in vacancy engineering of metalâ€organic frameworks and their derivatives for electrocatalysis. SusMat, 2021, 1, 66-87.	7.8	230
1337	Electronic structure modulation of MoS2 by substitutional Se incorporation and interfacial MoO3 hybridization: Implications of Fermi engineering for electrocatalytic hydrogen evolution and oxygen evolution. Chemical Physics Reviews, 2021, 2, .	2.6	8
1338	Palladium-Incorporated $\hat{l}\pm$ -MoC Mesoporous Composites for Enhanced Direct Hydrodeoxygenation of Anisole. Catalysts, 2021, 11, 370.	1.6	18
1339	Electrocatalytic activity of layered MAX phases for the hydrogen evolution reaction. Electrochemistry Communications, 2021, 125, 106977.	2.3	26
1340	NiSe2/Ni5P4 nanosheets on nitrogen-doped carbon nano-fibred skeleton for efficient overall water splitting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614, 126189.	2.3	13
1341	Microwave-Assisted Facile Hydrothermal Synthesis of Fe ₃ O ₄ –GO Nanocomposites for the Efficient Bifunctional Electrocatalytic Activity of OER/ORR. Energy & Fuels, 2021, 35, 8263-8274.	2.5	22
1342	Insights into the principles, design methodology and applications of electrocatalysts towards hydrogen evolution reaction. Energy Reports, 2021, 7, 8577-8596.	2.5	4
1343	NiFeP-MoO2 hybrid nanorods on nickel foam as high-activity and high-stability electrode for overall water splitting. Chemical Engineering Journal, 2021, 409, 128161.	6.6	86
1344	Ultrasound assisted synthesis of highly active nanoflower-like CoMoS4 electrocatalyst for oxygen and hydrogen evolution reactions. Ultrasonics Sonochemistry, 2021, 72, 105454.	3.8	43
1345	Photonic Flash Synthesis of Mo ₂ C/Graphene Electrocatalyst for the Hydrogen Evolution Reaction. ACS Catalysis, 2021, 11, 5865-5872.	5.5	51
1346	Valenceâ€State Effect of Iridium Dopant in NiFe(OH) ₂ Catalyst for Hydrogen Evolution Reaction. Small, 2021, 17, e2100203.	5.2	31
1347	In-situ grown nickel-cobalt bimetallic nanowire arrays for efficient hydrogen evolution reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615, 126205.	2.3	6
1348	One-Pot Synthesis of B/P-Codoped Co-Mo Dual-Nanowafer Electrocatalysts for Overall Water Splitting. ACS Applied Materials & amp; Interfaces, 2021, 13, 20024-20033.	4.0	52

#	Article	IF	CITATIONS
1349	Synthesis of MoS2 nanoparticles embedded, N, S co-doped mesoporous carbon via molten salt method as hydrogen evolution electrocatalyst under alkaline and neutral conditions. International Journal of Hydrogen Energy, 2021, 46, 13936-13945.	3.8	9
1350	Outstanding stability and photoelectrochemical catalytic performance of (Fe, Ni) co-doped Co3O4 photoelectrodes for solar hydrogen production. International Journal of Hydrogen Energy, 2021, 46, 12915-12935.	3.8	23
1351	Anticatalytic Strategies to Suppress Water Electrolysis in Aqueous Batteries. Chemical Reviews, 2021, 121, 6654-6695.	23.0	175
1352	Open Framework Material Based Thin Films: Electrochemical Catalysis and Stateâ€ofâ€theâ€art Technologies. Advanced Energy Materials, 2022, 12, 2003499.	10.2	25
1353	Optimized MoP with Pseudo-Single-Atom Tungsten for Efficient Hydrogen Electrocatalysis. Chemistry of Materials, 2021, 33, 3639-3649.	3.2	20
1354	MOF-derived FeNiCoOX hierarchical hollow nanocages for oxygen evolution reaction. Materials Letters, 2021, 291, 129564.	1.3	16
1355	Organotrialkoxysilane-mediated synthesis of Ni–Pd nanocatalysts at lower concentrations of noble metal: Catalysts for faster hydrogen evolution kinetics. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2021, 39, 032802.	0.6	0
1356	Regulation of Perovskite Surface Stability on the Electrocatalysis of Oxygen Evolution Reaction. , 2021, 3, 721-737.		61
1357	Self-supported Mo0.2Co0.8P nanowire arrays on carbon cloth as a high-performance and durable hydrogen evolution reaction electrocatalyst in wide-range pH. Journal of Electroanalytical Chemistry, 2021, 888, 115201.	1.9	3
1358	Construction of Ni–Mo–P heterostructures with efficient hydrogen evolution performance under acidic condition. Journal of Materials Science: Materials in Electronics, 2021, 32, 14966-14975.	1.1	4
1359	Electronic structure modulation of CoSe2 nanowire arrays by tin doping toward efficient hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 17133-17142.	3.8	22
1360	Enhanced catalytic hydrogen evolution reaction performance of highly dispersed Ni2P nanoparticles supported by P-doped porous carbon. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616, 126308.	2.3	10
1361	Large-scale preparation of 2D VSe2 through a defect-engineering approach for efficient hydrogen evolution reaction. Chemical Engineering Journal, 2021, 411, 128494.	6.6	30
1362	Promoted electrocatalytic hydrogen evolution performance by constructing Ni12P5–Ni2P heterointerfaces. International Journal of Hydrogen Energy, 2021, 46, 17097-17105.	3.8	25
1363	2D-Layered Non-Precious Electrocatalysts for Hydrogen Evolution Reaction: Fundamentals to Applications. Catalysts, 2021, 11, 689.	1.6	20
1364	Microwave-hydrothermal synthesis of copper sulphide nanorods embedded on graphene sheets as an efficient electrocatalyst for excellent hydrogen evolution reaction. Fuel, 2021, 291, 120143.	3.4	23
1365	Ni-based 3D hierarchical heterostructures achieved by selective electrodeposition as a bifunctional electrocatalyst for overall water splitting. Electrochimica Acta, 2021, 379, 138042.	2.6	26
1366	Highly Surface-Distorted Pt Superstructures for Multifunctional Electrocatalysis. Nano Letters, 2021, 21, 5075-5082.	4.5	31

#	Article	IF	CITATIONS
1367	Exploring the Dominant Role of Atomic―and Nanoâ€Ruthenium as Active Sites for Hydrogen Evolution Reaction in Both Acidic and Alkaline Media. Advanced Science, 2021, 8, e2004516.	5.6	58
1368	Transition metal based ternary hierarchical metal sulphide microspheres as electrocatalyst for splitting of water into hydrogen and oxygen fuel. Catalysis Today, 2022, 397-399, 618-630.	2.2	15
1369	A Solventâ€Free Strategy to Synthesize MoS ₂ /Mo ₂ Câ€Embedded, N, S Coâ€Doped Mesoporous Carbon as Electrocatalysts for Hydrogen Evolution. ChemistrySelect, 2021, 6, 5628-5632.	0.7	1
1370	Improved Hydrogen Generation Performance via Hydrolysis of MgH ₂ with Nb ₂ 0 ₅ and CeO ₂ Doping. Materials Transactions, 2021, 62, 880-886.	0.4	12
1371	Performance Prediction of Multiple Photoanodes Systems for Unbiased Photoelectrochemical Water Splitting. , 2021, 3, 939-946.		2
1372	Two-Dimensional Layered NiLiP2S6 Crystals as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. Catalysts, 2021, 11, 786.	1.6	3
1373	A facile solution approach for fabrication of small-sized MoSe2 with few layers as an efficient hydrogen evolution electrocatalyst. Frontiers of Materials Science, 2021, 15, 448-455.	1.1	2
1374	Meritorious spatially on hierarchically Co3O4/MoS2 phase nanocomposite synergistically a high-efficient electrocatalyst for hydrogen evolution reaction performance: Recent advances & future perspectives. International Journal of Hydrogen Energy, 2021, 46, 22707-22718.	3.8	24
1375	Recent advances of single-atom electrocatalysts for hydrogen evolution reaction. JPhys Materials, 2021, 4, 042002.	1.8	11
1376	Cu–Co–P electrodeposited on carbon paper as an efficient electrocatalyst for hydrogen evolution reaction in anion exchange membrane water electrolyzers. International Journal of Hydrogen Energy, 2021, 46, 19789-19801.	3.8	21
1377	Iron Phthalocyanine/Two-Dimensional Metal–Organic Framework Composite Nanosheets for Enhanced Alkaline Hydrogen Evolution. Inorganic Chemistry, 2021, 60, 9987-9995.	1.9	32
1378	Graphene quantum dots-based heterogeneous catalysts. New Carbon Materials, 2021, 36, 449-467.	2.9	16
1379	Recent advances in nanostructured electrocatalysts for hydrogen evolution reaction. Rare Metals, 2021, 40, 3375-3405.	3.6	112
1380	Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent Progress, and Future Prospects. Advanced Materials, 2021, 33, e2007100.	11.1	781
1381	Converting copper sulfide to copper with surface sulfur for electrocatalytic alkyne semi-hydrogenation with water. Nature Communications, 2021, 12, 3881.	5.8	77
1382	Engineering local coordination environment of atomically dispersed platinum catalyst via lattice distortion of support for efficient hydrogen evolution reaction. Materials Today Energy, 2021, 20, 100653.	2.5	19
1383	Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction. Nature Communications, 2021, 12, 3783.	5.8	355
1385	Recent Progress of Electrocatalysts and Photocatalysts Bearing First Row Transition Metal for Hydrogen Evolution Reaction (HER). , 0, , .		0

#	Article	IF	CITATIONS
1386	Achieving low-energy consumption water-to-hydrogen conversion via urea electrolysis over a bifunctional electrode of hierarchical cuprous sulfide@nickel selenide nanoarrays. Journal of Colloid and Interface Science, 2021, 592, 13-21.	5.0	33
1387	Metal hydride mediated water splitting: Electrical energy saving and decoupled H2/O2 generation. Materials Today, 2021, 47, 16-24.	8.3	13
1388	Sphere-Shaped Bimetallic Sulphoselenide: An Efficient Electrocatalyst for Hydrogen Evolution Reaction. Energy & Fuels, 2021, 35, 12473-12481.	2.5	17
1389	Metal carbides as alternative electrocatalysts for energy conversion reactions. Journal of Catalysis, 2021, 404, 911-924.	3.1	20
1390	One Nanometer PtIr Nanowires as High-Efficiency Bifunctional Catalysts for Electrosynthesis of Ethanol into High Value-Added Multicarbon Compound Coupled with Hydrogen Production. Journal of the American Chemical Society, 2021, 143, 10822-10827.	6.6	95
1392	Enhanced Electrocatalysis for Hydrogen Evolution over a Nanoporous NiAlTi/Al ₃ Ti Hybrid. ACS Applied Energy Materials, 2021, 4, 7579-7588.	2.5	6
1393	Theoretical Investigation of HER Mechanism Using Density Functional and Ab Initio Calculations. Bulletin of the Korean Chemical Society, 2021, 42, 1289.	1.0	1
1394	Cobalt nanoparticles encapsulated in nitrogen-rich carbonitride nanotubes for efficient and stable hydrogen evolution reaction at all pH values. International Journal of Hydrogen Energy, 2021, 46, 26347-26357.	3.8	7
1395	Stable multifunctional single-atom catalysts adsorbed on pyrazine-modified graphyne. Applied Surface Science, 2021, 553, 149464.	3.1	32
1396	Engineering of aerogelâ€based electrocatalysts for oxygen evolution reaction. Electrochemical Science Advances, 2022, 2, e2100113.	1.2	1
1397	Heterojunction catalyst in electrocatalytic water splitting. Coordination Chemistry Reviews, 2021, 439, 213953.	9.5	195
1398	General Design Concept for Singleâ€Atom Catalysts toward Heterogeneous Catalysis. Advanced Materials, 2021, 33, e2004287.	11.1	170
1399	Selectivity Origin of Organic Electrosynthesis Controlled by Electrode Materials: A Case Study on Pinacols. ACS Catalysis, 2021, 11, 8958-8967.	5.5	45
1400	Cr ³⁺ lonâ€Induced Phase Stabilization of 1Tâ^'MoSe ₂ with Abundant Active Sites for Efficient Hydrogen Evolution Reaction. ChemNanoMat, 2021, 7, 1063-1071.	1.5	8
1401	Electrochemistry of the Silicon Oxide Dielectric Layer: Principles, Electrochemical Reactions, and Perspectives. Chemistry - an Asian Journal, 2021, 16, 3014-3025.	1.7	2
1402	Density Functional Theory for Electrocatalysis. Energy and Environmental Materials, 2022, 5, 157-185.	7.3	95
1403	Nano-pom-pom multiphasic MoS2 grown on carbonized wood as electrode for efficient hydrogen evolution in acidic and alkaline media. International Journal of Hydrogen Energy, 2021, 46, 28087-28097.	3.8	22
1404	In situ Raman spectroscopic study towards the growth and excellent HER catalysis of Ni/Ni(OH)2 heterostructure. International Journal of Hydrogen Energy, 2021, 46, 26861-26872.	3.8	63

#	Article	IF	Citations
1405	Cleaner way for overall water splitting reaction by using palladium and cobalt based nanocomposites prepared from mixed metallosurfactants. Applied Surface Science, 2021, 556, 149769.	3.1	4
1406	Monolayer 1T and 1T′ MoSO as Promising Electrocatalyst for Hydrogen Evolution based on First Principle Calculations. ChemPhysChem, 2021, 22, 2034-2041.	1.0	5
1407	Incorporating ultra-small N-doped Mo2C nanoparticles onto 3D N-doped flower-like carbon nanospheres for robust electrocatalytic hydrogen evolution. Nano Energy, 2021, 86, 106047.	8.2	66
1408	Recent Developments in Microbial Electrolysis Cell-Based Biohydrogen Production Utilizing Wastewater as a Feedstock. Sustainability, 2021, 13, 8796.	1.6	53
1409	One-Dimensional Hollow Structures of 2 <i>O</i> -PdS ₂ Decorated Carbon for Water Electrolysis. ACS Applied Energy Materials, 2021, 4, 8715-8720.	2.5	3
1410	Recent progress in self-supported nanoarrays with diverse substrates for water splitting and beyond. Materials Today Nano, 2021, 15, 100120.	2.3	11
1411	Ru-Co-Mn trimetallic alloy nanocatalyst driving bifunctional redox electrocatalysis. Science China Materials, 2022, 65, 131-138.	3.5	16
1412	Recent decoupling and coupling strategies for water splitting. Nano Futures, 2021, 5, 042001.	1.0	8
1413	Dual-atom catalysts: controllable synthesis and electrocatalytic applications. Science China Chemistry, 2021, 64, 1908-1922.	4.2	51
1414	CO2 Utilization Through its Reduction to Methanol: Design of Catalysts Using Quantum Mechanics and Machine Learning. , 2022, 7, 1-11.		3
1415	Facile fabrication of bimetallic Fe2P–Ni2P heterostructure for boosted oxygen evolution. Journal of Materials Science: Materials in Electronics, 2021, 32, 23420-23428.	1.1	2
1416	A self-supporting electrode with in-situ partial transformation of Fe-MOF into amorphous NiFe-LDH for efficient oxygen evolution reaction. Applied Surface Science, 2021, 556, 149781.	3.1	47
1417	Layered transition metal selenophosphites for visible light photoelectrochemical production of hydrogen. Electrochemistry Communications, 2021, 129, 107077.	2.3	7
1418	Multiâ€Sites Electrocatalysis in Highâ€Entropy Alloys. Advanced Functional Materials, 2021, 31, 2106715.	7.8	128
1419	Amorphous-crystalline catalytic interface of CoFeOH/CoFeP with double sites based on ultrafast hydrolysis for hydrogen evolution at high current density. Journal of Power Sources, 2021, 507, 230279.	4.0	24
1420	In situ-Electrochemically reduced graphene oxide integrated with cross-linked supramolecular polymeric network for electrocatalytic hydrogen evaluation reaction. Polymer, 2021, 231, 124140.	1.8	2
1421	Hierarchical Nanostructured Co–Mo–B/CoMoO _{4–<i>x</i>} Amorphous Composite for the Alkaline Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2021, 13, 42605-42612.	4.0	18
1422	Palladium Nanoparticles Hardwired in Carbon Nanoreactors Enable Continually Increasing Electrocatalytic Activity During the Hydrogen Evolution Reaction. ChemSusChem, 2021, 14, 4973-4984.	3.6	6

#	Article	IF	CITATIONS
1423	The promise of hydrogen production from alkaline anion exchange membrane electrolyzers. Nano Energy, 2021, 87, 106162.	8.2	149
1424	Electrodeposited amorphous cobalt-nickel-phosphide-derived films as catalysts for electrochemical overall water splitting. Chemical Engineering Journal, 2021, 420, 129686.	6.6	59
1425	Self‣upported Electrocatalysts for Practical Water Electrolysis. Advanced Energy Materials, 2021, 11, 2102074.	10.2	161
1426	Uniform W-NiCoP microneedles by molten salt decomposition as bifunctional electrocatalyst for alkaline water splitting. Applied Materials Today, 2021, 24, 101154.	2.3	12
1427	Interfacial electronic structure engineering on molybdenum sulfide for robust dual-pH hydrogen evolution. Nature Communications, 2021, 12, 5260.	5.8	93
1428	Synthesis of Ni3S4/NiS2/FeS2 nanoparticles for hydrogen and oxygen evolution reaction. Applied Surface Science, 2021, 560, 149985.	3.1	42
1429	Emerging two-dimensional nanocatalysts for electrocatalytic hydrogen production. Chinese Chemical Letters, 2022, 33, 1831-1840.	4.8	67
1430	Graphene oxide supported transition metal mixed oxide nanourchins onto bimetallic phosphide coatings as high performance hydrogen evolution electrodes in alkaline media. Journal of Alloys and Compounds, 2021, 875, 160033.	2.8	10
1431	Iron/Iron Carbide (Fe/Fe ₃ C) Encapsulated in S, N Codoped Graphitic Carbon as a Robust HER Electrocatalyst. Energy & Fuels, 2021, 35, 16046-16053.	2.5	11
1432	Recent development in electrocatalysts for hydrogen production through water electrolysis. International Journal of Hydrogen Energy, 2021, 46, 32284-32317.	3.8	236
1433	Atomic interactions of two-dimensional PtS2 quantum dots/TiC heterostructures for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2021, 293, 120227.	10.8	21
1434	Atmosphere plasma treatment and Co heteroatoms doping on basal plane of colloidal 2D VSe2 nanosheets for enhanced hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 32425-32434.	3.8	10
1435	Transformation of microwave synthesized highly uniform FeMo-MIL-88B nanorod to oxynitride derivate for overall water splitting reaction. Applied Materials Today, 2021, 24, 101093.	2.3	3
1436	Promotion for Full Water Splitting toward Vanadium-Incorporated MoO ₂ –MoNi ₄ Hybrid Nanoarrays. ACS Sustainable Chemistry and Engineering, 2021, 9, 13225-13232.	3.2	12
1437	Electrocatalytic Hydrogen Evolution Reaction Related to Nanochannel Materials. Small Structures, 2021, 2, 2100076.	6.9	36
1438	Improved catalytic efficiency and stability by surface activation in Fe-based amorphous alloys for hydrogen evolution reaction in acidic electrolyte. Electrochimica Acta, 2021, 390, 138815.	2.6	13
1439	Multicomponent nonprecious hydrogen evolution catalysts for high performance and durable proton exchange membrane water electrolyzer. Journal of Power Sources, 2021, 506, 230200.	4.0	17
1440	Carbon supported Ni3N/Ni heterostructure for hydrogen evolution reaction in both acid and alkaline media. International Journal of Hydrogen Energy, 2021, 46, 30739-30749.	3.8	28

#	Article	IF	CITATIONS
1441	Fabrication of an Ag2S-MoSx/MoNiAg film electrode for efficient electrocatalytic hydrogen evolution in alkaline solution. Materials Today Energy, 2021, 21, 100768.	2.5	7
1442	Ultra-thin pine tree-like MoS2 nanosheets with maximally exposed active edges terminated at side surfaces on stainless steel fiber felt for hydrogen evolution reaction. Journal of Alloys and Compounds, 2021, 876, 160163.	2.8	9
1443	Morphology and distribution of in-situ grown MoP nanoparticles on carbon nanotubes to enhance hydrogen evolution reaction. Journal of Alloys and Compounds, 2021, 877, 160214.	2.8	19
1444	Ultrastable NiFeOOH/NiFe/Ni electrocatalysts prepared by in-situ electro-oxidation for oxygen evolution reaction at large current density. Applied Surface Science, 2021, 564, 150440.	3.1	30
1445	Self-supporting transition metal chalcogenides on metal substrates for catalytic water splitting. Chemical Engineering Journal, 2021, 421, 129645.	6.6	62
1446	Ru nanoparticles supported on partially reduced TiO2 as highly efficient catalyst for hydrogen evolution. Nano Energy, 2021, 88, 106211.	8.2	43
1447	Surface modification of SnO2 nanosheets via ultrathin N-doped carbon layers for improving CO2 electrocatalytic reduction. Chemical Engineering Journal, 2021, 421, 130003.	6.6	31
1448	Recent progress in CoP-based materials for electrochemical water splitting. International Journal of Hydrogen Energy, 2021, 46, 34194-34215.	3.8	38
1449	Chemical synthesis of a microsphere-like copper molybdate electrode for oxygen evolution reaction. Surfaces and Interfaces, 2021, 26, 101425.	1.5	8
1450	Self-supporting NiFe LDH-MoS integrated electrode for highly efficient water splitting at the industrial electrolysis conditions. Chinese Journal of Catalysis, 2021, 42, 1732-1741.	6.9	50
1451	Hollow and substrate-supported Prussian blue, its analogs, and their derivatives for green water splitting. Chinese Journal of Catalysis, 2021, 42, 1843-1864.	6.9	19
1452	Hierarchical Cu@Co-decorated CuO@Co3O4 nanostructure on Cu foam as efficient self-supported catalyst for hydrogen evolution reaction. Journal of Alloys and Compounds, 2021, 882, 160749.	2.8	25
1453	Phosphorus doped nickel selenide for full device water splitting. Journal of Colloid and Interface Science, 2021, 602, 115-122.	5.0	17
1454	Recent progress on transition metal oxides as advanced materials for energy conversion and storage. Energy Storage Materials, 2021, 42, 317-369.	9.5	113
1455	Porosity and thickness effect of Pd–Cu–Si metallic glasses on electrocatalytic hydrogen production and storage. Materials and Design, 2021, 210, 110099.	3.3	7
1456	Atomically dispersed Ni on Mo2C embedded in N, P co-doped carbon derived from polyoxometalate supramolecule for high-efficiency hydrogen evolution electrocatalysis. Applied Catalysis B: Environmental, 2021, 296, 120336.	10.8	58
1457	Hierarchical Cu/Cu2O structure derived from hexagonal Cu9S5 nanocrystal with enhanced electrocatalytic ability for hydrogen evolution reaction. Journal of Alloys and Compounds, 2021, 883, 160816.	2.8	9
1458	Graphene nanosheets supported high-defective Pd nanocrystals as an efficient electrocatalyst for hydrogen evolution reaction. Chemical Engineering Journal, 2021, 425, 131526.	6.6	11

#	Article	IF	CITATIONS
1459	Multifunctional electrocatalysts of nickel boride nanoparticles for superior hydrogen oxidation and water splitting. Materials Today Energy, 2021, 22, 100846.	2.5	24
1460	MXene-induced electronic optimization of metal-organic framework-derived CoFe LDH nanosheet arrays for efficient oxygen evolution. Applied Catalysis B: Environmental, 2021, 298, 120599.	10.8	82
1461	Nanostructured NaFeS2 as a cost-effective and robust electrocatalyst for hydrogen and oxygen evolution with reduced overpotentials. Chemical Engineering Journal, 2021, 426, 131315.	6.6	20
1462	Self-optimizing iron phosphorus oxide for stable hydrogen evolution at high current. Applied Catalysis B: Environmental, 2021, 298, 120559.	10.8	14
1463	Hydrazine hydrate-assisted adjustment of sulfur-rich MoS2 as hydrogen evolution electrocatalyst. Journal of Alloys and Compounds, 2021, 885, 160990.	2.8	16
1464	1ÂT-Phase Enriched P doped WS2 nanosphere for highly efficient electrochemical hydrogen evolution reaction. Chemical Engineering Journal, 2022, 429, 132187.	6.6	42
1465	Rational design of electrospun nanofiber-typed electrocatalysts for water splitting: A review. Chemical Engineering Journal, 2022, 428, 131133.	6.6	42
1466	Fe and Co dual-doped Ni3S4 nanosheet with enriched high-valence Ni sites for efficient oxygen evolution reaction. Chemical Engineering Journal, 2022, 427, 130742.	6.6	59
1467	One-step synthesis of heterostructured cobalt-iron selenide as bifunctional catalyst for overall water splitting. Materials Chemistry and Physics, 2022, 275, 125201.	2.0	21
1468	Predominantly enhanced catalytic activities of surface protected ZnO nanorods integrated stainless-steel mesh structures: A synergistic impact on oxygen evolution reaction process. Chemical Engineering Journal, 2022, 429, 132360.	6.6	9
1469	A branch-leaf-like hierarchical self-supporting electrode as a highly efficient catalyst for hydrogen evolution. New Journal of Chemistry, 2021, 45, 10890-10896.	1.4	5
1470	Carbon nitride used as a reactive template to prepare mesoporous molybdenum sulfide and nitride. RSC Advances, 2021, 11, 21678-21684.	1.7	6
1471	A facile preparation method for MoS2 nanosheets and their well-controllable interfacial assembly with PEDOT: PSS for effective electrochemical hydrogen evolution reactions. Journal of Materials Science, 2021, 56, 7008-7021.	1.7	7
1472	Versatile construction of a hierarchical porous electrode and its application in electrochemical hydrogen production: a mini review. Materials Advances, 2021, 2, 1177-1189.	2.6	12
1473	Boosting the water dissociation kinetics <i>via</i> charge redistribution of ruthenium decorated on S, N-codoped carbon. Journal of Materials Chemistry A, 2021, 9, 16967-16973.	5.2	19
1474	Regulation of the surface micro-structure and crystal phase of Pd ₂ B mesoporous nanoparticles for enhanced hydrogen evolution electrocatalysis. Journal of Materials Chemistry A, 2021, 9, 21123-21131.	5.2	10
1475	Nanomaterials for the electrochemical nitrogen reduction reaction under ambient conditions. Nanoscale Advances, 2021, 3, 5525-5541.	2.2	13
1476	Continuous 3D-nanopatterned Ni–Mo solid solution as a free-standing electrocatalyst for the hydrogen evolution reaction in alkaline medium. Journal of Materials Chemistry A, 2021, 9, 7767-7773.	5.2	17

#	Article	IF	Citations
1477	Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy and Environmental Science, 2021, 14, 1897-1927.	15.6	415
1478	Metal oxide-based electrocatalysts for low-temperature electrochemical production and oxidation of hydrogen (HER and HOR). , 2021, , 9-35.		0
1479	A Co-MOF-derived Co ₉ S ₈ @NS-C electrocatalyst for efficient hydrogen evolution reaction. RSC Advances, 2021, 11, 5947-5957.	1.7	13
1480	Atomic Layer Deposition of 2D Metal Dichalcogenides for Electronics, Catalysis, Energy Storage, and Beyond. Advanced Materials Interfaces, 2021, 8, 2001677.	1.9	39
1481	Template-Assisted Synthesis of Accordion-Like CoFe(OH)X Nanosheet Clusters on GO Sheets for Electrocatalytic Water Oxidation. SSRN Electronic Journal, 0, , .	0.4	0
1482	Flower-like tungsten-doped Fe–Co phosphides as efficient electrocatalysts for the hydrogen evolution reaction. CrystEngComm, 2021, 23, 4724-4731.	1.3	8
1483	Assembly of ZIF-67 nanoparticles and <i>in situ</i> grown Cu(OH) ₂ nanowires serves as an effective electrocatalyst for oxygen evolution. Dalton Transactions, 2021, 50, 7256-7264.	1.6	23
1484	Highly active and stable nickel–molybdenum nitride (Ni ₂ Mo ₃ N) electrocatalyst for hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 4945-4951.	5.2	60
1485	<i>In situ</i> electrochemical activation as a generic strategy for promoting the electrocatalytic hydrogen evolution reaction and alcohol electro-oxidation in alkaline medium. RSC Advances, 2021, 11, 10615-10624.	1.7	11
1486	Selfâ€Supporting Niâ€M (M = Mo, Ge, Sn) Alloy Nanosheets via Topotactic Transformation of Oxometallate Intercalated Layered Nickel Hydroxide Salts: Synthesis and Application for Electrocatalytic Hydrogen Evolution Reaction. Advanced Materials Interfaces, 2020, 7, 1901949.	1.9	13
1487	Light Auxiliary Hydrogen-Evolution Catalyst Based on Uniformly Pt Nanoparticles Decorated Molybdenum Sulfide Hybrids. Particle and Particle Systems Characterization, 2017, 34, 1600200.	1.2	9
1488	Functionalized metal-based nanoelectrocatalysts for water splitting. , 2020, , 83-109.		2
1489	A novel nickel-based honeycomb electrode with microtapered holes and abundant multivacancies for highly efficient overall water splitting. Applied Catalysis B: Environmental, 2020, 276, 119141.	10.8	35
1490	One-pot construction of chitin-derived carbon/g-C3N4 heterojunction for the improvement of visible-light photocatalysis. Applied Surface Science, 2020, 527, 146737.	3.1	38
1491	Co, Mo2C encapsulated in N-doped carbon nanofiber as self-supported electrocatalyst for hydrogen evolution reaction. Chemical Engineering Journal, 2020, 397, 125481.	6.6	68
1492	Modulating interfacial electronic structure of CoNi LDH nanosheets with Ti3C2T MXene for enhancing water oxidation catalysis. Chemical Engineering Journal, 2020, 398, 125605.	6.6	113
1493	Pre-leaching strategy for tuning porosity and composition to generate Co2P/Co@P/N-doped carbon towards highly efficient bifunctional oxygen electrocatalysis. Electrochimica Acta, 2020, 337, 135807.	2.6	15
1494	Catalyst Engineering for Electrochemical Energy Conversion from Water to Water: Water Electrolysis and the Hydrogen Fuel Cell. Engineering, 2020, 6, 653-679.	3.2	75

#	Article	IF	CITATIONS
1495	Using graphdiyne (GDY) as a catalyst support for enhanced performance in organic pollutant degradation and hydrogen production: A review. Journal of Hazardous Materials, 2020, 398, 122957.	6.5	45
1496	Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours. Nature Communications, 2018, 9, 2609.	5.8	389
1497	Pt–Cu hierarchical quasi great dodecahedrons with abundant twinning defects for hydrogen evolution. Chemical Communications, 2017, 53, 6922-6925.	2.2	22
1498	Synergy between active sites and electric conductivity of molybdenum sulfide for efficient electrochemical hydrogen production. Catalysis Science and Technology, 2018, 8, 367-375.	2.1	15
1499	MoP@NiCo-LDH on nickel foam as bifunctional electrocatalyst for high efficiency water and urea–water electrolysis. Journal of Materials Chemistry A, 2020, 8, 18106-18116.	5.2	106
1500	Nickel telluride vertically aligned thin film by radio-frequency magnetron sputtering for hydrogen evolution reaction. APL Materials, 2020, 8, .	2.2	9
1501	Carbon-Decorated Fe ₃ S ₄ -Fe ₇ Se ₈ Hetero-Nanowires: Interfacial Engineering for Bifunctional Electrocatalysis Toward Hydrogen and Oxygen Evolution Reactions. Journal of the Electrochemical Society, 2020, 167, 086501.	1.3	14
1502	Attapulgite/g-C3N4 Composites: Synthesis and Electrocatalytic Oxygen Evolution Property. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2019, 34, 803.	0.6	2
1503	Common-Ion Effect Triggered Highly Sustained Seawater Electrolysis with Additional NaCl Production. Research, 2020, 2020, 2872141.	2.8	28
1504	Synthesis of vanadium based binary oxides with a yolk–shell structure and their derived electrocatalysts. Journal of Materials Chemistry A, 2021, 9, 25051-25061.	5.2	3
1505	Progress in theoretical and experimental investigation on seawater electrolysis: opportunities and challenges. Sustainable Energy and Fuels, 2021, 5, 5915-5945.	2.5	37
1506	Tailoring the d-band center by borophene subunits in chromic diboride toward the hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2021, 8, 5130-5138.	3.0	5
1507	Interfacial Assembly and Applications of Functional Mesoporous Materials. Chemical Reviews, 2021, 121, 14349-14429.	23.0	151
1508	Efficient <scp>Mnâ€Ni o</scp> nanocomposite–based electrocatalyst for oxygen evolution reaction in alkaline media. Journal of the Chinese Chemical Society, 2021, 68, 2254-2263.	0.8	3
1509	PtNi Supported on ZIF-Derived Porous Carbon as a High-Efficiency Acidic Hydrogen Evolution Catalyst. Energy & Fuels, 2021, 35, 17861-17868.	2.5	6
1510	A Facile Strategy to Create Electrocatalysts of Highly Dispersive Ni–Mo Sulfide Nanosheets on Graphene by Derivation of Polyoxometalate Coordination Polymer for Advanced H ₂ Evolution. ACS Applied Energy Materials, 2021, 4, 13191-13198.	2.5	8
1511	Novel Microporous Metal Phosphonates as Electrocatalyst for the Electrochemical Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2021, 4, 12827-12835.	2.5	13
1512	Efficient Hydrogen Evolution Reaction Using FeCrMn Alloy as Novel Electrocatalyst in Acidic and Alkaline Media. Journal of Bio- and Tribo-Corrosion, 2021, 7, 1.	1.2	0

ARTICLE IF CITATIONS Corrosion-resistant non-noble metal electrodes for PEM-type water electrolyzer. International 1513 3.8 17 Journal of Hydrogen Energy, 2021, 46, 38603-38611. Chemical Bioengineering in Microbial Electrochemical Systems. RSC Green Chemistry, 2015, , 122-154. 1514 Modulating catalytic capacities of room-temperature synthetized amorphous molybdenum trisulfide 1515 hydrogen evolving catalysts and their applications to in series solar water splitting devices in series. 0.2 1 Wuli Xuebao/Acta Physica Sinica, 2016, 65, 118801. Polymer-Derived Carbon/Inorganic Nanohybrids for Electrochemical Energy Storage and Conversion. 0.2 Engineering Materials and Processes, 2017, , 419-480. Engineering Two-Dimensional Transition Metal Dichalcogenide Electrocatalysts for Water Splitting 1518 0 Hydrogen Generation., 2018, , 1-29. Designing Highly Active High Current Density HER Electrocatalysts: Synergistic Effects of Mo and W in α-Mo <sub>x</sub>W <sub&gť;1-X</sub>B <sub>2</sub> with Graphene-Like 0.4 Boron Layers. SSRN Electronic Journal, 0, , . Anode modified by BiFeO ₃ and application in resourceful treatment of salty organic 1520 0.6 2 wastewater. Micro and Nano Letters, 2019, 14, 683-687. Enhanced Reaction of Renewable Hydrogen Energy Production Using Platinum-based Nanoclusters. 1521 0.4 Daehan Hwan'gyeong Gonghag Hoeji, 2019, 41, 686-694. Constructing the Fe/Cr double (oxy)hydroxides on Fe3O4 for boosting the electrochemical oxygen 1522 evolution in alkaline seawater and domestic sewage. Applied Catalysis B: Environmental, 2022, 302, 10.8 30 120847. Pt Edgeâ€Doped MoS₂: Activating the Active Sites for Maximized Hydrogen Evolution 5.2 Reaction Performance. Small, 2021, 17, e2104245. N-doped graphene supported W2C/WC as efficient electrocatalyst for hydrogen evolution reaction. 1524 3.8 13 International Journal of Hydrogen Energy, 2022, 47, 902-916. Metal-nitrogen intimacy of the nitrogen-doped ruthenium oxide for facilitating electrochemical 10.8 hydrogen production. Ápplied Catalysis B: Environmental, 2022, 303, 120873 Hierarchical Fe–Mn binary metal oxide core–shell nano-polyhedron as a bifunctional electrocatalyst 1526 1.6 7 for efficient water splitting. Dalton Transactions, 2021, 50, 17265-17274. MOF-Derived Nanoparticles and Single Atoms for Electrochemical Reactions. ACS Symposium Series, 2020, , 127-149. 1528 Highly Efficient Electrocatalytic Water Splitting., 2020, , 1-33. 0 Bifunctional nanocatalysts for water splitting and its challenges., 2020, , 59-95. 1529 Amorphous materials for elementary-gas-involved electrocatalysis: an overview. Nanoscale, 2021, 13, 1531 2.8 19 19783-19811. Rational introduction of S and P in multi-stage electrocatalyst to drive a large-current-density water oxidation reaction and overall water splitting. Journal of Power Sources, 2022, 518, 230757.

#	Article	IF	CITATIONS
1533	A new hyperbranched water-splitting technique based on Co3O4/MoS2 nano composite catalyst for High-Performance of hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 2124-2133.	3.8	5
1534	Nickel hydroxide armour promoted CoP nanowires for alkaline hydrogen evolution at large current density. International Journal of Hydrogen Energy, 2022, 47, 1016-1025.	3.8	11
1535	Facile synthesis of tubular CoP as a high efficient electrocatalyst for pH-universal hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 181-196.	3.8	12
1536	An overview on advances in design and development of materials for electrochemical generation of hydrogen and oxygen. Materials Today Energy, 2022, 23, 100902.	2.5	33
1537	Electrochemically Fabricated Superhydrophilic/Superaerophobic Manganese Oxide Nanowires at Discontinuous Solid–Liquid Interfaces for Enhanced Oxygen Evolution Performances. Advanced Materials Interfaces, 2022, 9, 2101478.	1.9	8
1538	A Simple Molten Salt Route to Crystalline β-MoB ₂ Nanosheets with High Activity for the Hydrogen Evolution Reaction. Inorganic Chemistry, 2021, 60, 18075-18081.	1.9	13
1539	A new É>-Keggin polyoxometalate-based metal-organic framework: From design and synthesis to electrochemical hydrogen evolution. Catalysis Communications, 2021, 161, 106367.	1.6	16
1540	Synthesis of MoS2/CoSe2-x hybrids as electrocatalysts for hydrogen evolution reaction. Ionics, 0, , 1.	1.2	0
1541	Metal Organic Framework Derived Cu–Doped Ni ₂ P Nanoparticles Incorporated with Porous Carbon as High Performance Electrocatalyst for Hydrogen Evolution Reaction in a Wide pH Range. ChemistrySelect, 2021, 6, 12926-12933.	0.7	3
1542	Synergistic effect of reduced graphene oxide layers wrapped in polyaniline sheets to porous blades for boosted oxygen evolution reaction. Journal of Taibah University for Science, 2021, 15, 960-970.	1.1	7
1543	Wrinkle facilitated hydrogen evolution reaction of vacancy-defected transition metal dichalcogenide monolayers. Nanoscale, 2021, 13, 20576-20582.	2.8	7
1544	Computation-Guided Design and Preparation of Durable and Efficient WC-Mo ₂ C Heterojunction for Hydrogen Evolution Reaction. SSRN Electronic Journal, 0, , .	0.4	0
1545	Template-assisted synthesis of accordion-like CoFe(OH) nanosheet clusters on GO sheets for electrocatalytic water oxidation. Journal of Electroanalytical Chemistry, 2022, 905, 115957.	1.9	7
1546	Recent progress on the design and development of diaminotriazine based molecular catalysts for light-driven hydrogen production. Coordination Chemistry Reviews, 2022, 456, 214375.	9.5	17
1547	Nickel-cobalt nitride nanoneedle supported on nickel foam as an efficient electrocatalyst for hydrogen generation from ammonia electrolysis. Electrochimica Acta, 2022, 403, 139700.	2.6	29
1548	Electrocatalysis enabled transformation of earth-abundant water, nitrogen and carbon dioxide for a sustainable future. Materials Advances, 2022, 3, 1359-1400.	2.6	17
1549	A newly synthesized bipyridineâ€containing manganese(<scp>II</scp>) complex immobilized on graphene oxide as active electrocatalyst for hydrogen gas production from alkaline solutions: Experimental and theoretical studies. International Journal of Energy Research, 2022, 46, 6577-6593.	2.2	2
1551	Plasma-regulated two-dimensional high entropy oxide arrays for synergistic hydrogen evolution: From theoretical prediction to electrocatalytic applications. Journal of Power Sources, 2022, 520, 230873.	4.0	22

#	Article	IF	CITATIONS
1552	Achieving an efficient hydrogen evolution reaction with a bicontinuous nanoporous PtNiMg alloy of ultralow Noble-metal content at an ultrawide range of current densities. Chemical Engineering Journal, 2022, 433, 134571.	6.6	20
1553	Amorphous MoS electro-synthesized in alkaline electrolyte for superior hydrogen evolution. Journal of Alloys and Compounds, 2022, 900, 163509.	2.8	8
1554	Reducing the high hydrogen binding strength of vanadium carbide MXene with atomic Pt confinement for high activity toward HER. Applied Catalysis B: Environmental, 2022, 304, 120989.	10.8	58
1555	Bulk and surface dual modification of nickel-cobalt spinel with ruthenium toward highly efficient overall water splitting. Applied Catalysis B: Environmental, 2022, 305, 121081.	10.8	34
1556	Rational design of metal oxide catalysts for electrocatalytic water splitting. Nanoscale, 2021, 13, 20324-20353.	2.8	38
1557	Double-atom catalysts for energy-related electrocatalysis applications: a theoretical perspective. Journal Physics D: Applied Physics, 2022, 55, 203001.	1.3	57
1558	Superiority of Dualâ€Atom Catalysts in Electrocatalysis: One Step Further Than Singleâ€Atom Catalysts. Advanced Energy Materials, 2022, 12, .	10.2	189
1559	Autogenous growth of highly active bifunctional Ni–Fe2B nanosheet arrays toward efficient overall water splitting. International Journal of Hydrogen Energy, 2022, 47, 8303-8313.	3.8	14
1560	Recent advances in nanostructured nonoxide materials—Borides, borates, chalcogenides, phosphides, phosphides, phosphates, nitrides, carbides, alloys, and metal-organic frameworks. , 2022, , 329-368.		2
1561	Design of SnO2:Ni,Ir Nanoparticulate Photoelectrodes for Efficient Photoelectrochemical Water Splitting. Nanomaterials, 2022, 12, 453.	1.9	18
1562	Polyaniline grafted mesoporous zinc sulfide nanoparticles for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 6067-6077.	3.8	11
1563	Edge terminated and interlayer expanded pristine MoS2 nanostructures with 1T on 2H phase, for enhanced hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 9579-9592.	3.8	21
1565	Future prospects of oxide-free materials for energy-related applications. , 2022, , 451-466.		0
1566	Oxides free nanomaterials for (photo)electrochemical water splitting. , 2022, , 369-408.		1
1567	Recent Advances in Seawater Electrolysis. Catalysts, 2022, 12, 123.	1.6	26
1568	A multifunctional cobalt iron sulfide electrocatalyst for high performance Zn–air batteries and overall water splitting. Journal of Materials Chemistry A, 2022, 10, 4720-4730.	5.2	17
1569	Construction of stable Mo _{<i>x</i>} S _{<i>y</i>} /CeO ₂ heterostructures for the electrocatalytic hydrogen evolution reaction. Physical Chemistry Chemical Physics, 2022, 24, 4891-4898.	1.3	3
1570	Electronic structures of the MoS ₂ /TiO ₂ (anatase) heterojunction: influence of physical and chemical modifications at the 2D- or 1D-interfaces. Physical Chemistry Chemical Physics, 2022, 24, 2646-2655.	1.3	6

#	Article	IF	CITATIONS
1571	Self-Healing Graphene-Templated Platinum–Nickel Oxide Heterostructures for Overall Water Splitting. ACS Nano, 2022, 16, 930-938.	7.3	34
1572	Screening and Understanding Lattice Siliconâ€Controlled Catalytically Active Site Motifs from a Library of Transition Metalâ€6ilicon Intermetallics. Small, 2022, 18, e2107371.	5.2	12
1574	B2O and B4N monolayers supported single-metal atom as highly efficient bifunctional electrocatalyst for OER and ORR. Journal of Materials Science, 2022, 57, 398-410.	1.7	4
1575	Integration of heterointerface and porosity engineering to achieve efficient hydrogen evolution of 2D porous NiMoN nanobelts coupled with Ni particles. Electrochimica Acta, 2022, 403, 139702.	2.6	12
1576	Heterostructural MoS ₂ /NiS nanoflowers <i>via</i> precise interface modification for enhancing electrocatalytic hydrogen evolution. New Journal of Chemistry, 2022, 46, 5505-5514.	1.4	8
1577	Molybdenum and tungsten disulfide based nanocomposites as chemical sensor: A review. Materials Today: Proceedings, 2022, 62, 2755-2761.	0.9	7
1578	Cu vacancy engineering on facet dependent CuO to enhance water oxidation efficiency. International Journal of Hydrogen Energy, 2022, 47, 9261-9272.	3.8	9
1579	Electrochemical Water Splitting: H2 Evolution Reaction. Materials Horizons, 2022, , 59-89.	0.3	2
1580	Band structure engineering of W replacement in ReSe ₂ nanosheets for enhancing hydrogen evolution. Chemical Communications, 2022, 58, 2682-2685.	2.2	9
1581	Electrocatalytic hydrogen evolution of highly dispersed Pt/NC nanoparticles derived from porphyrin MOFs under acidic and alkaline medium. International Journal of Hydrogen Energy, 2022, 47, 6631-6637.	3.8	12
1582	Self-supported cobalt oxide electrocatalysts with hierarchical chestnut burr-like nanostructure for efficient overall water splitting. Chemical Engineering Journal, 2022, 435, 134995.	6.6	15
1583	Graphdiyne/graphene heterostructure supported NiFe layered double hydroxides for oxygen evolution reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637, 128217.	2.3	11
1584	In-situ construction of N-doped carbon nanosnakes encapsulated FeCoSe nanoparticles as efficient bifunctional electrocatalyst for overall water splitting. Journal of Energy Chemistry, 2022, 68, 699-708.	7.1	31
1585	Direct growth of cobalt-doped molybdenum disulfide on graphene nanohybrids through microwave irradiation with enhanced electrocatalytic properties for hydrogen evolution reaction. Advanced Composites and Hybrid Materials, 2022, 5, 2339-2352.	9.9	25
1586	Part II: NiMoO4 Nanostructures Synthesized by the Solution Combustion Method: A Parametric Study on the Influence of Material Synthesis and Electrode-Fabrication Parameters on the Electrocatalytic Activity in the Hydrogen Evolution Reaction. Molecules, 2022, 27, 1199.	1.7	2
1587	Water-involved tandem conversion of aryl ethers to alcohols over metal phosphide catalyst. Chemical Engineering Journal, 2022, 435, 134911.	6.6	11
1588	Strainâ€Activated Copper Catalyst for pHâ€Universal Hydrogen Evolution Reaction. Advanced Functional Materials, 2022, 32, .	7.8	46
1589	Recent progress of two-dimensional metallic transition metal dichalcogenides: Syntheses, physical properties, and applications. Journal of Applied Physics, 2022, 131, .	1.1	13

#	Article	IF	CITATIONS
1590	Facile preparation and characterization of MXene@Platinum nanocomposite for energy conversion applications. Fuel, 2022, 317, 123493.	3.4	13
1591	Designed synthesis of a hierarchical MoSe ₂ @WSe ₂ hybrid nanostructure as a bifunctional electrocatalyst for total water-splitting. Sustainable Energy and Fuels, 2022, 6, 1708-1718.	2.5	7
1592	Electrocatalytic hydrogen generation using tripod containing pyrazolylborate-based copper(<scp>ii</scp>), nickel(<scp>ii</scp>), and iron(<scp>iii</scp>) complexes loaded on a glassy carbon electrode. RSC Advances, 2022, 12, 8030-8042.	1.7	3
1594	Highly efficient catalysts of ruthenium clusters on Fe ₃ O ₄ /MWCNTs for the hydrogen evolution reaction. New Journal of Chemistry, 0, , .	1.4	5
1595	Hydrogen Evolution Reaction Activity Obtained Using Platinum Single Atoms on Tio2 Nanosheets Modified with Graphene. SSRN Electronic Journal, 0, , .	0.4	0
1596	Electroless deposition of RuPd nanoparticles on porous carbon for hydrogen evolution in acid and alkaline media. Sustainable Energy and Fuels, 2022, 6, 2165-2169.	2.5	3
1598	Unveiling the Optimal Interfacial Synergy of Plasmaâ€Modulated Trimetallic Mnâ€Niâ€Co Phosphides: Tailoring Deposition Ratio for Complementary Water Splitting. Energy and Environmental Materials, 2023, 6, .	7.3	32
1599	Direct Thermal Enhancement of Hydrogen Evolution Reaction of On-Chip Monolayer MoS ₂ . ACS Nano, 2022, 16, 2921-2927.	7.3	44
1600	Bimetallic Multi‣evel Layered Coâ€NiOOH/Ni ₃ S ₂ @NF Nanosheet for Hydrogen Evolution Reaction in Alkaline Medium. Small, 2022, 18, e2106904.	5.2	31
1601	Bifunctional WCâ€6upported RuO ₂ Nanoparticles for Robust Water Splitting in Acidic Media. Angewandte Chemie - International Edition, 2022, 61, .	7.2	89
1602	Bifunctional WC‣upported RuO ₂ Nanoparticles for Robust Water Splitting in Acidic Media. Angewandte Chemie, 2022, 134, .	1.6	11
1603	High-Property Anode Catalyst Compositing Co-Based Perovskite and NiFe-Layered Double Hydroxide for Alkaline Seawater Splitting. Processes, 2022, 10, 668.	1.3	11
1604	Role of functionalized graphene quantum dots in hydrogen evolution reaction: A density functional theory study. International Journal of Hydrogen Energy, 2022, 47, 41748-41758.	3.8	12
1605	Non-Covalent Functionalization of Graphene Oxide-Supported 2-Picolyamine-Based Zinc(II) Complexes as Novel Electrocatalysts for Hydrogen Production. Catalysts, 2022, 12, 389.	1.6	4
1606	Application of MoS ₂ -FeS functional carrier loaded Ni single-atom catalysts on HER: first principle. Nanotechnology, 2022, 33, 275401.	1.3	3
1607	Phosphatizing Engineering of Perovskite Oxide Nanofibers for Hydrogen Evolution Reaction to Achieve Extraordinary Electrocatalytic Performance. Advanced Functional Materials, 2022, 32, .	7.8	13
1608	Pt Atom on the Wall of Atomic Layer Deposition (ALD)â€Made MoS ₂ Nanotubes for Efficient Hydrogen Evolution. Small, 2022, 18, e2105129.	5.2	29
1609	Computation-guided design and preparation of durable and efficient WC-Mo2C heterojunction for hydrogen evolution reaction. Cell Reports Physical Science, 2022, 3, 100784.	2.8	6

#	Article	IF	CITATIONS
1610	Advanced Self‧tanding Electrodes for Water Electrolysis: A Review on Strategies for Further Performance Enhancement. ChemElectroChem, 2022, 9, .	1.7	8
1611	An inclusive perspective on the recent development of tungstenâ€based catalysts for overall <scp>waterâ€splitting</scp> : A review. International Journal of Energy Research, 2022, 46, 10228-10258.	2.2	6
1612	Impact of an Incompatible Atomic Nickel-Incorporated Metal–Organic Framework on Phase Evolution and Electrocatalytic Activity of Ni-Doped Cobalt Phosphide for the Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2022, 5, 2975-2992.	2.5	17
1613	Integrating Amorphous Molybdenum Sulfide Nanosheets with a Co ₉ S ₈ @Ni ₃ S ₂ Array as an Efficient Electrocatalyst for Overall Water Splitting. Langmuir, 2022, 38, 3469-3479.	1.6	21
1614	Bimetallic Cageâ€Based Metal–Organic Frameworks for Electrochemical Hydrogen Evolution Reaction with Enhanced Activity. Chemistry - A European Journal, 2022, 28, .	1.7	11
1615	Dual-phase MoS2/MXene/CNT ternary nanohybrids for efficient electrocatalytic hydrogen evolution. Npj 2D Materials and Applications, 2022, 6, .	3.9	34
1616	A new octamolybdate-based coordination polymer for light-driven hydrogen evolution. Journal of Molecular Structure, 2022, 1262, 132995.	1.8	3
1617	Cooperative effect of bimetallic MOF-derived CoNi(OH) ₂ @NiCo ₂ S ₄ nanocomposite electrocatalysts with boosted oxygen evolution activity. Nanotechnology, 2022, 33, 265701.	1.3	2
1618	Efficient Alkaline Water/Seawater Hydrogen Evolution by a Nanorodâ€Nanoparticleâ€Structured Niâ€MoN Catalyst with Fast Waterâ€Dissociation Kinetics. Advanced Materials, 2022, 34, e2201774.	11.1	165
1619	Atomically dispersed ultralow-platinum loading on Ti3C2T MXene as efficient catalyst for hydrogen evolution reaction. Electrochimica Acta, 2022, 411, 140091.	2.6	8
1620	Hydrogen Production on Pt/TiO ₂ : Synergistic Catalysis between Pt Clusters and Interfacial Adsorbates. Journal of Physical Chemistry Letters, 2022, 13, 3182-3187.	2.1	4
1621	Boron-doped CoSe2 nanowires as high-efficient electrocatalyst for hydrogen evolution reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 646, 128903.	2.3	7
1622	A crown ether supramolecular host-guest complex with Keggin polyoxometalate: Synthesis, crystal structure and electrocatalytic performance for hydrogen evolution reaction. Catalysis Communications, 2022, 165, 106446.	1.6	16
1623	High-entropy phosphate/C hybrid nanosheets for efficient acidic hydrogen evolution reaction. Chemical Engineering Journal, 2022, 437, 135375.	6.6	21
1624	Selective surface deposition of trace amount of ruthenium onto a freestanding, fibrous carbon monolith for pH-universal hydrogen evolution reaction. Chemical Engineering Journal, 2022, 437, 135322.	6.6	9
1625	Self-assembled Pt–CoFe layered double hydroxides for efficient alkaline water/seawater splitting by spontaneous redox synthesis. Journal of Power Sources, 2022, 532, 231353.	4.0	20
1626	Praseodymium-doped Sr2TiFeO6-Î′ double perovskite as a bi-functional electrocatalyst for hydrogen production through water splitting. Journal of Environmental Chemical Engineering, 2022, 10, 107609.	3.3	17
1627	Artificial modulated Lewis pairs for highly efficient alkaline hydrogen production. Nano Energy, 2022, 98, 107233.	8.2	20

#	Article	IF	CITATIONS
1628	Size effect of Rhodium nanoparticles supported on carbon black on the performance of hydrogen evolution reaction. Carbon, 2022, 194, 303-309.	5.4	12
1629	In-situ fabrication of NixSey/MoSe2 hollow rod array for enhanced catalysts for efficient hydrogen evolution reaction. Journal of Colloid and Interface Science, 2022, 617, 611-619.	5.0	14
1630	Highly sensitive and selective thiourea electrochemical sensor based on novel silver nanoparticles/chitosan nanocomposite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 644, 128879.	2.3	20
1631	La-RuO2 nanocrystals with efficient electrocatalytic activity for overall water splitting in acidic media: Synergistic effect of La doping and oxygen vacancy. Chemical Engineering Journal, 2022, 439, 135699.	6.6	47
1632	Metal-organic framework interface engineering for highly efficient oxygen evolution reaction. Journal of Colloid and Interface Science, 2022, 619, 148-157.	5.0	16
1633	Problems and Technology Development Trends of Hydrogen Production from Renewable Energy Power Electrolysis - A Review. , 2021, , .		7
1634	Atomically thin transition metal dichalcogenides for the hydrogen evolution reaction. ChemPhysMater, 2022, 1, 102-111.	1.4	11
1635	Molten Salts Strategy for the Synthesis of CoP Nanoparticles Entrapped, N,P Co-doped Mesoporous Carbons as Electrocatalysts for Hydrogen Evolution. Chemical Research in Chinese Universities, 2022, 38, 237-242.	1.3	4
1636	Deep eutectic solvent-induced synthesis of Ni–Fe catalyst with excellent mass activity and stability for water oxidation. Green Energy and Environment, 2023, 8, 852-863.	4.7	11
1637	Nanocatalytic Materials for Energy-Related Small-Molecules Conversions: Active Site Design, Identification and Structure–Performance Relationship Discovery. Accounts of Chemical Research, 2022, 55, 110-120.	7.6	7
1638	Rational Design of Better Hydrogen Evolution Electrocatalysts for Water Splitting: A Review. Advanced Science, 2022, 9, e2200307.	5.6	121
1639	The Synergistic Effect of Pyrrolicâ€N and Pyridinicâ€N with Pt Under Strong Metalâ€Support Interaction to Achieve Highâ€Performance Alkaline Hydrogen Evolution. Advanced Energy Materials, 2022, 12, .	10.2	72
1640	Ni-Ni ₃ P/SiO ₂ Catalyst for Highly Selective Production of Silicon Tetrachloride via Silicon Hydrochlorination. Industrial & Engineering Chemistry Research, 2022, 61, 5066-5079.	1.8	4
1641	Highly Synergistic Co ³⁺ and Pyridinicâ€Nâ€Rich Bifunctional Electrocatalyst for Ultra‣ow Energyâ€Driven Effective Hydrogen Production and Urea Oxidation. Advanced Sustainable Systems, 2022, 6, .	2.7	5
1642	A Review of the Application of Heterostructure Catalysts in Hydrogen Evolution Reaction. ChemistrySelect, 2022, 7, .	0.7	13
1643	Low-Pt Amount Supported Polypyrrole/MXene 1D/2D Electrocatalyst for Efficient Hydrogen Evolution Reaction. Electrocatalysis, 2022, 13, 469-478.	1.5	6
1644	Electrodeposition: An efficient method to fabricate selfâ€supported electrodes for electrochemical energy conversion systems. Exploration, 2022, 2, .	5.4	21
1645	A Moltenâ€Salt Method to Synthesize Co9S8 Embedded, N, S Coâ€Doped Mesoporous Carbons from Melamine Formaldehyde Resins for Electrocatalytic Hydrogen Evolution Reactions. ChemPlusChem, 2022, 87, e202200077.	1.3	2

# 1646	ARTICLE Ternary <scp>Niâ€Moâ€P</scp> catalysts for enhanced activity and durability in proton exchange membrane water electrolysis. International Journal of Energy Research, 2022, 46, 13023-13034.	IF 2.2	CITATIONS
1647	Conducting polymers-derived fascinating electrocatalysts for advanced hydrogen and oxygen electrocatalysis. Coordination Chemistry Reviews, 2022, 464, 214555.	9.5	32
1650	Morphology-Dependent Electrocatalytic Performance of a Two-Dimensional Nickel–Iron MOF for Oxygen Evolution Reaction. Inorganic Chemistry, 2022, 61, 7095-7102.	1.9	10
1651	One-step fabrication of MoS ₂ /Ni ₃ S ₂ with P-doping for efficient water splitting. CrystEngComm, 2022, 24, 4057-4062.	1.3	9
1652	Activating the Basal Planes in 2Hâ€MoTe ₂ Monolayers by Incorporating Singleâ€Atom Dispersed N or P for Enhanced Electrocatalytic Overall Water Splitting. Advanced Sustainable Systems, 2022, 6, .	2.7	4
1653	Catalyst activation: Surface doping effects of group VI transition metal dichalcogenides towards hydrogen evolution reaction in acidic media. Journal of Energy Chemistry, 2022, 72, 217-240.	7.1	34
1654	Interfacial engineering of carbon-based materials for efficient electrocatalysis: Recent advances and future. EnergyChem, 2022, 4, 100074.	10.1	20
1655	Water-Based Electrophoretic Deposition of Ternary Cobalt-Nickel-Iron Oxides on AISI304 Stainless Steel for Oxygen Evolution. Catalysts, 2022, 12, 490.	1.6	1
1656	The coupled electrocatalyst synergy fabrication for the electrochemical oxygen evolution reaction: From electrode to green energy system. Journal of the Chinese Chemical Society, 0, , .	0.8	0
1657	Developments and Perspectives on Robust Nano―and Microstructured Binderâ€Free Electrodes for Bifunctional Water Electrolysis and Beyond. Advanced Energy Materials, 2022, 12, .	10.2	63
1658	Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis. Nature Communications, 2022, 13, 2430.	5.8	98
1659	Polyoxometalateâ€Based Metal Organic Frameworks: Recent Advances and Challenges. ChemistrySelect, 2022, 7, .	0.7	15
1660	Highly active platinum single-atom catalyst grafted onto 3D carbon cloth support for the electrocatalytic hydrogen evolution reaction. Applied Surface Science, 2022, 595, 153480.	3.1	10
1661	Membrane-based technologies for biohydrogen production: A review. Journal of Environmental Management, 2022, 316, 115239.	3.8	20
1662	Scope and prospect of transition metal-based cocatalysts for visible light-driven photocatalytic hydrogen evolution with graphitic carbon nitride. Coordination Chemistry Reviews, 2022, 465, 214516.	9.5	34
1663	Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chemical Society Reviews, 2022, 51, 4583-4762.	18.7	453
1664	Synergistic effect of S vacancies and P dopants in MoS ₂ /Mo ₂ C to promote electrocatalytic hydrogen evolution. Inorganic Chemistry Frontiers, 2022, 9, 3461-3469.	3.0	2
1665	Bimetallic Intersection in PdFe@FeO <i>_x</i> â€C Nanomaterial for Enhanced Water Splitting Electrocatalysis. Advanced Sustainable Systems, 2022, 6, .	2.7	8

	CITATION REP	PORT	
ARTICLE Missing-Linker Bifunctional Mil-125(Ti)-Zn Interface Modulation Layer to Simultaneousl Hydrogen Evolution Reaction and Dendrites for Zn Metal Anodes. SSRN Electronic Jour	y Suppress nal, 0, , .	IF 0.4	CITATIONS 0
Accelerating electrochemical hydrogen evolution kinetics in alkaline media using LaNi< a hydrogen reservoir. Chemical Communications, 2022, 58, 7289-7292.	sub>5 as	2.2	2
Recent Progress in Graphene-Based Electrocatalysts for Hydrogen Evolution Reaction. I 2022, 12, 1806.	Nanomaterials,	1.9	12
Improved the Electrocatalytic Hydrogen Evolution Performances of Co-MOF Derivatives Introducing Zinc Ions by Two Ways. Energy & amp; Fuels, 2022, 36, 5843-5851.	s Through	2.5	4
Metal-organic framework-derived Co nanoparticles and single atoms as efficient electro pH universal hydrogen evolution reaction. Nano Research, 2022, 15, 7917-7924.	ocatalyst for	5.8	12
Recent advances in cobalt phosphide-based materials for electrocatalytic water splittin catalytic mechanism and synthesis method to optimization design. Nano Materials Scie	g: From ence, 2022, , .	3.9	9
Recent Advances in Carbonâ€Supported Nobleâ€Metal Electrocatalysts for Hydrogen E Syntheses, Structures, and Properties. Advanced Energy Materials, 2022, 12, .	Evolution Reaction:	10.2	64
Singleâ€Atom Catalysts for Hydrogen Generation: Rational Design, Recent Advances, a Advanced Energy Materials, 2022, 12, .	nd Perspectives.	10.2	42
One A3B Porphyrin Structure—Three Successful Applications. Nanomaterials, 2022, 1	.2, 1930.	1.9	7
Reparation of porous Ti-Cu alloy by one-step sintering method and application of hydro reaction. Journal of Electroanalytical Chemistry, 2022, 918, 116448.	gen evolution	1.9	5
Interface engineering of double-layered nanosheets via cosynergistic modification by Ll carbonate anion and molybdate for accelerated industrial water splitting at high curren Applied Surface Science, 2022, 598, 153690.	DH interlayer It density.	3.1	10
Recent strategies for activating the basal planes of transition metal dichalcogenides to hydrogen production. Journal of Materials Chemistry A, 2022, 10, 19067-19089.	wards	5.2	27
Chapter 8. Nanocatalysis With Sustainability. RSC Nanoscience and Nanotechnology, 2	2022, , 220-254.	0.2	1
One-step synthesis of Co2P/N-P co-doped porous carbon composites derived from soyl as acidic and alkaline HER electrocatalysts. International Journal of Hydrogen Energy, 2 24796-24806.	bean derivatives 022, 47,	3.8	9

1680	Highly effective electrocatalytic reduction of N-nitrosodimethylamine on Ru/CNT catalyst. Chemosphere, 2022, 305, 135414.	4.2	1
1681	Layer by layer self-assembled hybrid thin films of Porphyrin/Polyoxometalates@Pt nanoparticles for photo & electrochemical application. Materials Today Communications, 2022, 31, 103811.	0.9	5
1682	Direct Growth of Carbon Nitride (C ₃ N ₃) Nanosheets on Copper Foam as an Efficient Catalytic Electrode for Electrochemical Hydrogen Evolution. ChemElectroChem, 2022, 9, .	1.7	1
1683	Molybdenum disulfide (MoS2)-based electrocatalysts for hydrogen evolution reaction: From mechanism to manipulation. Journal of Energy Chemistry, 2022, 74, 45-71.	7.1	35

#

1666

1668

1670

1672

1674

1676

1678

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1684	Transition Metal Nonâ \in Oxides as Electrocatalysts: Advantages and Challenges. Small, 2	2022, 18, .	5.2	47
1685	Recent Advances on Bimetallic Transition Metal Phosphides for Enhanced Hydrogen Ev Reaction. ChemistrySelect, 2022, 7, .	olution	0.7	7
1686	Highly Durable and Efficient Ni-FeO <i>_x</i> /FeNi ₃ Electrocat Synthesized by a Facile <i>In Situ</i> Combustion-Based Method for Overall Water Spl Current Densities. ACS Applied Materials & Interfaces, 2022, 14, 27842-27853.	alysts itting with Large	4.0	34
1687	Flower-like Co3O4@NiFe-LDH nanosheets enable high-performance bifunctionality tow electrocatalytic HER and OER in alkaline solution. Journal of Alloys and Compounds, 20	vards both 22, 919, 165877.	2.8	33
1689	Carbon Nanotube-Coupled Seaweed-like Cobalt Sulfide as a Dual-Functional Catalyst fo Water Splitting. ACS Applied Materials & amp; Interfaces, 2022, 14, 30847-30856.	or Overall	4.0	10
1690	Mechanisms of electrochemical nitrogen gas reduction to ammonia under ambient cor focused review. Journal of Solid State Electrochemistry, 2022, 26, 1897-1917.	iditions: a	1.2	11
1691	Amorphous MoO2 with a porous nanostructure as a highly efficient electrocatalyst for water splitting. Applied Physics A: Materials Science and Processing, 2022, 128, .	overall	1.1	2
1692	Flowery In2MnSe4 Novel Electrocatalyst Developed via Anion Exchange Strategy for Ef Splitting. Nanomaterials, 2022, 12, 2209.	ficient Water	1.9	46
1693	Kinetic Regulation Engineering and In‣itu Spectroscopy Studies on Transitionâ€Met Electrocatalysts for Water Splitting. ChemElectroChem, 2022, 9, .	alâ€Based	1.7	4
1694	Nitrogen-Doped Cobalt–Molybdenum Sulfide Hybrid Heterojunctions as Active Elect Producing Hydrogen in Alkaline Media. Energy & Fuels, 2022, 36, 11591-11600.	rocatalysts for	2.5	3
1695	Regulating the electronic structure of cobalt phosphide via dual-metal doping engineer efficient hydrogen evolution. Applied Physics Letters, 2022, 121, .	ing to trigger	1.5	5
1696	Numerical Study on Hydrodynamic Characteristics and Electrochemical Performance of Water Electrolyzer by Micro-Nano Surface Electrode. Materials, 2022, 15, 4927.	Alkaline	1.3	1
1697	Enhanced oxygen evolution reaction activity of Ni(OH)2 nanosheets via the modified e Journal of Chemical Sciences, 2022, 134, .	ffect of sulfur.	0.7	6
1698	Unfolding essence of nanoscience for improved water splitting hydrogen generation in newly emergent nanocatalysts. International Journal of Hydrogen Energy, 2022, 47, 26	the light of 915-26955.	3.8	16
1699	Recent progress in first row transition metal Layered double hydroxide (LDH) based ele towards water splitting: A review with insights on synthesis. Coordination Chemistry R 469, 214666.	ctrocatalysts eviews, 2022,	9.5	125
1700	Three-dimensional nitrogen-doped MXene as support to form high-performance platinu water-electrolysis to produce hydrogen. Chemical Engineering Journal, 2022, 446, 1374	im catalysts for 443.	6.6	18
1701	Mild construction of robust FeS-based electrode for pH-universal hydrogen evolution a current density. Journal of Colloid and Interface Science, 2022, 626, 384-394.	t industrial	5.0	4
1702	Interstitial boron-doped nanoporous palladium film for electro-reduction of nitrogen to Chemical Engineering Journal, 2022, 449, 137771.	ammonia.	6.6	9

#	Article	IF	Citations
1703	Regulating the Metal Concentration for Selective Tuning of VS ₂ /MoS ₂ Heterostructures toward Hydrogen Evolution Reaction in Acidic and Alkaline Media. ACS Applied Energy Materials, 2022, 5, 10086-10097.	2.5	5
1704	Construction of Co/Fe co-embedded in benzene tricarboxylic acid with modulated coordination environment for accelerated oxygen evolution reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651, 129766.	2.3	3
1705	Amorphous-crystalline PdRu bimetallene for efficient hydrogen evolution electrocatalysis. Chemical Communications, 2022, 58, 9226-9229.	2.2	11
1706	Low Platinum-Loaded Molybdenum Co-catalyst for the Hydrogen Evolution Reaction in Alkaline and Acidic Media. Langmuir, 2022, 38, 9526-9531.	1.6	5
1707	Transition Metal Dichalcogenides (TMDs) for Photo/Electro Chemical Energy Based Applications. Energy Technology, 0, , .	1.8	1
1708	Role of water structure in alkaline water electrolysis. IScience, 2022, 25, 104835.	1.9	8
1709	Barrel-Shaped-Polyoxometalates Exhibiting Electrocatalytic Water Reduction at Neutral pH: A Synergy Effect. Inorganic Chemistry, 2022, 61, 13868-13882.	1.9	3
1710	Atomically dispersed Coâ^'Cu alloy reconstructed from metal-organic framework to promote electrochemical CO2 methanation. Nano Research, 2023, 16, 3680-3686.	5.8	8
1711	Atomically Reconstructed Palladium Metallene by Intercalation-Induced Lattice Expansion and Amorphization for Highly Efficient Electrocatalysis. ACS Nano, 2022, 16, 13715-13727.	7.3	64
1712	Selective Sulfuration of Two-Dimensional Nonlayered MoO ₂ Nanosheets for High-Current-Density Hydrogen Evolution. ACS Applied Energy Materials, 2022, 5, 10483-10489.	2.5	4
1713	A Synthesis Strategy of Double-Atom Catalysts on a Carbon Surface. Journal of Physical Chemistry C, 2022, 126, 13520-13526.	1.5	4
1714	Molybdenumâ€based electrocatalysts with nanostructured supports for hydrogen evolution reaction. International Journal of Applied Ceramic Technology, 2023, 20, 1129-1146.	1.1	3
1715	Sensitive Electrochemical Detection of Thiourea Utilizing a Novel Silver Nanoparticle-Decorated Porous Silicon-Polyaniline Nanocomposite. Journal of the Electrochemical Society, 2022, 169, 087507.	1.3	5
1716	Interface engineering of NiTe@CoFe LDH for highly efficient overall water-splitting. International Journal of Hydrogen Energy, 2022, 47, 32394-32404.	3.8	21
1717	Coordination chemistry of silver(I), gold(I) and nickel(II) with bis <i>N</i> -heterocyclic carbenes: applications in electrocatalytic hydrogen evolution reaction. Journal of Coordination Chemistry, 2022, 75, 1744-1759.	0.8	6
1718	Single transition metal atom stabilized on double metal carbide MXenes for hydrogen evolution reaction: a density functional theory study. Journal Physics D: Applied Physics, 0, , .	1.3	2
1719	The role of the Pd ratio in increasing the activity of Pt for high efficient hydrogen evolution reaction. Journal of Electroanalytical Chemistry, 2022, 921, 116711.	1.9	5
1720	Engineered interfaces of WSe2/rhenium doped SnSe2 heterostructures nanosheet arrays for superior hydrogen generation and flexible supercapacitor. Materials Today Chemistry, 2022, 26, 101079.	1.7	10

#		IF	CITATIONS
1791	Surface reconstruction and sulfur vacancies engineering in pentlandite for improving hydrogen	9.1	6
1/21	evolution reaction. Applied Surface Science, 2022, 604, 154470.	0.1	0
1722	2D MOFs and their derivatives for electrocatalytic applications: Recent advances and new challenges. Coordination Chemistry Reviews, 2022, 472, 214777.	9.5	109
1723	Optimizing the electronic structure of CoNx via coupling with N-doped carbon for efficient electrochemical hydrogen evolution. Journal of Colloid and Interface Science, 2022, 628, 350-358.	5.0	7
1724	Prediction of HER electrocatalyst with enhanced performance based on atoms-doped black phosphorene: A first-principles study. Applied Surface Science, 2022, 604, 154508.	3.1	5
1725	Recent progress in noble metal electrocatalysts for nitrogen-to-ammonia conversion. Renewable and Sustainable Energy Reviews, 2022, 168, 112845.	8.2	14
1726	Recent advances in transition-metal phosphide electrocatalysts: Synthetic approach, improvement strategies and environmental applications. Coordination Chemistry Reviews, 2022, 473, 214811.	9.5	57
1727	Missing-linker bifunctional MIL-125(Ti)-Zn interface modulation layer to simultaneously suppress hydrogen evolution reaction and dendrites for Zn metal anodes. Energy Storage Materials, 2022, 53, 322-330.	9.5	37
1728	MOF-derived nanoarrays as advanced electrocatalysts for water splitting. Nanoscale, 2022, 14, 12196-12218.	2.8	23
1729	Robust and promising hydrogen and oxygen evolution reactions by a nanostructured bifunctional FeCoPd alloy electrocatalyst. Journal of Materials Chemistry A, 2022, 10, 23731-23743.	5.2	12
1730	Recent development and challenges in fuel cells and water electrolyzer reactions: an overview. RSC Advances, 2022, 12, 28227-28244.	1.7	10
1731	Challenges and prospects of high-voltage aqueous electrolytes for energy storage applications. Physical Chemistry Chemical Physics, 2022, 24, 20674-20688.	1.3	3
1732	Recent advances in solution assisted synthesis of transition metal chalcogenides for photo-electrocatalytic hydrogen evolution. Physical Chemistry Chemical Physics, 2022, 24, 20638-20673.	1.3	27
1733	The role of adsorbed hydroxide reduction in hydrogen evolution and nitrogen reduction reactions in aqueous solution. Journal of Materials Chemistry A, 2022, 10, 18609-18615.	5.2	4
1734	Surface reconstruction-derived heterostructures for electrochemical water splitting. EnergyChem, 2023, 5, 100091.	10.1	36
1735	Vertically aligned Ni/NiO nanocomposites with abundant oxygen deficient hetero-interfaces for enhanced overall water splitting. Science China Chemistry, 2022, 65, 1885-1894.	4.2	6
1736	Hydrogen evolution reaction activity obtained using platinum single atoms on TiO2 nanosheetsÂmodified with graphene. Journal of Materials Science, 2022, 57, 16448-16459.	1.7	2
1737	High-Entropy Alloy Nanosheets for Fine-Tuning Hydrogen Evolution. ACS Catalysis, 2022, 12, 11955-11959.	5.5	67
1738	2D siloxene supported NiO/Co3O4 electrocatalyst for the stable and efficient hydrogen evolution reaction. Current Applied Physics, 2022, 44, 102-109.	1.1	2

#	Article	IF	CITATIONS
1739	Catalytically active silver nanoparticles stabilized on a thiol-functionalized metal–organic framework for an efficient hydrogen evolution reaction. Nanoscale, 2022, 14, 17345-17353.	2.8	5
1740	Zinc doping induced WS2 accelerating the HER and ORR kinetics: A theoretical and experimental validation. Catalysis Today, 2023, 423, 113921.	2.2	2
1741	Boosting Alkaline Hydrogen Evolution Reaction via an Unexpected Dynamic Evolution of Molybdenum and Selenium on MoSe ₂ Electrode. Advanced Energy Materials, 2022, 12, .	10.2	50
1742	Emerging noble metal-free Mo-based bifunctional catalysts for electrochemical energy conversion. Nano Research, 2022, 15, 10234-10267.	5.8	9
1743	Realizing Favorable Synergism Toward Efficient Hydrogen Evolution Reaction with Heterojunction Engineered Cu ₇ S ₄ /CuS ₂ /NiS ₂ and Functionalized Carbon Sheet Heterostructures. Advanced Materials Interfaces, 2022, 9, .	1.9	1
1744	Improving the HER Activity and Stability of Pt Nanoparticles by Titanium Oxynitride Support. ACS Catalysis, 2022, 12, 13021-13033.	5.5	35
1745	Tuning Iron–Oxygen Covalency in Perovskite Oxides for Efficient Electrochemical Sensing. Journal of Physical Chemistry C, 2022, 126, 17618-17626.	1.5	0
1746	Corrosion of catalyst in high resolution: Layered transition metal dichalcogenides electrocatalyse water splitting and corrode during the process. Journal of Catalysis, 2022, 416, 85-91.	3.1	5
1747	2D Transition Metal Dichalcogenidesâ€Based Electrocatalysts for Hydrogen Evolution Reaction. Advanced Functional Materials, 2022, 32, .	7.8	54
1748	A Pt cathode with high mass activity for proton exchange membrane water electrolysis. International Journal of Hydrogen Energy, 2023, 48, 849-863.	3.8	1
1749	Facet Control of Nickel Nitride Nanoâ€Framework for Efficient Hydrogen Evolution Electrocatalysis via Auxiliary Cooling Assisted Plasma Engineering. Small, 2022, 18, .	5.2	8
1750	Hierarchical NiCo2S4@NiMoO4 nanotube arrays on nickel foam as an advanced bifunctional electrocatalyst for efficient overall water splitting. Electrochimica Acta, 2022, 436, 141393.	2.6	10
1751	Single-atom electrocatalysts designed for boosting hydrogen evolution reaction. , 2024, , 328-343.		0
1752	Dual-purpose nickel-iron layered double hydroxides by controlled lanthanide and phosphide incorporation for promoting overall water splitting efficiency. Journal of Alloys and Compounds, 2023, 933, 167743.	2.8	7
1753	Electrochemical hydroxidation of sulfide for preparing sulfur-doped NiFe (oxy) hydroxide towards efficient oxygen evolution reaction. Chemical Engineering Journal, 2023, 454, 140030.	6.6	7
1754	Synergistic effect of Ru nanoclusters on WC _{1â^'<i>x</i> sub> anchored on N-doped carbon nanosheets to promote highly efficient alkaline hydrogen evolution. Inorganic Chemistry Frontiers, 2022, 10, 137-147.}	3.0	3
1756	Atom Doping Engineering of Transition Metal Phosphides for Hydrogen Evolution Reactions. Electrochemical Energy Reviews, 2022, 5, .	13.1	43
1757	Recent advances in hybrid water electrolysis for energy-saving hydrogen production. Green Chemical Engineering, 2023, 4, 17-29.	3.3	7

#	Article	IF	CITATIONS
1758	Dislocation Networkâ€Boosted PtNi Nanocatalysts Welded on Nickel Foam for Efficient and Durable Hydrogen Evolution at Ultrahigh Current Densities. Advanced Energy Materials, 2023, 13, .	10.2	18
1759	Synthesis of Co ₂ P Nanoparticles Embedded N, P Coâ€Doped Mesoporous Carbon via Molten Salt Process as Hydrogen Evolution Electrocatalyst under Alkaline Conditions. ChemistrySelect, 2022, 7, .	0.7	1
1760	Advanced In Situ Characterization Techniques for Direct Observation of Gasâ€Involved Electrochemical Reactions. Energy and Environmental Materials, 2023, 6, .	7.3	8
1761	Preparation of a Pt-Ni2P/NF catalyst for highly efficient hydrogen evolution using a magnetic field to promote Ni-Pt galvanic replacement. Journal of Materials Science and Technology, 2023, 142, 144-151.	5.6	9
1762	Biomolecule capturing and sensing on 2D transition metal dichalcogenide canvas. , 2023, 2, e9120043.		14
1763	Feâ€Incorporated Ni/MoO ₂ Hollow Heterostructure Nanorod Arrays for Highâ€Efficiency Overall Water Splitting in Alkaline and Seawater Media. Small, 2022, 18, .	5.2	38
1764	Zeolitic imidazolate framework-67Âderived cobalt-based catalysts for water splitting. Materials Today Chemistry, 2022, 26, 101210.	1.7	2
1765	Aerogels-Inspired based Photo and Electrocatalyst for Water Splitting to Produce Hydrogen. Applied Materials Today, 2022, 29, 101670.	2.3	4
1766	A metal/semiconductor contact induced Mott–Schottky junction for enhancing the electrocatalytic activity of water-splitting catalysts. Sustainable Energy and Fuels, 2022, 7, 12-30.	2.5	7
1767	A molecular strategy to Ni45Pt55@NC nanoparticles as efficient and robust Electrocatalyst for hydrogen evolution reaction. Journal of Organometallic Chemistry, 2023, 983, 122558.	0.8	0
1768	Kinetic Regulation Strategies of Transition-Metal-Based Electrocatalysts in Water Splitting Reaction. Hans Journal of Nanotechnology, 2022, 12, 371-383.	0.1	0
1769	Phosphorus vacancies improve the hydrogen evolution of MoP electrocatalysts. Nanoscale, 2023, 15, 1357-1364.	2.8	13
1770	Energy-saving hydrogen production by water splitting coupling urea decomposition and oxidation reactions. Journal of Materials Chemistry A, 2022, 11, 259-267.	5.2	12
1771	Hydrogen-intercalation-induced lattice expansion of mesoporous PtPd nanocrystals for enhanced alkaline hydrogen evolution. Sustainable Energy and Fuels, 0, , .	2.5	0
1772	Theoretical insight into the relevance between the oxidation states of CeO ₂ supported Pt ^{4+/2+/1+/0/2â^'} and their HER performance. CrystEngComm, 2022, 25, 40-47.	1.3	2
1773	Ni-based ultrathin nanostructures for overall electrochemical water splitting. Materials Chemistry Frontiers, 2023, 7, 194-215.	3.2	10
1774	Metal-glycerolates and their derivatives as electrode materials: A review on recent developments, challenges, and future perspectives. Coordination Chemistry Reviews, 2023, 477, 214954.	9.5	13
1775	Integration of amorphous CoSnO3 onto wrinkled MXene nanosheets as efficient electrocatalysts for alkaline hydrogen evolution. Separation and Purification Technology, 2023, 308, 122947.	3.9	14

# 1776	ARTICLE Controlled synthesis of NiCoP@NiM LDH (M=Cu, Fe, Co) as efficient hydrogen evolution reaction electrocatalyst. Journal of Alloys and Compounds, 2023, 937, 168412,	IF 2.8	Citations
1777	Configuration regulation of active sites by accurate doping inducing self-adapting defect for enhanced photocatalytic applications: A review. Coordination Chemistry Reviews, 2023, 478, 214970.	9.5	28
1778	Tailored nitrogen-defect induced by diels-alder reaction for enhanced electrochemical hydrogen evolution reaction. Journal of Colloid and Interface Science, 2023, 633, 754-763.	5.0	2
1779	Ultra-low Pt-loaded catalyst based on nickel mesh for boosting alkaline water electrolysis. Applied Catalysis B: Environmental, 2023, 325, 122296.	10.8	22
1780	Recent Advances and Future Perspectives of Metalâ€Based Electrocatalysts for Overall Electrochemical Water Splitting. Chemical Record, 2023, 23, .	2.9	16
1781	Advanced energy materials: Current trends and challenges in electro- and photo-catalysts for H2O splitting. Journal of Industrial and Engineering Chemistry, 2023, 119, 90-111.	2.9	8
1782	High entropy materials based electrocatalysts for water splitting: Synthesis strategies, catalytic mechanisms, and prospects. Nano Research, 2023, 16, 4411-4437.	5.8	16
1783	Synthesis and study of electrochemical properties of Ni-Co-V@PrGO to enhance hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, , .	3.8	0
1784	Potential and support-dependent hydrogen evolution reaction activation energies on sulfur vacancies of MoS2 from GC-DFT. International Journal of Hydrogen Energy, 2023, 48, 8478-8488.	3.8	9
1785	Longâ€Term Stability Challenges and Opportunities in Acidic Oxygen Evolution Electrocatalysis. Angewandte Chemie, 2023, 135, .	1.6	2
1786	Defectâ€Induced Atomic Arrangement in CoFe Bimetallic Heterostructures with Boosted Oxygen Evolution Activity. Small, 2023, 19, .	5.2	11
1787	Triazine/thiopheneâ€based microporous organic polymer for electrocatalytic hydrogen evolution reaction. Journal of Applied Polymer Science, 2023, 140, .	1.3	2
1788	Defect-induced FexNi1-xSe2 nanoparticles based electrocatalysts towards enhanced hydrogen and oxygen evolution reactions. International Journal of Hydrogen Energy, 2023, 48, 7374-7384.	3.8	3
1789	Guiding Principles for the Design of Artificial Interface Layer for Zinc Metal Anode. Batteries and Supercaps, 2023, 6, .	2.4	4
1790	Phase Transformation from Amorphous RuS _{<i>x</i>} to Ru-RuS ₂ Hybrid Nanostructure for Efficient Water Splitting in Alkaline Media. Inorganic Chemistry, 2023, 62, 583-590.	1.9	2
1791	Heterointerface engineering of Ni/Ni3N hierarchical nanoarrays for efficient alkaline hydrogen evolution. Nano Research, 2023, 16, 4803-4811.	5.8	15
1792	Encapsulating Ni Nanoparticles into Interlayers of Nitrogenâ€Đoped Nb ₂ CT _x MXene to Boost Hydrogen Evolution Reaction in Acid. Small, 2023, 19, .	5.2	6
1793	Longâ€Term Stability Challenges and Opportunities in Acidic Oxygen Evolution Electrocatalysis. Angewandte Chemie - International Edition, 2023, 62,	7.2	61

#	Article	IF	CITATIONS
1794	Synthesis of amorphous Pd-based nanocatalysts for efficient alcoholysis of styrene oxide and electrochemical hydrogen evolution. Nano Research, 2023, 16, 4650-4655.	5.8	10
1795	Tailoring of 1T Phase-Domain MoS ₂ Active Sites with Bridging S ₂ ^{2–} /Apical S ^{2–} Phase-Selective Precursor Modulation for Enriched HER Kinetics. Inorganic Chemistry, 2023, 62, 841-852.	1.9	5
1796	Influence of chromium and lanthanum incorporation on the optical properties, catalytic activity, and stability of IrOx nanostructured films for hydrogen generation. International Journal of Hydrogen Energy, 2023, 48, 14255-14270.	3.8	2
1797	Monodispersed Pt Sites Supported on NiFeâ€LDH from Synchronous Anchoring and Reduction for High Efficiency Overall Water Splitting. Small, 2023, 19, .	5.2	17
1798	Controllable synthesis of nanostructured nickel phosphosulfide by reduction of mixtures of Na4P2S6 and NiCl2 with low P/Ni ratios in hydrogen plasma. Catalysis Today, 2023, 423, 113999.	2.2	2
1799	Development of high-efficiency alkaline OER electrodes for hybrid acid-alkali electrolytic H2 generation. Journal of Colloid and Interface Science, 2023, 636, 610-617.	5.0	7
1800	Graphene oxide decorated nickel-cobalt nanosheet structures based on carbonized wood for electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2023, 48, 13543-13554.	3.8	8
1801	Plasma-Tailored Heterostructured Ni-Ni3N Nanosheets for Enhanced Overall Water Splitting. Journal of Electronic Materials, 2023, 52, 1740-1748.	1.0	2
1802	The adjacent Fe oxidation greatly enhancing OER activity on the Ni active site: S plays the role in optimizing local coordination and electronic structure. Materials Today Chemistry, 2023, 27, 101330.	1.7	2
1803	Cobalt metal–organic framework derived cobalt–nitrogen–carbon material for overall water splitting and supercapacitor. International Journal of Hydrogen Energy, 2023, 48, 9551-9564.	3.8	12
1804	Electrocatalytic performance of copper selenide as structural phase dependent for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2023, , .	3.8	1
1805	CoxMoNyOzHw microrods grown on Ni foam for large-current-density alkaline hydrogen evolution with ultralow overpotential. Journal of Solid State Chemistry, 2023, , 123870.	1.4	0
1806	In Situ Porousized MoS ₂ Nano Islands Enhance HER/OER Bifunctional Electrocatalysis. Small, 2023, 19, .	5.2	42
1807	A comprehensive review on the electrochemical parameters and recent material development of electrochemical water splitting electrocatalysts. RSC Advances, 2023, 13, 3843-3876.	1.7	81
1808	Superaerophilic/superaerophobic cooperative electrode for efficient hydrogen evolution reaction via enhanced mass transfer. Science Advances, 2023, 9, .	4.7	36
1809	Dual metal atom catalysts: Advantages in electrocatalytic reactions. Journal of Energy Chemistry, 2023, 79, 515-534.	7.1	22
1810	Transition Metal Compounds on Functionalized Multiwall Carbon Nanotubes for the Efficient Oxygen Evolution Reaction. ACS Applied Nano Materials, 0, , .	2.4	1
1811	Transition metal (Ni, Cu and Fe) doped MnS nanostructures: Effect of doping on supercapacitance and water splitting. Materials Science in Semiconductor Processing, 2023, 158, 107365.	1.9	7

#	Article	IF	CITATIONS
1812	An inclusive review and perspective on Cu-based materials for electrochemical water splitting. RSC Advances, 2023, 13, 4963-4993.	1.7	20
1813	Syntheses and applications of single-atom catalysts for electrochemical energy conversion reactions. Chinese Journal of Catalysis, 2023, 47, 32-66.	6.9	9
1814	Tuning the Electronic Properties of Platinum in Hybridâ€Nanoparticle Assemblies for use in Hydrogen Evolution Reaction. Angewandte Chemie, 0, , .	1.6	1
1815	Tuning the Electronic Properties of Platinum in Hybridâ€Nanoparticle Assemblies for use in Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
1816	A review of enhanced electrocatalytic composites hydrogen/oxygen evolution based on quantum dot. Journal of Industrial and Engineering Chemistry, 2023, 121, 27-39.	2.9	10
1817	Recent advancement in manganese-based electrocatalyst for green hydrogen production. Journal of Electroanalytical Chemistry, 2023, 937, 117393.	1.9	1
1818	A review on semiconductor photocathode in bioelectrochemical systems: Mechanism, limitation, and environmental application. Materials Today Sustainability, 2023, 22, 100349.	1.9	5
1819	Insight into the surface-reconstruction of metal–organic framework-based nanomaterials for the electrocatalytic oxygen evolution reaction. Coordination Chemistry Reviews, 2023, 484, 215117.	9.5	7
1820	Kinetics of simultaneous hydrodesulfurization and hydrodenitrogenation reactions using CoMoP/Al2O3 and NiMoP/Al2O3. Chemical Engineering Science, 2023, 275, 118725.	1.9	4
1821	Understanding the copper-iridium nanocrystals as highly effective bifunctional pH-universal electrocatalysts for water splitting. Journal of Colloid and Interface Science, 2023, 642, 779-788.	5.0	2
1822	Multi-branched AgAuPt nanoparticles for efficient electrocatalytic hydrogen evolution: Synergism of tip-enhanced electric field effect and local electric field effect. Journal of Energy Chemistry, 2023, 81, 339-348.	7.1	11
1823	Metal/CeO2â°'x with regulated heterointerface, interfacial oxygen vacancy and electronic structure for highly efficient hydrogen evolution reaction. Applied Surface Science, 2023, 626, 157248.	3.1	2
1824	Construction of Bimetallic Co/Fe-Incorporated PTA/FDA Nanoclusters for Boosting Electrocatalytic Oxygen Evolution. International Journal of Energy Research, 2023, 2023, 1-15.	2.2	2
1825	Carbon-supported non-noble metal single-atom catalysts for electro-catalytic hydrogen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 17106-17136.	3.8	9
1826	Nanoarchitectonics of Layered Metal Chalcogenides-Based Ternary Electrocatalyst for Water Splitting. Energies, 2023, 16, 1669.	1.6	3
1827	Mechanistic insight into hydrothermally prepared molybdenum-based electrocatalyst for overall water splitting. Electrochimica Acta, 2023, 445, 142050.	2.6	8
1828	Engineering nickel phosphides for electrocatalytic hydrogen evolution: A doping perspective. Chemical Engineering Journal, 2023, 461, 141845.	6.6	21
1829	Phase pure synthesis of iron-nickel nitride nanoparticles: A low cost electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 18280-18290.	3.8	9

#	Article	IF	CITATIONS
1830	Cathodic Catalysts for Microbial Electrolysis Cell to Produce Biohydrogen. ACS Symposium Series, 0, , 21-42.	0.5	0
1831	Facet Engineering of Advanced Electrocatalysts Toward Hydrogen/Oxygen Evolution Reactions. Nano-Micro Letters, 2023, 15, .	14.4	55
1832	Ceria-based photocatalysts in water-splitting for hydrogen production and carbon dioxide reduction. Catalysis Reviews - Science and Engineering, 0, , 1-78.	5.7	7
1833	A review of electrochemical glucose sensing based on transition metal phosphides. Journal of Applied Physics, 2023, 133, .	1.1	4
1834	In situ rapid and deep self-reconstruction of Fe-doped hydrate NiMoO4 for stable water oxidation at high current densities. Chemical Engineering Journal, 2023, 461, 142081.	6.6	10
1835	Encapsulating dual-phase WC-W2C nanoparticles into hollow carbon dodecahedrons for all-pH electrocatalytic hydrogen evolution. Chemical Engineering Journal, 2023, 462, 142132.	6.6	7
1836	Research progress on single atom and particle synergistic catalysts for electrocatalytic reactions. Materials Chemistry Frontiers, 2023, 7, 1992-2013.	3.2	7
1837	Nhá»⁻ng tiáº;n bá»™ vổváºt liệu xúc tác tách nƺớc không chứa kim loại quý. , 0, 85, 3-17.		0
1838	Calcium carbide residue – a promising hidden source of hydrogen. Green Chemistry, 2023, 25, 3524-3532.	4.6	4
1839	Recent advances and future prospects on Ni3S2-Based electrocatalysts for efficient alkaline water electrolysis. Green Energy and Environment, 2024, 9, 659-683.	4.7	1
1840	Investigation of the Synergistic Effect in Polypyrrole/Ni-Doped NASICON Composites for an Enhanced Hydrogen Evolution Reaction. Energy & Fuels, 2023, 37, 4552-4565.	2.5	5
1841	Determination of Activation Energy on Hydrogen Evolution Reaction for Nickel-Based Porous Electrodes during Alkaline Electrolysis. Catalysts, 2023, 13, 517.	1.6	3
1842	Thickness-dependent catalytic activity of hydrogen evolution based on single atomic catalyst of Pt above MXene. Journal of Physics Condensed Matter, 2023, 35, 204001.	0.7	1
1844	Hierarchical iron–nickel oxyhydroxide nanosheets directly grown on porous TiFe ₂ -based intermetallics for robust oxygen evolution. Chemical Communications, 2023, 59, 4519-4522.	2.2	1
1845	Chemical Strain Engineering of Copper Atoms on Continuous Three-Dimensional-Nanopatterned Nickel Nitride to Accelerate Alkaline Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2023, 11, 5229-5237.	3.2	4
1846	Electrochemical hydrogen evolution on Pt-based catalysts from a theoretical perspective. Journal of Chemical Physics, 2023, 158, .	1.2	4
1847	Molten salt assisted to synthesize molybdenum–ruthenium boride for hydrogen generation in wide pH range. International Journal of Hydrogen Energy, 2023, 48, 21568-21577.	3.8	3
1848	Synergistic Tuning of CoO/CoP Heterojunction Nanowire Arrays as Efficient Bifunctional Catalysts for Alkaline Overall Water Splitting. Small Methods, 2023, 7, .	4.6	16

#	Article	IF	CITATIONS
1849	In Situ Construction of Highâ€Đensity Solid Electrolyte Interphase from MOFs for Advanced Zn Metal Anodes. Advanced Functional Materials, 2023, 33, .	7.8	18
1850	Strategically Constructing a Hydrophilic Interface toward Ultrastable Zinc Metal Anodes. ACS Applied Materials & Interfaces, 0, , .	4.0	3
1851	Single-atom cobalt-incorporating carbon nitride for photocatalytic solar hydrogen conversion: An X-ray spectromicroscopy study. Journal of Electron Spectroscopy and Related Phenomena, 2023, 264, 147319.	0.8	1
1852	Nickel sulfide-based electrocatalysts for overall water splitting. International Journal of Hydrogen Energy, 2023, 48, 27992-28017.	3.8	8
1853	Construction of Cu2O-g-C3N4/MoS2 composite material through the decoration of Cu2O nanoparticles onto the surface of two-dimensional g-C3N4/MoS2 heterostructure for their application in electrochemical hydrogen evolution. Fuel, 2023, 347, 128416.	3.4	4
1855	Recent advances in interface engineering of Fe/Co/Ni-based heterostructure electrocatalysts for water splitting. Materials Horizons, 2023, 10, 2312-2342.	6.4	13
1864	Synthesis and characterization of cobalt sulfide. AIP Conference Proceedings, 2023, , .	0.3	0
1866	Synthesis and characterization of zinc sulfide. AIP Conference Proceedings, 2023, , .	0.3	0
1872	Heterojunction Engineering for Electrocatalytic Applications. ACS Applied Energy Materials, 2023, 6, 7737-7784.	2.5	5
1882	In situ identification of active sites during electrocatalytic hydrogen evolution. Nano Research, 2023, 16, 12910-12918.	5.8	4
1888	Recent advances and strategies of electrocatalysts for large current density industrial hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2023, 10, 4632-4649.	3.0	5
1899	Highly electronegative PtAu alloy for simultaneous hydrogen generation and ethanol upgrading. Rare Metals, 2023, 42, 2949-2956.	3.6	2
1903	Symmetry or asymmetry: which one is the platform of nitrogen vacancies for alkaline hydrogen evolution. Materials Horizons, 2023, 10, 4480-4487.	6.4	5
1904	Recent advances in molybdenum diselenide-based electrocatalysts: preparation and application in the hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2023, 10, 5517-5554.	3.0	4
1909	Chevrel phases: synthesis, structure, and electrocatalytic applications. Materials Chemistry Frontiers, 2023, 7, 5500-5518.	3.2	1
1919	Electroreforming injects a new life into solid waste. , 2023, 1, 892-920.		7
1943	Hydrogen Production by Seawater Electrolysis. , 2023, , 167-202.		0
1956	The CeO2 supported multi-nuclear NbxSy clusters for hydrogen evolution reaction. Sustainable Energy and Fuels, 0, , .	2.5	0

#	Article	IF	CITATIONS
1957	Recent research progress on ruthenium-based catalysts at full pH conditions for the hydrogen evolution reaction. Ionics, 2023, 29, 4987-5001.	1.2	1
1975	Recent advances of bifunctional electrocatalysts and electrolyzers for overall seawater splitting. Journal of Materials Chemistry A, 2024, 12, 634-656.	5.2	4
1986	High-performance artificial leaf: from electrocatalyst design to solar-to-chemical conversion. Materials Chemistry Frontiers, 2024, 8, 1300-1333.	3.2	0
1988	Tin as a co-catalyst for electrocatalytic oxidation and reduction reactions. Inorganic Chemistry Frontiers, 2024, 11, 1019-1047.	3.0	0
1990	Recent advances in trifunctional electrocatalysts for Zn–air battery and water splitting. Materials Chemistry Frontiers, 0, , .	3.2	0
1994	Highly efficient sustainable strategies toward carbon-neutral energy production. Energy and Environmental Science, 2024, 17, 1007-1045.	15.6	1
2000	Local reaction environment in electrocatalysis. Chemical Society Reviews, 2024, 53, 2022-2055.	18.7	2
2005	Surpassing water-splitting potential in aqueous redox flow batteries: insights from kinetics and thermodynamics. , 2024, 2, 522-544.		0
2015	Noble-Metal-Free Bifunctional Electrocatalysts for Overall Water Splitting in Alkaline Medium. Advances in Material Research and Technology, 2024, , 279-337.	0.3	0