Large-scale meta-analysis of genome-wide association of Parkinson's disease

Nature Genetics 46, 989-993

DOI: 10.1038/ng.3043

Citation Report

#	Article	IF	CITATIONS
1	Differential Co-Expression between α-Synuclein and IFN-γ Signaling Genes across Development and in Parkinson's Disease. PLoS ONE, 2014, 9, e115029.	2.5	35
2	ATP13A2 and Alpha-synuclein: a Metal Taste in Autophagy. Experimental Neurobiology, 2014, 23, 314-323.	1.6	11
3	Alpha-synuclein and tau: teammates in neurodegeneration?. Molecular Neurodegeneration, 2014, 9, 43.	10.8	216
4	Host genetic studies in adult pulmonary tuberculosis. Seminars in Immunology, 2014, 26, 445-453.	5.6	36
5	Motor and cognitive deficits in aged tau knockout mice in two background strains. Molecular Neurodegeneration, 2014, 9, 29.	10.8	117
6	FcÎ ³ RIIB mediates the inhibitory effect of aggregated α-synuclein on microglial phagocytosis. Neurobiology of Disease, 2015, 83, 90-99.	4.4	64
7	Cellular processes associated with <scp>LRRK</scp> 2 function and dysfunction. FEBS Journal, 2015, 282, 2806-2826.	4.7	144
8	Ten <scp>Y</scp> ears and <scp>C</scp> ounting: <scp>M</scp> oving <scp>L</scp> eucineâ€ <scp>R</scp> ich <scp>Repeat</scp> <scp>K</scp> inase 2 <scp>I</scp> nhibitors to the <scp>C</scp> linic. Movement Disorders, 2015, 30, 180-189.	3.9	60
9	Diseaseâ€modifying strategies for Parkinson's disease. Movement Disorders, 2015, 30, 1442-1450.	3.9	188
10	Epidemiology and diagnostic testing for hemochromatosis and iron overload. International Journal of Laboratory Hematology, 2015, 37, 25-30.	1.3	75
11	Genetic association of RIT2 rs12456492 polymorphism and Parkinson's disease susceptibility in Asian populations: a meta-analysis. Scientific Reports, 2015, 5, 13805.	3.3	21
12	Phosphoproteomic screening identifies Rab <scp>GTP</scp> ases as novel downstream targets of <scp>PINK</scp> 1. EMBO Journal, 2015, 34, 2840-2861.	7.8	160
13	Aberrant epigenome in <scp>iPSC</scp> â€derived dopaminergic neurons from Parkinson's disease patients. EMBO Molecular Medicine, 2015, 7, 1529-1546.	6.9	117
14	Common genetic variant association with altered HLA expression, synergy with pyrethroid exposure, and risk for Parkinson's disease: an observational and case–control study. Npj Parkinson's Disease, 2015, 1, .	5.3	108
15	The Concept of Prodromal Parkinson's Disease. Journal of Parkinson's Disease, 2015, 5, 681-697.	2.8	195
16	Interaction between SNCA, LRRK2 and GAK increases susceptibility to Parkinson's disease in a Chinese population. ENeurologicalSci, 2015, 1, 3-6.	1.3	9
18	Integrative analyses of proteomics and RNA transcriptomics implicate mitochondrial processes, protein folding pathways and GWAS loci in Parkinson disease. BMC Medical Genomics, 2015, 9, 5.	1.5	103
19	Impact of Parkinson's disease risk loci on age at onset. Movement Disorders, 2015, 30, 847-850.	3.9	38

#	Article	IF	CITATIONS
20	Cumulative genetic risk and age at onset in Parkinson's disease. Movement Disorders, 2015, 30, 1712-1713.	3.9	14
21	Dintor: functional annotation of genomic and proteomic data. BMC Genomics, 2015, 16, 1081.	2.8	10
22	Is the genomic translational pipeline being disrupted?. Human Genomics, 2015, 9, 9.	2.9	6
23	Immunotherapy in Parkinson's Disease: Micromanaging Alpha-Synuclein Aggregation. Journal of Parkinson's Disease, 2015, 5, 413-424.	2.8	69
24	Genetic analysis of <i>SLC41A1</i> in Chinese Parkinson's disease patients. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 706-711.	1.7	13
25	Promising Targets for the Treatment of Neurodegenerative Diseases. Clinical Pharmacology and Therapeutics, 2015, 98, 492-501.	4.7	22
26	Mosaic dominant <i>TUBB4A</i> mutation in an inbred family with complicated hereditary spastic paraplegia. Movement Disorders, 2015, 30, 854-858.	3.9	34
27	Populationâ€∢scp>Based <scp>G</scp> enetic <scp>S</scp> tudies: <scp>T</scp> he <scp>S</scp> earch for <scp>C</scp> ausative <scp>V</scp> ariants in <scp>P</scp> arkinson's <scp>D</scp> isease. Movement Disorders, 2015, 30, 1297-1300.	3.9	O
28	Genome-wide Meta-analysis on the Sense of Smell Among US Older Adults. Medicine (United States), 2015, 94, e1892.	1.0	12
29	Genomic Discoveries and Personalized Medicine in Neurological Diseases. Pharmaceutics, 2015, 7, 542-553.	4.5	13
30	Tracking Parkinson's: Study Design and Baseline Patient Data. Journal of Parkinson's Disease, 2015, 5, 947-959.	2.8	64
31	Association Study between the CD157/BST1 Gene and Autism Spectrum Disorders in a Japanese Population. Brain Sciences, 2015, 5, 188-200.	2.3	24
32	Genetics Underlying Atypical Parkinsonism and Related Neurodegenerative Disorders. International Journal of Molecular Sciences, 2015, 16, 24629-24655.	4.1	21
33	Inflammation in Parkinsonââ,¬â,,¢s disease: role of glucocorticoids. Frontiers in Neuroanatomy, 2015, 9, 32.	1.7	115
34	Habitual behavior and dopamine cell vulnerability in Parkinson disease. Frontiers in Neuroanatomy, 2015, 9, 99.	1.7	9
35	Lessons Learned from Whole Exome Sequencing in Multiplex Families Affected by a Complex Genetic Disorder, Intracranial Aneurysm. PLoS ONE, 2015, 10, e0121104.	2.5	32
36	Enrichment of Minor Alleles of Common SNPs and Improved Risk Prediction for Parkinson's Disease. PLoS ONE, 2015, 10, e0133421.	2.5	26
37	Insights into Neuroinflammation in Parkinson's Disease: From Biomarkers to Anti-Inflammatory Based Therapies. BioMed Research International, 2015, 2015, 1-12.	1.9	160

#	Article	IF	Citations
38	Fine mapping and resequencing of the PARK16 locus in Parkinson's disease. Journal of Human Genetics, 2015, 60, 357-362.	2.3	51
39	The Interplay between Alpha-Synuclein Clearance and Spreading. Biomolecules, 2015, 5, 435-471.	4.0	79
40	CHCHD2 and Parkinson's disease. Lancet Neurology, The, 2015, 14, 679-680.	10.2	13
41	CHCHD2 and Parkinson's disease. Lancet Neurology, The, 2015, 14, 678-679.	10.2	50
42	CHCHD2 and Parkinson's disease. Lancet Neurology, The, 2015, 14, 679.	10.2	16
43	Targeting \hat{l}_{\pm} -synuclein for treatment of Parkinson's disease: mechanistic and therapeutic considerations. Lancet Neurology, The, 2015, 14, 855-866.	10.2	393
44	Splicing: is there an alternative contribution to Parkinson's disease?. Neurogenetics, 2015, 16, 245-263.	1.4	54
45	Drosophila and experimental neurology in the post-genomic era. Experimental Neurology, 2015, 274, 4-13.	4.1	13
46	Polygenic determinants of Parkinson's disease in a Chinese population. Neurobiology of Aging, 2015, 36, 1765.e1-1765.e6.	3.1	73
47	LRRK2 Pathways Leading to Neurodegeneration. Current Neurology and Neuroscience Reports, 2015, 15, 42.	4.2	110
48	Variation in the miRNA-433 binding site of FGF20 is a risk factor for Parkinson's disease in Iranian population. Journal of the Neurological Sciences, 2015, 355, 72-74.	0.6	25
49	Impact of physiological, pathological and environmental factors on the expression and activity of human cytochrome P450 2D6 and implications in precision medicine. Drug Metabolism Reviews, 2015, 47, 470-519.	3.6	58
50	STK39, But Not BST1, HLA-DQB1, and SPPL2B Polymorphism, Is Associated With Han-Chinese Parkinson's Disease in Taiwan. Medicine (United States), 2015, 94, e1690.	1.0	17
51	M1 and M2 immune activation in Parkinson's Disease: Foe and ally?. Neuroscience, 2015, 302, 59-73.	2.3	151
52	A new gene for Parkinson's disease: should we care?. Lancet Neurology, The, 2015, 14, 238-239.	10.2	7
53	Gaucher-related synucleinopathies: The examination of sporadic neurodegeneration from a rare (disease) angle. Progress in Neurobiology, 2015, 125, 47-62.	5.7	63
54	<i>PARK10</i> is a major locus for sporadic neuropathologically confirmed Parkinson disease. Neurology, 2015, 84, 972-980.	1.1	48
55	Retromer in Alzheimer disease, Parkinson disease and other neurological disorders. Nature Reviews Neuroscience, 2015, 16, 126-132.	10.2	197

#	Article	IF	CITATIONS
56	Usefulness of Genetic Testing in PD and PD Trials: A Balanced Review. Journal of Parkinson's Disease, 2015, 5, 209-215.	2.8	29
57	Mendelian genes for Parkinson's disease contribute to the sporadic forms of the diseaseâ€. Human Molecular Genetics, 2015, 24, 2023-2034.	2.9	45
58	Impaired intracellular trafficking defines early Parkinson's disease. Trends in Neurosciences, 2015, 38, 178-188.	8.6	175
59	Linking the VPS35 and EIF4G1 Pathways in Parkinson's Disease. Neuron, 2015, 85, 1-3.	8.1	33
60	Parkinson's disease correlates with promoter methylation in the αâ€synuclein gene. Movement Disorders, 2015, 30, 577-580.	3.9	92
61	Parkinson's Disease Genes VPS35 and EIF4G1 Interact Genetically and Converge on α-Synuclein. Neuron, 2015, 85, 76-87.	8.1	149
62	The endosomal pathway in Parkinson's disease. Molecular and Cellular Neurosciences, 2015, 66, 21-28.	2.2	71
63	Progress in unraveling the genetic etiology of Parkinson disease in a genomic era. Trends in Genetics, 2015, 31, 140-149.	6.7	193
64	Analysis of several loci from genome-wide association studies in Parkinson's disease in mainland China. Neuroscience Letters, 2015, 587, 68-71.	2.1	15
65	Assessment of RIT2 rs12456492 association with Parkinson's disease in Mainland China. Neurobiology of Aging, 2015, 36, 1600.e9-1600.e11.	3.1	13
66	Mitochondrial dysfunction and mitophagy in Parkinson's: from familial to sporadic disease. Trends in Biochemical Sciences, 2015, 40, 200-210.	7.5	444
67	A commentary on fine mapping and resequencing of the PARK16 locus in Parkinson's disease. Journal of Human Genetics, 2015, 60, 405-406.	2.3	1
68	Genetics of Mendelian Forms of Parkinson's Disease. , 2015, , 3-18.		1
69	Genetics of Parkinson's Disease. , 2015, , 19-34.		3
70	Immunopathology of multiple sclerosis. Nature Reviews Immunology, 2015, 15, 545-558.	22.7	1,642
71	Clinically meaningful parameters of progression and long-term outcome of Parkinson disease: An international consensus statement. Parkinsonism and Related Disorders, 2015, 21, 675-682.	2.2	22
72	Gene-Silencing Screen for Mammalian Axon Regeneration Identifies Inpp5f (Sac2) as an Endogenous Suppressor of Repair after Spinal Cord Injury. Journal of Neuroscience, 2015, 35, 10429-10439.	3.6	34
73	Genetic perspective on the role of the autophagy-lysosome pathway in Parkinson disease. Autophagy, 2015, 11, 1443-1457.	9.1	217

#	Article	IF	Citations
74	Novel GCH1 variant in Dopa-responsive dystonia and Parkinson's disease. Parkinsonism and Related Disorders, 2015, 21, 394-397.	2.2	29
75	The immunogenetics of multiple sclerosis: A comprehensive review. Journal of Autoimmunity, 2015, 64, 13-25.	6.5	301
76	PARK16 haplotypes and the importance of protective genetic factors in Parkinson's disease. Journal of Human Genetics, 2015, 60, 461-462.	2.3	1
77	Is Dysregulation of the HPA-Axis a Core Pathophysiology Mediating Co-Morbid Depression in Neurodegenerative Diseases?. Frontiers in Psychiatry, 2015, 6, 32.	2.6	127
78	EIF4G1 mutations do not cause Parkinson's disease. Neurobiology of Aging, 2015, 36, 2444.e1-2444.e4.	3.1	21
79	Variation in PARK10 is not associated with risk and age at onset ofÂParkinson's disease in large clinical cohorts. Neurobiology of Aging, 2015, 36, 2907.e13-2907.e17.	3.1	5
80	RIT2 rs12456492 polymorphism and the risk of Parkinson's disease: A meta-analysis. Neuroscience Letters, 2015, 602, 167-171.	2.1	14
81	Parkinson disease GWAS. Neurology, 2015, 84, 966-967.	1.1	7
82	Prospects of Neurotrophic Factors for Parkinson's Disease: Comparison of Protein and Gene Therapy. Human Gene Therapy, 2015, 26, 550-559.	2.7	67
83	Parkinson's disease in GTP cyclohydrolase 1 mutation carriers. Brain, 2015, 138, e348-e348.	7.6	4
84	Reply: Parkinson's disease in GTP cyclohydrolase 1 mutation carriers. Brain, 2015, 138, e352-e352.	7.6	4
85	Pathways to Parkinsonism Redux: convergent pathobiological mechanisms in genetics of Parkinson's disease. Human Molecular Genetics, 2015, 24, R32-R44.	2.9	73
86	Genetic risk loci for Parkinson's disease: Moving from state to trait?. Movement Disorders, 2015, 30, 747-749.	3.9	4
87	Head injury, potential interaction with genes, and risk for Parkinson's disease. Parkinsonism and Related Disorders, 2015, 21, 292-296.	2.2	27
88	NeuroX, a fast and efficient genotyping platform for investigation of neurodegenerative diseases. Neurobiology of Aging, 2015, 36, 1605.e7-1605.e12.	3.1	96
89	Sac2/INPP5F is an inositol 4-phosphatase that functions in the endocytic pathway. Journal of Cell Biology, 2015, 209, 85-95.	5.2	75
90	Parkinson's disease. Lancet, The, 2015, 386, 896-912.	13.7	4,079
91	Glucocerebrosidase and Parkinson disease: Recent advances. Molecular and Cellular Neurosciences, 2015, 66, 37-42.	2.2	184

#	Article	IF	CITATIONS
93	For complex disease genetics, collaboration drives progress. Science, 2015, 347, 1422-1423.	12.6	4
94	Precision medicine: Clarity for the clinical and biological complexity of Alzheimer's and Parkinson's diseases. Journal of Experimental Medicine, 2015, 212, 601-605.	8.5	34
95	The role of <i>TREM2</i> R47H as a risk factor for Alzheimer's disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson's disease. Alzheimer's and Dementia, 2015, 11, 1407-1416.	0.8	152
96	The G2019S LRRK2 mutation increases myeloid cell chemotactic responses and enhances LRRK2 binding to actin-regulatory proteins. Human Molecular Genetics, 2015, 24, 4250-4267.	2.9	58
97	Parkinson's Disease Genetic Loci in Rapid Eye Movement Sleep Behavior Disorder. Journal of Molecular Neuroscience, 2015, 56, 617-622.	2.3	42
98	Haplotype-resolved genome sequencing: experimental methods and applications. Nature Reviews Genetics, 2015, 16, 344-358.	16.3	156
99	Genetic risk and age in Parkinson's disease: Continuum not stratum. Movement Disorders, 2015, 30, 850-854.	3.9	71
100	Clioquinol rescues Parkinsonism and dementia phenotypes of the tau knockout mouse. Neurobiology of Disease, 2015, 81, 168-175.	4.4	73
101	Genetic markers of Restless Legs Syndrome in Parkinson disease. Parkinsonism and Related Disorders, 2015, 21, 582-585.	2.2	20
102	Leucine-rich repeat kinase 2 deficiency is protective in rhabdomyolysis-induced kidney injury. Human Molecular Genetics, 2015, 24, 4078-4093.	2.9	39
103	Diagnosis of Parkinson's disease on the basis of clinical and genetic classification: a population-based modelling study. Lancet Neurology, The, 2015, 14, 1002-1009.	10.2	179
104	Neuroinflammation in Lewy body dementia. Parkinsonism and Related Disorders, 2015, 21, 1398-1406.	2.2	68
105	Propagation of prions causing synucleinopathies in cultured cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4949-58.	7.1	191
106	Association between α-synuclein blood transcripts and early, neuroimaging-supported Parkinson's disease. Brain, 2015, 138, 2659-2671.	7.6	69
107	An Emerging Era in the Management of Parkinson's Disease: Wearable Technologies and the Internet of Things. IEEE Journal of Biomedical and Health Informatics, 2015, 19, 1873-1881.	6.3	257
108	Leucine-rich Repeat Kinase 2 (LRRK2) Pharmacological Inhibition Abates α-Synuclein Gene-induced Neurodegeneration. Journal of Biological Chemistry, 2015, 290, 19433-19444.	3.4	171
109	Insights from late-onset familial parkinsonism on the pathogenesis of idiopathic Parkinson's disease. Lancet Neurology, The, 2015, 14, 1054-1064.	10.2	56
110	Role for the microtubule-associated protein tau variant p.A152T in risk of $\hat{l}\pm$ -synucleinopathies. Neurology, 2015, 85, 1680-1686.	1.1	31

#	Article	IF	CITATIONS
111	The Alzheimer disease BIN1 locus as a modifier of GBA-associated Parkinson disease. Journal of Neurology, 2015, 262, 2443-2447.	3.6	17
112	No association of FAM47E rs6812193, SCARB2 rs6825004 and STX1B rs4889603 polymorphisms with Parkinson's disease in a Chinese Han population. Journal of Neural Transmission, 2015, 122, 1547-1552.	2.8	5
113	Multisystem Lewy body disease and the other parkinsonian disorders. Nature Genetics, 2015, 47, 1378-1384.	21.4	49
114	Genetic variability in ABCB1, occupational pesticide exposure, and Parkinson's disease. Environmental Research, 2015, 143, 98-106.	7.5	34
115	Developmental regulation of human cortex transcription and its clinical relevance at single base resolution. Nature Neuroscience, 2015, 18, 154-161.	14.8	142
116	Parkinsonism in GTP cyclohydrolase 1 mutation carriers. Brain, 2015, 138, e349-e349.	7.6	20
117	RIT2 polymorphism is associated with Parkinson's disease in a Han Chinese population. Neurobiology of Aging, 2015, 36, 1603.e15-1603.e17.	3.1	8
118	Identifying the Association Between Alzheimer's Disease and Parkinson's Disease Using Genome-Wide Association Studies and Protein-Protein Interaction Network. Molecular Neurobiology, 2015, 52, 1629-1636.	4.0	33
119	Inflammation is genetically implicated in Parkinson's disease. Neuroscience, 2015, 302, 89-102.	2.3	182
120	An exome study of Parkinson's disease in Sardinia, a Mediterranean genetic isolate. Neurogenetics, 2015, 16, 55-64.	1.4	20
122	Comparison of Two Meta-Analysis Methods: Inverse-Variance-Weighted Average and Weighted Sum of Z-Scores. Genomics and Informatics, 2016, 14, 173.	0.8	147
123	Organophosphate Pesticide Exposures, Nitric Oxide Synthase Gene Variants, and Gene–Pesticide Interactions in a Case–Control Study of Parkinson's Disease, California (USA). Environmental Health Perspectives, 2016, 124, 570-577.	6.0	52
124	Methyl-Arginine Profile of Brain from Aged PINK1-KO+A53T-SNCA Mice Suggests Altered Mitochondrial Biogenesis. Parkinson's Disease, 2016, 2016, 1-13.	1.1	9
125	Analysis of <i>LRRK2</i> , <i>SNCA,</i> and <i>ITGA8</i> Gene Variants with Sporadic Parkinson's Disease Susceptibility in Chinese Han Population. Parkinson's Disease, 2016, 2016, 1-6.	1.1	14
126	Genetic Profile, Environmental Exposure, and Their Interaction in Parkinson's Disease. Parkinson's Disease, 2016, 2016, 1-9.	1.1	36
127	Epigenetic Research of Neurodegenerative Disorders Using Patient iPSC-Based Models. Stem Cells International, 2016, 2016, 1-16.	2.5	13
128	Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases. ELife, 2016, 5, .	6.0	766
129	Biological functions of selenium and its potential influence on Parkinson's disease. Anais Da Academia Brasileira De Ciencias, 2016, 88, 1655-1674.	0.8	64

#	Article	IF	CITATIONS
130	microRNA Profiles in Parkinson's Disease Prefrontal Cortex. Frontiers in Aging Neuroscience, 2016, 8, 36.	3.4	142
131	Sexual Dimorphism and Aging in the Human Hyppocampus: Identification, Validation, and Impact of Differentially Expressed Genes by Factorial Microarray and Network Analysis. Frontiers in Aging Neuroscience, 2016, 8, 229.	3.4	62
132	Evaluation of Models of Parkinson's Disease. Frontiers in Neuroscience, 2015, 9, 503.	2.8	150
133	ldentification of Vulnerable Cell Types in Major Brain Disorders Using Single Cell Transcriptomes and Expression Weighted Cell Type Enrichment. Frontiers in Neuroscience, 2016, 10, 16.	2.8	273
134	Comprehensive promoter level expression quantitative trait loci analysis of the human frontal lobe. Genome Medicine, 2016, 8, 65.	8.2	20
135	Human Bacterial Artificial Chromosome (BAC) Transgenesis Fully Rescues Noradrenergic Function in Dopamine \hat{l}^2 -Hydroxylase Knockout Mice. PLoS ONE, 2016, 11, e0154864.	2.5	12
136	Predictive Big Data Analytics: A Study of Parkinson's Disease Using Large, Complex, Heterogeneous, Incongruent, Multi-Source and Incomplete Observations. PLoS ONE, 2016, 11, e0157077.	2.5	94
137	A Missense LRRK2 Variant Is a Risk Factor for Excessive Inflammatory Responses in Leprosy. PLoS Neglected Tropical Diseases, 2016, 10, e0004412.	3.0	181
138	Role of the Long Non-Coding RNA MAPT-AS1 in Regulation of Microtubule Associated Protein Tau (MAPT) Expression in Parkinson's Disease. PLoS ONE, 2016, 11, e0157924.	2.5	68
139	The Genetic Basis of Cognitive Impairment and Dementia in Parkinson's Disease. Frontiers in Psychiatry, 2016, 7, 89.	2.6	46
140	LRRK2 inhibitors and their potential in the treatment of Parkinson's disease: current perspectives. Clinical Pharmacology: Advances and Applications, 2016, Volume 8, 177-189.	1.2	49
141	Discordant Haplotype Sequencing Identifies Functional Variants at the 2q33 Breast Cancer Risk Locus. Cancer Research, 2016, 76, 1916-1925.	0.9	7
142	αâ€synuclein genetic variability: A biomarker for dementia in Parkinson disease. Annals of Neurology, 2016, 79, 991-999.	5.3	85
143	Neuropathology of αâ€synuclein propagation and braak hypothesis. Movement Disorders, 2016, 31, 152-160.	3.9	111
144	The NINDS Parkinson's disease biomarkers program. Movement Disorders, 2016, 31, 915-923.	3.9	83
145	<scp>N</scp> omenclature of genetic movement disorders: <scp>R</scp> ecommendations of the international <scp>P</scp> arkinson and movement disorder society task force. Movement Disorders, 2016, 31, 436-457.	3.9	228
146	Ser(P)â€1292 LRRK2 in urinary exosomes is elevated in idiopathic Parkinson's disease. Movement Disorders, 2016, 31, 1543-1550.	3.9	144
147	Genetic Variants in MicroRNAs and Their Binding Sites Are Associated with the Risk of Parkinson Disease. Human Mutation, 2016, 37, 292-300.	2.5	52

#	Article	IF	CITATIONS
148	Lack of association between <scp><i>MC1R</i></scp> variants and <scp>P</scp> arkinson disease in <scp>E</scp> uropean descent. Annals of Neurology, 2016, 79, 866-868.	5.3	5
149	Inhibitor treatment of peripheral mononuclear cells from Parkinsonâ∈™s disease patients further validates LRRK2 dephosphorylation as a pharmacodynamic biomarker. Scientific Reports, 2016, 6, 31391.	3.3	32
150	Plasma <scp>EGF</scp> and cognitive decline in Parkinson's disease and Alzheimer's disease. Annals of Clinical and Translational Neurology, 2016, 3, 346-355.	3.7	41
151	Identification of Multiple QTLs Linked to Neuropathology in the Engrailed-1 Heterozygous Mouse Model of Parkinson's Disease. Scientific Reports, 2016, 6, 31701.	3.3	9
152	Cellular functions of LRRK2 implicate vesicular trafficking pathways in Parkinson's disease. Biochemical Society Transactions, 2016, 44, 1603-1610.	3.4	43
153	DNA variants in <i>CACNA1C</i> modify Parkinson disease risk only when vitamin D level is deficient. Neurology: Genetics, 2016, 2, e72.	1.9	11
154	Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease. Cell, 2016, 167, 1469-1480.e12.	28.9	2,399
155	Association of Frontotemporal Dementia GWAS Loci with Late-Onset Alzheimer's Disease in a Northern Han Chinese Population. Journal of Alzheimer's Disease, 2016, 52, 43-50.	2.6	5
156	Paving the road for the study of epigenetics in neurodegenerative diseases. Acta Neuropathologica, 2016, 132, 483-485.	7.7	6
157	SNCA alleles rs356219 and rs356165 are associated with Parkinson's disease and increased α-synuclein gene expression in CD45+ blood cells. Cell and Tissue Biology, 2016, 10, 277-283.	0.4	1
158	Genome-wide association study of Parkinson's disease in East Asians. Human Molecular Genetics, 2017, 26, ddw379.	2.9	94
159	LRRK2 at the interface of autophagosomes, endosomes and lysosomes. Molecular Neurodegeneration, 2016, 11, 73.	10.8	146
160	Leucine-rich repeat kinase 2 (LRRK2) regulates \hat{l}_{\pm} -synuclein clearance in microglia. BMC Neuroscience, 2016, 17, 77.	1.9	48
161	Clinical subtypes and genetic heterogeneity: of lumping and splitting in Parkinson disease. Current Opinion in Neurology, 2016, 29, 727-734.	3.6	55
162	Connecting Ca2+ and Lysosomes to Parkinson Disease. Messenger (Los Angeles, Calif: Print), 2016, 5, 76-86.	0.3	5
163	Association of rs1801582 and rs1801334 PARK2 Polymorphisms with risk of Parkinson's disease: A case-control study in South India and Meta-Analysis. Meta Gene, 2016, 10, 32-38.	0.6	12
164	Genomics implicates adaptive and innate immunity in Alzheimer's and Parkinson's diseases. Annals of Clinical and Translational Neurology, 2016, 3, 924-933.	3.7	84
165	Low frequency of GCH1 and TH mutations in Parkinson's disease. Parkinsonism and Related Disorders, 2016, 29, 109-111.	2.2	5

#	Article	IF	CITATIONS
166	SLC1A2 rs3794087 are associated with susceptibility to Parkinson's disease, but not essential tremor, amyotrophic lateral sclerosis or multiple system atrophy in a Chinese population. Journal of the Neurological Sciences, 2016, 365, 96-100.	0.6	17
167	Essential role of Ufm1 conjugation in the hematopoietic system. Experimental Hematology, 2016, 44, 442-446.	0.4	23
168	The role of the melanoma gene MC1R in Parkinson disease and REM sleep behavior disorder. Neurobiology of Aging, 2016, 43, 180.e7-180.e13.	3.1	12
169	No association of GPNMB rs156429 polymorphism with Parkinson's disease, amyotrophic lateral sclerosis and multiple system atrophy in Chinese population. Neuroscience Letters, 2016, 622, 113-117.	2.1	15
170	hVMAT2: A Target of Individualized Medication for Parkinson's Disease. Neurotherapeutics, 2016, 13, 623-634.	4.4	11
171	Advances in understanding genomic markers and pharmacogenetics of Parkinson's disease. Expert Opinion on Drug Metabolism and Toxicology, 2016, 12, 433-448.	3.3	33
172	Mitochondrial control of cell bioenergetics in Parkinson's disease. Free Radical Biology and Medicine, 2016, 100, 123-137.	2.9	74
173	Guilt by genetic association. Nature, 2016, 533, 40-41.	27.8	6
174	Parkinson-associated risk variant in distal enhancer of \hat{l}_{\pm} -synuclein modulates target gene expression. Nature, 2016, 533, 95-99.	27.8	466
175	Epigenetics of dementia: understanding the disease as a transformation rather than a state. Lancet Neurology, The, 2016, 15, 760-774.	10.2	116
176	Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radical Biology and Medicine, 2016, 100, 210-222.	2.9	232
177	Parkinson's Disease: A Traffic Jam?. Current Biology, 2016, 26, R332-R334.	3.9	15
178	Gene regulatory effects of disease-associated variation in the NRF2 network. Current Opinion in Toxicology, 2016, 1, 71-79.	5.0	23
179	DNM3 and genetic modifiers of age of onset in LRRK2 Gly2019Ser parkinsonism: a genome-wide linkage and association study. Lancet Neurology, The, 2016, 15, 1248-1256.	10.2	69
180	Modifiers of LRRK2 parkinsonism: new therapeutic targets. Lancet Neurology, The, 2016, 15, 1200-1201.	10.2	2
181	Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nature Neuroscience, 2016, 19, 1569-1582.	14.8	213
182	Role of Neuroinflammation in Parkinson Disease: The Enigma Continues. Mayo Clinic Proceedings, 2016, 91, 1328-1330.	3.0	15
183	Parkinson's disease: SNCA-, PARK2-, and LRRK2- targeting microRNAs elevated in cingulate gyrus. Parkinsonism and Related Disorders, 2016, 33, 115-121.	2.2	72

#	Article	IF	CITATIONS
184	The Clinical Profile of GBA-Related Lewy Body Disorders. JAMA Neurology, 2016, 73, 1403.	9.0	1
185	An enzyme in the kynurenine pathway that governs vulnerability to suicidal behavior by regulating excitotoxicity and neuroinflammation. Translational Psychiatry, 2016, 6, e865-e865.	4.8	141
186	SNPing <i>SCNA</i> regulatory elements gives a CRISPR view of genetic susceptibility in Parkinson's disease. Movement Disorders, 2016, 31, 1479-1479.	3.9	3
187	Genome-wide gene-environment interaction analysis of pesticide exposure and risk of Parkinson's disease. Parkinsonism and Related Disorders, 2016, 32, 25-30.	2.2	31
188	Baseline genetic associations in the Parkinson's Progression Markers Initiative (PPMI). Movement Disorders, 2016, 31, 79-85.	3.9	60
189	The genetic background of Parkinson's disease: current progress and future prospects. Acta Neurologica Scandinavica, 2016, 134, 314-326.	2.1	205
190	Structure, function and toxicity of alphaâ€synuclein: the Bermuda triangle in synucleinopathies. Journal of Neurochemistry, 2016, 139, 240-255.	3.9	163
191	Genetics in Parkinson disease: Mendelian versus nonâ€Mendelian inheritance. Journal of Neurochemistry, 2016, 139, 59-74.	3.9	390
192	Imputation of DNA Methylation Levels in the Brain Implicates a Risk Factor for Parkinson's Disease. Genetics, 2016, 204, 771-781.	2.9	17
193	How can <scp>rAAV</scp> â€Î±â€synuclein and the fibril αâ€synuclein models advance our understanding of Parkinson's disease?. Journal of Neurochemistry, 2016, 139, 131-155.	3.9	84
194	<scp>DNA</scp> methylation in Parkinson's disease. Journal of Neurochemistry, 2016, 139, 108-120.	3.9	78
195	The biomarkers of immune dysregulation and inflammation response in Parkinson disease. Translational Neurodegeneration, 2016, 5, 16.	8.0	53
196	SIPA1L2, MIR4697, GCH1 and VPS13C loci and risk of Parkinson's diseases in Iranian population: A case-control study. Journal of the Neurological Sciences, 2016, 369, 1-4.	0.6	15
197	SNCA rs356182 variant increases risk of sporadic Parkinson's disease in ethnic Chinese. Journal of the Neurological Sciences, 2016, 368, 231-234.	0.6	17
198	Gene and Network Analysis of Common Variants Reveals Novel Associations in Multiple Complex Diseases. Genetics, 2016, 204, 783-798.	2.9	56
199	Genetics of multiple system atrophy. Neurology, 2016, 87, 1530-1531.	1.1	0
200	Lysosomal trafficking defects link Parkinson's disease with Gaucher's disease. Movement Disorders, 2016, 31, 1610-1618.	3.9	47
201	LRRK2 variation and dementia with Lewy bodies. Parkinsonism and Related Disorders, 2016, 31, 98-103.	2.2	30

#	Article	IF	CITATIONS
202	A genome-wide association study in multiple system atrophy. Neurology, 2016, 87, 1591-1598.	1.1	139
203	Specifically neuropathic Gaucher's mutations accelerate cognitive decline in Parkinson's. Annals of Neurology, 2016, 80, 674-685.	5.3	226
204	Gene-environment interactions linking air pollution and inflammation in Parkinson's disease. Environmental Research, 2016, 151, 713-720.	7.5	55
205	Using epigenetic networks for the analysis of movement associated with levodopa therapy for Parkinson's disease. BioSystems, 2016, 146, 35-42.	2.0	5
206	Uncovering the Role of the Methylome in Dementia and Neurodegeneration. Trends in Molecular Medicine, 2016, 22, 687-700.	6.7	25
207	Imaging Genomics and ENIGMA. , 2016, , 101-115.		3
208	The Genetic Basis of Alzheimer's Disease. , 2016, , 547-571.		5
209	Identification of genetic modifiers of age-at-onset for familial Parkinson's disease. Human Molecular Genetics, 2016, 25, 3849-3862.	2.9	44
210	Mutations in glucocerebrosidase are a major genetic risk factor for Parkinson's disease and increase susceptibility to dementia in a Flanders-Belgian cohort. Neuroscience Letters, 2016, 629, 160-164.	2.1	34
211	The rs3756063 polymorphism is associated with SNCA methylation in the Chinese Han population. Journal of the Neurological Sciences, 2016, 367, 11-14.	0.6	24
212	mTOR independent regulation of macroautophagy by Leucine Rich Repeat Kinase 2 via Beclin-1. Scientific Reports, 2016, 6, 35106.	3.3	69
213	Neuroinflammation â€" using big data to inform clinical practice. Nature Reviews Neurology, 2016, 12, 685-698.	10.1	29
214	Defects in trafficking bridge Parkinson's disease pathology and genetics. Nature, 2016, 539, 207-216.	27.8	373
215	A genomic approach to therapeutic target validation identifies a glucose-lowering <i>GLP1R</i> variant protective for coronary heart disease. Science Translational Medicine, 2016, 8, 341ra76.	12.4	100
216	Accuracy Improvement for Predicting Parkinson's Disease Progression. Scientific Reports, 2016, 6, 34181.	3.3	101
217	eSNPO: An eQTL-based SNP Ontology and SNP functional enrichment analysis platform. Scientific Reports, 2016, 6, 30595.	3.3	9
218	Genetics of Parkinson's disease. Molecular and Cellular Probes, 2016, 30, 386-396.	2.1	282
219	Genetic and pharmacological correction of aberrant dopamine synthesis using patient iPSCs with BH4 metabolism disorders. Human Molecular Genetics, 2016, 25, ddw339.	2.9	32

#	Article	IF	CITATIONS
220	<i>Trans</i> -pQTL study identifies immune crosstalk between Parkinson and Alzheimer loci. Neurology: Genetics, 2016, 2, e90.	1.9	31
221	Cutaneous malignant melanoma and Parkinson disease: Common pathways?. Annals of Neurology, 2016, 80, 811-820.	5.3	32
222	CNS disease models with human pluripotent stem cells in the CRISPR age. Current Opinion in Cell Biology, 2016, 43, 96-103.	5.4	19
223	The Parkinson's disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway. Nature Communications, 2016, 7, 11803.	12.8	154
224	Additional rare variant analysis in Parkinson's disease cases with and without known pathogenic mutations: evidence for oligogenic inheritance. Human Molecular Genetics, 2016, 25, ddw348.	2.9	48
226	Parkinson disease male-to-female ratios increase with age: French nationwide study and meta-analysis. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 952-957.	1.9	169
227	SCARB2 variants and glucocerebrosidase activity in Parkinson's disease. Npj Parkinson's Disease, 2016, 2, .	5.3	36
228	Phenome-based gene discovery provides information about Parkinson's disease drug targets. BMC Genomics, 2016, 17, 493.	2.8	12
229	Epigenetic regulation in Parkinson's disease. Acta Neuropathologica, 2016, 132, 515-530.	7.7	84
230	<i>D</i> <scp><i>NAJC</i></scp> <i>6</i> <scp>M</scp> utations <scp>A</scp> ssociated <scp>W</scp> ith <scp>E</scp> arlyâ€ <scp>O</scp> nset <scp>P</scp> arkinson's <scp>D</scp> isease. Annals of Neurology, 2016, 79, 244-256.	5.3	148
231	Gene Expression-Based Screen for Parkinson's Disease Identifies GW8510 as a Neuroprotective Agent. ACS Chemical Neuroscience, 2016, 7, 857-863.	3.5	4
232	Resequencing analysis of five Mendelian genes andÂthe top genes from genome-wide association studies in Parkinson's Disease. Molecular Neurodegeneration, 2016, 11, 29.	10.8	70
233	Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nature Genetics, 2016, 48, 856-866.	21.4	520
234	Genome-wide assessment of Parkinson's disease in a Southern Spanish population. Neurobiology of Aging, 2016, 45, 213.e3-213.e9.	3.1	35
235	Genetic risk of Parkinson's disease in the general population. Parkinsonism and Related Disorders, 2016, 29, 54-59.	2.2	11
236	Strong association between glucocerebrosidase mutations and Parkinson's disease in Sweden. Neurobiology of Aging, 2016, 45, 212.e5-212.e11.	3.1	50
237	Deep brain stimulation-associated brain tissue imprints: a new in vivo approach to biological research in human Parkinson's disease. Molecular Neurodegeneration, 2016, 11, 12.	10.8	7
238	The Evolution of Genetics: Alzheimer's and Parkinson's Diseases. Neuron, 2016, 90, 1154-1163.	8.1	81

#	ARTICLE	IF	CITATIONS
239	$\mbox{\sc i>MAPT}\mbox{\sc /i>}$ haplotype H1G is associated with increased risk of dementia with Lewy bodies. Alzheimer's and Dementia, 2016, 12, 1297-1304.	0.8	32
240	Association between FGF20 rs12720208 gene polymorphism and Parkinson's disease: a meta-analysis. Neurological Sciences, 2016, 37, 1119-1126.	1.9	4
242	<scp>A</scp> cumulative genetic risk score predicts progression in <scp>P</scp> arkinson's disease. Movement Disorders, 2016, 31, 487-490.	3.9	42
243	Is PARK10 a Locus for Familial PD? Yes or No?. Movement Disorders, 2016, 31, 970-970.	3.9	1
244	Association of four new candidate genetic variants with Parkinson's disease in a Han Chinese population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 342-347.	1.7	18
245	Association between two α-2-macroglobulin gene polymorphisms and Parkinson's disease: a meta-analysis. International Journal of Neuroscience, 2016, 126, 193-198.	1.6	9
246	Association of GCH1 and MIR4697, but not SIPA1L2 and VPS13C polymorphisms, with Parkinson's disease in Taiwan. Neurobiology of Aging, 2016, 39, 221.e1-221.e5.	3.1	15
247	The prediagnostic phase of Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 871-878.	1.9	122
248	Exome Variant Mining in Familial Parkinson Disease. JAMA Neurology, 2016, 73, 21.	9.0	0
249	Epidemiology of Parkinson's disease. Revue Neurologique, 2016, 172, 14-26.	1.5	292
250	Comparative blood transcriptome analysis in idiopathic and LRRK2 G2019S–associated Parkinson's disease. Neurobiology of Aging, 2016, 38, 214.e1-214.e5.	3.1	31
251	The future of pharmaceutical manufacturing in the context of the scientific, social, technological and economic evolution. European Journal of Pharmaceutical Sciences, 2016, 90, 8-13.	4.0	22
252	Genome-wide analysis of genetic correlation in dementia with Lewy bodies, Parkinson's and Alzheimer's diseases. Neurobiology of Aging, 2016, 38, 214.e7-214.e10.	3.1	78
253	Association of Parkinson disease age of onset with DRD2, DRD3 and GRIN2B polymorphisms. Parkinsonism and Related Disorders, 2016, 22, 102-105.	2.2	15
254	Exploring the Association Between Rosacea and Parkinson Disease. JAMA Neurology, 2016, 73, 529.	9.0	95
255	Translational research on cognitive and behavioural disorders in neurological and psychiatric diseases. Therapie, 2016, 71, 15-26.	1.0	3
256	Parkinson Disease Risk in Patients With Rosacea. JAMA Neurology, 2016, 73, 501.	9.0	2
257	Deletions at 22q11.2 in idiopathic Parkinson's disease: a combined analysis of genome-wide association data. Lancet Neurology, The, 2016, 15, 585-596.	10.2	77

#	Article	IF	CITATIONS
258	Genes associated with Parkinson's disease: regulation of autophagy and beyond. Journal of Neurochemistry, 2016, 139, 91-107.	3.9	88
259	<scp>M</scp> endelian <scp>R</scp> andomization â€" the <scp>K</scp> ey to <scp>U</scp> nderstanding <scp>A</scp> spects of <scp>P</scp> arkinson's <scp>D</scp> isease <scp>C</scp> ausation?. Movement Disorders, 2016, 31, 478-483.	3.9	23
260	É'-Synuclein strains and the variable pathologies of synucleinopathies. Journal of Neurochemistry, 2016, 139, 256-274.	3.9	72
261	CSF biomarkers associated with disease heterogeneity in early Parkinson's disease: the Parkinson's Progression Markers Initiative study. Acta Neuropathologica, 2016, 131, 935-949.	7.7	190
263	Genome-wide association analysis of self-reported events in 6135 individuals and 252 827 controls identifies 8 loci associated with thrombosis. Human Molecular Genetics, 2016, 25, 1867-1874.	2.9	103
264	Large-scale linear regression: Development of high-performance routines. Applied Mathematics and Computation, 2016, 275, 411-421.	2.2	12
265	Induced pluripotent stem cells in Parkinson's disease: scientific and clinical challenges. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 697-702.	1.9	45
266	The asymmetric protein expression hypothesis $\hat{a}\in$ Explaining the unilaterality of HLA-B27-positive acute anterior uveitides. Medical Hypotheses, 2016, 88, 10-11.	1.5	1
267	Sports genetics moving forward: lessons learned from medical research. Physiological Genomics, 2016, 48, 175-182.	2.3	26
268	Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy. American Journal of Human Genetics, 2016, 98, 500-513.	6.2	333
269	Synaptotagmin XI in Parkinson's disease: New evidence from an association study in Spain and Mexico. Journal of the Neurological Sciences, 2016, 362, 321-325.	0.6	17
270	Of Pesticides and Men: a California Story of Genes and Environment in Parkinson's Disease. Current Environmental Health Reports, 2016, 3, 40-52.	6.7	103
271	Association of three candidate genetic variants in RAB7L1/NUCKS1, MCCC1 and STK39 with sporadic Parkinson's disease in Han Chinese. Journal of Neural Transmission, 2016, 123, 425-430.	2.8	15
272	What lysosomes actually tell us about Parkinson's disease?. Ageing Research Reviews, 2016, 32, 140-149.	10.9	19
273	Genome-wide estimate of the heritability of Multiple System Atrophy. Parkinsonism and Related Disorders, 2016, 22, 35-41.	2.2	42
274	Environmental risk factors and Parkinson's disease: An umbrella review of meta-analyses. Parkinsonism and Related Disorders, 2016, 23, 1-9.	2.2	307
275	Genetic susceptibility variants in parkinsonism. Parkinsonism and Related Disorders, 2016, 22, S7-S11.	2.2	16
276	Convergent Genetic and Expression Datasets Highlight TREM2 in Parkinson's Disease Susceptibility. Molecular Neurobiology, 2016, 53, 4931-4938.	4.0	60

#	Article	IF	CITATIONS
277	Variants in GBA, SNCA, and MAPT influence Parkinson disease risk, age at onset, and progression. Neurobiology of Aging, 2016, 37, 209.e1-209.e7.	3.1	106
278	Association of Parkinson's Disease GWAS-Linked Loci with Alzheimer's Disease in Han Chinese. Molecular Neurobiology, 2017, 54, 308-318.	4.0	22
279	ENIGMA and the individual: Predicting factors that affect the brain in 35 countries worldwide. NeuroImage, 2017, 145, 389-408.	4.2	173
280	Oxidative Modification and Its Implications for the Neurodegeneration of Parkinson's Disease. Molecular Neurobiology, 2017, 54, 1404-1418.	4.0	40
281	Network and Pathway-Based Analyses of Genes Associated with Parkinson's Disease. Molecular Neurobiology, 2017, 54, 4452-4465.	4.0	39
282	Involvement of the kynurenine pathway in the pathogenesis of Parkinson's disease. Progress in Neurobiology, 2017, 155, 76-95.	5.7	111
283	Genetic Variants of Microtubule Actin Cross-linking Factor 1 (MACF1) Confer Risk for Parkinson's Disease. Molecular Neurobiology, 2017, 54, 2878-2888.	4.0	22
284	RIT2 Polymorphisms: Is There a Differential Association?. Molecular Neurobiology, 2017, 54, 2234-2240.	4.0	31
285	GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function: a report from the COGENT consortium. Molecular Psychiatry, 2017, 22, 336-345.	7.9	194
286	Discovery and functional prioritization of Parkinson's disease candidate genes from large-scale whole exome sequencing. Genome Biology, 2017, 18, 22.	8.8	96
287	Case–control association mapping by proxy using family history of disease. Nature Genetics, 2017, 49, 325-331.	21.4	192
288	Blood RNA biomarkers in prodromal PARK4 and REM sleep behavior disorder show role of complexin-1 loss for risk of Parkinson's disease. DMM Disease Models and Mechanisms, 2017, 10, 619-631.	2.4	20
289	Genome-Scale Networks Link Neurodegenerative Disease Genes to α-Synuclein through Specific Molecular Pathways. Cell Systems, 2017, 4, 157-170.e14.	6.2	102
290	In Situ Peroxidase Labeling and Mass-Spectrometry Connects Alpha-Synuclein Directly to Endocytic Trafficking and mRNA Metabolism in Neurons. Cell Systems, 2017, 4, 242-250.e4.	6.2	91
291	Genetics of early-onset Parkinson's disease in Finland: exome sequencing and genome-wide association study. Neurobiology of Aging, 2017, 53, 195.e7-195.e10.	3.1	46
292	Parkinson Sac Domain Mutation in Synaptojanin 1 Impairs Clathrin Uncoating at Synapses and Triggers Dystrophic Changes in Dopaminergic Axons. Neuron, 2017, 93, 882-896.e5.	8.1	136
293	Genetic risk factors for cognitive decline in Parkinson's disease: a review of the literature. European Journal of Neurology, 2017, 24, 561.	3.3	41
294	Meta-Analysis of Parkinson's Disease and Alzheimer's Disease Revealed Commonly Impaired Pathways and Dysregulation of NRF2-Dependent Genes. Journal of Alzheimer's Disease, 2017, 56, 1525-1539.	2.6	77

#	Article	IF	CITATIONS
295	Mechanisms of LRRK2-dependent neurodegeneration: role of enzymatic activity and protein aggregation. Biochemical Society Transactions, 2017, 45, 163-172.	3.4	48
296	The LRRK2–macroautophagy axis and its relevance to Parkinson's disease. Biochemical Society Transactions, 2017, 45, 155-162.	3.4	58
297	Language Deficits as a Preclinical Window into Parkinson's Disease: Evidence from Asymptomatic Parkin and Dardarin Mutation Carriers. Journal of the International Neuropsychological Society, 2017, 23, 150-158.	1.8	62
298	Bioinformatics in the Identification of Novel Targets and Pathways in Neurodegenerative Diseases. Current Genetic Medicine Reports, 2017, 5, 15-21.	1.9	2
299	The hidden Niemann-Pick type C patient: clinical niches for a rare inherited metabolic disease. Current Medical Research and Opinion, 2017, 33, 877-890.	1.9	25
300	Update on the Genetics of Dystonia. Current Neurology and Neuroscience Reports, 2017, 17, 26.	4.2	98
301	<i>Drosophila</i> and genome-wide association studies: a review and resource for the functional dissection of human complex traits. DMM Disease Models and Mechanisms, 2017, 10, 77-88.	2.4	37
302	Genetic analysis of FGF20 in Chinese patients with Parkinson's disease. Neurological Sciences, 2017, 38, 887-891.	1.9	9
303	C . elegans as a model system to accelerate discovery for Parkinson disease. Current Opinion in Genetics and Development, 2017, 44, 102-109.	3.3	50
304	VPS35, the Retromer Complex and Parkinson's Disease. Journal of Parkinson's Disease, 2017, 7, 219-233.	2.8	131
305	Whole-exome sequencing of 228 patients with sporadic Parkinson's disease. Scientific Reports, 2017, 7, 41188.	3.3	27
306	\hat{l}_{\pm} -synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nature Medicine, 2017, 23, 1-13.	30.7	688
307	TMEM175 deficiency impairs lysosomal and mitochondrial function and increases α-synuclein aggregation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2389-2394.	7.1	164
308	LRRK2 detection in human biofluids: potential use as a Parkinson's disease biomarker?. Biochemical Society Transactions, 2017, 45, 207-212.	3.4	11
309	Increased brain expression of GPNMB is associated with genome wide significant risk for Parkinson's disease on chromosome 7p15.3. Neurogenetics, 2017, 18, 121-133.	1.4	57
310	Genetics of Parkinson's Disease. International Review of Neurobiology, 2017, 132, 197-231.	2.0	76
311	Parkinson's disease and pesticides: A meta-analysis of disease connection and genetic alterations. Biomedicine and Pharmacotherapy, 2017, 90, 638-649.	5.6	76
314	Large-scale exploratory genetic analysis of cognitive impairment in Parkinson's disease. Neurobiology of Aging, 2017, 56, 211.e1-211.e7.	3.1	37

#	Article	IF	Citations
315	The role of Ca2+ signaling in Parkinson's disease. DMM Disease Models and Mechanisms, 2017, 10, 519-535.	2.4	132
316	Editor's Highlight: Base Excision Repair Variants and Pesticide Exposure Increase Parkinson's Disease Risk. Toxicological Sciences, 2017, 158, 188-198.	3.1	31
318	Genomeâ€wide metaâ€analysis identifies a novel susceptibility signal at <i>CACNA2D3</i> for nicotine dependence. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 557-567.	1.7	15
319	Deregulation of α-synuclein in Parkinson's disease: Insight from epigenetic structure and transcriptional regulation of SNCA. Progress in Neurobiology, 2017, 154, 21-36.	5.7	55
320	Clinical Amyloid Imaging. Seminars in Nuclear Medicine, 2017, 47, 31-43.	4.6	56
321	Prediction of cognition in Parkinson's disease with a clinical–genetic score: a longitudinal analysis of nine cohorts. Lancet Neurology, The, 2017, 16, 620-629.	10.2	131
322	NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. Neurobiology of Aging, 2017, 57, 247.e9-247.e13.	3.1	108
323	Genetic architecture of epigenetic and neuronal ageing rates in human brain regions. Nature Communications, 2017, 8, 15353.	12.8	92
324	Synuclein impairs trafficking and signaling of BDNF in a mouse model of Parkinson's disease. Scientific Reports, 2017, 7, 3868.	3.3	60
325	Genome-wide Pleiotropy Between Parkinson Disease and Autoimmune Diseases. JAMA Neurology, 2017, 74, 780.	9.0	245
326	Genetic association study of exfoliation syndrome identifies a protective rare variant at LOXL1 and five new susceptibility loci. Nature Genetics, 2017, 49, 993-1004.	21.4	114
328	Rare GCH1 heterozygous variants contributing to Parkinson's disease. Brain, 2017, 140, e41-e41.	7.6	21
329	Leucine Rich Repeat Kinase 2: beyond Parkinson's and beyond kinase inhibitors. Expert Opinion on Therapeutic Targets, 2017, 21, 751-753.	3.4	6
330	Classification of advanced stages of Parkinson's disease: translation into stratified treatments. Journal of Neural Transmission, 2017, 124, 1015-1027.	2.8	64
331	Parkinson disease. Nature Reviews Disease Primers, 2017, 3, 17013.	30.5	3,048
332	An update on stem cell biology and engineering for brain development. Molecular Psychiatry, 2017, 22, 808-819.	7.9	27
333	Heterozygous PINK1 p.G411S in rapid eye movement sleep behaviour disorder. Brain, 2017, 140, e32-e32.	7.6	5
334	Roles of tau protein in health and disease. Acta Neuropathologica, 2017, 133, 665-704.	7.7	639

#	Article	IF	Citations
335	Polymorphism in MIR4697 but not VPS13C, GCH1, or SIPA1L2 is associated with risk of Parkinson's disease in a Han Chinese population. Neuroscience Letters, 2017, 650, 8-11.	2.1	10
336	Mechanisms of Mutant LRRK2 Neurodegeneration. Advances in Neurobiology, 2017, 14, 227-239.	1.8	35
337	Understanding the GTPase Activity of LRRK2: Regulation, Function, and Neurotoxicity. Advances in Neurobiology, 2017, 14, 71-88.	1.8	49
339	The Identification of Alpha-Synuclein asÂtheÂFirst Parkinson Disease Gene. Journal of Parkinson's Disease, 2017, 7, S43-S49.	2.8	56
341	The two-century journey of Parkinson disease research. Nature Reviews Neuroscience, 2017, 18, 251-259.	10.2	250
342	Differential Aging Analysis in Human Cerebral Cortex Identifies Variants in TMEM106B and GRN that Regulate Aging Phenotypes. Cell Systems, 2017, 4, 404-415.e5.	6.2	102
343	Neuropathological and genetic correlates of survival and dementia onset in synucleinopathies: a retrospective analysis. Lancet Neurology, The, 2017, 16, 55-65.	10.2	394
344	Genetics of restless legs syndrome. Sleep Medicine, 2017, 31, 18-22.	1.6	40
345	Mutations and mechanism: how <i>PINK1</i> may contribute to risk of sporadic Parkinson's disease. Brain, 2017, 140, 2-5.	7.6	12
346	Immunotherapies for Movement Disorders: Parkinson's Disease and Amyotrophic Lateral Sclerosis. , 2017, , 767-797.		1
347	Association between DNA methyltransferase gene polymorphism and Parkinson's disease. Neuroscience Letters, 2017, 639, 146-150.	2.1	19
348	Opening up the DNA methylome of dementia. Molecular Psychiatry, 2017, 22, 485-496.	7.9	59
349	<i>ADORA1</i> mutations are not a common cause of Parkinson's disease and dementia with Lewy bodies. Movement Disorders, 2017, 32, 298-299.	3.9	11
350	Role of the VPS35 D620N mutation in Parkinson's disease. Parkinsonism and Related Disorders, 2017, 36, 10-18.	2.2	24
351	Epigenetic Biomarkers for Parkinson's Disease: From Diagnostics to Therapeutics. Journal of Parkinson's Disease, 2017, 7, 1-12.	2.8	43
352	Cognitive and Neuropsychiatric Features of Early Parkinson's Disease. Archives of Clinical Neuropsychology, 2017, 32, 769-785.	0.5	34
353	The GBAP1 pseudogene acts as a ceRNA for the glucocerebrosidase gene GBA by sponging miR-22-3p. Scientific Reports, 2017, 7, 12702.	3.3	62
354	Therapeutic approaches to target alpha-synuclein pathology. Experimental Neurology, 2017, 298, 225-235.	4.1	197

#	Article	IF	Citations
355	Prying into the Prion Hypothesis for Parkinson's Disease. Journal of Neuroscience, 2017, 37, 9808-9818.	3.6	213
356	Regional analysis and genetic association of nigrostriatal degeneration in Lewy body disease. Movement Disorders, 2017, 32, 1584-1593.	3.9	15
357	Large-scale identification of clinical and genetic predictors of motor progression in patients with newly diagnosed Parkinson's disease: a longitudinal cohort study and validation. Lancet Neurology, The, 2017, 16, 908-916.	10.2	132
358	A Dementia-Associated Risk Variant near TMEM106B Alters Chromatin Architecture and Gene Expression. American Journal of Human Genetics, 2017, 101, 643-663.	6.2	87
359	Age-Dependent Dopaminergic Neurodegeneration and Impairment of the Autophagy-Lysosomal Pathway in LRRK-Deficient Mice. Neuron, 2017, 96, 796-807.e6.	8.1	100
360	What would Dr. James Parkinson think today? Mutations in betaâ€glucocerebrosidase and risk of Parkinson's disease. Movement Disorders, 2017, 32, 1341-1342.	3.9	3
361	What would Dr. James Parkinson think today? The role of genetics in Parkinson's disease. Movement Disorders, 2017, 32, 1115-1116.	3.9	3
362	The GBA variant E326K is associated with Parkinson's disease and explains a genome-wide association signal. Neuroscience Letters, 2017, 658, 48-52.	2.1	57
363	Parkinson's disease susceptibility variants and severity of Lewy body pathology. Parkinsonism and Related Disorders, 2017, 44, 79-84.	2.2	17
364	Polyethylenimine Nanoparticle-Mediated siRNA Delivery to Reduce α-Synuclein Expression in a Model of Parkinson's Disease. Molecular Therapy - Nucleic Acids, 2017, 9, 57-68.	5.1	105
365	Past, present, and future of Parkinson's disease: A special essay on the 200th Anniversary of the Shaking Palsy. Movement Disorders, 2017, 32, 1264-1310.	3.9	608
366	The Genetics of ParkinsonÂDisease. Advances in Genetics, 2017, 98, 43-62.	1.8	9
367	A meta-analysis of genome-wide association studies identifies 17 new Parkinson's disease risk loci. Nature Genetics, 2017, 49, 1511-1516.	21.4	944
368	Milestones of Parkinson's Disease Research: 200ÂYears of History and Beyond. Neuroscience Bulletin, 2017, 33, 598-602.	2.9	27
369	Protective efficacy of phosphodiesterase-1 inhibition against alpha-synuclein toxicity revealed by compound screening in LUHMES cells. Scientific Reports, 2017, 7, 11469.	3.3	52
370	E46K \hat{l}_{\pm} -synuclein pathological mutation causes cell-autonomous toxicity without altering protein turnover or aggregation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8274-E8283.	7.1	35
371	Improving power of association tests using multiple sets of imputed genotypes from distributed reference panels. Genetic Epidemiology, 2017, 41, 744-755.	1.3	27
372	Mimicking Parkinson's Disease in a Dish: Merits and Pitfalls of the Most Commonly used Dopaminergic In Vitro Models. NeuroMolecular Medicine, 2017, 19, 241-255.	3.4	25

#	Article	IF	CITATIONS
373	The lysosomal potassium channel TMEM175 adopts a novel tetrameric architecture. Nature, 2017, 547, 472-475.	27.8	57
374	Prioritization of differentially expressed genes in Substantia nigra transcriptomes of Parkinson's disease reveals key protein interactions and pathways. Meta Gene, 2017, 14, 12-18.	0.6	1
375	Allelic difference in Mhc2ta confers altered microglial activation and susceptibility to l̂±-synuclein-induced dopaminergic neurodegeneration. Neurobiology of Disease, 2017, 106, 279-290.	4.4	28
376	Modeling the genetic complexity of Parkinson's disease by targeted genome edition in iPS cells. Current Opinion in Genetics and Development, 2017, 46, 123-131.	3.3	16
377	Losing ground: Frontostriatal atrophy disrupts language embodiment in Parkinson's and Huntington's disease. Neuroscience and Biobehavioral Reviews, 2017, 80, 673-687.	6.1	83
378	Establishment of DYT5 patient-specific induced pluripotent stem cells with a GCH1 mutation. Stem Cell Research, 2017, 24, 36-39.	0.7	1
379	Achieving neuroprotection with LRRK2 kinase inhibitors in Parkinson disease. Experimental Neurology, 2017, 298, 236-245.	4.1	123
380	Establishing the role of rare coding variants in known Parkinson's disease risk loci. Neurobiology of Aging, 2017, 59, 220.e11-220.e18.	3.1	15
381	Whole-exome sequencing associates novel <i>CSMD1</i> gene mutations with familial Parkinson disease. Neurology: Genetics, 2017, 3, e177.	1.9	27
382	Detecting pathway relationship in the context of human protein-protein interaction network and its application to Parkinson's disease. Methods, 2017, 131, 93-103.	3.8	9
383	Machine Learning–Based Gene Prioritization Identifies Novel Candidate Risk Genes for Inflammatory Bowel Diseases, 2017, 23, 1516-1523.	1.9	49
384	Alphaâ€synuclein triggers Tâ€cell response. Is Parkinson's disease an autoimmune disorder?. Movement Disorders, 2017, 32, 1327-1327.	3.9	12
385	Glucocerebrosidase haploinsufficiency in A53T \hat{l} ±-synuclein mice impacts disease onset and course. Molecular Genetics and Metabolism, 2017, 122, 198-208.	1.1	28
386	Leveraging genome characteristics to improve gene discovery for putamen subcortical brain structure. Scientific Reports, 2017, 7, 15736.	3.3	15
387	Ginkgolide B and bilobalide ameliorate neural cell apoptosis in \hat{l} ±-synuclein aggregates. Biomedicine and Pharmacotherapy, 2017, 96, 792-797.	5.6	40
388	Haplotype phasing of whole human genomes using bead-based barcode partitioning in a single tube. Nature Biotechnology, 2017, 35, 852-857.	17.5	42
389	Common variant rs356182 near SNCA defines a Parkinson's disease endophenotype. Annals of Clinical and Translational Neurology, 2017, 4, 15-25.	3.7	40
390	MAPT Genetic Variation and Neuronal Maturity Alter Isoform Expression Affecting Axonal Transport in iPSC-Derived Dopamine Neurons. Stem Cell Reports, 2017, 9, 587-599.	4.8	53

#	Article	IF	CITATIONS
391	Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness. Nature Communications, 2017, 8, 16015.	12.8	149
392	Animal models of α-synucleinopathy for Parkinson disease drug development. Nature Reviews Neuroscience, 2017, 18, 515-529.	10.2	166
393	Biomarkers in Neurodegenerative Diseases. Advances in Neurobiology, 2017, 15, 491-528.	1.8	69
394	Gene Linkage and Systems Biology. Advances in Neurobiology, 2017, 15, 479-489.	1.8	0
395	Parkinson's Disease: Basic Pathomechanisms and a Clinical Overview. Advances in Neurobiology, 2017, 15, 55-92.	1.8	2
396	Parkinson's disease biomarkers: perspective from the NINDS Parkinson's Disease Biomarkers Program. Biomarkers in Medicine, 2017, 11, 451-473.	1.4	49
397	An immunohistochemical, enzymatic, and behavioral study of CD157/BST-1 as a neuroregulator. BMC Neuroscience, 2017, 18, 35.	1.9	43
398	Genetic pleiotropy between age-related macular degeneration and 16 complex diseases and traits. Genome Medicine, 2017, 9, 29.	8.2	52
399	Genetic variation in neurodegenerative diseases and its accessibility in the model organism Caenorhabditis elegans. Human Genomics, 2017, 11, 12.	2.9	20
400	Cross-Phenotype Polygenic Risk Score Analysis of Persistent Post-Concussive Symptoms in U.S. Army Soldiers with Deployment-Acquired Traumatic Brain Injury. Journal of Neurotrauma, 2017, 34, 781-789.	3.4	21
401	Genome-wide pathway-based association analysis identifies risk pathways associated with Parkinson's disease. Neuroscience, 2017, 340, 398-410.	2.3	23
402	<pre><scp>S</scp>tudy of <i>LRRK2</i> variation in tauopathy: Progressive supranuclear palsy and corticobasal degeneration. Movement Disorders, 2017, 32, 115-123.</pre>	3.9	48
403	Aging modifies the effect of GCH1 RS11158026 on DAT uptake and Parkinson's disease clinical severity. Neurobiology of Aging, 2017, 50, 39-46.	3.1	11
404	Finding the  Guilty' Gene Variant of Sporadic Parkinson's Disease Via CRISPR/Cas9. Neuroscience Bulletin, 2017, 33, 115-117.	2.9	6
405	Molecular Imaging and Precision Medicine in Dementia and Movement Disorders. PET Clinics, 2017, 12, 119-136.	3.0	1
406	Genetic variation associated with the occurrence and progression of neurological disorders. NeuroToxicology, 2017, 61, 243-264.	3.0	18
407	Epigenome-wide DNA methylation analysis in siblings and monozygotic twins discordant for sporadic Parkinson's disease revealed different epigenetic patterns in peripheral blood mononuclear cells. Neurogenetics, 2017, 18, 7-22.	1.4	47
408	Genetic association study between RIT2 and Parkinson's disease in a Han Chinese population. Neurological Sciences, 2017, 38, 343-347.	1.9	5

#	Article	IF	Citations
409	Modelling idiopathic Parkinson disease as a complex illness can inform incidence rate in healthy adults: theÂP _R EDIGT score. European Journal of Neuroscience, 2017, 45, 175-191.	2.6	17
410	Thr105lle (rs11558538) polymorphism in the histamine-1-methyl-transferase (HNMT) gene and risk for restless legs syndrome. Journal of Neural Transmission, 2017, 124, 285-291.	2.8	14
411	Impairment of mitochondria dynamics by human A53T α-synuclein and rescue by NAP (davunetide) in a cell model for Parkinson's disease. Experimental Brain Research, 2017, 235, 731-742.	1.5	23
412	Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. Molecular Neurobiology, 2017, 54, 8021-8032.	4.0	17
413	c-Abl and Parkinson's Disease: Mechanisms and Therapeutic Potential. Journal of Parkinson's Disease, 2017, 7, 589-601.	2.8	67
414	A human microglia-like cellular model for assessing the effects of neurodegenerative disease gene variants. Science Translational Medicine, 2017, 9, .	12.4	106
415	Excessive burden of lysosomal storage disorder gene variants in Parkinson's disease. Brain, 2017, 140, 3191-3203.	7.6	323
416	Discovering the 3′ UTR-mediated regulation of alpha-synuclein. Nucleic Acids Research, 2017, 45, 12888-12903.	14.5	32
417	Is the Enzyme ACMSD a Novel Therapeutic Target in Parkinson's Disease?. Journal of Parkinson's Disease, 2017, 7, 577-587.	2.8	22
419	Exploring the Genetic Architecture of Parkinson's Disease in a Southern Spanish Population. , 2017, 07,		0
420	Role of the Transcription Factor Nrf2 in Parkinson's Disease: New Insights. , 2017, 07, .		9
421	Does Vitamin C Influence Neurodegenerative Diseases and Psychiatric Disorders?. Nutrients, 2017, 9, 659.	4.1	156
422	The Neurogenetics of Parkinson's Disease and Putative Links to Other Neurodegenerative Disorders. , 2017, , 1-40.		3
423	Recent Advances in Experimental Whole Genome Haplotyping Methods. International Journal of Molecular Sciences, 2017, 18, 1944.	4.1	12
424	Parkinson's Disease: From Pathogenesis to Pharmacogenomics. International Journal of Molecular Sciences, 2017, 18, 551.	4.1	383
425	Autophagy., 2017, , 179-206.		1
426	Astrocytic Expression of GSTA4 Is Associated to Dopaminergic Neuroprotection in a Rat 6-OHDA Model of Parkinson's Disease. Brain Sciences, 2017, 7, 73.	2.3	12
427	Potential Modes of Intercellular α-Synuclein Transmission. International Journal of Molecular Sciences, 2017, 18, 469.	4.1	76

#	Article	IF	CITATIONS
428	Overview of Autophagy., 2017,, 1-122.		1
429	Interpreting Gene Expression Effects of Disease-Associated Variants: A Lesson from SNCA rs356168. Frontiers in Genetics, 2017, 8, 133.	2.3	7
430	Mitochondria: A Common Target for Genetic Mutations and Environmental Toxicants in Parkinson's Disease. Frontiers in Genetics, 2017, 8, 177.	2.3	58
431	Genetic Determinants of Parkinson's Disease: Can They Help to Stratify the Patients Based on the Underlying Molecular Defect?. Frontiers in Aging Neuroscience, 2017, 9, 20.	3.4	44
432	Unmet Needs in Dystonia: Genetics and Molecular Biologyâ€"How Many Dystonias?. Frontiers in Neurology, 2016, 7, 241.	2.4	9
433	Exosomes: Origins and Therapeutic Potential for Neurodegenerative Disease. Frontiers in Neuroscience, 2017, 11, 82.	2.8	125
434	The Role of Co-chaperones in Synaptic Proteostasis and Neurodegenerative Disease. Frontiers in Neuroscience, 2017, 11, 248.	2.8	103
435	Implications of DNA Methylation in Parkinson's Disease. Frontiers in Molecular Neuroscience, 2017, 10, 225.	2.9	71
436	The Neuroprotective Role of Protein Quality Control in Halting the Development of Alpha-Synuclein Pathology. Frontiers in Molecular Neuroscience, 2017, 10, 311.	2.9	17
437	Systematic proteomic analysis of LRRK2-mediated Rab GTPase phosphorylation establishes a connection to ciliogenesis. ELife, 2017, 6, .	6.0	344
438	Festination Correlates with SNCA Polymorphism in Chinese Patients with Parkinson's Disease. Parkinson's Disease, 2017, 2017, 1-4.	1.1	8
439	Genetic Variants in SNCA and the Risk of Sporadic Parkinson's Disease and Clinical Outcomes: A Review. Parkinson's Disease, 2017, 2017, 1-11.	1.1	32
440	A Novel p.Glu298Lys Mutation in the ACMSD Gene in Sporadic Parkinson's Disease. Journal of Parkinson's Disease, 2017, 7, 459-463.	2.8	15
441	Parkinson's disease-associated genetic variation is linked to quantitative expression of inflammatory genes. PLoS ONE, 2017, 12, e0175882.	2.5	45
442	Meta-GWAS Accuracy and Power (MetaGAP) Calculator Shows that Hiding Heritability Is Partially Due to Imperfect Genetic Correlations across Studies. PLoS Genetics, 2017, 13, e1006495.	3.5	78
443	Systematic tissue-specific functional annotation of the human genome highlights immune-related DNA elements for late-onset Alzheimer's disease. PLoS Genetics, 2017, 13, e1006933.	3.5	96
444	Parkinson disease polygenic risk score is associated with Parkinson disease status and age at onset but not with alpha-synuclein cerebrospinal fluid levels. BMC Neurology, 2017, 17, 198.	1.8	55
445	A systematic review and integrative approach to decode the common molecular link between levodopa response and Parkinson's disease. BMC Medical Genomics, 2017, 10, 56.	1.5	15

#	Article	IF	CITATIONS
446	The Trojan horse - neuroinflammatory impact of T cells in neurodegenerative diseases. Molecular Neurodegeneration, 2017, 12, 78.	10.8	63
447	Haplotype-specific MAPT exon 3 expression regulated by common intronic polymorphisms associated with Parkinsonian disorders. Molecular Neurodegeneration, 2017, 12, 79.	10.8	13
448	Intergenic disease-associated regions are abundant in novel transcripts. Genome Biology, 2017, 18, 241.	8.8	45
449	The role of gene variants in the pathogenesis of neurodegenerative disorders as revealed by next generation sequencing studies: a review. Translational Neurodegeneration, 2017, 6, 27.	8.0	29
450	Elevated LRRK2 autophosphorylation in brain-derived and peripheral exosomes in LRRK2 mutation carriers. Acta Neuropathologica Communications, 2017, 5, 86.	5.2	68
451	High Performance Liquid Chromatography-Mass Spectrometry (LC-MS) Based Quantitative Lipidomics Study of Ganglioside-NANA-3 Plasma to Establish Its Association with Parkinson's Disease Patients. Medical Science Monitor, 2017, 23, 5345-5353.	1.1	31
452	Progress toward an integrated understanding of Parkinson's disease. F1000Research, 2017, 6, 1121.	1.6	23
453	Comparative Protein Interaction Network Analysis Identifies Shared and Distinct Functions for the Human ROCO Proteins. Proteomics, 2018, 18, e1700444.	2.2	34
454	Genetics of Parkinson disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 147, 211-227.	1.8	96
455	A Genetic Study of Psychosis in Huntington's Disease: Evidence for the Involvement of Glutamate Signaling Pathways. Journal of Huntington's Disease, 2018, 7, 51-59.	1.9	9
456	Activating Autophagy as a Therapeutic Strategy for Parkinson's Disease. CNS Drugs, 2018, 32, 1-11.	5.9	45
457	Parkinson's Disease: Patients' Knowledge, Attitudes, and Interest in Genetic Counseling. Journal of Genetic Counseling, 2018, 27, 1200-1209.	1.6	18
458	Parkinson's disease genetic risk in a midbrain neuronal cell line. Neurobiology of Disease, 2018, 114, 53-64.	4.4	29
459	Single-Cell RNA-Seq of Mouse Dopaminergic Neurons Informs Candidate Gene Selection for Sporadic Parkinson Disease. American Journal of Human Genetics, 2018, 102, 427-446.	6.2	102
460	The association between <i>HSD3B7</i> gene variant and Parkinson's disease in ethnic Chinese. Brain and Behavior, 2018, 8, e00913.	2.2	3
461	Regional expression of genes mediating trans-synaptic alpha-synuclein transfer predicts regional atrophy in Parkinson disease. Neurolmage: Clinical, 2018, 18, 456-466.	2.7	47
462	Lateralisation in Parkinson disease. Cell and Tissue Research, 2018, 373, 297-312.	2.9	67
463	Study of GCH1 and TH genes in Chinese patients with Parkinson's disease. Neurobiology of Aging, 2018, 68, 159.e3-159.e6.	3.1	8

#	Article	IF	CITATIONS
464	Item-level analyses reveal genetic heterogeneity in neuroticism. Nature Communications, 2018, 9, 905.	12.8	181
465	Antidepressant drug-specific prediction of depression treatment outcomes from genetic and clinical variables. Scientific Reports, 2018, 8, 5530.	3.3	51
466	Effects of 3D culturing conditions on the transcriptomic profile of stem-cell-derived neurons. Nature Biomedical Engineering, 2018, 2, 540-554.	22.5	78
467	Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nature Genetics, 2018, 50, 621-629.	21.4	807
468	NFE2L2, PPARGC1α, and pesticides and Parkinson's disease risk and progression. Mechanisms of Ageing and Development, 2018, 173, 1-8.	4.6	8
469	Multimodal neuroimaging and behavioral assessment of $\hat{l}\pm$ -synuclein polymorphism rs356219 in older adults. Neurobiology of Aging, 2018, 66, 32-39.	3.1	8
470	Structural fingerprints, interactions, and signaling networks of RAS family proteins beyond RAS isoforms. Critical Reviews in Biochemistry and Molecular Biology, 2018, 53, 130-156.	5.2	34
471	Sleep disorders and Parkinson disease; lessons from genetics. Sleep Medicine Reviews, 2018, 41, 101-112.	8.5	35
472	LRRK2 Phosphorylation: Behind the Scenes. Neuroscientist, 2018, 24, 486-500.	3.5	17
473	Association study of genetic variation in the autophagy lysosome pathway genes and risk of eight kinds of cancers. International Journal of Cancer, 2018, 143, 80-87.	5.1	12
474	Association of Polygenic Risk Score With Cognitive Decline and Motor Progression in Parkinson Disease. JAMA Neurology, 2018, 75, 360.	9.0	79
475	Diverse Brain Myeloid Expression Profiles Reveal Distinct Microglial Activation States and Aspects of Alzheimer's Disease Not Evident in Mouse Models. Cell Reports, 2018, 22, 832-847.	6.4	499
476	Neuropathology correlates of cognitive assessments. Irish Journal of Medical Science, 2018, 187, 835-844.	1.5	1
477	Smoking and Parkinson disease. Neurology, 2018, 90, e583-e592.	1.1	27
478	From Genomics to Omics Landscapes of Parkinson's Disease: Revealing the Molecular Mechanisms. OMICS A Journal of Integrative Biology, 2018, 22, 1-16.	2.0	38
479	The genetics of Parkinson disease. Ageing Research Reviews, 2018, 42, 72-85.	10.9	398
480	Properties of global―and localâ€ancestry adjustments in genetic association tests in admixed populations. Genetic Epidemiology, 2018, 42, 214-229.	1.3	37
481	The Five Dimensions of Parkinson's Disease Genetic Risk. Journal of Parkinson's Disease, 2018, 8, 13-15.	2.8	2

#	Article	IF	CITATIONS
482	Novel Parkinson's disease risk loci identified through a metaâ€analysis of genomeâ€wide association studies. Movement Disorders, 2018, 33, 74-74.	3.9	1
483	Leucine rich repeat kinase knockout (<i>LRRK</i> KO) mouse model: Linking pathological hallmarks of inherited and sporadic Parkinson's disease. Movement Disorders, 2018, 33, 72-72.	3.9	2
484	Back to the future: new target-validated Rab antibodies for evaluating LRRK2 signalling in cell biology and Parkinson's disease. Biochemical Journal, 2018, 475, 185-189.	3.7	4
485	G2019S LRRK2 enhances the neuronal transmission of tau in the mouse brain. Human Molecular Genetics, 2018, 27, 120-134.	2.9	37
486	Functional variants in the <i>LRRK2</i> gene confer shared effects on risk for Crohn's disease and Parkinson's disease. Science Translational Medicine, 2018, 10, .	12.4	273
487	DLG2, but not TMEM229B, GPNMB, and ITGA8 polymorphism, is associated with Parkinson's disease in a Taiwanese population. Neurobiology of Aging, 2018, 64, 158.e1-158.e6.	3.1	18
488	Prion-like Propagation of α-Synuclein Is Regulated by the FcγRIIB-SHP-1/2 Signaling Pathway in Neurons. Cell Reports, 2018, 22, 136-148.	6.4	48
489	LRRK2 phosphorylates membrane-bound Rabs and is activated by GTP-bound Rab7L1 to promote recruitment to the trans-Golgi network. Human Molecular Genetics, 2018, 27, 385-395.	2.9	218
490	The glycoprotein GPNMB attenuates astrocyte inflammatory responses through the CD44 receptor. Journal of Neuroinflammation, 2018, 15, 73.	7.2	102
491	Autophagy and lysosomal pathways in nervous system disorders. Molecular and Cellular Neurosciences, 2018, 91, 167-208.	2.2	22
492	Risk variants of the α-synuclein locus and REM sleep behavior disorder in Parkinson's disease: a genetic association study. BMC Neurology, 2018, 18, 20.	1.8	16
493	Targeted Therapies for Parkinson's Disease: From Genetics to the Clinic. Movement Disorders, 2018, 33, 684-696.	3.9	140
494	6â€∢i>nâ€propylthiouracil taste disruption and <i>TAS2R38</i> nontasting form in Parkinson's disease. Movement Disorders, 2018, 33, 1331-1339.	3.9	28
495	Parkinson Disease from Mendelian Forms to Genetic Susceptibility: New Molecular Insights into the Neurodegeneration Process. Cellular and Molecular Neurobiology, 2018, 38, 1153-1178.	3.3	102
496	Genetic risk factors in Parkinson's disease. Cell and Tissue Research, 2018, 373, 9-20.	2.9	159
497	Association analyses of variants of SIPA1L2, MIR4697, GCH1, VPS13C, and DDRGK1 with Parkinson's disease in East Asians. Neurobiology of Aging, 2018, 68, 159.e7-159.e14.	3.1	17
498	mTOR independent alteration in ULK1 Ser758 phosphorylation following chronic LRRK2 kinase inhibition. Bioscience Reports, 2018, 38, .	2.4	16
499	Identifying Genetic Risk Factors for Alzheimer's Disease via Shared Tree-guided Feature Learning across Multiple Tasks. IEEE Transactions on Knowledge and Data Engineering, 2018, , 1-1.	5.7	15

#	Article	IF	Citations
500	A genome-wide association study on growth traits in orange-spotted grouper (Epinephelus coioides) with RAD-seq genotyping. Science China Life Sciences, 2018, 61, 934-946.	4.9	42
501	Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Briefings in Bioinformatics, 2018, 19, 286-302.	6.5	498
502	Role of the JAK/STAT signaling pathway in regulation of innate immunity in neuroinflammatory diseases. Clinical Immunology, 2018, 189, 4-13.	3.2	173
503	Genetics of Synucleinopathies. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a024109.	6.2	58
504	Ubiquitination at the mitochondria in neuronal health and disease. Neurochemistry International, 2018, 117, 55-64.	3.8	24
505	Endo-lysosomal dysfunction: a converging mechanism in neurodegenerative diseases. Current Opinion in Neurobiology, 2018, 48, 52-58.	4.2	97
506	Molecular genetic studies in Saudi population; identified variants from GWAS and meta-analysis in stroke. Saudi Journal of Biological Sciences, 2018, 25, 83-89.	3.8	3
507	Aging and Parkinson's Disease: Inflammaging, neuroinflammation and biological remodeling as key factors in pathogenesis. Free Radical Biology and Medicine, 2018, 115, 80-91.	2.9	255
508	Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurology, The, 2018, 17, 64-74.	10.2	195
509	The genetic architecture of dementia with Lewy bodies is shaping up. Lancet Neurology, The, 2018, 17, 25-26.	10.2	2
510	Kinases in synaptic development and neurological diseases. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 84, 343-352.	4.8	17
511	Neuromicrobiology: How Microbes Influence the Brain. ACS Chemical Neuroscience, 2018, 9, 141-150.	3.5	50
512	Convergent pathways in Parkinson's disease. Cell and Tissue Research, 2018, 373, 79-90.	2.9	26
513	Neurodegeneration and the ordered assembly of α-synuclein. Cell and Tissue Research, 2018, 373, 137-148.	2.9	79
514	Parkinson's disease: experimental models and reality. Acta Neuropathologica, 2018, 135, 13-32.	7.7	89
515	Interrogating Parkinson's disease LRRK2 kinase pathway activity by assessing Rab10 phosphorylation in human neutrophils. Biochemical Journal, 2018, 475, 23-44.	3.7	136
516	Genetics of neurodegenerative diseases: an overview. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 145, 309-323.	1.8	69
517	Artificial intelligence in neurodegenerative disease research: use of IBM Watson to identify additional RNA-binding proteins altered in amyotrophic lateral sclerosis. Acta Neuropathologica, 2018, 135, 227-247.	7.7	116

#	Article	IF	CITATIONS
518	The 200-year journey of Parkinson disease: Reflecting on the past and looking towards the future. Parkinsonism and Related Disorders, 2018, 46, S1-S5.	2.2	35
519	Association of GALC, ZNF184, IL1R2 and ELOVL7 With Parkinson's Disease in Southern Chinese. Frontiers in Aging Neuroscience, 2018, 10, 402.	3.4	42
520	Genetic variation within endolysosomal system is associated with late-onset Alzheimer's disease. Brain, 2018, 141, 2711-2720.	7.6	64
521	Risk factors of levodopa-induced dyskinesia in Parkinson's disease: results from the PPMI cohort. Npj Parkinson's Disease, 2018, 4, 33.	5.3	61
522	Parkinson-Associated SNCA Enhancer Variants Revealed by Open Chromatin in Mouse Dopamine Neurons. American Journal of Human Genetics, 2018, 103, 874-892.	6.2	30
523	Toxic Protein Spread in Neurodegeneration: Reality versus Fantasy. Trends in Molecular Medicine, 2018, 24, 1007-1020.	6.7	26
524	A Comprehensive Analysis of the Association Between SNCA Polymorphisms and the Risk of Parkinson's Disease. Frontiers in Molecular Neuroscience, 2018, 11, 391.	2.9	31
525	The Luxembourg Parkinson's Study: A Comprehensive Approach for Stratification and Early Diagnosis. Frontiers in Aging Neuroscience, 2018, 10, 326.	3.4	57
526	Drosophila Models of Sporadic Parkinson's Disease. International Journal of Molecular Sciences, 2018, 19, 3343.	4.1	37
527	MDSGene: Closing Data Gaps in Genotype-Phenotype Correlations of Monogenic Parkinson's Disease. Journal of Parkinson's Disease, 2018, 8, S25-S30.	2.8	33
528	Genetic Variants Associated With Neurodegenerative Diseases Regulate Gene Expression in Immune Cell CD14+ Monocytes. Frontiers in Genetics, 2018, 9, 666.	2.3	6
529	Advances in Parkinson's Disease: 200 Years Later. Frontiers in Neuroanatomy, 2018, 12, 113.	1.7	102
530	miR-486-3p Influences the Neurotoxicity of a-Synuclein by Targeting the SIRT2 Gene and the Polymorphisms at Target Sites Contributing to Parkinson's Disease. Cellular Physiology and Biochemistry, 2018, 51, 2732-2745.	1.6	23
531	Sex-Specific Transcriptome Differences in Substantia Nigra Tissue: A Meta-Analysis of Parkinson's Disease Data. Genes, 2018, 9, 275.	2.4	16
532	Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science, 2018, 362, .	12.6	516
533	Comprehensive functional genomic resource and integrative model for the human brain. Science, 2018, 362, .	12.6	618
534	Divergent Effects of Metformin on an Inflammatory Model of Parkinson's Disease. Frontiers in Cellular Neuroscience, 2018, 12, 440.	3.7	43
535	Modeling Parkinson's Disease and Atypical Parkinsonian Syndromes Using Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 2018, 19, 3870.	4.1	10

#	Article	IF	CITATIONS
536	Mitochondrial dysfunction and increased glycolysis in prodromal and early Parkinson's blood cells. Movement Disorders, 2018, 33, 1580-1590.	3.9	69
537	Recent progress of drug nanoformulations targeting to brain. Journal of Controlled Release, 2018, 291, 37-64.	9.9	134
538	Therapeutic strategies for Parkinson disease: beyond dopaminergic drugs. Nature Reviews Drug Discovery, 2018, 17, 804-822.	46.4	178
539	The Small World of Adult Hippocampal Neurogenesis. Frontiers in Neuroscience, 2018, 12, 641.	2.8	7
540	Parkinson's Disease: Insights from Drosophila Model. , 2018, , .		3
541	The genetic landscape of Parkinson's disease. Revue Neurologique, 2018, 174, 628-643.	1.5	176
542	What have we learned recently from transgenic mouse models about neurodegeneration? The most promising discoveries of this millennium. Pharmacological Reports, 2018, 70, 1105-1115.	3.3	7
543	Caspases orchestrate microglia instrumental functions. Progress in Neurobiology, 2018, 171, 50-71.	5. 7	27
544	A Druggable Genome Screen Identifies Modifiers of \hat{l}_{\pm} -Synuclein Levels via a Tiered Cross-Species Validation Approach. Journal of Neuroscience, 2018, 38, 9286-9301.	3.6	49
545	Downregulation of SNCA Expression by Targeted Editing of DNA Methylation: A Potential Strategy for Precision Therapy in PD. Molecular Therapy, 2018, 26, 2638-2649.	8.2	127
546	Deconstructing and targeting the genomic architecture of human neurodegeneration. Nature Neuroscience, 2018, 21, 1310-1317.	14.8	42
547	SNCA variants and alpha-synuclein level in CD45+ blood cells in Parkinson's disease. Journal of the Neurological Sciences, 2018, 395, 135-140.	0.6	18
548	PINES: phenotype-informed tissue weighting improves prediction of pathogenic noncoding variants. Genome Biology, 2018, 19, 173.	8.8	28
549	Coding mutations inNUS1contribute to Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11567-11572.	7.1	78
550	Coding variation in <i>GBA</i> explains the majority of the SYT11â€GBA Parkinson's disease GWAS locus. Movement Disorders, 2018, 33, 1821-1823.	3.9	28
551	β2â€adrenoceptor agonists and antagonists and risk of Parkinson's disease. Movement Disorders, 2018, 33, 1465-1471.	3.9	76
552	Phenome-wide association studies across large population cohorts support drug target validation. Nature Communications, 2018, 9, 4285.	12.8	134
553	Cortical Thinning Associated with Age and CSF Biomarkers in Early Parkinson's Disease Is Modified by the SNCA rs356181 Polymorphism. Neurodegenerative Diseases, 2018, 18, 233-238.	1.4	6

#	Article	IF	CITATIONS
554	Tau Pathology in Parkinson's Disease. Frontiers in Neurology, 2018, 9, 809.	2.4	125
555	Enhancers active in dopamine neurons are a primary link between genetic variation and neuropsychiatric disease. Nature Neuroscience, 2018, 21, 1482-1492.	14.8	79
556	Self-report data as a tool for subtype identification in genetically-defined Parkinson's Disease. Scientific Reports, 2018, 8, 12992.	3.3	12
557	Genome-wide meta-analysis and replication studies in multiple ethnicities identify novel adolescent idiopathic scoliosis susceptibility loci. Human Molecular Genetics, 2018, 27, 3986-3998.	2.9	34
558	Nicotinamide-N-methyltransferase controls behavior, neurodegeneration and lifespan by regulating neuronal autophagy. PLoS Genetics, 2018, 14, e1007561.	3.5	32
559	Nigrostriatal pathology with reduced astrocytes in LRRK2 S910/S935 phosphorylation deficient knockin mice. Neurobiology of Disease, 2018, 120, 76-87.	4.4	16
560	Chaperone-mediated autophagy as a therapeutic target for Parkinson disease. Expert Opinion on Therapeutic Targets, 2018, 22, 823-832.	3.4	31
561	Unraveling of Central Nervous System Disease Mechanisms Using CRISPR Genome Manipulation. Journal of Central Nervous System Disease, 2018, 10, 117957351878746.	1.9	7
562	G2019S LRRK2 mutation facilitates α-synuclein neuropathology in aged mice. Neurobiology of Disease, 2018, 120, 21-33.	4.4	56
563	Effective Knockdown of Gene Expression in Primary Microglia With siRNA and Magnetic Nanoparticles Without Cell Death or Inflammation. Frontiers in Cellular Neuroscience, 2018, 12, 313.	3.7	16
564	MicroRNAs to differentiate Parkinsonian disorders: Advances in biomarkers and therapeutics. Journal of the Neurological Sciences, 2018, 394, 26-37.	0.6	21
565	Stratification of candidate genes for Parkinson's disease using weighted protein-protein interaction network analysis. BMC Genomics, 2018, 19, 452.	2.8	35
566	Mitochondria, lysosomes, and dysfunction: their meaning in neurodegeneration. Journal of Neurochemistry, 2018, 147, 291-309.	3.9	84
567	Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nature Communications, 2018, 9, 2098.	12.8	484
568	Genetic identification of brain cell types underlying schizophrenia. Nature Genetics, 2018, 50, 825-833.	21.4	497
569	Effects of rs591323 on serotonin transporter availability in healthy male subjects. Annals of Nuclear Medicine, 2018, 32, 431-436.	2.2	4
570	Neurotoxin-Induced Animal Models of Parkinson Disease: Pathogenic Mechanism and Assessment. ASN Neuro, 2018, 10, 175909141877743.	2.7	165
571	Method to estimate the approximate samples size that yield a certain number of significant GWAS signals in polygenic traits. Genetic Epidemiology, 2018, 42, 488-496.	1.3	2

#	Article	IF	CITATIONS
572	Author's Reply to Segura-Aguilar: Autophagosome maturation not autophagy induction is impaired in neurodegeneration. CNS Drugs, 2018, 32, 687-688.	5.9	0
573	Roles of NUCKS1 in Diseases: Susceptibility, Potential Biomarker, and Regulatory Mechanisms. BioMed Research International, 2018, 2018, 1-7.	1.9	30
574	Identifying genes in Parkinson disease: state of the art. Medical Journal of Australia, 2018, 208, 381-382.	1.7	0
575	Adenosine Receptors and Neuroinflammation. , 2018, , 217-237.		2
576	The Physiology of Homeoprotein Transduction. Physiological Reviews, 2018, 98, 1943-1982.	28.8	45
577	A new hypothesis for Parkinson's disease pathogenesis: GTPase-p38 MAPK signaling and autophagy as convergence points of etiology and genomics. Molecular Neurodegeneration, 2018, 13, 40.	10.8	69
578	Abnormalities of age-related T cell senescence in Parkinson's disease. Journal of Neuroinflammation, 2018, 15, 166.	7.2	53
579	Parkinson's disease across ethnicities: A nationwide study in New Zealand. Movement Disorders, 2018, 33, 1440-1448.	3.9	17
580	Parkinson's disease: what the model systems have taught us so far. Journal of Genetics, 2018, 97, 729-751.	0.7	15
581	Advances in the discovery of genetic risk factors for complex forms of neurodegenerative disorders: contemporary approaches, success, challenges and prospects. Journal of Genetics, 2018, 97, 625-648.	0.7	7
582	Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis. Nature Neuroscience, 2018, 21, 1117-1125.	14.8	300
583	Analysis of shared heritability in common disorders of the brain. Science, 2018, 360, .	12.6	1,085
584	The rs13388259 Intergenic Polymorphism in the Genomic Context of the ⟨i⟩BCYRN1⟨i⟩Gene Is Associated with Parkinson's Disease in the Hungarian Population. Parkinson's Disease, 2018, 2018, 1-7.	1.1	17
585	Glutathione S-Transferase Alpha 4 Prevents Dopamine Neurodegeneration in a Rat Alpha-Synuclein Model of Parkinson's Disease. Frontiers in Neurology, 2018, 9, 222.	2.4	8
586	Modeling Parkinson's Disease in Drosophila: What Have We Learned for Dominant Traits?. Frontiers in Neurology, 2018, 9, 228.	2.4	66
587	Analysis of Single Nucleotide Polymorphisms of STK32B, PPARGC1A and CTNNA3 Gene With Sporadic Parkinson's Disease Susceptibility in Chinese Han Population. Frontiers in Neurology, 2018, 9, 387.	2.4	5
588	Advancing Stem Cell Models of Alpha-Synuclein Gene Regulation in Neurodegenerative Disease. Frontiers in Neuroscience, 2018, 12, 199.	2.8	19
589	Non-cell-autonomous actions of $\hat{l}\pm$ -synuclein: Implications in glial synucleinopathies. Progress in Neurobiology, 2018, 169, 158-171.	5.7	21

#	Article	IF	Citations
590	Exosomal secretion of \hat{l}_{\pm} -synuclein as protective mechanism after upstream blockage of macroautophagy. Cell Death and Disease, 2018, 9, 757.	6.3	117
591	Parkinson's disease and bacteriophages as its overlooked contributors. Scientific Reports, 2018, 8, 10812.	3.3	93
592	Plasma urate and risk of Parkinson's disease: A mendelian randomization study. Annals of Neurology, 2018, 84, 178-190.	5.3	40
593	Mendelian randomization study shows no causal relationship between circulating urate levels and Parkinson's disease. Annals of Neurology, 2018, 84, 191-199.	5.3	43
594	A monocyte gene expression signature in the early clinical course of Parkinson's disease. Scientific Reports, 2018, 8, 10757.	3.3	37
595	Regulation of membrane dynamics by Parkinson's disease-associated genes. Journal of Genetics, 2018, 97, 715-727.	0.7	8
596	S100B polymorphisms are associated with age of onset of Parkinson's disease. BMC Medical Genetics, 2018, 19, 42.	2.1	17
597	AGE-induced neuronal cell death is enhanced in G2019S LRRK2 mutation with increased RAGE expression. Translational Neurodegeneration, 2018, 7, 1.	8.0	54
598	Dysregulated phosphorylation of Rab GTPases by LRRK2 induces neurodegeneration. Molecular Neurodegeneration, 2018, 13, 8.	10.8	87
599	Parkinson's Disease and Other Synucleinopathies. , 2018, , 117-143.		0
600	Alphaâ€synuclein <scp>mRNA</scp> isoform formation and translation affected by polymorphism in the human <i>><scp>SNCA</scp></i> > 3ʹUTR. Molecular Genetics & Enomic Medicine, 2018, 6, 565-574.	1.2	8
601	LRRK2 phosphorylation of auxilin mediates synaptic defects in dopaminergic neurons from patients with Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5576-5581.	7.1	115
602	The Genetics of Dementia with Lewy Bodies: Current Understanding and Future Directions. Current Neurology and Neuroscience Reports, 2018, 18, 67.	4.2	69
603	Polygenic load: Earlier disease onset but similar longitudinal progression in Parkinson's disease. Movement Disorders, 2018, 33, 1349-1353.	3.9	10
604	Effects of Genetic Variability in Dopaminergic Pathway on Treatment Response in Parkinsonâ \in TM s Disease., 0,,.		0
605	Cholinergic Pathway SNPs and Postural Control in 477 Older Adults. Frontiers in Aging Neuroscience, 2018, 10, 260.	3.4	1
606	In silico drug screening by using genome-wide association study data repurposed dabrafenib, an anti-melanoma drug, for Parkinson's disease. Human Molecular Genetics, 2018, 27, 3974-3985.	2.9	25
607	A comprehensive analysis of <i>SNCA</i> â€related genetic risk in sporadic parkinson disease. Annals of Neurology, 2018, 84, 117-129.	5.3	50

#	ARTICLE	IF	Citations
608	Microglia Response During Parkinson's Disease: Alpha-Synuclein Intervention. Frontiers in Cellular Neuroscience, 2018, 12, 247.	3.7	152
609	NLRP3 expression in mesencephalic neurons and characterization of a rare NLRP3 polymorphism associated with decreased risk of Parkinson's disease. Npj Parkinson's Disease, 2018, 4, 24.	5.3	108
610	Retinal thinning associates with nigral dopaminergic loss in de novo Parkinson disease. Neurology, 2018, 91, e1003-e1012.	1.1	85
611	Generation of iPSCs carrying a common LRRK2 risk allele for in vitro modeling of idiopathic Parkinson's disease. PLoS ONE, 2018, 13, e0192497.	2.5	20
612	Pooled-DNA target sequencing of Parkinson genes reveals novel phenotypic associations in Spanish population. Neurobiology of Aging, 2018, 70, 325.e1-325.e5.	3.1	6
613	GBA-Associated Parkinson's Disease and Other Synucleinopathies. Current Neurology and Neuroscience Reports, 2018, 18, 44.	4.2	106
614	GAPDH rs1136666 SNP indicates a high risk of Parkinson's disease. Neuroscience Letters, 2018, 685, 55-62.	2.1	8
615	Genetic Modifiers of Neurodegeneration in a <i>Drosophila</i> Model of Parkinson's Disease. Genetics, 2018, 209, 1345-1356.	2.9	40
616	Proteomic analysis reveals co-ordinated alterations in protein synthesis and degradation pathways in LRRK2 knockout mice. Human Molecular Genetics, 2018, 27, 3257-3271.	2.9	52
617	LRRK2 and mitochondria: Recent advances and current views. Brain Research, 2019, 1702, 96-104.	2.2	85
618	Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chemical Reviews, 2019, 119, 1221-1322.	47.7	360
619	Lipids, Apolipoproteins, and the Risk of Parkinson Disease. Circulation Research, 2019, 125, 643-652.	4.5	50
620	Evaluation of the Common Molecular Basis in Alzheimer's and Parkinson's Diseases. International Journal of Molecular Sciences, 2019, 20, 3730.	4.1	12
622	The interplay of aging, genetics and environmental factors in the pathogenesis of Parkinson's disease. Translational Neurodegeneration, 2019, 8, 23.	8.0	200
623	A replication study of GWAS-genetic risk variants associated with Parkinson's disease in a Spanish population. Neuroscience Letters, 2019, 712, 134425.	2.1	3
624	NEAT1 is overexpressed in Parkinson's disease substantia nigra and confers drugâ€inducible neuroprotection from oxidative stress. FASEB Journal, 2019, 33, 11223-11234.	0.5	73
625	Evaluation of oxidative stress mechanisms and the effects of phytotherapic extracts on Parkinson's disease <i>Drosophila PINK1^{B9}</i> li>model. FASEB Journal, 2019, 33, 11028-11034.	0.5	8
626	Role of the endolysosomal system in Parkinson's disease. Journal of Neurochemistry, 2019, 150, 487-506.	3.9	98

#	Article	IF	CITATIONS
627	Parkinson's Disease: The Emerging Role of Gut Dysbiosis, Antibiotics, Probiotics, and Fecal Microbiota Transplantation. Journal of Neurogastroenterology and Motility, 2019, 25, 363-376.	2.4	105
628	New therapeutic approaches to target alpha-synuclein in Parkinson's disease: The role of immunotherapy. International Review of Neurobiology, 2019, 146, 281-295.	2.0	13
629	Dynamic behaviors of \hat{l}_{\pm} -synuclein and tau in the cellular context: New mechanistic insights and therapeutic opportunities in neurodegeneration. Neurobiology of Disease, 2019, 132, 104543.	4.4	17
630	Regulation of exocytosis and mitochondrial relocalization by Alpha-synuclein in a mammalian cell model. Npj Parkinson's Disease, 2019, 5, 12.	5. 3	23
631	A Hybrid Search Scheduler for Dynamic Auto-driving Team Scheduling with Time Window under Cloud Plan. Journal of Physics: Conference Series, 2019, 1302, 022041.	0.4	0
632	Effect of polygenic load on striatal dopaminergic deterioration in Parkinson disease. Neurology, 2019, 93, e665-e674.	1.1	10
633	Reformulating Pro-Oxidant Microglia in Neurodegeneration. Journal of Clinical Medicine, 2019, 8, 1719.	2.4	47
634	Filamentation initiated by Cas2 and its association with the acquisition process in cells. International Journal of Oral Science, 2019, 11, 29.	8.6	7
635	MiRâ€505 promotes M2 polarization in choroidal neovascularization model mice by targeting transmembrane protein 229B. Scandinavian Journal of Immunology, 2019, 90, e12832.	2.7	10
637	Impairment of Macroautophagy in Dopamine Neurons Has Opposing Effects on Parkinsonian Pathology and Behavior. Cell Reports, 2019, 29, 920-931.e7.	6.4	29
638	Identify Consistent Cross-Modality Imaging Genetic Patterns via Discriminant Sparse Canonical Correlation Analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 1549-1561.	3.0	9
639	The Parkinson's Disease Mendelian Randomization Research Portal. Movement Disorders, 2019, 34, 1864-1872.	3.9	50
640	Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet Neurology, The, 2019, 18, 1091-1102.	10.2	1,414
641	The UFMylation System in Proteostasis and Beyond. Trends in Cell Biology, 2019, 29, 974-986.	7.9	97
642	Genetic and Environmental Factors Contributing to Parkinson's Disease: A Case-Control Study in the Cypriot Population. Frontiers in Neurology, 2019, 10, 1047.	2.4	20
643	Stress-Induced Cellular Clearance Is Mediated by the SNARE Protein ykt6 and Disrupted by α-Synuclein. Neuron, 2019, 104, 869-884.e11.	8.1	50
644	Neuronal vulnerability in Parkinson disease: Should the focus be on axons and synaptic terminals?. Movement Disorders, 2019, 34, 1406-1422.	3.9	62
646	Synuclein Meeting 2019: where we are and where we need to go. Journal of Neurochemistry, 2019, 150, 462-466.	3.9	3

#	Article	IF	CITATIONS
647	Gut microbiome: An intermediary to neurotoxicity. NeuroToxicology, 2019, 75, 41-69.	3.0	37
648	Deep brain stimulation and genetic variability in Parkinson's disease: a review of the literature. Npj Parkinson's Disease, 2019, 5, 18.	5.3	23
649	Risky behaviors and Parkinson disease. Neurology, 2019, 93, e1412-e1424.	1.1	18
650	Phosphoinositides: Regulators of Nervous System Function in Health and Disease. Frontiers in Molecular Neuroscience, 2019, 12, 208.	2.9	76
651	Proteomics-Based Monitoring of Pathway Activity Reveals that Blocking Diacylglycerol Biosynthesis Rescues from Alpha-Synuclein Toxicity. Cell Systems, 2019, 9, 309-320.e8.	6.2	12
652	Silver staining (Campbell-Switzer) of neuronal α-synuclein assemblies induced by multiple system atrophy and Parkinson's disease brain extracts in transgenic mice. Acta Neuropathologica Communications, 2019, 7, 148.	5.2	28
653	An omics-based strategy using coenzyme Q10 in patients with Parkinsonâ \in TM s disease: concept evaluation in a double-blind randomized placebo-controlled parallel group trial. Neurological Research and Practice, 2019, 1, 31.	2.0	35
654	Distinct Stress Response and Altered Striatal Transcriptome in Alpha-Synuclein Overexpressing Mice. Frontiers in Neuroscience, 2018, 12, 1033.	2.8	8
655	Indispensable role of the Ubiquitin-fold modifier 1-specific E3 ligase in maintaining intestinal homeostasis and controlling gut inflammation. Cell Discovery, 2019, 5, 7.	6.7	45
656	Variation in <i>SIPA1L2</i> is correlated with phenotype modification in Charcot– Marie– Tooth disease type 1A. Annals of Neurology, 2019, 85, 316-330.	5.3	33
657	The endocytic membrane trafficking pathway plays a major role in the risk of Parkinson's disease. Movement Disorders, 2019, 34, 460-468.	3.9	66
658	Insights into GBA Parkinson's disease pathology and therapy with induced pluripotent stem cell model systems. Neurobiology of Disease, 2019, 127, 1-12.	4.4	13
659	Long non-coding RNA repertoire and open chromatin regions constitute midbrain dopaminergic neuron - specific molecular signatures. Scientific Reports, 2019, 9, 1409.	3.3	10
660	Polymorphisms of <i>ACMSDTMEM163</i> , <i>MCCC1</i> , and <i>BCKDKSTX1B</i> Are Not Associated with Parkinson's Disease in Taiwan. Parkinson's Disease, 2019, 2019, 1-6.	1.1	8
661	Genomic Enhancers in Brain Health and Disease. Genes, 2019, 10, 43.	2.4	53
662	Cerebrospinal fluid levels of alpha-synuclein measured using a poly-glutamic acid-modified gold nanoparticle-doped disposable neuro-biosensor system. Analyst, The, 2019, 144, 611-621.	3.5	58
663	<scp>DNAJC /scp> proteins and pathways to parkinsonism. FEBS Journal, 2019, 286, 3080-3094.</scp>	4.7	37
664	Association of the Polygenic Risk Score with the Incidence Risk of Parkinson's Disease and Cerebrospinal Fluid α-Synuclein in a Chinese Cohort. Neurotoxicity Research, 2019, 36, 515-522.	2.7	8

#	Article	IF	CITATIONS
665	Sleep Disturbance as Potential Risk and Progression Factor for Parkinson's Disease. Journal of Parkinson's Disease, 2019, 9, 603-614.	2.8	77
666	Evolution of prodromal parkinsonian features in a cohort of (i) GBA (li) mutation-positive individuals: a 6-year longitudinal study. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 1091-1097.	1.9	44
667	Genetic Variation in the Ontario Neurodegenerative Disease Research Initiative. Canadian Journal of Neurological Sciences, 2019, 46, 491-498.	0.5	7
668	SNCA and mTOR Pathway Single Nucleotide Polymorphisms Interact to Modulate the Age at Onset of Parkinson's Disease. Movement Disorders, 2019, 34, 1333-1344.	3.9	21
669	α-Synuclein in Parkinson's disease: causal or bystander?. Journal of Neural Transmission, 2019, 126, 815-840.	2.8	88
670	Sequence-Specific Detection of Unlabeled Nucleic Acid Biomarkers Using a "One-Pot―3D Molecular Sensor. Analytical Chemistry, 2019, 91, 10016-10025.	6.5	5
671	Epigenetics and Pharmacoepigenetics of Age-Related Neurodegenerative Disorders., 2019,, 903-950.		8
672	Mitochondria function associated genes contribute to Parkinson's Disease risk and later age at onset. Npj Parkinson's Disease, 2019, 5, 8.	5.3	95
673	Alphaâ€synuclein at the nexus of genes and environment: the impact of environmental enrichment and stress on brain health and disease. Journal of Neurochemistry, 2019, 150, 591-604.	3.9	22
674	Intracerebral hemorrhage: an update on diagnosis and treatment. Expert Review of Neurotherapeutics, 2019, 19, 679-694.	2.8	186
675	GBA and APOE $\hat{l}\mu4$ associate with sporadic dementia with Lewy bodies in European genome wide association study. Scientific Reports, 2019, 9, 7013.	3.3	53
676	The role of lipids in α-synuclein misfolding and neurotoxicity. Journal of Biological Chemistry, 2019, 294, 9016-9028.	3.4	55
677	DNAJC13 p.Asn855Ser, implicated in familial parkinsonism, alters membrane dynamics of sorting nexin 1. Neuroscience Letters, 2019, 706, 114-122.	2.1	8
679	Dystonia and Parkinson's disease: What is the relationship?. Neurobiology of Disease, 2019, 132, 104462.	4.4	71
680	TREML2 Mutation Mediate Alzheimer's Disease Risk by Altering Neuronal Degeneration. Frontiers in Neuroscience, 2019, 13, 455.	2.8	8
681	Connecting Metainflammation and Neuroinflammation Through the PTN-MK-RPTPÎ 2 lζ Axis: Relevance in Therapeutic Development. Frontiers in Pharmacology, 2019, 10, 377.	3.5	48
682	The role of Rab GTPases in the pathobiology of Parkinson' disease. Current Opinion in Cell Biology, 2019, 59, 73-80.	5.4	37
683	LRRK2 interacts with the vacuolar-type H+-ATPase pump a1 subunit to regulate lysosomal function. Human Molecular Genetics, 2019, 28, 2696-2710.	2.9	87

#	Article	IF	CITATIONS
684	Metaâ€analyses identify differentially expressed microRNAs in Parkinson's disease. Annals of Neurology, 2019, 85, 835-851.	5.3	84
685	Omics and Epigenetics of Polyphenol-Mediated Neuroprotection: The Curcumin Perspective. , 2019, , 169-189.		1
686	Immune Signaling in Neurodegeneration. Immunity, 2019, 50, 955-974.	14.3	217
687	Dysregulated Lipid Metabolism and Its Role in α-Synucleinopathy in Parkinson's Disease. Frontiers in Neuroscience, 2019, 13, 328.	2.8	169
688	Moving beyond neurons: the role of cell type-specific gene regulation in Parkinson's disease heritability. Npj Parkinson's Disease, 2019, 5, 6.	5.3	83
689	Proteomics; applications in familial Parkinson's disease. Journal of Neurochemistry, 2019, 151, 446-458.	3.9	2
690	Genetic background modifies phenotypic and transcriptional responses in a C. elegans model of $\hat{l}\pm$ -synuclein toxicity. BMC Genomics, 2019, 20, 232.	2.8	11
691	A specific amino acid motif of <i>HLA-DRB1</i> mediates risk and interacts with smoking history in Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7419-7424.	7.1	58
692	Utilization of the CRISPR-Cas9 Gene Editing System to Dissect Neuroinflammatory and Neuropharmacological Mechanisms in Parkinson's Disease. Journal of NeuroImmune Pharmacology, 2019, 14, 595-607.	4.1	16
693	Association of three candidate genetic variants in ACMSD/TMEM163, GPNMB and BCKDK /STX1B with sporadic Parkinson's disease in Han Chinese. Neuroscience Letters, 2019, 703, 45-48.	2.1	9
694	Parkinson's Disease is Associated with Dysregulations of a Dopamine-Modulated Gene Network Relevant to Sleep and Affective Neurobehaviors in the Striatum. Scientific Reports, 2019, 9, 4808.	3.3	13
695	Activation of the immunoproteasome protects SH-SY5Y cells from the toxicity of rotenone. NeuroToxicology, 2019, 73, 112-119.	3.0	9
696	Harnessing Immunoproteostasis to Treat Neurodegenerative Disorders. Neuron, 2019, 101, 1003-1015.	8.1	29
697	LRRK2 links genetic and sporadic Parkinson's disease. Biochemical Society Transactions, 2019, 47, 651-661.	3.4	148
698	Dopamine compartmentalization, selective dopaminergic vulnerabilities in Parkinson's disease and therapeutic opportunities. Annals of Clinical and Translational Neurology, 2019, 6, 406-415.	3.7	6
699	Polygenic Risk Scores in Neurodegenerative Diseases: a Review. Current Genetic Medicine Reports, 2019, 7, 22-29.	1.9	23
700	Predictive model of spread of Parkinson's pathology using network diffusion. NeuroImage, 2019, 192, 178-194.	4.2	61
701	A Quarter Century of APOE and Alzheimer's Disease: Progress to Date and the Path Forward. Neuron, 2019, 101, 820-838.	8.1	338

#	Article	IF	Citations
702	Ufbp1 promotes plasma cell development and ER expansion by modulating distinct branches of UPR. Nature Communications, 2019, 10, 1084.	12.8	73
703	Parkinson's disease-linked <i>D620N VPS35</i> knockin mice manifest tau neuropathology and dopaminergic neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5765-5774.	7.1	77
704	Identification of Shared Genes Between Ischemic Stroke and Parkinson's Disease Using Genome-Wide Association Studies. Frontiers in Neurology, 2019, 10, 297.	2.4	18
705	Emerging therapies in Parkinson disease — repurposed drugs and new approaches. Nature Reviews Neurology, 2019, 15, 204-223.	10.1	189
706	Three-dimensional ZnO nanosheet spheres/graphene foam for electrochemical determination of levodopa in the presence of uric acid. Journal of Electroanalytical Chemistry, 2019, 838, 142-147.	3.8	18
707	Entanglement of Genetics and Epigenetics in Parkinson's Disease. Frontiers in Neuroscience, 2019, 13, 277.	2.8	51
708	Glial phagocytic clearance in Parkinson's disease. Molecular Neurodegeneration, 2019, 14, 16.	10.8	104
709	Parkinson's disease age at onset genomeâ€wide association study: Defining heritability, genetic loci, and αâ€synuclein mechanisms. Movement Disorders, 2019, 34, 866-875.	3.9	258
710	Revision of Diagnosis in Early Parkinsonism with Abnormal Dopamine Transporter Imaging. Journal of Parkinson's Disease, 2019, 9, 327-334.	2.8	6
711	Multi-ancestry genome-wide gene–smoking interaction study of 387,272 individuals identifies new loci associated with serum lipids. Nature Genetics, 2019, 51, 636-648.	21.4	112
712	Lysosomal enzyme activities as possible CSF biomarkers of synucleinopathies. Clinica Chimica Acta, 2019, 495, 13-24.	1.1	18
713	Transcriptomic and genetic analyses reveal potential causal drivers for intractable partial epilepsy. Brain, 2019, 142, 1616-1630.	7.6	47
714	Genetic Association Between NGFR, ADAM17 Gene Polymorphism, and Parkinson's Disease in the Chinese Han Population. Neurotoxicity Research, 2019, 36, 463-471.	2.7	7
715	Heritability and genetic variance of dementia with Lewy bodies. Neurobiology of Disease, 2019, 127, 492-501.	4.4	29
716	An integrated transcriptomics and proteomics analysis reveals functional endocytic dysregulation caused by mutations in LRRK2. Neurobiology of Disease, 2019, 127, 512-526.	4.4	58
717	Doubts about TMEM230 as a gene for parkinsonism. Nature Genetics, 2019, 51, 367-368.	21.4	11
718	Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD. Acta Neuropathologica, 2019, 137, 879-899.	7.7	90
719	Genetic risk variants for brain disorders are enriched in cortical H3K27ac domains. Molecular Brain, 2019, 12, 7.	2.6	21

#	ARTICLE	IF	CITATIONS
720	Effect of Single-Nucleotide Polymorphisms on Decline of Dopamine Transporter Availability in		
720			

#	Article	IF	CITATIONS
738	Genetic architecture of subcortical brain structures in 38,851 individuals. Nature Genetics, 2019, 51, 1624-1636.	21.4	192
739	Common and rare GCH1 variants are associated with Parkinson'sÂdisease. Neurobiology of Aging, 2019, 73, 231.e1-231.e6.	3.1	20
740	Picomolar concentrations of oligomeric alpha-synuclein sensitizes TLR4 to play an initiating role in Parkinson's disease pathogenesis. Acta Neuropathologica, 2019, 137, 103-120.	7.7	103
741	Neural tissue microphysiological systems in the era of patient-derived pluripotent stem cells. , 2019, , 249-296.		3
742	The importance of preclinical diagnostics in Parkinson disease. Parkinsonism and Related Disorders, 2019, 64, 20-28.	2.2	37
743	Advances in the Research of Risk Factors and Prodromal Biomarkers of Parkinson's Disease. ACS Chemical Neuroscience, 2019, 10, 973-990.	3.5	39
744	Neuroimaging, genetic, and enzymatic study in a Japanese family with a GBA gross deletion. Parkinsonism and Related Disorders, 2019, 61, 57-63.	2.2	6
745	Genetically engineered animal models of Parkinson's disease: From worm to rodent. European Journal of Neuroscience, 2019, 49, 533-560.	2.6	27
746	LRRK2â€mediated Rab10 phosphorylation in immune cells from Parkinson's disease patients. Movement Disorders, 2019, 34, 406-415.	3.9	83
747	Neurite Collapse and Altered ER Ca2+ Control in Human Parkinson Disease Patient iPSC-Derived Neurons with LRRK2 G2019S Mutation. Stem Cell Reports, 2019, 12, 29-41.	4.8	57
748	Gut microbiome-based secondary metabolite biosynthetic gene clusters detection in Parkinson's disease. Neuroscience Letters, 2019, 696, 93-98.	2.1	15
749	Genetic variants of PARK genes in Korean patients with early-onset Parkinson's disease. Neurobiology of Aging, 2019, 75, 224.e9-224.e15.	3.1	25
750	Balancing Apoptosis and Autophagy for Parkinson's Disease Therapy: Targeting BCL-2. ACS Chemical Neuroscience, 2019, 10, 792-802.	3.5	82
751	The role of monogenic genes in idiopathic Parkinson's disease. Neurobiology of Disease, 2019, 124, 230-239.	4.4	97
752	Diagnostic biomarkers for Parkinson's disease: focus on α-synuclein in cerebrospinal fluid. Parkinsonism and Related Disorders, 2019, 59, 21-25.	2.2	16
753	Systematically analyzing rare variants of autosomal-dominant genes for sporadic Parkinson's disease in a Chinese cohort. Neurobiology of Aging, 2019, 76, 215.e1-215.e7.	3.1	17
754	A modular, extensible approach to massive ecologically valid behavioral data. Behavior Research Methods, 2019, 51, 1754-1765.	4.0	8
755	Comparison and assessment of family- and population-based genotype imputation methods in large pedigrees. Genome Research, 2019, 29, 125-134.	5.5	16

#	ARTICLE	IF	Citations
756	Inhibition of LRRK2 or Casein Kinase 1 Results in LRRK2 Protein Destabilization. Molecular Neurobiology, 2019, 56, 5273-5286.	4.0	15
757	The usual suspects, dopamine and alphaâ€synuclein, conspire to cause neurodegeneration. Movement Disorders, 2019, 34, 167-179.	3.9	62
758	Interaction between toll-like receptor 4 (TLR4) gene and alcohol drinking on Parkinson's disease risk in Chinese Han population. Journal of Clinical Neuroscience, 2019, 62, 128-132.	1.5	3
7 59	Triggers, Facilitators, and Aggravators: Redefining Parkinson's Disease Pathogenesis. Trends in Neurosciences, 2019, 42, 4-13.	8.6	216
760	A stroke gene panel for whole-exome sequencing. European Journal of Human Genetics, 2019, 27, 317-324.	2.8	25
761	A Proposed Roadmap for Parkinson's Disease Proof of Concept Clinical Trials Investigating Compounds Targeting Alpha-Synuclein. Journal of Parkinson's Disease, 2019, 9, 31-61.	2.8	45
762	Development of an aggregate-selective, human-derived î±-synuclein antibody BIIB054 that ameliorates disease phenotypes in Parkinson's disease models. Neurobiology of Disease, 2019, 124, 276-288.	4.4	125
764	Synaptic, Mitochondrial, and Lysosomal Dysfunction in Parkinson's Disease. Trends in Neurosciences, 2019, 42, 140-149.	8.6	206
765	Understanding the role of genetic variability in <i>LRRK2</i> in Indian population. Movement Disorders, 2019, 34, 496-505.	3.9	14
767	Relationship between variants of 17 newly loci and Parkinson's disease in a Chinese population. Neurobiology of Aging, 2019, 73, 230.e1-230.e4.	3.1	7
768	Genetics of REM Sleep Behavior Disorder. , 2019, , 589-609.		2
769	The PPARGC1A locus and CNS-specific PGC-1α isoforms are associated with Parkinson's Disease. Neurobiology of Disease, 2019, 121, 34-46.	4.4	23
770	Gene Dysfunction Mediates Immune Response to Dopaminergic Degeneration in Parkinson's Disease. ACS Chemical Neuroscience, 2019, 10, 803-811.	3.5	7
772	Molecular Mechanisms of Neurodegeneration: Insights from theÂStudies of Genetic Model of Parkinson's Disease. , 2019, , 15-29.		0
773	No evidence for DNM3 as genetic modifier of age at onset in idiopathic Parkinson's disease. Neurobiology of Aging, 2019, 74, 236.e1-236.e5.	3.1	1
774	The unlikely partnership between <scp>LRRK</scp> 2 and αâ€synuclein in Parkinson's disease. European Journal of Neuroscience, 2019, 49, 339-363.	2.6	35
775	Statistical Association Mapping of Population-Structured Genetic Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 638-649.	3.0	8
776	Deregulation of autophagy and vesicle trafficking in Parkinson's disease. Neuroscience Letters, 2019, 697, 59-65.	2.1	36

#	Article	IF	Citations
777	Brain-Wide Genome-Wide Association Study for Alzheimer's Disease via Joint Projection Learning and Sparse Regression Model. IEEE Transactions on Biomedical Engineering, 2019, 66, 165-175.	4.2	42
778	Joint-Connectivity-Based Sparse Canonical Correlation Analysis of Imaging Genetics for Detecting Biomarkers of Parkinson's Disease. IEEE Transactions on Medical Imaging, 2020, 39, 23-34.	8.9	39
779	<i>LRRK2</i> mutations impair depolarization-induced mitophagy through inhibition of mitochondrial accumulation of RAB10. Autophagy, 2020, 16, 203-222.	9.1	124
780	The impact of indigenous microbes on Parkinson's disease. Neurobiology of Disease, 2020, 135, 104426.	4.4	29
781	The C-terminal domain of LRRK2 with the G2019S mutation is sufficient to produce neurodegeneration of dopaminergic neurons in vivo. Neurobiology of Disease, 2020, 134, 104614.	4.4	15
782	Biological bases for a possible effect of cannabidiol in Parkinson's disease. Revista Brasileira De Psiquiatria, 2020, 42, 218-224.	1.7	18
783	Pathological Influences on Clinical Heterogeneity in Lewy Body Diseases. Movement Disorders, 2020, 35, 5-19.	3.9	60
784	Mechanisms of secretion and spreading of pathological tau protein. Cellular and Molecular Life Sciences, 2020, 77, 1721-1744.	5.4	174
785	Association of genetic variants within HLA-DR region with Parkinson's disease in Taiwan. Neurobiology of Aging, 2020, 87, 140.e13-140.e18.	3.1	7
786	Modifiable risk and protective factors in disease development, progression and clinical subtypes of Parkinson's disease: What do prospective studies suggest?. Neurobiology of Disease, 2020, 134, 104671.	4.4	48
787	Genetic, Structural, and Functional Evidence Link <i>TMEM175</i> to Synucleinopathies. Annals of Neurology, 2020, 87, 139-153.	5.3	65
788	Cannabidiol and Cannabinoid Compounds as Potential Strategies for Treating Parkinson's Disease and I-DOPA-Induced Dyskinesia. Neurotoxicity Research, 2020, 37, 12-29.	2.7	33
789	Whole-exome sequencing in early-onset Parkinson's disease among ethnic Chinese. Neurobiology of Aging, 2020, 90, 150.e5-150.e11.	3.1	29
790	Parkinson's disease: proteinopathy or lipidopathy?. Npj Parkinson's Disease, 2020, 6, 3.	5.3	138
791	Omics in Neurodegenerative Disease: Hope or Hype?. Trends in Genetics, 2020, 36, 152-159.	6.7	38
792	Plasma biomarkers of astrocytic and neuronal dysfunction in early―and lateâ€onset Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, 681-695.	0.8	143
793	Association between SNCA rs356220 polymorphism and Parkinson's disease: A meta-analysis. Neuroscience Letters, 2020, 717, 134703.	2.1	6
794	Association of RIT2 and RAB7L1 with Parkinson's disease: a case-control study in a Taiwanese cohort and a meta-analysis in Asian populations. Neurobiology of Aging, 2020, 87, 140.e5-140.e11.	3.1	4

#	Article	IF	CITATIONS
795	Genetic variability and potential effects on clinical trial outcomes: perspectives in Parkinson's disease. Journal of Medical Genetics, 2020, 57, 331-338.	3.2	36
796	Emerging neuroprotective effect of metformin in Parkinson's disease: A molecular crosstalk. Pharmacological Research, 2020, 152, 104593.	7.1	53
797	Overlapping genetic architecture between Parkinson disease and melanoma. Acta Neuropathologica, 2020, 139, 347-364.	7.7	23
798	Ten Years of the International Parkinson Disease Genomics Consortium: Progress and Next Steps. Journal of Parkinson's Disease, 2020, 10, 19-30.	2.8	23
799	Mitochondrial remodeling in human skin fibroblasts from sporadic male Parkinson's disease patients uncovers metabolic and mitochondrial bioenergetic defects. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165615.	3.8	24
800	Loss of fragile X mental retardation protein precedes Lewy pathology in Parkinson's disease. Acta Neuropathologica, 2020, 139, 319-345.	7.7	17
801	A multi-faceted genotoxic network of alpha-synuclein in the nucleus and mitochondria of dopaminergic neurons in Parkinson's disease: Emerging concepts and challenges. Progress in Neurobiology, 2020, 185, 101729.	5 . 7	25
802	Glycosphingolipids and neuroinflammation in Parkinson's disease. Molecular Neurodegeneration, 2020, 15, 59.	10.8	78
803	Pro-cathepsin D, Prosaposin, and Progranulin: Lysosomal Networks in Parkinsonism. Trends in Molecular Medicine, 2020, 26, 913-923.	6.7	36
804	Primate differential redoxome (PDR) – A paradigm for understanding neurodegenerative diseases. Redox Biology, 2020, 36, 101683.	9.0	1
805	SNPs in Sites for DNA Methylation, Transcription Factor Binding, and miRNA Targets Leading to Allele-Specific Gene Expression and Contributing to Complex Disease Risk: A Systematic Review. Public Health Genomics, 2020, 23, 155-170.	1.0	23
806	Environment and Gene Association With Obesity and Their Impact on Neurodegenerative and Neurodevelopmental Diseases. Frontiers in Neuroscience, 2020, 14, 863.	2.8	61
807	Identification of Disease-Associated Variants by Targeted Gene Panel Resequencing in Parkinson's Disease. Frontiers in Neurology, 2020, 11, 576465.	2.4	4
808	Arylsulfatase A (ASA) in Parkinson's Disease: From Pathogenesis to Biomarker Potential. Brain Sciences, 2020, 10, 713.	2.3	10
809	Meta-analysis of whole-exome sequencing data from two independent cohorts finds no evidence for rare variant enrichment in Parkinson disease associated loci. PLoS ONE, 2020, 15, e0239824.	2.5	11
810	LRRK2 and the Endolysosomal System in Parkinson's Disease. Journal of Parkinson's Disease, 2020, 10, 1271-1291.	2.8	52
811	Metformin rescues Parkinson's disease phenotypes caused by hyperactive mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26438-26447.	7.1	95
812	SNPs in <i>SNCA</i> , <i>MCCC1</i> , <i>DLG2</i> , <i>GBF1</i> and <i>MBNL2</i> are associated with Parkinson's disease in southern Chinese population. Journal of Cellular and Molecular Medicine, 2020, 24, 8744-8752.	3.6	6

#	Article	IF	CITATIONS
813	Mutation Analysis of <scp><i>DNAJC</i></scp> Family for <scp>Earlyâ€Onset</scp> Parkinson's Disease in a Chinese Cohort. Movement Disorders, 2020, 35, 2068-2076.	3.9	21
814	Prediction of age at onset in Parkinson's disease using objective specific neuroimaging genetics based on a sparse canonical correlation analysis. Scientific Reports, 2020, 10, 11662.	3.3	4
815	Identifying Therapeutic Agents for Amelioration of Mitochondrial Clearance Disorder in Neurons of Familial Parkinson Disease. Stem Cell Reports, 2020, 14, 1060-1075.	4.8	43
816	Novel and reported variants in Parkinson's disease genes confer high disease burden among Indians. Parkinsonism and Related Disorders, 2020, 78, 46-52.	2.2	22
817	Mitochondrial hyperactivity as a potential therapeutic target in Parkinson's disease. Translational Medicine of Aging, 2020, 4, 117-120.	1.3	8
818	Network Protein Interaction in Parkinson's Disease and Periodontitis Interplay: A Preliminary Bioinformatic Analysis. Genes, 2020, 11, 1385.	2.4	11
819	PDmethDB: A curated Parkinson's disease associated methylation information database. Computational and Structural Biotechnology Journal, 2020, 18, 3745-3749.	4.1	6
820	Metal Exposure and SNCA rs356219 Polymorphism Associated With Parkinson Disease and Parkinsonism. Frontiers in Neurology, 2020, 11, 556337.	2.4	11
822	The genetic architecture of human brainstem structures and their involvement in common brain disorders. Nature Communications, 2020, 11, 4016.	12.8	26
823	The contribution of <i>C. elegans</i> neurogenetics to understanding neurodegenerative diseases. Journal of Neurogenetics, 2020, 34, 527-548.	1.4	21
824	Association of ZNF184, IL1R2, LRRK2, ITPKB, and PARK16 with sporadic Parkinson's disease in Eastern China. Neuroscience Letters, 2020, 735, 135261.	2.1	5
825	LRRK2 and Protein Aggregation in Parkinson's Disease: Insights From Animal Models. Frontiers in Neuroscience, 2020, 14, 719.	2.8	13
826	Tryptophan Metabolites Are Associated With Symptoms and Nigral Pathology in Parkinson's Disease. Movement Disorders, 2020, 35, 2028-2037.	3.9	64
827	Parkinson's: A Disease of Aberrant Vesicle Trafficking. Annual Review of Cell and Developmental Biology, 2020, 36, 237-264.	9.4	54
828	Attenuation of epigenetic regulator SMARCA4 and ERKâ€ETS signaling suppresses agingâ€related dopaminergic degeneration. Aging Cell, 2020, 19, e13210.	6.7	18
829	Splice-Switching Antisense Oligonucleotides Reduce LRRK2 Kinase Activity in Human LRRK2 Transgenic Mice. Molecular Therapy - Nucleic Acids, 2020, 21, 623-635.	5.1	33
830	Epigenomeâ€wide analyses identify DNA methylation signatures of dementia risk. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2020, 12, e12078.	2.4	8
831	ROS networks: designs, aging, Parkinson's disease and precision therapies. Npj Systems Biology and Applications, 2020, 6, 34.	3.0	50

#	ARTICLE	IF	CITATIONS
832	Unraveling Pathophysiological Mechanisms of Parkinson's Disease: Contribution of CSF Biomarkers. Biomarker Insights, 2020, 15, 117727192096407.	2.5	7
833	Predictors of Conversion to α-Synucleinopathy Diseases in Idiopathic Rapid Eye Movement Sleep Behavior Disorder. Journal of Parkinson's Disease, 2020, 10, 1443-1455.	2.8	15
834	Our Data-driven Future: Promise, Perils, and Prognoses. Review of Marketing Research, 2020, , 105-121.	0.2	0
835	Bioprospection of Natural Sources of Polyphenols with Therapeutic Potential for Redox-Related Diseases. Antioxidants, 2020, 9, 789.	5.1	9
836	Rare and novel variants of <i>PRKN</i> and <i>PINK1</i> genes in Vietnamese patients with earlyâ€onset Parkinson's disease. Molecular Genetics & Enomic Medicine, 2020, 8, e1463.	1.2	8
837	The Current State-of-the Art of LRRK2-Based Biomarker Assay Development in Parkinson's Disease. Frontiers in Neuroscience, 2020, 14, 865.	2.8	30
838	The Association Analysis of GPNMB rs156429 With Clinical Manifestations in Chinese Population With Parkinson's Disease. Frontiers in Genetics, 2020, 11, 952.	2.3	2
839	Post-GWAS knowledge gap: the how, where, and when. Npj Parkinson's Disease, 2020, 6, 23.	5.3	19
840	Mining genetic and transcriptomic data using machine learning approaches in Parkinson's disease. Npj Parkinson's Disease, 2020, 6, 24.	5.3	25
841	Serum Calcium Levels and Parkinson's Disease: A Mendelian Randomization Study. Frontiers in Genetics, 2020, 11, 824.	2.3	5
842	A new sorting hat for Parkinson disease. Neurology, 2020, 95, 805-806.	1.1	0
843	The cis-Regulatory Element of SNCA Intron 4 Modulates Susceptibility to Parkinson's Disease in Han Chinese. Frontiers in Genetics, 2020, 11, 590365.	2.3	0
844	The Nosology of Lewy Body Disorders From Analytic–Epidemiologic and Statistical Vantage Points. Movement Disorders, 2020, 35, 2156-2161.	3.9	5
845	In Search of Effective Treatments Targeting \hat{l}_{\pm} -Synuclein Toxicity in Synucleinopathies: Pros and Cons. Frontiers in Cell and Developmental Biology, 2020, 8, 559791.	3.7	14
846	Current Aspects of the Endocannabinoid System and Targeted THC and CBD Phytocannabinoids as Potential Therapeutics for Parkinson's and Alzheimer's Diseases: a Review. Molecular Neurobiology, 2020, 57, 4878-4890.	4.0	56
847	Anti-α-synuclein ASO delivered to monoamine neurons prevents α-synuclein accumulation in a Parkinson's disease-like mouse model and in monkeys. EBioMedicine, 2020, 59, 102944.	6.1	45
848	Molecular events underlying the cellâ€ŧoâ€cell transmission of αâ€synuclein. FEBS Journal, 2021, 288, 6593-6602.	4.7	27
849	Association between MMP16 rs60298754 and clinical phenotypes of Parkinson's disease in southern Chinese. Neurological Sciences, 2020, 42, 3211-3215.	1.9	2

#	Article	IF	CITATIONS
850	Aberrant mitochondrial morphology and function associated with impaired mitophagy and DNM1L-MAPK/ERK signaling are found in aged mutant Parkinsonian LRRK2 ^{R1441G} mice. Autophagy, 2021, 17, 3196-3220.	9.1	45
851	Blood Exosomes Have Neuroprotective Effects in a Mouse Model of Parkinson's Disease. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-14.	4.0	20
852	Common Factors in Neurodegeneration: A Meta-Study Revealing Shared Patterns on a Multi-Omics Scale. Cells, 2020, 9, 2642.	4.1	32
854	Genetic Risk Profiling in Parkinson's Disease and Utilizing Genetics to Gain Insight into Disease-Related Biological Pathways. International Journal of Molecular Sciences, 2020, 21, 7332.	4.1	16
855	APOE2: protective mechanism and therapeutic implications for Alzheimer's disease. Molecular Neurodegeneration, 2020, 15, 63.	10.8	110
856	The Emerging Role of the Lysosome in Parkinson's Disease. Cells, 2020, 9, 2399.	4.1	63
857	Kynurenine pathway in Parkinson's disease—An update. ENeurologicalSci, 2020, 21, 100270.	1.3	50
858	The cognitive and speech genes are jointly shaped by both positive and relaxed selection in the human lineage. Genomics, 2020, 112, 2922-2927.	2.9	4
859	Iroquois Homeobox Protein 2 Identified as a Potential Biomarker for Parkinson's Disease. International Journal of Molecular Sciences, 2020, 21, 3455.	4.1	7
860	Absence of Sac2/INPP5F enhances the phenotype of a Parkinson's disease mutation of synaptojanin 1. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12428-12434.	7.1	30
861	Membrane trafficking in health and disease. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	87
862	Genetic perspective on the synergistic connection between vesicular transport, lysosomal and mitochondrial pathways associated with Parkinson's disease pathogenesis. Acta Neuropathologica Communications, 2020, 8, 63.	5.2	45
863	Tobacco smoking and the risk of Parkinson disease. Neurology, 2020, 94, e2132-e2138.	1.1	81
864	Assessment of Genetic Association Between Parkinson Disease and Bipolar Disorder. JAMA Neurology, 2020, 77, 1034.	9.0	4
865	The dual role of câ€src in cellâ€ŧo ell transmission of αâ€synuclein. EMBO Reports, 2020, 21, e48950.	4.5	15
866	Well Water and Parkinson's Disease in Medicare Beneficiaries: A Nationwide Case-Control Study. Journal of Parkinson's Disease, 2020, 10, 693-705.	2.8	9
867	Identification of novel epigenetic abnormalities as sputum biomarkers for lung cancer risk among smokers and COPD patients. Lung Cancer, 2020, 146, 189-196.	2.0	9
868	The potential roles of deubiquitinating enzymes in brain diseases. Ageing Research Reviews, 2020, 61, 101088.	10.9	37

#	Article	IF	CITATIONS
869	The association between the C-reactive protein gene +1444C/T polymorphism and Parkinson's disease susceptibility in a Chinese population. Gene, 2020, 753, 144808.	2.2	3
870	Structures of α-synuclein filaments from multiple system atrophy. Nature, 2020, 585, 464-469.	27.8	446
871	Role of Long Noncoding RNAs in Parkinson's Disease: Putative Biomarkers and Therapeutic Targets. Parkinson's Disease, 2020, 2020, 1-12.	1.1	20
872	Role of VPS13, a protein with similarity to ATG2, in physiology and disease. Current Opinion in Genetics and Development, 2020, 65, 61-68.	3.3	48
873	Parkinson disease risk variants in East Asian populations. Nature Reviews Neurology, 2020, 16, 461-462.	10.1	3
874	The Role of MicroRNA in the Pathogenesis and Diagnostics of Parkinson's Disease. Neurochemical Journal, 2020, 14, 127-132.	0.5	7
875	Evaluation of causality between ADHD and Parkinson's disease: Mendelian randomization study. European Neuropsychopharmacology, 2020, 37, 49-63.	0.7	5
876	Interaction between SNCA gene polymorphisms and T2DM with Parkinson's disease. Acta Neurologica Scandinavica, 2020, 142, 443-448.	2.1	2
877	Leucine regulates autophagy via acetylation of the mTORC1 component raptor. Nature Communications, 2020, 11, 3148.	12.8	68
878	Mutation screening and burden analysis of VPS13C in Chinese patients with early-onset Parkinson's disease. Neurobiology of Aging, 2020, 94, 311.e1-311.e4.	3.1	16
879	"LRRK2: Autophagy and Lysosomal Activity― Frontiers in Neuroscience, 2020, 14, 498.	2.8	80
880	LRRK2-Related Parkinson's Disease Due to Altered Endolysosomal Biology With Variable Lewy Body Pathology: A Hypothesis. Frontiers in Neuroscience, 2020, 14, 556.	2.8	19
881	Leucine Rich Repeat Kinase 2 and Innate Immunity. Frontiers in Neuroscience, 2020, 14, 193.	2.8	36
882	<scp>Humanâ€6pecific</scp> Transcriptome of Ventral and Dorsal Midbrain Dopamine Neurons. Annals of Neurology, 2020, 87, 853-868.	5.3	22
883	GCH-1 genetic variant may cause Parkinsonism by unmasking the subclinical nigral pathology. Journal of Neurology, 2020, 267, 1952-1959.	3.6	3
884	Genetic Burden for Late-Life Neurodegenerative Disease and Its Association With Early-Life Lipids, Brain, Behavior, and Cognition. Frontiers in Psychiatry, 2020, 11, 33.	2.6	8
885	Current clinical approaches in neurodegenerative diseases. , 2020, , 79-124.		1
886	Association Between Glucocerebrosidase Mutations and Parkinson's Disease in Ireland. Frontiers in Neurology, 2020, 11, 527.	2.4	17

#	Article	IF	CITATIONS
887	KTN1 Variants Underlying Putamen Gray Matter Volumes and Parkinson's Disease. Frontiers in Neuroscience, 2020, 14, 651.	2.8	6
888	Dopaminergic neurodegeneration induced by Parkinson's disease-linked G2019S LRRK2 is dependent on kinase and GTPase activity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17296-17307.	7.1	47
889	Diffusion-weighted MRI in neurodegenerative and psychiatric animal models: Experimental strategies and main outcomes. Journal of Neuroscience Methods, 2020, 343, 108814.	2.5	3
890	Elevated COUP-TFII expression in dopaminergic neurons accelerates the progression of Parkinson's disease through mitochondrial dysfunction. PLoS Genetics, 2020, 16, e1008868.	3.5	12
891	Targeted RNA sequencing enhances gene expression profiling of ultra-low input samples. RNA Biology, 2020, 17, 1741-1753.	3.1	10
892	Epigenetic Vulnerability of Insulator CTCF Motifs at Parkinson's Disease-Associated Genes in Response to Neurotoxicant Rotenone. Frontiers in Genetics, 2020, 11, 627.	2.3	5
893	Gut-seeded α-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice. Nature Neuroscience, 2020, 23, 327-336.	14.8	247
894	Cell and Tissue Instructive Materials for Central Nervous System Repair. Advanced Functional Materials, 2020, 30, 1909083.	14.9	20
895	Targeted exome sequencing identifies five novel loci at genome-wide significance for modulating antidepressant response in patients with major depressive disorder. Translational Psychiatry, 2020, 10, 30.	4.8	14
896	The biochemical basis of interactions between Glucocerebrosidase and alphaâ€synuclein in <i>GBA</i> 1 mutation carriers. Journal of Neurochemistry, 2020, 154, 11-24.	3.9	10
897	Fineâ€Mapping of <i>SNCA</i> in Rapid Eye Movement Sleep Behavior Disorder and Overt Synucleinopathies. Annals of Neurology, 2020, 87, 584-598.	5.3	39
898	Precision medicine in Parkinson's disease: emerging treatments for genetic Parkinson's disease. Journal of Neurology, 2020, 267, 860-869.	3.6	68
900	LRRK2 in Parkinson disease: challenges of clinical trials. Nature Reviews Neurology, 2020, 16, 97-107.	10.1	281
901	Vesicular Dysfunction and the Pathogenesis of Parkinson's Disease: Clues From Genetic Studies. Frontiers in Neuroscience, 2019, 13, 1381.	2.8	20
902	N-terminal acetylation mutants affect alpha-synuclein stability, protein levels and neuronal toxicity. Neurobiology of Disease, 2020, 137, 104781.	4.4	31
903	Genetics of Parkinson's disease: An introspection of its journey towards precision medicine. Neurobiology of Disease, 2020, 137, 104782.	4.4	241
904	Modeling Parkinson's Disease With the Alpha-Synuclein Protein. Frontiers in Pharmacology, 2020, 11, 356.	3.5	195
905	Parkinson disease and the immune system — associations, mechanisms and therapeutics. Nature Reviews Neurology, 2020, 16, 303-318.	10.1	254

#	Article	IF	Citations
906	The Emerging Functions of LRRK2 and Rab GTPases in the Endolysosomal System. Frontiers in Neuroscience, 2020, 14, 227.	2.8	47
907	Missing heritability in Parkinson's disease: the emerging role of non-coding genetic variation. Journal of Neural Transmission, 2020, 127, 729-748.	2.8	27
908	Endosomal sorting pathways in the pathogenesis of Parkinson's disease. Progress in Brain Research, 2020, 252, 271-306.	1.4	16
909	Genetic analysis of N6-methyladenosine modification genes in Parkinson's disease. Neurobiology of Aging, 2020, 93, 143.e9-143.e13.	3.1	35
910	Changes in plasma arylsulfatase A level as a compensatory biomarker of early Parkinson's disease. Scientific Reports, 2020, 10, 5567.	3.3	7
911	Genetic predispositions of Parkinson's disease revealed in patient-derived brain cells. Npj Parkinson's Disease, 2020, 6, 8.	5.3	90
912	Alpha synuclein aggregation drives ferroptosis: an interplay of iron, calcium and lipid peroxidation. Cell Death and Differentiation, 2020, 27, 2781-2796.	11.2	142
913	Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson's disease. Nature Genetics, 2020, 52, 482-493.	21.4	216
914	LRRK2 inhibitors induce reversible changes in nonhuman primate lungs without measurable pulmonary deficits. Science Translational Medicine, 2020, 12, .	12.4	85
915	Identification of Risk Loci for Parkinson Disease in Asians and Comparison of Risk Between Asians and Europeans. JAMA Neurology, 2020, 77, 746.	9.0	170
916	Pathways of protein synthesis and degradation in PD pathogenesis. Progress in Brain Research, 2020, 252, 217-270.	1.4	5
917	Analysis of common and rare <i>VPS13C</i> variants in late-onset Parkinson disease. Neurology: Genetics, 2020, 6, 385.	1.9	19
918	Historical Perspective: Models of Parkinson's Disease. International Journal of Molecular Sciences, 2020, 21, 2464.	4.1	174
919	Assessing Digital Phenotyping to Enhance Genetic Studies of Human Diseases. American Journal of Human Genetics, 2020, 106, 611-622.	6.2	42
920	Significant, replicable, and functional associations between KTN1 variants and alcohol and drug codependence. Addiction Biology, 2021, 26, e12888.	2.6	5
921	Genome-wide Association Analysis of Parkinson's Disease and Schizophrenia Reveals Shared Genetic Architecture and Identifies Novel Risk Loci. Biological Psychiatry, 2021, 89, 227-235.	1.3	53
922	Vesicle trafficking and lipid metabolism in synucleinopathy. Acta Neuropathologica, 2021, 141, 491-510.	7.7	28
923	Transcriptomic profiles in Parkinson's disease. Experimental Biology and Medicine, 2021, 246, 584-595.	2.4	21

#	ARTICLE	IF	CITATIONS
924	Genetics variants and expression of the SCARB2 gene in the pathogenesis of Parkinson's disease in Russia. Neuroscience Letters, 2021, 741, 135509.	2.1	5
925	REM sleep behavior disorder and other sleep abnormalities in p. A53T SNCA mutation carriers. Sleep, 2021, 44, .	1.1	6
926	Mutation analysis of TMEM family members for early-onset Parkinson's disease in Chinese population. Neurobiology of Aging, 2021, 101, 299.e1-299.e6.	3.1	14
927	Deep learning in systems medicine. Briefings in Bioinformatics, 2021, 22, 1543-1559.	6.5	22
928	Alphaâ€synuclein dynamics in induced pluripotent stem cellâ€derived dopaminergic neurons from a Parkinson's disease patient (<i>PARK4</i>) with <i>SNCA</i> triplication. FEBS Open Bio, 2021, 11, 354-366.	2.3	7
929	Genome-Wide Association Studies of Schizophrenia and Bipolar Disorder in a Diverse Cohort of US Veterans. Schizophrenia Bulletin, 2021, 47, 517-529.	4.3	48
930	The burden of rare damaging variants in hereditary atypical parkinsonism genes is increased in patients with Parkinson's disease. Neurobiology of Aging, 2021, 100, 118.e5-118.e13.	3.1	2
931	Targeted sequencing of Parkinson's disease loci genes highlights <i>SYT11, FGF20</i> and other associations. Brain, 2021, 144, 462-472.	7.6	31
932	Shared Genetics of Multiple System Atrophy and Inflammatory Bowel Disease. Movement Disorders, 2021, 36, 449-459.	3.9	16
933	Neuronal Differentiation of LUHMES Cells Induces Substantial Changes of the Proteome. Proteomics, 2021, 21, e2000174.	2.2	9
934	NAPE-specific phospholipase D regulates LRRK2 association with neuronal membranes. Advances in Pharmacology, 2021, 90, 217-238.	2.0	3
935	Etiology and pathogenesis of Parkinson disease. , 2021, , 121-163.e16.		2
936	The Parkinson's Disease <scp>DNA</scp> Variant Browser. Movement Disorders, 2021, 36, 1250-1258.	3.9	11
937	Non-genetic risk and protective factors and biomarkers for neurological disorders: a meta-umbrella systematic review of umbrella reviews. BMC Medicine, 2021, 19, 6.	5.5	29
938	Identifying drug targets for neurological and psychiatric disease via genetics and the brain transcriptome. PLoS Genetics, 2021, 17, e1009224.	3.5	43
939	ATAC-seq and psychiatric disorders. , 2021, , 143-162.		O
941	Genetic Risk Factors and Lysosomal Function in Parkinson Disease. , 0, , .		0
942	Interaction of CSF αâ€synuclein and amyloid beta in cognition and cortical atrophy. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2021, 13, e12177.	2.4	5

#	Article	IF	Citations
943	Genetic and Environmental Factors Influence the Pleomorphy of LRRK2 Parkinsonism. International Journal of Molecular Sciences, 2021, 22, 1045.	4.1	15
946	Metabolomics in Parkinson's disease. Advances in Clinical Chemistry, 2021, 104, 107-149.	3.7	7
947	Allele-specific expression of Parkinson's disease susceptibility genes in human brain. Scientific Reports, 2021, 11, 504.	3.3	10
948	Association of ADAM10 gene variants with sporadic Parkinson's disease in Chinese Han population. Journal of Gene Medicine, 2021, 23, e3319.	2.8	4
949	Inflammatory Mechanisms in Parkinson's Disease: From Pathogenesis to Targeted Therapies. Neuroscientist, 2022, 28, 485-506.	3.5	14
950	Association of SNCA Parkinson's Disease Risk Polymorphisms With Disease Progression in Newly Diagnosed Patients. Frontiers in Neurology, 2020, 11, 620585.	2.4	6
951	Transmembrane 163 (TMEM163) Protein: A New Member of the Zinc Efflux Transporter Family. Biomedicines, 2021, 9, 220.	3.2	15
952	Seeded assembly <i>inÂvitro</i> does not replicate the structures of αâ€synuclein filaments from multiple system atrophy. FEBS Open Bio, 2021, 11, 999-1013.	2.3	95
954	APOE and MAPT Are Associated With Dementia in Neuropathologically Confirmed Parkinson's Disease. Frontiers in Neurology, 2021, 12, 631145.	2.4	30
955	NEAT1 on the Field of Parkinson's Disease: Offense, Defense, or a Player on the Bench?. Journal of Parkinson's Disease, 2021, 11, 123-138.	2.8	11
956	Gaucher disease: Basic and translational science needs for more complete therapy and management. Molecular Genetics and Metabolism, 2021, 132, 59-75.	1.1	28
957	Electroacupuncture may alleviate behavioral defects via modulation of gut microbiota in a mouse model of Parkinson's disease. Acupuncture in Medicine, 2021, 39, 501-511.	1.0	12
958	Contribution of rare homozygous and compound heterozygous VPS13C missense mutations to dementia with Lewy bodies and Parkinson's disease. Acta Neuropathologica Communications, 2021, 9, 25.	5.2	23
959	Long Non-coding RNAs in Parkinson's Disease. Neurochemical Research, 2021, 46, 1031-1042.	3.3	22
961	Defective Lysosomal Lipid Catabolism as a Common Pathogenic Mechanism for Dementia. NeuroMolecular Medicine, 2021, 23, 1-24.	3.4	9
962	Identification of <i>LRRK2</i> missense variants in the accelerating medicines partnership Parkinson's disease cohort. Human Molecular Genetics, 2021, 30, 454-466.	2.9	20
963	Fine-mapping of the non-coding variation driving the Caucasian LRRK2 GWAS signal in Parkinson's disease. Parkinsonism and Related Disorders, 2021, 83, 22-30.	2.2	7
964	Smoking Modifies Pancreatic Cancer Risk Loci on 2q21.3. Cancer Research, 2021, 81, 3134-3143.	0.9	8

#	Article	IF	CITATIONS
965	Differences in MTHFR and LRRK2 variant's association with sporadic Parkinson's disease in Mexican Mestizos correlated to Native American ancestry. Npj Parkinson's Disease, 2021, 7, 13.	5.3	3
966	Heart rate, intelligence in adolescence, and Parkinson's disease later in life. European Journal of Epidemiology, 2021, 36, 1055-1064.	5.7	9
967	Mechanistic insights into the pathogenesis of neurodegenerative diseases: towards the development of effective therapy. Molecular and Cellular Biochemistry, 2021, 476, 2739-2752.	3.1	12
968	Sustained Release GLP-1 Agonist PT320 Delays Disease Progression in a Mouse Model of Parkinson's Disease. ACS Pharmacology and Translational Science, 2021, 4, 858-869.	4.9	12
969	Parkinson's disease and mitophagy: an emerging role for LRRK2. Biochemical Society Transactions, 2021, 49, 551-562.	3.4	32
970	α-Synuclein antisense oligonucleotides as a disease-modifying therapy for Parkinson's disease. JCI Insight, 2021, 6, .	5.0	60
971	Ethnic and trans-ethnic genome-wide association studies identify new loci influencing Japanese Alzheimer's disease risk. Translational Psychiatry, 2021, 11, 151.	4.8	34
972	PET imaging of colony-stimulating factor 1 receptor: A head-to-head comparison of a novel radioligand, ¹¹ C-CPPC, in mouse models of acute and chronic neuroinflammation and a rhesus monkey. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 2410-2422.	4.3	36
973	Il-10 signaling reduces survival in mouse models of synucleinopathy. Npj Parkinson's Disease, 2021, 7, 30.	5.3	8
974	Age-associated insolubility of parkin in human midbrain is linked to redox balance and sequestration of reactive dopamine metabolites. Acta Neuropathologica, 2021, 141, 725-754.	7.7	32
975	Common Xâ€Chromosome Variants Are Associated with Parkinson Disease Risk. Annals of Neurology, 2021, 90, 22-34.	5.3	28
976	Shared genetic etiology between Parkinson's disease and blood levels of specific lipids. Npj Parkinson's Disease, 2021, 7, 23.	5.3	13
977	Neurodegenerative Disease and the NLRP3 Inflammasome. Frontiers in Pharmacology, 2021, 12, 643254.	3.5	107
978	Molecular Mechanisms Underlying Synaptic and Axon Degeneration in Parkinson's Disease. Frontiers in Cellular Neuroscience, 2021, 15, 626128.	3.7	38
980	MicroRNAs, Parkinson's Disease, and Diabetes Mellitus. International Journal of Molecular Sciences, 2021, 22, 2953.	4.1	13
981	The cell biology of Parkinson's disease. Journal of Cell Biology, 2021, 220, .	5.2	77
982	Methylation quantitative trait locus analysis of chronic postsurgical pain uncovers epigenetic mediators of genetic risk. Epigenomics, 2021, 13, 613-630.	2.1	5
983	PARK16 locus: Differential effects of the non-coding rs823114 on Parkinson's disease risk, RNA expression, and DNA methylation. Journal of Genetics and Genomics, 2021, 48, 341-345.	3.9	4

#	Article	IF	CITATIONS
984	Emerging genetic complexity and rare genetic variants in neurodegenerative brain diseases. Genome Medicine, 2021, 13, 59.	8.2	16
985	Cell-Type Specific Changes in DNA Methylation of SNCA Intron 1 in Synucleinopathy Brains. Frontiers in Neuroscience, 2021, 15, 652226.	2.8	11
986	Epigenetic Modulation in Parkinson's Disease and Potential Treatment Therapies. Neurochemical Research, 2021, 46, 1618-1626.	3.3	19
987	Characterizing the Expression Patterns of Parkinson's Disease Associated Genes. Frontiers in Neuroscience, 2021, 15, 629156.	2.8	6
988	Quantitative endophenotypes as an alternative approach to understanding genetic risk in neurodegenerative diseases. Neurobiology of Disease, 2021, 151, 105247.	4.4	3
989	Gene4PD: A Comprehensive Genetic Database of Parkinson's Disease. Frontiers in Neuroscience, 2021, 15, 679568.	2.8	16
990	Analysis of 12 GWAS-Linked Loci With Parkinson's Disease in the Chinese Han Population. Frontiers in Neurology, 2021, 12, 623913.	2.4	2
991	Fibroblast Growth Factor 20 Gene Polymorphism in Parkinson's Disease in Asian Population: A Meta-Analysis. Genes, 2021, 12, 674.	2.4	1
992	Phytochemicals as Regulators of Genes Involved in Synucleinopathies. Biomolecules, 2021, 11, 624.	4.0	35
993	Population genetic considerations for using biobanks as international resources in the pandemic era and beyond. BMC Genomics, 2021, 22, 351.	2.8	11
994	Nanomedicine against Alzheimer's and Parkinson's Disease. Current Pharmaceutical Design, 2021, 27, 1507-1545.	1.9	7
995	MIR-NATs repress MAPT translation and aid proteostasis in neurodegeneration. Nature, 2021, 594, 117-123.	27.8	29
996	Transâ€Ethnic Fineâ€Mapping of the Major Histocompatibility Complex Region Linked to Parkinson's Disease. Movement Disorders, 2021, 36, 1805-1814.	3.9	14
997	The genetic architecture of the human thalamus and its overlap with ten common brain disorders. Nature Communications, 2021, 12, 2909.	12.8	25
998	Imputation and Reanalysis of ExomeChip Data Identifies Novel, Conditional and Joint Genetic Effects on Parkinson's Disease Risk. Genes, 2021, 12, 689.	2.4	8
999	Accelerating diagnosis of Parkinson's disease through risk prediction. BMC Neurology, 2021, 21, 201.	1.8	15
1000	Dysfunction of Synaptic Vesicle Endocytosis in Parkinson's Disease. Frontiers in Integrative Neuroscience, 2021, 15, 619160.	2.1	17
1001	Proteomic Profile of Saliva in Parkinson's Disease Patients: A Proof of Concept Study. Brain Sciences, 2021, 11, 661.	2.3	14

#	Article	IF	CITATIONS
1002	Mitochondrial Ca2+ Signaling in Health, Disease and Therapy. Cells, 2021, 10, 1317.	4.1	59
1003	Cingulate networks associated with gray matter loss in Parkinson's disease show high expression of cholinergic genes in the healthy brain. European Journal of Neuroscience, 2021, 53, 3727-3739.	2.6	5
1005	Oxidative stress and regulated cell death in Parkinson's disease. Ageing Research Reviews, 2021, 67, 101263.	10.9	162
1006	Genome-wide survival study identifies a novel synaptic locus and polygenic score for cognitive progression in Parkinson's disease. Nature Genetics, 2021, 53, 787-793.	21.4	82
1007	Impaired neuronal activity and differential gene expression in <i>STXBP1</i> encephalopathy patient iPSC-derived GABAergic neurons. Human Molecular Genetics, 2021, 30, 1337-1348.	2.9	11
1008	Association between VPS13C rs2414739 polymorphism and Parkinson's disease risk: A meta-analysis. Neuroscience Letters, 2021, 754, 135879.	2.1	1
1009	Oligomerization of Lrrk controls actin severing and \hat{l}_{\pm} -synuclein neurotoxicity in vivo. Molecular Neurodegeneration, 2021, 16, 33.	10.8	6
1010	Brain gene co-expression networks link complement signaling with convergent synaptic pathology in schizophrenia. Nature Neuroscience, 2021, 24, 799-809.	14.8	44
1011	R1441G but not G2019S mutation enhances LRRK2 mediated Rab10 phosphorylation in human peripheral blood neutrophils. Acta Neuropathologica, 2021, 142, 475-494.	7.7	44
1012	The development of inhibitors of leucineâ€rich repeat kinase 2 (LRRK2) as a therapeutic strategy for Parkinson's disease: the current state of play. British Journal of Pharmacology, 2022, 179, 1478-1495.	5.4	34
1014	Identify Complex Imaging Genetic Patterns via Fusion Self-Expressive Network Analysis. IEEE Transactions on Medical Imaging, 2021, 40, 1673-1686.	8.9	8
1016	Alzheimer's Disease Genetics: A Dampened Microglial Response?. Neuroscientist, 2023, 29, 245-263.	3.5	11
1017	Next-Generation Sequencing Analysis of GBA1: The Challenge of Detecting Complex Recombinant Alleles. Frontiers in Genetics, 2021, 12, 684067.	2.3	11
1018	Targeting of Lysosomal Pathway Genes for Parkinson's Disease Modification: Insights From Cellular and Animal Models. Frontiers in Neurology, 2021, 12, 681369.	2.4	10
1019	The association of DAT gene methylation with striatal DAT availability in healthy subjects. EJNMMI Research, 2021, 11, 58.	2.5	5
1020	Ceramide Metabolism and Parkinson's Disease—Therapeutic Targets. Biomolecules, 2021, 11, 945.	4.0	34
1021	NPT520-34 improves neuropathology and motor deficits in a transgenic mouse model of Parkinson's disease. Brain, 2021, 144, 3692-3709.	7.6	8
1022	The Genetics of Parkinson's Disease and Implications for Clinical Practice. Genes, 2021, 12, 1006.	2.4	81

#	Article	IF	CITATIONS
1023	An Emerging Role for Phosphoinositides in the Pathophysiology of Parkinson's Disease. Journal of Parkinson's Disease, 2021, 11, 1725-1750.	2.8	3
1024	Atremorine in Parkinson's disease: From dopaminergic neuroprotection to pharmacogenomics. Medicinal Research Reviews, 2021, 41, 2841-2886.	10.5	7
1026	Lifestyle Factors and Parkinson's Disease Risk in a Rural New England Case-Control Study. Parkinson's Disease, 2021, 2021, 1-7.	1.1	1
1027	Advances in protein-protein interaction network analysis for Parkinson's disease. Neurobiology of Disease, 2021, 155, 105395.	4.4	31
1028	LRRK2 recruitment, activity, and function in organelles. FEBS Journal, 2022, 289, 6871-6890.	4.7	43
1031	Characterizing the Genetic Architecture of Parkinson's Disease in Latinos. Annals of Neurology, 2021, 90, 353-365.	5. 3	48
1032	No effect of Parkinson's disease-polygenic load on striatal density of dopaminergic neuron in healthy subjects. Annals of Nuclear Medicine, 2021, 35, 1187-1192.	2.2	1
1033	PIAS2-mediated blockade of IFN- \hat{l}^2 signaling: a basis for sporadic Parkinson disease dementia. Molecular Psychiatry, 2021, 26, 6083-6099.	7.9	30
1034	Development and Validation of a Prognostic Model for Cognitive Impairment in Parkinson's Disease With REM Sleep Behavior Disorder. Frontiers in Aging Neuroscience, 2021, 13, 703158.	3.4	4
1035	Technological readiness and implementation of genomicâ€driven precision medicine for complex diseases. Journal of Internal Medicine, 2021, 290, 602-620.	6.0	18
1036	Identification of Parkinson's Disease-Causing Genes via Omics Data. Frontiers in Genetics, 2021, 12, 712164.	2.3	7
1037	Animal Models of Autosomal Recessive Parkinsonism. Biomedicines, 2021, 9, 812.	3.2	6
1038	Prediction of Parkinson's Disease Risk Based on Genetic Profile and Established Risk Factors. Genes, 2021, 12, 1278.	2.4	5
1039	In silico comparative analysis of LRRK2 interactomes from brain, kidney and lung. Brain Research, 2021, 1765, 147503.	2.2	6
1040	Rab GTPases in Parkinson's disease: a primer. Essays in Biochemistry, 2021, 65, 961-974.	4.7	11
1042	Galectin-3 Deletion Reduces LPS and Acute Colitis-Induced Pro-Inflammatory Microglial Activation in the Ventral Mesencephalon. Frontiers in Pharmacology, 2021, 12, 706439.	3.5	6
1044	Genetically Predicted Milk Intake and Risk of Neurodegenerative Diseases. Nutrients, 2021, 13, 2893.	4.1	8
1045	Are Lysosomes Potential Therapeutic Targets for Parkinson's Disease?. CNS and Neurological Disorders - Drug Targets, 2022, 21, 642-655.	1.4	O

#	Article	IF	CITATIONS
1046	Transposable elements and their KZFP controllers are drivers of transcriptional innovation in the developing human brain. Genome Research, 2021, 31, 1531-1545.	5 . 5	27
1047	Epigenetic inactivation of the autophagy–lysosomal system in appendix in Parkinson's disease. Nature Communications, 2021, 12, 5134.	12.8	18
1048	Exploring human-genome gut-microbiome interaction in Parkinson's disease. Npj Parkinson's Disease, 2021, 7, 74.	5.3	15
1049	Low molecular weight polysialic acid prevents lipopolysaccharideâ€induced inflammatory dopaminergic neurodegeneration in humanized <scp><i>SIGLEC11</i></scp> transgenic mice. Glia, 2021, 69, 2845-2862.	4.9	12
1050	A pipeline for RNA-seq based eQTL analysis with automated quality control procedures. BMC Bioinformatics, 2021, 22, 403.	2.6	27
1051	A meta-analysis of the prevalence of the mutation LRRK2 G2019S in patients with Parkinson's disease in Africa. Gene Reports, 2021, 24, 101284.	0.8	1
1052	Comprehensive subtyping of Parkinson's disease patients with similarity fusion: a case study with BioFIND data. Npj Parkinson's Disease, 2021, 7, 83.	5. 3	14
1053	Identification of Potential Core Genes in Parkinson's Disease Using Bioinformatics Analysis. Parkinson's Disease, 2021, 2021, 1-10.	1.1	7
1054	Neurodegenerative disorders and the current state, pathophysiology and management of Parkinsonâ \in TM s disease. CNS and Neurological Disorders - Drug Targets, 2021, 20, .	1.4	0
1055	Fine mapping of the HLA locus in Parkinson's disease in Europeans. Npj Parkinson's Disease, 2021, 7, 84.	5. 3	31
1056	Contribution of rare variant associations to neurodegenerative disease presentation. Npj Genomic Medicine, 2021, 6, 80.	3.8	14
1057	Alpha-Synuclein and Lipids: The Elephant in the Room?. Cells, 2021, 10, 2452.	4.1	17
1059	Downregulation of astroglial glutamate transporter GLT-1 in the lateral habenula is associated with depressive-like behaviors in a rat model of Parkinson's disease. Neuropharmacology, 2021, 196, 108691.	4.1	12
1060	Genotype-Phenotype Correlations in Monogenic Parkinson Disease: A Review on Clinical and Molecular Findings. Frontiers in Neurology, 2021, 12, 648588.	2.4	23
1061	Translocation of TMEM175 Lysosomal Potassium Channel to the Plasma Membrane by Dynasore Compounds. International Journal of Molecular Sciences, 2021, 22, 10515.	4.1	7
1062	Uncovering the impact of noncoding variants in neurodegenerative brain diseases. Trends in Genetics, 2022, 38, 258-272.	6.7	19
1063	Role of Inflammation in Lewy Body Dementia. , 2021, , 190-212.		0
1064	Assessing selection bias in regression coefficients estimated from nonprobability samples with applications to genetics and demographic surveys. Annals of Applied Statistics, 2021, 15, 1556-1581.	1.1	7

#	Article	IF	CITATIONS
1065	Insights into VPS13 properties and function reveal a new mechanism of eukaryotic lipid transport. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 159003.	2.4	67
1066	Genetic ablation of Gpnmb does not alter synuclein-related pathology. Neurobiology of Disease, 2021, 159, 105494.	4.4	7
1067	Glucocerebrosidase mutations: A paradigm for neurodegeneration pathways. Free Radical Biology and Medicine, 2021, 175, 42-55.	2.9	12
1068	Oligonucleotides as therapeutic tools for brain disorders: Focus on major depressive disorder and Parkinson's disease., 2021, 227, 107873.		17
1069	Constitutive silencing of LRRK2 kinase activity leads to early glucocerebrosidase deregulation and late impairment of autophagy in vivo. Neurobiology of Disease, 2021, 159, 105487.	4.4	16
1070	Mitochondrial dysfunction and autophagy in neurodegeneration. , 2021, , 139-178.		0
1071	Small molecule therapeutics for neuroinflammation-mediated neurodegenerative disorders. RSC Medicinal Chemistry, 2021, 12, 871-886.	3.9	10
1072	Tau in the Pathophysiology of Parkinson's Disease. Journal of Molecular Neuroscience, 2021, 71, 2179-2191.	2.3	47
1073	A growth-factor-activated lysosomal K+ channel regulates Parkinson's pathology. Nature, 2021, 591, 431-437.	27.8	62
1074	"Metal elements and pesticides as risk factors for Parkinson's disease - A review". Toxicology Reports, 2021, 8, 607-616.	3.3	37
1075	Parkinson's disease: Genetic-driven therapeutic approaches., 2021,, 135-159.		0
1076	Novel Associations of <i>BST1</i> and <i>LAMP3</i> With REM Sleep Behavior Disorder. Neurology, 2021, 96, e1402-e1412.	1.1	12
1077	Multimodal phenotypic axes of Parkinson's disease. Npj Parkinson's Disease, 2021, 7, 6.	5. 3	25
1078	Back and to the Future: From Neurotoxinâ€Induced to Human Parkinson's Disease Models. Current Protocols in Neuroscience, 2020, 91, e88.	2.6	36
1079	In Vitro Modeling of Complex Neurological Diseases. Research and Perspectives in Neurosciences, 2017, , 1-19.	0.4	3
1080	Microglial Dysfunction in Brain Aging and Neurodegeneration. , 2018, , 1-15.		2
1081	Epigenetics in Multiple Sclerosis. Advances in Experimental Medicine and Biology, 2020, 1253, 309-374.	1.6	13
1082	Autophagy and Parkinson's Disease. Advances in Experimental Medicine and Biology, 2020, 1207, 21-51.	1.6	70

#	Article	IF	CITATIONS
1083	Can Biomarkers Help the Early Diagnosis of Parkinson's Disease?. Neuroscience Bulletin, 2017, 33, 535-542.	2.9	42
1084	The Medicinal Chemistry of Natural and Semisynthetic Compounds against Parkinson's and Huntington's Diseases. ACS Chemical Neuroscience, 2017, 8, 2356-2368.	3.5	28
1085	Genetics and neuropsychology: A merger whose time has come Neuropsychology, 2016, 30, 1-5.	1.3	10
1086	Enrichment of risk SNPs in regulatory regions implicate diverse tissues in Parkinson's disease etiology. Scientific Reports, 2016, 6, 30509.	3.3	53
1087	Systematic analysis of genetic variants in Han Chinese patients with sporadic Parkinson's disease. Scientific Reports, 2016, 6, 33850.	3.3	12
1088	Centrosomal cohesion deficits as cellular biomarker in lymphoblastoid cell lines from LRRK2 Parkinson's disease patients. Biochemical Journal, 2019, 476, 2797-2813.	3.7	31
1089	Allosteric modulation of the GTPase activity of a bacterial LRRK2 homolog by conformation-specific Nanobodies. Biochemical Journal, 2020, 477, 1203-1218.	3.7	12
1090	Endogenous Rab29 does not impact basal or stimulated LRRK2 pathway activity. Biochemical Journal, 2020, 477, 4397-4423.	3.7	48
1136	The longevity gene Klotho and its cerebrospinal fluid protein profiles as a modifier for Parkinson´s disease. European Journal of Neurology, 2021, 28, 1557-1565.	3.3	12
1137	BioSEAL., 2020,,.		27
1138	Does the Gut Microbiota Modulate Host Physiology through Polymicrobial Biofilms?. Microbes and Environments, 2020, 35, n/a.	1.6	13
1139	StateHub-StatePaintR: rapid and reproducible chromatin state evaluation for custom genome annotation. F1000Research, 0, 7, 214.	1.6	5
1140	StateHub-StatePaintR: rapid and reproducible chromatin state evaluation for custom genome annotation. F1000Research, 0, 7, 214.	1.6	4
1141	High-Throughput Characterization of Blood Serum Proteomics of IBD Patients with Respect to Aging and Genetic Factors. PLoS Genetics, 2017, 13, e1006565.	3.5	41
1142	Estimating the causal influence of body mass index on risk of Parkinson disease: A Mendelian randomisation study. PLoS Medicine, 2017, 14, e1002314.	8.4	152
1144	Comprehensive Assessment of Genetic Sequence Variants in the Antioxidant †Master Regulator†Nrf2 in Idiopathic Parkinson†Sisease. PLoS ONE, 2015, 10, e0128030.	2.5	28
1145	Genetic Variants in GAPDH Confer Susceptibility to Sporadic Parkinson's Disease in a Chinese Han Population. PLoS ONE, 2015, 10, e0135425.	2.5	12
1146	Fractalkine Signaling Regulates the Inflammatory Response in an α-Synuclein Model of Parkinson Disease. PLoS ONE, 2015, 10, e0140566.	2.5	54

#	Article	IF	CITATIONS
1147	Early-Life Factors and Risk of Parkinson's Disease: A Register-Based Cohort Study. PLoS ONE, 2016, 11, e0152841.	2.5	8
1148	Identification of VPS13C as a Galectin-12-Binding Protein That Regulates Galectin-12 Protein Stability and Adipogenesis. PLoS ONE, 2016, 11, e0153534.	2.5	35
1149	The 4p16.3 Parkinson Disease Risk Locus Is Associated with GAK Expression and Genes Involved with the Synaptic Vesicle Membrane. PLoS ONE, 2016, 11, e0160925.	2.5	21
1150	Leucine-Rich Repeat Kinase 2 Influences Fate Decision of Human Monocytes Differentiated from Induced Pluripotent Stem Cells. PLoS ONE, 2016, 11, e0165949.	2.5	18
1151	Elevated GM3 plasma concentration in idiopathic Parkinson's disease: A lipidomic analysis. PLoS ONE, 2017, 12, e0172348.	2.5	69
1152	Whole-genome sequencing suggests mechanisms for 22q11.2 deletion-associated Parkinson's disease. PLoS ONE, 2017, 12, e0173944.	2.5	17
1153	Cerebrospinal Fluid Amyloid β ₁₋₄₂ , Tau, and Alpha-Synuclein Predict the Heterogeneous Progression of Cognitive Dysfunction in Parkinson's Disease. Journal of Movement Disorders, 2016, 9, 89-96.	1.3	22
1154	Long-Term Outcomes of Genetic Parkinson's Disease. Journal of Movement Disorders, 2020, 13, 81-96.	1.3	21
1155	Mammalian TRIM67 Functions in Brain Development and Behavior. ENeuro, 2018, 5, ENEURO.0186-18.2018.	1.9	48
1156	Parkinson's Disease: Etiology, Neuropathology, and Pathogenesis. , 0, , 3-26.		140
1157	Immunogenetics of Parkinson's Disease. , 0, , 27-44.		3
1158	Pathological Mechanisms and Clinical Aspects of GBA1 Mutation-Associated Parkinson's Disease. , 0, , 45-64.		5
1159	From the baker to the bedside: yeast models of Parkinson's disease. Microbial Cell, 2015, 2, 262-279.	3.2	59
1160	Diagnostic prediction model for levodopa-induced dyskinesia in Parkinson's disease. Arquivos De Neuro-Psiquiatria, 2020, 78, 206-216.	0.8	10
1161	Increased Rab35 expression is a potential biomarker and implicated in the pathogenesis of Parkinson's disease. Oncotarget, 2016, 7, 54215-54227.	1.8	30
1163	The Effects of Variants in the Parkin, PINK1, and DJ-1 Genes along with Evidence for their Pathogenicity. Current Protein and Peptide Science, 2017, 18, 702-714.	1.4	16
1164	LRRK2 Kinase Inhibition as a Therapeutic Strategy for Parkinson's Disease, Where Do We Stand?. Current Neuropharmacology, 2016, 14, 214-225.	2.9	63
1165	Melatonin and Melatonergic Influence on Neuronal Transcription Factors: Implications for the Development of Novel Therapies for Neurodegenerative Disorders. Current Neuropharmacology, 2020, 18, 563-577.	2.9	11

#	Article	IF	CITATIONS
1166	Role of Genes and Treatments for Parkinson's Disease. The Open Biology Journal, 2020, 8, 47-65.	0.5	4
1167	Cellular models, genomic technologies and clinical practice: a synthesis of knowledge for the study of the mechanisms, diagnostics and treatment of Parkinson's disease. Genes and Cells, 2017, 12, 11-28.	0.2	4
1168	Neuropsychiatric genomics in precision medicine: diagnostics, gene discovery, and translation. Dialogues in Clinical Neuroscience, 2016, 18, 237-252.	3.7	6
1169	Regulation of vesicular trafficking by Parkinson's disease-associated genes. AIMS Molecular Science, 2015, 2, 461-475.	0.5	11
1170	Beclin 1 Complex and Neurodegenerative Disorders. Advances in Medical Diagnosis, Treatment, and Care, 2020, , 236-260.	0.1	2
1171	Neurology in the Light of Genomics: Application of NGS and GWAS in Understanding Complex Neurological Disorders. Neuropsychiatry, 2018, 08, .	0.4	1
1172	The Universal Non-Neuronal Nature of Parkinson's Disease: A Theory. Central Asian Journal of Global Health, 2016, 5, 231.	0.6	4
1173	A concise review of human brain methylome during aging and neurodegenerative diseases. BMB Reports, 2019, 52, 577-588.	2.4	26
1174	LRRK2 and membrane trafficking: nexus of Parkinson's disease. BMB Reports, 2019, 52, 533-539.	2.4	23
1175	Brain micro-inflammation at specific vessels dysregulates organ-homeostasis via the activation of a new neural circuit. ELife, 2017, 6, .	6.0	45
1176	PPM1H phosphatase counteracts LRRK2 signaling by selectively dephosphorylating Rab proteins. ELife, 2019, 8, .	6.0	94
1177	Gating and selectivity mechanisms for the lysosomal K+ channel TMEM175. ELife, 2020, 9, .	6.0	24
1178	Structural basis for ion selectivity in TMEM175 K+ channels. ELife, 2020, 9, .	6.0	27
1179	Virulence test using nematodes to prescreen <i>Nocardia</i> species capable of inducing neurodegeneration and behavioral disorders. PeerJ, 2017, 5, e3823.	2.0	7
1180	Combined accelerometer and genetic analysis to differentiate essential tremor from Parkinson's disease. PeerJ, 2018, 6, e5308.	2.0	14
1181	Computational analysis of the LRRK2 interactome. PeerJ, 2015, 3, e778.	2.0	48
1182	Pathogenic Factors and Treatment of Parkinson's Disease. Bioprocess, 2021, 11, 67-75.	0.0	0
1183	Role of Oxidative Stress in the Etiology of Parkinson's Disease: Advanced Therapeutic Products. Russian Journal of Bioorganic Chemistry, 2021, 47, 980-996.	1.0	0

#	Article	IF	CITATIONS
1185	Interaction between coxsackievirus B3 infection and α-synuclein in models of Parkinson's disease. PLoS Pathogens, 2021, 17, e1010018.	4.7	8
1186	Comprehensive methylation profileÂof CSF cfDNA revealed pathogenesis and diagnostic markers for early-onset Parkinson's disease. Epigenomics, 2021, 13, 1637-1651.	2.1	2
1187	Parkinson Disease: Translating Insights from Molecular Mechanisms to Neuroprotection. Pharmacological Reviews, 2021, 73, 1204-1268.	16.0	11
1188	Genetic Stratification of Ageâ€Dependent Parkinson's Disease Risk by Polygenic Hazard Score. Movement Disorders, 2022, 37, 62-69.	3.9	13
1189	Dopa-Responsive Dystonia and Related Disorders. Current Clinical Neurology, 2022, , 421-454.	0.2	0
1192	Association of HLA–DRB1, DQA1 and DQB1 alleles and haplotype in Parkinson's disease from South India. Neuroscience Letters, 2021, 765, 136296.	2.1	6
1193	Disease modifying therapies for Parkinson's disease: Novel targets. Neuropharmacology, 2021, 201, 108839.	4.1	4
1194	Healthy Genome: A Myth or A Paradigm Shift in Bioinformatics Research?. MOJ Proteomics & Bioinformatics, 2014, 1, .	0.1	1
1195	Genetics of Dementia with Lewy Bodies. , 2015, , 65-74.		0
1196	The Revolution in Genetic Sequencing and Analysis. , 2015, , 1-43.		0
1197	Exonic Re-Sequencing of the Chromosome 2q24.3 Parkinson's Disease Locus. PLoS ONE, 2015, 10, e0128586.	2.5	0
1198	The Revolution in Genetic Sequencing and Analysis. , 2016, , 2793-2835.		0
1204	5 Stem Cells for Parkinson's Disease. , 2017, , 101-114.		0
1206	Uncoupling protein 2 haplotype does not affect human brain structure and function in a sample of community-dwelling older adults. PLoS ONE, 2017, 12, e0181392.	2.5	4
1208	Cytokine Polymorphisms, Immunosenescence, and Neurodegeneration., 2018,, 1-34.		0
1212	Störungen des Wachstums. Springer Reference Medizin, 2018, , 1-23.	0.0	0
1221	Genetic Factors Influencing the Development and Treatment of Cognitive Impairment and Psychosis in Parkinson's Disease. , 2019, , 359-370.		0
1224	Microglial Dysfunction in Brain Aging and Neurodegeneration. , 2019, , 2337-2351.		0

#	Article	IF	CITATIONS
1225	Cytokine Polymorphisms, Immunosenescence, and Neurodegeneration., 2019, , 1057-1090.		0
1234	Functional association between NUCKS1 gene and Parkinson disease: A potential susceptibility biomarker. Bioinformation, 2019, 15, 548-556.	0.5	9
1238	Störungen des Wachstums. Springer Reference Medizin, 2020, , 299-321.	0.0	0
1244	Novel mGluR4 agonist Rapitalam ameliorates motor dysfunction in mice with tau-associated neurodegeneration. Research Results in Pharmacology, 2020, 6, 9-17.	0.4	0
1246	The SNCA-Rep1 Polymorphic Locus: Association with the Risk of Parkinson's Disease and SNCA Gene Methylation. Acta Naturae, 2020, 12, 105-110.	1.7	1
1248	T-cell dysregulation is associated with disease severity in Parkinson's Disease. Journal of Neuroinflammation, 2021, 18, 250.	7.2	22
1249	Parkinson's Disease Detection Using FMRI Images Leveraging Transfer Learning on Convolutional Neural Network. , 2020, , .		2
1251	Identifying age-specific gene signatures of the human cerebral cortex with joint analysis of transcriptomes and functional connectomes. Briefings in Bioinformatics, 2021, 22, .	6.5	4
1252	Identification & Characterization of leucine-rich repeat kinase 2 & Camp; parkin RBR E3 ubiquitin protein ligase variants in patients with Parkinson's disease. Indian Journal of Medical Research, 2020, 152, 498.	1.0	1
1257	Interaction-Based Feature Selection Algorithm Outperforms Polygenic Risk Score in Predicting Parkinson's Disease Status. Frontiers in Genetics, 2021, 12, 744557.	2.3	5
1258	iPSC-Derived Microglia as a Model to Study Inflammation in Idiopathic Parkinson's Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 740758.	3.7	19
1259	Genetic Liability to Sedentary Behavior in Relation to Stroke, Its Subtypes and Neurodegenerative Diseases: A Mendelian Randomization Study. Frontiers in Aging Neuroscience, 2021, 13, 757388.	3.4	7
1267	Putamen gray matter volumes in neuropsychiatric and neurodegenerative disorders., 2019, 3,.		16
1268	Biosensor approaches on the diagnosis of neurodegenerative diseases: Sensing the past to the future. Journal of Pharmaceutical and Biomedical Analysis, 2022, 209, 114479.	2.8	13
1269	SNCA 3′ UTR Genetic Variants in Patients with Parkinson's Disease. Biomolecules, 2021, 11, 1799.	4.0	3
1270	Glucocerebrosidase (GBA) gene variants in a multi-ethnic Asian cohort with Parkinson's disease: mutational spectrum and clinical features. Journal of Neural Transmission, 2022, 129, 37-48.	2.8	18
1271	Genetic factors affecting dopaminergic deterioration during the premotor stage of Parkinson disease. Npj Parkinson's Disease, 2021, 7, 104.	5.3	12
1272	Theme 02 - GENETICS AND GENOMICS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, 22, 44-57.	1.7	0

#	Article	IF	CITATIONS
1273	Rescue of α-synuclein aggregation in Parkinson's patient neurons by synergistic enhancement of ER proteostasis and protein trafficking. Neuron, 2022, 110, 436-451.e11.	8.1	41
1274	Quantitative assessment of the effect of FGF20 rs1721100 and rs12720208 variant on the risk of sporadic Parkinson's disease: a meta-analysis. Neurological Sciences, 2021, , 1.	1.9	0
1275	Association Analysis of WNT3, HLA-DRB5 and IL1R2 Polymorphisms in Chinese Patients With Parkinson's Disease and Multiple System Atrophy. Frontiers in Genetics, 2021, 12, 765833.	2.3	5
1276	Assembly of α-synuclein and neurodegeneration in the central nervous system of heterozygousÂM83 mice following the peripheral administration of α-synuclein seeds. Acta Neuropathologica Communications, 2021, 9, 189.	5.2	10
1277	It Is Time to Study Overlapping Molecular and Circuit Pathophysiologies in Alzheimer's and Lewy Body Disease Spectra. Frontiers in Systems Neuroscience, 2021, 15, 777706.	2.5	8
1278	Insights on Genetic and Environmental Factors in Parkinson's Disease from a Regional Swedish Case-Control Cohort. Journal of Parkinson's Disease, 2022, 12, 153-171.	2.8	5
1279	Validity and Prognostic Value of a Polygenic Risk Score for Parkinson's Disease. Genes, 2021, 12, 1859.	2.4	15
1280	The Association Between Lysosomal Storage Disorder Genes and Parkinson's Disease: A Large Cohort Study in Chinese Mainland Population. Frontiers in Aging Neuroscience, 2021, 13, 749109.	3.4	11
1281	Association of GAK rs1564282 With Susceptibility to Parkinson's Disease in Chinese Populations. Frontiers in Genetics, 2021, 12, 777942.	2.3	1
1282	VPS13C-associated Parkinson's disease: Two novel cases and review of the literature. Parkinsonism and Related Disorders, 2022, 94, 37-39.	2.2	8
1283	Antigen-presenting innate lymphoid cells orchestrate neuroinflammation. Nature, 2021, 600, 707-712.	27.8	35
1284	Multi-omic insights into Parkinson's Disease: From genetic associations to functional mechanisms. Neurobiology of Disease, 2022, 163, 105580.	4.4	20
1285	Mapping the serum proteome to neurological diseases using whole genome sequencing. Nature Communications, 2021, 12, 7042.	12.8	29
1286	Single-cell sequencing of human midbrain reveals glial activation and a Parkinson-specific neuronal state. Brain, 2022, 145, 964-978.	7.6	177
1287	Proteostasis impairment and ER stress as a possible target to treat Parkinson's disease. International Review of Movement Disorders, 2021, 2, 245-260.	0.1	0
1288	Machine Learning Identifies Six Genetic Variants and Alterations in the Heart Atrial Appendage as Key Contributors to PD Risk Predictivity. Frontiers in Genetics, 2021, 12, 785436.	2.3	4
1289	Lysosomal potassium channels. Cell Calcium, 2022, 102, 102536.	2.4	9
1290	Microarray Genotyping Identifies New Loci Associated with Dementia in Parkinson's Disease. Genes, 2021, 12, 1975.	2.4	6

#	Article	IF	CITATIONS
1291	Pathogenic Mechanisms of Cytosolic and Membrane-Enriched \hat{l}_{\pm} -Synuclein Converge on Fatty Acid Homeostasis. Journal of Neuroscience, 2022, 42, 2116-2130.	3.6	7
1292	Therapeutics in the Pipeline Targeting <i>α</i> -Synuclein for Parkinson's Disease. Pharmacological Reviews, 2022, 74, 207-237.	16.0	39
1293	Presynaptic autophagy is coupled to the synaptic vesicle cycle via ATG-9. Neuron, 2022, 110, 824-840.e10.	8.1	41
1294	LRRK2, GBA and their interaction in the regulation of autophagy: implications on therapeutics in Parkinson's disease. Translational Neurodegeneration, 2022, 11, 5.	8.0	21
1295	Population-based genetic effects for developmental stuttering. Human Genetics and Genomics Advances, 2022, 3, 100073.	1.7	4
1296	Enhanced neuroimaging genetics using multi-view non-negative matrix factorization with sparsity and prior knowledge. Medical Image Analysis, 2022, 77, 102378.	11.6	3
1298	Discovery of genomic loci of the human cerebral cortex using genetically informed brain atlases. Science, 2022, 375, 522-528.	12.6	31
1299	Parkinson's disease: From genetics to molecular dysfunction and targeted therapeutic approaches. Genes and Diseases, 2023, 10, 786-798.	3.4	4
1300	Advances in the discovery of genetic risk factors for complex forms of neurodegenerative disorders: contemporary approaches, success, challenges and prospects. Journal of Genetics, 2018, 97, 625-648.	0.7	1
1301	Regulation of membrane dynamics by Parkinson's disease-associated genes. Journal of Genetics, 2018, 97, 715-725.	0.7	4
1302	Parkinson's disease: what the model systems have taught us so far. Journal of Genetics, 2018, 97, 729-751.	0.7	4
1303	Comparison Between Expression Microarrays and RNA-Sequencing Using UKBEC Dataset Identified a -eQTL Associated with Gene in Substantia Nigra. , 2020, 1, 100001.		0
1305	Immunogenetics and its utility in therapeutics. , 2022, , 1-34.		0
1306	CSF and Serum Levels of Inflammatory Markers in PD: Sparse Correlation, Sex Differences and Association With Neurodegenerative Biomarkers. Frontiers in Neurology, 2022, 13, 834580.	2.4	17
1307	LRRK2 mutant knock-in mouse models: therapeutic relevance in Parkinson's disease. Translational Neurodegeneration, 2022, 11, 10.	8.0	13
1308	Functional genomics elucidates regulatory mechanisms of Parkinson's disease-associated variants. BMC Medicine, 2022, 20, 68.	5.5	2
1310	Modeling Parkinson's disease in LRRK2 mice: focus on synaptic dysfunction and the autophagy-lysosomal pathway. Biochemical Society Transactions, 2022, 50, 621-632.	3.4	10
1311	GAIT-GM integrative cross-omics analyses reveal cholinergic defects in a C. elegans model of Parkinson's disease. Scientific Reports, 2022, 12, 3268.	3.3	2

#	Article	IF	CITATIONS
1313	A Phosphosite Mutant Approach on LRRK2 Links Phosphorylation and Dephosphorylation to Protective and Deleterious Markers, Respectively. Cells, 2022, 11, 1018.	4.1	4
1314	Inflammation and immune dysfunction in Parkinson disease. Nature Reviews Immunology, 2022, 22, 657-673.	22.7	360
1315	Transcellular propagation of fibrillar $\hat{l}\pm$ -synuclein from enteroendocrine to neuronal cells requires cell-to-cell contact and is Rab35-dependent. Scientific Reports, 2022, 12, 4168.	3.3	19
1316	pH regulates potassium conductance and drives a constitutive proton current in human TMEM175. Science Advances, 2022, 8, eabm1568.	10.3	22
1317	A hidden layer of structural variation in transposable elements reveals potential genetic modifiers in human disease-risk loci. Genome Research, 2022, 32, 656-670.	5.5	13
1318	RNA-seq analysis of gene expression profiles in posttraumatic stress disorder, Parkinson's disease and schizophrenia identifies roles for common and distinct biological pathways. Discover Mental Health, 2022, 2, .	2.0	4
1320	Recombinant pro-CTSD (cathepsin D) enhances SNCA/ \hat{l} ±-Synuclein degradation in \hat{l} ±-Synucleinopathy models. Autophagy, 2022, 18, 1127-1151.	9.1	20
1321	The Role of Tau beyond Alzheimer's Disease: A Narrative Review. Biomedicines, 2022, 10, 760.	3.2	12
1322	Does the Expression and Epigenetics of Genes Involved in Monogenic Forms of Parkinson's Disease Influence Sporadic Forms?. Genes, 2022, 13, 479.	2.4	6
1323	Effects of Cannabidiol on Parkinson's Disease in a Transgenic Mouse Model by Gut-Brain Metabolic Analysis. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-10.	1.2	5
1324	SMetABF: A rapid algorithm for Bayesian GWAS meta-analysis with a large number of studies included. PLoS Computational Biology, 2022, 18, e1009948.	3.2	3
1325	Predictors of RBD progression and conversion to synucleinopathies. Current Neurology and Neuroscience Reports, 2022, 22, 93-104.	4.2	13
1326	Integrating whole-genome sequencing with multi-omic data reveals the impact of structural variants on gene regulation in the human brain. Nature Neuroscience, 2022, 25, 504-514.	14.8	27
1327	T Lymphocytes in Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, S65-S74.	2.8	17
1328	Effect of LRRK2 protein and activity on stimulated cytokines in human monocytes and macrophages. Npj Parkinson's Disease, 2022, 8, 34.	5.3	18
1329	Base-edited cynomolgus monkeys mimic core symptoms of STXBP1 encephalopathy. Molecular Therapy, 2022, 30, 2163-2175.	8.2	8
1330	SNCA rs3910105 Is Associated With Development of Rapid Eye Movement Sleep Behavior Disorder in Parkinson's Disease. Frontiers in Neuroscience, 2022, 16, 832550.	2.8	1
1331	Genetic variants associated with longitudinal changes in brain structure across the lifespan. Nature Neuroscience, 2022, 25, 421-432.	14.8	7 5

#	ARTICLE	IF	Citations
1332	Vitamin K2 Modulates Mitochondrial Dysfunction Induced by 6-Hydroxydopamine in SH-SY5Y Cells via Mitochondrial Quality-Control Loop. Nutrients, 2022, 14, 1504.	4.1	11
1333	Evaluation of common and rare variants of Alzheimer's disease-causal genes in Parkinson's disease. Parkinsonism and Related Disorders, 2022, 97, 8-14.	2.2	4
1334	Convergence of signalling pathways in innate immune responses and genetic forms of Parkinson's disease. Neurobiology of Disease, 2022, 169, 105721.	4.4	6
1335	Brain-gut-microbiota axis in Parkinson's disease: A historical review and future perspective. Brain Research Bulletin, 2022, 183, 84-93.	3.0	17
1336	Immune responses in the Parkinson's disease brain. Neurobiology of Disease, 2022, 168, 105700.	4.4	30
1337	Association of the Polygenic Risk Score With the Probability of Prodromal Parkinson's Disease in Older Adults. Frontiers in Molecular Neuroscience, 2021, 14, 739571.	2.9	6
1339	Lipotoxicity Downstream of \hat{l}_{\pm} -Synuclein Imbalance: A Relevant Pathomechanism in Synucleinopathies?. Biomolecules, 2022, 12, 40.	4.0	4
1340	The effect of polygenic risk on white matter microstructural degeneration in Parkinson's disease: A longitudinal Diffusion Tensor Imaging study. European Journal of Neurology, 2022, 29, 1000-1010.	3.3	3
1341	GCH1 Deficiency Activates Brain Innate Immune Response and Impairs Tyrosine Hydroxylase Homeostasis. Journal of Neuroscience, 2022, 42, 702-716.	3.6	10
1342	Advances in clinical basic research: Performance, treatments, and mechanisms of Parkinson disease., 2021, 7, 362-378.		0
1343	Mutations in LRRK2 linked to Parkinson disease sequester Rab8a to damaged lysosomes and regulate transferrin-mediated iron uptake in microglia. PLoS Biology, 2021, 19, e3001480.	5.6	48
1344	Finding genetically-supported drug targets for Parkinson's disease using Mendelian randomization of the druggable genome. Nature Communications, 2021, 12, 7342.	12.8	44
1345	LRRK2 signaling in neurodegeneration: two decades of progress. Essays in Biochemistry, 2021, 65, 859-872.	4.7	7
1346	Genomics and Functional Genomics of Alzheimer's Disease. Neurotherapeutics, 2022, 19, 152-172.	4.4	26
1393	GLIDER: function prediction from GLIDE-based neighborhoods. Bioinformatics, 2022, 38, 3395-3406.	4.1	3
1394	Tau accelerates α-synuclein aggregation and spreading in Parkinson's disease. Brain, 2022, 145, 3454-3471.	7.6	36
1395	'Fly-ing' from rare to common neurodegenerative disease mechanisms. Trends in Genetics, 2022, 38, 972-984.	6.7	16
1396	Somatic Mutations Detected in Parkinson Disease Could Affect Genes With a Role in Synaptic and Neuronal Processes. Frontiers in Aging, 2022, 3, .	2.6	7

#	ARTICLE	IF	Citations
1397	Functional Screening of Parkinson's Disease Susceptibility Genes to Identify Novel Modulators of α-Synuclein Neurotoxicity in Caenorhabditis elegans. Frontiers in Aging Neuroscience, 2022, 14, 806000.	3.4	8
1398	Polymorphisms of Cytochromes P450 and Glutathione S-Transferases Synergistically Modulate Risk for Parkinson's Disease. Frontiers in Aging Neuroscience, 2022, 14, 888942.	3.4	4
1399	Sleep, Pain, and Neurodegeneration: A Mendelian Randomization Study. Frontiers in Neurology, 2022, 13, 765321.	2.4	7
1400	The Double-Faceted Role of Leucine-Rich Repeat Kinase 2 in the Immunopathogenesis of Parkinson's Disease. Frontiers in Aging Neuroscience, 2022, 14, .	3.4	6
1401	Genetic correlation between thyroid hormones and Parkinson's disease. Clinical and Experimental Immunology, 2022, 208, 372-379.	2.6	2
1402	The aging immune system in Alzheimer's and Parkinson's diseases. Seminars in Immunopathology, 2022, 44, 649-657.	6.1	13
1403	Alpha-synuclein overexpression induces epigenomic dysregulation of glutamate signaling and locomotor pathways. Human Molecular Genetics, 2022, 31, 3694-3714.	2.9	5
1404	Lipid pathway dysfunction is prevalent in patients with Parkinson's disease. Brain, 2022, 145, 3472-3487.	7.6	25
1405	Methylation of MAPT Gene in Neurodegenerative Synucleinopathies. Russian Journal of Genetics, 2022, 58, 576-584.	0.6	0
1406	Differential ion dehydration energetics explains selectivity in the non-canonical lysosomal K+ channel TMEM175. ELife, 0, 11 , .	6.0	9
1407	Parkinson's Disease Derived Exosomes Aggravate Neuropathology in <scp><i>SNCA</i></scp> * <scp>A53T</scp> Mice. Annals of Neurology, 2022, 92, 230-245.	5.3	19
1408	What have we learned from genome-wide association studies (GWAS) in Parkinson's disease?. Ageing Research Reviews, 2022, 79, 101648.	10.9	9
1409	Genome-wide Association and Meta-analysis of Age at Onset in Parkinson Disease. Neurology, 2022, 99, .	1.1	25
1410	Structures of tau and α-synuclein filaments from brains of patients with neurodegenerative diseases. Neurochemistry International, 2022, 158, 105362.	3.8	3
1411	MALAT1 IncRNA and Parkinson's Disease: TheÂrole in the Pathophysiology and Significance for Diagnostic and Therapeutic Approaches. Molecular Neurobiology, 2022, 59, 5253-5262.	4.0	16
1412	Clinical Manifestations and Molecular Backgrounds of Parkinson's Disease Regarding Genes Identified From Familial and Population Studies. Frontiers in Neurology, 0, 13, .	2.4	6
1413	Sex-different interrelationships of rs945270, cerebral gray matter volumes, and attention deficit hyperactivity disorder: a region-wide study across brain. Translational Psychiatry, 2022, 12, .	4.8	3
1414	Altered neural cell junctions and ion-channels leading to disrupted neuron communication in Parkinson's disease. Npj Parkinson's Disease, 2022, 8, .	5.3	15

#	Article	IF	Citations
1415	Blood and Cerebrospinal Fluid Biomarkers of Inflammation in Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, S183-S200.	2.8	16
1417	Pathogénie et physiopathologie deÂla maladie de Parkinson. , 2022, , 29-38.		0
1418	The Parkinson's disease protein alpha-synuclein is a modulator of processing bodies and mRNA stability. Cell, 2022, 185, 2035-2056.e33.	28.9	57
1419	Genetic Analysis of HSP40/DNAJ Family Genes in Parkinson's Disease: a Large Case-Control Study. Molecular Neurobiology, 2022, 59, 5443-5451.	4.0	2
1420	Deletion in chromosome 6 spanning alpha-synuclein and multimerin1 loci in the Rab27a/b double knockout mouse. Scientific Reports, 2022, 12, .	3.3	0
1421	Distributed genetic architecture across the hippocampal formation implies common neuropathology across brain disorders. Nature Communications, 2022, 13, .	12.8	12
1422	The Pathological Mechanism Between the Intestine and Brain in the Early Stage of Parkinson's Disease. Frontiers in Aging Neuroscience, 0, 14, .	3.4	3
1423	Brain Cell Type-Specific Nuclear Proteomics Is Imperative to Resolve Neurodegenerative Disease Mechanisms. Frontiers in Neuroscience, 0, 16 , .	2.8	4
1424	Psychosis in Parkinson's Disease: A Lesson from Genetics. Genes, 2022, 13, 1099.	2.4	5
1425	NUCKS1 is a highly modified, chromatin-associated protein involved in a diverse set of biological and pathophysiological processes. Biochemical Journal, 2022, 479, 1205-1220.	3.7	7
1427	Role of CD36 rs1761667 AA genotype in the expression of inflammatory cytokines and Parkinson's disease progression: A case-control study in a northern Han Chinese population. Neuroscience Letters, 2022, 784, 136736.	2.1	1
1428	The role of NURR1 in metabolic abnormalities of Parkinson's disease. Molecular Neurodegeneration, 2022, 17, .	10.8	15
1429	Genomic, transcriptomic, and metabolomic profiles of hiPSC-derived dopamine neurons from clinically discordant brothers with identical PRKN deletions. Npj Parkinson's Disease, 2022, 8, .	5.3	0
1430	The Big Picture of Neurodegeneration: A Meta Study to Extract the Essential Evidence on Neurodegenerative Diseases in a Network-Based Approach. Frontiers in Aging Neuroscience, 0, 14, .	3.4	3
1432	The use of fibroblasts as a valuable strategy for studying mitochondrial impairment in neurological disorders. Translational Neurodegeneration, 2022, 11, .	8.0	15
1433	Genetic Analysis of Six Transmembrane Protein Family Genes in Parkinson's Disease in a Large Chinese Cohort. Frontiers in Aging Neuroscience, 0, 14, .	3.4	8
1434	Mitochondrial genomic variation in dementia with Lewy bodies: association with disease risk and neuropathological measures. Acta Neuropathologica Communications, 2022, 10, .	5.2	0
1435	Genomeâ€Wide Polygenic Score Predicts Large Number of High Risk Individuals in Monogenic Undiagnosed Young Onset Parkinson's Disease Patients from India. Advanced Biology, 2022, 6, .	2.5	5

#	Article	IF	CITATIONS
1436	17q21.31 sub-haplotypes underlying H1-associated risk for Parkinson's disease are associated with LRRC37A/2 expression in astrocytes. Molecular Neurodegeneration, 2022, 17, .	10.8	15
1437	New Perspectives on Immune Involvement in Parkinson's Disease Pathogenesis. Journal of Parkinson's Disease, 2022, 12, S5-S11.	2.8	3
1438	Parkinson's Disease rs117896735 Variant Regulates INPP5F Expression in Brain Tissues and Increases Risk of Alzheimer's Disease. Journal of Alzheimer's Disease, 2022, 89, 67-77.	2.6	3
1439	Genetic Elements at the Alpha-Synuclein Locus. Frontiers in Neuroscience, 0, 16, .	2.8	1
1440	Glucocerebrosidase variant T369M is not a risk factor for Parkinson's disease in Sweden. Neuroscience Letters, 2022, 784, 136767.	2.1	2
1441	Stimulation of synaptic activity promotes TFEB-mediated clearance of pathological MAPT/Tau in cellular and mouse models of tauopathies. Autophagy, 2023, 19, 660-677.	9.1	5
1442	The Parkinson's disease variant rs356182 regulates neuronal differentiation independently from alpha-synuclein. Human Molecular Genetics, 2023, 32, 1-14.	2.9	4
1443	Delivering the Promise of Gene Therapy with Nanomedicines in Treating Central Nervous System Diseases. Advanced Science, 2022, 9, .	11.2	19
1444	Lysosomal Potassium Channels. Handbook of Experimental Pharmacology, 2022, , .	1.8	1
1445	Systematic review of Mendelian randomization studies on Parkinson's disease. Medizinische Genetik, 2022, 34, 143-150.	0.2	0
1446	Dysregulation of peripheral monocytes and pro-inflammation of alpha-synuclein in Parkinson's disease. Journal of Neurology, 2022, 269, 6386-6394.	3.6	10
1447	Neuronal ApoE Regulates the Cell-to-Cell Transmission of α-Synuclein. International Journal of Molecular Sciences, 2022, 23, 8311.	4.1	3
1448	MhcII Regulates Transmission of α-Synuclein-Seeded Pathology in Mice. International Journal of Molecular Sciences, 2022, 23, 8175.	4.1	4
1449	Cell-type-specific cis-eQTLs in eight human brain cell types identify novel risk genes for psychiatric and neurological disorders. Nature Neuroscience, 2022, 25, 1104-1112.	14.8	78
1450	Curcumin-driven reprogramming of the gut microbiota and metabolome ameliorates motor deficits and neuroinflammation in a mouse model of Parkinsonâ \in TM s disease. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	22
1451	Glucocerebrosidase mutations and Parkinson disease. Journal of Neural Transmission, 2022, 129, 1105-1117.	2.8	19
1452	Estrogen-related receptor gamma regulates mitochondrial and synaptic genes and modulates vulnerability to synucleinopathy. Npj Parkinson's Disease, 2022, 8, .	5.3	9
1453	Discovery of azaspirocyclic 1H-3,4,5-Trisubstitued pyrazoles as novel G2019S-LRRK2 selective kinase inhibitors. European Journal of Medicinal Chemistry, 2022, 242, 114693.	5.5	3

#	Article	IF	CITATIONS
1454	Integrative analysis of DNA methylation and gene expression data for the diagnosis and underlying mechanism of Parkinsonâ \in ^{TMS} disease. Frontiers in Aging Neuroscience, 0, 14, .	3.4	2
1455	The Deficiency of SCARB2/LIMP-2 Impairs Metabolism via Disrupted mTORC1-Dependent Mitochondrial OXPHOS. International Journal of Molecular Sciences, 2022, 23, 8634.	4.1	4
1456	Failure of diet-induced transcriptional adaptations in alpha-synuclein transgenic mice. Human Molecular Genetics, $0, , .$	2.9	0
1457	Genetic variations in GBA1 and LRRK2 genes: Biochemical and clinical consequences in Parkinson disease. Frontiers in Neurology, 0, 13 , .	2.4	7
1458	Advancing the Genetics of Lewy Body Disorders with Diseaseâ€Modifying Treatments in Mind. Genetics & Genomics Next, 0, , 2200011.	1.5	0
1460	Lysosomal K ⁺ channel TMEM175 promotes apoptosis and aggravates symptoms of Parkinson's disease. EMBO Reports, 2022, 23, .	4.5	11
1462	The relationship of alpha-synuclein to mitochondrial dynamics and quality control. Frontiers in Molecular Neuroscience, $0,15,.$	2.9	14
1463	DNA methylation as a mediator of genetic and environmental influences on Parkinson's disease susceptibility: Impacts of alpha-Synuclein, physical activity, and pesticide exposure on the epigenome. Frontiers in Genetics, 0, 13, .	2.3	15
1464	Effects of ulcerative colitis and Crohn's disease on neurodegenerative diseases: A Mendelian randomization study. Frontiers in Genetics, 0, 13, .	2.3	9
1465	Transcriptome deregulation of peripheral monocytes and whole blood in GBA-related Parkinson's disease. Molecular Neurodegeneration, 2022, 17, .	10.8	17
1466	Identification of novel proteins associated with movement-related adverse antipsychotic effects by integrating GWAS data and human brain proteomes. Psychiatry Research, 2022, 317, 114791.	3.3	3
1468	Regulation of mitophagy by the NSL complex underlies genetic risk for Parkinson's disease at 16q11.2 and MAPT H1 loci. Brain, 2022, 145, 4349-4367.	7.6	24
1469	Decoding the Role of Familial Parkinson's Disease-Related Genes in DNA Damage and Repair. , 2022, 13, 1405.		5
1470	Parkinson's Disease-Associated Leucine-Rich Repeat Kinase Regulates UNC-104-Dependent Axonal Transport of Arl8-Positive Vesicles in <i>Drosophila</i> . SSRN Electronic Journal, 0, , .	0.4	0
1471	Biomarker characterization of clinical subtypes of Parkinson Disease. Npj Parkinson's Disease, 2022, 8, .	5.3	6
1472	Lipid-lowering drug targets and Parkinson's disease: A sex-specific Mendelian randomization study. Frontiers in Neurology, $0,13,.$	2.4	7
1473	Structures of α-synuclein filaments from human brains with Lewy pathology. Nature, 2022, 610, 791-795.	27.8	124
1474	Distinct sex-specific DNA methylation differences in Alzheimer's disease. Alzheimer's Research and Therapy, 2022, 14, .	6.2	7

#	Article	IF	CITATIONS
1475	Deciphering signatures of natural selection via deep learning. Briefings in Bioinformatics, 2022, 23, .	6.5	5
1476	Leucineâ€rich repeat kinase 2 is protective during acute kidney injury through its activation of autophagy in podocytes. Environmental Toxicology, 0, , .	4.0	0
1478	Mendelian Randomization Study Using Dopaminergic Neuronâ€Specific <scp>eQTL</scp> Nominates Potential Causal Genes for Parkinson's Disease. Movement Disorders, 2022, 37, 2451-2456.	3.9	10
1479	Pharmacological Potential of the Standardized Methanolic Extract of Prunus armeniaca L. in the Haloperidol-Induced Parkinsonism Rat Model. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-15.	1.2	7
1481	Genetics in parkinson's disease: From better disease understanding to machine learning based precision medicine. Frontiers in Molecular Medicine, 0, 2, .	1.9	0
1482	Immune system disruptions implicated in whole blood epigenome-wide association study of depression among Parkinson's disease patients. Brain, Behavior, & Immunity - Health, 2022, , 100530.	2.5	2
1483	Multiscale imaging informs translational mouse modeling of neurological disease. Neuron, 2022, 110, 3688-3710.	8.1	3
1485	5. Genome Analysis and Drug Discovery for Parkinson'S Disease. The Journal of the Japanese Society of Internal Medicine, 2021, 110, 1904-1909.	0.0	0
1486	Mitophagy and reactive oxygen species interplay in Parkinson's disease. Npj Parkinson's Disease, 2022, 8,	5.3	14
1489	Unraveling Parkinson's Disease Neurodegeneration: Does Aging Hold the Clues?. Journal of Parkinson's Disease, 2022, 12, 2321-2338.	2.8	9
1490	Posttranscriptional regulation of neurofilament proteins and tau in health and disease. Brain Research Bulletin, 2023, 192, 115-127.	3.0	4
1491	Mechanism of 4-aminopyridine inhibition of the lysosomal channel TMEM175. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	6
1492	Parkinson disease-associated Leucine-rich repeat kinase regulates UNC-104-dependent axonal transport of Arl8-positive vesicles in Drosophila. IScience, 2022, 25, 105476.	4.1	5
1493	Applications of Long-Read Sequencing Technology in Clinical Genomics. Advances in Molecular Pathology, 2022, 5, 85-108.	0.4	0
1494	Gut microbiome and Parkinson's disease: Perspective on pathogenesis and treatment. Journal of Advanced Research, 2023, 50, 83-105.	9.5	9
1495	Parkinson's disease gene prioritising using an efficient and biologically appropriate network-based consensus strategy. Journal of Computational Science, 2022, 65, 101879.	2.9	0
1496	Targeting epigenetics as a promising therapeutic strategy for treatment of neurodegenerative diseases. Biochemical Pharmacology, 2022, 206, 115295.	4.4	9
1497	R1441C and G2019S LRRK2 knockin mice have distinct striatal molecular, physiological, and behavioral alterations. Communications Biology, 2022, 5, .	4.4	3

#	Article	IF	CITATIONS
1498	Microglia and astrocyte activation is regionâ€dependent in the αâ€synuclein mouse model of Parkinson's disease. Glia, 2023, 71, 571-587.	4.9	14
1499	Melanin and Neuromelanin: Linking Skin Pigmentation and Parkinson's Disease. Movement Disorders, 2023, 38, 185-195.	3.9	5
1500	Retrotransposon insertions associated with risk of neurologic and psychiatric diseases. EMBO Reports, 2023, 24, .	4.5	3
1502	Intronic enhancers of the human <i>SNCA</i> gene predominantly regulate its expression in brain in vivo. Science Advances, 2022, 8, .	10.3	3
1504	Genome-wide association study of REM sleep behavior disorder identifies polygenic risk and brain expression effects. Nature Communications, 2022, 13, .	12.8	21
1507	Role of Tau in Various Tauopathies, Treatment Approaches, and Emerging Role of Nanotechnology in Neurodegenerative Disorders. Molecular Neurobiology, 2023, 60, 1690-1720.	4.0	11
1508	Neuroprotective Effects of Licochalcone D in Oxidative-Stress-Induced Primitive Neural Stem Cells from Parkinson's Disease Patient-Derived iPSCs. Biomedicines, 2023, 11, 228.	3.2	0
1509	The Rossy Progressive Supranuclear Palsy Centre: creation and initial experience. Canadian Journal of Neurological Sciences, 0, , 1-28.	0.5	1
1510	The Consequences of GBA Deficiency in the Autophagy–Lysosome System in Parkinson's Disease Associated with GBA. Cells, 2023, 12, 191.	4.1	9
1511	Common and Rare Variants in TMEM175 Gene Concur to the Pathogenesis of Parkinson's Disease in Italian Patients. Molecular Neurobiology, 0, , .	4.0	2
1512	Role of α-synuclein in microglia: autophagy and phagocytosis balance neuroinflammation in Parkinson's disease. Inflammation Research, 2023, 72, 443-462.	4.0	15
1513	The foundation and architecture of precision medicine in neurology and psychiatry. Trends in Neurosciences, 2023, 46, 176-198.	8.6	29
1515	C/EBPβ Regulates TFAM Expression, Mitochondrial Function and Autophagy in Cellular Models of Parkinson's Disease. International Journal of Molecular Sciences, 2023, 24, 1459.	4.1	3
1516	Discovery and replication of blood-based proteomic signature of PTSD in $9/11$ responders. Translational Psychiatry, 2023, 13, .	4.8	2
1518	α-Synuclein Toxicity in Drosophila melanogaster Is Enhanced by the Presence of Iron: Implications for Parkinson's Disease. Antioxidants, 2023, 12, 261.	5.1	7
1520	Systems level analysis of sex-dependent gene expression changes in Parkinson's disease. Npj Parkinson's Disease, 2023, 9, .	5.3	6
1523	Characterization of altered molecular mechanisms in Parkinson's disease through cell type–resolved multiomics analyses. Science Advances, 2023, 9, .	10.3	11
1524	The pollutome-connectome axis: a putative mechanism to explain pollution effects on neurodegeneration. Ageing Research Reviews, 2023, 86, 101867.	10.9	4

#	Article	IF	CITATIONS
1525	Effects of hydrogen gas inhalation on L-DOPA-induced dyskinesia. Brain, Behavior, & Immunity - Health, 2023, 30, 100623.	2.5	2
1526	Genomeâ€Wide Analysis of Structural Variants in Parkinson Disease. Annals of Neurology, 2023, 93, 1012-1022.	5.3	10
1527	A Proteome-Wide Effect of PHF8 Knockdown on Cortical Neurons Shows Downregulation of Parkinson's Disease-Associated Protein Alpha-Synuclein and Its Interactors. Biomedicines, 2023, 11, 486.	3.2	0
1528	Translational molecular imaging and drug development in Parkinson's disease. Molecular Neurodegeneration, 2023, 18, .	10.8	11
1529	Machine learning within the Parkinson $\hat{a} \in \mathbb{N}$ s progression markers initiative: Review of the current state of affairs. Frontiers in Aging Neuroscience, 0, 15, .	3.4	9
1530	Predicting the prevalence of complex genetic diseases from individual genotype profiles using capsule networks. Nature Machine Intelligence, 2023, 5, 114-125.	16.0	3
1531	Palmitoylation of the Parkinson's disease–associated protein synaptotagmin-11 links its turnover to α-synuclein homeostasis. Science Signaling, 2023, 16, .	3.6	8
1532	Impaired Autophagic-Lysosomal Fusion in Parkinson's Patient Midbrain Neurons Occurs through Loss of ykt6 and Is Rescued by Farnesyltransferase Inhibition. Journal of Neuroscience, 2023, 43, 2615-2629.	3.6	3
1533	Disease mechanisms as subtypes: Immune dysfunction in Parkinson's disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2023, , 67-93.	1.8	0
1534	Disease mechanisms as subtypes: Inflammation in Parkinson disease and related disorders. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2023, , 95-106.	1.8	4
1535	LRRK2: Genetic mechanisms vs genetic subtypes. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2023, , 133-154.	1.8	2
1537	<scp>LRRK2</scp> Quantification in Cerebrospinal Fluid of Patients with Parkinson's Disease and Atypical Parkinsonian Syndromes. Movement Disorders, 2023, 38, 682-688.	3.9	0
1538	Mutations in Parkinsonism-linked endocytic proteins synaptojanin1 and auxilin have synergistic effects on dopaminergic axonal pathology. Npj Parkinson's Disease, 2023, 9, .	5.3	4
1539	Brain and Systemic Inflammation in De Novo Parkinson's Disease. Movement Disorders, 2023, 38, 743-754.	3.9	12
1540	LRRK2 and GBA1 variant carriers have higher urinary bis(monacylglycerol) phosphate concentrations in PPMI cohorts. Npj Parkinson's Disease, 2023, 9, .	5.3	5
1541	Whole-genome sequencing reveals an association between small genomic deletions and an increased risk of developing Parkinson's disease. Experimental and Molecular Medicine, 2023, 55, 555-564.	7.7	1
1542	A multi-task SCCA method for brain imaging genetics and its application in neurodegenerative diseases. Computer Methods and Programs in Biomedicine, 2023, 232, 107450.	4.7	0
1544	Genetic modifiers of synucleinopathiesâ€"lessons from experimental models. , 2023, 2, .		0

#	Article	IF	CITATIONS
1545	Different MAPT haplotypes influence expression of total MAPT in postmortem brain tissue. Acta Neuropathologica Communications, 2023, 11 , .	5.2	5
1546	Inflammatory CSF profiles and longitudinal development of cognitive decline in sporadic and GBA-associated PD. Npj Parkinson's Disease, 2023, 9, .	5.3	4
1547	The genetic overlap between Alzheimer's disease, amyotrophic lateral sclerosis, Lewy body dementia, and Parkinson's disease. Neurobiology of Aging, 2023, 127, 99-112.	3.1	3
1548	Dopamine transporter and synaptic vesicle sorting defects underlie auxilin-associated Parkinson's disease. Cell Reports, 2023, 42, 112231.	6.4	10
1549	Insights into the cellular consequences of LRRK2-mediated Rab protein phosphorylation. Biochemical Society Transactions, 2023, 51, 587-595.	3.4	1
1550	Co-Expression Network Analysis Identifies Molecular Determinants of Loneliness Associated with Neuropsychiatric and Neurodegenerative Diseases. International Journal of Molecular Sciences, 2023, 24, 5909.	4.1	4
1551	Novel Insight into Functions of Transcription Factor EB (TFEB) in Alzheimer's Disease and Parkinson's Disease. , 2023, 14, 652.		6
1553	Genetic Architecture of Parkinson's Disease. Biochemistry (Moscow), 2023, 88, 417-433.	1.5	2
1554	A significant, functional and replicable risk KTN1 variant block for schizophrenia. Scientific Reports, 2023, 13, .	3.3	0
1555	The small GTPase Rit2 modulates LRRK2 kinase activity, is required for lysosomal function and protects against alpha-synuclein neuropathology. Npj Parkinson's Disease, 2023, 9, .	5.3	5
1556	Microglia Mediated Neuroinflammation in Parkinson's Disease. Cells, 2023, 12, 1012.	4.1	19
1557	Genetic Evidence for Endolysosomal Dysfunction in Parkinson's Disease: A Critical Overview. International Journal of Molecular Sciences, 2023, 24, 6338.	4.1	2
1558	Association of retinal optical coherence tomography metrics and polygenic risk scores with cognitive function and future cognitive decline. British Journal of Ophthalmology, 0, , bjo-2022-322762.	3.9	2
1559	The Study of the Association of Polymorphisms in LSP1, GPNMB, PDPN, TAGLN, TSPO, and TUBB6 Genes with the Risk and Outcome of Ischemic Stroke in the Russian Population. International Journal of Molecular Sciences, 2023, 24, 6831.	4.1	0
1560	The cervical lymph node contributes to peripheral inflammation related to Parkinson's disease. Journal of Neuroinflammation, 2023, 20, .	7.2	5
1561	Machine Learning Applications in the Study of Parkinson's Disease: A Systematic Review. Current Bioinformatics, 2023, 18, .	1.5	0
1565	Proteins and Transcriptional Dysregulation of the Brain Extracellular Matrix in Parkinson's Disease: A Systematic Review. International Journal of Molecular Sciences, 2023, 24, 7435.	4.1	6
1566	PARK7/DJ-1 in microglia: implications in Parkinson's disease and relevance as a therapeutic target. Journal of Neuroinflammation, 2023, 20, .	7.2	5

#	Article	IF	CITATIONS
1567	A neuroprotective role of Ufmylation through Atg9 in the aging brain of Drosophila. Cellular and Molecular Life Sciences, 2023, 80, .	5.4	4
1568	Transmembrane Protein 175, a Lysosomal Ion Channel Related to Parkinson's Disease. Biomolecules, 2023, 13, 802.	4.0	5
1570	The Endo-lysosomal System in Parkinson's Disease: Expanding the Horizon. Journal of Molecular Biology, 2023, 435, 168140.	4.2	8
1571	C-reactive protein as the biomarker of choice to monitor the effects of exercise on inflammation in Parkinson's disease. Frontiers in Immunology, 0, 14, .	4.8	2
1572	Genetic Variants Associated with Longitudinal Cognitive Performance in Older Breast Cancer Patients and Controls. Cancers, 2023, 15, 2877.	3.7	1
1573	Genetic polymorphisms of bone marrow stromal cell antigen-1 (BST-1/CD157): implications for immune/inflammatory dysfunction in neuropsychiatric disorders. Frontiers in Immunology, 0, 14, .	4.8	O
1574	Lysosomal polygenic risk is associated with the severity of neuropathology in Lewy body disease. Brain, 2023, 146, 4077-4087.	7.6	5
1575	Gene Panel Sequencing Analysis Revealed a Strong Contribution of Rare Coding Variants to the Risk of Parkinson's Disease in Sporadic Moroccan Patients. Journal of Molecular Neuroscience, 0, , .	2.3	0
1576	The loss of function GBA1 c.231C > G mutation associated with Parkinson disease. Journal of Neural Transmission, 2023, 130, 905-913.	2.8	1
1577	Genetic insights into immune mechanisms of Alzheimer's and Parkinson's disease. Frontiers in Immunology, 0, 14, .	4.8	4
1578	GBA1 Variants and Parkinson's Disease: Paving the Way for Targeted Therapy. Journal of Movement Disorders, 2023, 16, 261-278.	1.3	1
1579	MAPT rs17649553 T allele is associated with better verbal memory and higher small-world properties in Parkinson's disease. Neurobiology of Aging, 2023, 129, 219-231.	3.1	8
1581	The Genetic Architecture of Amygdala Nuclei. Biological Psychiatry, 2024, 95, 72-84.	1.3	0
1582	Genome-wide case-only analysis of gene-gene interactions with known Parkinson's disease risk variants reveals link between LRRK2 and SYT10. Npj Parkinson's Disease, 2023, 9, .	5. 3	2
1583	Lysosomal LAMP proteins regulate lysosomal pH by direct inhibition of the TMEM175 channel. Molecular Cell, 2023, 83, 2524-2539.e7.	9.7	12
1584	Loss of Ufl1/Ufbp1 in hepatocytes promotes liver pathological damage and carcinogenesis through activating mTOR signaling. Journal of Experimental and Clinical Cancer Research, 2023, 42, .	8.6	3
1585	Glucocerebrosidase activity and lipid levels are related to protein pathologies in Parkinson's disease. Npj Parkinson's Disease, 2023, 9, .	5.3	4
1586	Neuropathology of incidental Lewy body & prodromal Parkinson's disease. Molecular Neurodegeneration, 2023, 18, .	10.8	13

#	Article	IF	Citations
1588	Parkinson's Disease: Exploring Different Animal Model Systems. International Journal of Molecular Sciences, 2023, 24, 9088.	4.1	5
1589	Circulating S100B levels at birth and risk of six major neuropsychiatric or neurological disorders: a two-sample Mendelian Randomization Study. Translational Psychiatry, 2023, 13, .	4.8	2
1592	Transcriptomic profiling of Parkinson's disease brains reveals disease stage specific gene expression changes. Acta Neuropathologica, 2023, 146, 227-244.	7.7	7
1593	High-resolution omics of vascular ageing and inflammatory pathways in neurodegeneration. Seminars in Cell and Developmental Biology, 2023, , .	5.0	1
1594	Unveiling the impact of lysosomal ion channels: balancing ion signaling and disease pathogenesis. Korean Journal of Physiology and Pharmacology, 2023, 27, 311-323.	1.2	1
1595	More than meets the eye in Parkinson's disease and other synucleinopathies: from proteinopathy to lipidopathy. Acta Neuropathologica, 2023, 146, 369-385.	7.7	8
1596	The evolution of Big Data in neuroscience and neurology. Journal of Big Data, 2023, 10, .	11.0	5
1597	Regional genetic correlations highlight relationships between neurodegenerative disease loci and the immune system. Communications Biology, 2023, 6, .	4.4	2
1599	An Alzheimer's disease risk variant in TTC3 modifies the actin cytoskeleton organization and the PI3K-Akt signaling pathway in iPSC-derived forebrain neurons. Neurobiology of Aging, 2023, 131, 182-195.	3.1	0
1600	To Be or Not to Be an Ion Channel: Cryo-EM Structures Have a Say. Cells, 2023, 12, 1870.	4.1	1
1606	The non-specific lethal complex regulates genes and pathways genetically linked to Parkinsonâ \in $^{\text{IM}}$ s disease. Brain, 0, , .	7.6	0
1609	Immunology and microbiome: Implications for motor systems. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2023, , 135-157.	1.8	0
1611	Complexins: Ubiquitously Expressed Presynaptic Regulators of SNARE-Mediated Synaptic Vesicle Fusion. Advances in Neurobiology, 2023, , 255-285.	1.8	0
1613	Linking environmental risk factors with epigenetic mechanisms in Parkinson's disease. Npj Parkinson's Disease, 2023, 9, .	5.3	6
1615	TMEM175 downregulation participates in impairment of the autophagy related lysosomal dynamics following neonatal hypoxicâ€ischemic brain injury. Journal of Cellular Physiology, 2023, 238, 2512-2527.	4.1	0
1616	Modeling Parkinson's disease in LRRK2 rodents. Neuronal Signaling, 2023, 7, .	3.2	0
1617	Epigenetic regulation of Parkinson's disease risk variant GPNMB cg17274742 methylation by sex and exercise from Taiwan Biobank. Frontiers in Aging Neuroscience, 0, 15, .	3.4	0
1618	A Comparative Study on the Lysosomal Cation Channel TMEM175 Using Automated Whole-Cell Patch-Clamp, Lysosomal Patch-Clamp, and Solid Supported Membrane-Based Electrophysiology: Functional Characterization and High-Throughput Screening Assay Development. International Journal of Molecular Sciences. 2023. 24. 12788.	4.1	3

#	Article	IF	CITATIONS
1619	Biomarkers in Parkinson's disease: A state of the art review. Biomarkers in Neuropsychiatry, 2023, 9, 100074.	1.0	1
1620	A genome-wide association study coupled with machine learning approaches to identify influential demographic and genomic factors underlying Parkinsonâ \in ^M s disease. Frontiers in Genetics, 0, 14, .	2.3	0
1621	MGAT5/TMEM163 variant is associated with prognosis in ursodeoxycholic acid-treated patients with primary biliary cholangitis. Journal of Gastroenterology, 2024, 59, 66-74.	5.1	2
1622	Investigating the Genetic Background of Spastic Syndrome in North American Holstein Cattle Based on Heritability, Genome-Wide Association, and Functional Genomic Analyses. Genes, 2023, 14, 1479.	2.4	0
1624	Recent advances in natural products targeting \hat{l}_{\pm} -synuclein aggregation or clearance in Parkinson's disease. European Journal of Medicinal Chemistry Reports, 2023, 9, 100114.	1.4	0
1625	Inheritance of Neurological Disorders. , 2023, , 265-274.		0
1626	Multi-omics analysis reveals hepatic lipid metabolism profiles and serum lipid biomarkers upon indoor relevant VOC exposure. Environment International, 2023, 180, 108221.	10.0	1
1627	Ferroptosis in Parkinson's disease: Molecular mechanisms and therapeutic potential. Ageing Research Reviews, 2023, 91, 102077.	10.9	8
1628	Loss of the parkinsonismâ€associated protein <scp>FBXO7</scp> in glutamatergic forebrain neurons in mice leads to abnormal motor behavior and synaptic defects. Journal of Neurochemistry, 2023, 167, 296-317.	3.9	0
1629	Inactive S. aureus Cas9 downregulates alpha-synuclein and reduces mtDNA damage and oxidative stress levels in human stem cell model of Parkinson's disease. Scientific Reports, 2023, 13, .	3.3	1
1630	CRISPR deletion of a SINE-VNTR-Alu (SVA_67) retrotransposon demonstrates its ability to differentially modulate gene expression at the MAPT locus. Frontiers in Neurology, 0, 14, .	2.4	2
1631	Parkinson's disease updates: Addressing the pathophysiology, risk factors, genetics, diagnosis, along with the medical and surgical treatment. Annals of Medicine and Surgery, 2023, 85, 4887-4902.	1.1	3
1632	Molecular programs of regional specification and neural stem cell fate progression in macaque telencephalon. Science, 2023, 382, .	12.6	4
1633	Overlapping Neuroimmune Mechanisms and Therapeutic Targets in Neurodegenerative Disorders. Biomedicines, 2023, 11, 2793.	3.2	2
1634	Gene Signals and SNPs Associated with Parkinson's Disease: A Nutrigenomics and Computational Prospective Insights. Neuroscience, 2023, 533, 77-95.	2.3	1
1635	Leveraging tissue-specific enhancer-target gene regulatory networks identifies enhancer somatic mutations that functionally impact lung cancer. Cancer Research, 0, , .	0.9	0
1636	ASO-mediated knockdown or kinase inhibition of G2019S-Lrrk2 modulates lysosomal tubule-associated antigen presentation in macrophages. Molecular Therapy - Nucleic Acids, 2023, 34, 102064.	5.1	1
1637	Expanding causal genes for Parkinson's disease via multi-omics analysis. Npj Parkinson's Disease, 2023, 9, .	5.3	1

#	Article	IF	CITATIONS
1638	Formation of templated inclusions in a forebrain \hat{l}_{\pm} -synuclein mouse model is independent of LRRK2. Neurobiology of Disease, 2023, 188, 106338.	4.4	0
1639	Nigrostriatal tau pathology in parkinsonism and Parkinson's disease. Brain, 2024, 147, 444-457.	7.6	4
1640	The role of cell adhesion molecule IgSF9b at the inhibitory synapse and psychiatric disease. Neuroscience and Biobehavioral Reviews, 2024, 156, 105476.	6.1	1
1642	Neuronal-type-specific epigenome editing to decrease SNCA expression: Implications for precision medicine in synucleinopathies. Molecular Therapy - Nucleic Acids, 2024, 35, 102084.	5.1	0
1643	DNAJC12 in Monoamine Metabolism, Neurodevelopment, and Neurodegeneration. Movement Disorders, 2024, 39, 249-258.	3.9	0
1644	Involvement of Mitochondria in Parkinson's Disease. International Journal of Molecular Sciences, 2023, 24, 17027.	4.1	3
1645	Prediction of Parkinson's Disease Using Machine Learning Methods. Biomolecules, 2023, 13, 1761.	4.0	0
1646	Association of Family History and Polygenic Risk Score With Longitudinal Prognosis in Parkinson Disease. Neurology: Genetics, 2024, 10, .	1.9	0
1647	Macro and micro-sleep dysfunctions as translational biomarkers for Parkinson's disease. International Review of Neurobiology, 2024, , 187-209.	2.0	0
1648	PAK6-mediated phosphorylation of PPP2R2C regulates LRRK2-PP2A complex formation. Frontiers in Molecular Neuroscience, $0,16,16$	2.9	0
1649	Parkinson Disease Genetics Extended to African and Hispanic Ancestries in the VA Million Veteran Program. Neurology: Genetics, 2024, 10, .	1.9	0
1650	Alpha-Synuclein Contribution to Neuronal and Glial Damage in Parkinson's Disease. International Journal of Molecular Sciences, 2024, 25, 360.	4.1	1
1651	The Genetic Landscape of Sleep Disorders in Parkinson's Disease. Diagnostics, 2024, 14, 106.	2.6	1
1652	Advancements in Genetic and Biochemical Insights: Unraveling the Etiopathogenesis of Neurodegeneration in Parkinsonâ \in ^M s Disease. Biomolecules, 2024, 14, 73.	4.0	0
1653	Gene Expression Profiling of Post Mortem Midbrain of Parkinson's Disease Patients and Healthy Controls. International Journal of Molecular Sciences, 2024, 25, 707.	4.1	0
1654	A potential patient stratification biomarker for ParkinsonÂ's disease based on LRRK2 kinase-mediated centrosomal alterations in peripheral blood-derived cells. Npj Parkinson's Disease, 2024, 10, .	5.3	1
1655	Immunological shifts during early-stage Parkinson's disease identified with DNA methylation data on longitudinally collected blood samples. Npj Parkinson's Disease, 2024, 10, .	5.3	0
1656	Extracellular Vesicles as Biomarkers for Parkinson's Disease: How Far from Clinical Translation?. International Journal of Molecular Sciences, 2024, 25, 1136.	4.1	0

#	Article	IF	CITATIONS
1657	Neuronal MAPT expression is mediated by long-range interactions with cis-regulatory elements. American Journal of Human Genetics, 2024, 111, 259-279.	6.2	0
1658	omicSynth: An open multi-omic community resource for identifying druggable targets across neurodegenerative diseases. American Journal of Human Genetics, 2024, 111, 150-164.	6.2	1
1662	Parkinson's disease risk enhancers in microglia. IScience, 2024, 27, 108921.	4.1	0
1663	Genetic research and its contribution to the treatment in Parkinson's disease. , 2024, 4, 47-49.		0
1664	Precision Medicine in Parkinson's Disease Using Induced Pluripotent Stem Cells. Advanced Healthcare Materials, 0, , .	7.6	0
1666	What Can Inflammation Tell Us about Therapeutic Strategies for Parkinson's Disease?. International Journal of Molecular Sciences, 2024, 25, 1641.	4.1	0
1667	Sortilin Expression Levels and Peripheral Immunity: A Potential Biomarker for Segregation between Parkinson's Disease Patients and Healthy Controls. International Journal of Molecular Sciences, 2024, 25, 1791.	4.1	0
1668	Nigral transcriptomic profiles in Engrailed-1 hemizygous mouse models of Parkinson's disease reveal upregulation of oxidative phosphorylation-related genes associated with delayed dopaminergic neurodegeneration. Frontiers in Aging Neuroscience, 0, 16, .	3.4	0
1669	Unlocking the epigenetic symphony: histone acetylation's impact on neurobehavioral change in neurodegenerative disorders. Epigenomics, 2024, 16, 331-358.	2.1	0
1670	Systemic inflammation and risk of Parkinson's disease: A prospective cohort study and genetic analysis. Brain, Behavior, and Immunity, 2024, 117, 447-455.	4.1	0
1671	Unraveling the Genetic Landscape of Neurological Disorders: Insights into Pathogenesis, Techniques for Variant Identification, and Therapeutic Approaches. International Journal of Molecular Sciences, 2024, 25, 2320.	4.1	0
1672	VPS13C regulates phospho-Rab10-mediated lysosomal function in human dopaminergic neurons. Journal of Cell Biology, 2024, 223, .	5.2	0
1673	Protein Translation in the Pathogenesis of Parkinson's Disease. International Journal of Molecular Sciences, 2024, 25, 2393.	4.1	0
1674	Common genetic risk for Parkinson's disease and dysfunction of the endo-lysosomal system. Philosophical Transactions of the Royal Society B: Biological Sciences, 2024, 379, .	4.0	0
1675	Silencing Parkinson's risk allele Rit2 sex-specifically compromises motor function and dopamine neuron viability. Npj Parkinson's Disease, 2024, 10, .	5. 3	0
1676	Identification of 27 allele-specific regulatory variants in Parkinson's disease using a massively parallel reporter assay. Npj Parkinson's Disease, 2024, 10, .	5. 3	0
1677	Parkinson's disease and schizophrenia interactomes contain temporally distinct gene clusters underlying comorbid mechanisms and unique disease processes. , 2024, 10, .		0
1678	Integrated network pharmacology and phosphoproteomic analyses of Baichanting in Parkinson's disease model mice. Heliyon, 2024, 10, e26916.	3 . 2	0

#	Article	IF	CITATIONS
1679	α-Synuclein: Multiple pathogenic roles in trafficking and proteostasis pathways in Parkinson's disease. Neuroscientist, 0, , .	3.5	0
1680	G2019S selective LRRK2 kinase inhibitor abrogates mitochondrial DNA damage. Npj Parkinson's Disease, 2024, 10, .	5.3	0
1681	Prodromal Parkinson disease signs are predicted by a whole-blood inflammatory transcriptional signature in young Pink1 \hat{a} " rats. BMC Neuroscience, 2024, 25, .	1.9	0
1682	Using automated patch clamp electrophysiology platforms in ion channel drug discovery: an industry perspective. Expert Opinion on Drug Discovery, 2024, 19, 523-535.	5.0	0
1683	Joint-tissue integrative analysis identifies high-risk genes for Parkinsonâ \in Ms disease. Frontiers in Neuroscience, 0, 18, .	2.8	0
1685	Associative role of HLA-DRB1 as a protective factor for susceptibility and progression of Parkinson's disease: a Chinese cross-sectional and longitudinal study. Frontiers in Aging Neuroscience, 0, 16, .	3.4	O