CITATION REPORT List of articles citing

Shell thickness-dependent microwave absorption of core-shell Fe₃O₄@C composites

DOI: 10.1021/am502910d ACS Applied Materials & Samp; Interfaces, 2014, 6, 12997-3006

Source: https://exaly.com/paper-pdf/59309897/citation-report.pdf

Version: 2024-04-23

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
791	Magnetized MXene Microspheres with Multiscale Magnetic Coupling and Enhanced Polarized Interfaces for Distinct Microwave Absorption via a Spray-Drying Method.		
790	Ultrathin MoS2 Nanosheets Encapsulated in Hollow Carbon Spheres: A Case of a Dielectric Absorber with Optimized Impedance for Efficient Microwave Absorption.		
789	Fe3O4@Carbon@Polyaniline Trilaminar CoreShell Composites as Superior Microwave Absorber in Shielding of Electromagnetic Pollution.		
788	Fabrication of Fe3O4@C coreBhell nanotubes and their application as a lightweight microwave absorbent. 2014 , 4, 55738-55744		48
787	CoxFey@C Composites with Tunable Atomic Ratios for Excellent Electromagnetic Absorption Properties. <i>Scientific Reports</i> , 2015 , 5, 18249	4.9	84
786	Shape-Evolution and Growth Mechanism of Fe3O4Polyhedrons. 2015 , 2015, 1-7		3
7 ⁸ 5	Mesoporous Fe/C and CoreBhell FeHe3C@C composites as efficient microwave absorbents. 2015 , 211, 97-104		39
784	Iron carbide and nitride via a flexible route: synthesis, structure and magnetic properties. 2015 , 5, 2167	70-216	74 15
783	A carbon fiber based three-phase heterostructure composite CF/Co0.2Fe2.8O4/PANI as an efficient electromagnetic wave absorber in the Ku band. 2015 , 5, 50024-50032		31
782	Facile synthesis of porous coin-like iron and its excellent electromagnetic absorption performance. 2015 , 5, 25936-25941		31
781	Effect of annealing temperature on the structure of carbon encapsulated Fe3O4 nanospheres. 2015 , 5, 106787-106794		13
780	Growth of Fe3O4 nanosheet arrays on graphene by a mussel-inspired polydopamine adhesive for remarkable enhancement in electromagnetic absorptions. 2015 , 5, 101121-101126		38
779	A novel microwave absorption material of Ni doped cryptomelane type manganese oxides. <i>Ceramics International</i> , 2015 , 41, 5688-5695	5.1	12
778	Designed fabrication and characterization of three-dimensionally ordered arrays of core-shell magnetic mesoporous carbon microspheres. <i>ACS Applied Materials & Design Among A</i>	9.5	94
777	Single-crystal octahedral CoFe2O4 nanoparticles loaded on carbon balls as a lightweight microwave absorbent. <i>Journal of Alloys and Compounds</i> , 2015 , 633, 11-17	5.7	22
776	Magnetic C-C@Fe3O4 double-shelled hollow microspheres via aerosol-based Fe3O4@C-SiO2 core-shell particles. 2015 , 51, 2991-4		18
775	Design and fabrication of carbon fiber/carbonyl iron coreBhell structure composites as high-performance microwave absorbers. 2015 , 5, 8713-8720		31

(2015-2015)

774	absorption properties. 2015 , 5, 9806-9814	58
773	NiFe2O4, Fe3O4EexNiy or FexNiy loaded porous activated carbon balls as lightweight microwave absorbents. 2015 , 5, 8248-8257	18
772	Synthesis of FeNi3 nanocrystals encapsulated in carbon nanospheres/reduced graphene oxide as a light weight electromagnetic wave absorbent. 2015 , 5, 64878-64885	34
771	Co3Fe7/C coreEhell microspheres as a lightweight microwave absorbent. 2015 , 163, 431-438	13
770	Thermal conversion of an FeD@metal-organic framework: a new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material. 2015 , 7, 12932-42	366
769	Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4 I IoNiO2 hybrids. 2015 , 3, 7677-7690	364
768	Carbothermally synthesized corellhell carbon magnetite porous nanorods for high-performance electromagnetic wave absorption and the effect of the heterointerface. <i>Journal of Alloys and Compounds</i> , 2015 , 639, 280-288	57
767	Flexible nanocomposites with enhanced microwave absorption properties based on Fe3O4/SiO2 nanorods and polyvinylidene fluoride. 2015 , 3, 12197-12204	125
766	Porous Three-Dimensional Flower-like Co/CoO and Its Excellent Electromagnetic Absorption Properties. ACS Applied Materials & amp; Interfaces, 2015, 7, 9776-83	417
765	Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. 2015 , 3, 13426-1	343 42 4
765 764	Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. 2015 , 3, 13426-1 Facile preparation and enhanced microwave absorption properties of core-shell composite spheres composited of Ni cores and TiO2 shells. 2015 , 17, 8802-10	343 ₄ 2 ₄
	Facile preparation and enhanced microwave absorption properties of core-shell composite spheres	
764	Facile preparation and enhanced microwave absorption properties of core-shell composite spheres composited of Ni cores and TiO2 shells. 2015 , 17, 8802-10 Hydrophobic graphene nanosheets decorated by monodispersed superparamagnetic Fe3O4	130
76 ₄	Facile preparation and enhanced microwave absorption properties of core-shell composite spheres composited of Ni cores and TiO2 shells. 2015, 17, 8802-10 Hydrophobic graphene nanosheets decorated by monodispersed superparamagnetic Fe3O4 nanocrystals as synergistic electromagnetic wave absorbers. 2015, 3, 4452-4463 In situ synthesis of novel urchin-like ZnS/Ni3S2@Ni composite with a coreBhell structure for	130 152
764 763 762	Facile preparation and enhanced microwave absorption properties of core-shell composite spheres composited of Ni cores and TiO2 shells. 2015, 17, 8802-10 Hydrophobic graphene nanosheets decorated by monodispersed superparamagnetic Fe3O4 nanocrystals as synergistic electromagnetic wave absorbers. 2015, 3, 4452-4463 In situ synthesis of novel urchin-like ZnS/Ni3S2@Ni composite with a coreBhell structure for efficient electromagnetic absorption. 2015, 3, 10862-10869 A facile hydrothermal synthesis of MnO2 nanorodEeduced graphene oxide nanocomposites	130 152 95
764 763 762 761	Facile preparation and enhanced microwave absorption properties of core-shell composite spheres composited of Ni cores and TiO2 shells. 2015, 17, 8802-10 Hydrophobic graphene nanosheets decorated by monodispersed superparamagnetic Fe3O4 nanocrystals as synergistic electromagnetic wave absorbers. 2015, 3, 4452-4463 In situ synthesis of novel urchin-like ZnS/Ni3S2@Ni composite with a coreEhell structure for efficient electromagnetic absorption. 2015, 3, 10862-10869 A facile hydrothermal synthesis of MnO2 nanorodEeduced graphene oxide nanocomposites possessing excellent microwave absorption properties. 2015, 5, 88979-88988	130 152 95 89
764 763 762 761 760	Facile preparation and enhanced microwave absorption properties of core-shell composite spheres composited of Ni cores and TiO2 shells. 2015, 17, 8802-10 Hydrophobic graphene nanosheets decorated by monodispersed superparamagnetic Fe3O4 nanocrystals as synergistic electromagnetic wave absorbers. 2015, 3, 4452-4463 In situ synthesis of novel urchin-like ZnS/Ni3S2@Ni composite with a coreBhell structure for efficient electromagnetic absorption. 2015, 3, 10862-10869 A facile hydrothermal synthesis of MnO2 nanorodTeduced graphene oxide nanocomposites possessing excellent microwave absorption properties. 2015, 5, 88979-88988 A solvothermal transformation of Fe2O3 nanocrystals to Fe3O4 polyhedrons. 2015, 17, 8602-8606 Graphene aerogel composites derived from recycled cigarette filters for electromagnetic wave	130 152 95 89

756	Multiscale Assembly of Grape-Like Ferroferric Oxide and Carbon Nanotubes: A Smart Absorber Prototype Varying Temperature to Tune Intensities. <i>ACS Applied Materials & Discrete Section</i> , 19408-15	9.5	267
755	Fabrication of Fe3O4@SiO2@RGO nanocomposites and their excellent absorption properties with low filler content. 2015 , 5, 71718-71723		61
754	Tunable microwave absorbing properties of barium hexa-ferrite nano powders by surface carbonized layers. 2015 , 158, 53-57		16
753	Modulation of electromagnetic wave absorption by carbon shell thickness in carbon encapsulated magnetite nanospindlespoly(vinylidene fluoride) composites. 2015 , 95, 870-878		158
752	Facile synthesis of a CNT@Fe@SiO2 ternary composite with enhanced microwave absorption performance. 2015 , 5, 76836-76843		74
751	Constructing Uniform Core-Shell PPy@PANI Composites with Tunable Shell Thickness toward Enhancement in Microwave Absorption. <i>ACS Applied Materials & District Amplied Materials & District & District Amplied Materials & District & Dist</i>	9.5	343
75°	Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features. 2015 , 3, 10232-10241		317
749	Preparation of Magnetic Hybrid Microspheres with Well-Defined Yolk-Shell Structure. 2016 , 2016, 1-7		О
748	Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorption. 2016 , 108, 234-241		173
747	Porous CNTs/Co Composite Derived from Zeolitic Imidazolate Framework: A Lightweight, Ultrathin, and Highly Efficient Electromagnetic Wave Absorber. <i>ACS Applied Materials & Discounty of Materials </i>	9.5	306
746	Three-dimensional (3D) 日 e2O3/polypyrrole (PPy) nanocomposite for effective electromagnetic absorption. 2016 , 6, 065021		15
745	Precise synthesis of discrete and dispersible carbon-protected magnetic nanoparticles for efficient magnetic resonance imaging and photothermal therapy. <i>Nano Research</i> , 2016 , 9, 1460-1469	10	25
744	A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber. 2016 , 8, 8899-909		266
743	Fabrication of microwave absorbing CoFe 2 O 4 coatings with robust superhydrophobicity on natural wood surfaces. <i>Ceramics International</i> , 2016 , 42, 13199-13206	5.1	21
742	Electromagnetic functionalized Co/C composites by in situ pyrolysis of metal-organic frameworks (ZIF-67). <i>Journal of Alloys and Compounds</i> , 2016 , 681, 384-393	5.7	177
741	Synthesis and excellent microwave absorption property of polyaniline nanorods coated Li0.435Zn0.195Fe2.37O4 nanocomposites. <i>Journal of Materials Science: Materials in Electronics</i> , 2016 , 27, 7776-7787	2.1	31
740	Well-Defined CoreBhell Fe3O4@Polypyrrole Composite Microspheres with Tunable Shell Thickness: Synthesis and Their Superior Microwave Absorption Performance in the Ku Band. 2016 , 55, 6263-6275		109
739	Interface Strategy To Achieve Tunable High Frequency Attenuation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 6529-38	9.5	238

(2016-2016)

738	Facile Hydrothermal Synthesis of Fe3O4/C Core-Shell Nanorings for Efficient Low-Frequency Microwave Absorption. <i>ACS Applied Materials & Englishing Systems</i> (1978) 1975–1980	9.5	412
737	Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures. <i>Nano Research</i> , 2016 , 9, 1813-1822	10	190
736	Bifunctional Ag/Fe/N/C Catalysts for Enhancing Oxygen Reduction via Cathodic Biofilm Inhibition in Microbial Fuel Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 6992-7002	9.5	61
735	A coreBhell polypyrrole@silicon carbide nanowire (PPy@SiC) nanocomposite for the broadband elimination of electromagnetic pollution. 2016 , 6, 43056-43059		39
734	Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with corelheath structures for superior microwave absorption. <i>Nano Research</i> , 2016 , 9, 2034-2045	10	111
733	Formation of reworkable nanocomposite adhesives by dielectric heating of epoxy resin embedded Fe3O4 hollow spheres. 2016 , 18, 6096-6101		7
732	Rational construction of graphene oxide with MOF-derived porous NiFe@C nanocubes for high-performance microwave attenuation. <i>Nano Research</i> , 2016 , 9, 3671-3682	10	157
731	Facile synthesis of net-like Fe3O4/MWCNTs decorated by SnO2 nanoparticles as a highly efficient microwave absorber. 2016 , 6, 97142-97151		31
730	Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. 2016 , 4, 9738-9749		327
729	Growth mechanism and magnetism in carbothermal synthesized Fe3O4 nanoparticles from solution combustion precursors. 2016 , 420, 225-231		13
728	Electromagnetic Property and Tunable Microwave Absorption of 3D Nets from Nickel Chains at Elevated Temperature. <i>ACS Applied Materials & District Materials & Materials & District Materials & Distri</i>	9.5	242
727	Gamma irradiation induced synthesis of electromagnetic functionalized aligned CoxNi1⊠ alloy nanobundles. 2016 , 6, 72263-72268		7
726	Enhanced microwave absorption material of ternary nanocomposites based on MnFe2O4@SiO2, polyaniline and polyvinylidene fluoride. 2016 , 6, 88104-88109		25
7 2 5	High-Frequency Absorption of the Hybrid Composites with Spindle-like Fe3O4 Nanoparticles and Multiwalled Carbon Nanotubes. 2016 , 11, 1650097		5
724	Facile one-pot synthesis of carbon/calcium phosphate/Fe3O4 composite nanoparticles for simultaneous imaging and pH/NIR-responsive drug delivery. 2016 , 52, 11068-71		39
7 2 3	Supercooling Self-Assembly of Magnetic Shelled Core/Shell Supraparticles. <i>ACS Applied Materials</i> & Samp; Interfaces, 2016 , 8, 23969-77	9.5	7
722	Magnetically recyclable Ru immobilized on amine-functionalized magnetite nanoparticles and its high selectivity to prepare cis -pinane. 2016 , 424, 269-275		14
721	The synergistic effects of carbon coating and micropore structure on the microwave absorption properties of Co/CoO nanoparticles. 2016 , 18, 30507-30514		38

720	Study on the characteristics of magneto-sensitive electromagnetic wave-absorbing properties of magnetorheological elastomers. 2016 , 25, 085046		24
719	Structure evolution of Prussian blue analogues to CoFe@C coreBhell nanocomposites with good microwave absorbing performances. 2016 , 6, 105644-105652		59
718	Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. 2016 , 8, 19421-19474		223
717	Improved electromagnetic wave absorption of Co nanoparticles decorated carbon nanotubes derived from synergistic magnetic and dielectric losses. 2016 , 18, 31542-31550		59
716	Synthesis and Excellent Microwave Absorption Properties of ZnO/Fe3O4/MWCNTs Composites. 2016 , 11, 1650139		16
715	Enhanced high-frequency absorption of anisotropic Fe3O4/graphene nanocomposites. <i>Scientific Reports</i> , 2016 , 6, 25075	4.9	55
714	Hybrids of cobalt nanochains and polyvinylidene fluoride with enhanced microwave absorption performance. 2016 , 6, 55546-55551		7
713	Effect of carbon shell thickness on the microwave absorption of magnetite-carbon core-shell nanoparticles. <i>Ceramics International</i> , 2016 , 42, 14548-14556	5.1	35
712	Polybenzobisoxazoles-based nanocomposites with high microwave absorption performance and excellent thermal stability. 2016 , 99, 605-613		4
711	Dependency of tunable microwave absorption performance on morphology-controlled hierarchical shells for core-shell Fe3O4@MnO2 composite microspheres. <i>Chemical Engineering Journal</i> , 2016 , 304, 552-562	14.7	119
710	Ni3Sn2 alloy nanocrystals encapsulated within electrospun carbon nanofibers for enhanced microwave absorption performance. 2016 , 177, 198-205		25
709	A simple hydrothermal process to grow MoS2 nanosheets with excellent dielectric loss and microwave absorption performance. 2016 , 4, 6816-6821		187
708	Controllable synthesis of elliptical Fe3O4@C and Fe3O4/Fe@C nanorings for plasmon resonance-enhanced microwave absorption. 2016 , 4, 7316-7323		120
707	Interfacially Engineered Sandwich-Like rGO/Carbon Microspheres/rGO Composite as an Efficient and Durable Microwave Absorber. 2016 , 3, 1500684		107
706	A MWCNTBanoparticle composite as a highly efficient lightweight electromagnetic wave absorber in the range of 41/18 GHz. 2016 , 6, 4695-4704		13
705	Microwave absorption properties of polyaniline-Fe3O4/ZnO-polyester nanocomposite: Preparation and optimization. 2016 , 366, 210-218		49
704	Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption. 2016 , 98, 599-606		209
703	Fe H e3C/C microspheres as a lightweight microwave absorbent. 2016 , 6, 24820-24826		35

702	magnetite nanoparticles. 2016 , 6, 29054-29063		24
701	Synthesis of monodispersed Fe3O4@C core/shell nanoparticles. 2016 , 59, 394-397		9
700	Enhanced microwave absorption properties of flake-shaped FePCB metallic glass/graphene composites. <i>Composites Part A: Applied Science and Manufacturing</i> , 2016 , 89, 33-39	8.4	55
699	Construction of CuS Nanoflakes Vertically Aligned on Magnetically Decorated Graphene and Their Enhanced Microwave Absorption Properties. <i>ACS Applied Materials & Decorated Graphene and Their Enhanced Microwave Absorption Properties.</i>	9.5	366
698	Co/C nanoparticles with low graphitization degree: a high performance microwave-absorbing material. 2016 , 4, 1727-1735		257
697	A novel Co/TiO2 nanocomposite derived from a metalBrganic framework: synthesis and efficient microwave absorption. 2016 , 4, 1860-1870		280
696	Synthesis of Fe 3 C branches via a hexamethylenetetramine route. 2016 , 76, 327-331		8
695	Facile large scale preparation and electromagnetic properties of silica-nickel-carbon composite shelly hollow microspheres. 2016 , 45, 2881-7		10
694	Fe3O4 doped double-shelled hollow carbon spheres with hierarchical pore network for durable high-performance supercapacitor. 2016 , 99, 514-522		82
693	Synthesis and characterization of Fe3O4/polypyrrole/carbon nanotube composites with tunable microwave absorption properties: Role of carbon nanotube and polypyrrole content. <i>Chemical Engineering Journal</i> , 2016 , 285, 497-507	14.7	220
692	Fabrication and electromagnetic properties of novel FeNi alloy-coated flake graphite prepared by electroless plating. <i>Journal of Alloys and Compounds</i> , 2016 , 656, 51-57	5.7	27
691	Microwave absorption properties of FeCo-coated carbon fibers with varying morphologies. 2016 , 399, 252-259		67
690	Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers. 2017 , 115, 493-502		243
689	Microwave absorption properties of double-layer absorbers based on Co0.2Ni0.4Zn0.4Fe2O4 ferrite and reduced graphene oxide composites. <i>Journal of Alloys and Compounds</i> , 2017 , 701, 841-849	5.7	90
688	Carbon Hollow Microspheres with a Designable Mesoporous Shell for High-Performance Electromagnetic Wave Absorption. <i>ACS Applied Materials & Designable & Design</i>	9.5	319
687	In Situ Growth of Core-Sheath Heterostructural SiC Nanowire Arrays on Carbon Fibers and Enhanced Electromagnetic Wave Absorption Performance. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2017 , 9, 6320-6331	9.5	208
686	Carbonized polydopamine coated single-crystalline NiFe 2 O 4 nanooctahedrons with enhanced electrochemical performance as anode materials in a lithium ion battery. 2017 , 231, 27-35		23
685	Synthesis and microwave absorption enhancement of yolkEhell Fe3O4@C microspheres. 2017 , 52, 6349-	-6361	66

684	Facile synthesis of FeCo alloys with excellent microwave absorption in the whole Ku-band: Effect of Fe/Co atomic ratio. <i>Journal of Alloys and Compounds</i> , 2017 , 704, 289-295	5.7	106
683	Facile synthesis of a Sn/SnO2@C ternary composite with superior broader frequency performance. Journal of Alloys and Compounds, 2017 , 711, 184-189	5.7	6
682	Polypyrrole-interface-functionalized nano-magnetite epoxy nanocomposites as electromagnetic wave absorbers with enhanced flame retardancy. 2017 , 5, 5334-5344		209
681	Comparison of microwave and conventional heating methods in carbonization of polyacrylonitrile-based stabilized fibers at different temperature measured by an in-situ process temperature control ring. 2017 , 140, 32-41		19
68o	Metal organic framework (MOF)-derived carbonaceous Co3O4/Co microframes anchored on RGO with enhanced electromagnetic wave absorption performances. 2017 , 228, 32-40		84
679	Synergistic Enhancement of Microwave Absorption Using Hybridized Polyaniline@helical CNTs with Dual Chirality. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 15711-15718	9.5	131
678	Synthesis of iron-based hexagonal microflakes for strong microwave attenuation. <i>Journal of Alloys and Compounds</i> , 2017 , 718, 46-52	5.7	17
677	Enhanced microwave absorption property of Fe3O4/CaCu3MMgxTi4JSnyO12(0lk, y l)/graphene oxide nanocomposites in epoxy vinyl ester resin. <i>Journal of Materials Science:</i> Materials in Electronics, 2017, 28, 12535-12544	2.1	6
676	Rational Design of Superior Microwave Shielding Composites Employing Synergy of Encapsulating Character of Alginate Hydrogels and Task-Specific Components (Ni NPs, Fe3O4/CNTs). 2017 , 5, 5394-5	407	61
675	Solvothermal fabrication and growth behavior study of spherical MnFe2O4 through a bottom-up method on wood substrate with effective microwave absorption. 2017 , 7, 24764-24770		9
674	Silicate glass/Ni-NiO double shell composite hollow microspheres: Fast combustion synthesis and electromagnetic properties. 2017 , 93, 230-237		4
673	Facile preparation of in situ coated Ti3C2Tx/Ni0.5Zn0.5Fe2O4 composites and their electromagnetic performance. 2017 , 7, 24698-24708		108
672	Highly efficient large-scale preparation and electromagnetic property control of silicaNiFeP double shell composite hollow particles. 2017 , 7, 21721-21732		4
671	Facile Synthesis and Hierarchical Assembly of Flowerlike NiO Structures with Enhanced Dielectric and Microwave Absorption Properties. <i>ACS Applied Materials & Dielectric Acts Acts Applied Materials & Dielectric Acts Acts Acts Acts Acts Acts Acts Act</i>	9.5	236
670	Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. 2017 , 9, 7408-7418		305
669	A facile one-pot strategy for fabrication of carbon-based microwave absorbers: effects on annealing and paraffin content. 2017 , 46, 9097-9102		23
668	Preparation and enhanced microwave absorption properties of Ni-Co attached single-walled carbon nanotubes and CoFe2O4 nanocomposites. <i>Journal of Applied Physics</i> , 2017 , 121, 224301	2.5	21
667	Enhanced microwave absorption properties of graphite nanoflakes by coating hexagonal boron nitride nanocrystals. 2017 , 420, 858-867		33

666	Controllable permittivity in 3D Fe3O4/CNTs network for remarkable microwave absorption performances. 2017 , 7, 26801-26808		86
665	Fabrication and microwave absorption of multiwalled carbon nanotubes anchored with CoS nanoplates. <i>Journal of Materials Science: Materials in Electronics</i> , 2017 , 28, 7622-7632	2.1	19
664	Incorporation of dielectric constituents to construct ternary heterojunction structures for high-efficiency electromagnetic response. <i>Journal of Colloid and Interface Science</i> , 2017 , 498, 161-169	9.3	66
663	Synthesis and characterization of TiO2/polyaniline/graphene oxide bouquet-like composites for enhanced microwave absorption performance. <i>Journal of Alloys and Compounds</i> , 2017 , 710, 717-724	5.7	42
662	Rice husk-based hierarchically porous carbon and magnetic particles composites for highly efficient electromagnetic wave attenuation. 2017 , 5, 4695-4705		112
661	Incorporation of CoO@Co yolk-shell nanoparticles and ZnO nanoparticles with graphene sheets as lightweight and high-performance electromagnetic wave absorbing material. <i>Journal of Alloys and Compounds</i> , 2017 , 711, 552-559	5.7	27
660	A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials. 2017 , 5, 491-512		257
659	Enhanced Microwave Absorption Performance of Coated Carbon Nanotubes by Optimizing the FeO Nanocoating Structure. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 2973-2983	9.5	338
658	Solvothermal fabrication of CoS nanoparticles anchored on reduced graphene oxide for high-performance microwave absorption. 2017 , 224, 46-55		46
657	Preparation and high-performance microwave absorption of hierarchical dendrite-like Co superstructures self-assembly of nanoflakes. 2017 , 28, 485703		18
656	Controllable Fabricating Dielectric-Dielectric SiC@C Core-Shell Nanowires for High-Performance Electromagnetic Wave Attenuation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 40690-40696	9.5	93
655	Fe3O4@ Trilaminar CoreBhell Composites as Superior Microwave Absorber in Shielding of Electromagnetic Pollution. 2017 , 5, 10710-10721		107
654	Bimetallic zeolitic imidazolate frameworks-derived porous carbon-based materials with efficient synergistic microwave absorption properties: the role of calcining temperature. 2017 , 7, 46436-46444		27
653	Performance Vs Convenience of Magnetic Carbon-Metal Nanocomposites: A Low-Cost and Facile Citrate-Derived Strategy for Feco Alloy/Carbon Composites with High-Performance Microwave Absorption. 2017 , 37, 301-326		11
652	Tailoring the input impedance of FeCo/C composites with efficient broadband absorption. 2017 , 46, 14926-14933		60
651	Magnetically Aligned Co-C/MWCNTs Composite Derived from MWCNT-Interconnected Zeolitic Imidazolate Frameworks for a Lightweight and Highly Efficient Electromagnetic Wave Absorber. <i>ACS Applied Materials & Description (Materials & Description of Materials & Description (Materials & Description of Materials & Descriptio</i>	9.5	211
650	Synthesis and Microwave Absorption Properties of BiFeO3 Nanowire-RGO Nanocomposite and First-Principles Calculations for Insight of Electromagnetic Properties and Electronic Structures. 2017 , 121, 21290-21304		78
649	Development of a carbon-coated reticulated porous alumina material with tailored structural properties for potential radar-absorption applications. <i>Ceramics International</i> , 2017 , 43, 16924-16930	5.1	13

648	Dielectric polarization in electromagnetic wave absorption: Review and perspective. <i>Journal of Alloys and Compounds</i> , 2017 , 728, 1065-1075	5.7	240
647	Electromagnetic wave absorption polyimide fabric prepared by coating with coreEhell NiFe2O4@PANI nanoparticles. 2017 , 7, 42891-42899		23
646	Near-infrared light and pH-responsive Au@carbon/calcium phosphate nanoparticles for imaging and chemo-photothermal cancer therapy of cancer cells. 2017 , 46, 14746-14751		17
645	FeCo alloy nanoparticles supported on ordered mesoporous carbon for enhanced microwave absorption. 2017 , 52, 13636-13649		52
644	Development of a hollow carbon sphere absorber displaying the multiple-reflection effect to attenuate electromagnetic waves. 2017 , 7, 37983-37989		11
643	Exfoliated BN shell-based high-frequency magnetic core-shell materials. 2017 , 9, 13203-13208		4
642	Electrospun Fe2O3 nanotubes and Fe3O4 nanofibers by citric acid sol-gel method. 2017 , 100, 5460-54	70	24
641	Controllable synthesis of unique Ni/mesoporous carbon composites with lightweight and high EM wave absorption performance. 2017 , 7, 38549-38556		9
640	Microporous Co@C Nanoparticles Prepared by Dealloying CoAl@C Precursors: Achieving Strong Wideband Microwave Absorption via Controlling Carbon Shell Thickness. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 44704-44714	9.5	121
639	Carbon spheres@MnO core-shell nanocomposites with enhanced dielectric properties for electromagnetic shielding. <i>Scientific Reports</i> , 2017 , 7, 15841	4.9	26
638	1D Cu@Ni nanorods anchored on 2D reduced graphene oxide with interfacial engineering to enhance microwave absorption properties. 2017 , 19, 6579-6587		53
637	Precursor-directed synthesis of porous cobalt assemblies with tunable close-packed hexagonal and face-centered cubic phases for the effective enhancement in microwave absorption. 2017 , 52, 4399-44	11	24
636	Synthesis of core-shell fishbone-like Cu@Ni composites and their electromagnetic wave absorption properties. 2017 , 319, 245-252		18
635	Synthesis and microwave absorption properties of sandwich-type CNTs/Fe3O4/RGO composite with Fe3O4 as a bridge. <i>Journal of Materials Science: Materials in Electronics</i> , 2017 , 28, 15043-15049	2.1	7
634	Controlled synthesis and electromagnetic wave absorption properties of core-shell Fe3O4@SiO2 nanospheres decorated graphene. <i>Ceramics International</i> , 2017 , 43, 1887-1894	5.1	31
633	Rational design of core-shell Co@C microspheres for high-performance microwave absorption. 2017 , 111, 722-732		493
632	Enhanced magnetic and electrochemical properties of one-step synthesized PANI-Fe3O4 composite nanomaterial by a novel green solvothermal method. <i>Journal of Alloys and Compounds</i> , 2017 , 695, 1807-1812	5.7	11
631	Facile synthesis of yolkEhell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. <i>Nano Research</i> , 2017 , 10, 331-343	10	288

630	Magnetic porous carbon microspheres synthesized by simultaneous activation and magnetization for removing methylene blue. 2017 , 24, 341-353		20
629	Fabrication of ZnO/Fe rod-like core-shell structure as high-performance microwave absorber. Journal of Alloys and Compounds, 2017 , 694, 549-555	5.7	24
628	Facile synthesis and enhanced electromagnetic microwave absorption performance for porous core-shell Fe3O4@MnO2 composite microspheres with lightweight feature. <i>Journal of Alloys and Compounds</i> , 2017 , 693, 432-439	5.7	121
627	Effect of carbonization temperature on microwave absorbing properties of polyacrylonitrile-based carbon fibers. 2017 , 25, 637-641		8
626	Solvothermal Synthesis of Reduced Graphene Oxide/Ferroferric Oxide Hybrid Composites with Enhanced Microwave Absorption Properties. 2017 , 12, 1750144		11
625	Recent Advances in Conjugated Polymer-Based Microwave Absorbing Materials. 2017 , 9,		68
624	Template-Free Formation of Uniform Fe3O4 Hollow Nanoflowers Supported on Reduced Graphene Oxide and Their Excellent Microwave Absorption Performances. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2018 , 215, 1701049	1.6	21
623	Novel 2 03 I type of heterostructured MoS2-Fe3O4-C ternary nanohybrid: Synthesis, and enhanced microwave absorption properties. 2018 , 442, 622-629		39
622	Heterostructured Nanorings of Fe-FeO@C Hybrid with Enhanced Microwave Absorption Performance. <i>ACS Applied Materials & Acs Applied Materials & Acc App</i>	9.5	180
621	Economical synthesis of composites of FeNi alloy nanoparticles evenly dispersed in two-dimensional reduced graphene oxide as thin and effective electromagnetic wave absorbers 2018 , 8, 8393-8401		30
620	Hierarchically Porous Carbons Derived from Biomasses with Excellent Microwave Absorption Performance. <i>ACS Applied Materials & Acs Applied & Acs</i>	9.5	217
619	Synthesis and enhanced microwave absorption properties of BaM-P/BaM-T/PVB ternary composite with ordered inter-filled structure. <i>Journal of Materials Science: Materials in Electronics</i> , 2018 , 29, 7730-7	7 7 38	1
618	A novel method to prepare a magnetic carbon-based adsorbent with sugar-containing water as the carbon source and DETA as the modifying reagent. 2018 , 25, 13645-13659		3
617	ZnO @ N-doped porous carbon/Co 3 ZnC coreEhell heterostructures with enhanced electromagnetic wave attenuation ability. <i>Chemical Engineering Journal</i> , 2018 , 342, 364-371	14.7	47
616	Low-Cost Carbothermal Reduction Preparation of Monodisperse FeO/C Core-Shell Nanosheets for Improved Microwave Absorption. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 16511-16520	9.5	165
615	Facile synthesis of porous FeO@C core/shell nanorod/graphene for improving microwave absorption properties 2018 , 8, 15358-15365		16
614	SnO@C@VO Composite Hollow Nanospheres as an Anode Material for Lithium-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 14993-15000	9.5	40
613	Microwave-based preparation and characterization of Fe-cored carbon nanocapsules with novel stability and super electromagnetic wave absorption performance. 2018 , 135, 1-11		48

612	The similar Cole-Cole semicircles and microwave absorption of Hexagonal Co/C composites. <i>Journal of Alloys and Compounds</i> , 2018 , 750, 917-926	5.7	29
611	Optimization of porous FeNi3/N-GN composites with superior microwave absorption performance. <i>Chemical Engineering Journal</i> , 2018 , 345, 441-451	14.7	160
610	Facile synthesis of three-dimensional Cu/Fe3O4 nanowires as binder-free anode for lithium-ion batteries. 2018 , 450, 356-363		8
609	Nanocomposites of Oriented Nickel Chains with Tunable Magnetic Properties for High-Performance Broadband Microwave Absorption. 2018 , 1, 1116-1123		7°
608	Electromagnetic Wave Absorption Performance on Fe3O4 Polycrystalline Synthesized by the Synergy Reduction of Ethylene Glycol and Diethylene Glycol. 2018 , 122, 3628-3637		11
607	Preparation of TiO2/Fe3O4/CF composites for enhanced microwave absorbing performance. <i>Journal of Materials Science: Materials in Electronics</i> , 2018 , 29, 7194-7202	2.1	12
606	Wormlike Acid-Doped Polyaniline: Controllable Electrical Properties and Theoretical Investigation. 2018 , 122, 2032-2040		31
605	Transition metal dichalcogenides MX2 (M=Mo, W; X=S, Se, Te) and MX2-CIP composites: Promising materials with high microwave absorption performance. <i>Journal of Alloys and Compounds</i> , 2018 , 743, 26-35	5.7	25
604	Study of magnetization and magnetoelectricity in CoFe2O4/BiFeO3 core-shell composites. <i>Journal of Applied Physics</i> , 2018 , 123, 064101	2.5	16
603	A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism. 2018 , 195, 351-364		441
602	In situ fabrication dynamic carbon fabrics membrane with tunable wettability for selective oilwater separation. 2018 , 61, 188-196		27
601	Magnetic Fe3O4@polyaniline nanocomposites with a tunable corellhell structure for ultrafast microwave-energy-driven reduction of Cr(VI). 2018 , 5, 487-496		20
600	Microwave absorption performance of in situ synthesized Fe3O4-SiO2 hybrid fibres with enhanced environmental stability. <i>Ceramics International</i> , 2018 , 44, 6673-6680	5.1	10
599	Networks constructed by metal organic frameworks (MOFs) and multiwall carbon nanotubes (MCNTs) for excellent electromagnetic waves absorption. 2018 , 208, 198-206		18
598	An ultra-small NiFeO hollow particle/graphene hybrid: fabrication and electromagnetic wave absorption property. 2018 , 10, 2697-2703		133
597	Novel two-dimensional Ti3C2Tx MXenes/nano-carbon sphere hybrids for high-performance microwave absorption. 2018 , 6, 5690-5697		148
597 596		5.7	148

594	Microwave absorption performance of Ni(OH)2 decorating biomass carbon composites from Jackfruit peel. 2018 , 447, 261-268		55
593	Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning. 2018 , 134, 264-273		180
592	Broadband and Lightweight Microwave Absorber Constructed by in Situ Growth of Hierarchical CoFeO/Reduced Graphene Oxide Porous Nanocomposites. <i>ACS Applied Materials & Discrete Composition</i> , 10, 13860-13868	9.5	152
591	Fabrication and evaluation of hollow surface molecularly imprinted polymer for rapid and selective adsorption of dibenzothiophene. <i>Chemical Engineering Journal</i> , 2018 , 345, 414-424	14.7	47
590	Electromagnetic and microwave absorption characteristics of PMMA composites filled with a nanoporous resorcinol formaldehyde based carbon aerogel 2018 , 8, 10855-10864		6
589	Porous Co-C Core-Shell Nanocomposites Derived from Co-MOF-74 with Enhanced Electromagnetic Wave Absorption Performance. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 11333-11342	9.5	240
588	Introduction of Zn2+ in BaCoTiFe10O19 to tune electromagnetic parameters and improve microwave absorption properties. <i>Journal of Alloys and Compounds</i> , 2018 , 731, 279-287	5.7	14
587	Strengthened electromagnetic absorption performance derived from synergistic effect of carbon nanotube hybrid with Co@C beads. <i>Advanced Composites and Hybrid Materials</i> , 2018 , 1, 149-159	8.7	70
586	Lightweight Microwave Absorber from Industrial Waste Fly Ash Cenosphere. 2018 , 459-466		0
585	Electrospinning of graphite/SiC hybrid nanowires with tunable dielectric and microwave absorption characteristics. <i>Composites Part A: Applied Science and Manufacturing</i> , 2018 , 104, 68-80	8.4	77
584	Design of dual-frequency electromagnetic wave absorption by interface modulation strategy. <i>Chemical Engineering Journal</i> , 2018 , 334, 153-161	14.7	81
583	The construction of carbon-coated FeO yolk-shell nanocomposites based on volume shrinkage from the release of oxygen anions for wide-band electromagnetic wave absorption. <i>Journal of Colloid and Interface Science</i> , 2018 , 511, 307-317	9.3	82
582	Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. <i>Chemical Engineering Journal</i> , 2018 , 333, 519-528	14.7	304
581	Surface functionalization of carbonyl iron with aluminum phosphate coating toward enhanced anti-oxidative ability and microwave absorption properties. 2018 , 427, 594-602		37
580	Application of yolkEhell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. <i>Nano Research</i> , 2018 , 11, 1500-1519	10	216
579	MWCNTs as Conductive Network for Monodispersed Fe3O4 Nanoparticles to Enhance the Wave Absorption Performances. <i>Advanced Engineering Materials</i> , 2018 , 20, 1700543	3.5	39
578	Facile fabrication of boron and nitrogen co-doped carbon@Fe2O3/Fe3C/Fe nanoparticle decorated carbon nanotubes three-dimensional structure with excellent microwave absorption properties. 2018 , 132, 141-150		67
577	Microwave absorption enhancement and dual-nonlinear magnetic resonance of ultra small nickel with quasi-one-dimensional nanostructure. 2018 , 428, 54-60		48

576	Microwave absorbing property and preparation of CoNi@SiO2@PPy composite in X-band. <i>Journal of Materials Science: Materials in Electronics</i> , 2018 , 29, 1592-1599	16
575	Enhanced microwave absorption property of MnFe9n+3O15n+4(000) (M = Ba, Sr)/CaCu3Ti4O12/phosphorus-doped g-C3N4 nanocomposite: Preparation and optimization. <i>Journal of Alloys and Compounds</i> , 2018 , 735, 2497-2506	18
574	Improved microwave absorbing property provided by the filler's alternating lamellar distribution of carbon nanotube/ carbonyl iron/ poly (vinyl chloride) composites. 2018 , 158, 175-185	34
573	Thermo-sensitively and magnetically ordered mesoporous carbon nanospheres for targeted controlled drug release and hyperthermia application. 2018 , 84, 21-31	22
572	Prussian blue analogues derived magnetic FeCo alloy/carbon composites with tunable chemical composition and enhanced microwave absorption. <i>Journal of Colloid and Interface Science</i> , 2018 , 514, 10-20	162
571	The Outside-In Approach To Construct Fe3O4 Nanocrystals/Mesoporous Carbon Hollow Spheres CoreBhell Hybrids toward Microwave Absorption. 2018 , 6, 1427-1435	148
57°	Facile synthesis and microwave absorption properties of double loss Ti3SiC2/Co3Fe7 powders. Ceramics International, 2018 , 44, 1995-2001 5.1	31
569	Graphene-based microwave absorbing composites: A review and prospective. 2018 , 137, 260-277	383
568	Excellent microwave absorption properties of the h-BNGOEe3O4 ternary composite. 2018, 6, 11722-11730	42
567	Dynamic arrays based on magnetically controlled Fe3O4 particles. 2018 , 178, 04006	
566	Acetylcholinesterase Biosensor Based On Mesoporous Hollow Carbon Spheres/Core-Shell Magnetic Nanoparticles-Modified Electrode for the Detection of Organophosphorus Pesticides. 2018 , 18,	16
565	Structure modulation induced enhancement of microwave absorption in WS2 nanosheets. 2018 , 113, 243102	17
564	Directly Converting Syngas to Linear #Olefins over Core-Shell FeO@MnO Catalysts. <i>ACS Applied Materials & Directly Converting Syngas to Linear #Olefins over Core-Shell FeO@MnO Catalysts. ACS Applied Poly Converting Syngas to Linear #Olefins over Core-Shell FeO@MnO Catalysts. ACS Applied Poly Converting Syngas to Linear #Olefins over Core-Shell FeO@MnO Catalysts. ACS Applied Poly Converting Syngas to Linear #Olefins over Core-Shell FeO@MnO Catalysts. ACS Applied Poly Converting Syngas to Linear #Olefins over Core-Shell FeO@MnO Catalysts. ACS Applied Poly Converting Syngas to Linear #Olefins over Core-Shell FeO@MnO Catalysts. ACS Applied Poly Converting Syngas to Linear #Olefins over Core-Shell FeO@MnO Catalysts. ACS Applied Poly Converting Syngas to Linear #Olefins Over Core-Shell FeO@MnO Catalysts. ACS Applied Poly Converting Syngas to Linear #Olefins Over Core-Shell FeO@MnO Catalysts. ACS Applied Poly Converting Syngas to Linear #Olefins Over Core-Shell FeO@MnO Catalysts. ACS Applied Poly Converting Syngas to Linear #Olefins Over Core-Shell FeO@MnO Catalysts. ACS Applied Poly Converting Syngas to Linear #Olefins Over Core-Shell FeO@MnO Catalysts. ACS Applied Poly Converting Syngas to Linear #Olefins Over Core-Shell FeO@MnO Catalysts. ACS Applied Poly Converting Syngas to Linear #Olefins Over Core-Shell FeO@MnO Catalysts. ACS Applied Poly Converting Syngas to Linear #Olefins Over Core-Shell FeO@MnO Catalysts. ACS Applied Poly Converting Syngas to Linear #Olefins Over Core-Shell FeO@MnO Catalysts. ACS Applied Poly Converting Syngas to Linear #Olefins Over Core-Shell FeO@MnO Catalysts. ACS Applied Poly Converting Syngas to Linear #Olefins Over Core-Shell FeO@MnO Catalysts. ACS Applied Poly Converting Syngas to Linear #Olefins Over Core-Shell Poly Con</i>	31
563	Enhanced Electromagnetic Wave Interference by Nanoscale Mixed-Dimensional C-MoS2 Magnetic van der Waals Heterostructures. 2018 , 1, 5795-5804	12
562	Nitrogen-, Oxygen- and Sulfur-Doped Carbon-Encapsulated Ni3S2 and NiS CoreBhell Architectures: Bifunctional Electrocatalysts for Hydrogen Evolution and Oxygen Reduction Reactions. 2018 , 6, 15582-15590	42
561	Controllable N-Doped Carbonaceous Composites with Highly Dispersed Ni Nanoparticles for Excellent Microwave Absorption. 2018 , 1, 5895-5906	29
560	Preparation and characterization of magnetic hollow Fe3O4/P(GMA-EGDMA)-SO3H/Au-PPy recyclable catalyst for catalytic reduction of 4-nitrophenol. 2018 , 32, e4534	11
559	The electromagnetic properties and microwave absorbing performance of titanium carbide attached single-walled carbon nanotubes. <i>Journal of Materials Science: Materials in Electronics</i> , 2018 2.1 , 29, 20260-20270	3

(2018-2018)

558	Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance. <i>Composites Part A: Applied Science and Manufacturing</i> , 2018 , 115, 371-382	8.4	154	
557	Surface Modification of Magnetic Iron Oxide Nanoparticles. <i>Nanomaterials</i> , 2018 , 8,	5.4	220	
556	Biogenic Synthesis of Tunable CoreBhell C-CaIn2O4, Interface Bonding, Conductive Network Channels, and Tailored Dielectric Properties. 2018 , 6, 16298-16307		5	
555	Low-temperature synthesis of manganese oxidellarbon nanotube-enhanced microwave-absorbing nanocomposites. 2018 , 53, 16288-16302		25	
554	An Efficient Co/C Microwave Absorber with Tunable Co Nanoparticles Derived from a ZnCo Bimetallic Zeolitic Imidazolate Framework. 2018 , 35, 1800107		30	
553	Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. 2018 , 140, 696-733		403	
552	Coaxial double-layer-coated multiwalled carbon nanotubes toward microwave absorption. 2018 , 233, 203-206		11	
551	Ultra-small Co/CNTs nanohybrid from metal organic framework with highly efficient microwave absorption. 2018 , 152, 316-323		70	
550	Magnetodielectric Microwave Radiation Absorbent Materials and Their Polymer Composites. 2018 , 47, 6335-6365		31	
549	Ultrasmall Mo2C Nanoparticle-Decorated Carbon Polyhedrons for Enhanced Microwave Absorption. 2018 , 1, 5366-5376		60	
548	Enhanced Electromagnetic Wave Absorption Performance of Co0.5Zn0.5 ZIF-Derived Binary Co/ZnO and RGO Composites. 2018 , 47, 4910-4918		7	
547	Carbon-coated CoFe-CoFeO composite particles with high and dual-band electromagnetic wave absorbing properties. 2018 , 29, 305604		29	
546	An unusual route to grow carbon shell on Fe3O4 microspheres with enhanced microwave absorption. <i>Journal of Alloys and Compounds</i> , 2018 , 762, 463-472	5.7	25	
545	Reduced graphene oxide decorated with carbon nanopolyhedrons as an efficient and lightweight microwave absorber. <i>Journal of Colloid and Interface Science</i> , 2018 , 528, 174-183	9.3	53	
544	Waste cotton-derived magnetic porous carbon for high-efficiency microwave absorption. 2018 , 9, 70-7	5	68	
543	Excellent microwave absorption of lamellar LaOCl/C nanocomposites with LaOCl nanoparticles embedded in carbon matrix. <i>Journal of Alloys and Compounds</i> , 2018 , 764, 701-708	5.7	7	
542	Unary and binary doping effect of M2+ (M=Mn, Co, Ni, Zn) substituted hollow Fe3O4 approach for enhancing microwave attenuation. <i>Ceramics International</i> , 2018 , 44, 17138-17146	5.1	8	
541	Fluffy microrods to heighten the microwave absorption properties through tuning the electronic state of Co/CoO. 2018 , 6, 7128-7140		75	

540	Nanostructured ternary composites of PPy/CNT/NiFe2O4 and PPy/CNT/CoFe2O4: Delineating and improving microwave absorption. 2018 , 21, 862-871		9
539	Facile synthesis and microwave absorption investigation of activated carbon@FeO composites in the low frequency band 2018 , 8, 23048-23057		14
538	Influence of morphologies on the electromagnetic and microwave absorbing properties of nickel cobaltite. <i>Journal of Materials Science: Materials in Electronics</i> , 2018 , 29, 14643-14650	2.1	12
537	Enhanced Electromagnetic Wave Absorption of Three-Dimensional Porous Fe3O4/C Composite Flowers. 2018 , 6, 12471-12480		217
536	Optimizing the Electromagnetic Wave Absorption Performances of Designed CoFe@C Yolk-Shell Structures. <i>ACS Applied Materials & ACS ACS APPLIED & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	101
535	Rational design of CNTs with encapsulated Co nanospheres as superior acid- and base-resistant microwave absorbers. 2018 , 47, 11554-11562		13
534	Elucidation of microwave absorption mechanisms in Collia substituted BaBr hexaferrites in X-band. <i>Journal of Materials Science: Materials in Electronics</i> , 2018 , 29, 14995-15005	2.1	17
533	"Matryoshka Doll"-Like CeO Microspheres with Hierarchical Structure To Achieve Significantly Enhanced Microwave Absorption Performance. <i>ACS Applied Materials & Description Acade Structure To Achieve Significantly Enhanced Microwave Absorption Performance</i> . <i>ACS Applied Materials & Description Performance</i> .	-27547	, 65
532	Fabrication and electromagnetic properties of carbon-based iron nitride composite. 2018 , 466, 22-27		17
531	Synthesis and Electromagnetic and Microwave Absorption Properties of Monodispersive Fe3O4/Fe2O3 Composites. 2018 , 1, 3935-3944		31
530	Three dimensional hexagonal boron nitride nanosheet/carbon nanotube composites with light weight and enhanced microwave absorption performance. <i>Composites Part A: Applied Science and Manufacturing</i> , 2018 , 112, 515-524	8.4	60
529	Improved microwave absorbing properties by designing heterogeneous interfaces in Mo@2D-MoS2. <i>Journal of Alloys and Compounds</i> , 2018 , 767, 1-6	5.7	11
528	Fe3O4@LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance. <i>Chemical Engineering Journal</i> , 2018 , 352, 510-518	14.7	148
527	Enhanced electromagnetic wave absorption performance of novel carbon-coated Fe3Si nanoparticles in an amorphous SiCO ceramic matrix. 2018 , 6, 7661-7670		18
526	The Fabrication and High-Efficiency Electromagnetic Wave Absorption Performance of CoFe/C Core-Shell Structured Nanocomposites. 2018 , 13, 68		15
525	Robust and Stable Cu Nanowire@Graphene Core-Shell Aerogels for Ultraeffective Electromagnetic Interference Shielding. 2018 , 14, e1800634		93
524	Facile synthesis of 3D flower-like Ni microspheres with enhanced microwave absorption properties. 2018 , 6, 9615-9623		74
523	Tuning the Electromagnetic Synergistic Effects for Enhanced Microwave Absorption via Magnetic Nickel Core Encapsulated in Hydrogenated Anatase TiO2 Shell. 2018 , 6, 12046-12054		33

522	A new method for an efficient porous carbon/Fe3O4 composite based electromagnetic wave absorber derived from a specially designed polyimide. 2018 , 155, 148-155		26
521	In-Situ Conversion of ZnO/NiZnC/CNT Composite from NiZn Bimetallic MOF Precursor with Enhanced Electromagnetic Property. <i>Nanomaterials</i> , 2018 , 8,	·4	18
520	One-step hydrothermal synthesis and enhanced microwave absorption properties of Ni0.5Co0.5Fe2O4/graphene composites in low frequency band. <i>Ceramics International</i> , 2018 , 44, 20896-20	o ¹ 905	40
519	Self-Assembly CoreBhell Graphene-Bridged Hollow MXenes Spheres 3D Foam with Ultrahigh Specific EM Absorption Performance. 2018 , 28, 1803938		366
518	In Situ Preparation of Cobalt Nanoparticles Decorated in N-Doped Carbon Nanofibers as Excellent Electromagnetic Wave Absorbers. <i>ACS Applied Materials & Company Interfaces</i> , 2018 , 10, 22591-22601	.5	76
517	Low temperature preparation of highly fluorinated multiwalled carbon nanotubes activated by FeO to enhance microwave absorbing property. 2018 , 29, 365703		10
516	Development of sulfide-doped Graphene/Fe3O4 absorber with wide band electromagnetic absorption performance. <i>Journal of Alloys and Compounds</i> , 2019 , 770, 90-97	.7	21
515	Fabrication of NiFeO@carbon fiber coated with phytic acid-doped polyaniline composite and its application as an electromagnetic wave absorber 2019 , 9, 25932-25941		62
514	Achieving MOF-derived one-dimensional porous ZnO/C nanofiber with lightweight and enhanced microwave response by an electrospinning method. <i>Journal of Alloys and Compounds</i> , 2019 , 806, 983-991.	·7	47
513	Distinct plasmon resonance enhanced microwave absorption of strawberry-like Co/C/Fe/C core-shell hierarchical flowers engineering the diameter and interparticle spacing of Fe/C nanoparticles 2019 , 9, 22644-22655		17
512	Preparation of SiO-MnFeO Composites via One-Pot Hydrothermal Synthesis Method and Microwave Absorption Investigation in S-Band. <i>Molecules</i> , 2019 , 24,	.8	12
511	Foam structure to improve microwave absorption properties of silicon carbide/carbon material. Journal of Materials Science and Technology, 2019, 35, 2658-2664	.1	22
510	Recent progress of nanomaterials for microwave absorption. 2019 , 5, 503-541		160
509	Mesoporous strontium ferrite/polythiophene composite: Influence of enwrappment on structural, thermal, and electromagnetic interference shielding. 2019 , 175, 107143		18
508	Facile fabrication for core-shell BaFe12O19@C composites with excellent microwave absorption properties. <i>Journal of Alloys and Compounds</i> , 2019 , 805, 130-137	·7	29
507	Facile fabrication of SBA-15/polypyrrole composites with long-rod shape for enhanced electromagnetic wave absorption. 2019 , 288, 109584		11
506	Magnetic proximity effect in CoFe2O4 @ BiFeO3 core-shell nanoparticles. 2019,		0
505	Nitrogen-doped and Fe-filled CNTs/NiCo2O4 porous sponge with tunable microwave absorption performance. 2019 , 153, 737-744		91

504	Transverse size effect on electromagnetic wave absorption performance of exfoliated thin-layered flake graphite. 2019 , 153, 682-690		25
503	Electromagnetic wave absorption properties of multi-walled carbon nanotubes-anatase composites in 11/18 GHz frequency. <i>Ceramics International</i> , 2019 , 45, 22759-22764	5.1	2
502	Core-Shell CoNi@Graphitic Carbon Decorated on B,N-Codoped Hollow Carbon Polyhedrons toward Lightweight and High-Efficiency Microwave Attenuation. <i>ACS Applied Materials & Discourse Amp; Interfaces</i> , 2019 , 11, 25624-25635	9.5	242
501	In situ synthesis of a multifunctional polymer with a stable core-shell structure for effective dewatering. 2019 , 141, 105858		2
500	Large-scale synthesis and outstanding microwave absorption properties of carbon nanotubes coated by extremely small FeCo-C core-shell nanoparticles. 2019 , 153, 52-61		60
499	Jute-based porous biomass carbon composited by Fe3O4 nanoparticles as an excellent microwave absorber. <i>Journal of Alloys and Compounds</i> , 2019 , 803, 1119-1126	5.7	32
498	Investigation of structural, hysteresis and electromagnetic parameters for microwave absorption application in doped BaBr hexagonal ferrites at X-band. <i>Journal of Alloys and Compounds</i> , 2019 , 806, 1220-1229	5.7	29
497	Effect of Reaction Time on Microwave Absorption Properties of FeO Hollow Spheres Synthesized via Ostwald Ripening. <i>Materials</i> , 2019 , 12,	3.5	6
496	Low frequency microwave absorption property of CIPs/ZnO/Graphene ternary hybrid prepared via facile high-energy ball milling. 2019 , 356, 325-334		14
495	Self-Assembly-Magnetized MXene Avoid Dual-Agglomeration with Enhanced Interfaces for Strong Microwave Absorption through a Tunable Electromagnetic Property. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 44536-44544	9.5	97
494	Enhanced Electromagnetic Wave Absorption by Porous Composites of Co-Containing Zeolitic-Imidazolate Framework. 2019 , 93, 2256-2262		
493	Two-Step Solvothermal Synthesis of (ZnCoFeO/MnNiFeO)@C-MWCNTs Hybrid with Enhanced Low Frequency Microwave Absorbing Performance. <i>Nanomaterials</i> , 2019 , 9,	5.4	7
492	Electrical Tunability of Domain Wall Conductivity in LiNbO Thin Films. 2019 , 31, e1902890		38
491	Fabrication of Magnetic Cobalt and Electrically Conductive Polyaniline-Filled Three-Phase Nanocomposite for Microwave Absorption. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2019 , 216, 1900663	1.6	3
490	Mass fabrication and superior microwave absorption property of multilayer graphene/hexagonal boron nitride nanoparticle hybrids. 2019 , 3,		32
489	Multi-scale magnetic coupling of Fe@SiO@C-Ni yolk@triple-shell microspheres for broadband microwave absorption. 2019 , 11, 17270-17276		44
488	Lightweight Fe@C hollow microspheres with tunable cavity for broadband microwave absorption. 2019 , 177, 107346		52
487	Three dimensional graphene-supported nitrogen-doped carbon nanotube architectures for attenuation of electromagnetic energy. 2019 , 7, 11868-11878		36

486	Achieving excellent metallic magnet-based absorbents by regulating the eddy current effect. Journal of Applied Physics, 2019 , 126, 105109	2.5	26
485	Investigation of the Broadband Microwave Absorption of Citric Acid Coated Fe3O4/PVDF Composite Using Finite Element Method. 2019 , 9, 3877		28
484	Synthesis of Fe3O4/carbon foams composites with broadened bandwidth and excellent electromagnetic wave absorption performance. <i>Composites Part A: Applied Science and Manufacturing</i> , 2019 , 127, 105627	8.4	100
483	Magnetically recyclable Cr complex for the dehydration of glucose to 5-HMF in acidic task specific ionic liquid. 2019 , 9, 095102		0
482	Morphology-dependent electromagnetic wave absorbing properties of iron-based absorbers: one-dimensional, two-dimensional, and three-dimensional classification. 2019 , 87, 20901		9
481	A facile coprecipitation method to synthesize FeO/Fe decorated graphite sheets with enhanced microwave absorption properties. 2019 , 30, 185704		9
480	Urchin-like polyaniline/magnetic carbon sphere hybrid with excellent electromagnetic wave absorption performance. 2019 , 248, 59-67		32
479	Preparation of microwave absorbing Co-C nanofibers with robust superhydrophobic properties by electrospinning. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 , 30, 3365-3377	2.1	11
478	Core-shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption. 2019 , 145, 701-711		159
477	Two-dimensional MoS2 modified using CoFe2O4 nanoparticles with enhanced microwave response in the X and Ku band. 2019 , 6, 590-597		57
476	Ultralight CoNi/rGO aerogels toward excellent microwave absorption at ultrathin thickness. 2019 , 7, 441-448		144
475	A review of metal oxide-related microwave absorbing materials from the dimension and morphology perspective. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 , 30, 10961-10984	2.1	57
474	Hierarchical FeO@carbon@MnO hybrid for electromagnetic wave absorber. <i>Journal of Colloid and Interface Science</i> , 2019 , 553, 465-474	9.3	89
473	Rational Design of Hierarchical SiO2@TiO2 Composite with Large Internal Void Space for High-Performance Microwave Absorption. 2019 , 93, 1128-1132		3
472	Biogenic Synthesis of Graphitic Carbon Nitride for Photocatalytic Degradation of Organic Dyes. 2019 , 4, 10263-10272		12
471	Mesoporous CoFe alloy@SiO2 nanocapsules with controllable Co/Fe atomic ratio for highly efficient tunable electromagnetic wave absorption. <i>Journal of Alloys and Compounds</i> , 2019 , 802, 41-49	5.7	15
470	Synthesis and electromagnetic wave absorption performance of NiCo2O4 nanomaterials with different nanostructures. 2019 , 21, 4568-4577		22
469	Core@shell structured flower-like Co0.6Fe2.4O4@MoS2 nanocomposites: a strong absorption and broadband electromagnetic wave absorber. 2019 , 7, 8975-8981		66

468	Achieving Excellent Electromagnetic Wave Absorption Capabilities by Construction of MnO Nanorods on Porous Carbon Composites Derived from Natural Wood via a Simple Route. 2019 , 7, 1179	5-1180	5 ⁵¹
467	Enhanced microwave absorption properties of polyaniline-modified porous Fe3O4@C nanosheets. Journal of Materials Science: Materials in Electronics, 2019 , 30, 11907-11913	2.1	6
466	Synthesis and electromagnetic properties of one-dimensional La3+-Doped mullite based on first-principles simulation. <i>Ceramics International</i> , 2019 , 45, 17325-17335	5.1	6
465	Fibrous Composites with Double-Continuous Conductive Network for Strong Low-Frequency Microwave Absorption. 2019 , 58, 11927-11938		29
464	Enhanced electromagnetic wave absorption of worm-like hollow porous MnO@C/CNTs composites. Journal of Alloys and Compounds, 2019 , 797, 1086-1094	5.7	13
463	Fabrication of Three-Dimensional Flower-like Heterogeneous FeO/Fe Particles with Tunable Chemical Composition and Microwave Absorption Performance. <i>ACS Applied Materials & Materials & Interfaces</i> , 2019 , 11, 19267-19276	9.5	84
462	Cobaltosic oxide fiber/Carbon Fiber composites fabricated by hydrothermal for improved electromagnetic interference shielding properties. 2019 , 33, 1950075		0
461	Fabrication of NiO/NiCoO Mixtures as Excellent Microwave Absorbers. 2019, 14, 155		7
460	Two-step synthesis of self-assembled 3D graphene/shuttle-shaped zinc oxide (ZnO) nanocomposites for high-performance microwave absorption. <i>Journal of Alloys and Compounds</i> , 2019 , 797, 1310-1319	5.7	34
459	Double network nested foam composites with tunable electromagnetic wave absorption performances. 2019 , 6, 1579-1586		13
458	Facile synthesis of lightweight carbonized hydrochars decorated with dispersed ZnO nanocrystals and enhanced microwave absorption properties. 2019 , 150, 259-267		18
457	Preparation of magnetic flower-like carbon-matrix composites with efficient electromagnetic wave absorption properties by carbonization of MIL-101(Fe). 2019 , 487, 165306		27
456	Nanolayered flaky Fe-based amorphous-nanocrystalline/graphite sheet composites with enhanced microwave absorbing properties. <i>Journal of Alloys and Compounds</i> , 2019 , 797, 39-44	5.7	7
455	Mesoporous electromagnetic composite particles: Electric current responsive release of biologically active molecules and antibacterial properties. 2019 , 181, 85-93		11
454	Synthesis of pomegranate-like Mo2C@C nanospheres for highly efficient microwave absorption. <i>Chemical Engineering Journal</i> , 2019 , 372, 312-320	14.7	85
453	Structural and magnetic evolution of FexOy@carbon core-shell nanoparticles synthesized by a one-step thermal pyrolysis. 2019 , 150, 213-219		9
452	Enhanced Microwave Absorption Performance from Magnetic Coupling of Magnetic Nanoparticles Suspended within Hierarchically Tubular Composite. 2019 , 29, 1901448		321
451	Lightweight Composite Microwave Absorbing Materials Based on Graphene Aerogels with Honeycomb Structure. 2019 , 13, 1900179		15

450	Electronic and Dielectric Properties of MoV-Oxide (M1 Phase) under Alkane Oxidation Conditions. 2019 , 123, 13269-13282	10
449	MnFe2O4-coated carbon nanotubes with enhanced microwave absorption: Effect of CNT content and hydrothermal reaction time. 2019 , 96, 31-43	30
448	Hierarchical core/shell bamboo-like polypyrrole nanofibers/Fe3O4 hybrids with superior microwave absorption performance. 2019 , 26, 1087-1100	4
447	Synergistic influence of micropore architecture and TiO2 coating on the microwave absorption properties of Co nanoparticles. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 , 30, 5620-5630 ^{2.1}	5
446	Construction of polyaniline aligned on magnetic functionalized biomass carbon giving excellent microwave absorption properties. 2019 , 174, 176-183	48
445	Fiber-guided and particle-localized microwave absorption of nanoscale CoFe2O4 derived from citric acid-based precursor. 2019 , 561, 16-22	11
444	Fe3O4 quantum dots embedded in porous carbon microspheres for long-life lithium-ion batteries. 2019 , 12, 269-276	13
443	A Review on Iron Oxide-Based Nanoarchitectures for Biomedical, Energy Storage, and Environmental Applications. 2019 , 3, 1800512	47
442	Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption. 2019 , 7, 5037-5046	127
441	Mesoporous carbon hollow microspheres with tunable pore size and shell thickness as efficient electromagnetic wave absorbers. 2019 , 167, 690-699	125
440	Great enhancement of electromagnetic wave absorption of MWCNTs@carbonaceous CoO composites derived from MWCNTs-interconnected zeolitic imidazole framework. 2019 , 481, 99-107	35
439	Porous Fe Hollow Structures with Optimized Impedance Matching as Highly Efficient, Ultrathin, and Lightweight Electromagnetic Wave Absorbers. 2019 , 58, 6446-6455	9
438	Permittivity-Regulating Strategy Enabling Superior Electromagnetic Wave Absorption of Lithium Aluminum Silicate/rGO Nanocomposites. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2019 , 11, 18626-18636 9.5	88
437	The effect of ZnCl activation on microwave absorbing performance in walnut shell-derived nano-porous carbon 2019 , 9, 9718-9728	25
436	Wheat straw-derived magnetic carbon foams: In-situ preparation and tunable high-performance microwave absorption. <i>Nano Research</i> , 2019 , 12, 1423-1429	50
435	Electromagnetic Response and Energy Conversion for Functions and Devices in Low-Dimensional Materials. 2019 , 29, 1807398	372
434	Review of electromagnetic interference shielding materials fabricated by iron ingredients. 2019 , 1, 1640-167	 I 156
433	Synthesis of magnetically controlled Fe3O4 composites and their enhanced microwave absorption properties. 2019 , 6, 046104	11

432	The effect of a barium titanate xerogel precursor on the grain size and densification of fine-grained BaTiO3 ceramics. <i>Ceramics International</i> , 2019 , 45, 10626-10632	7
431	In-Situ Growth and Graphitization Synthesis of Porous Fe3O4/Carbon Fiber Composites Derived from Biomass as Lightweight Microwave Absorber. 2019 , 7, 5318-5328	77
430	Composition and Structure Design of Co3O4 Nanowires Network by Nickel Foam with Effective Electromagnetic Performance in C and X Band. 2019 , 7, 5543-5552	38
429	A cobalt-coated reticulated porous alumina for radar-absorption applications. 2019 , 55, 883-891	6
428	One-step hydrothermal synthesis of Ni-Fe-P/graphene nanosheet composites with excellent electromagnetic wave absorption properties 2019 , 9, 5570-5581	10
427	Controllable synthesis of hollow microspheres with Fe@Carbon dual-shells for broad bandwidth microwave absorption. 2019 , 147, 172-181	82
426	Metal Drganic Framework-Based PB@MoS2 Core Bhell Microcubes with High Efficiency and Broad Bandwidth for Microwave Absorption Performance. 2019 , 7, 7183-7192	62
425	High-Performance Microwave Absorption of MOF-Derived Core-Shell Co@N-doped Carbon Anchored on Reduced Graphene Oxide. 2019 , 5, 558-565	40
424	Ferromagnetic Co20Ni80 nanoparticles encapsulated inside reduced graphene oxide layers with superior microwave absorption performance. 2019 , 7, 2943-2953	51
423	Electromagnetic Wave Absorption Properties of Cobalt-Containing Polymer-Derived SiCN Ceramics. 2019 , 678, 012047	1
422	The Simulation of Electromagnetic Fields with Large Wavelengths. 2019 , 612, 022078	
421	Ultrathin and Light-Weight Graphene Aerogel with Precisely Tunable Density for Highly Efficient Microwave Absorbing. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 46386-46396	52
420	Bimetallic MOF-derived porous CoNi/C nanocomposites with ultra-wide band microwave absorption properties. 2019 , 43, 16546-16554	27
419	Enhanced microwave absorption performance from abundant polarization sites of ZnO nanocrystals embedded in CNTs via confined space synthesis. 2019 , 11, 22539-22549	25
418	Fe/N-Codoped Hollow Carbonaceous Nanospheres Anchored on Reduced Graphene Oxide for Microwave Absorption. 2019 , 2, 8063-8074	25
417	Magnetic-field-induced synthesis of one-dimensional core/shell Fe3O4/carbon nanorods composites as a highly efficient microwave absorber. 2019 , 548, 220-231	O
416	NiFeO nanoparticles supported on cotton-based carbon fibers and their application as a novel broadband microwave absorbent 2019 , 9, 29959-29966	7
415	Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance. <i>Journal of Colloid and Interface Science</i> , 2019 , 533, 481-4913	155

414	Effect of Synthesis Approaches and Morphological Properties on Dielectric Enhancement and Microwave Absorption of Fe3O4/PANI Nanocomposites. 2019 , 32, 1705-1714		5
413	Co nanoparticles supported on cotton-based carbon fibers: A novel broadband microwave absorbent. <i>Journal of Alloys and Compounds</i> , 2019 , 772, 760-769	5.7	43
412	Microporous Co/rGO nanocomposites: Strong and broadband microwave absorber with well-matched dielectric and magnetic loss. <i>Journal of Alloys and Compounds</i> , 2019 , 782, 556-565	5.7	15
411	Hierarchical formation mechanism of anisotropic magnetite microflakes and their superior microwave attenuation properties. <i>Journal of Alloys and Compounds</i> , 2019 , 781, 321-329	5.7	15
410	Investigations on structure-dependent microwave absorption performance of nano-Fe3O4 coated carbon-based absorbers. 2019 , 144, 216-227		49
409	Ni@C composites derived from Ni-based metal organic frameworks with a lightweight, ultrathin, broadband and highly efficient microwave absorbing properties. 2019 , 12, 011001		17
408	Facile chemical synthesis of amorphous FeB alloy nanoparticles and their superior electromagnetic wave absorption performance. 2019 , 126, 143-149		3
407	Porous magnetic carbon nanofibers (P-CNF/Fe) for low-frequency electromagnetic wave absorption synthesized by electrospinning. <i>Ceramics International</i> , 2019 , 45, 4474-4481	5.1	30
406	Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane. 2019 , 143, 507-516		206
405	Enhanced Microwave Absorption Properties of Metal Organic Framework (MOF)-Derived Carbonaceous ZnO Incorporated Reduced Graphene Oxide Composites. 2019 , 14, 1950005		4
404	Pea-like Fe/FeC Nanoparticles Embedded in Nitrogen-Doped Carbon Nanotubes with Tunable Dielectric/Magnetic Loss and Efficient Electromagnetic Absorption. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 4268-4277	9.5	158
403	Image-guided cancer therapy using aptamer-functionalized cross-linked magnetic-responsive FeO@carbon nanoparticles. 2019 , 1056, 108-116		27
402	Realizing significant dielectric dispersion of composites based on highly conducting silver-coated glass microspheres for wide-band non-magnetic microwave absorbers. 2019 , 7, 528-542		12
401	Influence of carbothermic reduction temperature on electromagnetic and microwave absorption properties of double loss Ti3SiC2/Co3Fe7 powders. <i>Journal of Alloys and Compounds</i> , 2019 , 779, 286-29.	2 5·7	15
400	Cobalt doping-induced strong electromagnetic wave absorption in SiC nanowires. <i>Journal of Alloys and Compounds</i> , 2019 , 781, 93-100	5.7	24
399	Broadband and strong microwave absorption of Fe/Fe3C/C coreEhell spherical chains enhanced by dual dielectric relaxation and dual magnetic resonances. <i>Journal of Alloys and Compounds</i> , 2019 , 782, 193-202	5.7	31
398	Fe3O4/Fe/C composites prepared by a facile thermal decomposition method and their application as microwave absorbers. <i>Journal of Alloys and Compounds</i> , 2019 , 784, 1123-1129	5.7	22
397	Facile synthesis and microwave absorption performance of coated carbon nanotubes by porous Fe3O4@C nanorods. 2019 , 248, 76-80		8

396	Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods. 2019 , 145, 433-444		281
395	Microwave Absorption Enhancement of Fe/C CoreBhell Hybrid Derived from a Metal-Organic Framework. 2019 , 14, 1950002		9
394	Investigation and optimization of Fe/ZnFeO as a Wide-band electromagnetic absorber. <i>Journal of Colloid and Interface Science</i> , 2019 , 536, 548-555	9.3	122
393	Tunable microwave absorption properties of nickel-carbon nanofibers prepared by electrospinning. <i>Ceramics International</i> , 2019 , 45, 3313-3324	5.1	48
392	Preparation of flower-dewdrops Fe3O4/carbon-SiO2 microsphere for microwave-triggered drug delivery. <i>Journal of Alloys and Compounds</i> , 2019 , 775, 826-835	5.7	16
391	Tailor-made core/shell/shell-like Fe3O4@SiO2@PPy composites with prominent microwave absorption performance. <i>Journal of Alloys and Compounds</i> , 2019 , 779, 831-843	5.7	46
390	Co/CoO@C nanocomposites with a hierarchical bowknot-like nanostructure for high performance broadband electromagnetic wave absorption. 2019 , 469, 607-616		25
389	A novel microwave absorber of FeCoNiCuAl high-entropy alloy powders: Adjusting electromagnetic performance by ball milling time and annealing. <i>Journal of Alloys and Compounds</i> , 2019 , 773, 194-201	5.7	37
388	Enhanced electromagnetic wave absorption of nanoporous Fe3O4 @larbon composites derived from metal-organic frameworks. 2019 , 142, 20-31		217
387	Statistical Optimization of the Biodiesel Production Process Using a Magnetic Core-Mesoporous Shell KOH/Fe3O4@FAl2O3 Nanocatalyst. 2019 , 42, 89-99		28
386	Facile synthesis RGO/MnOx composite aerogel as high-efficient electromagnetic wave absorbents. Journal of Alloys and Compounds, 2019 , 773, 980-987	5.7	35
385	Synthesis and enhanced microwave absorption properties of urchin-like polyaniline/Ni0.4Zn0.4Co0.2Fe2O4 composites. 2019 , 76, 3113-3125		9
384	Customized unique core-shell Fe2N@N-doped carbon with tunable void space for microwave response. 2020 , 156, 49-57		72
383	Optimization of electromagnetic wave absorbing properties for Ni-Co-P/GNs by controlling the content ratio of Ni to Co. 2020 , 495, 165753		9
382	Enhanced persulfate oxidation of organic pollutants and removal of total organic carbons using natural magnetite and microwave irradiation. <i>Chemical Engineering Journal</i> , 2020 , 383, 123140	14.7	26
381	Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption. <i>Chemical Engineering Journal</i> , 2020 , 383, 123207	14.7	170
380	Recent advances in the development OF Fe3O4-BASED microwave absorbing materials. <i>Ceramics International</i> , 2020 , 46, 1249-1268	5.1	48
379	A hybrid comprised of porous carbon nanofibers and rGO for efficient electromagnetic wave absorption. 2020 , 157, 703-713		60

(2020-2020)

378	A thin dielectric ceramic coating with good absorbing properties composed by tungsten carbide and alumina. <i>Journal of Alloys and Compounds</i> , 2020 , 818, 152851	5.7	10
377	Facile design of cubic-like cerium oxide nanoparticles decorated reduced graphene oxide with enhanced microwave absorption properties. <i>Journal of Alloys and Compounds</i> , 2020 , 817, 152766	5.7	24
376	MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption. 2020 , 157, 478-485		89
375	Direct one-step synthesis of CoFe@Co@C hybrids derived from a metal organic framework for a lightweight and high-performance microwave absorber. 2020 , 31, 095703		4
374	Enhanced electromagnetic wave absorption properties of Ni2MnGa microparticles due to continuous dual-absorption peaks. <i>Journal of Alloys and Compounds</i> , 2020 , 816, 152588	5.7	2
373	Rational design of 2D hierarchically laminated Fe3O4@nanoporous carbon@rGO nanocomposites with strong magnetic coupling for excellent electromagnetic absorption applications. 2020 , 8, 2123-21	34	119
372	Oxygen-sulfur Co-substitutional Fe@C nanocapsules for improving microwave absorption properties. 2020 , 65, 623-630		40
371	Effect of nanoporosity on the electromagnetic wave absorption performance in a biomass-templated Fe3O4/C composite: a small-angle neutron scattering study. 2020 , 8, 319-327		21
370	Fabrication of microwave absorbing Ni/NiO/C nanofibers with robust superhydrophobic properties by electrospinning. <i>Journal of Materials Science: Materials in Electronics</i> , 2020 , 31, 226-238	2.1	12
369	Enhanced electromagnetic wave absorption of olive-like Fe3O4/Fe@C core-shell nanocomposite in Ku band. <i>Journal of Alloys and Compounds</i> , 2020 , 821, 153275	5.7	14
368	Ionic liquid functionalized magnetic organosilica nanocomposite: A powerful and efficient support for manganese catalyst. 2020 , 243, 122589		4
367	Constructing uniform Fe3O4@C@MnO2 microspheres with yolk-shell interior toward enhancement in microwave absorption. <i>Journal of Alloys and Compounds</i> , 2020 , 817, 152795	5.7	43
366	Rational design of hollow nanosphere Fe2O3/MWCNTs composites with enhanced electromagnetic wave absorption. <i>Journal of Alloys and Compounds</i> , 2020 , 822, 153570	5.7	30
365	Sandwich-like Magnetic Graphene Papers Prepared with MOF-Derived Fe3O4 \(\Omega\) for Absorption-Dominated Electromagnetic Interference Shielding. 2020 , 59, 154-165		33
364	Investigation of adjacent spacing dependent microwave absorption properties of lamellar structural Ti3C2Tx MXenes. 2020 , 31, 808-815		29
363	Enhancement of electromagnetic interference shielding and heat-resistance properties of silver-coated carbonyl iron powders composite material. 2020 , 499, 166244		8
362	Construction of multiple heterogeneous interface and its effect on microwave absorption of SiBCN ceramics. <i>Ceramics International</i> , 2020 , 46, 7823-7832	5.1	19
361	Three-dimensional graphene supported Fe3O4 coated by polypyrrole toward enhanced stability and microwave absorbing properties. 2020 , 9, 762-772		28

360	Role of spin disorder in magnetic and EMI shielding properties of Fe3O4/C/PPy core/shell composites. 2020 , 55, 2826-2835		23
359	Balancing interface polarization strategy for enhancing electromagnetic wave absorption of carbon materials. <i>Chemical Engineering Journal</i> , 2020 , 391, 123538	14.7	28
358	CTAB-surface-functionalized magnetic MOF@MOF composite adsorbent for Cr(VI) efficient removal from aqueous solution. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2020 , 586, 124255	5.1	35
357	Rational construction of Co NPs embedded N-doped carbon layer/ZrSBA-15 composites with hierarchical succulent-like nanostructures for enhanced microwave absorption. 2020 , 294, 109880		7
356	Construction of a three-dimensional rGO/CoFe2O4 nanorods composite with enhanced microwave absorption performance. <i>Journal of Materials Science: Materials in Electronics</i> , 2020 , 31, 18590-18604	2.1	3
355	Superior Microwave Absorption Properties Derived from the Unique 3D Porous Heterogeneous Structure of a CoS@FeO@rGO Aerogel. <i>Materials</i> , 2020 , 13,	3.5	2
354	Biomimicry Surface-Coated Proppant with Self-Suspending and Targeted Adsorption Ability. 2020 , 5, 25824-25831		2
353	A new strategy to achieve the controllable preparation of nanoceramics with BaTiO3@resin coreEhell nanoparticles. 2020 , 2, 1		
352	Preparation of Ni/C porous fibers derived from jute fibers for high-performance microwave absorption 2020 , 10, 36644-36653		13
351	Solvent-Free Synthesis of Ultrafine Tungsten Carbide Nanoparticles-Decorated Carbon Nanosheets for Microwave Absorption. <i>Nano-Micro Letters</i> , 2020 , 12, 153	19.5	53
350	Dual functions of glucose induced composition-controllable Co/C microspheres as high-performance microwave absorbing materials. 2020 , 168, 404-414		42
349	Preparation of Ferrite Fe3O4 and Its Electromagnetic Wave Absorption Properties. 2020 , 772, 012115		1
348	Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. 2020 , 168, 606-623		148
347	Enhanced microwave absorption properties of Nd-doped NiZn ferrite/polyaniline nanocomposites. <i>Ceramics International</i> , 2020 , 46, 25405-25414	5.1	12
346	Electromagnetic wave absorption properties in Ku-band of magnetic iron nitrides prepared by high energy ball milling. 2020 , 514, 167246		2
345	Reduced Graphene Oxide-CoFe2O4/FeCo Nanoparticle Composites for Electromagnetic Wave Absorption. 2020 , 3, 8939-8948		15
344	FeCoNiCuAl high entropy alloys microwave absorbing materials: Exploring the effects of different Cu contents and annealing temperatures on electromagnetic properties. <i>Journal of Alloys and Compounds</i> , 2020 , 848, 156491	5.7	10
343	A cauliflower-shaped nickel @ porous calcium silicate core-shell composite: Preparation and enhanced electromagnetic shielding performance. 2020 , 199, 108343		16

(2020-2020)

342	In-situ synthesis of layered porous coal-derived carbon/Ni magnetic composites with promising microwave absorption performance. 2020 , 513, 167231		11	
341	Cornstalk-derived macroporous carbon materials with enhanced microwave absorption. <i>Journal of Materials Science: Materials in Electronics</i> , 2020 , 1	2.1	3	
340	The tunable microwave absorption properties of the Co2+🗹r4+ co-substituted Co2W-type hexagonal ferrites. <i>Journal of Materials Science: Materials in Electronics</i> , 2020 , 31, 20908-20918	2.1	2	
339	Novel three-dimensional TiO2-Fe3O4@polypyrrole composites with tunable microwave absorption in the 240 GHz frequency range. 2020 , 55, 15493-15509		12	
338	Microwave absorption performance of Fe@Fe4N/amorphous carbon submicron fibers: critical role of the interface. 2020 , 55, 16954-16968		6	
337	Realizing Maximum Microwave Absorption of Poly(3,4-ethylenedioxythiophene) with a Data-Driven Method. <i>ACS Applied Electronic Materials</i> , 2020 , 2, 2937-2944	4	10	
336	Heterostructure Composites of CoS Nanoparticles Decorated on TiCT Nanosheets and Their Enhanced Electromagnetic Wave Absorption Performance. <i>Nanomaterials</i> , 2020 , 10,	5.4	6	
335	Porous Fe@Fe3O4-C Nanocomposite Using Polyvinyl Alcohol Sponge as Template for Microwave Absorption. 2020 , 49, 6394-6402		6	
334	Prussian Blue Derived Fe/C Anchoring on Multiwalled Carbon Nanotubes Forming Chain-Like Efficient Electromagnetic Wave Absorbent. 2020 , 49, 6631-6642		7	
333	Anisotropic shaped Fe3O4 nanoparticles: Microwave-assisted thermal decomposition synthesis and their electromagnetic properties. 2020 , 10, 085208		1	
332	General Fabrication of 3D Hierarchically Structured Bamboo-like Nitrogen-Doped Carbon Nanotube Arrays on 1D Nitrogen-Doped Carbon Skeletons for Highly Efficient Electromagnetic Wave Energy Attenuation. <i>ACS Applied Materials & Samp; Interfaces</i> , 2020 , 12, 40692-40701	9.5	42	
331	The enhanced microwave broadband absorbing ability of carbon microspheres via electromagnetic simulating honeycomb design. <i>Journal of Materials Science: Materials in Electronics</i> , 2020 , 1	2.1	4	
330	Effect of Solvothermal Reaction-Time on Microstructure and Microwave Absorption Properties of Cobalt Ferrite. <i>Materials</i> , 2020 , 13,	3.5	4	
329	Efficient microwave traps with markedly enhanced interfacial polarization and impedance matching enabled by dual-shelled, dual-cavity magnetic@dielectric hollow nanospheres. 2020 , 8, 16489-16497		9	
328	Enhanced microwave absorption properties of Ti3C2 MXene powders decorated with Ni particles. 2020 , 55, 10339-10350		21	
327	Microwave Absorption Properties of Magnetite Particles Extracted from Nickel Slag. <i>Materials</i> , 2020 , 13,	3.5	3	
326	Bead-like cobalt nanoparticles coated with dielectric SiO and carbon shells for high-performance microwave absorber. <i>Journal of Colloid and Interface Science</i> , 2020 , 578, 346-357	9.3	30	
325	Preparation of Reduced Graphene Oxide/Magnetic Metal Composites and Its Electromagnetic Wave Absorption Properties. 2020 , 729, 012039		_	

324	Embedded MoS2-PANI nanocomposites with advanced microwave absorption performance. 2020 , 198, 108239		36
323	Surface Modification of Magnetic Nanoparticles by Carbon-Coating Can Increase Its Biosafety: Evidences from Biochemical and Neurobehavioral Tests in Zebrafish. <i>Molecules</i> , 2020 , 25,	4.8	7
322	Facile preparation of carbon nanosheet frameworks/magnetic nanohybrids with heterogeneous interface as an excellent microwave absorber. <i>Journal of Alloys and Compounds</i> , 2020 , 838, 155586	5.7	8
321	Production of hierarchical porous carbon nanosheets from cheap petroleum asphalt toward lightweight and high-performance electromagnetic wave absorbents. 2020 , 166, 218-226		38
320	Biotemplate Synthesis of Fe3O4/Polyaniline for Supercapacitor. 2020 , 30, 101554		9
319	Synthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbon. 2020 , 167, 148-159		70
318	Multifunctional magnetic iron oxide nanoparticles: an advanced platform for cancer theranostics. 2020 , 10, 6278-6309		99
317	Unique carbon nanofiber@ Co/C aerogel derived bacterial cellulose embedded zeolitic imidazolate frameworks for high-performance electromagnetic interference shielding. 2020 , 167, 575-584		42
316	Design of novel CNT/RGO/ZIF-8 ternary hybrid structure for lightweight and highly effective microwave absorption. 2020 , 31, 414001		7
315	Novel approach to prepare carbon-encapsulated CIPs@FeO composite for efficient absorption of low-frequency microwave. <i>Journal of Materials Science: Materials in Electronics</i> , 2020 , 31, 11059-11070	2.1	11
314	Efficient Electromagnetic Wave Absorption of Porous CoOto@RGO Composites with Optimized Impedance Matching Derived from Metal-Organic Frameworks. 2020 , 15, 2050104		0
313	Double-layer absorbers based on hierarchical MXene composites for microwave absorption through optimal combination. 2020 , 35, 1481-1491		4
312	Superior Microwave Absorption Based on ZnO Capped MnO2 Nanostructures. 2020 , 7, 2000407		17
311	MetalBrganic framework-derived C/Co/Co3O4 nanocomposites with excellent microwave absorption properties in low frequencies. <i>Journal of Materials Science: Materials in Electronics</i> , 2020 , 31, 11700-11713	2.1	9
310	Nb2O5/Nb2CTx composites with different morphologies through oxidation of Nb2CTx MXene for high-performance microwave absorption. <i>Journal of Alloys and Compounds</i> , 2020 , 843, 155713	5.7	25
309	Characterization and measurement of nanostructured copper-based electromagnetic wave absorber. 2020 , 40, 313-321		
308	One pot green synthesis and EM wave absorption performance of MoS2@nitrogen doped carbon hybrid decorated with ultrasmall cobalt ferrite nanoparticles. 2020 , 163, 202-212		66
307	Superior and highly absorbed electromagnetic interference shielding performance achieved by designing the reflection-absorption-integrated shielding compartment with conductive wall and lossy core. <i>Chemical Engineering Journal</i> , 2020 , 393, 124644	14.7	38

(2020-2020)

306	Microwave-induced release and degradation of airborne antibiotic resistance genes (ARGs) from Escherichia coli bioaerosol based on microwave absorbing material. 2020 , 394, 122535		7
305	Hollow Zeolite Nanoparticles Combined with Fe3O4@MnO2 Tandem Catalyst for Converting Syngas to Aromatics-Rich Gasoline. 2020 , 3, 2857-2866		7
304	Improved microwave absorption performance of a multi-dimensional Fe2O3/CNTCM@CN assembly achieved by enhanced dielectric relaxation. 2020 , 8, 5715-5726		11
303	MetalBrganic framework-based Fe/C@Co3O4 coreBhell nanocomposites with outstanding microwave absorption properties in low frequencies. 2020 , 55, 7304-7320		24
302	Measurement of Electric and Magnetic Properties of ZnO Nanoparticles in the X-Band Using NicolsonRossWeir Analysis. 2020 , 49, 3668-3676		7
301	Magnetized MXene Microspheres with Multiscale Magnetic Coupling and Enhanced Polarized Interfaces for Distinct Microwave Absorption via a Spray-Drying Method. <i>ACS Applied Materials & Materials (ACS Applied Materials ACS)</i> 12, 18138-18147	9.5	56
300	Heterogeneous iron-nickel compound/RGO composites with tunable microwave absorption frequency and ultralow filler loading. 2020 , 22, 8639-8646		36
299	Optical properties of heat-treated hierarchical structure of Eu3+ modified C-CaIn2O4 of small coreBhell crystallites. 2020 , 2, 1		
298	Construction and Microwave Absorption Properties of Core@Double-Shell Structured Fe3O4@Polyaniline@MnO2 Nanospheres. 2020 , 15, 2050032		10
297	Delamination strategy to achieve Ti3C2Tx/CNZF composites with tunable electromagnetic absorption. 2020 , 112, 105008		16
296	Carbon-encapsulated MnFe2O4 nanoparticles: effects of carbon on structure, magnetic properties and Cr(VI) removal efficiency. 2020 , 126, 1		4
295	Microwave absorption and thermal conductivity properties of HO-BNNS@Fe3O4 composites. Journal of Alloys and Compounds, 2020 , 837, 155574	5.7	6
294	A novel and facile-to-synthesize three-dimensional honeycomb-like nano-Fe3O4@C composite: Electromagnetic wave absorption with wide bandwidth. 2020 , 169, 118-128		35
293	Feasibility of as-prepared reticulated porous barium titanate without additional radar-absorbing material coating in potential military applications. 2020 , 56, 1481-1491		6
292	Design of magnetic triple-shell hollow structural Fe3O4/FeCo/C composite microspheres with broad bandwidth and excellent electromagnetic wave absorption performance. <i>Ceramics International</i> , 2020 , 46, 23932-23940	5.1	14
291	Self-cleaning functionalized FeNi/NiFe2O4/NiO/C nanofibers with enhanced microwave absorption performance. <i>Ceramics International</i> , 2020 , 46, 13397-13406	5.1	27
2 90	Hectogram-scale green synthesis of hierarchical 4A zeolite@CuO (OH) (0 №020, 10, 6405-6413		1
289	Necklace-like Fe3O4 nanoparticle beads on carbon nanotube threads for microwave absorption and supercapacitors. 2020 , 189, 108517		33

288	Facile preparation of CoS2 nanoparticles embedded into polyaniline with tunable electromagnetic wave absorption performance. 2020 , 246, 122835		13
287	Magnetic solid-phase extraction based on fluconazole-functionalized Fe3O4@SiO2 nanoparticles for the spectrophotometric determination of cationic dyes in environmental water samples. 2020 , 17, 1591-1600		5
286	Facile One-Pot Solvothermal Synthesis of the RGO/MWCNT/FeO Hybrids for Microwave Absorption. 2020 , 5, 2899-2909		6
285	Gumdrop-cake-like CuNi/C nanofibers with tunable microstructure for microwave absorbing application. <i>Ceramics International</i> , 2020 , 46, 11406-11415	5.1	5
284	Carbon nanofibers supported by FeCo nanocrystals as difunctional magnetic/dielectric composites with broadband microwave absorption performance. <i>Journal of Alloys and Compounds</i> , 2020 , 824, 15398	з б ·7	39
283	Facile preparation and enhanced electromagnetic wave absorption properties of Fe3O4 @PVDF nanocomposite. 2020 , 9, 2513-2521		9
282	Facile synthesis of porous carbon/Fe3O4 composites derived from waste cellulose acetate by one-step carbothermal method as a recyclable adsorbent for dyes. 2020 , 9, 3384-3393		12
281	Viscoelastic and Magnetically Aligned Flaky Fe-Based Magnetorheological Elastomer Film for Wide-Bandwidth Electromagnetic Wave Absorption. 2020 , 59, 3425-3437		17
2 80	Urchin-like Amorphous Nitrogen-Doped Carbon Nanotubes Encapsulated with Transition-Metal-Alloy@Graphene Core@Shell Nanoparticles for Microwave Energy Attenuation. <i>ACS Applied Materials & Damp; Interfaces</i> , 2020 , 12, 9628-9636	9.5	37
279	Microwave absorption enhancement of e-Fe3O4@C microspheres by core surface modification. <i>Journal of Alloys and Compounds</i> , 2020 , 835, 155307	5.7	25
278	Synthesis and microwave absorption properties of bamboo-like EsiC nanowires. 2020, 17, 1869-1881		5
277	Co/C broad band electromagnetic wave absorption composite derived from preferred precursor ZIF-67: preparation and performance. <i>Journal of Materials Science: Materials in Electronics</i> , 2020 , 31, 641	2 -643	4 ⁴
276	Preparation and microwave absorption properties of petal CoO/CNFs composites. <i>Journal of Materials Science: Materials in Electronics</i> , 2020 , 31, 7606-7615	2.1	2
275	Dual-template hydrothermal synthesis of multi-channel porous NiCo2O4 hollow spheres as high-performance electromagnetic wave absorber. 2020 , 515, 146132		51
274	Ultrafine FeNi Nanocrystals Embedded in 3D Honeycomb-Like Carbon Matrix for High-Performance Microwave Absorption. <i>Nanomaterials</i> , 2020 , 10,	5.4	8
273	Design of molybdenum disulfide@polypyrrole compsite decorated with FeO and superior electromagnetic wave absorption performance. <i>Journal of Colloid and Interface Science</i> , 2020 , 572, 227-	233	48
272	Tuning of Shells in Trilaminar Core@Shell Nanocomposites in Controlling Electromagnetic Interference through Switching of the Shielding Mechanism. 2020 , 36, 4519-4531		8
271	Ultrathin MoS Nanosheets Encapsulated in Hollow Carbon Spheres: A Case of a Dielectric Absorber with Optimized Impedance for Efficient Microwave Absorption. <i>ACS Applied Materials & Interfaces</i> , 2020 , 12, 20785-20796	9.5	53

270	Fe-based material@N-doped carbon composites as environment-friendly microwave absorbers. 2021 , 171, 646-657		10
269	Hybrid silica-carbon bilayers anchoring on FeSiAl surface with bifunctions of enhanced anti-corrosion and microwave absorption. 2021 , 173, 185-193		43
268	In situ-derived carbon nanotube-decorated nitrogen-doped carbon-coated nickel hybrids from MOF/melamine for efficient electromagnetic wave absorption. <i>Journal of Colloid and Interface Science</i> , 2021 , 581, 783-793	9.3	48
267	PANI/BaFeO@Halloysite ternary composites as novel microwave absorbent. <i>Journal of Colloid and Interface Science</i> , 2021 , 582, 137-148	9.3	16
266	In-situ growth of core-shell ZnFeO @ porous hollow carbon microspheres as an efficient microwave absorber. <i>Journal of Colloid and Interface Science</i> , 2021 , 581, 475-484	9.3	45
265	Strain-regulated sensing properties of Fe2O3 nano-cylinders with atomic carbon layers for ethanol detection. <i>Journal of Materials Science and Technology</i> , 2021 , 68, 132-139	9.1	4
264	Size-morphology control, surface reaction mechanism and excellent electromagnetic wave absorption characteristics of Fe3O4 hollow spheres. <i>Journal of Alloys and Compounds</i> , 2021 , 854, 15708	7 5·7	9
263	Facile synthesis of BN/Ni nanocomposites for effective regulation of microwave absorption performance. <i>Journal of Alloys and Compounds</i> , 2021 , 850, 156680	5.7	31
262	A facile and eco-friendly synthesis of Fe@SAC composite absorbers derived from alginate for highly efficient electromagnetic wave attenuation. 2021 , 271, 116637		3
261	In situ synthesis hydrophobic Co/CoO/C nanofibers with enhanced microwave absorption. <i>Ceramics International</i> , 2021 , 47, 9178-9187	5.1	10
260	Preparation of lignin-based carbon/polyaniline composites for advanced microwave absorber. 2021 , 111, 108219		3
259	High-performance electromagnetic wave absorbers based on Fe-based MOFs-derived Fe/C composites. 2021 , 272, 116663		6
258	Enhanced electromagnetic wave absorption properties of Ni magnetic coating-functionalized SiC/C nanofibers synthesized by electrospinning and magnetron sputtering technology. 2021 , 763, 138230		8
257	Boron nitride nanocomposites for microwave absorption: A review. 2021 , 13, 100108		15
256	Silicate L ONillarbon triple shell sandwich structured composite hollow microspheres with low density boosted microwave absorption and high mechanical strength. 2021 , 9, 702-713		6
255	Electrostatically self-assembled two-dimensional magnetized MXene/hollow Fe3O4 nanoparticle hybrids with high electromagnetic absorption performance and improved impendence matching. 2021 , 9, 3500-3510		67
254	Effect of nitrogen-doping content on microwave absorption performances of Ni@NC nanocapsules. Journal of Materials Science: Materials in Electronics, 2021, 32, 1007-1021	2.1	4
253	Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties. 2021 , 172, 542-555		109

252	Constructing and optimizing hollow ZnFeO@polyaniline composites as high-performance microwave absorbers. <i>Journal of Colloid and Interface Science</i> , 2021 , 584, 80-91	9.3	13
251	Novel yolkEhell Fe3O4@void@SiO2@PPy nanochains toward microwave absorption application. 2021 , 56, 1312-1327		21
250	Recent progress of microwave absorption microspheres by magnetic-dielectric synergy. 2021 , 13, 2136	-2156	35
249	Dual synergistic effect of a carbon/metal hybrid network on the mechanical and electromagnetic interference shielding performance in self-assembly enhanced epoxy curing networks.		2
248	Ti3+ self-doped dark TiO2 nanoparticles with tunable and unique dielectric properties for electromagnetic applications. 2021 , 9, 1205-1214		13
247	In situ synthesis of layered coal-based carbon/Co porous magnetic composites with promising microwave absorption performance. 2021 , 45, 15525-15535		1
246	MOF-derived Co@C nanoparticle anchored aramid nanofiber (ANF) aerogel for superior microwave absorption capacity 2021 , 11, 26319-26325		1
245	Synthesis of hollow rod-like hierarchical structures assembled by CoFe/C nanosheets for enhanced microwave absorption.		3
244	Flexible and tunable microwave absorption structures using carbonyl iron@polydimethylsiloxane pillar arrays. 2021 , 54, 145001		1
243	Multicomponent Fe-based composites derived from the oxidation and reduction of Prussian blue towards efficient electromagnetic wave absorption. 2021 , 9, 5505-5514		7
242	Synthesis of novel hierarchical CoNi@NC hollow microspheres with enhanced microwave absorption performance. <i>Journal of Materials Science: Materials in Electronics</i> , 2021 , 32, 8000-8016	2.1	4
241	Chain-like Fe3O4@void@mSiO2@MnO2 composites with multiple porous shells toward highly effective microwave absorption application. 2021 , 314, 110867		23
240	Complex permittivity of epoxy composites with carbon nanotubes and TiO2 in microwave range. 2021 , 717, 121-127		1
239	Microporous Co1NFex@C nanoparticles: Strong wideband microwave absorbers for reflection loss less than IOIdB. <i>Journal of Alloys and Compounds</i> , 2021 , 856, 158175	5.7	O
238	Controllable fabrication of lightweight carbon with hierarchically hollow structure for enhanced microwave absorption. 2021 , 113, 108285		1
237	Achieving C/CuO microfiber composites with efficient microwave absorbing performance at low thickness. <i>Journal of Materials Science: Materials in Electronics</i> , 1	2.1	O
236	FeO/Bioactive glass nanostructure: A promising therapeutic platform for osteosarcoma treatment. 2020 ,		3
235	Highly stretchable and self-foaming polyurethane composite skeleton with thermally tunable microwave absorption properties. 2021 ,		4

234	MoS2 Nanoflowers Decorated with Fe3O4/Graphite Nanosheets for Controllable Electromagnetic Wave Absorption. 2021 , 4, 3434-3443		8
233	Optimization of microwave absorption properties of C/NiP microfiber composites. <i>Ceramics International</i> , 2021 , 47, 7937-7945	5.1	1
232	MOF-derived Co/CoO particles prepared by low temperature reduction for microwave absorption. <i>Chemical Engineering Journal</i> , 2021 , 410, 128378	14.7	29
231	Ethylenediamine-assisted hydrothermal synthesis of NiCoO absorber with controlled morphology and excellent absorbing performance. <i>Journal of Colloid and Interface Science</i> , 2021 , 588, 336-345	9.3	43
230	Study on the microwave absorbing properties of Fe nanoparticles prepared by the HEIBE method in expanded graphite matrix composites. <i>Journal of Alloys and Compounds</i> , 2021 , 860, 158434	5.7	2
229	Multi-phase heterostructures of flower-like Ni(NiO) decorated on two-dimensional Ti3C2Tx/TiO2 for high-performance microwave absorption properties. <i>Ceramics International</i> , 2021 , 47, 10764-10772	5.1	10
228	Synthesis of silver doped Fe3O4/C nanoparticles and its catalytic activities for the degradation and reduction of methylene blue and 4-nitrophenol. 2021 , 546, 149070		17
227	High-efficiency microwave absorption performance of cobalt ferrite microspheres/multi-walled carbon nanotube composites. <i>Journal of Materials Science: Materials in Electronics</i> , 1	2.1	O
226	Hollow microspheres of polypyrrole/magnetite/carbon nanotubes by spray-dry as an electromagnetic synergistic microwave absorber. 2021 , 175, 499-508		17
225	Enhanced microwave absorption properties of flake-shaped FeCo/BaFe12O19 composites. <i>Ceramics International</i> , 2021 , 47, 12389-12396	5.1	6
224	A simple route to prepare Fe3O4@C microspheres as electromagnetic wave absorbing material. 2021 , 12, 1552-1563		6
223	Facile synthesis of nickel/carbon nanotubes hybrid derived from metal organic framework as a lightweight, strong and efficient microwave absorber. <i>Journal of Colloid and Interface Science</i> , 2021 , 590, 561-570	9.3	24
222	A novel microwave induced oil release pattern of calcium alginate/ nano-Fe3O4 composite capsules for asphalt self-healing. 2021 , 297, 126721		15
221	Gelatin-derived N-doped hybrid carbon nanospheres with an adjustable porous structure for enhanced electromagnetic wave absorption. <i>Advanced Composites and Hybrid Materials</i> , 1	8.7	26
220	Solvothermal assisted synthesis of CoFe2O4/CNTs nanocomposite and their enhanced microwave absorbing properties. <i>Journal of Alloys and Compounds</i> , 2021 , 867, 159040	5.7	17
219	Protein-Derived Hybrid Carbon Nanospheres with Tunable Microwave Absorbing Performance in the X-Band. <i>ACS Applied Electronic Materials</i> , 2021 , 3, 2685-2693	4	2
218	Defect-Enhanced Electromagnetic Wave Absorption Property of Hierarchical Graphite Capsules@Helical Carbon Nanotube Hybrid Nanocomposites. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 28710-28720	9.5	10
217	Enhanced electromagnetic wave absorption performance of core-shell Fe3O4@poly(3,4-ethylenedioxythiophene) microspheres/reduced graphene oxide composite. 2021 , 178, 273-284		23

216	Microwave absorption and electromagnetic interference shielding properties of Li-Zn ferrite-carbon nanotubes composite. 2021 , 528, 167808		9
215	A sustainable strategy to fabricate porous flower-like magnetic carbon composites for enhanced microwave absorption. <i>Journal of Applied Physics</i> , 2021 , 129, 244101	2.5	4
214	Tailoring of N-doped graphite coated cobalt nanoparticles via arc discharge enables the high microwave absorption. 2021 , 177, 171-180		11
213	Enhanced Magnetic Microwave Absorption at Low-Frequency Band by Ferrite Assembled Microspheres with Controlled Components and Morphologies. 2021 , 2, 2100033		8
212	A facile synthesis of coreThell Fe3O4@C(N) composites and their microwave absorption properties. <i>Journal of Materials Science: Materials in Electronics</i> , 2021 , 32, 19020-19030	2.1	0
211	Synthesis of carbon-coated cobalt ferrite coreBhell structure composite: A method for enhancing electromagnetic wave absorption properties by adjusting impedance matching. 2021 ,		0
210	Recent Advances in Design and Fabrication of Nanocomposites for Electromagnetic Wave Shielding and Absorbing. <i>Materials</i> , 2021 , 14,	3.5	8
209	Impedance engineered microwave absorption properties of Fe-Ni/C core-shell enabled rubber composites for X-band stealth applications. <i>Journal of Alloys and Compounds</i> , 2021 , 869, 159360	5.7	5
208	Facile synthesis of BTA@NiCoO hollow structure for excellent microwave absorption and anticorrosion performance. <i>Journal of Colloid and Interface Science</i> , 2021 , 594, 604-620	9.3	7
207	Compositional and morphological design of hierarchical Co2Y@MnO2@CNTs core-shell microflowers for broadband microwave absorption application. <i>Journal of Alloys and Compounds</i> , 2021 , 869, 159270	5.7	3
206	Tuning the shell thickness of core-shell ⊞e2O3@SiO2 nanoparticles to promote microwave absorption. 2021 , 33, 957-957		3
205	Electromagnetic interference shielding performance by thermally stable magnesium ferrite encapsulated polythiophene composite. <i>Journal of Materials Science: Materials in Electronics</i> , 2021 , 32, 19191-19202	2.1	2
204	Enhanced electromagnetic wave absorption property of binary ZnO/NiCo2O4 composites. 2021 , 10, 832-842		15
203	Complex Permittivity and Permeability of Composite Materials Based on Carbonyl Iron Powder Over an Ultrawide Frequency Band. 2021 , 16,		0
202	Yolk-shell structured Co@SiO@Void@C nanocomposite with tunable cavity prepared by etching of SiO as high-efficiency microwave absorber. <i>Journal of Colloid and Interface Science</i> , 2021 , 594, 342-351	9.3	13
201	Interfacial multi-reflection in barium ferrite nanosheets/ amorphous carbon nanotube composites for effective electromagnetic shielding applications. 2021 , 267, 124606		1
200	In-situ regrowth constructed magnetic coupling 1D/2D Fe assembly as broadband and high-efficient microwave absorber. <i>Chemical Engineering Journal</i> , 2021 , 415, 128951	14.7	15
199	. 2021 , 57, 1-19		5

(2021-2021)

198	Nanointerface engineering of cobalt sulfide/manganese sulfate hollow spheres for electromagnetic wave absorption. 2021 , 554, 149238		3
197	Enhanced electromagnetic wave absorption performance of SiCN(Fe) fibers by in-situ generated Fe3Si and CNTs. <i>Ceramics International</i> , 2021 , 47, 19582-19594		3
196	Ultrathin Self-Assembly MXene@flake Carbonyl Iron Composites with Efficient Microwave Absorption at Elevated Temperatures. 2100587		3
195	Microwave induced in-situ formation of SiC nanowires on SiCNO ceramic aerogels with excellent electromagnetic wave absorption performance. 2021 , 10, 1140		12
194	Electromagnetic shielding effectiveness of amorphous metallic spheroidal- and flake-based magnetodielectric composites. <i>Journal of Materials Science and Technology</i> , 2021 , 83, 256-263		6
193	In Situ Reduced Multi-Core Yolk-Shell Co@C Nanospheres for Broadband Microwave Absorption. Materials, 2021, 14,		1
192	A green deep eutectic solvent modified magnetic titanium dioxide nanoparticles for the solid-phase extraction of chymotrypsin. 2021 , 230, 122341		4
191	Boosted Interfacial Polarization from the Multidimensional CoreBhellElat Heterostructure CNP@PDA@GO/rGO for Enhanced Microwave Absorption. 2021 , 60, 12343-12352		1
190	Heterogeneous rod-like Ni@C composites toward strong and stable microwave absorption performance. 2021 , 181, 358-369		17
189	Constructing and optimizing hollow bird-nest-patterned C@Fe3O4 composites as high-performance microwave absorbers. 2021 , 532, 167990		7
188	Enhanced dielectric polarization from disorder-engineered Fe3O4@black TiO2-x heterostructure for broadband microwave absorption. <i>Chemical Engineering Journal</i> , 2021 , 419, 130020	7	20
187	Solvent-Free Synthesis of MnOx-FeOx/Biochar for Hg0 and o-Xylene Removal from Flue Gas.		1
186	Facile synthesis of Ti3C2TXIMXene composite with polyhedron Fe3O4/ carbonyl iron toward microwave absorption. <i>Journal of Materials Science: Materials in Electronics</i> , 2021 , 32, 23762-23775		1
185	Microwave absorption of carbonization temperature-dependent uniform yolk-shell H-Fe3O4@C microspheres. <i>Chemical Engineering Journal</i> , 2021 , 420, 129875	7	23
184	Enhancing adsorption efficiencies of organic molecules through covalently bonded structures of magnetic carbon nanoparticles. 2021 , 105, 74-74		2
183	Dumbbell-Like FeO@N-Doped Carbon@2H/1T-MoS with Tailored Magnetic and Dielectric Loss for Efficient Microwave Absorbing. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 47061-47071		11
182	Preparation and properties of polyimide/carbon nanotube composite films with electromagnetic wave absorption performance. 2021 , 61, 2691		0
181	A review of recent advancements in Ni-related materials used for microwave absorption. 2021 , 54, 473003		О

180	Tailoring Microwave Electromagnetic Responses in Ti3C2Tx MXene with Fe3O4 Nanoparticle Decoration via a Solvothermal Method. 2021 , 125, 19914-19924		5
179	Partially contacted NixSy@N, S-codoped carbon yolk-shelled structures for efficient microwave absorption. 2021 , 182, 276-286		8
178	Graphene-layer-coated boron carbide nanosheets with efficient electromagnetic wave absorption. 2021 , 560, 150027		6
177	Optimized impedance matching and enhanced microwave absorbing performance of porous flaky Fe4N wrapped with SiO2. 2021 , 536, 168119		1
176	Facile preparation of the dendritic Fe3O4 with a core-shell microstructure in SiO2-B2O3-Al2O3-CaO-Fe2O3 glass-ceramic system for enhanced microwave absorbing performance. <i>Journal of Alloys and Compounds</i> , 2021 , 877, 160147	5.7	2
175	Preparation and characterization of branch-like heteroatoms-doped Ni@C nanofibers for high-performance microwave absorption with thin thickness. 2021 , 223, 109114		14
174	Oriented thermal etching of hollow carbon spheres with delicate heat management for efficient solar steam generation. 2021 , 178, 121579		3
173	Self-assembly sandwich-like Fe, Co, or Ni nanoparticles/reduced graphene oxide composites with excellent microwave absorption performance. 2021 , 562, 150212		14
172	The electromagnetic response of composition-regulated honeycomb structural materials used for broadband microwave absorption. <i>Journal of Materials Science and Technology</i> , 2021 , 88, 203-214	9.1	19
171	Intrinsic defect-rich porous carbon nanosheets synthesized from potassium citrate toward advanced supercapacitors and microwave absorption. 2021 , 183, 176-186		17
170	Wrinkled FeO@C magnetic composite microspheres: Regulation of magnetic content and their microwave absorbing performance. <i>Journal of Colloid and Interface Science</i> , 2021 , 601, 397-410	9.3	13
169	Construction of excellent electromagnetic wave absorber from multi-heterostructure materials derived from ZnCo2O4 and ZIF-67 composite. 2021 , 185, 514-525		4
168	Immobilization of hexamolybdate onto carbon-coated Fe3O4 nanoparticle: A novel catalyst with high activity for oxidation of alcohols. 2021 , 953, 122043		2
167	Research advances in composition, structure and mechanisms of microwave absorbing materials. 2021 , 224, 109173		15
166	Enhanced uranium uptake from acidic media achieved on a novel iron phosphate adsorbent. <i>Chemical Engineering Journal</i> , 2021 , 423, 130267	14.7	4
165	Stretchable polyurethane composite foam triboelectric nanogenerator with tunable microwave absorption properties at elevated temperature. 2021 , 89, 106397		7
164	Magnetic core-shell structure in-situ encapsulated in bamboo-derived carbon skeleton for efficient microwave absorption. <i>Journal of Alloys and Compounds</i> , 2021 , 888, 161510	5.7	2
163	One pot synthesis and electromagnetic interference shielding behavior of reduced graphene oxide nanocomposites decorated with Ni0.5Co0.5Fe2O4 nanoparticles. <i>Journal of Alloys and Compounds</i> , 2021 , 887, 161472	5.7	12

(2021-2021)

162	A novel MOF-drived self-decomposition strategy for CoO@N/C-Co/Ni-NiCo2O4 multi-heterostructure composite as high-performance electromagnetic wave absorbing materials. <i>Chemical Engineering Journal</i> , 2021 , 426, 131667	14.7	6	
161	Evolution from core-shell, yolk-shell to hollow structure of hierarchical SiO2@MoSe2@FeNi3 for enhanced electromagnetic wave absorption. <i>Journal of Alloys and Compounds</i> , 2021 , 884, 161020	5.7	3	
160	Polymer-bubbling for one-step synthesis of three-dimensional cobalt/carbon foams against electromagnetic pollution. <i>Journal of Materials Science and Technology</i> , 2021 , 93, 7-16	9.1	11	
159	Boron nitride nanosheets decorated N-doped carbon nanofibers as a wide-band and lightweight electromagnetic wave absorber. <i>Journal of Alloys and Compounds</i> , 2022 , 890, 161903	5.7	2	
158	Interconnected magnetic carbon@NiCoFeO nanospheres with core-shell structure: An efficient and thin electromagnetic wave absorber. <i>Journal of Colloid and Interface Science</i> , 2022 , 606, 526-536	9.3	18	
157	Hydrothermal self-assembled Fe3O4/CA core-shell composites for broadband microwave absorption. 2022 , 541, 168511		3	
156	Facile fabrication of indium tin oxide/nanoporous carbon composites with excellent low-frequency microwave absorption. <i>Journal of Alloys and Compounds</i> , 2022 , 889, 161636	5.7	2	
155	Ultralight Coral-like hierarchical Fe/CNTs/Porous carbon composite derived from biomass with tunable microwave absorption performance. 2022 , 571, 151349		4	
154	A Review on Metal-Organic Framework-Derived Porous Carbon-Based Novel Microwave Absorption Materials. <i>Nano-Micro Letters</i> , 2021 , 13, 56	19.5	68	
153	Synthesis of the morphology-controlled porous Fe3O4 nanorods with enhanced microwave absorption performance. <i>Journal of Materials Science: Materials in Electronics</i> , 2020 , 31, 3996-4005	2.1	4	
152	Enhanced microwave absorption properties of novel hierarchical core-shell AMnO2 composites. 2019 , 273, 192-198		20	
151	Dual-Interfacial Polarization Enhancement to Design Tunable Microwave Absorption Nanofibers of SiC@C@PPy. <i>ACS Applied Electronic Materials</i> , 2020 , 2, 1505-1513	4	18	
150	Synthesis of Magnetic Wood with Excellent and Tunable Electromagnetic Wave-Absorbing Properties by a Facile Vacuum/Pressure Impregnation Method. 2018 , 6, 1000-1008		67	
149	A comparative study on the dielectric response and microwave absorption performance of FeNi-capped carbon nanotubes and FeNi-cored carbon nanoparticles. 2020 , 32,		7	
148	Method of Absorbing Material Formation Based on Magnetically Controlled Particles of Fe3O4. 2020 , 11, 1236-1243		5	
147	Carbonyl iron/graphite microspheres with good impedance matching for ultra-broadband and highly efficient electromagnetic absorption. 2018 , 8, 3319		22	
146	Dynamic Arrays Based on Magnetically Controlled Particles: Synthesis and Application. 2019 , 22,		1	
145	Application of Flaky Reduced Iron Powders and Their Composites for Highly Effective Microwave Absorption Materials. 2021 , 16, 1175-1181			

144	Synthesis of Nonspherical Hollow Architecture with Magnetic Fe Core and Ni Decorated Tadpole-Like Shell as Ultrabroad Bandwidth Microwave Absorbers. 2021 , 17, e2103351		3
143	Synthesis of porous Fe3O4-SnO2 core-void-shell nanocomposites as high-performance microwave absorbers. 2021 , 9, 106585		1
142	Immobilization of Polyoxometalate onto Modified Magnetic Nanoparticles: A New Catalyst for the Synthesis of Dihydropyranopyrazole Derivatives. 2021 , 6, 11039-11046		1
141	Hollow [email@rotected]2 Nanospheres for Microwave Absorption. 2021 , 4, 11199-11209		3
140	N-Doped Carbon Fibers with Embedded ZnFe and Fe3C Nanoparticles for Microwave Absorption. 2021 , 4, 11070-11079		0
139	Heterointerface Engineering in Electromagnetic Absorbers: New Insights and Opportunities. 2021 , e21061	95	43
138	Data mining and design of electromagnetic properties of Co/FeSi filled coatings based on genetic algorithms optimized artificial neural networks (GA-ANN). 2021 , 226, 109383		1
137	Synthesis and Properties of Novel Rattle-Type Fe@Fe3O4@TiO2 Nanochains. 2017, 07, 735-744		
136	YolkBhell FeBe3O4@C nanoparticles with excellent reflection loss and wide bandwidth as electromagnetic wave absorbers in the high-frequency band. 2022 , 573, 151469		3
135	ZIF-67/GNs derived Co3O4/GNs multilayer flower and porous structure as an efficient electromagnetic wave absorbing material for excellent absorbing properties. 2022 , 575, 151789		1
134	Fabrication of BaFe12O19 /CeO2 composite for highly efficient microwave absorption. <i>Journal of Alloys and Compounds</i> , 2021 , 162964	,	1
133	Excellent microwave absorption of Fe3O4/Ag composites attained by synergy of considerable magnetic loss and dielectric loss. <i>Ceramics International</i> , 2021 , 48, 5824-5824		2
132	Electromagnetic Wave Absorption and Mechanical Properties of CNTs@GN@FeO/PU Multilayer Composite Foam. <i>Materials</i> , 2021 , 14,		1
131	Dimensional Design and Core-Shell Engineering of Nanomaterials for Electromagnetic Wave Absorption. 2021 , e2107538		37
130	Impedance amelioration of coaxial-electrospun TiO2@Fe/C@TiO2 vesicular carbon microtubes with dielectric-magnetic synergy toward highly efficient microwave absorption. <i>Chemical Engineering Journal</i> , 2021 , 133640	·7	2
129	Lightweight and broadband 2D MoS nanosheets/3D carbon nanofibers hybrid aerogel for high-efficiency microwave absorption. <i>Journal of Colloid and Interface Science</i> , 2021 , 609, 33-42		2
128	Designed Fabrication of Lightweight SiC/Si 3N 4 Aerogels for Enhanced Electromagnetic Wave Absorption and Thermal Insulation.		
127	Improved microwave absorption performance with negative permittivity of polyaniline in the Ku-band region. 2022 , 75, 187-198		О

126	Multifunctional antimony tin oxide/reduced graphene oxide aerogels with wideband microwave absorption and low infrared emissivity. 2022 , 231, 109565		7
125	Integrating hierarchical interfacial polarization in yeast-derived Mo2C/C nanoflower/microsphere nanoarchitecture for boosting microwave absorption performance. 2022 , 189, 530-538		1
124	Designed fabrication of lightweight SiC/Si3N4 aerogels for enhanced electromagnetic wave absorption and thermal insulation. <i>Journal of Alloys and Compounds</i> , 2022 , 901, 163651	5.7	5
123	Enhanced Broadband Microwave Adsorption of Fe-Doped Core-Shell Carbon Nanofibers in X and Ku Bands.		
122	Designed 3D heterostructure with 0D/1D/2D hierarchy for low-frequency microwave absorption in the S-band. 2022 , 10, 1470-1478		4
121	Enhanced Electromagnetic Wave Absorption by Bi-layered Nano-hollow Spheres. 2022, 1-1		Ο
120	Tailoring conductive network Zn@NPC@MWCNTs nanocomposites derived from ZIF-8 as high-performance electromagnetic absorber for the whole X-Band. 2022 ,		
119	Excellent microwave absorbing performance of biomass-derived activated carbon decorated with in situ-grown CoFe2O4 nanoparticles.		О
118	Constructing dendrite-flower-shaped Fe3O4 crystals in glass-ceramic materials as novel broadband high-efficient electromagnetic wave absorbers. <i>Journal of Alloys and Compounds</i> , 2022 , 901, 163541	5.7	1
117	Cu/NC@Co/NC composites derived from core-shell Cu-MOF@Co-MOF and their electromagnetic wave absorption properties <i>Journal of Colloid and Interface Science</i> , 2021 , 613, 182-193	9.3	11
116	Magnetic FeOX/biomass carbon composites with broadband microwave absorption properties. Journal of Alloys and Compounds, 2022 , 903, 163894	5.7	2
115	Design and synthesis of magnetic porous carbon nanofibers with excellent microwave absorption. <i>Journal of Alloys and Compounds</i> , 2022 , 903, 163971	5.7	4
114	Broadband high-performance microwave absorption of the single-layer Ti3C2T MXene. <i>Journal of Materials Science and Technology</i> , 2022 , 115, 148-155	9.1	5
113	Corrosion-Resistant Graphene-Based Magnetic Composite Foams for Efficient Electromagnetic Absorption <i>ACS Applied Materials & Applied Materials </i>	9.5	5
112	Influence of impact on electromagnetic response of three-dimensional angle-interlock metacomposites. 2022 , 30, 101076		O
111	Carbon aerogel electrode for excellent dephosphorization via flow capacitive deionization. 2022 , 528, 115614		2
110	Heterogeneous network constructed by high aspect-ratio Kapok biomass microtube for lightweight and broadband microwave absorbent. 2022 , 191, 424-432		3
109	Novel Sibcn Fibers with Broad Band and Strong Electromagnetic Microwave Absorption Performance.		

108	Synthesis and Electromagnetic Properties of Fe₃@C Core-Shell Nanoparticles. 2022 , 12, 209-218		
107	Metal-Organic Framework-Derived Core-Shell Nanospheres Anchored on Fe-Filled Carbon Nanotube Sponge for Strong Wideband Microwave Absorption <i>ACS Applied Materials & amp; Interfaces</i> , 2022 ,	9.5	3
106	Transparent organogel based on photopolymerizable magnetic cationic monomer for electromagnetic wave absorbing. 2022 ,		О
105	Architecture Design and Interface Engineering of Self-assembly VS/rGO Heterostructures for Ultrathin Absorbent <i>Nano-Micro Letters</i> , 2022 , 14, 67	19.5	2
104	Reduced graphene oxide containing barium hexaferrite composites for high frequency microwave absorption. 2022 , 45, 1		1
103	Recent Advances in Design Strategies and Multifunctionality of Flexible Electromagnetic Interference Shielding Materials <i>Nano-Micro Letters</i> , 2022 , 14, 80	19.5	10
102	Excellent Microwave Absorbing Properties of Nd 3+-Doped Nin Ferrite/PANI Nanocomposite for Ku Band. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2100505	1.6	Ο
101	Fe3O4 nanoparticles decorated flexible carbon foam for efficient electromagnetic interference shielding. <i>Ceramics International</i> , 2022 ,	5.1	1
100	Design and synthesis of core-shell structure 3D-graphene/Fe3O4@N-C composite derived from Fe-MOF as lightweight microwave absorber. 2022 , 124, 108941		Ο
99	CeO2/Ti3C2Tx MXene Nanostructures for Microwave Absorption.		3
98	Electromagnetic absorption materials: Current progress and new frontiers. 2022, 127, 100946		21
97	Ni/NiO/SiO2/C nanofibers with strong wideband microwave absorption and robust hydrophobicity. 2022 , 588, 152964		1
96	Double shell structured MnFe2O4 @FeO/C derived from MnFe2O4 @ZIF-8 for electromagnetic wave absorption. <i>Journal of Alloys and Compounds</i> , 2022 , 906, 164197	5.7	0
95	Tailoring electromagnetic responses of delaminated Mo2TiC2T MXene through the decoration of Ni particles of different morphologies. <i>Chemical Engineering Journal</i> , 2022 , 440, 135855	14.7	5
94	Graphene oxide supported Yolk Bhell ZnS/NiS with the adjustable air layer for high performance of electromagnetic wave absorber <i>Journal of Colloid and Interface Science</i> , 2022 , 617, 620-632	9.3	1
93	Synergistic effect of niobium oxide and cobalt on electromagnetic properties of dodecahedron-carbon composites. 2022 , 311, 123122		
92	Fe3O4@Ag and Ag@Fe3O4 CoreBhell Nanoparticles for Radiofrequency Shielding and Bactericidal Activity. 2022 , 5, 237-248		1
91	High-efficient electromagnetic absorption and composites of carbon microspheres. <i>Journal of Applied Physics</i> , 2021 , 130, 230902	2.5	2

90	Microporous Carbons Derived from d-Fructose Carbon with Excellent Microwave Absorption Performance. ACS Applied Electronic Materials,	4	1
89	Customizing Heterointerfaces in Multilevel Hollow Architecture Constructed by Magnetic Spindle Arrays Using the Polymerizing-Etching Strategy for Boosting Microwave Absorption <i>Advanced Science</i> , 2022 , e2200804	13.6	5
88	Simultaneous Achievement of High-Yield Hydrogen and High-Performance Microwave Absorption Materials from Microwave Catalytic Deconstruction of Plastic Waste. <i>Processes</i> , 2022 , 10, 782	2.9	0
87	Controllable Synthesis of MoC Encapsulated by N-Doped Carbon Microspheres to Achieve Highly Efficient Microwave Absorption at Full Wavebands: From Lemon-like to Fig-like Morphologies <i>Inorganic Chemistry</i> , 2022 ,	5.1	O
86	Size-Dependent Oxidation-Induced Phase Engineering for MOFs Derivatives Via Spatial Confinement Strategy Toward Enhanced Microwave Absorption <i>Nano-Micro Letters</i> , 2022 , 14, 102	19.5	9
85	Resource utilization of coal hydrogasification residue to Ni/carbon-based composites for efficient microwave absorption. <i>Journal of Materials Science: Materials in Electronics</i> ,	2.1	O
84	Pd-containing magnetic periodic mesoporous organosilica nanocomposite as an efficient and highly recoverable catalyst <i>Scientific Reports</i> , 2022 , 12, 7970	4.9	2
83	Introducing MWCNTs conductive network in polymer-derived SiCN ceramics for broadband electromagnetic wave absorption. <i>Ceramics International</i> , 2022 ,	5.1	3
82	Role of phase, grain morphology and impedance properties in tailoring of Barium Strontium hexaferrites for microwave absorber/attenuator applications. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2022 , 281, 115679	3.1	0
81	Mesoscopically ordered Fe3O4/C nano-composite for superior broadband electromagnetic wave absorption. <i>Composites Part A: Applied Science and Manufacturing</i> , 2022 , 158, 106983	8.4	Ο
80	Construction of Co@C nanocapsules by one-step carbon reduction of single-crystal Co3O4 nanoparticles: Ultra-wideband microwave absorber verified via coaxial and arch methods. <i>Chemical Engineering Journal</i> , 2022 , 445, 136863	14.7	0
79	Ternary MXene/MnO2/Ni composites for excellent electromagnetic absorption with tunable effective absorption bandwidth. <i>Journal of Alloys and Compounds</i> , 2022 , 911, 165122	5.7	1
78	Magnetic Carbon Composites Derived from Coal Hydrogasification Residue for Microwave Absorption. <i>Physica Status Solidi (A) Applications and Materials Science</i> ,	1.6	
77	Ultralight Open-Cell Graphene Aerogels with Multiple, Gradient Microstructures for Efficient Microwave Absorption. <i>Nanomaterials</i> , 2022 , 12, 1896	5.4	1
76	Metal-coordination-driven self-assembly synthesis of porous iron/carbon composite for high-efficiency electromagnetic wave absorption. <i>Journal of Colloid and Interface Science</i> , 2022 , 623, 1002-1014	9.3	1
75	Microstructure, Electromagnetic Properties, and Microwave Absorption Mechanism of SiO2-MnO-Al2O3 Based Manganese Ore Powder for Electromagnetic Protection. <i>Molecules</i> , 2022 , 27, 3758	4.8	O
74	Tunable shell thickness of Fe-N@SiO2 nanoparticles for strong and stable microwave absorption properties with enhanced oxidation resistance. <i>Journal of Alloys and Compounds</i> , 2022 , 166015	5.7	О
73	Absorption-dominated electromagnetic shielding and excellent thermal conduction properties of poly(vinylidene fluoride)/SnBi58/Co-C composites with layered structure. <i>Journal of Alloys and Compounds</i> , 2022 , 165998	5.7	

72	Microwave absorption performance of core-shell rGO/Ni 0.5 Co 0.5 Fe 2 O 4 @PEDOT composite: An effective approach to reduce electromagnetic wave pollution. <i>Advanced Engineering Materials</i> ,	3.5	0
71	Multi-spectrum bands compatibility: New trends in stealth materials research. <i>Science China Materials</i> ,	7.1	O
70	Preparation of functionalized magnetic graphene oxide/lignin composite nanoparticles for adsorption of heavy metal ions and reuse as electromagnetic wave absorbers. <i>Separation and Purification Technology</i> , 2022 , 297, 121509	8.3	1
69	Synthesis of tetragonal copper-nickel ferrite decorated nitrogen-doped reduced graphene oxide composite as a thin and high-efficiency electromagnetic wave absorber. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2022 , 648, 129411	5.1	O
68	Iron/silicon carbide composites with tunable high-frequency magnetic and dielectric properties for potential electromagnetic wave absorption. <i>Advanced Composites and Hybrid Materials</i> ,	8.7	5
67	Ceramic-based electromagnetic wave absorbing materials and concepts towards lightweight, flexibility and thermal resistance. <i>International Materials Reviews</i> , 1-34	16.1	1
66	Large-scale synthesis of fluorine-free carbonyl iron-organic silicon hydrophobic absorbers with long term corrosion protection property. <i>Nano Research</i> ,	10	О
65	Directional Migration and Distribution of Magnetic Microparticles in Polypropylene-Matrix Magnetic Composites Molded by an Injection Molding Assisted by External Magnetic Field. <i>Materials</i> , 2022 , 15, 4632	3.5	
64	Facile construction of three-dimensional porous netlike reduced graphene oxide/zinc oxide composite aerogels as the lightweight, flame retardant, compression resilience and high-performance electromagnetic wave absorbers. <i>Composites Part A: Applied Science and</i>	8.4	0
63	Manufacturing, 2022, 160, 107068 Excellent microwave absorption of lightweight PAN-based carbon nanofibers prepared by electrospinning. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651, 129670	5.1	O
62	Rational construction of yolk-shell structured Co3Fe7/FeO@carbon composite and optimization of its microwave absorption. <i>Journal of Colloid and Interface Science</i> , 2022 , 626, 775-786	9.3	О
61	Tunable and enhanced microwave absorption properties by adjusting the distribution of Co/CoFe embedded into the carbon nanohorns and graphene microspheres. <i>Journal of Alloys and Compounds</i> , 2022 , 922, 166201	5.7	O
60	Metal-organic framework-derived carbon-based composites for electromagnetic wave absorption: Dimension design and morphology regulation. <i>Journal of Materials Science and Technology</i> , 2023 , 132, 223-251	9.1	1
59	Effect of Multilayered Structure on the Static and Dynamic Properties of Magnetic Nanospheres. 2022 , 14, 35177-35183		
58	Advances in coreBhell engineering of carbon-based composites for electromagnetic wave absorption.		5
57	Magnetic-Field-Induced Vapor-Phase Polymerization to Achieve PEDOT-Decorated Porous Fe3O4 Particles as Excellent Microwave Absorbers.		1
56	Synthesis and Microwave Absorption Properties of Fe 3 O 4 /CuS Composites. 2200189		
55	Exploitation of dielectric properties of ferrite composites for microwave absorber applications: complex permittivity, real-imaginary impedance, geometrical thickness, and reflection loss parameters. 2022 , 128,		

54	Mechanochemical synthesis of core-shell carbon black@acrylic resin nanocomposites with enhanced microwave absorption. 2022 , 228, 109665	O
53	Electrical and shielding properties of epoxy composites with Ni🏿 and Co🗘 core-shell nanoparticles. 2022 , 144, 115463	
52	Construction of plate-like magnetic heterostructure for synergistic microwave absorption.	O
51	Interface coupling induced microwave absorption enhancement in the C/Fe3O4/halloysite micro-spheres composites. 2022 , 229, 106690	1
50	Magnetic CoNi nanoparticles-decoated Ti3C2Tx MXene as excellent electromagnetic wave absorber. 2022 , 286, 116026	1
49	Microwave absorption performance of porous carbon particles modified by nickel with different morphologies. 2023 , 137, 79-90	O
48	Study on the Structure, Magnetic Properties and Microwave Absorbing Properties of Rare Earth Doped Cobalt Ferrite: The Influence Mechanism of Different Substitution Positions.	O
47	Large Interlayers Spacing and Active Basal Planes Enabled Mos2/Mwcnt Composites for High-Performance Microwave Absorption.	O
46	High-performance electromagnetic wave absorption in cobalt sulfide flower-like nanospheres. 2022 , 12, 25323-25331	0
45	Construction of Ni@polypyrrole nanochains/Ti3C2Tx ternary composites with excellent microwave absorption properties.	O
44	Nanostructured MnFe2O4 anchored on graphene oxide and reduced graphene oxide sheets for effective regulation of microwave absorption performance. 2022 , 410, 117895	O
43	A rapid and sensitive method to detection of Cr3+by using the Fe3O4@Pectin-polymethacrylimide@graphene quantum dot as a sensitive material.	O
42	CoreBhell Fe3O4@C Conductive Additives for Magnetic Flow-Electrode Capacitive Deionization: Reconstruction of Charge Percolation Networks.	О
41	Microwave absorption performance and multiple loss mechanisms of three-dimensional porous Fe4N@Fe3O4@Fe/carbon composite. 2022 , 57, 16649-16664	O
40	Excellent microwave absorption performance of PAN-based Fe/C nanofibers with low loading fillers. 2022 , 655, 130280	O
39	Polyimide-derived porous carbon/Co particle-based composites for high-performance microwave absorption. 2022 , 12, 29070-29077	1
38	Synthesis of C/NiFe-LDH composites for enhanced electromagnetic wave absorption.	О
37	Synthesis and electromagnetic wave absorption properties of Gd-Co ferrite@carbon coreBhell structure composites.	O

36	CoreBhell-like nanocrystalline FeSiB/amorphous carbon composite powder with remarkable and tunable microwave absorption properties. 2022 , 107295	Ο
35	Enhanced broadband microwave absorption of Fe/C core-shell nanofibers in X and Ku bands. 2022,	O
34	Evolution of hollow dodecahedron carbon coated FeCo with enhance of electromagnetic properties. 2022 , 33, 103854	0
33	Natural magnetite/coke composite: A novel promising microwave absorption material. 2023, 931, 167497	O
32	Morphology modulation induced enhancement of microwave absorption performance in Fe20Ni80 particles. 2023 , 933, 167741	O
31	A Sustainable and Low-Cost Route to Design NiFe2O4 Nanoparticles/Biomass-Based Carbon Fibers with Broadband Microwave Absorption. 2022 , 12, 4063	O
30	CoreBhell nanowires comprising silver@polypyrrole-derived pyrolytic carbon for high-efficiency microwave absorption.	0
29	Hydrothermal synthesis of flake-like cobalt oxide nanoparticles for electromagnetic waves absorption at X-band (8.2¶2.4[GHz) frequency. 2023 , 287, 116132	O
28	Cognizing the electromagnetic shielding performance of ultrafine magnetite (Fe3O4) and a few layers of carbon black nanocomposite in the X-band region. 2023 , 288, 116166	1
27	Excellent microwave absorbing properties of Fe/MnO@C composites with three carbon skeleton structures. 2023 , 293, 117270	O
26	Facile synthesis of FeCoMnO2 coreBhell nanoparticles as high-frequency microwave absorbers using a two-step method. 2023 , 613, 155976	0
25	Fabrication and Characterization of Fe3O4@SiO2-rGO Nanocomposite: A Catalyst for Multi-Component Reaction.	O
24	Super simple and green synthesis of bifunctional iron oxide anchored on graphene oxide-like carbon composite. 2022 , 118414	0
23	Enhanced Electromagnetic Wave Absorption of SiOC/Porous Carbon Composites. 2022, 15, 8864	O
22	Flexible high-performance microcapacitors enabled by all-printed two-dimensional nanosheets. 2022 ,	0
21	Fe/Fe3O4@mSiO2 CoreBhell Nanostructures for Broad-Band Microwave Absorption.	O
20	Agminated hollow urchin-like structure of MnO2/graphite nanosheets composites for improving electromagnetic absorbing properties. 2023 , 34,	0
19	Hollow multi-shelled structured BaTiO3/Fe3O4 composite: Confined space and interface effect with boosted microwave absorption. 2023 ,	О

18	Recycling and utilization of coal gasification residues for fabricating Fe/C composites as novel microwave absorbents. 2023 , 30, 591-599	0
17	Composites of In/C hexagonal nanorods and graphene nanosheets for high-performance electromagnetic wave absorption. 2023 , 30, 485-493	Ο
16	Honeycomb-like structured ZnFe2O4@C derived from ZnFe2O4@ZIF-8 for electromagnetic wave absorption. 2023 , 568, 170253	0
15	Enhanced microwave absorption properties of Ni decorated flaky graphite powders with frequency selective surfaces incorporation. 2023 , 293, 117255	Ο
14	Regulation binary electromagnetic filler networks in segregated poly(vinylidenefluoride) composite for absorption-dominated electromagnetic interference shielding.	O
13	Dual-pathway optimization on microwave absorption characteristics of corelhell Fe3O4@C microcapsules: Composition regulation on magnetic core and MoS2 nanosheets growth on carbon shell. 2023 , 461, 141867	Ο
12	Microwave absorption theory and recent advances in microwave absorbers by polymer-based nanocomposites (carbons, oxides, sulfides, metals, and alloys). 2023 , 149, 110407	Ο
11	Tuning the magnetic and dielectric properties of Fe3O4 nanoparticles for EMI shielding applications by do. 2023 , 34, 105454	O
10	MgFeAl-layered double oxides supported on hollow carbon microsphere composited with carbonitride for peroxymonosulfate activation to efficiently decontaminate organic pollutants under high salinity conditions. 2023 , 617, 156616	O
9	Multiprincipal Element M 2 FeC (M = Ti,V,Nb,Ta,Zr) MAX Phases with Synergistic Effect of Dielectric and Magnetic Loss. 2023 , 10,	Ο
8	Confined Diffusion Strategy for Customizing Magnetic Coupling Spaces to Enhance Low-frequency Electromagnetic Wave Absorption. 2023 , 33,	0
7	Designed synthesis of multifunctional lignin-based adsorbent for efficient heavy metal ions removal and electromagnetic wave absorption. 2023 , 234, 123668	Ο
6	Electrical and Shielding Properties of Epoxy Composites with Combined Fillers (SiO2-Fe2O3)/CNT and (SiO2-Fe3O4)/CNT. 2023 , 30, 635-651	0
5	A finite oxidation strategy for customizing heterogeneous interfaces to enhance magnetic loss ability and microwave absorption of Fe-cored carbon microcapsules.	1
4	Multifunctional three-dimensional porous MOFs derived Fe/C/carbon foam for microwave absorption, thermal insulation and infrared stealth. 2023 , 49, 18861-18869	0
3	Co3O4 Nanoparticle-Modified Porous Carbons with High Microwave Absorption Performances. 2023 , 13, 1073	O
2	Elaborately designed 3D honeycomb MIIi3C2Tx@MoS2@C heterostructures as advanced microwave absorbers. 2023 , 625, 157116	0
1	Optimized impedance matching and enhanced attenuation by heteroatoms doping of yolk-shell CoFe2O4@HCN as highly efficient microwave absorbers. 2023 ,	O