Clustering analysis of residential electricity demand pro-

Applied Energy 135, 461-471 DOI: 10.1016/j.apenergy.2014.08.111

Citation Report

#	Article	IF	CITATIONS
1	Prediction intervals for electric load forecast: Evaluation for different profiles. , 2015, , .		4
2	Analysing the segmentation of energy consumers using mixed fuzzy clustering. , 2015, , .		6
3	False positive elimination in intrusion detection based on clustering. , 2015, , .		5
4	Temperature effects on firms' electricity demand: An analysis of sectorial differences in Spain. Applied Energy, 2015, 142, 407-425.	5.1	36
5	Comparison of integrated clustering methods for accurate and stable prediction of building energy consumption data. Applied Energy, 2015, 160, 153-163.	5.1	140
6	Electricity demand profile prediction based on household characteristics. , 2015, , .		21
7	DISCOVERING AND LABELLING OF TEMPORAL GRANULARITY PATTERNS IN ELECTRIC POWER DEMAND WITH A BRAZILIAN CASE STUDY. Pesquisa Operacional, 2016, 36, 575-595.	0.1	1
8	Adaptive Time Series Forecasting of Energy Consumption Using Optimized Cluster Analysis. , 2016, , .		13
9	Residential demand response targeting using machine learning with observational data. , 2016, , .		31
10	Customer behaviour and data analytics. , 2016, , .		13
11	Spatial estimation of electricity consumption using socio-demographic information. , 2016, , .		1
12	Classification of new electricity customers based on surveys and smart metering data. Energy, 2016, 107, 804-817.	4.5	103
13	K-means Based Cluster Analysis of Residential Smart Meter Measurements. Energy Procedia, 2016, 88, 754-760.	1.8	47
14	Determining the relationship between a household's lifestyle and its electricity consumption in Japan by analyzing measured electric load profiles. Energy and Buildings, 2016, 119, 200-210.	3.1	48
15	Advances and challenges in building engineering and data mining applications for energy-efficient communities. Sustainable Cities and Society, 2016, 25, 33-38.	5.1	90
16	Unraveling electricity consumption profiles in households through clusters: Combining smart meters and door-to-door surveys. Energy and Buildings, 2016, 116, 666-676.	3.1	106
17	Identifying regime shifts in the US electricity market based on price fluctuations. Applied Energy, 2017, 194, 658-666.	5.1	9
18	Good Consumer or Bad Consumer: Economic Information Revealed from Demand Profiles. IEEE Transactions on Smart Grid, 2017, , 1-1.	6.2	20

TATION PEDO

#	Article	IF	CITATIONS
19	Smart Meters and Smart Devices in Buildings: a Review of Recent Progress and Influence on Electricity Use and Peak Demand. Current Sustainable/Renewable Energy Reports, 2017, 4, 1-7.	1.2	28
20	A Project-Based Cooperative Approach to Teaching Sustainable Energy Systems. IEEE Transactions on Education, 2017, 60, 221-228.	2.0	36
21	Discovering residential electricity consumption patterns through smart-meter data mining: A case study from China. Utilities Policy, 2017, 44, 73-84.	2.1	42
22	Dealing with multiple decades of hourly wind and PV time series in energy models: A comparison of methods to reduce time resolution and the planning implications of inter-annual variability. Applied Energy, 2017, 197, 1-13.	5.1	236
23	A review on clustering of residential electricity customers and its applications. , 2017, , .		16
24	Recent advances in the analysis of residential electricity consumption and applications of smart meter data. Applied Energy, 2017, 208, 402-427.	5.1	176
25	Daily electricity consumption profiles from smart meters - Proxies of behavior for space heating and cooling. Energy, 2017, 141, 108-122.	4.5	47
26	Electric load shape benchmarking for small- and medium-sized commercial buildings. Applied Energy, 2017, 204, 715-725.	5.1	75
27	Classification and management of electricity market customer considering demand response in China. , 2017, , .		2
28	Data analytics for occupancy pattern learning to reduce the energy consumption of HVAC systems in office buildings. Sustainable Cities and Society, 2017, 35, 191-208.	5.1	84
29	A novel method for decomposing electricity feeder load into elementary profiles from customer information. Applied Energy, 2017, 203, 752-760.	5.1	8
30	k -means based load estimation of domestic smart meter measurements. Applied Energy, 2017, 194, 333-342.	5.1	129
31	Sparse and Redundant Representation-Based Smart Meter Data Compression and Pattern Extraction. IEEE Transactions on Power Systems, 2017, 32, 2142-2151.	4.6	103
32	Recognition model of air conditioning electricity consumption behaviors for demand response based on k-means clustering. , 2017, , .		4
33	Mining typical load profiles in buildings to support energy management in the smart city context. Energy Procedia, 2017, 134, 865-874.	1.8	38
34	Correlation study of residential community demand with high PV penetration. , 2017, , .		5
35	Principal component analysis and cluster analysis for development of electrical system. , 2017, , .		0
36	Tailor-Made Feedback to Reduce Residential Electricity Consumption: The Effect of Information on Household Lifestyle in Japan. Sustainability, 2017, 9, 528.	1.6	10

#	Article	IF	CITATIONS
37	Structured Literature Review of Electricity Consumption Classification Using Smart Meter Data. Energies, 2017, 10, 584.	1.6	40
38	Matlab applications to generate synthetic electricity load profiles of office buildings and detached houses. , 2017, , .		19
39	Principal Component Analysis and Cluster Analysis in Profile of Electrical System. IOP Conference Series: Materials Science and Engineering, 2017, 180, 012103.	0.3	0
40	Clustering methodology for smart metering data based on local and global features. , 2017, , .		3
41	A Distributed Generation Evaluating Framework: The next step for smart-metering data clustering. , 2017, , .		0
42	Probabilistic characterization of electricity consumer responsiveness to economic incentives. Applied Energy, 2018, 216, 296-310.	5.1	47
43	An empirical taxonomy of corporate social responsibility in China's manufacturing industries. Journal of Cleaner Production, 2018, 188, 322-338.	4.6	29
44	A new method for household energy use modeling: A questionnaire-based approach. Energy and Buildings, 2018, 162, 32-41.	3.1	22
45	Residential photovoltaic self-consumption: Identifying representative household groups based on a cluster analysis of hourly smart-meter data. Energy Efficiency, 2018, 11, 1689-1701.	1.3	10
46	Clustering-based novelty detection for identification of non-technical losses. International Journal of Electrical Power and Energy Systems, 2018, 101, 301-310.	3.3	63
47	Location and Size Planning of Distributed Photovoltaic Generation in Distribution network System Based on K-means Clustering Analysis. IOP Conference Series: Earth and Environmental Science, 2018, 108, 052022.	0.2	3
48	A New Pseudo Load Profile Determination Approach in Low Voltage Distribution Networks. IEEE Transactions on Power Systems, 2018, 33, 463-472.	4.6	39
49	A cluster analysis of energy-consuming activities in everyday life. Building Research and Information, 2018, 46, 99-113.	2.0	20
50	Regional difference of household electricity consumption: An empirical study of Jiangsu, China. Journal of Cleaner Production, 2018, 171, 1415-1428.	4.6	16
51	Assessing the implications of socioeconomic diversity for low carbon technology uptake in electrical distribution networks. Applied Energy, 2018, 210, 856-869.	5.1	20
52	Residential Load Profile Clustering via Deep Convolutional Autoencoder. , 2018, , .		7
53	An Adaptive Weighted Pearson Similarity Measurement Method for Load Curve Clustering. Energies, 2018, 11, 2466.	1.6	14
54	Identification of typical building daily electricity usage profiles using Gaussian mixture model-based clustering and hierarchical clustering. Applied Energy, 2018, 231, 331-342.	5.1	101

#	Article	IF	CITATIONS
55	Cluster Analysis of ICT Companies Based on Innovation Ambidexterity Dimensions: Evidence from the Iranian Innovation Survey. , 2018, , .		1
56	Optimal decarbonization pathways for urban residential building energy services. Applied Energy, 2018, 230, 1311-1325.	5.1	99
57	Revealing the relationships between the energy parameters of single-family buildings with the use of Self-Organizing Maps. Energy and Buildings, 2018, 178, 61-70.	3.1	5
58	Scalable Clustering of Individual Electrical Curves for Profiling and Bottom-Up Forecasting. Energies, 2018, 11, 1893.	1.6	13
59	An efficient edge sparse coding approach to ultraâ€shortâ€ŧerm household electricity demand estimation. IEEJ Transactions on Electrical and Electronic Engineering, 2018, 13, 1586-1594.	0.8	1
60	Association rule mining based quantitative analysis approach of household characteristics impacts on residential electricity consumption patterns. Energy Conversion and Management, 2018, 171, 839-854.	4.4	135
61	Optimal Selection of Clustering Algorithm via Multi-Criteria Decision Analysis (MCDA) for Load Profiling Applications. Applied Sciences (Switzerland), 2018, 8, 237.	1.3	24
62	Do Customers Choose Proper Tariff? Empirical Analysis Based on Polish Data Using Unsupervised Techniques. Energies, 2018, 11, 514.	1.6	17
63	Electricity Consumption Clustering Using Smart Meter Data. Energies, 2018, 11, 859.	1.6	60
64	Optimal Deployment of FiWi Networks Using Heuristic Method for Integration Microgrids with Smart Metering. Sensors, 2018, 18, 2724.	2.1	8
65	Assessment of primary energy consumption, carbon dioxide emissions, and peak electric load for a residential fuel cell using empirical natural gas and electricity use profiles. Energy and Buildings, 2018, 178, 242-253.	3.1	18
66	The method of consumers identification based on compressed power load profiles. , 2018, , .		1
67	Identifying household electricity consumption patterns: A case study of Kunshan, China. Renewable and Sustainable Energy Reviews, 2018, 91, 861-868.	8.2	39
68	Modeling the Determinants of Residential Appliance Electricity Use Single-Family Homes, Homes with Electric Vehicles and Apartments. , 2018, , .		6
69	A data-driven procedure to model occupancy andÂoccupant-related electric load profiles in residential buildings for energy simulation. Energy and Buildings, 2019, 202, 109342.	3.1	58
70	Identification and evaluation of operation regulation strategies in district heating substations based on an unsupervised data mining method. Energy and Buildings, 2019, 202, 109324.	3.1	13
71	OPEC: Daily Load Data Analysis Based on Optimized Evolutionary Clustering. Energies, 2019, 12, 2668.	1.6	6
72	A Two-Stage Household Electricity Demand Estimation Approach Based on Edge Deep Sparse Coding. Information (Switzerland), 2019, 10, 224.	1.7	5

#	Article	IF	CITATIONS
73	A data-driven approach to extract operational signatures of HVAC systems and analyze impact on electricity consumption. Applied Energy, 2019, 253, 113497.	5.1	35
74	Large scale smart meter data assessment for energy benchmarking and occupant behaviour profile development. IOP Conference Series: Earth and Environmental Science, 2019, 323, 012121.	0.2	1
75	A pattern recognition methodology for analyzing residential customers load data and targeting demand response applications. Energy and Buildings, 2019, 203, 109455.	3.1	34
76	Risk onstrained demand response and wind energy systems integration to handle stochastic nature and wind power outage. IET Energy Systems Integration, 2019, 1, 114-120.	1.1	8
77	Clustering Heat Users Based on Consumption Data. Energy Procedia, 2019, 158, 3196-3201.	1.8	1
78	Recognition and classification of typical load profiles in buildings with non-intrusive learning approach. Applied Energy, 2019, 255, 113727.	5.1	46
79	Six unique load shapes: A segmentation analysis of Illinois residential electricity consumers. Electricity Journal, 2019, 32, 106643.	1.3	8
80	Comparison of clustering approaches for domestic electricity load profile characterisation - Implications for demand side management. Energy, 2019, 180, 665-677.	4.5	113
81	Why Have Voluntary Time-of-Use Tariffs Fallen Short in the Residential Sector?. SSRN Electronic Journal, 2019, , .	0.4	1
82	A Modified IP-Based NILM Approach Using Appliance Characteristics Extracted by 2-SAX. IEEE Access, 2019, 7, 48119-48128.	2.6	6
83	Residential battery sizing model using net meter energy data clustering. Applied Energy, 2019, 251, 113324.	5.1	23
84	New methods for clustering district heating users based on consumption patterns. Applied Energy, 2019, 251, 113373.	5.1	20
85	Clustered spatially and temporally resolved global heat and cooling energy demand in the residential sector. Applied Energy, 2019, 250, 48-62.	5.1	33
86	Identifying residential daily electricity-use profiles through time-segmented regression analysis. Energy and Buildings, 2019, 194, 232-246.	3.1	20
87	A Novel Load Image Profile-Based Electricity Load Clustering Methodology. IEEE Access, 2019, 7, 59048-59058.	2.6	15
88	Characterisation of Australian apartment electricity demand and its implications for low-carbon cities. Energy, 2019, 180, 242-257.	4.5	29
89	A New Pricing Mechanism for Optimal Load Scheduling in Smart Grid. IEEE Systems Journal, 2019, 13, 1737-1746.	2.9	17
90	An agglomerative hierarchical clustering-based strategy using Shared Nearest Neighbours and multiple dissimilarity measures to identify typical daily electricity usage profiles of university library buildings. Energy, 2019, 174, 735-748.	4.5	28

#	Article	IF	CITATIONS
91	Integrated analysis of CFD simulation data with K-means clustering algorithm for soot formation under varied combustion conditions. Applied Thermal Engineering, 2019, 153, 299-305.	3.0	17
92	Development and Clustering of Rate-Oriented Load Metrics for Customer Price-Plan Analysis. , 2019, , .		2
93	Consumer Segmentation: Improving Energy Demand Management through Households Socio-Analytics. , 2019, , .		6
94	Exploratory study on clustering methods to identify electricity use patterns in building sector. Journal of Physics: Conference Series, 2019, 1343, 012044.	0.3	8
95	A clustering based grouping method of nearly zero energy buildings for performance improvements. Applied Energy, 2019, 235, 43-55.	5.1	43
96	A novel clustering algorithm based on mathematical morphology for wind power generation prediction. Renewable Energy, 2019, 136, 572-585.	4.3	37
97	Daily life and demand: an analysis of intra-day variations in residential electricity consumption with time-use data. Energy Efficiency, 2020, 13, 433-458.	1.3	27
98	Clustering of electrical load patterns and time periods using uncertainty-based multi-level amplitude thresholding. International Journal of Electrical Power and Energy Systems, 2020, 117, 105624.	3.3	25
99	Cluster analysis and prediction of residential peak demand profiles using occupant activity data. Applied Energy, 2020, 260, 114246.	5.1	79
100	Electricity load forecasting using clustering and ARIMA model for energy management in buildings. Japan Architectural Review, 2020, 3, 62-76.	0.4	98
101	A comparative study of clustering techniques for electrical load pattern segmentation. Renewable and Sustainable Energy Reviews, 2020, 120, 109628.	8.2	89
102	An ensemble clustering based framework for household load profiling and driven factors identification. Sustainable Cities and Society, 2020, 53, 101958.	5.1	26
103	Why Have Voluntary Timeâ€ofâ€Use Tariffs Fallen Short in the Residential Sector?. Production and Operations Management, 2020, 29, 617-642.	2.1	15
104	Heterogeneity of Electricity Consumption Patterns in Vulnerable Households. Energies, 2020, 13, 4713.	1.6	15
105	From concept to application: A review of use cases in urban building energy modeling. Applied Energy, 2020, 279, 115738.	5.1	109
106	Forecast-informed power load profiling: A novel approach. Engineering Applications of Artificial Intelligence, 2020, 96, 103948.	4.3	3
107	Load Profile Segmentation for Effective Residential Demand Response Program: Method and Evidence from Korean Pilot Study. Energies, 2020, 13, 1348.	1.6	16
108	Mobile Apps Meet the Smart Energy Grid: A Survey on Consumer Engagement and Machine Learning Applications. IEEE Access, 2020, 8, 219632-219655.	2.6	17

#	Article	IF	CITATIONS
109	From Electricity and Water Consumption Data to Information on Office Occupancy: A Supervised and Unsupervised Data Mining Approach. Applied Sciences (Switzerland), 2020, 10, 9089.	1.3	2
110	Whole Time Series Data Streams Clustering: Dynamic Profiling of the Electricity Consumption. Entropy, 2020, 22, 1414.	1.1	5
111	A looming revolution: Implications of self-generation for the risk exposure of retailers. Energy Economics, 2020, 92, 104970.	5.6	6
112	Clustering based assessment of cost, security and environmental tradeoffs with possible future electricity generation portfolios. Applied Energy, 2020, 270, 115219.	5.1	6
113	Potential of unsubsidized distributed solar PV to replace coal-fired power plants, and profits classification in Chinese cities. Renewable and Sustainable Energy Reviews, 2020, 131, 109967.	8.2	52
114	As one falls, another rises? Residential peak load reduction through electricity rate structures. Sustainable Cities and Society, 2020, 60, 102191.	5.1	12
115	A Moving Shape-based Robust Fuzzy K-modes Clustering Algorithm for Electricity Profiles. Electric Power Systems Research, 2020, 187, 106425.	2.1	12
116	An empirical analysis of domestic electricity load profiles: Who consumes how much and when?. Applied Energy, 2020, 275, 115399.	5.1	43
117	Numerical and Experimental Efficiency Estimation in Household Battery Energy Storage Equipment. Energies, 2020, 13, 2719.	1.6	5
118	Introducing time series snippets: a new primitive for summarizing long time series. Data Mining and Knowledge Discovery, 2020, 34, 1713-1743.	2.4	7
119	ScrimpCo: scalable matrix profile on commodity heterogeneous processors. Journal of Supercomputing, 2020, 76, 9189-9210.	2.4	5
120	A novel typical day selection method for the robust planning of stand-alone wind-photovoltaic-diesel-battery microgrid. Applied Energy, 2020, 263, 114606.	5.1	23
121	Functional principal component analysis as a versatile technique to understand and predict the electric consumption patterns. Sustainable Energy, Grids and Networks, 2020, 21, 100308.	2.3	10
122	Deep Learning Assisted Buildings Energy Consumption Profiling Using Smart Meter Data. Sensors, 2020, 20, 873.	2.1	41
123	A Deep Learning Method for Short-Term Residential Load Forecasting in Smart Grid. IEEE Access, 2020, 8, 55785-55797.	2.6	93
124	Water-energy benchmarking and predictive modeling in multi-family residential and non-residential buildings. Applied Energy, 2021, 281, 116074.	5.1	7
125	Machine learning approach for power consumption model based on monsoon data for smart cities applications. Computational Intelligence, 2021, 37, 1309-1321.	2.1	5
126	Clustering-based probability distribution model for monthly residential building electricity consumption analysis. Building Simulation, 2021, 14, 149-164.	3.0	22

#	Article	IF	CITATIONS
127	A clustering-based approach for "cross-scale―load prediction on building level in HVAC systems. Applied Energy, 2021, 282, 116223.	5.1	19
128	Classification of daily electric load profiles of non-residential buildings. Energy and Buildings, 2021, 233, 110670.	3.1	29
129	Advanced data analytics for enhancing building performances: From data-driven to big data-driven approaches. Building Simulation, 2021, 14, 3-24.	3.0	116
130	Compliance of accessibility in tourism websites: a pledge towards disability. Journal of Hospitality and Tourism Insights, 2021, 4, 263-281.	2.2	13
131	Develop Load Shape Dictionary Through Efficient Clustering Based on Elastic Dissimilarity Measure. IEEE Transactions on Smart Grid, 2021, 12, 442-452.	6.2	15
132	Real-time feedback on electricity consumption: evidence from a field experiment in Italy. Energy Efficiency, 2021, 14, 1.	1.3	7
133	Aggregate Model for Power Load Forecasting Based on Conditional Autoencoder. Lecture Notes in Computer Science, 2021, , 406-416.	1.0	1
134	The quantitative techno-economic comparisons and multi-objective capacity optimization of wind-photovoltaic hybrid power system considering different energy storage technologies. Energy Conversion and Management, 2021, 229, 113779.	4.4	84
136	Characterization and Synthesis of Duty Cycles for Battery Energy Storage Used in Peak Shaving Dispatch. ASME Letters in Dynamic Systems and Control, 2021, 1, .	0.4	3
137	Impacts of long-term temperature change and variability on electricity investments. Nature Communications, 2021, 12, 1643.	5.8	26
138	Hierarchical classification method of electricity consumption industries through TNPE and Bayes. Measurement and Control, 2021, 54, 346-359.	0.9	2
139	Prediction of domestic power peak demand and consumption using supervised machine learning with smart meter dataset. Multimedia Tools and Applications, 2021, 80, 19675-19693.	2.6	14
140	Dominant factors for targeted demand side management—An alternate approach for residential demand profiling in developing countries. Sustainable Cities and Society, 2021, 67, 102693.	5.1	8
141	A retrospective analysis of the impact of the COVID-19 restrictions on energy consumption at a disaggregated level. Applied Energy, 2021, 287, 116547.	5.1	51
142	How Smart Meter Data Analysis Can Support Understanding the Impact of Occupant Behavior on Building Energy Performance: A Comprehensive Review. Energies, 2021, 14, 2502.	1.6	10
143	Solar panels and smart thermostats: The power duo of the residential sector?. Applied Energy, 2021, 290, 116747.	5.1	6
144	Analysis and evaluation of two short-term load forecasting techniques. International Journal of Emerging Electric Power Systems, 2022, 23, 183-196.	0.6	8
145	Generic visual data mining-based framework for revealing abnormal operation patterns in building energy systems. Automation in Construction, 2021, 125, 103624.	4.8	7

#	Article	IF	CITATIONS
146	The Effects of Extreme High Temperature Day-Off on Electricity Conservation. Weather, Climate, and Society, 2021, , .	0.5	0
147	Characterising electricity demand through load curve clustering: A case of Karnataka electricity system in India. Computers and Chemical Engineering, 2021, 150, 107316.	2.0	12
148	Electricity Consumer Characteristics Identification: A Federated Learning Approach. IEEE Transactions on Smart Grid, 2021, 12, 3637-3647.	6.2	87
149	Smart meter data classification using optimized random forest algorithm. ISA Transactions, 2022, 126, 361-369.	3.1	16
150	Evolutions of households with every member out-of-home across Japanese cities from 1987 to 2015. Computers, Environment and Urban Systems, 2021, 89, 101683.	3.3	4
151	Design and validation of synthetic duty cycles for grid energy storage dispatch using lithium-ion batteries. Advances in Applied Energy, 2021, 4, 100065.	6.6	22
152	An energy consumption model for the Algerian residential building's stock, based on a triangular approach: Geographic Information System (GIS), regression analysis and hierarchical cluster analysis. Sustainable Cities and Society, 2021, 74, 103191.	5.1	11
153	Evaluating the determinants of household electricity consumption using cluster analysis. Journal of Building Engineering, 2021, 43, 102487.	1.6	12
154	A growth curve-based Bayesian hierarchical model for multi-building energy use data analysis. Building and Environment, 2021, 206, 108349.	3.0	0
155	Forecasting High Frequency Intra-Day Electricity Demand Using Temperature. SSRN Electronic Journal, 0, , .	0.4	5
156	Pattern Recognition And Classification For Electrical Energy Use In Residential Buildings. , 0, , .		2
157	Fuzzy clustering and prediction of electricity demand based on household characteristics. , 0, , .		15
158	A Novel Feature Set for Low-Voltage Consumers, Based on the Temporal Dependence of Consumption and Peak Demands. Energies, 2021, 14, 139.	1.6	7
159	Performance Assessments of Clustering-Based Methods for Smart Data-Driven Building Energy Anomaly Diagnosis. , 2021, , 601-611.		0
160	Two-Stage Clustering of Household Electricity Load Shapes for Improved Temporal Pattern Representation. IEEE Access, 2021, 9, 151667-151680.	2.6	5
161	Energy profiling of end-users in service and industry sectors with use of Complex Network Analysis. E3S Web of Conferences, 2021, 312, 10001.	0.2	1
162	Definition of Residential Power Load Profiles Clusters Using Machine Learning and Spatial Analysis. Energies, 2021, 14, 6565.	1.6	2
163	Comparison of domestic lifestyle energy consumption clustering approaches. Energy and Buildings, 2021, 253, 111537.	3.1	8

#	Article	IF	CITATIONS
164	Electric Load Pattern Classification for Demand-side Management Planning: A Hybrid Approach. , 2015, ,		2
165	Mining Consumer Characteristics from Smart Metering Data through Fuzzy Modelling. Communications in Computer and Information Science, 2016, , 562-573.	0.4	3
166	Time Series Cluster Analysis on Electricity Consumption of North Hebei Province in China. Lecture Notes in Computer Science, 2018, , 765-774.	1.0	0
167	A SaaS Implementation of a New Generic Crypto-Classifier Service for Secure Energy Efficiency in Smart Cities. Communications in Computer and Information Science, 2019, , 90-115.	0.4	Ο
168	Generation and Classification of Energy Load Curves Using a Distributed MapReduce Approach. Communications in Computer and Information Science, 2019, , 3-17.	0.4	1
169	A Hybrid Model of Clustering and Neural Network Using Weather Conditions for Energy Management in Buildings. , 2020, , .		Ο
170	Human–Infrastructure Interactions during the COVID-19 Pandemic: Understanding Water and Electricity Demand Profiles at the Building Level. ACS ES&T Water, 2021, 1, 2327-2338.	2.3	14
171	Machine learning approach to uncovering residential energy consumption patterns based on socioeconomic and smart meter data. Energy, 2022, 240, 122500.	4.5	37
172	An Improved Non-Schedulable Load Forecasting Strategy for Enhancing the Performance of the Energy Management in a Nearly Zero Energy Building. IEEE Access, 2021, 9, 151931-151943.	2.6	2
173	Global changes in electricity consumption during COVID-19. IScience, 2022, 25, 103568.	1.9	37
174	A systematic review of data pre-processing methods and unsupervised mining methods used in profiling smart meter data. AIMS Electronics and Electrical Engineering, 2021, 5, 284-314.	0.8	5
175	Battery Dispatching for End Users With On-Site Renewables and Peak Demand Charges—An Approximate Dynamic Programming Approach. IEEE Transactions on Control Systems Technology, 2022, 30, 2100-2114.	3.2	3
176	Electricity consumption pattern analysis beyond traditional clustering methods: A novel self-adapting semi-supervised clustering method and application case study. Applied Energy, 2022, 308, 118335.	5.1	16
177	Federated Clustering for Electricity Consumption Pattern Extraction. IEEE Transactions on Smart Grid, 2022, 13, 2425-2439.	6.2	24
178	Estimating power demand shaving capacity of buildings on an urban scale using extracted demand response profiles through machine learning models. Applied Energy, 2022, 310, 118579.	5.1	8
179	The multi-stage framework for optimal sizing and operation of hybrid electrical-thermal energy storage system. Energy, 2022, 245, 123248.	4.5	19
180	An energy efficiency solution based on time series data mining algorithm on elementary school building. International Journal of Low-Carbon Technologies, 2022, 17, 356-372.	1.2	1
181	Load Classification and Driven Factors Identification Based on Ensemble Clustering. , 2022, , 81-99.		0

#	Article	IF	CITATIONS
182	Load profile mining using directed weighted graphs with application towards demand response management. Applied Energy, 2022, 311, 118578.	5.1	4
183	Selecting Representative Net Load Profiles of Solar Homes Using Clustering Techniques. SSRN Electronic Journal, 0, , .	0.4	0
184	Showcasing the Applications of Smart Meter Open Data. SSRN Electronic Journal, 0, , .	0.4	0
185	Data acquisition for urban building energy modeling: A review. Building and Environment, 2022, 217, 109056.	3.0	43
186	Study on the distribution characteristics and uncertainty of multiple energy load patterns for building group to enhance demand side management. Energy and Buildings, 2022, 263, 112038.	3.1	8
187	Lockdown impacts on residential electricity demand in India: A data-driven and non-intrusive load monitoring study using Gaussian mixture models. Energy Policy, 2022, 164, 112886.	4.2	8
188	Clustering Models for Demand Response Aggregation. , 2021, , .		1
189	SEKTÖR BAZINDA İŞYERLERİ VE ZORUNLU SİGORTALILARIN İLLERE GÖRE KÜMELEMESİ. Hak İş Toplum Dergisi, 0, , 409-429.	Uluslarara 0.1	sÄ _t Emek Ve
190	Fuzzy C-Means Clustering Applied to Load Profiling of Industrial Customers. Electric Power Components and Systems, 2021, 49, 1068-1084.	1.0	2
191	Impact assessment of varied data granularities from commercial buildings on exploration and learning mechanism. Applied Energy, 2022, 319, 119281.	5.1	7
192	How would residential electricity consumers respond to reductions in power outages?. Energy for Sustainable Development, 2022, 69, 1-10.	2.0	2
193	Asynchronous Distributed IoT-Enabled Customer Characterization in Distribution Networks: Theory and Hardware Implementation. IEEE Transactions on Smart Grid, 2022, 13, 4392-4404.	6.2	3
194	Behavior segmentation of electricity consumption patterns: A cluster analytical approach. Knowledge-Based Systems, 2022, 251, 109236.	4.0	15
195	A novel stochastic model for hourly electricity load profile analysis of rural districts in Fujian, China. Science and Technology for the Built Environment, 2022, 28, 1166-1183.	0.8	4
196	Managed Residential Electric Vehicle Charging Minimizes Electricity Bills While Meeting Driver and Community Preferences. SSRN Electronic Journal, 0, , .	0.4	0
197	Off seasons, holidays and extreme weather events: Using data-mining techniques on smart meter and energy consumption data from China. Energy Research and Social Science, 2022, 89, 102637.	3.0	6
198	Household Electricity Consumer Classification Using Novel Clustering Approach, Review, and Case Study. Electronics (Switzerland), 2022, 11, 2302.	1.8	5
199	A density-based matrix transformation clustering method for electrical load. PLoS ONE, 2022, 17, e0272767.	1.1	2

#	Article	IF	CITATIONS
200	Systems of social practice and automation in an energy efficient home. Building and Environment, 2022, 224, 109543.	3.0	3
201	What drove electricity consumption in the residential sector during the SARS-CoV-2 confinement? A special focus on university students in southern Spain. Energy, 2023, 262, 125467.	4.5	2
202	Analysis of single- and multi-family residential electricity consumption in a large urban environment: Evidence from Chicago, IL. Sustainable Cities and Society, 2023, 88, 104250.	5.1	5
203	DPWGAN: High-Quality Load Profiles Synthesis With Differential Privacy Guarantees. IEEE Transactions on Smart Grid, 2023, 14, 3283-3295.	6.2	3
204	Data clustering: application and trends. Artificial Intelligence Review, 2023, 56, 6439-6475.	9.7	20
205	An energy efficiency solution based on time series data mining algorithm—a case study of small hotel. International Journal of Low-Carbon Technologies, 2022, 17, 1406-1419.	1.2	1
206	A systematic review of building electricity use profile models. Energy and Buildings, 2023, 281, 112753.	3.1	7
207	Vertical Approach Anomaly Detection Using Local Outlier Factor. Power Systems, 2023, , 297-310.	0.3	0
208	Load Data Analysis Based on Timestamp-Based Self-Adaptive Evolutionary Clustering. IEEE Transactions on Industrial Informatics, 2023, 19, 11508-11517.	7.2	0
209	Model-based run-time and memory reduction for a mixed-use multi-energy system model with high spatial resolution. Applied Energy, 2023, 334, 120574.	5.1	3
210	Time-series clustering and forecasting household electricity demand using smart meter data. Energy Reports, 2023, 9, 4111-4121.	2.5	10
211	A cluster analysis approach to sampling domestic properties for sensor deployment. Building and Environment, 2023, 231, 110032.	3.0	1
212	Contributions to Power Grid System Analysis Based on Clustering Techniques. Sensors, 2023, 23, 1895.	2.1	3
213	Clustering Electrical Customers with Source Power and Aggregation Constraints: A Reliability-Based Approach in Power Distribution Systems. Energies, 2023, 16, 2485.	1.6	1
220	Real-time Clustering and Visualization of Customers' Load Consumption in Electrical Distribution Networks. , 2023, , .		0
225	A Two-Step Time-Series Data Clustering Method for Building-Level Load Profile. , 2023, , .		0