Metabolic Reprogramming of Macrophages

Journal of Biological Chemistry 289, 7884-7896

DOI: 10.1074/jbc.m113.522037

Citation Report

#	Article	IF	CITATIONS
1	A decade of progress in adipose tissue macrophage biology. Immunological Reviews, 2014, 262, 134-152.	2.8	178
2	How Does Monocyte Metabolism Impact Inflammation and Aging During Chronic HIV Infection?. AIDS Research and Human Retroviruses, 2014, 30, 335-336.	0.5	10
3	The interplay between central metabolism and innate immune responses. Cytokine and Growth Factor Reviews, 2014, 25, 707-713.	3.2	81
4	Testing the Role of Myeloid Cell Glucose Flux in Inflammation and Atherosclerosis. Cell Reports, 2014, 7, 356-365.	2.9	69
5	Circulating micro <scp>RNA</scp> signature of genotypeâ€byâ€age interactions in the longâ€lived <scp>A</scp> mes dwarf mouse. Aging Cell, 2015, 14, 1055-1066.	3.0	54
6	UCP2-induced fatty acid synthase promotes NLRP3 inflammasome activation during sepsis. Journal of Clinical Investigation, 2015, 125, 665-680.	3.9	223
7	Metabolic Characterization of Polarized M1 and M2 Bone Marrow-derived Macrophages Using Real-time Extracellular Flux Analysis. Journal of Visualized Experiments, $2015, \ldots$	0.2	170
8	Bioenergetic analysis of human peripheral blood mononuclear cells. Clinical and Experimental Immunology, 2015, 182, 69-80.	1.1	25
9	Changes in glucose transporter expression and nitric oxide production are associated with liver injury in diabetes. Cell Biochemistry and Function, 2015, 33, 366-374.	1.4	12
10	Polarization and Repolarization of Macrophages. Journal of Clinical & Cellular Immunology, 2015, 06, .	1.5	29
11	Epigenetics: Its Understanding Is Crucial to a Sustainable Healthcare System. Healthcare (Switzerland), 2015, 3, 194-204.	1.0	4
12	Warburg revisited: lessons for innate immunity and sepsis. Frontiers in Physiology, 2015, 6, 70.	1.3	36
13	MicroRNA-33–dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. Journal of Clinical Investigation, 2015, 125, 4334-4348.	3.9	304
14	Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Research, 2015, 25, 771-784.	5.7	1,265
15	Proteomic Analysis Reveals Distinct Metabolic Differences Between Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) and Macrophage Colony Stimulating Factor (M-CSF) Grown Macrophages Derived from Murine Bone Marrow Cells*. Molecular and Cellular Proteomics, 2015, 14, 2722-2732.	2.5	23
16	Autophagy Controls Acquisition of Aging Features in Macrophages. Journal of Innate Immunity, 2015, 7, 375-391.	1.8	115
17	Antiproliferative and metabolic effects of metformin in a preoperative window clinical trial for endometrial cancer. Cancer Medicine, 2015, 4, 161-173.	1.3	124
18	4â€1 <scp>BBL</scp> signaling promotes cell proliferation through reprogramming of glucose metabolism in monocytes/macrophages. FEBS Journal, 2015, 282, 1468-1480.	2.2	21

#	ARTICLE	IF	Citations
19	Uncomplicating the Macrovascular Complications of Diabetes: The 2014 Edwin Bierman Award Lecture: Figure 1. Diabetes, 2015, 64, 2689-2697.	0.3	17
20	Quantitative proteomics analyses of activation states of human THP-1 macrophages. Journal of Proteomics, 2015, 128, 164-172.	1.2	17
21	Permanent Culture of Macrophages at Physiological Oxygen Attenuates the Antioxidant and Immunomodulatory Properties of Dimethyl Fumarate. Journal of Cellular Physiology, 2015, 230, 1128-1138.	2.0	19
22	Glucose Metabolism Regulates T Cell Activation, Differentiation, and Functions. Frontiers in Immunology, 2015, 6, 1.	2.2	611
23	T cell metabolic fitness in antitumor immunity. Trends in Immunology, 2015, 36, 257-264.	2.9	237
24	Infection homeostasis: implications for therapeutic and immune programming of metabolism in controlling infection. Medical Microbiology and Immunology, 2015, 204, 395-407.	2.6	17
25	GSTO1-1 modulates metabolism in macrophages activated through the LPS and TLR4 pathway. Journal of Cell Science, 2015, 128, 1982-1990.	1.2	55
26	Nutrition and Metabolic Correlates of Obesity and Inflammation: Clinical Considerations. Journal of Nutrition, 2015, 145, 1131S-1136S.	1.3	19
27	Metabolic Flexibility and Dysfunction in Cardiovascular Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, e37-42.	1.1	35
28	The Monocarboxylate Transporter 4 Is Required for Glycolytic Reprogramming and Inflammatory Response in Macrophages. Journal of Biological Chemistry, 2015, 290, 46-55.	1.6	146
29	Distinct role of FoxO1 in M-CSF- and GM-CSF-differentiated macrophages contributes LPS-mediated IL-10: implication in hyperglycemia. Journal of Leukocyte Biology, 2015, 97, 327-339.	1.5	69
30	Cellular Metabolism and Macrophage Functional Polarization. International Reviews of Immunology, 2015, 34, 82-100.	1.5	274
31	Metabolic Mysteries of the Inflammatory Response: T Cell Polarization and Plasticity. International Reviews of Immunology, 2015, 34, 3-18.	1.5	21
32	Neuroimmune biomarkers in schizophrenia. Schizophrenia Research, 2016, 176, 3-13.	1.1	109
33	Novel Anti-Retroviral Drug Targets: Interfering siRNA and Mitochondrial TERT Expression. , 2016, 05, .		2
34	The Macrophage Switch in Obesity Development. Frontiers in Immunology, 2015, 6, 637.	2.2	397
35	Metabolic Profiles of Obesity in American Indians: The Strong Heart Family Study. PLoS ONE, 2016, 11, e0159548.	1.1	16
36	Inflammation, glucose, and vascular cell damage: the role of the pentose phosphate pathway. Cardiovascular Diabetology, 2016, 15, 82.	2.7	84

#	Article	IF	CITATIONS
37	[¹⁸ F]â€Fluorodeoxyâ€ <scp>d</scp> â€glucose uptakeâ€positive seborrhoeic keratosis on positron emission tomography may result from high expression of glucose transporter. British Journal of Dermatology, 2016, 175, 175-177.	1.4	7
38	Does immunometabolism provide new targets to treat HIV-mediated inflammatory diseases?. Future Virology, 2016, 11, 159-162.	0.9	0
39	Human Mesenchymal stem cells program macrophage plasticity by altering their metabolic status via a PGE2-dependent mechanism. Scientific Reports, 2016, 6, 38308.	1.6	309
40	Emerging Role and Characterization of Immunometabolism: Relevance to HIV Pathogenesis, Serious Non-AIDS Events, and a Cure. Journal of Immunology, 2016, 196, 4437-4444.	0.4	39
41	Cafeteria diet-induced obesity causes oxidative damage in white adipose. Biochemical and Biophysical Research Communications, 2016, 473, 545-550.	1.0	44
42	Lactate dehydrogenase inhibition: exploring possible applications beyond cancer treatment. Future Medicinal Chemistry, 2016, 8, 713-725.	1.1	28
43	Myeloid-Cell-Derived VEGF Maintains Brain Glucose Uptake and Limits Cognitive Impairment in Obesity. Cell, 2016, 165, 882-895.	13.5	167
44	Metabolic reprogramming by the pyruvate dehydrogenase kinase–lactic acid axis: Linking metabolism and diverse neuropathophysiologies. Neuroscience and Biobehavioral Reviews, 2016, 68, 1-19.	2.9	49
45	Macrophage fatty acid oxidation and its roles in macrophage polarization and fatty acid-induced inflammation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1796-1807.	1.2	106
46	Culture medium associated changes in the core proteome of macrophages and in their responses to copper oxide nanoparticles. Proteomics, 2016, 16, 2864-2877.	1.3	2
47	Adipose Tissueâ€Derived Plasminogen Activator Inhibitorâ€1 Function and Regulation. , 2016, 6, 1873-1896.		76
48	Macrophages Promote Oxidative Metabolism To Drive Nitric Oxide Generation in Response to Trypanosoma cruzi. Infection and Immunity, 2016, 84, 3527-3541.	1.0	69
49	Hypoxia-Inducible Factor- $1\hat{l}_{\pm}$ Expression in Macrophages Promotes Development of Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1782-1790.	1.1	113
50	Diabetes propels the risk for cardiovascular disease: sweet monocytes becoming aggressive?. Cellular and Molecular Life Sciences, 2016, 73, 4675-4684.	2.4	49
51	Acute Gene Expression Profile of Lung Tissue Following Sulfur Mustard Inhalation Exposure in Large Anesthetized Swine. Chemical Research in Toxicology, 2016, 29, 1602-1610.	1.7	6
52	The immune system's role in sepsis progression, resolution, and longâ€ŧerm outcome. Immunological Reviews, 2016, 274, 330-353.	2.8	495
53	M2 macrophages in metabolism. Diabetology International, 2016, 7, 342-351.	0.7	19
54	GM-CSF Induces Inflammatory Macrophages by Regulating Glycolysis and Lipid Metabolism. Journal of Immunology, 2016, 197, 4101-4109.	0.4	76

#	Article	IF	Citations
55	Macrophage Metabolism Controls Tumor Blood Vessel Morphogenesis and Metastasis. Cell Metabolism, 2016, 24, 701-715.	7.2	352
56	Patterns of Transcriptional Response to 1,25-Dihydroxyvitamin D3 and Bacterial Lipopolysaccharide in Primary Human Monocytes. G3: Genes, Genomes, Genetics, 2016, 6, 1345-1355.	0.8	7
57	A Simple Flow Cytometric Method to Measure Glucose Uptake and Glucose Transporter Expression for Monocyte Subpopulations in Whole Blood. Journal of Visualized Experiments, 2016, , .	0.2	5
58	Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma. Oncolmmunology, 2016, 5, e1191731.	2.1	178
59	Metabolic reprogramming through fatty acid transport protein 1 (FATP1) regulates macrophage inflammatory potential and adipose inflammation. Molecular Metabolism, 2016, 5, 506-526.	3.0	107
60	Metabolic communication in tumors: a new layer of immunoregulation for immune evasion. , 2016, 4, 4.		105
61	Glucose Metabolism in T Cells and Monocytes: New Perspectives in HIV Pathogenesis. EBioMedicine, 2016, 6, 31-41.	2.7	96
62	Structure, function and disease relevance of Omega-class glutathione transferases. Archives of Toxicology, 2016, 90, 1049-1067.	1.9	54
63	The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. Journal of Experimental Medicine, 2016, 213, 337-354.	4.2	403
64	Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1 $<$ b $>$ 1± $<$ b $>$ -dependent. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1564-1569.	3.3	177
65	Glucose transporter expression differs between bovine monocyte and macrophage subsets and is influenced by milk production. Journal of Dairy Science, 2016, 99, 2276-2287.	1.4	32
66	Targeting vascular and leukocyte communication in angiogenesis, inflammation and fibrosis. Nature Reviews Drug Discovery, 2016, 15, 125-142.	21.5	115
67	Adipose tissue metabolic and inflammatory responses to a mixed meal in lean, overweight and obese men. European Journal of Nutrition, 2017, 56, 375-385.	4.6	17
68	Cellular metabolism of myeloid cells in sepsis. Journal of Leukocyte Biology, 2017, 101, 151-164.	1.5	85
69	Postprandial macrophage-derived IL- $1\hat{l}^2$ stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nature Immunology, 2017, 18, 283-292.	7.0	286
70	Higher phagocytic activity of thioglycollate-elicited peritoneal macrophages is related to metabolic status of the cells. Journal of Inflammation, 2017, 14, 4.	1.5	85
71	Parasites, nutrition, immune responses and biology of metabolic tissues. Parasite Immunology, 2017, 39, e12422.	0.7	33
72	Inflammation, metaflammation and immunometabolic disorders. Nature, 2017, 542, 177-185.	13.7	1,502

#	Article	IF	Citations
73	Macrophage function in obesity-induced inflammation and insulin resistance. Pflugers Archiv European Journal of Physiology, 2017, 469, 385-396.	1.3	160
74	Biochemical Underpinnings of Immune Cell Metabolic Phenotypes. Immunity, 2017, 46, 703-713.	6.6	107
75	Metabolic regulation of suppressive myeloid cells in cancer. Cytokine and Growth Factor Reviews, 2017, 35, 27-35.	3.2	27
76	Thyroid hormone metabolism in innate immune cells. Journal of Endocrinology, 2017, 232, R67-R81.	1.2	72
77	Increased glucose transporter-1 expression on intermediate monocytes from HIV-infected women with subclinical cardiovascular disease. Aids, 2017, 31, 199-205.	1.0	18
78	<pre><scp>mTORC</scp>1 and <scp>mTORC</scp>2 as regulators of cell metabolism in immunity. FEBS Letters, 2017, 591, 3089-3103.</pre>	1.3	194
79	Fine tuning of immunometabolism for the treatment of rheumatic diseases. Nature Reviews Rheumatology, 2017, 13, 313-320.	3.5	58
80	Metabolic regulation of inflammation. Nature Reviews Rheumatology, 2017, 13, 267-279.	3.5	211
81	Glucose Transporter 1–Dependent Glycolysis Is Increased during Aging-Related Lung Fibrosis, and Phloretin Inhibits Lung Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 521-531.	1.4	88
82	Exhaustion of T lymphocytes in the tumor microenvironment: Significance and effective mechanisms. Cellular Immunology, 2017, 322, 1-14.	1.4	114
83	Lack of myeloid Fatp1 increases atherosclerotic lesion size in Ldlr â^'/â^' mice. Atherosclerosis, 2017, 266, 182-189.	0.4	14
84	Insulin Influences LPS-Induced TNF-α and IL-6 Release Through Distinct Pathways in Mouse Macrophages from Different Compartments. Cellular Physiology and Biochemistry, 2017, 42, 2093-2104.	1.1	57
85	Inflammatory monocytes expressing tissue factor drive SIV and HIV coagulopathy. Science Translational Medicine, 2017, 9, .	5.8	94
86	Proteome Analysis of Hypoxic Glioblastoma Cells Reveals Sequential Metabolic Adaptation of One-Carbon Metabolic Pathways. Molecular and Cellular Proteomics, 2017, 16, 1906-1921.	2.5	29
87	Diabetesâ€mediated myelopoiesis and the relationship to cardiovascular risk. Annals of the New York Academy of Sciences, 2017, 1402, 31-42.	1.8	39
88	Cell-Intrinsic Glycogen Metabolism Supports Early Glycolytic Reprogramming Required for Dendritic Cell Immune Responses. Cell Metabolism, 2017, 26, 558-567.e5.	7.2	188
89	Metabolism in Immune Cell Differentiation and Function. Advances in Experimental Medicine and Biology, 2017, 1011, 1-85.	0.8	14
90	Macrophage phenotype in response to ECM bioscaffolds. Seminars in Immunology, 2017, 29, 2-13.	2.7	122

#	Article	IF	Citations
91	Immunometabolic and Lipidomic Markers Associated With the Frailty Index and Quality of Life in Aging HIV+ Men on Antiretroviral Therapy. EBioMedicine, 2017, 22, 112-121.	2.7	35
92	Metabolic reprogramming during hepatitis B disease progression offers novel diagnostic and therapeutic opportunities. Antiviral Chemistry and Chemotherapy, 2017, 25, 53-57.	0.3	29
93	Macrophage metabolism in atherosclerosis. FEBS Letters, 2017, 591, 3042-3060.	1.3	103
94	BCAT1 controls metabolic reprogramming in activated human macrophages and is associated with inflammatory diseases. Nature Communications, 2017, 8, 16040.	5 . 8	156
95	Similarities and Distinctions of Cancer and Immune Metabolism in Inflammation and Tumors. Cell Metabolism, 2017, 26, 49-70.	7.2	268
96	Specific and Complex Reprogramming of Cellular Metabolism in Myeloid Cells during Innate Immune Responses. Cell Metabolism, 2017, 26, 142-156.	7.2	144
97	Hyperglycemia induces mixed M1/M2 cytokine profile in primary human monocyte-derived macrophages. Immunobiology, 2017, 222, 952-959.	0.8	42
98	Epigenetics of Inflammation. , 2017, , 971-992.		0
99	CD70 limits atherosclerosis and promotes macrophage function. Thrombosis and Haemostasis, 2017, 117, 164-175.	1.8	21
100	Glucose Transport and Homeostasis in Lung Epithelia. , 2017, , 33-57.		6
101	Contribution of Adipose Tissue to Development of Cancer. , 2017, 8, 237-282.		139
102	Enzyme-free monitoring of glucose utilization in stimulated macrophages using carbon nanotube-decorated electrochemical sensor. Applied Nanoscience (Switzerland), 2017, 7, 773-780.	1.6	6
103	Dendrimer-mediated delivery of N-acetyl cysteine to microglia in a mouse model of Rett syndrome. Journal of Neuroinflammation, 2017, 14, 252.	3.1	72
104	The role of infiltrating immune cells in dysfunctional adipose tissue. Cardiovascular Research, 2017, 113, 1009-1023.	1.8	302
105	MYC in Regulating Immunity: Metabolism and Beyond. Genes, 2017, 8, 88.	1.0	67
106	Metabolic Remodeling, Inflammasome Activation, and Pyroptosis in Macrophages Stimulated by Porphyromonas gingivalis and Its Outer Membrane Vesicles. Frontiers in Cellular and Infection Microbiology, 2017, 7, 351.	1.8	138
107	Metabolic Hallmarks of Tumor and Immune Cells in the Tumor Microenvironment. Frontiers in Immunology, 2017, 8, 248.	2.2	274
108	Macrophage Metabolism As Therapeutic Target for Cancer, Atherosclerosis, and Obesity. Frontiers in Immunology, 2017, 8, 289.	2.2	225

#	Article	IF	Citations
109	Fatty Acid Oxidation Compensates for Lipopolysaccharide-Induced Warburg Effect in Glucose-Deprived Monocytes. Frontiers in Immunology, 2017, 8, 609.	2.2	58
110	Similarities in the Metabolic Reprogramming of Immune System and Endothelium. Frontiers in Immunology, 2017, 8, 837.	2.2	45
111	Aging, Obesity, and Inflammatory Age-Related Diseases. Frontiers in Immunology, 2017, 8, 1745.	2.2	246
112	HIF1 <i<math>\hat{l}±-Induced Glycolysis Metabolism Is Essential to the Activation of Inflammatory Macrophages. Mediators of Inflammation, 2017, 2017, 1-10.</i<math>	1.4	228
113	Shaofu Zhuyu decoction ameliorates obesity-mediated hepatic steatosis and systemic inflammation by regulating metabolic pathways. PLoS ONE, 2017, 12, e0178514.	1.1	14
114	Role of pro- and anti-inflammatory phenomena in the physiopathology of type 2 diabetes and obesity. World Journal of Biological Chemistry, 2017, 8, 120.	1.7	86
115	SOCS1 is a negative regulator of metabolic reprogramming during sepsis. JCI Insight, 2017, 2, .	2.3	36
116	Microâ€environment and intracellular metabolism modulation of adipose tissue macrophage polarization in relation to chronic inflammatory diseases. Diabetes/Metabolism Research and Reviews, 2018, 34, e2993.	1.7	20
117	Biochemistry of proinflammatory macrophage activation. Cellular and Molecular Life Sciences, 2018, 75, 2093-2109.	2.4	82
118	Microenvironmental M1 tumor-associated macrophage polarization influences cancer-related anemia in advanced ovarian cancer: key role of interleukin-6. Haematologica, 2018, 103, e388-e391.	1.7	31
119	Analysis of glycogen metabolic pathway utilization by dendritic cells and T cells using custom phenotype metabolic assays. Journal of Immunological Methods, 2018, 458, 53-57.	0.6	1
120	GLUT1 protects prostate cancer cells from glucose deprivation-induced oxidative stress. Redox Biology, 2018, 17, 112-127.	3.9	60
121	Interplay Between Metabolic Sensors and Immune Cell Signaling. Experientia Supplementum (2012), 2018, 109, 115-196.	0.5	2
122	Functionalized Gold Nanoclusters Identify Highly Reactive Oxygen Species in Living Organisms. Advanced Functional Materials, 2018, 28, 1702026.	7.8	92
123	Down-regulation of guanylate binding protein 1 causes mitochondrial dysfunction and cellular senescence in macrophages. Scientific Reports, 2018, 8, 1679.	1.6	26
124	Redox-signals and macrophage biology. Molecular Aspects of Medicine, 2018, 63, 70-87.	2.7	45
125	Macrophages with a deletion of the phosphoenolpyruvate carboxykinase 1 (Pck1) gene have a more proinflammatory phenotype. Journal of Biological Chemistry, 2018, 293, 3399-3409.	1.6	32
126	Glucose Homeostasis Is Important for Immune Cell Viability during Candida Challenge and Host Survival of Systemic Fungal Infection. Cell Metabolism, 2018, 27, 988-1006.e7.	7.2	162

#	Article	IF	Citations
127	IFN Regulatory Factor 2 Inhibits Expression of Glycolytic Genes and Lipopolysaccharide-Induced Proinflammatory Responses in Macrophages. Journal of Immunology, 2018, 200, 3218-3230.	0.4	41
128	Metabolic Regulation of Adipose Tissue Macrophage Function in Obesity and Diabetes. Antioxidants and Redox Signaling, 2018, 29, 297-312.	2.5	94
129	Glut1 Expression Level on Inflammatory Monocytes is Associated With Markers of Cardiovascular Disease Risk in HIV-Infected Individuals. Journal of Acquired Immune Deficiency Syndromes (1999), 2018, 77, e28-e30.	0.9	8
130	Metabolic adaptation of macrophages in chronic diseases. Cancer Letters, 2018, 414, 250-256.	3.2	7
131	Intratumoural leukocyte infiltration is a prognostic indicator among pancreatic cancer patients with type 2 diabetes. Pancreatology, 2018, 18, 85-93.	0.5	6
132	Macrophages sensing oxidized DAMPs reprogram their metabolism to support redox homeostasis and inflammation through a TLR2-Syk-ceramide dependent mechanism. Molecular Metabolism, 2018, 7, 23-34.	3.0	46
133	Glycolytic Response to Inflammation Over Time: Role of Myeloid HIF-1alpha. Frontiers in Physiology, 2018, 9, 1624.	1.3	11
134	Exploiting immune cell metabolic machinery for functional HIV cure and the prevention of inflammaging. F1000Research, 2018, 7, 125.	0.8	24
135	Adapted Immune Responses of Myeloid-Derived Cells in Fatty Liver Disease. Frontiers in Immunology, 2018, 9, 2418.	2.2	31
136	Vimentin deficiency in macrophages induces increased oxidative stress and vascular inflammation but attenuates atherosclerosis in mice. Scientific Reports, 2018, 8, 16973.	1.6	43
137	Overexpression of miRNA-143 Inhibits Colon Cancer Cell Proliferation by Inhibiting Glucose Uptake. Archives of Medical Research, 2018, 49, 497-503.	1.5	29
138	Metabolism Plays a Key Role during Macrophage Activation. Mediators of Inflammation, 2018, 2018, 1-10.	1.4	57
139	Reduced Number of Adipose Lineage and Endothelial Cells in Epididymal fat in Response to Omega-3 PUFA in Mice Fed High-Fat Diet. Marine Drugs, 2018, 16, 515.	2.2	12
140	Human White Adipose Tissue Metabolome: Current Perspective. Obesity, 2018, 26, 1870-1878.	1.5	12
141	Hypoxia-inducible factor- $1\hat{l}_{\pm}$ regulation of myeloid cells. Journal of Molecular Medicine, 2018, 96, 1293-1306.	1.7	30
142	Effect of Melittin on Metabolomic Profile and Cytokine Production in PMA-Differentiated THP-1 Cells. Vaccines, 2018, 6, 72.	2.1	10
143	Sirtuins and Immuno-Metabolism of Sepsis. International Journal of Molecular Sciences, 2018, 19, 2738.	1.8	39
144	Regulation of fatty acid synthesis in immune cells. Scandinavian Journal of Immunology, 2018, 88, e12713.	1.3	37

#	Article	IF	CITATIONS
145	Recombinant factor VIII Fc fusion protein drives regulatory macrophage polarization. Blood Advances, 2018, 2, 2904-2916.	2.5	25
146	Environmental Signals Influencing Myeloid Cell Metabolism and Function in Diabetes. Trends in Endocrinology and Metabolism, 2018, 29, 468-480.	3.1	16
147	Hydrogen sulfide attenuates oxidative stress-induced NLRP3 inflammasome activation via S-sulfhydrating c-Jun at Cys269 in macrophages. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2890-2900.	1.8	50
148	Sustained high glucose exposure sensitizes macrophage responses to cytokine stimuli but reduces their phagocytic activity. BMC Immunology, 2018, 19, 24.	0.9	126
149	Pentose Phosphate Shunt Modulates Reactive Oxygen Species and Nitric Oxide Production Controlling Trypanosoma cruzi in Macrophages. Frontiers in Immunology, 2018, 9, 202.	2.2	56
150	Metabolic Modulation in Macrophage Effector Function. Frontiers in Immunology, 2018, 9, 270.	2.2	246
151	Mitochondrial Sirtuin 4 Resolves Immune Tolerance in Monocytes by Rebalancing Glycolysis and Glucose Oxidation Homeostasis. Frontiers in Immunology, 2018, 9, 419.	2.2	69
152	Changes in Nutritional Status Impact Immune Cell Metabolism and Function. Frontiers in Immunology, 2018, 9, 1055.	2.2	315
153	The metabolic axis of macrophage and immune cell polarization. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	46
154	Targeting Mitochondrial Metabolism in Neuroinflammation: Towards a Therapy for Progressive Multiple Sclerosis. Trends in Molecular Medicine, 2018, 24, 838-855.	3.5	59
155	Mammalian Solute Carrier (SLC)-like transporters of Legionella pneumophila. Scientific Reports, 2018, 8, 8352.	1.6	4
156	Effect of high glucose on cytokine production by human peripheral blood immune cells and type I interferon signaling in monocytes: Implications for the role of hyperglycemia in the diabetes inflammatory process and host defense against infection. Clinical Immunology, 2018, 195, 139-148.	1.4	58
157	From macrophage to osteoclast – How metabolism determines function and activity. Cytokine, 2018, 112, 102-115.	1.4	43
158	Longitudinal 18F-FDG PET imaging in a rat model of autoimmune myocarditis. European Heart Journal Cardiovascular Imaging, 2019, 20, 467-474.	0.5	27
159	High Glucose Environments Interfere with Bone Marrow-Derived Macrophage Inflammatory Mediator Release, the TLR4 Pathway and Glucose Metabolism. Scientific Reports, 2019, 9, 11447.	1.6	33
160	Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nature Reviews Drug Discovery, 2019, 18, 669-688.	21.5	176
161	Metabolic requirements of human pro-inflammatory B cells in aging and obesity. PLoS ONE, 2019, 14, e0219545.	1.1	51
162	Molecular Imaging Targets in Heart Failure and Left Ventricular Remodeling. , 2019, , 405-435.		0

#	Article	IF	CITATIONS
163	Inflammatory and immunometabolic consequences of gut dysfunction in HIV: Parallels with IBD and implications for reservoir persistence and non-AIDS comorbidities. EBioMedicine, 2019, 46, 522-531.	2.7	57
164	Whole Body Vibration-Induced Omental Macrophage Polarization and Fecal Microbiome Modification in a Murine Model. International Journal of Molecular Sciences, 2019, 20, 3125.	1.8	10
165	The Metabolic Signature of Macrophage Responses. Frontiers in Immunology, 2019, 10, 1462.	2.2	1,083
166	Stereotactic Body Radiation and Interleukin-12 Combination Therapy Eradicates Pancreatic Tumors by Repolarizing the Immune Microenvironment. Cell Reports, 2019, 29, 406-421.e5.	2.9	55
167	Metabolomic Profiling of the Immune Stimulatory Effect of Eicosenoids on PMA-Differentiated THP-1 Cells. Vaccines, 2019, 7, 142.	2.1	8
168	Syk-dependent glycolytic reprogramming in dendritic cells regulates IL- $1\hat{l}^2$ production to \hat{l}^2 -glucan ligands in a TLR-independent manner. Journal of Leukocyte Biology, 2019, 106, 1325-1335.	1.5	24
169	Quantitative 1H NMR Metabolomics Reveal Distinct Metabolic Adaptations in Human Macrophages Following Differential Activation. Metabolites, 2019, 9, 248.	1.3	33
170	Macrophage Rewiring by Nutrient Associated PI3K Dependent Pathways. Frontiers in Immunology, 2019, 10, 2002.	2.2	34
171	Autophagy differentially regulates macrophage lipid handling depending on the lipid substrate (oleic) Tj ETQq0 0 0 and Cell Biology of Lipids, 2019, 1864, 158527.	rgBT /Ov 1.2	erlock 10 Tf 7
172	Restricting Glycolysis Preserves T Cell Effector Functions and Augments Checkpoint Therapy. Cell Reports, 2019, 29, 135-150.e9.	2.9	189
173	Immunometabolism and Sepsis: A Role for HIF?. Frontiers in Molecular Biosciences, 2019, 6, 85.	1.6	51
174	Trained immunity and diabetic vascular disease. Clinical Science, 2019, 133, 195-203.	1.8	22
175	Intracellular Sensors and Cellular Metabolism in Allogeneic Hematopoietic Stem Cell Transplantation., 2019,, 349-374.		0
176	Characterization of Glucose Transporter 6 in Lipopolysaccharide-Induced Bone Marrow–Derived Macrophage Function. Journal of Immunology, 2019, 202, 1826-1832.	0.4	30
177	MEK2 Negatively Regulates Lipopolysaccharide-Mediated IL- $1\hat{l}^2$ Production through HIF- $1\hat{l}\pm$ Expression. Journal of Immunology, 2019, 202, 1815-1825.	0.4	10
178	Myeloid <i>Slc2a1</i> -Deficient Murine Model Revealed Macrophage Activation and Metabolic Phenotype Are Fueled by GLUT1. Journal of Immunology, 2019, 202, 1265-1286.	0.4	104
179	Specific sequences of infectious challenge lead to secondary hemophagocytic lymphohistiocytosis-like disease in mice. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2200-2209.	3.3	40
180	Psoas muscle fluorineâ€18â€labelled fluoroâ€2â€deoxyâ€dâ€glucose uptake associated with the incidence of existing and incipient metabolic derangement. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 894-902.	2.9	7

#	Article	IF	CITATIONS
181	Mitochondria as central hub of the immune system. Redox Biology, 2019, 26, 101255.	3.9	187
182	The host response to poly(lactide-co-glycolide) scaffolds protects mice from diet induced obesity and glucose intolerance. Biomaterials, 2019, 217, 119281.	5.7	8
183	HIF1 <i>α</i> -Induced Glycolysis in Macrophage Is Essential for the Protective Effect of Ouabain during Endotoxemia. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-10.	1.9	10
184	Insulin Signaling and Insulin Resistance Facilitate Trained Immunity in Macrophages Through Metabolic and Epigenetic Changes. Frontiers in Immunology, 2019, 10, 1330.	2.2	66
185	Immunometabolism and Pulmonary Infections: Implications for Protective Immune Responses and Host-Directed Therapies. Frontiers in Microbiology, 2019, 10, 962.	1.5	18
186	Leptin in the regulation of the immunometabolism of adipose tissue-macrophages. Journal of Leukocyte Biology, 2019, 106, 703-716.	1.5	52
187	Pyruvate Dehydrogenase Kinase Is a Metabolic Checkpoint for Polarization of Macrophages to the M1 Phenotype. Frontiers in Immunology, 2019, 10, 944.	2.2	58
188	Metabolic programming of macrophage functions and pathogens control. Redox Biology, 2019, 24, 101198.	3.9	84
189	Glucose Transport., 2019,, 293-307.		6
190	Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nature Reviews Clinical Oncology, 2019, 16, 425-441.	12.5	452
191	Targeting immune cells for cancer therapy. Redox Biology, 2019, 25, 101174.	3.9	151
192	Molecular Imaging of the Heart., 2019, 9, 477-533.		7
193	Impaired cellular energy metabolism in cord blood macrophages contributes to abortive response toward inflammatory threats. Nature Communications, 2019, 10, 1685.	5 . 8	41
194	Hypoxiaâ€inducible factorâ€1 α deletion in myeloid lineage attenuates hypoxiaâ€induced pulmonary hypertension. Physiological Reports, 2019, 7, e14025.	0.7	23
195	mTOR-Dependent Oxidative Stress Regulates oxLDL-Induced Trained Innate Immunity in Human Monocytes. Frontiers in Immunology, 2018, 9, 3155.	2.2	75
196	Tricarboxylic acid cycle metabolites in the control of macrophage activation and effector phenotypes. Journal of Leukocyte Biology, 2019, 106, 359-367.	1.5	39
197	Macrophage metabolism: a woundâ€healing perspective. Immunology and Cell Biology, 2019, 97, 268-278.	1.0	27
198	Cancer Metabolism Drives a Stromal Regenerative Response. Cell Metabolism, 2019, 29, 576-591.	7.2	92

#	Article	IF	CITATIONS
199	Quantitative Spatial Analysis of Metabolic Heterogeneity Across in vivo and in vitro Tumor Models. Frontiers in Oncology, 2019, 9, 1144.	1.3	20
200	Transcriptome Analysis of the Cecal Tonsil of Jingxing Yellow Chickens Revealed the Mechanism of Differential Resistance to Salmonella. Genes, 2019, 10, 979.	1.0	12
201	Metformin improved oxidized low-density lipoprotein-impaired mitochondrial function and increased glucose uptake involving Akt-AS160 pathway in raw264.7 macrophages. Chinese Medical Journal, 2019, 132, 1713-1722.	0.9	3
202	Screening of biopolymeric materials for cardiovascular surgery toxicityâ€"Evaluation of their surface relief with assessment of morphological aspects of monocyte/macrophage polarization in atherosclerosis patients. Toxicology Reports, 2019, 6, 74-90.	1.6	5
203	An evolutionary perspective on immunometabolism. Science, 2019, 363, .	6.0	263
204	Metabolic Alterations in Aging Macrophages: Ingredients for Inflammaging?. Trends in Immunology, 2019, 40, 113-127.	2.9	125
205	Effects of macrophages and CXCR2 on adipogenic differentiation of bone marrow mesenchymal stem cells. Journal of Cellular Physiology, 2019, 234, 9475-9485.	2.0	11
206	Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology, 2019, 224, 242-253.	0.8	333
207	mTOR: A double-edged sword for diabetes. Journal of Leukocyte Biology, 2019, 106, 385-395.	1.5	33
208	Maxed Out on Glycolysis: Alveolar Macrophages Rely on Oxidative Phosphorylation for Cytokine Production. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 139-140.	1.4	7
209	A suppressive oligodeoxynucleotide expressing TTAGGG motifs modulates cellular energetics through the mTOR signaling pathway. International Immunology, 2020, 32, 39-48.	1.8	10
210	Immunity, Hypoxia, and Metabolism–the Ménage à Trois of Cancer: Implications for Immunotherapy. Physiological Reviews, 2020, 100, 1-102.	13.1	190
211	Cardiac Imaging in Heart Failure., 2020,, 418-448.e5.		0
212	Tissue-Resident Alveolar Macrophages Do Not Rely on Glycolysis for LPS-induced Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 243-255.	1.4	70
213	Glycogen storage disease type lb: role of glucoseâ€6â€phosphate transporter in cell metabolism and function. FEBS Letters, 2020, 594, 3-18.	1.3	20
214	Solute carrier transporters: the metabolic gatekeepers of immune cells. Acta Pharmaceutica Sinica B, 2020, 10, 61-78.	5.7	115
215	Innate immunity to malaria—The role of monocytes. Immunological Reviews, 2020, 293, 8-24.	2.8	46
216	Discovery of VEGFR-2 inhibitors exerting significant anticancer activity against CD44+ and CD133+ cancer stem cells (CSCs): Reversal of TGF-l ² induced epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma. European Journal of Medicinal Chemistry, 2020, 207, 112851.	2.6	22

#	ARTICLE	IF	CITATIONS
217	Extracellular SQSTM1 mediates bacterial septic death in mice through insulin receptor signalling. Nature Microbiology, 2020, 5, 1576-1587.	5.9	45
218	A High Glycemic Burden Relates to Functional and Metabolic Alterations of Human Monocytes in Patients With Type 1 Diabetes. Diabetes, 2020, 69, 2735-2746.	0.3	9
219	Pro-inflammatory Stimulation of Monocytes by ANCA is Linked to Changes in Cellular Metabolism. Frontiers in Medicine, 2020, 7, 553.	1.2	7
220	Development of GLUT1-targeting alkyl glucoside-modified dihydroartemisinin liposomes for cancer therapy. Nanoscale, 2020, 12, 21901-21912.	2.8	12
221	Cbl Negatively Regulates NLRP3 Inflammasome Activation through GLUT1-Dependent Glycolysis Inhibition. International Journal of Molecular Sciences, 2020, 21, 5104.	1.8	14
222	Identification of new regulatory genes through expression pattern analysis of a global RNA-seq dataset from a Helicobacter pyloriÂco-culture system. Scientific Reports, 2020, 10, 11506.	1.6	9
223	Age-related blunting of the phagocyte arsenal and its art of killing. Current Molecular Biology Reports, 2020, 6, 126-138.	0.8	1
224	Reprogramming of synovial macrophage metabolism by synovial fibroblasts under inflammatory conditions. Cell Communication and Signaling, 2020, 18, 188.	2.7	31
225	A novel chrysin thiazole derivative polarizes macrophages to an M1 phenotype via targeting TLR4. International Immunopharmacology, 2020, 88, 106986.	1.7	7
226	Hemin Prevents Increased Glycolysis in Macrophages upon Activation: Protection by Microbiota-Derived Metabolites of Polyphenols. Antioxidants, 2020, 9, 1109.	2.2	8
227	Lack of nutritional immunity in diabetic skin infections promotes <i>Staphylococcus aureus</i> virulence. Science Advances, 2020, 6, .	4.7	39
228	Metabolic Reprogramming in Immune Response and Tissue Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1990-2001.	1.1	53
229	Pyruvate Kinase M2 is a marker of poor prognosis in lung adenocarcinoma but not lung squamous cell carcinoma. Translational Cancer Research, 2020, 9, 3293-3302.	0.4	3
230	Gout and pseudo-gout-related crystals promote GLUT1-mediated glycolysis that governs NLRP3 and interleukin- $1\hat{1}^2$ activation on macrophages. Annals of the Rheumatic Diseases, 2020, 79, 1506-1514.	0.5	72
231	Vascular transcriptome landscape of <i>Trail </i> ^{â^'/â^'} mice: Implications and therapeutic strategies for diabetic vascular disease. FASEB Journal, 2020, 34, 9547-9562.	0.2	6
232	Polyvalent therapeutic vaccine for type 2 diabetes mellitus: Immunoinformatics approach to study co-stimulation of cytokines and GLUT1 receptors. BMC Molecular and Cell Biology, 2020, 21, 56.	1.0	1
233	Lipids in the tumor microenvironment: From cancer progression to treatment. Progress in Lipid Research, 2020, 80, 101055.	5.3	191
234	Metabolic and Molecular Mechanisms of Macrophage Polarisation and Adipose Tissue Insulin Resistance. International Journal of Molecular Sciences, 2020, 21, 5731.	1.8	22

#	Article	IF	CITATIONS
235	Pseudomonas aeruginosa Planktonic- and Biofilm-Conditioned Media Elicit Discrete Metabolic Responses in Human Macrophages. Cells, 2020, 9, 2260.	1.8	5
236	Metabolite Transporters as Regulators of Immunity. Metabolites, 2020, 10, 418.	1.3	21
237	Clinical Significance of Glucose to Lymphocyte Ratio (GLR) as a Prognostic Marker for Patients With Pancreatic Cancer. Frontiers in Oncology, 2020, 10, 520330.	1.3	29
238	Disulfides from the Brown Alga Dictyopteris membranacea Suppress M1 Macrophage Activation by Inducing AKT and Suppressing MAPK/ERK Signaling Pathways. Marine Drugs, 2020, 18, 527.	2.2	5
239	An Army Marches on Its Stomach: Metabolic Intermediates as Antimicrobial Mediators in Mycobacterium tuberculosis Infection. Frontiers in Cellular and Infection Microbiology, 2020, 10, 446.	1.8	5
240	Metabolic Reprogramming is a Hallmark of Metabolism Itself. BioEssays, 2020, 42, e2000058.	1.2	12
241	Nutritional Modulation of the Microbiome and Immune Response. Journal of Immunology, 2020, 205, 1479-1487.	0.4	24
242	Regulating metabolic inflammation by nutritional modulation. Journal of Allergy and Clinical Immunology, 2020, 146, 706-720.	1.5	42
243	Momordica charantia Suppresses Inflammation and Glycolysis in Lipopolysaccharide-Activated RAW264.7 Macrophages. Molecules, 2020, 25, 3783.	1.7	7
244	The cellular pathways of liver fibrosis in non-alcoholic steatohepatitis. Annals of Translational Medicine, 2020, 8, 400-400.	0.7	32
245	Solute Carrier Family 37 Member 2 (SLC37A2) Negatively Regulates Murine Macrophage Inflammation by Controlling Glycolysis. IScience, 2020, 23, 101125.	1.9	12
246	Exercise training reduces inflammatory metabolic activity of visceral fat assessed by ¹⁸ Fâ€FDG PET/CT in obese women. Clinical Endocrinology, 2020, 93, 127-134.	1.2	6
247	Metabolism and Immune Modulation in Patients with Solid Tumors: Systematic Review of Preclinical and Clinical Evidence. Cancers, 2020, 12, 1153.	1.7	4
248	Fatty Acid and Carnitine Metabolism Are Dysregulated in Systemic Sclerosis Patients. Frontiers in Immunology, 2020, 11, 822.	2.2	18
249	Transient Intermittent Hyperglycemia Accelerates Atherosclerosis by Promoting Myelopoiesis. Circulation Research, 2020, 127, 877-892.	2.0	77
250	Transcriptional, Epigenetic and Metabolic Programming of Tumor-Associated Macrophages. Cancers, 2020, 12, 1411.	1.7	62
251	ROS-associated immune response and metabolism: a mechanistic approach with implication of various diseases. Archives of Toxicology, 2020, 94, 2293-2317.	1.9	30
252	The immunological Warburg effect: Can a metabolicâ€tumorâ€stroma score (MeTS) guide cancer immunotherapy?. Immunological Reviews, 2020, 295, 187-202.	2.8	71

#	ARTICLE	IF	CITATIONS
253	Mechanisms of Macrophage Polarization in Insulin Signaling and Sensitivity. Frontiers in Endocrinology, 2020, $11,62$.	1.5	79
254	Pharmacological targets of metabolism in disease: Opportunities from macrophages. , 2020, 210, 107521.		45
255	Glycogen Metabolism Supports Early Glycolytic Reprogramming and Activation in Dendritic Cells in Response to Both TLR and Syk-Dependent CLR Agonists. Cells, 2020, 9, 715.	1.8	12
256	M-CSF- and L929-derived macrophages present distinct metabolic profiles with similar inflammatory outcomes. Immunobiology, 2020, 225, 151935.	0.8	9
257	Obesity, Hypertension, and Cardiac Dysfunction. Circulation Research, 2020, 126, 789-806.	2.0	252
258	Carbohydrate and Amino Acid Metabolism as Hallmarks for Innate Immune Cell Activation and Function. Cells, 2020, 9, 562.	1.8	24
259	Targeting immunometabolism as an anti-inflammatory strategy. Cell Research, 2020, 30, 300-314.	5.7	285
260	The Glutamate System as a Crucial Regulator of CNS Toxicity and Survival of HIV Reservoirs. Frontiers in Cellular and Infection Microbiology, 2020, 10, 261.	1.8	31
261	Extracellular glucose is crucially involved in the fate decision of LPS-stimulated RAW264.7 murine macrophage cells. Scientific Reports, 2020, 10, 10581.	1.6	35
262	Asaronic Acid Inhibited Glucose-Triggered M2-Phenotype Shift Through Disrupting the Formation of Coordinated Signaling of IL-4Rα-Tyk2-STAT6 and GLUT1-Akt-mTOR-AMPK. Nutrients, 2020, 12, 2006.	1.7	7
263	Metabolism of immune cells in cancer. Nature Reviews Cancer, 2020, 20, 516-531.	12.8	407
264	Characterization of glucose uptake metabolism in visceral fat by 18ÂF-FDG PET/CT reflects inflammatory status in metabolic syndrome. PLoS ONE, 2020, 15, e0228602.	1.1	14
265	The Interplay Between Tissue Niche and Macrophage Cellular Metabolism in Obesity. Frontiers in Immunology, 2019, 10, 3133.	2.2	42
266	Response of Human Macrophages to Clinically Applied Wound Dressings Loaded With Silver. Frontiers in Bioengineering and Biotechnology, 2020, 8, 124.	2.0	16
267	The immunologic Warburg effect: Evidence and therapeutic opportunities in autoimmunity. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2020, 12, e1486.	6.6	60
268	Distinct Transcriptional Responses across Tissue-Resident Macrophages to Short-Term and Long-Term Metabolic Challenge. Cell Reports, 2020, 30, 1627-1643.e7.	2.9	38
269	4-1BBL Regulates the Polarization of Macrophages, and Inhibition of 4-1BBL Signaling Alleviates Imiquimod-Induced Psoriasis. Journal of Immunology, 2020, 204, 1892-1903.	0.4	10
270	Glucose transporter 1 in rheumatoid arthritis and autoimmunity. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2020, 12, e1483.	6.6	26

#	Article	IF	CITATIONS
271	Metabolic characterisation of THP-1 macrophage polarisation using LC \hat{a} e"MS-based metabolite profiling. Metabolomics, 2020, 16, 33.	1.4	42
272	BCG-induced trained immunity in macrophage: reprograming of glucose metabolism. International Reviews of Immunology, 2020, 39, 83-96.	1.5	15
273	Lidocaine attenuates lipopolysaccharide-induced inflammatory responses and protects against endotoxemia in mice by suppressing HIF1α-induced glycolysis. International Immunopharmacology, 2020, 80, 106150.	1.7	20
274	Aminooxyacetic acid attenuates postâ€infarct cardiac dysfunction by balancing macrophage polarization through modulating macrophage metabolism in mice. Journal of Cellular and Molecular Medicine, 2020, 24, 2593-2609.	1.6	30
275	Glucose-6-phosphate transporter mediates macrophage proliferation and functions by regulating glycolysis and mitochondrial respiration. Biochemical and Biophysical Research Communications, 2020, 524, 89-95.	1.0	3
276	Enhanced Lipid Accumulation and Metabolism Are Required for the Differentiation and Activation of Tumor-Associated Macrophages. Cancer Research, 2020, 80, 1438-1450.	0.4	211
277	Rewiring of glucose metabolism defines trained immunity induced by oxidized low-density lipoprotein. Journal of Molecular Medicine, 2020, 98, 819-831.	1.7	59
278	Nutrients and Immunometabolism: Role of Macrophage NLRP3. Journal of Nutrition, 2020, 150, 1693-1704.	1.3	10
279	Glycolysis – a key player in the inflammatory response. FEBS Journal, 2020, 287, 3350-3369.	2.2	250
280	Interactions between macrophages and helminths. Parasite Immunology, 2020, 42, e12717.	0.7	38
281	The Pivotal Role of Macrophages in Metabolic Distress. , 2020, , .		3
282	Immunomodulatory Potential of Differently-Terminated Ultra-Small Silicon Carbide Nanoparticles. Nanomaterials, 2020, 10, 573.	1.9	7
283	Fueling influenza and the immune response: Implications for metabolic reprogramming during influenza infection and immunometabolism. Immunological Reviews, 2020, 295, 140-166.	2.8	14
284	Immunometabolism: From basic mechanisms to translation. Immunological Reviews, 2020, 295, 5-14.	2.8	208
285	Paradoxical Pro-inflammatory Responses by Human Macrophages to an Amoebae Host-Adapted Legionella Effector. Cell Host and Microbe, 2020, 27, 571-584.e7.	5.1	20
286	Microbiome, bile acids, and obesity: How microbially modified metabolites shape antiâ€tumor immunity. Immunological Reviews, 2020, 295, 220-239.	2.8	43
287	<p>Improved Immunoregulation of Ultra-Low-Dose Silver Nanoparticle-Loaded TiO₂ Nanotubes via M2 Macrophage Polarization by Regulating GLUT1 and Autophagy</p> . International Journal of Nanomedicine, 2020, Volume 15, 2011-2026.	3.3	38
288	Bitter taste receptors stimulate phagocytosis in human macrophages through calcium, nitric oxide, and cyclic-GMP signaling. Cellular and Molecular Life Sciences, 2021, 78, 271-286.	2.4	48

#	Article	IF	CITATIONS
289	Harmful effects of high amounts of glucose on the immune system: An updated review. Biotechnology and Applied Biochemistry, 2021, 68, 404-410.	1.4	22
290	Effects of cobalt and chromium ions on glycolytic flux and the stabilization of hypoxiaâ€inducible factorâ€1α in macrophages in vitro. Journal of Orthopaedic Research, 2021, 39, 112-120.	1.2	7
291	Metabolic interventions: A new insight into the cancer immunotherapy. Archives of Biochemistry and Biophysics, 2021, 697, 108659.	1.4	8
292	Exploring cellular markers of metabolic syndrome in peripheral blood mononuclear cells across the neuropsychiatric spectrum. Brain, Behavior, and Immunity, 2021, 91, 673-682.	2.0	15
293	Redox regulation of immunometabolism. Nature Reviews Immunology, 2021, 21, 363-381.	10.6	225
294	[18F]FDG Uptake in Adipose Tissue Is Not Related to Inflammation in Type 2 Diabetes Mellitus. Molecular Imaging and Biology, 2021, 23, 117-126.	1.3	8
295	Re-polarization of immunosuppressive macrophages to tumor-cytotoxic macrophages by repurposed metabolic drugs. Oncolmmunology, 2021, 10, 1898753.	2.1	28
297	The influence of obesity on hydroxychloroquine blood levels in lupus nephritis patients. Lupus, 2021, 30, 554-559.	0.8	14
298	LncRNA HOTAIR regulates glucose transporter Glut1 expression and glucose uptake in macrophages during inflammation. Scientific Reports, 2021, 11, 232.	1.6	38
299	YY1-mediated regulation of type 2 diabetes via insulin. , 2021, , 271-287.		1
300	Adherence Affects Monocyte Innate Immune Function and Metabolic Reprogramming after Lipopolysaccharide Stimulation In Vitro. Journal of Immunology, 2021, 206, 827-838.	0.4	15
301	Metabolic reprogramming in macrophage responses. Biomarker Research, 2021, 9, 1.	2.8	227
302	Effect of Exercise on Inflamed Psoas Muscle in Women with Obesity: A Pilot Prospective 18F-FDG PET/CT Study. Diagnostics, 2021, 11, 164.	1.3	1
303	Construction and validation of a novel prognostic signature for uveal melanoma based on five metabolism-related genes. Mathematical Biosciences and Engineering, 2021, 18, 8045-8063.	1.0	3
304	miRâ€467 regulates inflammation and blood insulin and glucose. Journal of Cellular and Molecular Medicine, 2021, 25, 2549-2562.	1.6	7
305	Crosstalk Between Staphylococcus aureus and Innate Immunity: Focus on Immunometabolism. Frontiers in Immunology, 2020, 11, 621750.	2.2	22
306	Macrophage Responses to Environmental Stimuli During Homeostasis and Disease. Endocrine Reviews, 2021, 42, 407-435.	8.9	21
307	Mitigation of radiation-induced pulmonary fibrosis by small-molecule dye IR-780. Free Radical Biology and Medicine, 2021, 164, 417-428.	1.3	7

#	Article	IF	CITATIONS
308	MicroRNA-140-5p is Downregulated in Osteosarcoma and Overexpression of MicroRNA-140-5p Inhibits Cancer Cell Proliferation by Downregulating GLUT-1. OncoTargets and Therapy, 2021, Volume 14, 995-1002.	1.0	3
309	Targeting dopamine receptor D2 as a novel therapeutic strategy in endometrial cancer. Journal of Experimental and Clinical Cancer Research, 2021, 40, 61.	3.5	17
310	Regulation of glycolytic genes in human macrophages by oxysterols: a potential role for liver X receptors. British Journal of Pharmacology, 2021, 178, 3124-3139.	2.7	9
311	Targeting macrophage polarization for therapy of diabesity–the feasibility of early improvement of insulin sensitivity and insulin resistance-a comprehensive systematic review. Journal of Diabetes, Metabolic Disorders & Control, 2021, 8, 6-25.	0.2	1
312	Mitochondrial Regulation of Macrophage Response Against Pathogens. Frontiers in Immunology, 2020, 11, 622602.	2.2	13
313	Salmonella Typhimurium reprograms macrophage metabolism via T3SS effector SopE2 to promote intracellular replication and virulence. Nature Communications, 2021, 12, 879.	5.8	74
314	Mitochondrial Regulation of Microglial Immunometabolism in Alzheimer's Disease. Frontiers in Immunology, 2021, 12, 624538.	2.2	48
315	The mTORC1/eIF4E/HIF-1α Pathway Mediates Glycolysis to Support Brain Hypoxia Resistance in the Gansu Zokor, Eospalax cansus. Frontiers in Physiology, 2021, 12, 626240.	1.3	16
316	The Dynamic Inflammatory Tissue Microenvironment: Signality and Disease Therapy by Biomaterials. Research, 2021, 2021, 4189516.	2.8	35
317	Metabolism of Innate Immune Cells in Cancer. Cancers, 2021, 13, 904.	1.7	29
318	Immuno-metabolic interfaces in cardiac disease and failure. Cardiovascular Research, 2022, 118, 37-52.	1.8	6
319	Lactic Acid Fermentation Is Required for NLRP3 Inflammasome Activation. Frontiers in Immunology, 2021, 12, 630380.	2.2	29
320	Diabetes fuels periodontal lesions via GLUT1-driven macrophage inflammaging. International Journal of Oral Science, 2021, 13, 11.	3.6	30
321	Propofol regulates activated macrophages metabolism through inhibition of ROS-mediated GLUT1 expression. Inflammation Research, 2021, 70, 473-481.	1.6	4
322	Association of Inflammatory Metabolic Activity of Psoas Muscle and Acute Myocardial Infarction: A Preliminary Observational Study with 18F-FDG PET/CT. Diagnostics, 2021, 11, 511.	1.3	1
325	Titanium dioxide nanotubes promote M2 polarization by inhibiting macrophage glycolysis and ultimately accelerate endothelialization. Immunity, Inflammation and Disease, 2021, 9, 746-757.	1.3	10
327	Nicotinamide riboside, an NAD+ precursor, attenuates inflammation and oxidative stress by activating sirtuin 1 in alcohol-stimulated macrophages. Laboratory Investigation, 2021, 101, 1225-1237.	1.7	27
328	Glycolytic Metabolism Is Critical for the Innate Antibacterial Defense in Acute Streptococcus pneumoniae Otitis Media. Frontiers in Immunology, 2021, 12, 624775.	2.2	6

#	Article	IF	CITATIONS
330	Initiation of Pancreatic Cancer: The Interplay of Hyperglycemia and Macrophages Promotes the Acquisition of Malignancy-Associated Properties in Pancreatic Ductal Epithelial Cells. International Journal of Molecular Sciences, 2021, 22, 5086.	1.8	8
331	Dot/Icm-Dependent Restriction of Legionella pneumophila within Neutrophils. MBio, 2021, 12, e0100821.	1.8	5
332	Sensory Neurons, Neuroimmunity, and Pain Modulation by Sex Hormones. Endocrinology, 2021, 162, .	1.4	25
333	The Macrophage Response Is Driven by Mesenchymal Stem Cell-Mediated Metabolic Reprogramming. Frontiers in Immunology, 2021, 12, 624746.	2.2	25
334	Association of rs10830963 MTNR1B and rs841853 SLC2A1 Polymorphism with Obesity on Type 2 Diabetes Patients: An Overview of Melatonin Receptor and Transporter. Indonesian Biomedical Journal, 2021, 13, 155-62.	0.2	1
335	Metabolic regulation in the immune response to cancer. Cancer Communications, 2021, 41, 661-694.	3.7	23
336	Glucose Metabolism: The Metabolic Signature of Tumor Associated Macrophage. Frontiers in Immunology, 2021, 12, 702580.	2.2	27
337	Anthocyanin-Rich Aronia Berry Extract Mitigates High-Fat and High-Sucrose Diet-Induced Adipose Tissue Inflammation by Inhibiting Nuclear Factor- <i>κ</i> B Activation. Journal of Medicinal Food, 2021, 24, 586-594.	0.8	4
338	Non-invasive plasma glycomic and metabolic biomarkers of post-treatment control of HIV. Nature Communications, 2021, 12, 3922.	5.8	31
339	Targeting Glycolysis in Macrophages Confers Protection Against Pancreatic Ductal Adenocarcinoma. International Journal of Molecular Sciences, 2021, 22, 6350.	1.8	15
340	Developing a novel strategy for COPD therapy by targeting Nrf2 and metabolism reprogramming simultaneously. Free Radical Biology and Medicine, 2021, 169, 436-445.	1.3	8
341	Glucose regulates expression of pro-inflammatory genes, <i>IL-1^2</i> and <i>IL-12</i> , through a mechanism involving hexosamine biosynthesis pathway-dependent regulation of \hat{l} ±-E catenin. Bioscience Reports, 2021, 41, .	1.1	7
342	Metabolic reprogramming of myeloid-derived suppressor cells: An innovative approach confronting challenges. Journal of Leukocyte Biology, 2021, 110, 257-270.	1.5	9
343	MYC-mediated early glycolysis negatively regulates proinflammatory responses by controlling IRF4 in inflammatory macrophages. Cell Reports, 2021, 35, 109264.	2.9	30
344	The Metaflammatory and Immunometabolic Role of Macrophages and Microglia in Diabetic Retinopathy. Human Cell, 2021, 34, 1617-1628.	1.2	18
345	mTORC1 Signaling Regulates Proinflammatory Macrophage Function and Metabolism. Journal of Immunology, 2021, 207, 913-922.	0.4	27
346	Impacts of Immunometabolism on Male Reproduction. Frontiers in Immunology, 2021, 12, 658432.	2.2	18
347	The roles of macrophage polarization in the host immune response to sepsis. International Immunopharmacology, 2021, 96, 107791.	1.7	88

#	Article	IF	CITATIONS
348	Regulation and metabolic functions of mTORC1 and mTORC2. Physiological Reviews, 2021, 101, 1371-1426.	13.1	250
349	Label-free two-photon imaging of mitochondrial activity in murine macrophages stimulated with bacterial and viral ligands. Scientific Reports, 2021, 11, 14081.	1.6	3
350	Targeted Glucose or Glutamine Metabolic Therapy Combined With PD-1/PD-L1 Checkpoint Blockade Immunotherapy for the Treatment of Tumors - Mechanisms and Strategies. Frontiers in Oncology, 2021, 11, 697894.	1.3	19
351	Integration of transcriptional and metabolic control in macrophage activation. EMBO Reports, 2021, 22, e53251.	2.0	16
352	Maternal vitamin D deficiency increases the risk of obesity in male offspring mice by affecting the immune response. Nutrition, 2021, 87-88, 111191.	1.1	7
353	Phloretin suppresses neuroinflammation by autophagy-mediated Nrf2 activation in macrophages. Journal of Neuroinflammation, 2021, 18, 148.	3.1	28
354	Reconciling two opposing effects of radiation therapy: stimulation of cancer cell invasion and activation of anti-cancer immunity. International Journal of Radiation Biology, 2023, 99, 951-963.	1.0	0
355	Disrupted macrophage metabolic reprogramming in aged soleus muscle during early recovery following disuse atrophy. Aging Cell, 2021, 20, e13448.	3.0	12
357	Pharmacological inhibition of GLUT1 as a new immunotherapeutic approach after myocardial infarction. Biochemical Pharmacology, 2021, 190, 114597.	2.0	12
358	Ophiocordyceps lanpingensis polysaccharides alleviate chronic kidney disease through MAPK/NF-κB pathway. Journal of Ethnopharmacology, 2021, 276, 114189.	2.0	17
359	Pyroptosis, metabolism, and tumor immune microenvironment. Clinical and Translational Medicine, 2021, 11, e492.	1.7	119
360	The Immunometabolic Roles of Various Fatty Acids in Macrophages and Lymphocytes. International Journal of Molecular Sciences, 2021, 22, 8460.	1.8	19
361	Spontaneously Resolving Joint Inflammation Is Characterised by Metabolic Agility of Fibroblast-Like Synoviocytes. Frontiers in Immunology, 2021, 12, 725641.	2.2	14
362	Plasmodium vivax Infection Alters Mitochondrial Metabolism in Human Monocytes. MBio, 2021, 12, e0124721.	1.8	4
363	Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense. PLoS Pathogens, 2021, 17, e1009943.	2.1	10
364	Reactive Oxygen Species in Macrophages: Sources and Targets. Frontiers in Immunology, 2021, 12, 734229.	2.2	134
365	IL-10 Dysregulation Underlies Chemokine Insufficiency, Delayed Macrophage Response, and Impaired Healing in Diabetic Wounds. Journal of Investigative Dermatology, 2022, 142, 692-704.e14.	0.3	22
366	Harnessing Metabolic Reprogramming to Improve Cancer Immunotherapy. International Journal of Molecular Sciences, 2021, 22, 10268.	1.8	11

#	Article	IF	CITATIONS
367	Glycosylation of PAMAM dendrimers significantly improves tumor macrophage targeting and specificity in glioblastoma. Journal of Controlled Release, 2021, 337, 179-192.	4.8	45
368	Hyperglycemia Induces Trained Immunity in Macrophages and Their Precursors and Promotes Atherosclerosis. Circulation, 2021, 144, 961-982.	1.6	109
369	New Insights on the PBMCs Phospholipidome in Obesity Demonstrate Modulations Associated with Insulin Resistance and Glycemic Status. Nutrients, 2021, 13, 3461.	1.7	3
370	Solute carrier transporters: emerging central players in tumour immunotherapy. Trends in Cell Biology, 2022, 32, 186-201.	3.6	21
371	Neuroimmune mechanisms of cognitive impairment in a mouse model of Gulf War illness. Brain, Behavior, and Immunity, 2021, 97, 204-218.	2.0	9
372	Elevated branched-chain α-keto acids exacerbate macrophage oxidative stress and chronic inflammatory damage in type 2 diabetes mellitus. Free Radical Biology and Medicine, 2021, 175, 141-154.	1.3	22
373	Metabolic reprogramming and immunity in cancer. , 2022, , 137-196.		1
374	Heme Oxygenase-1 as a Pharmacological Target for Host-Directed Therapy to Limit Tuberculosis Associated Immunopathology. Antioxidants, 2021, 10, 177.	2.2	3
375	Macrophages as regulators of tumour immunity and immunotherapy. Nature Reviews Immunology, 2019, 19, 369-382.	10.6	1,365
380	Caveolin-1 scaffolding domain peptide regulates glucose metabolism in lung fibrosis. JCI Insight, 2020, 5, .	2.3	23
381	Mitochondrial fidelity and metabolic agility control immune cell fate and function. Journal of Clinical Investigation, 2018, 128, 3651-3661.	3.9	32
382	Immunometabolism of pro-repair cells. Journal of Clinical Investigation, 2019, 129, 2597-2607.	3.9	30
383	Innate immune cell–epithelial crosstalk during wound repair. Journal of Clinical Investigation, 2019, 129, 2983-2993.	3.9	143
384	Metabolic regulation of immune responses: therapeutic opportunities. Journal of Clinical Investigation, 2016, 126, 2031-2039.	3.9	78
385	Progression of Multifaceted Immune Cells in Atherosclerotic Development. Journal of Lipid and Atherosclerosis, 2019, 8, 15.	1.1	3
386	Advances in the quantification of mitochondrial function in primary human immune cells through extracellular flux analysis. PLoS ONE, 2017, 12, e0170975.	1.1	61
387	Cell-intrinsic sphingosine kinase 2 promotes macrophage polarization and renal inflammation in response to unilateral ureteral obstruction. PLoS ONE, 2018, 13, e0194053.	1.1	28
388	Dexmedetomidine inhibits LPS-induced proinflammatory responses via suppressing HIF1α-dependent glycolysis in macrophages. Aging, 2020, 12, 9534-9548.	1.4	12

#	Article	IF	Citations
389	Increased efficacy of metformin corresponds to differential metabolic effects in the ovarian tumors from obese <i>versus</i> lean mice. Oncotarget, 2017, 8, 110965-110982.	0.8	9
390	Everolimus exhibits anti-tumorigenic activity in obesity-induced ovarian cancer. Oncotarget, 2016, 7, 20338-20356.	0.8	14
391	Glycolysis Inhibition as a Strategy for Hepatocellular Carcinoma Treatment?. Current Cancer Drug Targets, 2018, 19, 26-40.	0.8	31
392	Sedentary behavior, exercise and COVID-19: immune and metabolic implications in obesity and its comorbidities. Journal of Sports Medicine and Physical Fitness, 2021, 61, 1538-1547.	0.4	9
393	Relationship Between Selected Metabolic Risk Factors and Waist-to-Height Ratio among Employees in Vhembe District Municipality of Limpopo Province, South Africa. Asian Journal of Scientific Research, 2017, 11, 42-50.	0.3	3
394	Immune cell interplay in colorectal cancer prognosis. World Journal of Gastrointestinal Oncology, 2015, 7, 221.	0.8	27
395	Metabolic influence on macrophage polarization and pathogenesis. BMB Reports, 2019, 52, 360-372.	1.1	136
396	Inflammation in Metabolic Cardiomyopathy. Frontiers in Cardiovascular Medicine, 2021, 8, 742178.	1.1	42
397	Adipose Tissue and Immuno-Metabolic Regulation. , 2022, , 203-220.		0
398	Metabolic Profile of Innate Immune Cells. , 2022, , 83-114.		0
399	The multifaceted therapeutic value of targeting ATP-citrate lyase in atherosclerosis. Trends in Molecular Medicine, 2021, 27, 1095-1105.	3 . 5	17
400	Metabolic Pathways in Immune Cells Commitment and Fate. , 2022, , 53-82.		0
401	Focus on Proteomics and Bioinformatics in Translational Research and Plant Research of Obesity and Diabetes. MOJ Proteomics $\&$ Bioinformatics, 2014, 1, .	0.1	0
402	Activation Role of Low Dose Ionizing radiation on Human Lymphocytes Response Egyptian Journal of Radiation Sciences and Applications, 2017, .	0.0	0
405	Tissue Location Drives the Metabolic Re-Profiling of Macrophages. Immunometabolism, 2020, , .	0.7	0
406	Current Progress in Adipose Tissue Biology: Implications in Obesity and Its Comorbidities. Indonesian Biomedical Journal, 2020, 12, 85-101.	0.2	0
409	Single-Cell RNA-Sequencing Identifies Infrapatellar Fat Pad Macrophage Polarization in Acute Synovitis/Fat Pad Fibrosis and Cell Therapy. Bioengineering, 2021, 8, 166.	1.6	7
410	The J2-Immortalized Murine Macrophage Cell Line Displays Phenotypical and Metabolic Features of Primary BMDMs in Their M1 and M2 Polarization State. Cancers, 2021, 13, 5478.	1.7	6

#	Article	IF	CITATIONS
411	Immunometabolism and autoimmunity., 2022,, 31-45.		0
413	Meta-Inflammation and Metabolic Reprogramming of Macrophages in Diabetes and Obesity: The Importance of Metabolites. Frontiers in Immunology, 2021, 12, 746151.	2.2	77
414	HIF-1α Regulation of Cytokine Production following TLR3 Engagement in Murine Bone Marrow–Derived Macrophages Is Dependent on Viral Nucleic Acid Length and Glucose Availability. Journal of Immunology, 2021, 207, 2813-2827.	0.4	3
415	Cancer Stem Cells: Metabolic Characterization for Targeted Cancer Therapy. Frontiers in Oncology, 2021, 11, 756888.	1.3	14
416	Antioxidant, Anti-Inflammatory, and Immunomodulatory Properties of Teaâ€"The Positive Impact of Tea Consumption on Patients with Autoimmune Diabetes. Nutrients, 2021, 13, 3972.	1.7	17
418	Inflammation métaboliqueÂ: importance des macrophages et de leur métabolisme. Medecine Des Maladies Metaboliques, 2020, 14, 429-436.	0.1	0
419	Reversal of obesity-driven aggressiveness of endometrial cancer by metformin. American Journal of Cancer Research, 2019, 9, 2170-2193.	1.4	14
420	Targeting Metabolism to Control Immune Responses in Cancer and Improve Checkpoint Blockade Immunotherapy. Cancers, 2021, 13, 5912.	1.7	13
421	The Basally Expressed p53-Mediated Homeostatic Function. Frontiers in Cell and Developmental Biology, 2021, 9, 775312.	1.8	14
422	Metabolite transporters as regulators of macrophage polarization. Naunyn-Schmiedeberg's Archives of Pharmacology, 2022, 395, 13-25.	1.4	3
423	Monocytes in Neonatal Bacterial Sepsis: Think Tank or Workhorse?. Biochem, 2022, 2, 27-43.	0.5	3
424	Rapid Weight Loss, Central Obesity Improvement and Blood Glucose Reduction Are Associated with a Stronger Adaptive Immune Response Following COVID-19 mRNA Vaccine. Vaccines, 2022, 10, 79.	2.1	27
425	Modulation of Macrophage Immunometabolism: A New Approach to Fight Infections. Frontiers in Immunology, 2022, 13, 780839.	2.2	37
426	Pathophysiological Integration of Metabolic Reprogramming in Breast Cancer. Cancers, 2022, 14, 322.	1.7	9
427	Which BMI for Diabetes Patients is Better? From the View of the Adipose Tissue Macrophage-Derived Exosome. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2022, Volume 15, 141-153.	1.1	4
428	Microglial metabolic flexibility: emerging roles for lactate. Trends in Endocrinology and Metabolism, 2022, 33, 186-195.	3.1	36
429	Berberine regulates mesangial cell proliferation and cell cycle to attenuate diabetic nephropathy through the PI3K/Akt/AS160/GLUT1 signalling pathway. Journal of Cellular and Molecular Medicine, 2022, 26, 1144-1155.	1.6	12
430	Proton motive force underpins respiration-mediated potentiation of aminoglycoside lethality in pathogenic Escherichia coli. Archives of Microbiology, 2022, 204, 120.	1.0	7

#	Article	IF	Citations
431	Cytoplasmic zinc promotes IL- $1\hat{1}^2$ production by monocytes and macrophages through mTORC1-induced glycolysis in rheumatoid arthritis. Science Signaling, 2022, 15, eabi7400.	1.6	16
432	Cassiaside C Inhibits M1 Polarization of Macrophages by Downregulating Glycolysis. International Journal of Molecular Sciences, 2022, 23, 1696.	1.8	5
433	Metabolic modulation of immune checkpoints and novel therapeutic strategies in cancer. Seminars in Cancer Biology, 2022, 86, 542-565.	4.3	51
434	Long COVID, neuropsychiatric disorders, psychotropics, present and future. Acta Neuropsychiatrica, 2022, 34, 109-126.	1.0	30
435	Metabolism in tumor-associated macrophages. International Review of Cell and Molecular Biology, 2022, 367, 65-100.	1.6	10
436	Unspecific CTL Killing Is Enhanced by High Glucose via TNF-Related Apoptosis-Inducing Ligand. Frontiers in Immunology, 2022, 13, 831680.	2.2	0
437	Immunometabolic adaptation and immune plasticity in pregnancy and the bi-directional effects of obesity. Clinical and Experimental Immunology, 2022, 208, 132-146.	1.1	6
438	An integrated toolbox to profile macrophage immunometabolism. Cell Reports Methods, 2022, 2, 100192.	1.4	18
439	CD14 regulates the metabolomic profiles of distinct macrophage subsets under steady and activated states. Immunobiology, 2022, 227, 152191.	0.8	4
440	Standardized fraction of Xylocarpus moluccensis inhibits inflammation by modulating MAPK-NFήB and ROS-HIF1α-PKM2 activation. Inflammation Research, 2022, 71, 423-437.	1.6	3
442	Prognosis and Dissection of Immunosuppressive Microenvironment in Breast Cancer Based on Fatty Acid Metabolism-Related Signature. Frontiers in Immunology, 2022, 13, 843515.	2.2	44
443	Fungal sensing enhances neutrophil metabolic fitness by regulating antifungal Glut1 activity. Cell Host and Microbe, 2022, 30, 530-544.e6.	5.1	21
444	Specific targeting of cancer stem cells by immunotherapy: A possible stratagem to restrain cancer recurrence and metastasis. Biochemical Pharmacology, 2022, 198, 114955.	2.0	12
445	Immunometabolic crosstalk during bacterial infection. Nature Microbiology, 2022, 7, 497-507.	5.9	45
446	Signaling Pathways That Mediate Alveolar Macrophage Activation by Surfactant Protein A and IL-4. Frontiers in Immunology, 2022, 13, 860262.	2,2	8
447	Macrophage-targeted shikonin-loaded nanogels for modulation of inflammasome activation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 42, 102548.	1.7	6
448	Metabolism of tissue macrophages in homeostasis and pathology. Cellular and Molecular Immunology, 2022, 19, 384-408.	4.8	117
449	Hepatic Macrophage as a Key Player in Fatty Liver Disease. Frontiers in Immunology, 2021, 12, 708978.	2.2	33

#	Article	IF	CITATIONS
450	Research Progress on the Role of Intermediate Filament Vimentin in Atherosclerosis. DNA and Cell Biology, 2021, 40, 1495-1502.	0.9	2
451	Erythritol modulates the polarization of macrophages: Potential role of tumor necrosis factorâ€Î± and Akt pathway. Journal of Food Biochemistry, 2022, 46, e13960.	1.2	3
452	Long noncoding RNA GSEC promotes neutrophil inflammatory activation by supporting PFKFB3-involved glycolytic metabolism in sepsis. Cell Death and Disease, 2021, 12, 1157.	2.7	13
453	TRIM38 triggers the ubiquitination and degradation of glucose transporter type 1 (GLUT1) to restrict tumor progression in bladder cancer. Journal of Translational Medicine, 2021, 19, 508.	1.8	18
454	Interactions between NLRP3 inflammasome and glycolysis in macrophages: New insights into chronic inflammation pathogenesis. Immunity, Inflammation and Disease, 2022, 10, .	1.3	9
455	Cellular metabolic adaptations in rheumatoid arthritis and their therapeutic implications. Nature Reviews Rheumatology, 2022, 18, 398-414.	3.5	21
456	Berberine Modulates Macrophage Activation by Inducing Glycolysis. Journal of Immunology, 2022, 208, 2309-2318.	0.4	2
474	miRNA-199a-5p/SLC2A1 axis regulates glucose metabolism in non-small cell lung cancer. Journal of Cancer, 2022, 13, 2352-2361.	1.2	10
475	Lung specific homing of diphenyleneiodonium chloride improves pulmonary fibrosis by inhibiting macrophage M2 metabolic program. Journal of Advanced Research, 2023, 44, 213-225.	4.4	6
476	Exploring epigenetic reprogramming during central nervous system infection. Immunological Reviews, 2022, 311, 112-129.	2.8	7
478	Prognostic Roles of Glucose to Lymphocyte Ratio and Modified Glasgow Prognosis Score in Patients With Non-small Cell Lung Cancer. Frontiers in Nutrition, 2022, 9, .	1.6	0
479	Regulation of intrinsic and extrinsic metabolic pathways in tumourâ€associated macrophages. FEBS Journal, 2023, 290, 3040-3058.	2.2	6
480	Transcriptomic Analysis of the Spleen of Different Chicken Breeds Revealed the Differential Resistance of Salmonella Typhimurium. Genes, 2022, 13, 811.	1.0	5
482	Metabolic Reprogramming of Innate Immune Cells as a Possible Source of New Therapeutic Approaches in Autoimmunity. Cells, 2022, 11, 1663.	1.8	8
483	The metabolic characteristic of decidual immune cells and their unique properties in pregnancy loss*. Immunological Reviews, 2022, 308, 168-186.	2.8	5
484	Cystathionine \hat{l}^3 -lyase exacerbates Helicobacter pylori immunopathogenesis by promoting macrophage metabolic remodeling and activation. JCI Insight, 2022, 7, .	2.3	8
486	One Molecule for Mental Nourishment and More: Glucose Transporter Type 1—Biology and Deficiency Syndrome. Biomedicines, 2022, 10, 1249.	1.4	5
487	Heat stress modulates the disruptive effects of Eimeria maxima infection on the ileum nutrient digestibility, molecular transporters, and tissue morphology in meat-type chickens. PLoS ONE, 2022, 17, e0269131.	1.1	5

#	Article	IF	CITATIONS
488	Cholesterol crystals drive metabolic reprogramming and M1 macrophage polarisation in primary human macrophages. Atherosclerosis, 2022, 352, 35-45.	0.4	14
490	Dealing with Macrophage Plasticity to Address Therapeutic Challenges in Head and Neck Cancers. International Journal of Molecular Sciences, 2022, 23, 6385.	1.8	7
491	Kir2.1-mediated membrane potential promotes nutrient acquisition and inflammation through regulation of nutrient transporters. Nature Communications, 2022, 13, .	5.8	12
492	Near-infrared light reduces β-amyloid-stimulated microglial toxicity and enhances survival of neurons: mechanisms of light therapy for Alzheimer's disease. Alzheimer's Research and Therapy, 2022, 14, .	3.0	22
493	Reprogramming Macrophage Metabolism and its Effect on NLRP3 Inflammasome Activation in Sepsis. Frontiers in Molecular Biosciences, 0, 9, .	1.6	6
494	A novel strategy to fuel cancer immunotherapy: targeting glucose metabolism to remodel the tumor microenvironment. Frontiers in Oncology, 0, 12 , .	1.3	7
495	Obesity elicits a unique metabolomic signature in human airway smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 323, L297-L307.	1.3	4
496	Effects of macrophages on the proliferation and cardiac differentiation of human induced pluripotent stem cells. Cell Communication and Signaling, 2022, 20, .	2.7	3
497	HIF-1 $\hat{l}\pm$ induces glycolytic reprograming in tissue-resident alveolar macrophages to promote cell survival during acute lung injury. ELife, 0, 11, .	2.8	8
498	Macrophage Polarization, Metabolic Reprogramming, and Inflammatory Effects in Ischemic Heart Disease. Frontiers in Immunology, 0, 13, .	2.2	5
499	The inhibition of GLUT1-induced glycolysis in macrophage by phloretin participates in the protection during acute lung injury. International Immunopharmacology, 2022, 110, 109049.	1.7	6
500	Reprogramming Metabolism of Macrophages as a Target for Kidney Dysfunction Treatment in Autoimmune Diseases. International Journal of Molecular Sciences, 2022, 23, 8024.	1.8	3
501	Role of glycolysis in the development of atherosclerosis. American Journal of Physiology - Cell Physiology, 2022, 323, C617-C629.	2.1	10
502	Respiratory Tract Infections in Diabetes $\hat{a} \in \text{``Lessons From Tuberculosis'}$ and Influenza to Guide Understanding of COVID-19 Severity. Frontiers in Endocrinology, 0, 13, .	1.5	15
503	Glucose transport in the regulation of T-cell activation: the journey may be as important as the destination. Immunometabolism, 2022, 4, e00003.	0.7	0
504	Metabolic reprogramming consequences of sepsis: adaptations and contradictions. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	21
506	The Role of Immunometabolism in HIV-1 Pathogenicity: Links to Immune Cell Responses. Viruses, 2022, 14, 1813.	1.5	4
507	Xanthones from Securidaca inappendiculata Hassk. attenuate collagen-induced arthritis in rats by inhibiting the nicotinamide phosphoribosyltransferase/glycolysis pathway and macrophage polarization. International Immunopharmacology, 2022, 111, 109137.	1.7	6

#	Article	IF	CITATIONS
508	Neuroinflammation in Multiple Sclerosis. , 2022, , .		0
509	LncRNA MCM3AP-AS1 serves as a competing endogenous RNA of miR-218 to upregulate GLUT1 in papillary thyroid carcinoma. Archives of Endocrinology and Metabolism, 2022, , .	0.3	0
510	Redox regulation of the immune response. , 2022, 19, 1079-1101.		96
511	Immunometabolism of macrophages regulates skeletal muscle regeneration. Frontiers in Cell and Developmental Biology, $0,10,10$	1.8	9
512	Delineating transcriptional crosstalk between Mycobacterium avium subsp. paratuberculosis and human THP-1 cells at the early stage of infection via dual RNA-seq analysis. Veterinary Research, 2022, 53, .	1.1	4
513	Polarization of macrophages: mechanisms, markers and factors of induction. Siberian Journal of Oncology, 2022, 21, 124-136.	0.1	2
514	Isoginkgetin, a potential CDK6 inhibitor, suppresses <i>SLC2A1/GLUT1</i> enhancer activity to induce AMPK-ULK1-mediated cytotoxic autophagy in hepatocellular carcinoma. Autophagy, 2023, 19, 1221-1238.	4.3	13
515	Increased glucose metabolism in TAMs fuels O-GlcNAcylation of lysosomal Cathepsin B to promote cancer metastasis and chemoresistance. Cancer Cell, 2022, 40, 1207-1222.e10.	7.7	76
516	Moonlighting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) protein of Lactobacillus gasseri attenuates allergic asthma via immunometabolic change in macrophages. Journal of Biomedical Science, 2022, 29, .	2.6	4
517	Pharmacogenomics deliberations of 2-deoxy-d-glucose in the treatment of COVID-19 disease: an in silico approach. 3 Biotech, 2022, 12, .	1.1	О
518	Effect of mycobacterial proteins that target mitochondria on the alveolar macrophages activation during <i>Mycobacterium tuberculosis</i> infection. Experimental Lung Research, 2022, 48, 251-265.	0.5	1
519	Understanding the Crosstalk Between Epigenetics and Immunometabolism to Combat Cancer. Sub-Cellular Biochemistry, 2022, , 581-616.	1.0	O
520	Understanding the molecular mechanisms of macrophage polarization and metabolic reprogramming in endometriosis: A narrative review. Reproductive Medicine and Biology, 2022, 21, .	1.0	5
521	Effects of Noonan Syndrome-Germline Mutations on Mitochondria and Energy Metabolism. Cells, 2022, 11, 3099.	1.8	5
522	Role of metabolic reprogramming in pro-inflammatory cytokine secretion from LPS or silica-activated macrophages. Frontiers in Immunology, $0,13,.$	2.2	32
523	Evolutionary Origins of Metabolic Reprogramming in Cancer. International Journal of Molecular Sciences, 2022, 23, 12063.	1.8	0
524	Effects of lysosomal low-density lipoprotein oxidation by ferritin on macrophage function. Free Radical Research, 2022, 56, 436-446.	1.5	2
525	Microemulsions Enhance the In Vitro Antioxidant Activity of Oleanolic Acid in RAW 264.7 Cells. Pharmaceutics, 2022, 14, 2232.	2.0	4

#	ARTICLE	IF	CITATIONS
526	Intramyocardial hemorrhage drives fatty degeneration of infarcted myocardium. Nature Communications, 2022, 13 , .	5.8	11
527	Warburg effect in colorectal cancer: the emerging roles in tumor microenvironment and therapeutic implications. Journal of Hematology and Oncology, 2022, 15, .	6.9	60
528	Leukocyte metabolism in obese type 2 diabetic individuals associated with COVID-19 severity. Frontiers in Microbiology, 0, 13 , .	1.5	1
529	An appraisal of the current status of inhibition of glucose transporters as an emerging antineoplastic approach: Promising potential of new pan-GLUT inhibitors. Frontiers in Pharmacology, 0, 13, .	1.6	11
531	Oncometabolism: A Paradigm for the Metabolic Remodeling of the Failing Heart. International Journal of Molecular Sciences, 2022, 23, 13902.	1.8	2
533	Ubiquitin-like protein MNSFβ regulates glycolysis and promotes cell proliferation with HSC70 assistance. Biochemistry and Biophysics Reports, 2023, 33, 101414.	0.7	0
534	A molecular framework for autistic experiences: Mitochondrial allostatic load as a mediator between autism and psychopathology. Frontiers in Psychiatry, 0, 13 , .	1.3	1
535	The role of immunomodulatory metabolites in shaping the inflammatory response of macrophages. BMB Reports, 2022, 55, 519-527.	1.1	1
536	Bone Marrow Macrophages Induce Inflammation by Efferocytosis of Apoptotic Prostate Cancer Cells via HIF-1α Stabilization. Cells, 2022, 11, 3712.	1.8	3
537	Cystathionine Î ³ -lyase and hydrogen sulfide modulates glucose transporter Glut1 expression via NF-Î ⁹ B and PI3k/Akt in macrophages during inflammation. PLoS ONE, 2022, 17, e0278910.	1.1	6
538	Glucose to lymphocyte ratio predicts prognoses in patients with colorectal cancer. Asia-Pacific Journal of Clinical Oncology, 2023, 19, 542-548.	0.7	2
539	Garlic-derived exosomes carrying miR-396e shapes macrophage metabolic reprograming to mitigate the inflammatory response in obese adipose tissue. Journal of Nutritional Biochemistry, 2023, 113, 109249.	1.9	2
540	Hyperglycemic Conditions Enhance the Mechanosensitivity of Proinflammatory RAW264.7 Macrophages. Tissue Engineering - Part A, 2023, 29, 172-184.	1.6	1
541	Manipulating T-cell metabolism to enhance immunotherapy in solid tumor. Frontiers in Immunology, 0, 13, .	2.2	8
542	Inflammation driven metabolic regulation and adaptation in macrophages. Clinical Immunology, 2023, 246, 109216.	1.4	7
543	The PI3K/Akt Pathway in Meta-Inflammation. International Journal of Molecular Sciences, 2022, 23, 15330.	1.8	35
544	Immune Cell Metabolism and Immuno-Oncology. Annual Review of Cancer Biology, 2023, 7, 93-110.	2.3	4
546	Past history of obesity triggers persistent epigenetic changes in innate immunity and exacerbates neuroinflammation. Science, 2023, 379, 45-62.	6.0	39

#	Article	IF	CITATIONS
547	Repurposing nitric oxide donating drugs in cancer therapy through immune modulation. Journal of Experimental and Clinical Cancer Research, 2023, 42, .	3. 5	8
548	The Molecular Pharmacology of Phloretin: Anti-Inflammatory Mechanisms of Action. Biomedicines, 2023, 11, 143.	1.4	12
549	Pnpt1 mediates NLRP3 inflammasome activation by MAVS and metabolic reprogramming in macrophages. , 2023, 20, 131-142.		7
550	The Adipocyte–Macrophage Relationship in Cancer: A Potential Target for Antioxidant Therapy. Antioxidants, 2023, 12, 126.	2.2	6
551	Conditional Knockout of Hypoxia-Inducible Factor 1-Alpha in Tumor-Infiltrating Neutrophils Protects against Pancreatic Ductal Adenocarcinoma. International Journal of Molecular Sciences, 2023, 24, 753.	1.8	3
552	Review to Understand the Crosstalk between Immunotherapy and Tumor Metabolism. Molecules, 2023, 28, 862.	1.7	4
553	Cryptotanshinone attenuates LPS-induced acute lung injury by regulating metabolic reprogramming of macrophage. Frontiers in Medicine, $0, 9, .$	1.2	2
554	Metabolic reprogramming by miRNAs in the tumor microenvironment: Focused on immunometabolism. Frontiers in Oncology, 0, 12, .	1.3	7
555	SIRT2-PFKP interaction dysregulates phagocytosis in macrophages with acute ethanol-exposure. Frontiers in Immunology, 0, 13 , .	2.2	3
556	Alterations in Lymphocytic Metabolism—An Emerging Hallmark of MS Pathophysiology?. International Journal of Molecular Sciences, 2023, 24, 2094.	1.8	1
557	IFNâ€stimulated metabolite transporter ENT3 facilitates viral genome release. EMBO Reports, 0, , .	2.0	1
558	Lung injury and oxidative stress induced by inhaled chlorine in mice is associated with proinflammatory activation of macrophages and altered bioenergetics. Toxicology and Applied Pharmacology, 2023, 461, 116388.	1.3	3
559	CB2R agonist GW405833 alleviates acute liver failure in mice via inhibiting HIF- $1\hat{l}\pm$ -mediated reprogramming of glycometabolism and macrophage proliferation. Acta Pharmacologica Sinica, 0, , .	2.8	2
560	NRF2 Activation Reprograms Defects in Oxidative Metabolism to Restore Macrophage Function in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2023, 207, 998-1011.	2.5	6
561	Characterization of the effect of the GLUT-1 inhibitor BAY-876 on T cells and macrophages. European Journal of Pharmacology, 2023, 945, 175552.	1.7	4
562	Comparison of [18F]FIMP, [11C]MET, and [18F]FDG PET for early-phase assessment of radiotherapy response. Scientific Reports, 2023, 13, .	1.6	2
563	The contradictory roles of macrophages in non-alcoholic fatty liver disease and primary liver cancerâ€"Challenges and opportunities. Frontiers in Molecular Biosciences, 0, 10, .	1.6	4
564	Role of myeloid cells in system-level immunometabolic dysregulation during prolonged successful HIV-1 treatment. Aids, 0, Publish Ahead of Print, .	1.0	1

#	ARTICLE	IF	CITATIONS
565	PFKFB2-mediated glycolysis promotes lactate-driven continual efferocytosis by macrophages. Nature Metabolism, 2023, 5, 431-444.	5.1	19
566	Glycolysis modulates efferocytosis in a noncanonical manner. Nature Metabolism, 2023, 5, 360-361.	5.1	1
567	<scp>HIF</scp> : a master regulator of nutrient availability and metabolic crossâ€ŧalk in the tumor microenvironment. EMBO Journal, 2023, 42, .	3.5	13
568	Exosomal miRNAs-mediated macrophage polarization and its potential clinical application. International Immunopharmacology, 2023, 117, 109905.	1.7	4
570	"Under Pressure―– How fungi evade, exploit, and modulate cells of the innate immune system. Seminars in Immunology, 2023, 66, 101738.	2.7	2
571	Sirtuin-dependent metabolic and epigenetic regulation of macrophages during tuberculosis. Frontiers in Immunology, 0, 14, .	2.2	1
572	Tet methylcytosine dioxygenase 1 modulates <i>Porphyromonas gingivalis</i> 倓triggered pyroptosis by regulating glycolysis in cementoblasts. Annals of the New York Academy of Sciences, 2023, 1523, 119-134.	1.8	2
573	The role of immunometabolism in macrophage polarization and its impact on acute lung injury/acute respiratory distress syndrome. Frontiers in Immunology, 0 , 14 , .	2.2	5
574	Inhibitory Effects of Ginsenoside Compound K on Lipopolysaccharide-Stimulated Inflammatory Responses in Macrophages by Regulating Sirtuin 1 and Histone Deacetylase 4. Nutrients, 2023, 15, 1626.	1.7	7
576	From Gasotransmitter to Immunomodulator: The Emerging Role of Hydrogen Sulfide in Macrophage Biology. Antioxidants, 2023, 12, 935.	2.2	7
577	Proinflammatory Polarization of Macrophages Causes Intestinal Inflammation in Low-Birth-Weight Piglets and Mice. Journal of Nutrition, 2023, 153, 1803-1815.	1.3	1
578	Rapid glycolytic activation accompanying innate immune responses: mechanisms and function. Frontiers in Immunology, 0, 14 , .	2.2	3
597	Mitochondrial Regulation of Macrophages in Innate Immunity and Diverse Roles of Macrophages During Cochlear Inflammation. Neuroscience Bulletin, 2024, 40, 255-267.	1.5	0
642	Immune System, Redox Signaling, and Cancer Immunity. , 2023, , 207-235.		0
657	Macrophage Polarization and Osteoclast Differentiation. Methods in Molecular Biology, 2024, , 247-261.	0.4	0
667	Decoding macrophage immunometabolism in human viral infection. Advances in Protein Chemistry and Structural Biology, 2024, , .	1.0	0