CITATION REPORT List of articles citing

A predictive processing theory of sensorimotor contingencies: Explaining the puzzle of perceptual presence and its absence in synesthesia

DOI: 10.1080/17588928.2013.877880 Cognitive Neuroscience, 2014, 5, 97-118.

Source: https://exaly.com/paper-pdf/59289641/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
180	Defining (trained) grapheme-color synesthesia. 2014 , 8, 368		8
179	An extended case study on the phenomenology of sequence-space synesthesia. 2014 , 8, 433		12
178	Constructing priors in synesthesia. <i>Cognitive Neuroscience</i> , 2014 , 5, 124-6	1.7	6
177	The worldly constituents of perceptual presence. Frontiers in Psychology, 2014, 5, 450	3.4	6
176	Counter-factual mathematics of counterfactual predictive models. Frontiers in Psychology, 2014, 5, 801	3.4	4
175	Perceptual presence without counterfactual richness. <i>Cognitive Neuroscience</i> , 2014 , 5, 131-3	1.7	3
174	On emotion-cognition integration: The effect of happy and sad moods on language comprehension. <i>Behavioral and Brain Sciences</i> , 2015 , 38, e73	0.9	1
173	Integration of cognition and emotion in physical and mental actions in musical and other behaviors. <i>Behavioral and Brain Sciences</i> , 2015 , 38, e76	0.9	9
172	How arousal influences neural competition: What dual competition does not explain. <i>Behavioral and Brain Sciences</i> , 2015 , 38, e77	0.9	1
171	The cognitive-emotional brain is an embodied and social brain. <i>Behavioral and Brain Sciences</i> , 2015 , 38, e78	0.9	2
170	Behavioral evidence for a continuous approach to the perception of emotionally valenced stimuli. <i>Behavioral and Brain Sciences</i> , 2015 , 38, e79	0.9	1
169	United we stand, divided we fall: Cognition, emotion, and the moral link between them. <i>Behavioral and Brain Sciences</i> , 2015 , 38, e80	0.9	2
168	Surprise as an ideal case for the interplay of cognition and emotion. <i>Behavioral and Brain Sciences</i> , 2015 , 38, e74	0.9	2
167	Models for cognition and emotion: Evolutionary and linguistic considerations. <i>Behavioral and Brain Sciences</i> , 2015 , 38, e81	0.9	
166	On theory integration: Toward developing affective components within cognitive architectures. <i>Behavioral and Brain Sciences</i> , 2015 , 38, e82	0.9	
165	Neuropsychology still needs to model organismic processes "from within". <i>Behavioral and Brain Sciences</i> , 2015 , 38, e83	0.9	8
164	When emotion and cognition do (not) work together: Delusions as emotional and executive dysfunctions. <i>Behavioral and Brain Sciences</i> , 2015 , 38, e84	0.9	1

(2015-2015)

163	Active inference and cognitive-emotional interactions in the brain. <i>Behavioral and Brain Sciences</i> , 2015 , 38, e85	0.9	15
162	The cognitive-emotional brain: Opportunities [corrected] and challenges for understanding neuropsychiatric disorders. <i>Behavioral and Brain Sciences</i> , 2015 , 38, e86	0.9	11
161	Strengthening emotion-cognition integration. Behavioral and Brain Sciences, 2015, 38, e87	0.9	2
160	Social theory and the cognitive-emotional brain. Behavioral and Brain Sciences, 2015, 38, e88	0.9	О
159	Precision about the automatic emotional brain. Behavioral and Brain Sciences, 2015, 38, e89	0.9	1
158	Preferences and motivations with and without inferences. <i>Behavioral and Brain Sciences</i> , 2015 , 38, e90	0.9	1
157	The cognitive-emotional amalgam. Behavioral and Brain Sciences, 2015, 38, e91	0.9	18
156	Cognition as the tip of the emotional iceberg: A neuro-evolutionary perspective. <i>Behavioral and Brain Sciences</i> , 2015 , 38, e72	0.9	1
155	Enactive neuroscience, the direct perception hypothesis, and the socially extended mind. <i>Behavioral and Brain Sciences</i> , 2015 , 38, e75	0.9	8
154	Synesthesia and release phenomena in sensory and motor grounding. Cases of disinhibited embodiment?. <i>Frontiers in Psychology</i> , 2015 , 6, 54	3.4	4
153	Prior expectations facilitate metacognition for perceptual decision. <i>Consciousness and Cognition</i> , 2015 , 35, 53-65	2.6	37
152	Use of hierarchical Bayesian framework in MTS studies to model different causes and novel possible forms of acquired MTS. <i>Cognitive Neuroscience</i> , 2015 , 6, 144-5	1.7	3
151	Intentionality and the Myths of the Given. 2015 , pqv048		
150	Varieties of Presence. 2015 , pqv031		
149	The role of prediction in mental processing: A process approach. 2015 , 39, 45-52		3
148	The felt presence of other minds: Predictive processing, counterfactual predictions, and mentalising in autism. <i>Consciousness and Cognition</i> , 2015 , 36, 376-89	2.6	56
147	Presence, objecthood, and the phenomenology of predictive perception. <i>Cognitive Neuroscience</i> , 2015 , 6, 111-7	1.7	17
146	How Kinesthetic Motor Imagery works: a predictive-processing theory of visualization in sports and motor expertise. 2015 , 109, 53-63		88

145	How mirror-touch informs theories of synesthesia. Cognitive Neuroscience, 2015, 6, 142-4	1.7	3
144	Into the looking glass: Broadening models to explain the spectrum of sensory and affective vicarious experiences. <i>Cognitive Neuroscience</i> , 2015 , 6, 135-7	1.7	5
143	A task control theory of mirror-touch synesthesia. <i>Cognitive Neuroscience</i> , 2015 , 6, 141-2	1.7	3
142	Cognitive neuroscience of synesthesia: Introduction to the special issue. <i>Cognitive Neuroscience</i> , 2015 , 6, 45-7	1.7	
141	Predictive coding accounts of shared representations in parieto-insular networks. 2015 , 70, 442-54		24
140	Neurophysiological Mechanisms of Rapidity Quality Development in Female Students Going in for Basketball and Volleyball at Sports Clubs. 2016 , 13, 580-585		
139	Autonomous grounding of visual field experience through sensorimotor prediction. 2016,		
138	Context discovery for model learning in partially observable environments. 2016,		1
137	Hallucinations as top-down effects on perception. 2016 , 1, 393-400		54
136	Active interoceptive inference and the emotional brain. 2016 , 371,		304
136 135	Active interoceptive inference and the emotional brain. 2016 , 371, Predictive coding and representationalism. <i>Synth Be</i> , 2016 , 193, 559-582	0.8	304 94
		0.8	
135	Predictive coding and representationalism. <i>Synth</i> B e, 2016 , 193, 559-582	0.8	94
135	Predictive coding and representationalism. <i>Synth e</i> , 2016 , 193, 559-582 Husserlian Phenomenology. 2016 , The body as laboratory: Prediction-error minimization, embodiment, and representation.		94
135 134 133	Predictive coding and representationalism. <i>Synth Be</i> , 2016 , 193, 559-582 Husserlian Phenomenology. 2016 , The body as laboratory: Prediction-error minimization, embodiment, and representation. <i>Philosophical Psychology</i> , 2016 , 29, 586-600 Tying the Knot: Why Representationalists should Endorse the Sensorimotor Theory of Conscious		94
135 134 133	Predictive coding and representationalism. <i>Synth Be</i> , 2016 , 193, 559-582 Husserlian Phenomenology. 2016 , The body as laboratory: Prediction-error minimization, embodiment, and representation. <i>Philosophical Psychology</i> , 2016 , 29, 586-600 Tying the Knot: Why Representationalists should Endorse the Sensorimotor Theory of Conscious Feel. 2016 , 66, 280-301	1.1	94 9 14
135 134 133 132	Predictive coding and representationalism. <i>Synth</i> Be, 2016 , 193, 559-582 Husserlian Phenomenology. 2016 , The body as laboratory: Prediction-error minimization, embodiment, and representation. <i>Philosophical Psychology</i> , 2016 , 29, 586-600 Tying the Knot: Why Representationalists should Endorse the Sensorimotor Theory of Conscious Feel. 2016 , 66, 280-301 Distrusting the present. <i>Phenomenology and the Cognitive Sciences</i> , 2016 , 15, 315-335 Lessons of synaesthesia for consciousness: Learning from the exception, rather than the general.	1.1	94 9 14 37

127	A social Bayesian brain: How social knowledge can shape visual perception. 2017 , 112, 69-77	48
126	Grounding the experience of a visual field through sensorimotor contingencies. 2017 , 268, 142-152	6
125	From mirror-touch synesthesia to models of vicarious experience: A reply to commentaries. Cognitive Neuroscience, 2017, 8, 224-227	
124	Bayesian approaches to autism: Towards volatility, action, and behavior. 2017 , 143, 521-542	117
123	The free energy principle for action and perception: A mathematical review. 2017, 81, 55-79	143
122	An algorithmic information theory of consciousness. <i>Neuroscience of Consciousness</i> , 2017 , 2017, nix019 3.3	25
121	Guest Editorial Sensorimotor Contingencies for Cognitive Robotics. 2017 , 9, 97-99	2
120	Visual Perceptual Echo Reflects Learning of Regularities in Rapid Luminance Sequences. 2017 , 37, 8486-8497	6
119	Active Inference, Curiosity and Insight. 2017 , 29, 2633-2683	138
118	Introduction: The Varieties of Enactivism. 2017 , 36, 365-375	61
117	Model-Based Approaches to Active Perception and Control. <i>Entropy</i> , 2017 , 19, 266 2.8	21
116	Review of the Socionic Model of Information Metabolism at Individual, Interpersonal and Societal Levels. 2017 ,	
115	Coordinated neural, behavioral, and phenomenological changes in perceptual plasticity through overtraining of synesthetic associations. 2018 , 111, 151-162	14
114	The anticipating brain is not a scientist: the free-energy principle from an ecological-enactive perspective. <i>Synth</i> Be, 2018 , 195, 2417-2444	168
113	From cognitivism to autopoiesis: towards a computational framework for the embodied mind. Synth Be, 2018, 195, 2459-2482	149
112	Bodily skill and internal representation in sensorimotor perception. <i>Phenomenology and the Cognitive Sciences</i> , 2018 , 17, 157-173	11
111	Predictive processing, perceiving and imagining: Is to perceive to imagine, or something close to it?. 2018 , 175, 751-767	21
110	Predictive processing and the representation wars: a victory for the eliminativist (via fictionalism). Synth Re, 2018, 195, 5115-5139	21

109	Content and misrepresentation in hierarchical generative models. Synth®e, 2018, 195, 2387-2415	0.8	44
108	Visual Feeling of Presence. 2018 , 99, 112-136		23
107	The neuroscience of body memory: From the self through the space to the others. 2018 , 104, 241-260		83
106	Consciousness, Representation, Action: The Importance of Being Goal-Directed. <i>Trends in Cognitive Sciences</i> , 2018 , 22, 137-153	14	17
105	How Dynamic Brain Networks Tune Social Behavior in Real Time. 2018, 27, 413-421		6
104	Being a Beast Machine: The Somatic Basis of Selfhood. <i>Trends in Cognitive Sciences</i> , 2018 , 22, 969-981	14	103
103	The Effect of Haptic Prediction Accuracy on Presence. 2018,		6
102	Am I Self-Conscious? (Or Does Self-Organization Entail Self-Consciousness?). <i>Frontiers in Psychology</i> , 2018 , 9, 579	3.4	65
101	'Seeing the Dark': Grounding Phenomenal Transparency and Opacity in Precision Estimation for Active Inference. <i>Frontiers in Psychology</i> , 2018 , 9, 643	3.4	46
100	Toward a Mature Science of Consciousness. <i>Frontiers in Psychology</i> , 2018 , 9, 693	3.4	10
99	Identification of Invariant Sensorimotor Structures as a Prerequisite for the Discovery of Objects. <i>Frontiers in Robotics and AI</i> , 2018 , 5, 70	2.8	4
98	Discovering space - Grounding spatial topology and metric regularity in a naive agent's sensorimotor experience. <i>Neural Networks</i> , 2018 , 105, 371-392	9.1	7
97	Mechanistic unity of the predictive mind. 2019 , 29, 657-675		9
96	Stochastic resonance model of synaesthesia. 2019 , 374, 20190029		8
95	A systematic scoping review: Resources targeting the training and education of health and recreation practitioners to support physical activity among people with physical disabilities. 2019 , 12, 542-550		4
94	How non-veridical perception drives actions in healthy humans: evidence from synaesthesia. 2019 , 374, 20180574		3
93	Autistic traits in synaesthesia: atypical sensory sensitivity and enhanced perception of details. 2019 , 374, 20190024		13
92	Neurophenomenology of induced and natural synaesthesia. 2019 , 374, 20190030		3

The Co-occurrence of Mirror-Touch With Other Types of Synaesthesia. 2019, 48, 1146-1152 1 91 Cognitive Structural Realism. 2019, 90 13 An Advanced Version of Cognitive Structural Realism. 2019, 117-149 89 From Unconscious Inference to the Beholder Share: Predictive Perception and Human Experience. 88 **2019**, 27, 378-410 "Surprise" and the Bayesian Brain: Implications for Psychotherapy Theory and Practice. Frontiers in 87 3.4 20 Psychology, 2019, 10, 592 The flow of narrative in the mind unmoored: An account of narrative processing. Philosophical 86 1.1 Psychology, 2019, 32, 560-583 Information generation as a functional basis of consciousness. Neuroscience of Consciousness, 2019, 85 16 3.3 2019, niz016 Moderate eating with pleasure and without effort: Toward understanding the underlying 84 3 psychological mechanisms. **2019**, 6, 2055102919889883 Self-Knowledge in a Predictive Processing Framework. Review of Philosophy and Psychology, 2019, 83 1.4 10, 563-585 82 The structure of sensorimotor explanation. Synth Be, 2019, 196, 4527-4553 0.8 Distinguishing volumetric content from perceptual presence within a predictive processing 81 1.5 1 framework. Phenomenology and the Cognitive Sciences, 2020, 19, 791-800 How passive is passive listening? Toward a sensorimotor theory of auditory perception. 80 1.5 Phenomenology and the Cognitive Sciences, 2020, 19, 619-651 A match made in heaven: predictive approaches to (an unorthodox) sensorimotor enactivism. 79 1.5 2 Phenomenology and the Cognitive Sciences, 2020, 19, 653-684 78 Learning to Be Conscious. Trends in Cognitive Sciences, 2020, 24, 112-123 22 14 Neuropharmacological modulation of the aberrant bodily self through psychedelics. Neuroscience 9 7 77 and Biobehavioral Reviews, 2020, 108, 526-541 76 Music-Colour Synaesthesia: A Sensorimotor Account. Musicae Scientiae, 2020, 102986492095629 1.3 2 Cellular Mechanisms of Conscious Processing. Trends in Cognitive Sciences, 2020, 24, 814-825 75 14 44 A Formal Account of Structuring Motor Actions With Sensory Prediction for a Naive Agent. Frontiers 2.8 74 in Robotics and AI, **2020**, 7, 561660

73	A world-involving theory of agency: review of Sensorimotor Life: An Enactive Proposal by Ezequiel Di Paolo, Thomas Buhrmann, and Xabier Barandiaran. Oxford University Press, Oxford, 2017. <i>Adaptive Behavior</i> , 2020 , 105971232097667	1.1	
72	Synesthesia as (Multimodal) Mental Imagery. <i>Multisensory Research</i> , 2020 , 34, 281-296	1.9	1
71	From Prediction to Imagination. 2020 , 94-110		2
70	Explaining Epatial purport of perception Dapredictive processing approach. Synth De, 2020, 198, 9739	0.8	
69	Affect-biased attention and predictive processing. Cognition, 2020, 203, 104370	3.5	11
68	Information Closure Theory of Consciousness. Frontiers in Psychology, 2020 , 11, 1504	3.4	16
67	New directions in predictive processing. <i>Mind and Language</i> , 2020 , 35, 209-223	1.6	38
66	Altered states of consciousness and creativity. 2020 , 121-158		1
65	. IEEE Access, 2020 , 8, 18284-18304	3.5	12
64	From allostatic agents to counterfactual cognisers: active inference, biological regulation, and the origins of cognition. <i>Biology and Philosophy</i> , 2020 , 35, 1	1.7	36
63	Minds and Brains, Sleep and Psychiatry Psychiatric Research and Clinical Practice, 2021, 3, 12-28	2.7	7
62	Falsification and consciousness. <i>Neuroscience of Consciousness</i> , 2021 , 2021, niab001	3.3	2
61	Subjective visibility report is facilitated by conscious predictions only. <i>Consciousness and Cognition</i> , 2021 , 87, 103048	2.6	2
60	Are Generative Models Structural Representations?. <i>Minds and Machines</i> , 2021 , 31, 277-303	4.9	O
59	Presence, flow, and narrative absorption: an interdisciplinary theoretical exploration with a new spatiotemporal integrated model based on predictive processing. <i>Open Research Europe</i> , 1, 28		
58	On the Non-uniqueness Problem in Integrated Information Theory.		2
57	Modelling ourselves: what the free energy principle reveals about our implicit notions of representation. $Synth \mathbb{R}e$, 1	0.8	5
56	Visual experience in the predictive brain is univocal, but indeterminate. <i>Phenomenology and the Cognitive Sciences</i> , 1	1.5	O

(2015-2021)

55	The Radically Embodied Conscious Cybernetic Bayesian Brain: From Free Energy to Free Will and Back Again. <i>Entropy</i> , 2021 , 23,	2.8	5
54	Presence, flow, and narrative absorption: an interdisciplinary theoretical exploration with a new spatiotemporal integrated model based on predictive processing. <i>Open Research Europe</i> , 1, 28		O
53	Predictive processing and anti-representationalism. <i>Synth</i> @e, 1	0.8	О
52	Active inference through whiskers.		O
51	Psilocybin Induces Aberrant Prediction Error Processing of Tactile Mismatch Responses-A Simultaneous EEG-FMRI Study. <i>Cerebral Cortex</i> , 2021 , 32, 186-196	5.1	1
50	What Is Consciousness? Integrated Information vs. Inference. <i>Entropy</i> , 2021 , 23,	2.8	1
49	Grief日 impact on sensorimotor expectations: an account of non-veridical bereavement experiences. <i>Phenomenology and the Cognitive Sciences</i> , 1	1.5	O
48	Aligning the free-energy principle with Peircellogic of science and economy of research. <i>European Journal for Philosophy of Science</i> , 2021 , 11, 1	1.1	4
47	Sharing the load: How a personally coloured calculator for grapheme-colour synaesthetes can reduce processing costs. <i>PLoS ONE</i> , 2021 , 16, e0257713	3.7	
46	Active inference through whiskers. <i>Neural Networks</i> , 2021 , 144, 428-437	9.1	2
45	Sensorimotor predictions shape reported conscious visual experience in a breaking continuous flash suppression task. <i>Neuroscience of Consciousness</i> , 2021 , 2021, niab003	3.3	2
44	Conjuring Cognitive Structures: Towards a Unified Model of Cognition. <i>Studies in Applied Philosophy, Epistemology and Rational Ethics</i> , 2019 , 153-172	0.3	3
43	Perceptual Gains and Losses in Synesthesia and Schizophrenia. Schizophrenia Bulletin, 2021, 47, 722-730) 1.3	1
42	Neurophysiological signatures of duration and rhythm prediction across sensory modalities.		2
41	The Emergence of Synaesthesia in a Neuronal Network Model via Changes in Perceptual Sensitivity and Plasticity. <i>PLoS Computational Biology</i> , 2016 , 12, e1004959	5	13
40	Image content is more important than Bouma's Law for scene metamers. <i>ELife</i> , 2019 , 8,	8.9	19
39	Temporal Structure of Now from a Close-Up View. <i>Understanding Complex Systems</i> , 2021 , 59-136	0.4	
	Temporal strategic of Now Hom a close of View. Onderstanding complex systems, 2021, 35 130	· 	

37	Image content is more important than Boumal Law for scene metamers.		
36	Perceptual phenotypes: Perceptual gains and losses in synesthesia and schizophrenia.		
35	How non-veridical perception drives actions in healthy humans - Evidence from Synaesthesia.		
34	La « surprise » et le cerveau bayßien : consquences pour la thBrie et la pratique de la psychothEapie. <i>In Analysis</i> , 2019 , 3, 198-210	О	
33	Extensive Phenomenological Overlap between Induced and Naturally-Occurring Synaesthetic Experiences.		O
32	Representation and agency. Behavioral and Brain Sciences, 2020, 43, e134	0.9	
31	Subjective visibility report is facilitated by conscious predictions only.		
30	Looking from the top: enhanced top-down sensorimotor processing in somatic anxiety.		
29	Radical and Sensorimotor Enacted Mind. 2021 , 31-47		
28	Decreased interoceptive accuracy in children with autism spectrum disorder and with comorbid attention deficit/hyperactivity disorder <i>Autism Research</i> , 2022 ,	5.1	O
27	Perceptual reality monitoring: Neural mechanisms dissociating imagination from reality <i>Neuroscience and Biobehavioral Reviews</i> , 2022 , 135, 104557	9	3
26	Schema-Centred Unity and Process-Centred Pluralism of the Predictive Mind. <i>Minds and Machines</i> , 1	4.9	
25	Counterfactual cognition and psychosis: adding complexity to predictive processing accounts. <i>Philosophical Psychology</i> , 1-24	1.1	
24	Scientific Observation Is Socio-Materially Augmented Perception: Toward a Participatory Realism. <i>Philosophies</i> , 2022 , 7, 37	0.7	O
23	From Generative Models to Generative Passages: A Computational Approach to (Neuro) Phenomenology <i>Review of Philosophy and Psychology</i> , 2022 , 1-29	1.4	O
22	How We Tell Apart Fiction from Reality. American Journal of Psychology, 2022, 135, 1-18	0.5	
21	Presentation_1.PDF. 2018 ,		
20	Data_Sheet_1.pdf. 2020 ,		

19	Theories of consciousness Nature Reviews Neuroscience, 2022,	13.5	11
18	What Individuals Experience During Visuo-Spatial Working Memory Task Performance: An Exploratory Phenomenological Study. <i>Frontiers in Psychology</i> , 13,	3.4	
17	Neuroscience and architecture: Modulating behavior through sensorimotor responses to the built environment. <i>Neuroscience and Biobehavioral Reviews</i> , 2022 , 138, 104715	9	2
16	Familial aggregation of synaesthesia with autism (but not schizophrenia). <i>Cognitive Neuropsychiatry</i> , 1-19	2	О
15	Enhanced top-down sensorimotor processing in somatic anxiety. <i>Translational Psychiatry</i> , 2022 , 12,	8.6	0
14	A systematic approach to brain dynamics: cognitive evolution theory of consciousness.		O
13	Motivation, counterfactual predictions and constraints: normativity of predictive mechanisms. 2022 , 200,		0
12	Random Tactile Noise Stimulation Reveals Beta-Rhythmic Impulse Response Function of the Somatosensory System.		Ο
11	Computational psychiatry: from synapses to sentience.		0
10	The rational role of the perceptual sense of reality.		0
9	Predictive processing and perception: What does imagining have to do with it?. 2022, 106, 103419		0
8	Just how conservative is conservative predictive processing?. 2017 , 38, 98-122		1
7	Can perception be extended to a feel of north Tests of automaticity with the NaviEar. 1059712322113	302	0
6	Predictive Processing Theories. 2023 , 133-147		0
5	Editorial: Predictive Processing and Consciousness. 2022 , 13, 797-808		0
4	Using Extended Reality to Study the Experience of Presence. 2023,		O
3	Modelling Phenomenological Differences in Aetiologically Distinct Visual Hallucinations Using Deep Neural Networks.		1
2	God(s)[Mind(s) across Culture and Context. 2023 , 14, 222		Ο

How the conception of control influences our understanding of actions. **2023**, 24, 313-329