Current issues in dietary acrylamide: formation, mitiga

Journal of the Science of Food and Agriculture 94, 9-20 DOI: 10.1002/jsfa.6349

Citation Report

#	Article	IF	CITATIONS
1	Acrylamide in Food Products: A Review. Journal of Food Processing & Technology, 2014, 05, .	0.2	42
2	The red flour beetleTribolium castaneumallows for the convenient determination of fitness and survival as a measure of toxic effects of the food contaminant acrylamide. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2014, 31, 1826-1833.	2.3	1
3	Use of Coffee Silverskin and Stevia to Improve the Formulation of Biscuits. Polish Journal of Food and Nutrition Sciences, 2014, 64, 243-251.	1.7	61
4	Risk assessment, formation, and mitigation of dietary acrylamide: Current status and future prospects. Food and Chemical Toxicology, 2014, 69, 1-12.	3.6	103
5	Processing Treatments for Mitigating Acrylamide Formation in Sweetpotato French Fries. Journal of Agricultural and Food Chemistry, 2014, 62, 310-316.	5.2	36
6	Effective Suppression of Acrylamide Neurotoxicity by Lithium in Mouse. Neurochemical Research, 2014, 39, 2170-2179.	3.3	7
7	Scientific Opinion on acrylamide in food. EFSA Journal, 2015, 13, 4104.	1.8	360
8	Having impact. Journal of the Science of Food and Agriculture, 2015, 95, 1-1.	3.5	0
9	Cysteine alone or in combination with glycine simultaneously reduced the contents of acrylamide and hydroxymethylfurfural. LWT - Food Science and Technology, 2015, 63, 275-280.	5.2	42
10	Simple analytical strategy for MALDI-TOF-MS and nanoUPLC–MS/MS: Quantitating curcumin in food condiments and dietary supplements and screening of acrylamide-induced ROS protein indicators reduced by curcumin. Food Chemistry, 2015, 174, 571-576.	8.2	34
11	Acrylamide: inhibition of formation in processed food and mitigation of toxicity in cells, animals, and humans. Food and Function, 2015, 6, 1752-1772.	4.6	107
12	Acrylamide levels in selected Colombian foods. Food Additives and Contaminants: Part B Surveillance, 2015, 8, 99-105.	2.8	47
13	2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) formation and fate: an example of the coordinate contribution of lipid oxidation and Maillard reaction to the production and elimination of processing-related food toxicants. RSC Advances, 2015, 5, 9709-9721.	3.6	36
14	Fried and Dehydrated Potato Products. , 2016, , 459-474.		8
15	The Aroma-Active Compound, Acrylamide and Ascorbic Acid Contents of Pan-Fried Potato Slices Cooked by Different Temperature and Time. Journal of Food Processing and Preservation, 2016, 40, 183-191.	2.0	6
16	Hydrogenâ€bonding Structures and Energetics of Acrylamide Isomers, Tautomers, and Dimers: An <i>ab initio</i> Study and Spectral Analysis. Journal of the Chinese Chemical Society, 2016, 63, 968-976.	1.4	2
17	The use of asparaginase to reduce acrylamide levels in cooked food. Food Chemistry, 2016, 210, 163-171.	8.2	160
18	Acrylamide induces locomotor defects and degeneration of dopamine neurons in <i>Caenorhabditis elegans</i> . Journal of Applied Toxicology, 2016, 36, 60-67.	2.8	52

TION REI

CITATION REPORT

#	Article	IF	CITATIONS
19	Serum Metabolomics Analysis of Quercetin against Acrylamide-Induced Toxicity in Rats. Journal of Agricultural and Food Chemistry, 2016, 64, 9237-9245.	5.2	36
20	Acrylamide in processed potato products: progress made and present status. Acta Physiologiae Plantarum, 2016, 38, 1.	2.1	17
21	Support vector regression-guided unravelling: antioxidant capacity and quantitative structure-activity relationship predict reduction and promotion effects of flavonoids on acrylamide formation. Scientific Reports, 2016, 6, 32368.	3.3	4
22	The effect of thermal processing in oil on the macromolecular integrity and acrylamide formation from starch of three potato cultivars organically fertilized. Cogent Food and Agriculture, 2016, 2, .	1.4	2
23	Association between CYP2E1 polymorphisms and risk of differentiated thyroid carcinoma. Archives of Toxicology, 2016, 90, 3099-3109.	4.2	9
24	Omega-3 Enriched Biscuits with Low Levels of Heat-Induced Toxicants: Effect of Formulation and Bioprocess Technology, 2016, 9, 232-242.	4.7	9
25	Protective effect of wild raspberry (Rubus hirsutus Thunb.) extract against acrylamide-induced oxidative damage is potentiated after simulated gastrointestinal digestion. Food Chemistry, 2016, 196, 943-952.	8.2	108
26	Experimental Data in Support of a Direct Displacement Mechanism for Type I/II l-Asparaginases. Journal of Biological Chemistry, 2016, 291, 5088-5100.	3.4	26
27	A colorimetric detection of acrylamide in potato chips based on nucleophile-initiated thiol–ene Michael addition. Analyst, The, 2016, 141, 1136-1143.	3.5	24
28	Acrylamide mitigation strategies: critical appraisal of the FoodDrinkEurope toolbox. Food and Function, 2016, 7, 2516-2525.	4.6	39
29	Acrylamide in Fried Potato Products. , 2016, , 159-179.		6
30	Use of Nucleophilic Compounds, and Their Combination, for Acrylamide Removal. , 2016, , 297-307.		4
31	A combination of additives can synergically decrease acrylamide content in gingerbread without compromising sensory quality. Journal of the Science of Food and Agriculture, 2017, 97, 889-895.	3.5	14
32	Acrylamide and 5-hydroxymethylfurfural formation during biscuit baking. Part II: Effect of the ratio of reducing sugars and asparagine. Food Chemistry, 2017, 230, 14-23.	8.2	55
33	Dietary exposure to acrylamide from cafeteria foods in Jeddah schools and associated risk assessment. Journal of the Science of Food and Agriculture, 2017, 97, 4494-4500.	3.5	17
34	Nutrient composition and starch characteristics of eight European potato cultivars cultivated in South Africa. Journal of Food Composition and Analysis, 2017, 55, 1-11.	3.9	32
35	Comparative study of physico-chemical and sensory characteristics of French fries prepared from frozen potatoes using different cooking systems. European Food Research and Technology, 2017, 243, 1619-1631.	3.3	16
36	The effects of oat βâ€glucan incorporation on the quality, structure, consumer acceptance and glycaemic response of steamed bread. Journal of Texture Studies, 2017, 48, 562-570.	2.5	22

#	Article	IF	CITATIONS
37	Determination of acrylamide levels in potato crisps and other snacks and exposure risk assessment through a Margin of Exposure approach. Food and Chemical Toxicology, 2017, 108, 249-256.	3.6	35
38	Glycidamide inhibits progesterone production through reactive oxygen species-induced apoptosis in R2C Rat Leydig Cells. Food and Chemical Toxicology, 2017, 108, 563-570.	3.6	32
39	Greens and Other Vegetable Foods. , 2017, , 59-137.		5
40	Effects of starch damage and yeast fermentation on acrylamide formation in bread. Food Control, 2017, 73, 230-236.	5.5	57
41	Metabolomics analysis of urine from rats administered with long-term, low-dose acrylamide by ultra-performance liquid chromatography-mass spectrometry. Xenobiotica, 2017, 47, 439-449.	1.1	14
42	Reduction in Dietary Acrylamide Exposure—Impact of Potatoes with Low Acrylamide Potential. Risk Analysis, 2017, 37, 1754-1767.	2.7	10
43	Unravelling effects of flavanols and their derivatives on acrylamide formation via support vector machine modelling. Food Chemistry, 2017, 221, 178-186.	8.2	21
44	Applications of recovered compounds in food products. , 2017, , 171-194.		4
45	Assessment of Cellular Mutagenicity of Americano Coffees from Popular Coffee Chains. Journal of Food Protection, 2017, 80, 1489-1495.	1.7	6
46	Impact of potato processing on nutrients, phytochemicals, and human health. Critical Reviews in Food Science and Nutrition, 2018, 58, 146-168.	10.3	79
47	The Analytical Evaluation of Acrylamide in Foods as a Maillard Reaction Product. Springer Briefs in Molecular Science, 2018, , 37-45.	0.1	2
48	Overview on mitigation of acrylamide in starchy fried and baked foods. Journal of the Science of Food and Agriculture, 2018, 98, 4385-4394.	3.5	58
49	Tara pod (Caesalpinia spinosa) extract mitigates neo-contaminant formation in Chilean bread preserving their sensory attributes. LWT - Food Science and Technology, 2018, 95, 116-122.	5.2	18
50	Analytical Methods for the Determination of Maillard Reaction Products in Foods. An Introduction. Springer Briefs in Molecular Science, 2018, , 1-14.	0.1	1
51	Enzymatic mitigation of acrylamide in fried potato chips using asparaginase from <i>Aspergillus terreus</i> . International Journal of Food Science and Technology, 2018, 53, 491-498.	2.7	33
52	Potato Crisps and Snack Foods. , 2018, , .		9
53	Applications of New Breeding Technologies for Potato Improvement. Frontiers in Plant Science, 2018, 9, 925.	3.6	80
54	Progress and Successes of the Specialty Crop Research Initiative on Acrylamide Reduction in Processed Potato Products. American Journal of Potato Research, 2018, 95, 328-337.	0.9	12

CITATION REPORT

#	Article	IF	CITATIONS
55	Mitigation measures for acrylamide reduction in dough-based potato snacks during their expansion by frying. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018, 35, 1940-1947.	2.3	10
56	Acrylamide Content of Experimental Flatbreads Prepared from Potato, Quinoa, and Wheat Flours with Added Fruit and Vegetable Peels and Mushroom Powders. Foods, 2019, 8, 228.	4.3	16
57	Single and simultaneous effects of acrylamide and ethanol on bone microstructure of mice after one remodeling cycle. BMC Pharmacology & amp; Toxicology, 2019, 20, 38.	2.4	7
58	Influence of Potato Crisps Processing Parameters on Acrylamide Formation and Bioaccesibility. Molecules, 2019, 24, 3827.	3.8	15
60	The synergistic effect of ultrasound and microwave on the physical, chemical, textural, and microstructural properties of vacuum fried Chinese yam (<i>Dioscorea polystachya</i>). Journal of Food Processing and Preservation, 2019, 43, e14073.	2.0	14
61	Positive Properties of Maillard Products. Springer Briefs in Molecular Science, 2019, , 45-52.	0.1	0
62	Effect of Asparaginase Enzyme in the Reduction of Asparagine in Green Coffee. Beverages, 2019, 5, 32.	2.8	18
63	Experimental cryptorchidism enhances testicular susceptibility to dibutyl phthalate or acrylamide in Sprague-Dawley rats. Human and Experimental Toxicology, 2019, 38, 899-913.	2.2	7
64	Histopathological and biochemical alterations in non-diabetic and diabetic rats following acrylamide treatment. Toxin Reviews, 2021, 40, 277-284.	3.4	12
65	Formation of Acrylamide in Thermally Processed Foods and Its Reactionsduring <i>in Vitro</i> Digestion. ACS Symposium Series, 2019, , 45-66.	0.5	2
66	Genotype Environment Interaction on the Content of Glucose in Four Varieties of Creole Potato. , 2019, , .		0
67	Protective effects of vitamin C and curcumin against acrylamide toxicity in embryonic fibroblast cells. Toxicological and Environmental Chemistry, 2019, 101, 389-403.	1.2	4
68	A Review of Bark-Extract-Mediated Green Synthesis of Metallic Nanoparticles and Their Applications. Molecules, 2019, 24, 4354.	3.8	59
69	In vitro adsorption mechanism of acrylamide by lactic acid bacteria. LWT - Food Science and Technology, 2019, 100, 119-125.	5.2	33
70	Acrylamide in coffee: formation and possible mitigation strategies – a review. Critical Reviews in Food Science and Nutrition, 2020, 60, 3807-3821.	10.3	53
71	Acrylamide induces NLRP3 inflammasome activation via oxidative stress- and endoplasmic reticulum stress-mediated MAPK pathway in HepG2 cells. Food and Chemical Toxicology, 2020, 145, 111679.	3.6	30
72	The Concentration of Acrylamide in Different Food Products: A Global Systematic Review, Meta-Analysis, and Meta-Regression. Food Reviews International, 2022, 38, 1286-1304.	8.4	50
73	Asparagine accumulation in chicory storage roots is controlled by translocation and feedback regulation of asparagine biosynthesis in leaves. New Phytologist, 2020, 228, 922-931.	7.3	2

		CITATION REPORT		
#	Article		IF	CITATIONS
74	Applications of Compounds from Coffee Processing By-Products. Biomolecules, 2020,	10, 1219.	4.0	57
75	Assessment of Healthy and Harmful Maillard Reaction Products in a Novel Coffee Casca Melanoidins and Acrylamide. Foods, 2020, 9, 620.	ara Beverage:	4.3	37
76	Computer Simulation with a Temperature-Step Frying Approach to Mitigate Acrylamide French Fries. Foods, 2020, 9, 200.	Pormation in	4.3	6
77	Acrylamide Formation and Different Mitigation Strategies during Food Processing –, Reviews International, 2022, 38, 70-87.	A Review. Food	8.4	60
78	Using probiotics for mitigation of acrylamide in food products: a mini review. Current C Food Science, 2020, 32, 67-75.)pinion in	8.0	42
79	Metabonomics analysis of liver in rats administered with chronic low-dose acrylamide. 2020, 50, 894-905.	Kenobiotica,	1.1	15
80	Fate of acrylamide during coffee roasting and in vitro digestion assessed with carbon 1 13-labeled materials. Food Chemistry, 2020, 320, 126601.	4- and carbon	8.2	15
81	Generation of process-induced toxicants. , 2021, , 453-535.			0
82	Phytogenic synthesis of gold nanoparticles: mechanisms and applications. , 2021, , 182	7-210.		1
83	Acrylamide Induces Mitophagy and Alters Macrophage Phenotype via Reactive Oxygen Generation. International Journal of Molecular Sciences, 2021, 22, 1683.	Species	4.1	14
84	Acrylamide in bread: a review on formation, health risk assessment, and determination techniques. Environmental Science and Pollution Research, 2021, 28, 15627-15645.	by analytical	5.3	34
85	Suitability of donata and BRS F 132 cultivar for the potato processing industry. Food S Technology, 0, , .	cience and	1.7	0
86	Characteristics of French Fries and Potato Chips in Aspect of Acrylamide Content—M Reducing the Toxic Compound Content in Ready Potato Snacks. Applied Sciences (Swi 3943.		2.5	10
87	Lycopene mitigates acrylamide and glycidamide induced cellular toxicity via oxidative s modulation in HepG2 cells. Journal of Functional Foods, 2021, 80, 104390.	tress	3.4	10
88	A Review of Dietary Intake of Acrylamide in Humans. Toxics, 2021, 9, 155.		3.7	48
89	Key Aspects of Amadori Rearrangement Products as Future Food Additives. Molecules,	2021, 26, 4314.	3.8	20
90	Biomedical rationale for acrylamide regulation and methods of detection. Comprehens Food Science and Food Safety, 2021, 20, 2176-2205.	ive Reviews in	11.7	18
91	Strategies and Challenges for the Development of Industrial Enzymes Using Fungal Cel Grand Challenges in Biology and Biotechnology, 2020, , 179-210.	l Factories.	2.4	42

#	Article	IF	CITATIONS
92	Brief Introduction of Food Processing Methods and Chemical Hazards Formed during Thermal Processing. , 2019, , 1-17.		5
93	In vitro gastrointestinal digestion promotes the protective effect of blackberry extract against acrylamide-induced oxidative stress. Scientific Reports, 2017, 7, 40514.	3.3	45
95	REDUCTION OF ACRYLAMIDE FORMATION IN POTATO CHIPS BY AQUEOUS EXTRACT OF ROSELLE. Journal of Drug Delivery and Therapeutics, 2015, 5, .	0.5	4
96	Acrylamide-Induced Changes in Femoral Bone Microstructure of Mice. Physiological Research, 2017, 66, 1067-1071.	0.9	4
97	Akrylamid jako zwiÄ…zek wystÄ™pujÄ…cy w żywnoÅ›ci i jego wpÅ,yw na żywe organizmy. Herbalism, 2019,	l q.4 6.	0
98	ZimnotÅ,oczone oleje: Iniany (wysoko- i niskolinolenowy) i rzepakowy. Który wybrać?. Herbalism, 2019, 1, 39.	0.1	3
99	Paraplegia, After Total Spinal Cord Transection in Mice. MOJ Orthopedics & Rheumatology, 2016, 6, .	0.1	0
100	Dietary Intake of AGEs and ALEs and Inflammation: Nutritional Aspects. , 2017, , 309-328.		0
101	Peroxide Index, Trans Fatty Acids, Acrylamide and Polycyclic Aromatic Hydrocarbons (Pah) Contents in Frying Oils and Fried Tuna Fish Involved in "Garba―Production in Côte d'lvoire. Food and Nutrition Sciences (Print), 2019, 10, 947-962.	0.4	1
102	Thermal Approaches for the Control of Maillard Reaction in Processed Foods. Springer Briefs in Molecular Science, 2019, , 21-32.	0.1	0
103	Nutrient Deficiencies. , 2019, , 57-67.		0
104	Diverse origins of microbial L-asparaginases and their current miscellaneous applications. Archives of Pharmaceutical Sciences Ain Shams University, 2019, 3, 21-36.	0.1	0
105	Acrylamide Concentrations of Deep-Fried Potatoes. , 2019, , 189-194.		0
106	Mitigation Strategies Against Maillard Reaction in Foods: Processing Options. Springer Briefs in Molecular Science, 2019, , 1-20.	0.1	0
107	Acrylamide induces HepG2 cell proliferation through upregulation of miR-21 expression. Journal of Biomedical Research, 2019, 33, 181.	1.6	8
108	Acrylamide Toxicity and Mitigation Strategies: A Summary of Recent Reports. Journal of Pharmaceutical Research International, 0, , 154-163.	1.0	2
109	In vitro efficacy of two microbial strains and physicochemical effects on their aflatoxin decontamination in poultry feeds. African Journal of Biotechnology, 2020, 19, 644-652.	0.6	0
110	Purification of acrylamide from polymerization inhibitors in the manufacture of high quality flocculants based on polyacrylamide. Chemistry Technology and Application of Substances, 2020, 3, 109-113.	0.1	0

#	Article	IF	CITATIONS
111	L-Asparaginase Activity in Cell Lysates and Culture Media of Halophilic Bacterial Isolates. Iranian Journal of Pharmaceutical Research, 2016, 15, 435-440.	0.5	5
112	Recent advancements in baking technologies to mitigate formation of toxic compounds: A comprehensive review. Food Control, 2022, 135, 108707.	5.5	8
113	Formation of acrylamide in microwaveâ€roasted sorghum and associated dietary risk. International Journal of Food Science and Technology, 2022, 57, 1654-1665.	2.7	2
114	Processing issues. , 2022, , 229-257.		2
115	Effect of the Integrated Addition of a Red Tara Pods (Caesalpinia spinosa) Extract and NaCl over the Neo-Formed Contaminants Content and Sensory Properties of Crackers. Molecules, 2022, 27, 1020.	3.8	5
116	Acrylamide Contents of Local Snacks in Singapore. Frontiers in Nutrition, 2021, 8, 764284.	3.7	3
117	Investigating acrylamide mitigation by potential probiotics Bifidobacterium breve and Lactiplantibacillus plantarum: Optimization, in vitro gastrointestinal conditions, and mechanism. LWT - Food Science and Technology, 2022, , 113553.	5.2	1
118	Acrylamide and Potential Risk of Diabetes Mellitus: Effects on Human Population, Glucose Metabolism and Beta-Cell Toxicity. International Journal of Molecular Sciences, 2022, 23, 6112.	4.1	6
119	Acrylamide in coffee: What is known and what still needs to be explored. A review. Food Chemistry, 2022, 393, 133406.	8.2	13
120	Acrylamide: impact of precursors concentration, origin, postâ€harvesting process and roasting level in highâ€quality arabica and Robusta coffee. International Journal of Food Science and Technology, 2022, 57, 7468-7476.	2.7	6
122	Acrylamide; a neurotoxin in popcorns: a systematic review and meta-analysis. Reviews on Environmental Health, 2023, 38, 647-653.	2.4	4
123	Influence of Quality Characteristics and Intake of Acrylamide by Consumers of Roasted Coffee in Kenya: A Review. Current Research in Nutrition and Food Science, 2022, 10, 447-457.	0.8	0
124	ISOLASI, PURIFIKASI PARSIAL DAN KARAKTERISASI ENZIM L-ASPARAGINASE DARI BAWANG PUTIH (Allium) Tj ETQo	0 0 0 rgB⊺	[/Overlock] 1
125	Dietary exposure to acrylamide of university students in Ningxia of Northwest China and the effect on their neurobehavioral performance and oxidative stress in serum. Food Science and Nutrition, 2023, 11, 661-667.	3.4	3
126	Production of contaminants during thermal processing in both industrial and home preparation of foods. , 2023, , 211-217.		0
127	Adolescence is a sensitive period for acrylamide-induced sex hormone disruption: Evidence from NHANES populations and experimental mice. Ecotoxicology and Environmental Safety, 2023, 249, 114413.	6.0	2
128	Machine learning prediction of dual and dose-response effects of flavone carbon and oxygen glycosides on acrylamide formation. Frontiers in Nutrition, 0, 9, .	3.7	1
129	A rational approach for 3D recognition and removal of L-asparagine via molecularly imprinted membranes. Journal of Pharmaceutical and Biomedical Analysis, 2023, 226, 115250.	2.8	3

CITATION REPORT

IF ARTICLE CITATIONS Bakery and Farinaceous Products., 2023, , 117-140. 130 0 Production and Inhibition of Acrylamide during Coffee Processing: A Literature Review. Molecules, 3.8 2023, 28, 3476. 132 Impact of Some Enzymatic Treatments on Acrylamide Content in Biscuits. Processes, 2023, 11, 1041. 2.8 3 Acrylamide reduction in potato chips as functional food product via application of enzymes, baker's yeast, and green tea powder. Scientific African, 2023, 20, e01698. From a toxin to an obesogen: a review of potential obesogenic roles of acrylamide with a mechanistic 134 5.8 0 approach. Nutrition Reviews, O, , . Effective mitigation in the amount of acrylamide through enzymatic approaches. Food Research International, 2023, 172, 113177. 6.2 Ultra-processed food consumption and exposure to acrylamide in a nationally representative sample 136 3.4 3 of the US population aged 6Âyears and older. Preventive Medicine, 2023, 174, 107598. Aggravation of food allergy symptoms by treatment with acrylamide in a mouse model. Food and Chemical Toxicology, 2023, 176, 113808. 137 3.6 Advanced glycation end product signaling and metabolic complications: Dietary approach. World 138 3.5 3 Journal of Diabetes, 0, 14, 995-1012. Possible metabolic effect of acrylamide on biological system., 2023, 1, 126-138. 140 Acrylamide in fried potato products., 2024, , 161-183. 0 Use of nucleophilic compounds, and their combination, for acrylamide removal., 2024, , 371-384. The role of probiotics in improving food safety; detoxification of heavy metals and chemicals. Toxin 142 3.4 0 Reviews, 2024, 43, 63-91. Formation mechanisms, detection methods and mitigation strategies of acrylamide, polycyclic aromatic hydrocarbons and heterocyclic amines in food products. Food Control, 2024, 158, 110236. 143 5.5 Dietary acrylamide-linked burden of cancers in four sub-sahara African countries: A review and data 144 3.2 0 synthesis. Heliyon, 2024, 10, e23075. Effect of Oat Fiber Preparations with Different Contents of Î²-Glucan on the Formation of Acrylamide 145 in Dietary Bread (Rusks). Molecules, 2024, 29, 306.

CITATION REPORT