Recent advances in heterogeneous selective oxidation of

Chemical Society Reviews 43, 3480

DOI: 10.1039/c3cs60282f

Citation Report

#	Article	IF	CITATIONS
1	A Comparative Study of Size Effects in the Auâ€Catalyzed Oxidative and Nonâ€Oxidative Dehydrogenation of Benzyl Alcohol. Chemistry - an Asian Journal, 2014, 9, 2187-2196.	3.3	41
2	A brief review of para-xylene oxidation to terephthalic acid as a model of primary C–H bond activation. Chinese Journal of Catalysis, 2014, 35, 1641-1652.	14.0	37
3	Base-Free Aerobic Oxidation of 5-Hydroxymethyl-furfural to 2,5-Furandicarboxylic Acid in Water Catalyzed by Functionalized Carbon Nanotube-Supported Au–Pd Alloy Nanoparticles. ACS Catalysis, 2014, 4, 2175-2185.	11.2	353
4	The Importance of Catalyst Wettability. ChemCatChem, 2014, 6, 3048-3052.	3.7	104
5	Benzyl Alcohol Oxidation on Carbonâ€Supported Pd Nanoparticles: Elucidating the Reaction Mechanism. ChemCatChem, 2014, 6, 3464-3473.	3.7	82
6	Support effect in the preparation of supported metal catalysts <i>via</i> microemulsion. RSC Advances, 2014, 4, 50955-50963.	3.6	38
7	Oxidation of primary and secondary benzylic alcohols with hydrogen peroxide and tert-butyl hydroperoxide catalyzed by a "helmet―phthalocyaninato iron complex in the absence of added organic solvent. Dalton Transactions, 2014, 43, 17899-17903.	3.3	19
8	Au–Cu–Pt ternary catalyst fabricated by electrodeposition and galvanic replacement with superior methanol electrooxidation activity. RSC Advances, 2014, 4, 57600-57607.	3.6	31
9	Carbon Materials as Catalyst Supports and Catalysts in the Transformation of Biomass to Fuels and Chemicals. ACS Catalysis, 2014, 4, 3393-3410.	11.2	523
10	An efficient noble metal-free Ce–Sm/SiO ₂ nano-oxide catalyst for oxidation of benzylamines under ecofriendly conditions. RSC Advances, 2014, 4, 46378-46382.	3.6	52
11	Nanoparticle-supported and magnetically recoverable organic–inorganic hybrid copper(<scp>ii</scp>) nanocatalyst: a selective and sustainable oxidation protocol with a high turnover number. RSC Advances, 2014, 4, 41111-41121.	3.6	16
12	Exploring the coordination chemistry of 2-picolinic acid to zinc and application of the complexes in catalytic oxidation chemistry. Inorganic Chemistry Communication, 2014, 46, 320-323.	3.9	14
13	Multiphase catalytic oxidation of alcohols over paper-structured catalysts with micrometer-size pores. Applied Catalysis A: General, 2014, 486, 201-209.	4.3	7
14	Catalyst-free sulfonylation of activated alkenes for highly efficient synthesis of mono-substituted ethyl sulfones in water. Green Chemistry, 2014, 16, 4106.	9.0	79
15	Functional carbons and carbon nanohybrids for the catalytic conversion of biomass to renewable chemicals in the condensed phase. Chinese Journal of Catalysis, 2014, 35, 842-855.	14.0	26
16	Catalytic Organic Reactions on the Surface of Silver(I) Oxide in Water. Chemistry Letters, 2014, 43, 1867-1869.	1.3	8
18	Selective Oxidation of 1,6â€Hexanediol to 6â€Hydroxycaproic Acid over Reusable Hydrotalciteâ€Supported Au–Pd Bimetallic Catalysts. ChemSusChem, 2015, 8, 1862-1866.	6.8	16
19	Maghemiteâ€Copper Nanocomposites: Applications for Ligandâ€Free Crossâ€Coupling (Câ^'O, Câ^'S, and Câ^'N) Reactions. ChemCatChem, 2015, 7, 3495-3502.	3.7	54

#	Article	IF	CITATIONS
20	Wellâ€Defined Metal–Organicâ€Framework Hollow Nanostructures for Catalytic Reactions Involving Gases. Advanced Materials, 2015, 27, 5365-5371.	21.0	162
21	Palladiumâ€Based Nanomaterials: A Platform to Produce Reactive Oxygen Species for Catalyzing Oxidation Reactions. Advanced Materials, 2015, 27, 7025-7042.	21.0	115
22	Onionâ€Like Graphene Carbon Nanospheres as Stable Catalysts for Carbon Monoxide and Methane Chlorination. ChemCatChem, 2015, 7, 3036-3046.	3.7	19
23	Cobalt-iron oxides made by CVD for low temperature catalytic application. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1508-1513.	1.8	14
24	Utilization of Volatile Organic Compounds as an Alternative for Destructive Abatement. Catalysts, 2015, 5, 1092-1151.	3.5	35
25	Gold and silver catalysis: from organic transformation to bioconjugation. Organic and Biomolecular Chemistry, 2015, 13, 6667-6680.	2.8	57
26	Advances and Recent Trends in Heterogeneous Photo(Electro)-Catalysis for Solar Fuels and Chemicals. Molecules, 2015, 20, 6739-6793.	3.8	61
27	Cull(Sal-Ala)/CuAlLDH Hybrid as Novel Efficient Catalyst for Artificial Superoxide Dismutase (SOD) and Cyclohexene Oxidation by H2O2. Catalysis Letters, 2015, 145, 1529-1540.	2.6	16
28	Mechanism of methylene oxidation on Pt catalysts: A DFT study. Computational and Theoretical Chemistry, 2015, 1067, 40-47.	2.5	16
29	Selective Oxidation with Aqueous Hydrogen Peroxide by [PO ₄ {WO(O ₂) _{}₄]^{3â^'} Supported on Zincâ€Modified Tin Dioxide. ChemCatChem, 2015, 7, 1097-1104.}	3.7	33
30	A Tris(triazolate) Ligand for a Highly Active and Magnetically Recoverable Palladium Catalyst of Selective Alcohol Oxidation Using Air at Atmospheric Pressure. Chemistry - A European Journal, 2015, 21, 6501-6510.	3.3	23
31	New perspective to Keplerate polyoxomolybdates: Green oxidation of sulfides with hydrogen peroxide in water. Catalysis Communications, 2015, 66, 107-110.	3.3	53
32	Recent advances of pore system construction in zeolite-catalyzed chemical industry processes. Chemical Society Reviews, 2015, 44, 8877-8903.	38.1	279
33	Chemoselective Oxidation of Benzyl, Amino, and Propargyl Alcohols to Aldehydes and Ketones under Mild Reaction Conditions. ChemistryOpen, 2015, 4, 107-110.	1.9	14
34	Precisely-controlled synthesis of Au@Pd coreâ€"shell bimetallic catalyst via atomic layer deposition for selective oxidation of benzyl alcohol. Journal of Catalysis, 2015, 324, 59-68.	6.2	133
35	Sonophotodeposition of Bimetallic Photocatalysts Pd–Au/TiO ₂ : Application to Selective Oxidation of Methanol to Methyl Formate. ChemSusChem, 2015, 8, 1676-1685.	6.8	55
36	Highly Efficient and Selective Oxidation of Aromatic Alcohols Photocatalyzed by Nanoporous Hierarchical Pt/Bi ₂ WO ₆ in Organic Solvent-Free Environment. ACS Applied Materials & Date: Accordance of the Accorda	8.0	106
37	Mild and selective catalytic oxidation of organic substrates by a carbon nanotube-rhodium nanohybrid. Catalysis Science and Technology, 2015, 5, 4542-4546.	4.1	29

3

#	ARTICLE	IF	CITATIONS
38	Tertiary amine mediated aerobic oxidation of sulfides into sulfoxides by visible-light photoredox catalysis on TiO ₂ . Chemical Science, 2015, 6, 5000-5005.	7.4	89
39	Calcination system-induced nanocasting synthesis of uniform Co ₃ O ₄ nanoparticles with high surface area and enhanced catalytic performance. RSC Advances, 2015, 5, 35524-35534.	3.6	18
40	The cascade synthesis of quinazolinones and quinazolines using an α-MnO ₂ catalyst and tert-butyl hydroperoxide (TBHP) as an oxidant. Chemical Communications, 2015, 51, 9205-9207.	4.1	120
41	Carbon monoxide–isocyanide coupling promoted by acetylide addition to a diiron complex. Chemical Communications, 2015, 51, 8101-8104.	4.1	18
42	Hybrid Ni–Al layered double hydroxide/graphene composite supported gold nanoparticles for aerobic selective oxidation of benzyl alcohol. RSC Advances, 2015, 5, 36066-36074.	3.6	55
43	Supported catalysts based on layered double hydroxides for catalytic oxidation and hydrogenation: general functionality and promising application prospects. Chemical Society Reviews, 2015, 44, 5291-5319.	38.1	306
44	Well-Defined Surface Species [(≡Siâ€"Oâ€")W(â•O)Me ₃] Prepared by Direct Methylation of [(≡Siâ€"Oâ€")W(â•O)Cl ₃], a Catalyst for Cycloalkane Metathesis and Transformation of Ethylene to Propylene. ACS Catalysis, 2015, 5, 2164-2171.	11.2	35
45	Copper doped ceria porous nanostructures towards a highly efficient bifunctional catalyst for carbon monoxide and nitric oxide elimination. Chemical Science, 2015, 6, 2495-2500.	7.4	74
46	Silica-nanosphere-based organic–inorganic hybrid nanomaterials: synthesis, functionalization and applications in catalysis. Green Chemistry, 2015, 17, 3207-3230.	9.0	191
47	Polyoxometalate-based metal–organic coordination networks for heterogeneous catalytic desulfurization. CrystEngComm, 2015, 17, 7938-7947.	2.6	40
48	A modelling approach for MOF-encapsulated metal catalysts and application to n-butane oxidation. Physical Chemistry Chemical Physics, 2015, 17, 27596-27608.	2.8	19
49	Catalytic performance of Keplerate polyoxomolybdates in green epoxidation of alkenes with hydrogen peroxide. RSC Advances, 2015, 5, 70424-70428.	3.6	21
50	Functionalized Carbon Nanotubes for Biomass Conversion: The Baseâ€Free Aerobic Oxidation of 5â€Hydroxymethylfurfural to 2,5â€Furandicarboxylic Acid over Platinum Supported on a Carbon Nanotube Catalyst. ChemCatChem, 2015, 7, 2853-2863.	3.7	113
51	Oxidative conversion of lignin and lignin model compounds catalyzed by CeO ₂ -supported Pd nanoparticles. Green Chemistry, 2015, 17, 5009-5018.	9.0	210
52	The Brønstedâ^'Evansâ^'Polanyi Correlations in Oxidation Catalysis. Catalysis Reviews - Science and Engineering, 2015, 57, 436-477.	12.9	23
53	A novel iron(<scp>iii</scp>)-based heterogeneous catalyst for aqueous oxidation of alcohols using molecular oxygen. RSC Advances, 2015, 5, 78553-78560.	3.6	14
54	Facile preparation and dual catalytic activity of copper(i)–metallosalen coordination polymers. Dalton Transactions, 2015, 44, 17360-17365.	3.3	17
55	The energy-chemistry nexus: A vision of the future from sustainability perspective. Journal of Energy Chemistry, 2015, 24, 535-547.	12.9	52

#	Article	IF	Citations
56	A sintering-resistant Pd/SiO ₂ catalyst by reverse-loading nano iron oxide for aerobic oxidation of benzyl alcohol. RSC Advances, 2015, 5, 4766-4769.	3.6	16
57	Preparation of Pd–Coâ€Based Nanocatalysts and Their Superior Applications in Formic Acid Decomposition and Methanol Oxidation. ChemSusChem, 2015, 8, 260-263.	6.8	45
58	Synergistic photocatalytic aerobic oxidation of sulfides and amines on TiO ₂ under visible-light irradiation. Chemical Science, 2015, 6, 1075-1082.	7.4	87
59	Metallic Nanocatalysis: An Accelerating Seamless Integration with Nanotechnology. Small, 2015, 11, 268-289.	10.0	92
60	Thermo-responsive polymer micelle-based nanoreactors for intelligent polyoxometalate catalysis. Catalysis Communications, 2015, 58, 164-168.	3.3	12
61	Immobilization of Cu-chelate onto SBA-15 for partial oxidation of benzyl alcohol using water as the solvent. Research on Chemical Intermediates, 2015, 41, 5703-5712.	2.7	8
62	Immobilized Lignin Peroxidase-Like Metalloporphyrins as Reusable Catalysts in Oxidative Bleaching of Industrial Dyes. Molecules, 2016, 21, 964.	3.8	40
63	NiK/yCe x Zr 1-x O 2 -macroporous Al 2 O 3 catalysts for cracking of vacuum residual oil with steam. Applied Catalysis A: General, 2016, 525, 23-30.	4.3	10
64	Porous chitosan–MnO ₂ nanohybrid: a green and biodegradable heterogeneous catalyst for aerobic oxidation of alkylarenes and alcohols. Applied Organometallic Chemistry, 2016, 30, 154-159.	3.5	36
65	Ultrasmall Platinum Nanoparticles Supported Inside the Nanospaces of Periodic Mesoporous Organosilica with an Imidazolium Network: An Efficient Catalyst for the Aerobic Oxidation of Unactivated Alcohols in Water. ChemCatChem, 2016, 8, 906-910.	3.7	40
66	Deposition of tetraferrocenylporphyrins on ITO surfaces for photo-catalytic O ₂ activation. Dalton Transactions, 2016, 45, 14745-14753.	3.3	10
67	Nitrationâ€Oximization of Styrene Derivatives with <i>tert</i> â€Butyl Nitrite: Synthesis of <i>î±</i> â€Nitrooximes. Chinese Journal of Chemistry, 2016, 34, 830-838.	4.9	8
68	Natural polymers supported copper nanoparticles for pollutants degradation. Applied Surface Science, 2016, 387, 1154-1161.	6.1	131
69	Selective Production of Carbon Monoxide via Methane Oxychlorination over Vanadyl Pyrophosphate. Angewandte Chemie, 2016, 128, 15848-15852.	2.0	3
71	(Invited) Atomic Layer Deposition for Catalyst "Bottom-up" Synthesis. ECS Transactions, 2016, 75, 85-92.	0.5	2
72	Strategies for the Direct Catalytic Valorization of Methane Using Heterogeneous Catalysis: Challenges and Opportunities. ACS Catalysis, 2016, 6, 2965-2981.	11.2	438
73	Oxidation of cinnamyl alcohol using bimetallic Au–Pd/TiO ₂ catalysts: a deactivation study in a continuous flow packed bed microreactor. Catalysis Science and Technology, 2016, 6, 4749-4758.	4.1	37
74	Atomic layer deposition—Sequential self-limiting surface reactions for advanced catalyst "bottom-up― synthesis. Surface Science Reports, 2016, 71, 410-472.	7.2	252

#	Article	IF	Citations
75	Deep eutectic solvent mediated synthesis of quinazolinones and dihydroquinazolinones: synthesis of natural products and drugs. RSC Advances, 2016, 6, 27378-27387.	3.6	49
76	Synthesis of zero-valent Cu nanoparticles in the chitosan coating layer on cellulose microfibers: evaluation of azo dyes catalytic reduction. Cellulose, 2016, 23, 1911-1923.	4.9	155
77	Molecular iodine mediated oxidative coupling of enol acetates with sodium sulfinates leading to \hat{l}^2 -keto sulfones. Tetrahedron Letters, 2016, 57, 2236-2238.	1.4	24
78	Carbon nanotube-supported Au–Pd alloy with cooperative effect of metal nanoparticles and organic ketone/quinone groups as a highly efficient catalyst for aerobic oxidation of amines. Chemical Communications, 2016, 52, 6805-6808.	4.1	40
79	A mild and environmentally benign strategy towards hierarchical CeO2/Au nanoparticle assemblies with crystal facet-enhanced catalytic effects for benzyl alcohol aerobic oxidation. CrystEngComm, 2016, 18, 5110-5120.	2.6	14
80	Water-assisted oxygen activation during selective oxidation reactions. Current Opinion in Chemical Engineering, 2016, 13, 100-108.	7.8	19
81	Aerobic oxidations in flow: opportunities for the fine chemicals and pharmaceuticals industries. Reaction Chemistry and Engineering, 2016, 1, 595-612.	3.7	145
82	Unexpected, Latent Radical Reaction of Methane Propagated by Trifluoromethyl Radicals. Journal of Organic Chemistry, 2016, 81, 9820-9825.	3.2	10
83	Preparation of \hat{l}_{\pm} -Acyloxy Ketones via Visible-Light-Driven Aerobic Oxo-Acyloxylation of Olefins with Carboxylic Acids. Organic Letters, 2016, 18, 5256-5259.	4.6	40
84	Highly efficient continuous-flow oxidative coupling of amines using promising nanoscale CeO ₂ –M/SiO ₂ (M = MoO ₃ and WO ₃) solid acid catalysts. RSC Advances, 2016, 6, 95252-95262.	3.6	22
85	A facile in situ synthesis of highly active and reusable ternary Ag-PPy-GO nanocomposite for catalytic oxidation of hydroquinone in aqueous solution. Journal of Catalysis, 2016, 344, 795-805.	6.2	48
86	Synthesis of Terephthalic Acid by p ymene Oxidation using Oxygen: Toward a More Sustainable Production of Bioâ€Polyethylene Terephthalate. ChemSusChem, 2016, 9, 3102-3112.	6.8	40
87	Homogeneous Catalytic Oxidation of Unactivated Primary and Secondary Alcohols Employing a Versatile "Helmet―Phthalocyaninato Iron Complex Catalyst Without Added Organic Solvent. ChemistrySelect, 2016, 1, 5182-5186.	1.5	11
88	Ultrafine MnO 2 nanoparticles decorated on graphene oxide as a highly efficient and recyclable catalyst for aerobic oxidation of benzyl alcohol. Journal of Colloid and Interface Science, 2016, 483, 26-33.	9.4	83
89	Versatile Oxidation Methods for Organic and Inorganic Substrates Catalyzed by Platinum-Group Metals on Carbons. Chemical Record, 2016, 16, 261-272.	5.8	15
90	Efficient Roomâ€Temperature Methane Activation by the Closedâ€Shell, Metalâ€Free Cluster [OSiOH] ⁺ : A Novel Mechanistic Variant. Chemistry - A European Journal, 2016, 22, 14257-14263.	3.3	13
91	Tuning the performance of Pt–Ni alloy/reduced graphene oxide catalysts for 4-nitrophenol reduction. RSC Advances, 2016, 6, 79028-79036.	3.6	22
92	A Highâ€Performance Baseâ€Metal Approach for the Oxidative Esterification of 5â€Hydroxymethylfurfural. ChemCatChem, 2016, 8, 2907-2911.	3.7	58

#	Article	IF	CITATIONS
93	Selective Production of Carbon Monoxide via Methane Oxychlorination over Vanadyl Pyrophosphate. Angewandte Chemie - International Edition, 2016, 55, 15619-15623.	13.8	14
94	Missing Building Blocks Defects in a Porous Hydrogen-bonded Amide-Imidazolate Network Proven by Positron Annihilation Lifetime Spectroscopy. ChemistrySelect, 2016, 1, 4320-4325.	1.5	9
95	Thermal Methane Activation by [Si ₂ O ₅] ^{.+} and [Si ₂ O ₅ H ₂] ^{.+} : Reactivity Enhancement by Hydrogenation. Angewandte Chemie - International Edition, 2016, 55, 13345-13348.	13.8	7
96	Ru(<scp>ii</scp>)/PEG-400 as a highly efficient and recyclable catalytic media for annulation and olefination reactions via C–H bond activation. Green Chemistry, 2016, 18, 5635-5642.	9.0	69
97	Aerobic epoxidation catalysed by transition metal substituted polyfluorooxometalates. Dalton Transactions, 2016, 45, 14534-14537.	3.3	2
98	Microkinetic Modeling of Benzyl Alcohol Oxidation on Carbonâ€Supported Palladium Nanoparticles. ChemCatChem, 2016, 8, 2482-2491.	3.7	39
99	Gold(III) Mediated Activation and Transformation of Methane on Au \cdot sub \cdot 1 \cdot /sub \cdot -Doped Vanadium Oxide Cluster Cations Au \cdot 2 \cdot 8ub \cdot 0 \cdot 8ub \cdot 6 \cdot 8ub \cdot 8up \cdot 4 \cdot 8up \cdot 8. Journal of the American Chemical Society, 2016, 138, 9437-9443.	13.7	41
100	Heterogeneous Catalysis. , 2016, , 41-111.		5
101	Mechanisms of Metal-Free Aerobic Oxidation To Prepare Benzoxazole Catalyzed by Cyanide: A Direct Cyclization or Stepwise Oxidative Dehydrogenation and Cyclization?. Journal of Organic Chemistry, 2016, 81, 10857-10862.	3.2	11
102	Thermische Methanaktivierung durch [Si ₂ O ₅] ^{.+} und [Si ₂ O ₅ H ₂] ^{.+} : ReaktivitĀtssteigerung durch Hydrierung. Angewandte Chemie, 2016, 128, 13540-13543.	2.0	2
103	Highâ€Pressureâ€Induced Pseudoâ€oxidation of Copper Surfaces by Carbon Monoxide. ChemCatChem, 2016, 8, 1632-1635.	3.7	5
104	Heterogeneously catalyzed lignin depolymerization. Applied Petrochemical Research, 2016, 6, 243-256.	1.3	42
105	Theoretical investigations of non-noble metal single-atom catalysis: Ni ₁ /FeO _x for CO oxidation. Catalysis Science and Technology, 2016, 6, 6886-6892.	4.1	79
106	Ag ₃ PW ₁₂ O ₄₀ /C ₃ N ₄ nanocomposites as an efficient photocatalyst for hydrocarbon selective oxidation. RSC Advances, 2016, 6, 60394-60399.	3.6	12
107	Another application of (NH ₄) ₄₂ [Mo ^{VI} ₇₂ Mo ^V ₆₀ O _{37 as a highly efficient recyclable catalyst for the synthesis of dihydropyrano[3,2â€<i>c</i>i>ci>chromenes. Applied Organometallic Chemistry, 2016, 30, 626-629.}	72성sub>(CH _{3<}
108	Bi (NO3)3·5H2O and cellulose mediated Cu-NPs — A highly efficient and novel catalytic system for aerobic oxidation of alcohols to carbonyls and synthesis of DFF from HMF. Catalysis Communications, 2016, 77, 9-12.	3.3	20
109	Comprehensive review of methane conversion in solid oxide fuel cells: Prospects for efficient electricity generation from natural gas. Progress in Energy and Combustion Science, 2016, 54, 1-64.	31.2	270
110	Catalyst-free radical fluorination of sulfonyl hydrazides in water. Green Chemistry, 2016, 18, 1224-1228.	9.0	90

#	Article	IF	CITATIONS
111	Oxidation of a binuclear ruthenium carbonyl complex. Journal of Organometallic Chemistry, 2016, 812, 183-189.	1.8	2
112	Urease-catalyzed synthesis of aminocyanopyridines from urea under fully green conditions. Journal of Molecular Catalysis B: Enzymatic, 2016, 127, 89-92.	1.8	21
113	Pd@Cu(II)-MOF-Catalyzed Aerobic Oxidation of Benzylic Alcohols in Air with High Conversion and Selectivity. Inorganic Chemistry, 2016, 55, 3058-3064.	4.0	91
114	Bifunctional application of sodium cobaltate as a catalyst and captor through CO oxidation and subsequent CO ₂ chemisorption processes. RSC Advances, 2016, 6, 2162-2170.	3.6	27
115	Photocatalytic Chemoselective Aerobic Oxidation of Thiols to Disulfides Catalyzed by Combustion Synthesized Bismuth Tungstate Nanoparticles in Aqueous Media. Journal of Cluster Science, 2016, 27, 267-284.	3.3	24
116	Water-soluble metal nanoparticles stabilized by plant polyphenols for improving the catalytic properties in oxidation of alcohols. Nanoscale, 2016, 8, 1049-1054.	5.6	21
117	Mn(pbdo)2Cl2/MCM-41 as a green catalyst in multi-component syntheses of some heterocycles. Research on Chemical Intermediates, 2016, 42, 2979-2988.	2.7	16
118	Synthesis of perovskite-based nanocomposites for deNO _{<i>x</i>} catalytic activity. Canadian Journal of Chemistry, 2016, 94, 215-220.	1.1	2
119	Unexpected Mechanistic Variants in the Thermal Gas-Phase Activation of Methane. Organometallics, 2017, 36, 8-17.	2.3	91
120	Synthesis of a Fe ₃ O ₄ @P4VP@metal–organic framework core–shell structure and studies of its aerobic oxidation reactivity. RSC Advances, 2017, 7, 2773-2779.	3.6	20
121	Singlet Oxygen-Engaged Selective Photo-Oxidation over Pt Nanocrystals/Porphyrinic MOF: The Roles of Photothermal Effect and Pt Electronic State. Journal of the American Chemical Society, 2017, 139, 2035-2044.	13.7	616
122	Chitosan-based film supported copper nanoparticles: A potential and reusable catalyst for the reduction of aromatic nitro compounds. Carbohydrate Polymers, 2017, 161, 187-196.	10.2	70
123	Selective Oxidation of Methane to Methanol over ZSMâ€5 Catalysts in Aqueous Hydrogen Peroxide: Role of Formaldehyde. ChemCatChem, 2017, 9, 1276-1283.	3.7	26
124	Ménage-Ã-trois: single-atom catalysis, mass spectrometry, and computational chemistry. Catalysis Science and Technology, 2017, 7, 4302-4314.	4.1	145
125	Halogen-Mediated Conversion of Hydrocarbons to Commodities. Chemical Reviews, 2017, 117, 4182-4247.	47.7	260
127	Advances in methane conversion processes. Catalysis Today, 2017, 285, 147-158.	4.4	207
128	Selective C–N coupling reaction of diaryliodonium salts and dinucleophiles. New Journal of Chemistry, 2017, 41, 2873-2877.	2.8	21
129	Polymeric cation and isopolyanion ionic self-assembly: Novel thin-layer mesoporous catalyst for oxidative desulfurization. Chemical Engineering Journal, 2017, 317, 32-41.	12.7	73

#	Article	IF	CITATIONS
130	Optimizing Open Iron Sites in Metal–Organic Frameworks for Ethane Oxidation: A First-Principles Study. ACS Applied Materials & Study. Study. ACS Applied Materials & Study. Study. ACS Applied Materials & Study. S	8.0	44
131	SBA-15-supported Pd catalysts: The effect of pretreatment conditions on particle size and its application to benzyl alcohol oxidation. Journal of Catalysis, 2017, 350, 21-29.	6.2	41
132	Cooperative behavior of perfluoro carboxylic acid on cyclohexane oxidation catalyzed by \hat{l}_4 -nitrido diiron phthalocyanine complex. Journal of Industrial and Engineering Chemistry, 2017, 53, 371-374.	5.8	9
133	Controllable BrÃ, nsted acid-promoted aerobic oxidation via solvation-induced proton transfer: Metal-free construction of quinazolinones and dihydroquinazolinones. Molecular Catalysis, 2017, 434, 134-139.	2.0	16
134	Photoelectrochemical Catalysis toward Selective Anaerobic Oxidation of Alcohols. Chemistry - A European Journal, 2017, 23, 8142-8147.	3.3	35
135	AgCu/SiC-powder: A highly stable and active catalyst for gas-phase selective oxidation of alcohols. Catalysis Communications, 2017, 98, 1-4.	3.3	14
136	Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis. Coordination Chemistry Reviews, 2017, 347, 48-76.	18.8	347
137	Catalytic Oxidation of Alcohol to Carboxylic Acid with a Hydrophobic Cobalt Catalyst in Hydrocarbon Solvent. Chemistry - an Asian Journal, 2017, 12, 2404-2409.	3.3	17
138	Highly Stable Porous-Carbon-Coated Ni Catalysts for the Reductive Amination of Levulinic Acid via an Unconventional Pathway. ACS Catalysis, 2017, 7, 4927-4935.	11.2	85
139	Liquidâ€Metal Indium Catalysis for Direct Dehydrogenative Conversion of Methane to Higher Hydrocarbons. ChemistrySelect, 2017, 2, 4572-4576.	1.5	37
140	Heterocyclic bismuth(<scp>iii</scp>) compounds with transannular Nâ†'Bi interactions as catalysts for the oxidation of thiophenol to diphenyldisulfide. Catalysis Science and Technology, 2017, 7, 5343-5353.	4.1	25
141	Carboranycarboxylate Complexes as Efficient Catalysts in Epoxidation Reactions. European Journal of Inorganic Chemistry, 2017, 2017, 4425-4429.	2.0	6
142	Octahedral-based redox molecular sieve M-PKU-1: Isomorphous metal-substitution, catalytic oxidation of sec-alcohol and related catalytic mechanism. Journal of Catalysis, 2017, 352, 130-141.	6.2	11
143	Dissociative and non-dissociative adsorption of O $<$ sub $>$ 2 $<$ /sub $>$ on Cu(111) and Cu $<$ sub $>$ ML $<$ /sub $>$ /Ru(0001) surfaces: adiabaticity takes over. Physical Chemistry Chemical Physics, 2017, 19, 10217-10221.	2.8	20
145	Solid-State Ion-Exchanged Cu/Mordenite Catalysts for the Direct Conversion of Methane to Methanol. ACS Catalysis, 2017, 7, 1403-1412.	11.2	102
146	Water-Mediated Mars–Van Krevelen Mechanism for CO Oxidation on Ceria-Supported Single-Atom Pt ₁ Catalyst. ACS Catalysis, 2017, 7, 887-891.	11.2	407
147	Controllable decoration of palladium sub-nanoclusters on reduced graphene oxide with superior catalytic performance in selective oxidation of alcohols. Catalysis Science and Technology, 2017, 7, 5650-5661.	4.1	15
148	Unprecedented Concomitant Formation of Cu ₂ O–CD Nano-Superstructures During the Aerobic Oxidation of Alcohols and Their Catalytic Use in the Propargylamination Reaction: A Simultaneous Catalysis and Metal Waste Valorization (SCMWV) Method. ACS Omega, 2017, 2, 6405-6414.	3.5	12

#	Article	IF	CITATIONS
149	Catalytic ativities of single-atom catalysts for CO oxidation: Pt 1 /FeO x vs . Fe 1 /FeO x. Chinese Journal of Catalysis, 2017, 38, 1566-1573.	14.0	22
150	Selective photocatalysis of lignin-inspired chemicals by integrating hybrid nanocatalysis in microfluidic reactors. Chemical Society Reviews, 2017, 46, 6675-6686.	38.1	102
151	Bottom-up precise synthesis of stable platinum dimers on graphene. Nature Communications, 2017, 8, 1070.	12.8	466
152	Merging visible light photocatalysis of dye-sensitized TiO ₂ with TEMPO: the selective aerobic oxidation of alcohols. Catalysis Science and Technology, 2017, 7, 4955-4963.	4.1	57
153	W–N–TiO2 with positive enough level of valence band maximum and narrowing bandgap for selective aerobic oxidation in visible-light irradiation. Nanotechnology, 2017, 28, 435706.	2.6	1
154	Anchoring of Copper(II) Schiff Base Complex into Aminopropyl-Functionalised MCM-41: A Novel, Efficient and Reusable Catalyst for Selective Oxidation of Alcohols. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 146-155.	3.7	14
155	Structural Transformation of Porous Polyoxometalate Frameworks and Highly Efficient Biomimetic Aerobic Oxidation of Aliphatic Alcohols. ACS Catalysis, 2017, 7, 6573-6580.	11,2	68
156	Effect of Enhanced RuO ₂ Layer on the Sustainability of Ru/MMT Catalyst towards [3+2] Cycloaddition Reaction. ChemistrySelect, 2017, 2, 6949-6956.	1.5	5
157	A Novel Approach for Measuring Gas Solubility in Liquids Using a Tubeâ€inâ€Tube Membrane Contactor. Chemical Engineering and Technology, 2017, 40, 2346-2350.	1.5	19
158	Solvothermal Synthesis of CuFe ₂ O ₄ @rGO: Efficient Catalyst for Câ€O Cross Coupling and <i>Nâ€</i> >i>arylation Reaction under Ligandâ€Free Condition. ChemistrySelect, 2017, 2, 7150-7159.	1.5	16
159	Toward a Comprehensive Understanding of Enhanced Photocatalytic Activity of the Bimetallic PdAu/TiO ₂ Catalyst for Selective Oxidation of Methanol to Methyl Formate. ACS Applied Materials & Date: Activity of the Bimetallic PdAu/TiO/Sub/Sub/Sub/Sub/Sub/Sub/Sub/Sub/Sub/Sub	8.0	36
160	Electronic Structure of the $[Cu \cdot sub \cdot 3 \cdot /sub \cdot (\hat{1}/4-O) \cdot sub \cdot 3 \cdot /sub \cdot] \cdot sup \cdot 2+ \cdot /sup \cdot Cluster in Mordenite Zeolite and Its Effects on the Methane to Methanol Oxidation. Journal of Physical Chemistry C, 2017, 121, 22295-22302.$	3.1	74
161	Composition-Dependent Morphology of Bi- and Trimetallic Phosphides: Construction of Amorphous Pd–Cu–Ni–P Nanoparticles as a Selective and Versatile Catalyst. ACS Applied Materials & Lamp; Interfaces, 2017, 9, 34804-34811.	8.0	25
162	Morphology Adjustable Silica Nanosheets for Immobilization of Gold Nanoparticles. ChemistrySelect, 2017, 2, 5793-5799.	1.5	9
163	Ytterbia doped nickel–manganese mixed oxide catalysts for liquid phase oxidation of benzyl alcohol. Journal of Saudi Chemical Society, 2017, 21, 878-886.	5.2	3
164	Grand challenges for catalysis in the Science and Technology Roadmap on Catalysis for Europe: moving ahead for a sustainable future. Catalysis Science and Technology, 2017, 7, 5182-5194.	4.1	71
165	Supported two- and three-dimensional vanadium oxide species on the surface of \hat{l}^2 -SiC. Catalysis Science and Technology, 2017, 7, 3707-3714.	4.1	7
166	Chemoselective Continuous Ru-Catalyzed Hydrogen-Transfer Oppenauer-Type Oxidation of Secondary Alcohols. Organic Process Research and Development, 2017, 21, 1419-1422.	2.7	23

#	Article	IF	CITATIONS
167	Role of the Band Gap for the Interaction Energy of Coadsorbed Fragments. Journal of Physical Chemistry C, 2017, 121, 18608-18614.	3.1	15
168	Ordered mesoporous chromium–zirconium oxophosphate composites with homogeneously dispersed chromium oxide: synthesis, characterization and application in liquid phase oxidation of benzyl alcohol and ethylbenzene. Journal of Materials Science, 2017, 52, 12141-12155.	3.7	4
169	Amine coupled ordered mesoporous (Co–N) co-doped TiO ₂ : a green photocatalyst for the selective aerobic oxidation of thioether. Catalysis Science and Technology, 2017, 7, 4182-4192.	4.1	12
170	Preparation of TiO ₂ Nanospongeâ€Supported Noble Metal Catalysts and Their Application to 4â€Nitrophenol Reduction and CO Oxidation. ChemistrySelect, 2017, 2, 11456-11461.	1.5	4
171	Engineering Interface with One-Dimensional Co ₃ O ₄ Nanostructure in Catalytic Membrane Electrode: Toward an Advanced Electrocatalyst for Alcohol Oxidation. ACS Nano, 2017, 11, 12365-12377.	14.6	103
172	An Fe ₃ O ₄ @P4VP@FeCl ₃ core–shell heterogeneous catalyst for aerobic oxidation of alcohols and benzylic oxidation reaction. RSC Advances, 2017, 7, 51142-51150.	3.6	16
173	Scalable Photocatalytic Oxidation of Methionine under Continuous-Flow Conditions. Organic Process Research and Development, 2017, 21, 1435-1438.	2.7	79
174	Size-dependent catalytic activity over carbon-supported palladium nanoparticles in dehydrogenation of formic acid. Journal of Catalysis, 2017, 352, 371-381.	6.2	132
175	Mesostructure controllable ZSM-5 single crystals supported Pd/transition metal oxides: efficient and reusable catalysts for selective oxidation under aerobic conditions. Journal of Porous Materials, 2017, 24, 297-303.	2.6	4
176	Tungstate ions (WO ₄ ⁼) supported on imidazolium framework as novel and recyclable catalyst for rapid and selective oxidation of benzyl alcohols in the presence of hydrogen peroxide. Applied Organometallic Chemistry, 2017, 31, e3597.	3.5	11
177	Oxidative Coupling of Methane., 0,, 172-235.		0
178	Non-Noble Metal Oxide Catalysts for Methane Catalytic Combustion: Sonochemical Synthesis and Characterisation. Nanomaterials, 2017, 7, 174.	4.1	19
179	Catalytic Behaviour of CuO-CeO2 Systems Prepared by Different Synthetic Methodologies in the CO-PROX Reaction under CO2-H2O Feed Stream. Catalysts, 2017, 7, 160.	3 . 5	26
180	Synthesis, Characterization, and Relative Study on the Catalytic Activity of Zinc Oxide Nanoparticles Doped MnCO ₃ , –MnO ₂ , and –Mn ₂ O ₃ Nanocomposites for Aerial Oxidation of Alcohols. Journal of Chemistry, 2017, 2017, 1-17.	1.9	8
181	Revealing the Active Species for Aerobic Alcohol Oxidation by Using Uniform Supported Palladium Catalysts. Angewandte Chemie - International Edition, 2018, 57, 4642-4646.	13.8	93
182	Investigation of hollow bimetal oxide nanomaterial and their catalytic activity for selective oxidation of alcohol. Molecular Catalysis, 2018, 448, 63-70.	2.0	11
183	Transition metal oxide nanoparticles as efficient catalysts in oxidation reactions. Nano Structures Nano Objects, 2018, 14, 19-48.	3 . 5	122
184	Revealing the Active Species for Aerobic Alcohol Oxidation by Using Uniform Supported Palladium Catalysts. Angewandte Chemie, 2018, 130, 4732-4736.	2.0	29

#	Article	IF	CITATIONS
185	Oxidative Dehydrogenation of Propane to Propylene in the Presence of HCl Catalyzed by CeO ₂ and NiO-Modified CeO ₂ Nanocrystals. ACS Catalysis, 2018, 8, 4902-4916.	11.2	95
186	Hydrothermal deactivation over CuFe/BEA for NH3-SCR. Journal of Industrial and Engineering Chemistry, 2018, 65, 40-50.	5.8	20
187	Nickel(<scp>ii</scp>) riboflavin complex as an efficient nanobiocatalyst for heterogeneous and sustainable oxidation of benzylic alcohols and sulfides. New Journal of Chemistry, 2018, 42, 7383-7391.	2.8	11
188	Selective electrocatalytic conversion of methane to fuels and chemicals. Journal of Energy Chemistry, 2018, 27, 1629-1636.	12.9	97
189	The Role of Oxides in Catalytic CO Oxidation over Rhodium and Palladium. ACS Catalysis, 2018, 8, 4438-4445.	11.2	69
190	Consequences of Confinement for Alkene Epoxidation with Hydrogen Peroxide on Highly Dispersed Group 4 and 5 Metal Oxide Catalysts. ACS Catalysis, 2018, 8, 2995-3010.	11.2	111
191	Synthesis and catalytic activity of SBA-15 supported catalysts for styrene oxidation. Chinese Journal of Chemical Engineering, 2018, 26, 1300-1306.	3.5	28
192	Cobalt/N-Hydroxyphthalimide(NHPI)-Catalyzed Aerobic Oxidation of Hydrocarbons with Ionic Liquid Additive. Molecular Catalysis, 2018, 447, 90-96.	2.0	32
193	Cinnamaldehyde hydrogenation using Au–Pd catalysts prepared by sol immobilisation. Catalysis Science and Technology, 2018, 8, 1677-1685.	4.1	46
194	The role and fate of capping ligands in colloidally prepared metal nanoparticle catalysts. Dalton Transactions, 2018, 47, 5889-5915.	3.3	205
195	Highly efficient epoxidation of \hat{l}_{\pm} -pinene with O 2 photocatalyzed by dioxoMo (VI) complex anchored on TiO 2 nanotubes. Microporous and Mesoporous Materials, 2018, 265, 202-210.	4.4	26
196	Recyclable Supramolecular Ruthenium Catalyst for the Selective Aerobic Oxidation of Alcohols on Water: Application to Total Synthesis of Brittonin A. ACS Sustainable Chemistry and Engineering, 2018, 6, 3264-3278.	6.7	26
197	Thermal and photocatalytic oxidation of organic substrates by dioxygen with water as an electron source. Green Chemistry, 2018, 20, 948-963.	9.0	19
198	Base-Free Aerobic Oxidation of Alcohols over Copper-Based Complex under Ambient Condition. ACS Sustainable Chemistry and Engineering, 2018, 6, 2362-2369.	6.7	26
199	Metal-Free Catalyst for Visible-Light-Induced Oxidation of Unactivated Alcohols Using Air/Oxygen as an Oxidant. ACS Catalysis, 2018, 8, 5425-5430.	11,2	137
200	The promotion effects of graphitic and pyridinic N combinational doping on graphene for ORR. Applied Surface Science, 2018, 445, 398-403.	6.1	71
201	V2O5 /ZrO 2 as an efficient reusable catalyst for the facile, green, one-pot synthesis of novel functionalized 1,4-dihydropyridine derivatives. Catalysis Today, 2018, 309, 276-281.	4.4	41
202	Click functionalization of magnetite nanoparticles: A new magnetically recoverable catalyst for the selective epoxidation of olefins. Applied Organometallic Chemistry, 2018, 32, e4064.	3.5	13

#	Article	IF	CITATIONS
203	Cobalt ferrite nanoparticles (CoFe ₂ O ₄ MNPs) as catalyst and support: magnetically recoverable nanocatalysts in organic synthesis. Nanotechnology Reviews, 2018, 7, 43-68.	5.8	127
204	A systematic theoretical study on FeOx-supported single-atom catalysts: M1/FeOx for CO oxidation. Nano Research, 2018, 11, 1599-1611.	10.4	7 5
205	O ₂ Activation by Metal Surfaces: Implications for Bonding and Reactivity on Heterogeneous Catalysts. Chemical Reviews, 2018, 118, 2816-2862.	47.7	363
206	Effective Utilization of in Situ Generated Hydroperoxide by a Co–SiO ₂ @Ti–Si Core–Shell Catalyst in the Oxidation Reactions. ACS Catalysis, 2018, 8, 683-691.	11.2	18
207	Composite of Au-Pd nanoalloys/reduced graphene oxide toward catalytic selective organic transformation to fine chemicals. Chemical Physics Letters, 2018, 691, 61-67.	2.6	17
208	Application of an electron-transfer catalyst in light-induced aerobic oxidation of alcohols. Chemical Communications, 2018, 54, 12614-12617.	4.1	21
209	Green synthesis of PbCrO ₄ nanostructures using gum of ferula assa-foetida for enhancement of visible-light photocatalytic activity. RSC Advances, 2018, 8, 40934-40940.	3.6	4
210	Preferential CO oxidation over CuO CeO2 catalyst synthesized from MOF with nitrogen-containing ligand as precursor. International Journal of Hydrogen Energy, 2018, 43, 23299-23309.	7.1	24
211	Rapid Synthesis of <i>N</i> â€Tosylhydrazones under Solventâ€Free Conditions and Their Potential Application Against Human Tripleâ€Negative Breast Cancer. ChemistryOpen, 2018, 7, 977-983.	1.9	8
212	Enhanced Catalytic Activity of (DMSO) ₂ PtCl ₂ for the Methane Oxidation in the SO ₃ â€"H ₂ SO ₄ System. ACS Catalysis, 2018, 8, 11854-11862.	11.2	30
213	Room-Temperature Conversion of Methane Becomes True. Joule, 2018, 2, 1399-1401.	24.0	14
214	Aerobic Baeyer–Villiger Oxidation Catalyzed by a Flavin ontaining Enzyme Mimic in Water. Angewandte Chemie - International Edition, 2018, 57, 16412-16415.	13.8	23
215	Palladium Nanoparticles Encapsulated in the MIL-101-Catalyzed One-Pot Reaction of Alcohol Oxidation and Aldimine Condensation. Inorganic Chemistry, 2018, 57, 13586-13593.	4.0	35
216	Aerobic Baeyer–Villiger Oxidation Catalyzed by a Flavin ontaining Enzyme Mimic in Water. Angewandte Chemie, 2018, 130, 16650-16653.	2.0	2
217	Pd Nanoparticlesâ€Polyethylenemineâ€Lipase Bionanohybrids as Heterogeneous Catalysts for Selective Oxidation of Aromatic Alcohols. ChemCatChem, 2018, 10, 4992-4999.	3.7	13
218	Accelerated Two-Phase Oxidation in Microdroplets Assisted by Light and Heat without the Use of Phase-Transfer Catalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 8125-8129.	6.7	16
219	Highly Productive Oxidative Biocatalysis in Continuous Flow by Enhancing the Aqueous Equilibrium Solubility of Oxygen. Angewandte Chemie, 2018, 130, 10695-10699.	2.0	14
220	Phenyltetrazole as a New Ligand for Immobilization of Palladium Nanoparticles on SBA†15: A New Robust Catalyst with High Loading of Pd for Rapid Oxidation and Reduction. ChemistrySelect, 2018, 3, 6779-6785.	1.5	5

#	ARTICLE	IF	CITATIONS
221	CH4 oxidation to oxygenates with N2O over iron-containing Y zeolites: Effect of preparation. Chinese Journal of Chemical Engineering, 2018, 26, 2064-2069.	3.5	4
222	Fluorescence-detected XAS with sub-second time resolution reveals new details about the redox activity of Pt/CeO ₂ catalyst. Journal of Synchrotron Radiation, 2018, 25, 989-997.	2.4	14
223	The New Equations for "Rate-Determining Chemisorption of Coal― Journal of Heat Transfer, 2018, 140, .	2.1	0
224	Chiral Titanium(IV) Complexes Containing Polydentate Ligands Based on \hat{l}_{\pm} -Pinene. Catalytic Activity in Sulfoxidation with Hydrogen Peroxide. Organometallics, 2018, 37, 3437-3449.	2.3	9
225	Carbazole–triazine based donor–acceptor porous organic frameworks for efficient visible-light photocatalytic aerobic oxidation reactions. Journal of Materials Chemistry A, 2018, 6, 15154-15161.	10.3	59
226	Highly Productive Oxidative Biocatalysis in Continuous Flow by Enhancing the Aqueous Equilibrium Solubility of Oxygen. Angewandte Chemie - International Edition, 2018, 57, 10535-10539.	13.8	55
227	Glycoluril: A heterogeneous organocatalyst for oxidation of alcohols and benzylic sp3 carbons. Applied Catalysis A: General, 2018, 565, 127-134.	4.3	8
228	Enabling selective aerobic oxidation of alcohols to aldehydes by hot electrons in quantum-sized Rh nanocubes. Materials Today Energy, 2018, 10, 15-22.	4.7	14
229	Sensitivity of the selective oxidation of methane over Fe/ZSM-5 zeolites in a micro fixed-bed reactor for the catalyst preparation method. Applied Catalysis A: General, 2018, 566, 96-103.	4.3	9
230	Spontaneous Redox Approach to the Self-Assembly Synthesis of Au/CeO ₂ Plasmonic Photocatalysts with Rich Oxygen Vacancies for Selective Photocatalytic Conversion of Alcohols. ACS Applied Materials & Diterraces, 2018, 10, 31394-31403.	8.0	67
231	Oxidation of p-Xylene. Russian Journal of Applied Chemistry, 2018, 91, 707-727.	0.5	11
232	H2O adsorption on the Au and Pd single atom catalysts supported on ceria: A first-principles study. Applied Surface Science, 2018, 462, 399-408.	6.1	7
233	Monolacunary K8SiW11O39-Catalyzed Terpenic Alcohols Oxidation with Hydrogen Peroxide. Catalysis Letters, 2018, 148, 2516-2527.	2.6	30
234	Optimizing Pd and Au-Pd decorated Bi2WO6 ultrathin nanosheets for photocatalytic selective oxidation of aromatic alcohols. Journal of Catalysis, 2018, 364, 154-165.	6.2	100
235	Bis(methoxypropyl) ether-promoted oxidation of aromatic alcohols into aromatic carboxylic acids and aromatic ketones with O ₂ under metal- and base-free conditions. Green Chemistry, 2018, 20, 3038-3043.	9.0	105
236	⟨i>N-Tosylhydrazone directed annulation ⟨i>via Câ€"H/Nâ€"N bond activation in Ru(⟨scp⟩ii⟨/scp⟩)/PEG-400 as homogeneous recyclable catalytic system: a green synthesis of isoquinolines. Organic and Biomolecular Chemistry, 2018, 16, 4864-4873.	2.8	19
237	Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nature Catalysis, 2018, 1, 385-397.	34.4	725
238	Immobilization of Smallâ€Molecule Ligands Containing Secondary or Tertiary Amine Groups onto TiO 2 â€Supported Ru Catalysts Driven by the Hydrophobic Effect. ChemistrySelect, 2018, 3, 6421-6425.	1.5	2

#	Article	IF	CITATIONS
239	Competitive adsorption on single-atom catalysts: Mechanistic insights into the aerobic oxidation of alcohols over Co N C. Journal of Catalysis, 2019, 377, 283-292.	6.2	48
240	"Dark―Singlet Oxygen Made Easy. Chemistry - A European Journal, 2019, 25, 12486-12490.	3.3	18
241	Synthesis of Magnetically Separable Nanocatalyst CoFe2O4@SiO 2 @MILâ€53(Fe) for Highly Efficient and Selective Oxidation of Alcohols and Benzylic Compounds with Hydrogen Peroxide. ChemistrySelect, 2019, 4, 8477-8481.	1.5	6
242	Slurry loop tubular membrane reactor for the catalysed aerobic oxidation of benzyl alcohol. Chemical Engineering Journal, 2019, 378, 122250.	12.7	8
243	A Highly Practical Copper(II)/TEMPOâ€5O 4 H Catalyst System for Aerobic Oxidations of Primary Benzylic and Allylic Alcohols on Gramâ€5cale in Water. Asian Journal of Organic Chemistry, 2019, 8, 1321-1324.	2.7	9
244	Aerobic Oxidation of Alcohols over Isolated Single Au Atoms Supported on CeO2 Nanorods: Catalysis of Interfacial [O–Ov–Ce–O–Au] Sites. ACS Applied Nano Materials, 2019, 2, 5214-5223.	5.0	36
245	Gas Phase Oxidation of Carbon Monoxide by Sulfur Dioxide Radical Cation: Reaction Dynamics and Kinetic Trend With the Temperature. Frontiers in Chemistry, 2019, 7, 140.	3.6	6
246	Active Oxygen Species Promoted Catalytic Oxidation of 5-Hydroxymethyl-2-furfural on Facet-Specific Pt Nanocrystals. ACS Catalysis, 2019, 9, 8306-8315.	11.2	53
247	Platinum supported cellulose-based carbon with oxygen-containing functional groups for benzyl alcohol oxidation. Journal of Physics and Chemistry of Solids, 2019, 135, 109095.	4.0	8
248	Isothermal cyclic conversion of methane to methanol using copper-exchanged ZSM-5 zeolite materials under mild conditions. Applied Catalysis A: General, 2019, 587, 117272.	4.3	13
249	Noncovalent Immobilization of Yarrowia lipolytica Lipase on Dendritic-Like Amino Acid-Functionalized Silica Nanoparticles. Biomolecules, 2019, 9, 502.	4.0	13
250	Pd nanoparticles immobilized on MIL-53(Al) as highly effective bifunctional catalysts for oxidation of liquid methanol to methyl formate. Petroleum Science, 2019, 16, 901-911.	4.9	12
251	Supported Gold Nanoparticles as Catalysts for the Oxidation of Alcohols and Alkanes. Frontiers in Chemistry, 2019, 7, 702.	3.6	77
252	Density functional study of water gas shift reaction catalyzed by Cu-Pt-Au ternary alloy. Journal of Fuel Chemistry and Technology, 2019, 47, 688-696.	2.0	9
253	The Effect of Surface Wettability and Coalescence Dynamics in Catalytic Performance and Catalyst Preparation: A Review. ChemCatChem, 2019, 11, 1576-1586.	3.7	45
255	Novel tetrasubstituted zinc phthalocyanine-attapulgite composites for efficient catalytic oxidation of styrene with tert-butyl hydroperoxide as oxidant. Solid State Sciences, 2019, 97, 106010.	3.2	20
256	Direct aerobic oxidation of alcohols into esters catalyzed by carbon nanotube–gold nanohybrids. Nanoscale Advances, 2019, 1, 1181-1185.	4.6	19
257	Constructing surface synergistic effect in Cu-Cu2O hybrids and monolayer H1.4Ti1.65O4·H2O nanosheets for selective cinnamyl alcohol oxidation to cinnamaldehyde. Journal of Catalysis, 2019, 370, 461-469.	6.2	17

#	Article	IF	CITATIONS
258	Cu-Promoted Cobalt Oxide Film Catalyst for Efficient Gas Emissions Abatement. Journal of Thermal Science, 2019, 28, 225-231.	1.9	11
259	Aerobic oxidation of alcohols using bismuth bromide as a catalyst. Tetrahedron Letters, 2019, 60, 570-573.	1.4	13
260	Activating and Converting CH ₄ to CH ₃ OH via the CuPdO ₂ /CuO Nanointerface. ACS Catalysis, 2019, 9, 6938-6944.	11.2	47
261	Doping Effects on the Reactivity of the MVO ₅ ^{â€"} (M = Vâ€"Zn) Clusters in CO Oxidation Reaction. Journal of Physical Chemistry C, 2019, 123, 14180-14186.	3.1	8
262	A Selfâ€Assembly Process for the Immobilization of Nâ€Modified Au Nanoparticles in Ordered Mesoporous Carbon with Large Pores. ChemCatChem, 2019, 11, 3882-3891.	3.7	10
263	Pt black catalyzed methane oxidation to methyl bisulfate in H2SO4-SO3. Journal of Catalysis, 2019, 374, 230-236.	6.2	16
264	Interfacial Charging–Decharging Strategy for Efficient and Selective Aerobic NO Oxidation on Oxygen Vacancy. Environmental Science & Environmental	10.0	70
265	Development of a polymer embedded reusable heterogeneous oxovanadium(IV) catalyst for selective oxidation of aromatic alkanes and alkenes using green oxidant. Inorganica Chimica Acta, 2019, 492, 198-212.	2.4	20
266	Effects of promoters on the performance of a VO /SiO2 catalyst for the oxidation of methane to formaldehyde. Applied Catalysis A: General, 2019, 577, 44-51.	4.3	19
267	Single-atomic-site cobalt stabilized on nitrogen and phosphorus co-doped carbon for selective oxidation of primary alcohols. Nanoscale Horizons, 2019, 4, 902-906.	8.0	29
268	An efficient and innovative catalytic reactor for VOCs emission control. Science Bulletin, 2019, 64, 625-633.	9.0	12
269	Metalâ€Free Photocatalysts for Câ^'H Bond Oxygenation Reactions with Oxygen as the Oxidant. ChemSusChem, 2019, 12, 2898-2910.	6.8	95
270	Rapid and Atom Economic Synthesis of Isoquinolines and Isoquinolinones by C–H/N–N Activation Using a Homogeneous Recyclable Ruthenium Catalyst in PEG Media. European Journal of Organic Chemistry, 2019, 2019, 2919-2927.	2.4	21
271	Wettability Control of Co–SiO ₂ @Ti–Si Core–Shell Catalyst to Enhance the Oxidation Activity with the In Situ Generated Hydroperoxide. ACS Applied Materials & Diterfaces, 2019, 11, 14702-14712.	8.0	11
272	Significant Advances in C1 Catalysis: Highly Efficient Catalysts and Catalytic Reactions. ACS Catalysis, 2019, 9, 3026-3053.	11.2	238
273	Environmentally benign synthesis of mesoporous cobaltaluminate nodules as catalyst and its effect on the selective oxidation of benzhydrol to benzophenone. Journal of Environmental Chemical Engineering, 2019, 7, 102834.	6.7	2
274	Silica Nanoparticles Decorated with Polymeric Sulfonic Acids Trigger Selective Oxidation of Benzylic Methylenes to Aldehydic and Ketonic Carbonyls. ACS Sustainable Chemistry and Engineering, 2019, 7, 5886-5891.	6.7	13
275	A Cooperative Effect in a Novel Bimetallic Mo–V Nanocomplex Catalyzed Selective Aerobic C–H Oxidation. ACS Omega, 2019, 4, 3601-3610.	3.5	18

#	Article	IF	CITATIONS
276	Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4. Coordination Chemistry Reviews, 2019, 387, 79-120.	18.8	298
277	Enhanced Superoxide Generation on Defective Surfaces for Selective Photooxidation. Journal of the American Chemical Society, 2019, 141, 3797-3801.	13.7	285
278	Oneâ€Step Construction of Hydrophobic MOFs@COFs Core–Shell Composites for Heterogeneous Selective Catalysis. Advanced Science, 2019, 6, 1802365.	11.2	134
279	Effect of Residual Chlorine on the Catalytic Performance of Co ₃ O ₄ for CO Oxidation. ACS Catalysis, 2019, 9, 11676-11684.	11.2	45
280	Copper on the inner surface of mesoporous TiO2 hollow spheres: a highly selective photocatalyst for partial oxidation of methanol to methyl formate. Catalysis Science and Technology, 2019, 9, 6240-6252.	4.1	15
281	The Effect of Carbon Nanofibers Surface Properties in Hydrogenation and Dehydrogenation Reactions. Applied Sciences (Switzerland), 2019, 9, 5061.	2.5	6
282	Pd Nanoparticles Supported on Amine-Functionalized MgAl Layered Double Hydroxides for Solvent-Free Aerobic Oxidation of Benzyl Alcohol. Catalysts, 2019, 9, 1038.	3.5	6
283	Selective Oxidation of Alcohols Catalyzed by Supported Nanoâ€Au Catalysts. ChemistrySelect, 2019, 4, 13876-13883.	1.5	5
284	UV light promoted â€~Metal'/â€~Additive'-free oxidation of alcohols: investigating the role of alcohols as electron donors. RSC Advances, 2019, 9, 36198-36203.	3.6	8
285	Nanoceria-modified platinum supported on hierarchical zeolites for selective alcohol oxidation. RSC Advances, 2019, 9, 36027-36033.	3.6	10
286	Biocatalytic Production of Amino Carbohydrates through Oxidoreductase and Transaminase Cascades. ChemSusChem, 2019, 12, 848-857.	6.8	32
287	Oxidative coupling of methane over LaAlO3 perovskite catalysts prepared by a co-precipitation method: Effect of co-precipitation pH value. Journal of Energy Chemistry, 2019, 35, 1-8.	12.9	41
288	Combining Photoâ€Organo Redox―and Enzyme Catalysis Facilitates Asymmetric Câ€H Bond Functionalization. European Journal of Organic Chemistry, 2019, 2019, 80-84.	2.4	58
289	High-efficient preparation of gasoline-ranged C5–C6 alkanes from biomass-derived sugar polyols of sorbitol over Ru-MoO3â°x/C catalyst. Fuel Processing Technology, 2019, 183, 19-26.	7.2	37
290	Mesoporous SBA-15/PIDA as a Dendrimer Zwitterionic Amino Acid-Type Organocatalyst for Three-Component Indazolophtalazine Synthesis. Catalysis Letters, 2019, 149, 591-600.	2.6	21
291	Carbon-encapsulated Fe3O4 for catalyzing the aerobicÂoxidation of benzyl alcohol and benzene. Reaction Kinetics, Mechanisms and Catalysis, 2019, 126, 1055-1065.	1.7	9
292	Preparation of ternary Pd/CeO2-nitrogen doped graphene composites as recyclable catalysts for solvent-free aerobic oxidation of benzyl alcohol. Applied Surface Science, 2019, 471, 852-861.	6.1	60
293	Efficient nano-regional photocatalytic heterostructure design via the manipulation of reaction site self-quenching effect. Applied Catalysis B: Environmental, 2019, 243, 220-228.	20.2	19

#	Article	IF	CITATIONS
294	TiO2 nanorods loaded with Au Pt alloy nanoparticles for the photocatalytic oxidation of benzyl alcohol. Journal of Physics and Chemistry of Solids, 2019, 126, 27-32.	4.0	34
295	Polynuclear Co-oxo cations in the catalytic oxidation of CO on Co-modified ZSM-5 zeolites. Materials Chemistry and Physics, 2019, 223, 287-298.	4.0	31
296	Noble metal nanoparticle-functionalized Zr-metal organic frameworks with excellent photocatalytic performance. Journal of Colloid and Interface Science, 2019, 538, 569-577.	9.4	51
297	Efficient Oxidation of Benzylic and Aliphatic Alcohols Using a Bioinspired Cross-Bridged Cyclam Manganese Complex with H2 O2. European Journal of Organic Chemistry, 2019, 2019, 323-327.	2.4	14
298	Development of a flat membrane microchannel packed-bed reactor for scalable aerobic oxidation of benzyl alcohol in flow. Chemical Engineering Journal, 2019, 377, 120086.	12.7	17
299	A review on multi-component green synthesis of N-containing heterocycles using mixed oxides as heterogeneous catalysts. Arabian Journal of Chemistry, 2020, 13, 1142-1178.	4.9	98
300	State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chemical Reviews, 2020, 120, 1438-1511.	47.7	1,505
301	N-Doped Porous Carbon Supported Au Nanoparticles for Benzyl Alcohol Oxidation. Catalysis Letters, 2020, 150, 74-81.	2.6	11
302	Photocatalytic selective oxidation of benzyl alcohol over ZnTi-LDH: The effect of surface OH groups. Applied Catalysis B: Environmental, 2020, 260, 118185.	20.2	122
303	Recent advances in photo-assisted preferential CO oxidation in H2-rich stream. Current Opinion in Green and Sustainable Chemistry, 2020, 21, 9-15.	5.9	8
304	Switching Between Oxidation Types Using Molybdenum Phosphate Catalysts for Paraffin Activation Using Doped Fe as Surface Acidity Modifier and MoOx as an Oxygen Insertion Tool. Catalysis Letters, 2020, 150, 728-737.	2.6	4
305	2D Electrocatalysts for Converting Earthâ€Abundant Simple Molecules into Valueâ€Added Commodity Chemicals: Recent Progress and Perspectives. Advanced Materials, 2020, 32, e1904870.	21.0	76
306	Highly efficient oxidation of alcohols catalyzed by Ru(II) carbonyl complexes bearing salicylaldiminato ligands. Inorganica Chimica Acta, 2020, 500, 119224.	2.4	7
307	Lemon juice catalyzed C–C bond formation via C–H activation of methylarene: a sustainable synthesis of chromenopyrimidines. Molecular Diversity, 2020, 24, 717-725.	3.9	11
308	Preparation of LaAlO3 perovskite catalysts by simple solid-state method for oxidative coupling of methane. Catalysis Today, 2020, 352, 134-139.	4.4	30
309	Sustainability in Catalytic Cyclohexane Oxidation: The Contribution of Porous Support Materials. Catalysts, 2020, 10, 2.	3.5	16
310	Charge separation and molecule activation promoted by Pd/MIL-125-NH ₂ hybrid structures for selective oxidation reactions. Catalysis Science and Technology, 2020, 10, 138-146.	4.1	53
311	Photochemical oxidation of benzylic primary and secondary alcohols utilizing air as the oxidant. Green Chemistry, 2020, 22, 471-477.	9.0	95

#	Article	IF	CITATIONS
312	Point-defect-optimized electron distribution for enhanced electrocatalysis: Towards the perfection of the imperfections. Nano Today, 2020, 31, 100833.	11.9	52
313	H2S chemical looping selective and preferential oxidation to sulfur by bulk V2O5. Applied Catalysis B: Environmental, 2020, 265, 118566.	20.2	22
314	Triruthenium carbonyl complexes containing bidentate pyridine–alkoxide ligands for highly efficient oxidation of primary and secondary alcohols. Applied Organometallic Chemistry, 2020, 34, e5292.	3.5	6
315	Ultrastable PtCo/Co ₃ O ₄ –SiO ₂ Nanocomposite with Active Lattice Oxygen for Superior Catalytic Activity toward CO Oxidation. Inorganic Chemistry, 2020, 59, 1218-1226.	4.0	30
316	Recent advances in synergistic effect promoted catalysts for preferential oxidation of carbon monoxide. Catalysis Science and Technology, 2020, 10, 919-934.	4.1	51
317	Selective oxidation of alcohols by porphyrinâ€based porous polymerâ€supported manganese heterogeneous catalysts. Applied Organometallic Chemistry, 2020, 34, e5259.	3.5	6
318	Conversion of Methane into Liquid Fuels—Bridging Thermal Catalysis with Electrocatalysis. Advanced Energy Materials, 2020, 10, 2002154.	19.5	57
319	Alcohols selective oxidation with H2O2 catalyzed by robust heteropolyanions intercalated in ionic liquid-functionalized graphene oxide. Materials Chemistry and Physics, 2020, 256, 123681.	4.0	12
320	Highly selective electrocatalytic oxidation of benzyl C–H using water as safe and sustainable oxygen source. Green Chemistry, 2020, 22, 7543-7551.	9.0	31
321	Steric Effects of Mesoporous Silica Supported Bimetallic Au-Pt Catalysts on the Selective Aerobic Oxidation of Aromatic Alcohols. Catalysts, 2020, 10, 1192.	3.5	3
322	Cu (II) Schiff base complex grafted guar gum: Catalyst for benzophenone derivatives synthesis. Applied Catalysis A: General, 2020, 601, 117529.	4.3	12
323	MWCNTsâ€ZrO ₂ as a reusable heterogeneous catalyst for the synthesis of <i>N</i> à€heterocyclic scaffolds under green reaction medium. Applied Organometallic Chemistry, 2020, 34, e5906.	3.5	6
324	Optimizing the crystallization process of conjugated polymer photocatalysts to promote electron transfer and molecular oxygen activation. Journal of Catalysis, 2020, 389, 636-645.	6.2	51
325	Insights into the role of surface functional species in Cu-Mn-O thin film catalysts for N2O decomposition. Applications in Energy and Combustion Science, 2020, 1-4, 100011.	1.5	1
326	Quinone-amine polymers derived N and O dual doped carbocatalyst for metal-free benzyl alcohol aerobic oxidation. Molecular Catalysis, 2020, 498, 111257.	2.0	3
327	DMSOâ€Enabled Selective Radical Oâ^'H Activation of 1,3(4)â€Diols. Angewandte Chemie - International Edition, 2020, 59, 19851-19856.	13.8	33
328	Recent Advances in Heterogeneous Photoâ€Driven Oxidation of Organic Molecules by Reactive Oxygen Species. ChemSusChem, 2020, 13, 5173-5184.	6.8	53
329	Interfacial synergy of Pd sites and defective BiOBr for promoting the solar-driven selective oxidation of toluene. Journal of Materials Chemistry A, 2020, 8, 17657-17669.	10.3	74

#	Article	IF	CITATIONS
330	Electrochemical Deposition of Perylene-Based Thin Films from Aqueous Solution and Studies of Visible-Light-Driven Oxidation of Alcohols. ACS Applied Energy Materials, 2020, 3, 9098-9106.	5.1	3
331	Catalytic Mechanism of Liquid-Metal Indium for Direct Dehydrogenative Conversion of Methane to Higher Hydrocarbons. ACS Omega, 2020, 5, 28158-28167.	3.5	15
332	Advantages and limitations of catalytic oxidation with hydrogen peroxide: from bulk chemicals to lab scale process. Catalysis Reviews - Science and Engineering, 2022, 64, 229-285.	12.9	52
333	Recent advances in single-atom catalysts for CO oxidation. Catalysis Reviews - Science and Engineering, 2022, 64, 491-532.	12.9	35
334	DMSOâ€Enabled Selective Radical Oâ^'H Activation of 1,3(4)â€Diols. Angewandte Chemie, 2020, 132, 20023-20028.	2.0	10
335	Efficient Photocatalytic Oxidation of Aromatic Alcohols over Thiopheneâ€based Covalent Triazine Frameworks with A Narrow Band Gap. ChemistrySelect, 2020, 5, 14438-14446.	1.5	21
336	\hat{l}^{1} /4-Nitrido-bridged iron phthalocyanine dimer bearing eight peripheral 12-crown-4 units and its methane oxidation activity. New Journal of Chemistry, 2020, 44, 19179-19183.	2.8	11
337	Ag ₂ Sâ€CdS pâ€n Nanojunctionâ€Enhanced Photocatalytic Oxidation of Alcohols to Aldehydes. Small, 2020, 16, e2001529.	10.0	47
338	Transition-metal-free [3+3] annulation reaction of sulfoxonium ylides with cyclopropenones for the synthesis of 2-pyrones. Green Synthesis and Catalysis, 2020, 1, 180-182.	6.8	10
339	A Review on Particle Size Effect in <scp>Metalâ€Catalyzed</scp> Heterogeneous Reactions. Chinese Journal of Chemistry, 2020, 38, 1422-1444.	4.9	69
340	Tuning the activities of cuprous oxide nanostructures via the oxide-metal interaction. Nature Communications, 2020, 11, 2312.	12.8	31
341	Enhanced singlet oxygen generation by hybrid Mn-doped nanocomposites for selective photo-oxidation of benzylic alcohols. Nano Research, 2020, 13, 1668-1676.	10.4	20
342	The Elusive 1,4â€Diazabutatrienes: Lurking in the Shadows. European Journal of Organic Chemistry, 2020, 2020, 5496-5500.	2.4	7
343	Hydrogen reduction treatment of boron carbon nitrides for photocatalytic selective oxidation of alcohols. Applied Catalysis B: Environmental, 2020, 276, 118916.	20.2	49
344	Methane dehydrogenation on 3d 13-atom transition-metal clusters: A density functional theory investigation combined with Spearman rank correlation analysis. Fuel, 2020, 275, 117790.	6.4	14
345	Resolving the adsorption of molecular O ₂ on the rutile TiO ₂ (110) surface by noncontact atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14827-14837.	7.1	39
346	Surface hydrogen bond network spatially confined BiOCl oxygen vacancy for photocatalysis. Science Bulletin, 2020, 65, 1916-1923.	9.0	61
347	Catalytic oxidation of benzyl-alcohol with H2O2 in the presence of a dioxidomolybdenum(VI) complex. Inorganica Chimica Acta, 2020, 510, 119734.	2.4	20

#	Article	IF	CITATIONS
348	Effective Control of Particle Size and Electron Density of Pd/C and Sn-Pd/C Nanocatalysts for Vanillin Production via Base-Free Oxidation. ACS Catalysis, 2020, 10, 7699-7709.	11.2	52
349	Hybrid organicâ€inorganic Cu(II) iminoisonicotine@TiO ₂ @Fe ₃ O ₄ heterostructure as efficient catalyst for crossâ€couplings. Journal of the American Ceramic Society, 2020, 103, 4632-4653.	3.8	19
350	Selective Catalytic Oxidation of Benzyl Alcohol by MoO2 Nanoparticles. Catalysts, 2020, 10, 265.	3.5	8
351	Selective Activation of Benzyl Alcohol Coupled with Photoelectrochemical Water Oxidation via a Radical Relay Strategy. ACS Catalysis, 2020, 10, 4906-4913.	11.2	154
352	Fe/Fe3C@N-doped porous carbon microspindles templated from a metal–organic framework as highly selective and stable catalysts for the catalytic oxidation of sulfides to sulfoxides. Molecular Catalysis, 2020, 486, 110863.	2.0	12
353	Synthesis of polymerâ€silica hybridâ€supported catalysts for solventâ€free oxidation of ethylbenzene with TBHP. Asia-Pacific Journal of Chemical Engineering, 2020, 15, e2441.	1.5	13
354	Chemical Looping Selective Oxidation of H ₂ S using V ₂ O ₅ Impregnated over Different Supports as Oxygen Carriers. ChemCatChem, 2020, 12, 2569-2579.	3.7	11
355	Metal–Organic Frameworks (MOFs) and Covalent Organic Frameworks (COFs) Applied to Photocatalytic Organic Transformations. Catalysts, 2020, 10, 720.	3.5	47
356	Chemists around the World, Take Your Part in the Circular Economy!. Chemistry - A European Journal, 2020, 26, 9665-9673.	3.3	10
357	Vanadium oxides anchored on nitrogen-incorporated carbon: An efficient heterogeneous catalyst for the selective oxidation of sulfide to sulfoxide. Catalysis Communications, 2020, 145, 106101.	3.3	14
358	Layered double hydroxides supported atomically precise Aun nanoclusters for air oxidation of benzyl alcohol: Effects of size and active site structure. Journal of Catalysis, 2020, 389, 409-420.	6.2	21
359	Magnetic core–shell Fe ₃ O ₄ @Cu ₂ O and Fe ₃ O ₄ @Cu _{O–Cu materials as catalysts for aerobic oxidation of benzylic alcohols assisted by TEMPO and <i>N</i>>i>N>i>methylimidazole. RSC Advances, 2020, 10, 26142-26150.}	3.6	20
360	Solvent-free selective oxidation of aromatic alcohol with O2 over MgAl-LDH supported Pd nanoparticles: Effects of preparation methods and solvents. Materials Chemistry and Physics, 2020, 252, 123193.	4.0	12
361	Plasmon-Induced Photoreduction System Allows Ultrasensitive Detection of Disease Biomarkers by Silver-Mediated Immunoassay. ACS Sensors, 2020, 5, 2184-2190.	7.8	9
362	Ir nanoparticles with multi-enzyme activities and its application in the selective oxidation of aromatic alcohols. Applied Catalysis B: Environmental, 2020, 267, 118725.	20.2	41
363	Oxidation of Carbon Monoxide on Coâ^'Ceâ€Modified ZSMâ€5 Zeolites: Impact of Mixed Oxoâ€5pecies. ChemCatChem, 2020, 12, 2556-2568.	3.7	8
364	One-pot synthesis at room temperature of epoxides and linalool derivative pyrans in monolacunary $Na7PW11O39-catalyzed oxidation reactions by hydrogen peroxide. RSC Advances, 2020, 10, 7691-7697.$	3.6	21
365	Selective synthesis of imines by direct oxidative coupling of amines on Cu-doped CeO2 catalysts. Applied Surface Science, 2020, 514, 145948.	6.1	19

#	Article	IF	CITATIONS
366	Cesiumâ€Exchanged Lacunar Keggin Heteropolyacid Salts: Efficient Solid Catalysts for the Green Oxidation of Terpenic Alcohols with Hydrogen Peroxide. ChemistrySelect, 2020, 5, 1976-1986.	1.5	20
367	Unraveling the role of the lacunar Na ₇ PW ₁₁ O ₃₉ catalyst in the oxidation of terpene alcohols with hydrogen peroxide at room temperature. New Journal of Chemistry, 2020, 44, 2813-2820.	2.8	25
368	Copper (II) immobilized on magnetically separable l-arginine- \hat{l}^2 -cyclodextrin ligand system as a robust and green catalyst for direct oxidation of primary alcohols and benzyl halides to acids in neat conditions. Journal of Organometallic Chemistry, 2020, 911, 121128.	1.8	15
369	Template-free synthesis of graphene-like carbons as efficient carbocatalysts for selective oxidation of alkanes. Green Chemistry, 2020, 22, 1291-1300.	9.0	33
370	Ti3C2/TiO2 nanowires with excellent photocatalytic performance for selective oxidation of aromatic alcohols to aldehydes. Journal of Catalysis, 2020, 383, 1-12.	6.2	79
371	A nanohybrid self-assembled from exfoliated layered vanadium oxide nanosheets and Keggin Al ₁₃ for selective catalytic oxidation of alcohols. Dalton Transactions, 2020, 49, 2559-2569.	3.3	13
372	Mixed silver-nickel oxide AgNiO2: Probing by CO during XPS study. Journal of Chemical Physics, 2020, 152, 044707.	3.0	16
373	Visible-Light Flow Reactor Packed with Porous Carbon Nitride for Aerobic Substrate Oxidations. ACS Applied Materials & District Substrate Oxidations. ACS Applied Materials & District Substrate Oxidations. ACS Applied Materials & District Substrate Oxidations.	8.0	40
374	AgNPs Immobilized over Functionalized 2D Hexagonal SBA-15 for Catalytic C–H Oxidation of Hydrocarbons with Molecular Oxygen under Solvent-Free Conditions. ACS Sustainable Chemistry and Engineering, 2020, 8, 5856-5867.	6.7	40
375	Electrocatalytic Hydrogenation and Oxidation in Aqueous Conditions ^{â€} . Chinese Journal of Chemistry, 2020, 38, 996-1004.	4.9	38
376	Hydroxyapatiteâ€supported Manganese Oxides as Efficient Nonâ€nobleâ€metal Catalysts for Selective Aerobic Oxidation of Alcohols. ChemistrySelect, 2020, 5, 4297-4302.	1.5	3
377	Oxidation of terpenic alcohols with hydrogen peroxide promoted by Nb2O5 obtained by microwave-assisted hydrothermal method. Molecular Catalysis, 2020, 489, 110941.	2.0	13
378	Study of ethylbenzene oxidation over polymer-silica hybrid supported Co (II) and Cu (II) complexes. Catalysis Today, 2021, 375, 601-613.	4.4	17
379	Efficient hydrogenation of furfural to fufuryl alcohol over hierarchical MOF immobilized metal catalysts. Catalysis Today, 2021, 368, 217-223.	4.4	15
380	Molybdenum Carbonyl Grafted on Amine-Functionalized MCM-22 as Potential Catalyst for Iso-Eugenol Oxidation. Catalysis Letters, 2021, 151, 1336-1349.	2.6	9
381	Partial oxidation of methane with hydrogen peroxide over Fe-ZSM-5 catalyst. Catalysis Today, 2021, 376, 113-118.	4.4	18
382	Copper(II)-Ethanolamine Triazine Complex on Chitosan-Functionalized Nanomaghemite for Catalytic Aerobic Oxidation of Benzylic Alcohols. Catalysis Letters, 2021, 151, 45-55.	2.6	6
383	Bimetallic oxide nanoparticles confined in ZIF $\hat{a}\in 67\hat{a}\in derived$ carbon for highly selective oxidation of saturated C $\hat{a}\in H$ bond in alkyl arenes. Applied Organometallic Chemistry, 2021, 35, .	3.5	8

#	Article	IF	CITATIONS
384	Electrocatalytic degradation of perfluorooctanoic acid by LaNixY1-xO3 (Y = Fe, Cu, Co, Sr) gas dispersion electrode. Journal of Fluorine Chemistry, 2021, 242, 109700.	1.7	2
385	Heterodoxy in Fast Pyrolysis of Biomass. Energy & Energy	5.1	21
386	Prediction and Tuning of the Defects in the Redox Catalysts: Ethylene Oxychlorination. ChemCatChem, 2021, 13, 221-226.	3.7	4
387	Identification of key oxidative intermediates and the function of chromium dopants in PKU-8: catalytic dehydrogenation of sec-alcohols with tert-butylhydroperoxide. Catalysis Science and Technology, 2021, 11, 1365-1374.	4.1	2
388	Nâ€Heterocyclic Carbene Catalyzed Ester Synthesis from Organic Halides through Incorporation of Oxygen Atoms from Air. Angewandte Chemie, 2021, 133, 2168-2172.	2.0	6
389	Photocatalytic and electrocatalytic transformations of C1 molecules involving C–C coupling. Energy and Environmental Science, 2021, 14, 37-89.	30.8	110
390	A Perspective on New Opportunities in Atom-by-Atom Synthesis of Heterogeneous Catalysts Using Atomic Layer Deposition. Catalysis Letters, 2021, 151, 1535-1545.	2.6	30
391	Photoâ€biocatalytic Cascades: Combining Chemical and Enzymatic Transformations Fueled by Light. ChemBioChem, 2021, 22, 790-806.	2.6	73
392	Ultrasonic-Assisted Nano-Nickel Ferrite Spinel Synthesis for Natural Gas Reforming. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 292-302.	3.7	6
393	Normal and off-normal incidence dissociative dynamics of $O2(>v,J) on ultrathin Cu films grown on Ru(0001). Physical Chemistry Chemical Physics, 2021, 23, 7768-7776.$	2.8	0
394	Cu-Mn Bimetallic Complex Immobilized on Magnetic NPs as an Efficient Catalyst for Domino One-Pot Preparation of Benzimidazole and Biginelli Reactions from Alcohols. Catalysis Letters, 2021, 151, 1049-1067.	2.6	12
395	Aerobic waste-minimized Pd-catalysed C–H alkenylation in GVL using a tube-in-tube heterogeneous flow reactor. Green Chemistry, 2021, 23, 6576-6582.	9.0	19
396	Palladium nanoparticles supported on exfoliated g-C ₃ N ₄ as efficient catalysts for selective oxidation of benzyl alcohol by molecular oxygen. New Journal of Chemistry, 2021, 45, 13519-13528.	2.8	15
397	Study on the selective oxidation of methane over highly dispersed molybdenum-incorporated KIT-6 catalysts. Catalysis Science and Technology, 2021, 11, 4083-4097.	4.1	11
398	Magnetic metal–organic framework composites: structurally advanced catalytic materials for organic transformations. Materials Advances, 2021, 2, 2153-2187.	5.4	42
399	Efficiently selective oxidation of glycerol by Bi _{QDs} /BiOBr–O _v : promotion of molecular oxygen activation by Bi quantum dots and oxygen vacancies. New Journal of Chemistry, 2021, 45, 12938-12944.	2.8	11
400	Metal-free nanostructured catalysts: sustainable driving forces for organic transformations. Green Chemistry, 2021, 23, 6223-6272.	9.0	32
401	A combination of heterogeneous catalysis and photocatalysis for the olefination of quinoxalin- $2(1 < i > H < /i >)$ -ones with ketones in water: a green and efficient route to $(< i > Z < /i >)$ -enaminones. Green Chemistry, 2021, 23, 2123-2129.	9.0	48

#	Article	IF	CITATIONS
402	Directing transition metal-based oxygen-functionalization catalysis. Chemical Science, 2021, 12, 8967-8995.	7.4	9
403	High catalytic methane oxidation activity of monocationic \hat{l} /4-nitrido-bridged iron phthalocyanine dimer with sixteen methyl groups. Dalton Transactions, 2021, 50, 6718-6724.	3.3	9
404	Finely dispersed CuO on nitrogen-doped carbon hollow nanospheres for selective oxidation of sp3 C–H bonds. New Journal of Chemistry, 2021, 45, 16179-16186.	2.8	2
405	Insights into Sustainable C–H Bond Activation. , 2021, , 253-318.		O
406	Precious Metal-Free LaMnO ₃ Perovskite Catalyst with an Optimized Nanostructure for Aerobic Câ€"H Bond Activation Reactions: Alkylarene Oxidation and Naphthol Dimerization. ACS Applied Materials & Dimerization. ACS Applied Materials & Dimerization. ACS Applied Materials & Dimerization.	8.0	15
407	Single-atom cobalt-fused biomolecule-derived nitrogen-doped carbon nanosheets for selective oxidation reactions. Physical Chemistry Chemical Physics, 2021, 23, 14276-14283.	2.8	12
408	Quinone Shuttling Impels Selective Electrocatalytic Alcohol Oxidation: A Hydrogen Bonding-Directed Electrosynthesis. SSRN Electronic Journal, 0, , .	0.4	0
409	Amphiphilic confined Pt-based nanocatalysts produced by atomic layer deposition with enhanced catalytic performance for biphasic reactions. Green Chemistry, 2021, 23, 8116-8123.	9.0	11
410	Recent advances in the application of tetrabromomethane in organic synthesis. Organic Chemistry Frontiers, 2021, 8, 4288-4314.	4.5	13
412	Boosted Photocatalytic Oxidation of Toluene into Benzaldehyde on CdIn ₂ S ₄ -CdS: Synergetic Effect of Compact Heterojunction and S-Vacancy. ACS Catalysis, 2021, 11, 2492-2503.	11.2	136
413	Synergistic Nanostructured MnO _x /TiO ₂ Catalyst for Highly Selective Synthesis of Aromatic Imines. ChemCatChem, 2021, 13, 1990-1997.	3.7	7
414	A flower-cluster heterogenous structure assembled by ultrathin NiCo/NiCoOx-SiO2 nanobelts with stable catalytic performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125590.	4.7	1
415	Alkali-Added Catalysts Based on LaAlO3 Perovskite for the Oxidative Coupling of Methane. ChemEngineering, 2021, 5, 14.	2.4	5
416	Comparative study of size-selected gold clusters (Au38) and gold nanoparticles over porous cerium-based metal–organic frameworks with UiO-66 architecture for aerobic oxidation of cinnamyl alcohol. Research on Chemical Intermediates, 2021, 47, 2589-2604.	2.7	7
417	Synthesis of coralloid carbon nitride polymers and photocatalytic selective oxidation of benzyl alcohol. Nanotechnology, 2021, 32, 235602.	2.6	5
418	Design and tailoring of advanced catalytic process for light alkanes upgrading. EcoMat, 2021, 3, e12095.	11.9	10
419	Theoretical modeling for interfacial catalysis. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1531.	14.6	1
420	Active oxygen species in heterogeneously catalyzed oxidation reactions. Applied Catalysis A: General, 2021, 614, 118057.	4.3	23

#	Article	IF	CITATIONS
421	Solventâ€Switched Oxidation Selectivities with O 2 : Controlled Synthesis of αâ€Difluoro(thio)methylated Alcohols and Ketones. Angewandte Chemie, 2021, 133, 12145-12152.	2.0	8
422	Oxidation of 1-propanol to propionic acid with hydrogen peroxide catalysed by heteropolyoxometalates. BMC Chemistry, 2021, 15, 23.	3.8	3
423	Covalent Organic Frameworks toward Diverse Photocatalytic Aerobic Oxidations. Chemistry - A European Journal, 2021, 27, 7738-7744.	3.3	22
424	Solventâ€Switched Oxidation Selectivities with O ₂ : Controlled Synthesis of αâ€Difluoro(thio)methylated Alcohols and Ketones. Angewandte Chemie - International Edition, 2021, 60, 12038-12045.	13.8	34
425	Methane to Methanol through Heterogeneous Catalysis and Plasma Catalysis. Catalysts, 2021, 11, 590.	3.5	13
426	Preparation of Cu single atoms on N-doped carbon materials with supercritical CO2 deposition. Journal of Supercritical Fluids, 2021, 171, 105202.	3.2	11
427	Salenâ€decorated Periodic Mesoporous Organosilica: From Metalâ€assisted Epoxidation to Metalâ€free CO 2 Insertion. Chemistry - an Asian Journal, 2021, 16, 2126-2135.	3.3	3
428	Unexpected activity of MgO catalysts in oxidative coupling of methane: Effects of Ca-promoter. Molecular Catalysis, 2021, 510, 111677.	2.0	4
429	Reactive interaction of isopropanol with Co3O4(1 $1\ 1$) and Pt/Co3O4(1 $1\ 1$) model catalysts. Journal of Catalysis, 2021, 398, 171-184.	6.2	8
430	Selective Oxidation of Benzyl Alcohol with Oxygen Catalyzed by Vanadia Supported on Nitrogen-Containing Ordered Mesoporous Carbon Materials. Catalysis Letters, 2022, 152, 962-971.	2.6	7
431	Modulating oxygen vacancies on bismuth-molybdate hierarchical hollow microspheres for photocatalytic selective alcohol oxidation with hydrogen peroxide production. Journal of Colloid and Interface Science, 2021, 592, 1-12.	9.4	70
432	Bimetallic metal organic frameworks heterogeneous catalysts: Design, construction, and applications. Materials Today Energy, 2021, 20, 100667.	4.7	34
433	Trends in Sustainable Synthesis of Organics by Gold Nanoparticles Embedded in Polymer Matrices. Catalysts, 2021, 11, 714.	3.5	19
434	Photocatalytic Oxidation Reactions Mediated by Covalent Organic Frameworks and Related Extended Organic Materials. Frontiers in Chemistry, 2021, 9, 708312.	3.6	10
435	Substrate–Solvent Crosstalk—Effects on Reaction Kinetics and Product Selectivity in Olefin Oxidation Catalysis. Chemistry, 2021, 3, 753-764.	2.2	3
436	Cerium-photocatalyzed aerobic oxidation of benzylic alcohols to aldehydes and ketones. Beilstein Journal of Organic Chemistry, 2021, 17, 1727-1732.	2.2	8
437	Mild oxidation of benzyl alcohols to benzyl aldehydes or ketones catalyzed by visible light. Tetrahedron Letters, 2021, 76, 153234.	1.4	3
438	lonic liquid as an effective green media for the synthesis of (5Z, 8Z)-7H-pyrido[2,3-d]azepine derivatives and recycable Fe3O4/TiO2/multi-wall cabon nanotubes magnetic nanocomposites as high performance organometallic nanocatalyst. Molecular Diversity, 2022, 26, 1441-1454.	3.9	5

#	ARTICLE	IF	CITATIONS
439	Green synthesis and evaluation of antioxidant and antimicrobial activity of new dihydropyrroloazepines: Using bioâ€Ag/CdO/ZnO@MWCNTs nanocomposites as a reusable organometallic catalyst. Applied Organometallic Chemistry, 2021, 35, e6295.	3.5	7
440	Porous Silicon Carbide (SiC): A Chance for Improving Catalysts or Just Another Active-Phase Carrier?. Chemical Reviews, 2021, 121, 10559-10665.	47.7	61
441	Synthesis of Fe ₃ O ₄ @GO Nanocomposites Modified with La ₂ O ₃ Nanoparticles as an Efficient Catalyst for Selective Oxidation of Aromatic Alcohols to Aldehydes. Polycyclic Aromatic Compounds, 2022, 42, 5638-5648.	2.6	3
442	Highly dispersive Pd nanoparticles decorated strontium niobate nanosheets: Efficient and recyclable catalyst for base-free aerobic oxidation of benzyl alcohols in water. Applied Catalysis A: General, 2021, 623, 118268.	4.3	9
443	Hollow Microporous Organic Nanospheres with an Organocatalyst and a Metal Catalyst for Tandem Reactions. Macromolecular Chemistry and Physics, 0, , 2100276.	2.2	1
444	A Synergistic Magnetically Retrievable Inorganicâ€Organic Hybrid Metal Oxide Catalyst for Scalable Selective Oxidation of Alcohols to Aldehydes and Ketones. ChemCatChem, 2021, 13, 4799-4813.	3.7	7
445	Bioâ€derived nanosilicaâ€anchored Cu(II)â€organoselenium complex as an efficient retrievable catalyst for alcohol oxidation. Applied Organometallic Chemistry, 0, , e6416.	3.5	1
446	Phosphotungstate-Functionalized Mesoporous Janus Silica Nanosheets for Reaction-Controlled Pickering Interfacial Catalysis. ACS Sustainable Chemistry and Engineering, 2021, 9, 13501-13513.	6.7	19
447	Quantum-chemically computed integral characteristics of complex nanomaterials. Himia, Fizika Ta Tehnologia Poverhni, 2021, 12, 157-167.	0.9	0
448	Fe 3 O 4 CuO ZnO@MWCNT MNCs as an efficient organometallic nanocatalyst promoted synthesis of new 1,2,4â€triazolpyrimidoazepine derivatives: Investigation of antioxidant and antimicrobial activity. Applied Organometallic Chemistry, 0, , e6460.	3.5	1
449	Polystyrene-Supported Cu/2,2,6,6-Tetramethyl-1-piperidine- <i>N</i> -oxyl Catalytic Systems Constructed by Nanoprecipitation and Their Cooperative Catalysis for Benzyl Alcohol Oxidation. ACS Applied Polymer Materials, 2021, 3, 5171-5179.	4.4	12
450	Thermochemical aerobic oxidation catalysis in water can be analysed as two coupled electrochemical half-reactions. Nature Catalysis, 2021, 4, 742-752.	34.4	38
451	Plasmon-enhanced alcohol oxidations over porous carbon nanosphere-supported palladium and gold bimetallic nanocatalyst. Applied Catalysis B: Environmental, 2021, 292, 120151.	20.2	21
452	Photocatalytic conversion of carbon monoxide: from pollutant removal to fuel production. Applied Catalysis B: Environmental, 2021, 295, 120312.	20.2	22
453	CO2 effect on catalytic abatement of VOC emissions over Cu-Co binary oxide films. Materials Research Bulletin, 2021, 143, 111456.	5.2	1
454	Synthesis of yolk-shell magnetic porous organic nanospheres supported Pd catalyst for oxidation of alcohols and Heck reactions. Chemical Engineering Journal, 2021, 423, 130237.	12.7	12
455	Direct oxidation of CH4 to HCOOH over extra-framework stabilized Fe@MFI catalyst at low temperature. Fuel, 2021, 305, 121624.	6.4	5
456	Single-atom catalysts for CO oxidation, CO2 reduction, and O2 electrochemistry. Journal of Energy Chemistry, 2022, 65, 254-279.	12.9	56

#	Article	IF	CITATIONS
457	Waste To Energy Feedstock Sources for the Production of Biodiesel as Fuel Energy in Diesel Engine – A Review. Advances in Science, Technology and Engineering Systems, 2021, 6, 409-446.	0.5	2
458	Sustainable synthesis of vanillin through base-free selective oxidation using synergistic AgPd nanoparticles loaded on ZrO2. Catalysis Science and Technology, 0, , .	4.1	6
459	Reverse construction of dominant/secondary facets in Bi24O31Br10 photocatalysts for boosting electronic transfer. Chemical Communications, 2021, 57, 9676-9679.	4.1	1
460	Dysprosium-doped zinc tungstate nanospheres as highly efficient heterogeneous catalysts in green oxidation of terpenic alcohols with hydrogen peroxide. New Journal of Chemistry, 2021, 45, 6661-6670.	2.8	6
461	Revealing the contribution of singlet oxygen in the photoelectrochemical oxidation of benzyl alcohol. Sustainable Energy and Fuels, 2021, 5, 956-962.	4.9	18
462	Nâ€Heterocyclic Carbene Catalyzed Ester Synthesis from Organic Halides through Incorporation of Oxygen Atoms from Air. Angewandte Chemie - International Edition, 2021, 60, 2140-2144.	13.8	21
463	Synthesis of Novel Catalytic Materials: Titania Nanotubes and Transition Metal Carbides, Nitrides, and Sulfides., 2019,, 13-40.		2
464	Synthesis and X-ray crystal structure of a Molybdenum(VI) Schiff base complex: Design of a new catalytic system for sustainable olefin epoxidation. Inorganica Chimica Acta, 2020, 511, 119775.	2.4	8
465	Aerobic Acylarylation of \hat{l}_{\pm} , \hat{l}_{-}^2 -Unsaturated Amides with Aldehydes. Organic Letters, 2020, 22, 4294-4299.	4.6	16
466	Natural heterogeneous catalysis with immobilised oxidase biocatalysts. RSC Advances, 2020, 10, 19501-19505.	3.6	16
467	ĐœĐ•Đ¥ĐĐĐ†Đ—Đœ Đ•Đ›Đ•ĐšĐ¢ĐĐžĐžĐžĐŠĐ°Đ¡ĐĐ•ĐĐĐ ⁻ Mn2+ ІОĐІВ. Journal of Chemistry and Technolo	gi es ,22019	9, 26, 1-11.
468	The Effect of Water on the 2â€Propanol Oxidation Activity of Coâ€Substituted LaFe _{1â°'x} Co _x O ₃ Perovskites. Chemistry - A European Journal, 2021, 27, 17127-17144.	3.3	6
469	X-ray Absorption Spectroscopy Investigation into the Origins of Heterogeneity in Silica-Supported Dioxomonomolybdates. Journal of Physical Chemistry C, 2021, 125, 23115-23125.	3.1	3
470	Fundamental Understanding of the Photocatalytic Mechanisms. Electrochemical Energy Storage and Conversion, 2017, , 223-290.	0.0	0
472	A kinetic study of the photoinduced oxo-transfer using a Mo complex anchored to TiO2. Revista Facultad De Ingenier \tilde{A} a, 0, , .	0.5	0
473	Quinone Shuttling Impels Selective Electrocatalytic Alcohol Oxidation: A Hydrogen Bonding-Directed Electrosynthesis. Journal of Electroanalytical Chemistry, 2021, 903, 115820.	3.8	0
474	Low-Temperature Heterogeneous Oxidation Catalysis and Molecular Oxygen Activation. Catalysis Reviews - Science and Engineering, 2023, 65, 239-425.	12.9	26
475	Metal-free aerobic oxidation of benzyl alcohols over the selective N, P dual-doped hollow carbon sphere as the efficient and sustainable heterogeneous catalyst under mild reaction condition. Microporous and Mesoporous Materials, 2022, 329, 111514.	4.4	19

#	Article	IF	CITATIONS
476	Inorganic Catalysis for Methane Conversion to Chemicals., 2021,,.		0
477	Fe-based MOFs@Pd@COFs with spatial confinement effect and electron transfer synergy of highly dispersed Pd nanoparticles for Suzuki-Miyaura coupling reaction. Journal of Colloid and Interface Science, 2022, 608, 809-819.	9.4	32
478	A review of sustainable biodiesel production using biomass derived heterogeneous catalysts. Engineering in Life Sciences, 2021, 21, 790-824.	3.6	25
479	A Metal–Organic Framework as a Multiphoton Excitation Regulator for the Activation of Inert C(sp ³)â^'H Bonds and Oxygen. Angewandte Chemie, 2022, 134, .	2.0	6
480	A Metal–Organic Framework as a Multiphoton Excitation Regulator for the Activation of Inert C(sp ³)â~'H Bonds and Oxygen. Angewandte Chemie - International Edition, 2022, 61, .	13.8	26
481	Assessment of Manganese Oxide and Cobalt Oxide Catalysts for Three Way Catalytic Converter. Kataliz V Promyshlennosti, 2020, 20, 286-302.	0.3	1
482	Synthesis, X-ray characterization and catalytic homogenous alcohol oxidation activity of Co(II)–carboxamide complex with green oxidantÂ(H ₂ O ₂) under mild conditions. Zeitschrift Fur Kristallographie - Crystalline Materials, 2020, 235, 237-244.	0.8	3
483	Indirect Electrooxidation of Methane to Methyl Bisulfate on a Boronâ€Doped Diamond Electrode. ChemElectroChem, 2022, 9, e202101253.	3.4	4
484	Catalyst design strategy toward the efficient heterogeneously-catalyzed selective oxidation of 5-hydroxymethylfurfural. Green Energy and Environment, 2022, 7, 900-932.	8.7	38
485	Singlet Oxygen- and Hole-Mediated Selective Oxidation of Arylethylenes to Aryltetralones by Ag/Ag ₃ PO ₄ under Visible Light Irradiation. ACS Sustainable Chemistry and Engineering, 2021, 9, 16670-16677.	6.7	11
486	Visible-Light-Induced Benzylic C—H Oxygenation Reaction Using Tetrabutylammonium Tribromide as the Catalyst. Chinese Journal of Organic Chemistry, 2021, 41, 4690.	1.3	5
487	Influence of zirconium ions on the key characteristics of V2O5 nanorods and current–voltage features of the n-ZrxV2O5/p-Si photodetector. Journal of Materials Science: Materials in Electronics, 0, , 1.	2.2	2
488	Photocatalytic Benzylic Oxidation Promoted by Eosin Y in Water. ACS Sustainable Chemistry and Engineering, 2022, 10, 1822-1828.	6.7	17
489	UiO-66-NH ₂ Octahedral Nanocrystals Decorated with ZnFe ₂ O ₄ Nanoparticles for Photocatalytic Alcohol Oxidation. ACS Applied Nano Materials, 2022, 5, 2231-2240.	5.0	17
490	Ag nanoparticles immobilized over highly porous crystalline organosilica for epoxidation of styrene using CO2 as oxidant. Journal of CO2 Utilization, 2022, 55, 101843.	6.8	3
491	Novel functionalized cellulose derivatives fabricated with Cu nanoparticles: synthesis, characterization and degradation of organic pollutants. Cellulose, 2022, 29, 1911-1928.	4.9	3
492	A review on catalytic pyrolysis of plastic wastes to high-value products. Energy Conversion and Management, 2022, 254, 115243.	9.2	145
493	Facile fabrication of size-controlled Pd nanoclusters supported on Al2O3 as excellent catalyst for solvent-free aerobic oxidation of benzyl alcohol. Applied Surface Science, 2022, 585, 152668.	6.1	8

#	Article	IF	CITATIONS
494	One-step drawing of continuous basalt fibers coated with palladium nanoparticles and used as catalysts in benzyl alcohol oxidation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 639, 128342.	4.7	3
495	Nonoxidative coupling of methane to olefins and aromatics over molten W-In bimetal catalyst. Fuel, 2022, 316, 123333.	6.4	2
496	POM-incorporated ZnIn2S4 Z-scheme dual-functional photocatalysts for cooperative benzyl alcohol oxidation and H2 evolution in aqueous solution. Applied Catalysis B: Environmental, 2022, 306, 121087.	20.2	93
497	Accurate Removal of Toxic Organic Pollutants from Complex Water Matrices. Environmental Science & Envi	10.0	44
498	The solvent-free and aerobic oxidation of benzyl alcohol catalyzed by Pd supported on carbon nitride/CeO ₂ composites. New Journal of Chemistry, 2022, 46, 7108-7117.	2.8	8
499	Light-mediated aerobic oxidation of C(sp ³)â€"H bonds by a Ce(<scp>iv</scp>) hexachloride complex. Organic Chemistry Frontiers, 2022, 9, 2612-2620.	4.5	14
501	Direct Propylene Epoxidation with Molecular Oxygen over Cobalt-Containing Zeolites. Journal of the American Chemical Society, 2022, 144, 4260-4268.	13.7	37
502	V–O–Ag Linkages in VAgO <i>_x</i> Mixed Oxides for the Selective Oxidation of <i>p</i> -Xylene to <i>p</i> -Methyl Benzaldehyde. ACS Catalysis, 2022, 12, 3323-3332.	11.2	5
503	Covalent Organic Frameworks for Photocatalytic Organic Transformation. Chemical Research in Chinese Universities, 2022, 38, 275-289.	2.6	20
504	Gas-Phase Selective Oxidation of Methane into Methane Oxygenates. Catalysts, 2022, 12, 314.	3.5	8
505	Solvent Effect on Product Distribution in the Aerobic Autoxidation of 2-Ethylhexanal: Critical Role of Polarity. Frontiers in Chemistry, 2022, 10, 855843.	3.6	2
506	Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts?. Chemical Reviews, 2022, 122, 8594-8757.	47.7	118
507	Green novel multicomponent synthesis and biological evaluation of new oxazolopyrazoloazepines and reduction of nitrophenols in the presence of Ag/Fe3O4/ZnO@MWCNTÂMNCs. Molecular Diversity, 2022, 26, 3279-3294.	3.9	3
508	From Deep Eutectic Solvents to Nitrogenâ€rich Ordered Mesoporous Carbons: A Powerful Host for the Immobilization of Palladium Nanoparticles in the Aerobic Oxidation of Alcohols. ChemCatChem, 2022, 14, .	3.7	5
509	Characterization of peroxo-Mo and superoxo-Mo intermediate adducts in Photo-Oxygen Atom Transfer with O2. Catalysis Today, 2022, , .	4.4	2
510	Synthesis and Investigation of Biological Activity of New Oxazinoazepines: Application of Fe ₃ O ₄ /CuO/ZnO@MWCNT Magnetic Nanocomposite in Reduction of 4-Nitrophenol in Water. Polycyclic Aromatic Compounds, 2023, 43, 2938-2959.	2.6	2
511	Lignin peroxidase-catalyzed direct oxidation of trace organic pollutants through a long-range electron transfer mechanism: Using propranolol as an example. Journal of Hazardous Materials, 2022, 431, 128544.	12.4	7
512	N-Rich 2D Heptazine Covalent Organic Frameworks as Efficient Metal-Free Photocatalysts. ACS Catalysis, 2022, 12, 616-623.	11.2	65

#	Article	IF	CITATIONS
513	Excellent Catalytic Performances of a Au/C–CuO Binary System in the Selective Oxidation of Benzylamines to Imines under Atmospheric Oxygen. ACS Omega, 2021, 6, 34339-34346.	3.5	5
514	Employing of Fe3O4/CuO/ZnO@MWCNT MNCs in the solvent-free synthesis of new cyanopyrroloazepine derivatives and investigation of biological activity. Molecular Diversity, 2021, , 1.	3.9	6
515	Engineering of Single Atomic Cu-N ₃ Active Sites for Efficient Singlet Oxygen Production in Photocatalysis. ACS Applied Materials & Samp; Interfaces, 2021, 13, 58596-58604.	8.0	15
516	Base-Free Air Oxidation of Glucosamine to Glucosaminic Acid by Supported Gold Catalysts. SSRN Electronic Journal, 0, , .	0.4	O
517	Green synthesis and investigation of antioxidant and antimicrobial activity of new schiff base of pyrimidoazepine derivatives: application of Fe3O4/CuO/ZnO@MWCNT MNCs as an efficient organometallic nanocatalyst. Molecular Diversity, 2022, 26, 3003-3019.	3.9	1
518	Gold Nanoparticles Supported on Poly(2,6â€dimethylâ€1,4â€phenylene oxide) as Robust, Selective and Costâ€Effective Catalyst for Aerobic Oxidation and Direct Oxidative Esterification of Alcohols. ChemCatChem, 2022, 14, .	3.7	3
520	Favoring the Methane Oxychlorination Reaction over EuOCl by Synergistic Effects with Lanthanum. ACS Catalysis, 2022, 12, 5698-5710.	11.2	5
521	Controllable Assembly of Vanadium-Containing Polyoxoniobate-Based Materials and Their Electrocatalytic Activity for Selective Benzyl Alcohol Oxidation. Molecules, 2022, 27, 2862.	3.8	6
522	Magnetic Fe ₃ O ₄ @Ag nanoparticles catalyzed C–C crossâ€coupling reaction of aromatic alcohols. Applied Organometallic Chemistry, 2022, 36, .	3.5	7
523	Production of Pyrimidobenzazepine Derivatives and Reduction of Organic Pollutant Using Ag/Fe ₃ O ₄ /TiO ₂ /CuO@MWCNTs MNCs. Polycyclic Aromatic Compounds, 2023, 43, 3392-3415.	2.6	0
524	High Yield Silica-Based Emerging Nanoparticles Activities for Hybrid Catalyst Applications. Topics in Catalysis, 2022, 65, 1706-1718.	2.8	12
525	Reactive oxygen species on transition metal-based catalysts for sustainable environmental applications. Journal of Materials Chemistry A, 2022, 10, 19184-19210.	10.3	16
526	Green Synthesis and Biological Activity Investigation of New Thiazinotriazines: A Combined Experimental and Theoretical Investigation. Polycyclic Aromatic Compounds, 2023, 43, 3613-3639.	2.6	0
527	Metal–Organic Framework-Derived Mn ₃ O ₄ /C/SiO ₂ Nanostructures for Catalytic Oxidation Reactions. ACS Applied Nano Materials, 2022, 5, 7831-7840.	5.0	4
528	Highly Dispersed Pd Nanoclusters on Layered Double Hydroxides with Proper Calcination Improving Solvent-Free Oxidation of Benzyl Alcohol. ACS Sustainable Chemistry and Engineering, 2022, 10, 7223-7233.	6.7	6
529	Nanosheet array-like Ni Mg Al-LDH/rGO hybrids loaded atomically precise Au nanoclusters for the solvent-free oxidation of benzyl alcohol. Journal of Catalysis, 2022, 413, 534-545.	6.2	6
530	Promotional Effect of H ₂ Pretreatment on the CO PROX Performance of Pt ₁ /Co ₃ O ₄ : A First-Principles-Based Microkinetic Analysis. ACS Applied Materials & Diterraces, 2022, 14, 27762-27774.	8.0	2
531	Defect engineering over Co3O4 catalyst for surface lattice oxygen activation and boosted propane total oxidation. Journal of Catalysis, 2022, 413, 150-162.	6.2	49

#	Article	IF	Citations
532	Baseâ€free Air Oxidation of Chitinâ€derived Glucosamine to Glucosaminic Acid by Zinc Oxideâ€supported Gold Nanoparticles. Chemistry - an Asian Journal, 0, , .	3.3	7
533	NaCl-Templated Ultrathin 2D-Yttria Nanosheets Supported Pt Nanoparticles for Enhancing CO Oxidation Reaction. Nanomaterials, 2022, 12, 2306.	4.1	2
534	Application of gold and palladium nanoparticles supported on polymelamine microspheres in the oxidation of 1-phenylethanol and some other phenyl substituted alcohols. Molecular Catalysis, 2022, 528, 112456 .	2.0	2
535	Selective Oxidation of Primary Alcohols to Carboxylic Acids Using Lacunary Polyoxometalates Catalysts and Hydrogen Peroxide. Catalysis Letters, 0, , .	2.6	0
536	Inhibiting Cox Formation on Wox-Loaded Au/Tio2 Photocatalyst for Selective Oxidation of P-Xylene to P-Methyl Benzaldehyde. SSRN Electronic Journal, 0, , .	0.4	0
537	Synthesis and Biological Activity Investigation of New Oxazolopyrimidoazepine Derivatives: Application of Ag/Fe ₃ O ₄ /TiO ₂ /CuO@MWCNTs MNCs in the Reduction of Organic Pollutants. Polycyclic Aromatic Compounds, 0, , 1-22.	2.6	0
538	Asymmetric Oxidative Lactonization of Enynyl Boronates. Angewandte Chemie - International Edition, 0, , .	13.8	3
539	BiVO ₄ Photoanodes for TEMPOâ€Mediated Benzyl Alcohol Oxidation in Organic Media. ChemPlusChem, 2022, 87, .	2.8	4
540	Main-Group Catalysts with Atomically Dispersed In Sites for Highly Efficient Oxidative Dehydrogenation. Journal of the American Chemical Society, 2022, 144, 16855-16865.	13.7	19
541	Bimetallic Au-Pd NPs Embedded in MOF Ultrathin Nanosheets with Tuned Surface Electronic Properties for High-performance Benzyl Alcohol Oxidation. Chemical Research in Chinese Universities, 2022, 38, 1344-1348.	2.6	5
542	Metal–Support Interaction-Promoted Photothermal Catalytic Methane Reforming into Liquid Fuels. Journal of Physical Chemistry Letters, 2022, 13, 8122-8129.	4.6	5
543	Asymmetric Oxidative Lactonization of Enynyl Boronates. Angewandte Chemie, 0, , .	2.0	0
544	Recent advances on high-nuclear polyoxometalate clusters. Coordination Chemistry Reviews, 2022, 471, 214734.	18.8	51
545	Six-component synthesis and biological activity of novel spiropyridoindolepyrrolidine derivatives: A combined experimental and theoretical investigation. Frontiers in Chemistry, $0,10,10$	3.6	1
546	Photoelectrochemical alcohols oxidation over polymeric carbon nitride photoanodes with simultaneous H ₂ production. Journal of Materials Chemistry A, 2022, 10, 16585-16594.	10.3	13
547	Thiadiazole-functionalized metalâ \in organic frameworks for photocatalytic Câ \in N and Câ \in C coupling reactions: tuning the ROS generation efficiency <i>via</i> cobalt introduction. Journal of Materials Chemistry C, 2022, 10, 11967-11974.	5.5	12
548	Solid Solution F-Mnxco3-Xo4 Ultrathin Nanosheets: Highly Active and Selective Catalyst for Oxidation of 5-Hydroxymethyl Furfural. SSRN Electronic Journal, 0, , .	0.4	0
549	Halloysite-Based Nanomotors with Embedded Palladium Nanoparticles for Selective Benzyl Alcohol Oxidation. ACS Applied Nano Materials, 2022, 5, 12806-12816.	5.0	3

#	Article	IF	CITATIONS
550	New MCRs in Ionic Liquid: Green Synthesis and Biological Activity Investigation of New Pyrazoloazepines: Application of Ag/Fe ₃ O ₄ /CdO@MWCNT MNCs in Reduction of Organic Pollutant. Polycyclic Aromatic Compounds, 2023, 43, 5785-5806.	2.6	0
551	Biomimetic Tremelliform Ultrathin MnO ₂ /CuO Nanosheets on Kaolinite Driving Superior Catalytic Oxidation: An Example of CO. ACS Applied Materials & Samp; Interfaces, 2022, 14, 44345-44357.	8.0	7
552	Carbon monoxide clean-up of the reformate gas for PEM fuel cell applications: A conceptual review. International Journal of Hydrogen Energy, 2023, 48, 24709-24729.	7.1	5
553	Synthesis and evaluation of the antioxidant activity of new spiro-1,2,4-triazine derivatives applying Ag/Fe3O4/CdO@MWCNT MNCs as efficient organometallic nanocatalysts. Frontiers in Chemistry, 0, 10, .	3.6	4
554	Green Synthesis and Study of Biological Activity of New Benzopyrimidoazepines: Reduction of Organic Pollutants Using Synthesized Fe ₃ O ₄ /TiO ₂ /CuO@MWCNTs MNCs. Polycyclic Aromatic Compounds, 0, , 1-22.	2.6	0
555	Insights into the effect of oxygen vacancies on the epoxidation of 1-hexene with hydrogen peroxide over WO _{3â^'<i>x</i>} /SBA-15. Catalysis Science and Technology, 2022, 12, 6827-6837.	4.1	5
556	Selective oxidation of benzylic alcohols by laccase from white-rot mushroom Tricholoma giganteum AGHP: Total synthesis of taccabulin A, taccabulin D and taccabulin E. Tetrahedron, 2022, 128, 133114.	1.9	3
557	Fe3O4/CuO/ZnO@MWCNT MNCs Promoted the Green Synthesis of Indenopyrimidin-1,2,4-Triazoles as Hybrid Molecules. Polycyclic Aromatic Compounds, 2023, 43, 7319-7342.	2.6	1
558	Recent Developments of Methanol Electrooxidation Using Nickelâ€based Nanocatalysts. ChemistrySelect, 2022, 7, .	1.5	7
559	Selective oxidation of benzyl alcohols by silicaâ€supported heterogeneous catalyst containing dioxidotungsten(VI) core. Applied Organometallic Chemistry, 2023, 37, .	3.5	13
560	Inhibiting COx formation on WOx-loaded Au/TiO2 photocatalyst for selective oxidation of p-xylene to p-methyl benzaldehyde. Journal of Catalysis, 2022, 416, 11-17.	6.2	1
561	Photocatalytic conversion of methane: Catalytically active sites and species. Chem Catalysis, 2023, 3, 100437.	6.1	2
562	Facile Synthesis and Biological Activity Investigation of New Spiropyridoindole Derivatives <i>via</i> Multicomponent Reactions of Acetylisatin. Polycyclic Aromatic Compounds, 0, , 1-24.	2.6	0
563	Electroâ€Synthesis of Organic Compounds with Heterogeneous Catalysis. Advanced Science, 2023, 10, .	11.2	25
564	Gold nanoparticles supported on carbon coated magnetic nanoparticles; a robustness and effective catalyst for aerobic alcohols oxidation in water. Molecular Catalysis, 2023, 534, 112772.	2.0	1
565	Surface engineered active Co3+ species in alkali doped Co3O4 spinel catalyst with superior O2 activation for efficient CO oxidation. Surfaces and Interfaces, 2023, 36, 102537.	3.0	3
566	Enhanced catalytic oxidation of toluene over heterostructured CeO2-CuO-Mn3O4 hollow nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658, 130671.	4.7	5
567	Activation of Molecular Oxygen for Alcohol Oxidation over Vanadium Carbon Catalysts Synthesized via the Heterogeneous Ligand Strategy. ACS Catalysis, 2022, 12, 15249-15258.	11.2	4

#	Article	IF	CITATIONS
568	Modulating the electronic structure of Co-Ni bimetal oxides on mesoporous silica for promoting selective oxidation of alcohol. Microporous and Mesoporous Materials, 2023, 350, 112407.	4.4	2
569	Two-Dimensional Bimetallic Hydroxide Nanostructures for Catalyzing Low-Temperature Aerobic C–H Bond Activation in Alkylarene and Alcohol Partial Oxidation. ACS Applied Nano Materials, 2022, 5, 18855-18870.	5.0	0
570	Recent Advances in Tetra- (Ti, Sn, Zr, Hf) and Pentavalent (Nb, ν , Ta) Metal-Substituted Molecular Sieve Catalysis. Chemical Reviews, 2023, 123, 877-917.	47.7	25
571	Graphitic carbon nitride-based nanostructures as emergent catalysts for carbon monoxide (CO) oxidation. Green Chemistry, 2023, 25, 1276-1310.	9.0	34
572	Mechanisms of Some Heterogeneous Photocatalytic Reactions of Oxidation Occurring via Oxygen Atom Transfer., 2023,, 91-116.		0
573	Ag/CdO/Fe ₃ O ₄ @MWCNTs Promoted Green Synthesis of Novel Triazinopyrrolothiazepine: Investigation of Antioxidant and Antimicrobial Activity. Polycyclic Aromatic Compounds, 2023, 43, 9024-9046.	2.6	10
574	Heterogeneous selective oxidation over supported metal catalysts: From nanoparticles to single atoms. Applied Catalysis B: Environmental, 2023, 325, 122384.	20.2	20
575	Recent advances on catalysts for preferential oxidation of CO. Nano Research, 2023, 16, 4399-4410.	10.4	2
576	Evaluation of CH $<$ sub $>$ 4 $<$ /sub $>$ 0xidation activity of high-valent iron-oxo species of a $\hat{1}$ / 4 -nitrido-bridged heterodimer of iron porphycene and iron phthalocyanine. Catalysis Science and Technology, 2023, 13, 1725-1734.	4.1	3
577	Controllable fabrication of a Cs ₂ AgBiBr ₆ nanocrystal/mesoporous black TiO ₂ hollow sphere composite for photocatalytic benzyl alcohol oxidation. Journal of Materials Chemistry A, 2023, 11, 4302-4309.	10.3	9
578	Promotion of Au nanoparticles on carbon frameworks for alkali-free aerobic oxidation of benzyl alcohol. Frontiers in Chemical Engineering, 0, 4, .	2.7	0
579	Bioderived furanic compounds as replacements for BTX in chemical intermediate applications. , 2023, 1, 698-745.		1
580	High activity of bifunctional Ni2P electrocatalyst for benzyl alcohol oxidation coupled with hydrogen evolution. Journal of Colloid and Interface Science, 2023, 640, 329-337.	9.4	9
581	Multiple interface coupling in ultrathin Mn-based composites for superior catalytic oxidation: Implications of interface coupling on structural defects. Journal of Colloid and Interface Science, 2023, 642, 380-392.	9.4	1
582	Solvent-free selective oxidation of cyclohexane to KA oil in air over CoWO4@W18O49 catalyst. Journal of Environmental Chemical Engineering, 2023, 11, 109380.	6.7	2
583	Selective and Generic Photocatalytic Oxidation of Alcohol with Pdâ^'TiO⟨sub⟩2⟨/sub⟩ Thin Films: Butanols to Butanal/Butanone with Different Morphologies of Pd and 0.5θ⟨sub⟩Pt⟨/sub⟩â€Pd Counterparts. Chemistry - an Asian Journal, 2023, 18, .	3.3	1
584	Solvent-free efficient oxidation of benzyl alcohol on nano-Pd/Al2O3: Effect of palladium source and pH value. Applied Catalysis A: General, 2023, 654, 119070.	4.3	1
585	Effect of Electronic Structure over Late Transition-Metal M ₁ â€"N ₄ Single-Atom Sites on Hydroxyl Radical-Induced Oxidations. ACS Catalysis, 2023, 13, 3308-3316.	11.2	5

#	Article	IF	CITATIONS
586	Lowâ€Valent Manganese Atoms Stabilized on Ceria for Nitrous Oxide Synthesis. Advanced Materials, 2023, 35, .	21.0	4
587	Anchoring hydroxyl intermediate on NiCo(OOH) <i></i> nanosheets to enable highly efficient electrooxidation of benzyl alcohols. AICHE Journal, 2023, 69, .	3.6	4
588	Nanomaterials in organic oxidation reactions. , 2023, , 1-39.		1
589	Co-Conversion of CO2 and CH4 to High Value-Added Oxygenated Chemicals. Russian Journal of Physical Chemistry A, 2022, 96, 3049-3069.	0.6	0
590	Atom-Precise Low-Nuclearity Cluster Catalysis: Opportunities and Challenges. ACS Catalysis, 2023, 13, 5609-5634.	11.2	15
591	Dual-functional reaction strategy boosts carbon dioxide reduction by coupling with selective benzyl alcohol oxidation on nano-Au/BiOCl photocatalysts. Journal of Catalysis, 2023, 422, 56-68.	6.2	5
592	Recent Development of Photoinduced Iron-Catalysis in Organic Synthesis. Chinese Journal of Organic Chemistry, 2023, 43, 1386.	1.3	2
593	Facile synthetic route of TiO2–ZnO heteronanostructure coated by oxovanadium (IV) bis-Schiff base complex as a potential effective homogeneous/heterogeneous catalysts for alcohols redox systems. Surfaces and Interfaces, 2023, 39, 102914.	3.0	3
594	Concerted oxygen diffusion across heterogeneous oxide interfaces for intensified propane dehydrogenation. Nature Communications, 2023, 14, .	12.8	5
595	Rational design of Dâ^'ÂÏ€Ââ^'ÂAâ^'ÂÏ€Ââ^'ÂD porous organic polymer with polarized Ï€ for photocatalytic aerobic oxidation. Applied Catalysis B: Environmental, 2023, 334, 122847.	20.2	12
596	A tetranuclear Er(III)-based cluster with bifunctional properties: Efficient conversion of CO2 and slow magnetic relaxation behavior. Inorganica Chimica Acta, 2023, 556, 121560.	2.4	1
597	Selective Oxidation of Methane to Methanol over Au/H-MOR. Journal of the American Chemical Society, 2023, 145, 12928-12934.	13.7	13
598	Optimizing geometric configuration of single Zn-N4 sites for boosting reciprocal transformation between aromatic alcohols and aldehydes. Nano Research, 2023, 16, 9132-9141.	10.4	1
599	Catalytic Oxidation of Methane by Wild-Type Cytochrome P450BM3 with Chemically Evolved Decoy Molecules. ACS Catalysis, 2023, 13, 8613-8623.	11.2	6
600	ZnO–TiO ₂ Nanoparticles Coated by the Dioxomolybdenum (VI) <i>bis</i> For Catalytic Oxidation of Sulfides. ACS Applied Nano Materials, 2023, 6, 8515-8528.	5.0	10
601	Copper-Catalyzed Synthesis of 3-Aryl-9 <i>H</i> i>indozo[1,5- <i>a</i>]indol-9-ones Using Oxygen as the Sole Oxidant. Organic Letters, 2023, 25, 3702-3707.	4.6	1
602	Co single atoms and CoO clusters over nitrogen–doped hollow carbon spheres for synergistic oxidation of aromatic alkanes. Chemical Engineering Journal, 2023, 467, 143541.	12.7	3
603	Chemoenzymatic Oxidation of Diols Catalyzed by Coâ€lmmobilized Flavins and Dehydrogenases**. ChemCatChem, 2023, 15, .	3.7	0

#	Article	IF	CITATIONS
604	Aerobic, Efficient, Mild, and Heterogeneous Oxidation of Benzylic Alcohols Based on α-MnO ₂ /GO Nanocatalyst. Organic Preparations and Procedures International, 2023, 55, 573-580.	1.3	0
605	Additive-free selective oxidation of aromatic alcohols with molecular oxygen catalyzed by a mixed-valence polyoxovanadate-based metal–organic framework. Dalton Transactions, 2023, 52, 9121-9130.	3.3	3
606	Integrating Dualâ€Singleâ€Atom Moieties with N, S Coâ€Coordination Configurations for Oxidative Cascaded Catalysis. Small, 2023, 19, .	10.0	0
607	An overview of bismuth tungstate-based catalysts in various organic transformations. Transition Metal Chemistry, 2023, 48, 195-213.	1.4	1
608	Aerobic oxidation of alcohols using a slurry loop membrane reactor. Green Chemistry, 2023, 25, 5449-5459.	9.0	0
609	Catalytic Conversion of Chitin Biomass to 5-Hydroxymethylfurfural in Lithium Bromide Molten Salt Hydrates. Industrial & Description (2023, 62, 11248-11257).	3.7	1
610	Influence of support properties on selective oxidation of 2-methylnaphthalene on vanadia-molybdena based catalyst. Chinese Journal of Chemical Engineering, 2023, 64, 106-116.	3.5	0
611	CO Oxidation Catalyzed by Au Dispersed on SBA-15 Modified with TiO2 Films Grown via Atomic Layer Deposition (ALD). Catalysts, 2023, 13, 1106.	3.5	1
612	Ti doped CeO2 nanosheets supported Pd catalyst for alcohol oxidation: Catalysis of interfacial sites. Journal of Fuel Chemistry and Technology, 2023, 51, 1007-1017.	2.0	0
613	Highly Efficient Epoxidation of Propylene with <i>In Situ</i> -Generated H ₂ O ₂ over a Hierarchical TS-1 Zeolite-Supported Non-Noble Nickel Catalyst. ACS Catalysis, 2023, 13, 10487-10499.	11.2	7
614	Progress through synergistic effects of heterojunction in nanocatalysts ―Review. , 2020, 58, 434-463.		1
615	Highly efficient ˙OH generation in Fenton-like reactions over a bioinspired manganese single-atom site. New Journal of Chemistry, 0, , .	2.8	0
616	Metal-organic framework-derived nanomaterials: Promising green catalysts for industrially relevant oxidation and hydrogenation. Nano Today, 2023, 52, 101960.	11.9	0
617	Solvent-free and efficiently selective oxidation of benzyl alcohol catalyzed by Pd/CeO2 materials under atmospheric oxygen. Applied Catalysis A: General, 2023, 665, 119384.	4.3	1
618	Covalent–Organic Framework (COF) ore–Shell Composites: Classification, Synthesis, Properties, and Applications. Advanced Functional Materials, 2023, 33, .	14.9	6
619	Polyoxometalate-based hybrid materials with electronic interaction boosting photocatalytic H2 evolution coupled with alcohol oxidation. Fuel, 2024, 356, 129647.	6.4	0
621	Hierarchical Zeolites Containing Vanadium or Tantalum and Their Application in Cyclohexene Epoxidation Reaction. Materials, 2023, 16, 5383.	2.9	0
622	Nanostructured PtBi Alloy Enables Direct Oxidation of Linear \hat{l}_{\pm} -Alcohols to Fatty Acids. ACS Catalysis, 2023, 13, 12571-12581.	11.2	0

#	Article	IF	CITATIONS
623	UV Cross-Linked Polymer Stabilized Gold Nanoparticles as a Reusable Dip-Catalyst for Aerobic Oxidation of Alcohols and Cross-Aldol Reactions. ACS Applied Nano Materials, 0, , .	5.0	0
624	Electrochemically driven aerobic oxygenation of alkylarenes to carbonyl compounds. Molecular Catalysis, 2023, 550, 113614.	2.0	0
625	Unsaturated Penta-Coordinated Mo _{5c} ⁵⁺ Sites Enabled Low-Temperature Oxidation of C–H Bonds in Ethers. Jacs Au, 0, , .	7.9	0
627	Role of Ga in promoting epoxidation of cis-cyclooctene over Ga-WO /SBA-15. Journal of Fuel Chemistry and Technology, 2023, 51, 1453-1461.	2.0	0
628	Expanding the boundary of biorefinery: long-chain heteroatom-containing chemicals from biomass. Carbon Capture Science & Technology, 2024, 10, 100158.	10.4	0
629	Spatially Separated Active Sites Enable Selective CO Oxidation Reaction on Oxide Catalyst. Journal of Physical Chemistry Letters, 2023, 14, 9780-9786.	4.6	0
630	Direct Electrochemical Oxidation of Benzylic Câ€"H Bond by La ₂ O ₃ @C/CP Composite Electrode with Water as the Green Oxygen Source. Industrial & Direction Chemistry Research, 2023, 62, 19427-19436.	3.7	0
631	Bimetallic Fe:Co metal–organic framework (MOF) with unsaturated metal sites for efficient Fenton-like catalytic degradation of oxytetracycline (OTC) antibiotics. Chemical Engineering Journal, 2024, 479, 147592.	12.7	0
632	Efficient Epoxidation over Faujasite Zeolites: Unprecedented O $<$ sub $>$ 2 $<$ /sub $>$ Cooperative Activation by Co(II) \hat{a} \in "Ba(II) Cation Pair Sites Confined in the Supercage. ACS Catalysis, 2023, 13, 15572-15580.	11.2	1
633	Copper on charcoal: TEMPO free Cu0 nanoparticles catalyzed aerobic oxidation of alcohols. Tetrahedron, 2024, 151, 133769.	1.9	0
634	Electrochemical Câ^'H/Câ^'C Bond Oxygenation: A Potential Technology for Plastic Depolymerization. Chemical Record, 0, , .	5.8	0
635	Advances of Singleâ€Atomic Cobalt Catalysts in Liquidâ€Phase Selective Oxidative Reactions. Small Science, 2023, 3, .	9.9	0
636	Water-promoted selective photocatalytic methane oxidation for methanol production. Chemical Science, 2024, 15, 1505-1510.	7.4	0
637	Anderson-type polyoxometalate-based metal–organic framework as an efficient heterogeneous catalyst for selective oxidation of benzylic C–H bonds. RSC Advances, 2024, 14, 364-372.	3.6	0
638	Palladium-based pseudohomogeneous catalyst for highly selective aerobic oxidation of benzylicÂalcohols to aldehydes. Scientific Reports, 2024, 14, .	3.3	1
639	Mesoporous silica-supported Ni–Co composite metal oxide as a heterogeneous catalyst for air oxidation of benzyl alcohols. Journal of Solid State Chemistry, 2024, 332, 124560.	2.9	0
640	Chitosan-derived mesoporous N-doped carbon catalyst embedded with NiO for highly selective benzyl alcohol oxidation. International Journal of Biological Macromolecules, 2024, 259, 129093.	7.5	0
641	Aerobic Oxidation of Methyl Glycolate by \hat{l}_{\pm} -Fe ₂ O ₃ for the Eco-Friendly Synthesis of Methyl Glyoxylate. ACS Catalysis, 2024, 14, 728-740.	11.2	0

#	Article	IF	CITATIONS
643	Sustainable Electrochemical Benzylic Câ^'H Oxidation Using MeOH as an Oxygen Source. ChemSusChem, 0, , .	6.8	0
644	Nanocomposite TiO2/ZnO coated by copper (II) complex of di-Schiff bases with biological activity evaluation. Inorganic Chemistry Communication, 2024, 161, 112144.	3.9	0
645	Enhanced photocatalytic activity of Fe@UiO-66 for aerobic oxidation of <i>N</i> -aryl tetrahydroisoquinolines. Catalysis Science and Technology, 2024, 14, 1605-1612.	4.1	0
646	Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35, 109580.	9.0	0
647	Self-adjusted reaction pathway enables efficient oxidation of aromatic C–H bonds over zeolite-encaged single-site cobalt catalyst. Chinese Journal of Catalysis, 2024, 57, 133-142.	14.0	0
648	Expanding the Application of Alcohol Dehydrogenases in Pharmaceutical Chemistry: A Focus on Piperidone Synthesis. ChemCatChem, 0, , .	3.7	0
650	Boosting Solvent-Free Aerobic Oxidation of Benzylic Compounds into Ketones over Au-Pd Nanoparticles Supported by Porous Carbon. Catalysts, 2024, 14, 158.	3. 5	0
651	Superhydrophilic Dendritic FeP/Cu ₃ P Electrocatalyst for Urea Splitting via the Intramolecular Mechanism. Inorganic Chemistry, 2024, 63, 4204-4213.	4.0	0
653	One-Step Hydrothermal/Solvothermal Preparation of Pt/TiO2: An Efficient Catalyst for Biobutanol Oxidation at Room Temperature. Molecules, 2024, 29, 1450.	3.8	0