Shear thickening in concentrated suspensions: phenom to jamming

Reports on Progress in Physics 77, 046602 DOI: 10.1088/0034-4885/77/4/046602

Citation Report

#	Article	IF	Citations
1	Shear thickening in highly viscous granular suspensions. Europhysics Letters, 2014, 107, 68004.	0.7	16
2	Nonlinear glassy rheology. Current Opinion in Colloid and Interface Science, 2014, 19, 549-560.	3.4	48
3	Thinning or thickening? Multiple rheological regimes in dense suspensions of soft particles. Europhysics Letters, 2014, 107, 28009.	0.7	44
4	Dynamics of Colloidal Glasses and Gels. Annual Review of Chemical and Biomolecular Engineering, 2014, 5, 181-202.	3.3	98
5	Quasi-2D dynamic jamming in cornstarch suspensions: visualization and force measurements. Soft Matter, 2014, 10, 6564-6570.	1.2	37
6	Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions. Journal of Rheology, 2014, 58, 1693-1724.	1.3	454
7	Granulation and bistability in non-Brownian suspensions. Rheologica Acta, 2014, 53, 755-764.	1.1	43
8	Velocity and displacement statistics in a stochastic model of nonlinear friction showing bounded particle speed. Physical Review E, 2015, 92, 052302.	0.8	6
9	Towards a Unified Description of the Rheology of Hard-Particle Suspensions. Physical Review Letters, 2015, 115, 088304.	2.9	194
10	Nonmonotonic flow curves of shear thickening suspensions. Physical Review E, 2015, 91, 052302.	0.8	72
11	Mean-field microrheology of a very soft colloidal suspension: Inertia induces shear thickening. Physical Review E, 2015, 91, 062301.	0.8	12
12	Paradoxical ratcheting in cornstarch. Physics of Fluids, 2015, 27, 103101.	1.6	3
13	Gas migration regimes and outgassing in particle-rich suspensions. Frontiers in Physics, 2015, 3, .	1.0	106
14	Shear Thickening in Concentrated Soft Sphere Colloidal Suspensions: A Shear Induced Phase Transition. Journal of Thermodynamics, 2015, 2015, 1-10.	0.8	4
15	Discontinuous shear thickening in Brownian suspensions by dynamic simulation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15326-15330.	3.3	150
16	Hydrodynamic and Contact Contributions to Continuous Shear Thickening in Colloidal Suspensions. Physical Review Letters, 2015, 115, 228304.	2.9	267
17	Analogous viscosity equations of granular powders based on Eyring's rate process theory and free volume concept. RSC Advances, 2015, 5, 95318-95333.	1.7	7
18	Probing nonlinear rheology layer-by-layer in interfacial hydration water. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15619-15623.	3.3	13

ATION REDO

#	Article	IF	CITATIONS
19	Evaluation of oscillatory and shear strain behaviour for thermo-rheological plasticisation of non-ripened cheese curd: Effect of water, protein, and fat. International Dairy Journal, 2015, 46, 63-70.	1.5	12
20	Shear thickening of suspensions of porous silica nanoparticles. Journal of Materials Science, 2015, 50, 6041-6049.	1.7	31
21	A comparison of the ballistic performance of shear thickening fluids based on particle strength and volume fraction. International Journal of Impact Engineering, 2015, 85, 83-96.	2.4	79
22	Shear-induced rigidity in athermal materials: A unified statistical framework. Physical Review E, 2015, 91, 042201.	0.8	16
23	Rheology and dynamics of colloidal superballs. Soft Matter, 2015, 11, 5656-5665.	1.2	29
24	Signatures of shear thinning-thickening transition in steady shear flows of dense non-Brownian yield stress systems. Science China Chemistry, 2015, 58, 1013-1020.	4.2	9
25	Microstructure and rheology of soft to rigid shear-thickening colloidal suspensions. Journal of Rheology, 2015, 59, 1377-1395.	1.3	68
26	The role of shear in the transition from continuous shear thickening to discontinuous shear thickening. Applied Physics Letters, 2015, 106, .	1.5	23
27	Effect of Temperature on the Shear-Thickening Behavior of Fumed Silica Suspensions. ACS Applied Materials & Interfaces, 2015, 7, 18650-18661.	4.0	101
28	Granular self-organization by autotuning of friction. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11443-11448.	3.3	7
29	Celebrating Soft Matter's 10th Anniversary: Toward jamming by design. Soft Matter, 2015, 11, 12-27.	1.2	161
30	Effects of pH on shear thinning and thickening behaviors of fumed silica suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 464, 1-7.	2.3	31
31	Complex Fluids in Energy Dissipating Systems. Applied Sciences (Switzerland), 2016, 6, 206.	1.3	33
32	Effect of acid and temperature on the discontinuous shear thickening phenomenon of silica nanoparticle suspensions. Chemical Physics Letters, 2016, 658, 210-214.	1.2	16
33	Friction-induced shear thickening: A microscopic perspective. Europhysics Letters, 2016, 115, 54006.	0.7	8
34	On turbulence in dilatant dispersions. Physica Scripta, 2016, 91, 074003.	1.2	1
35	High-speed ultrasound imaging in dense suspensions reveals impact-activated solidification due to dynamic shear jamming. Nature Communications, 2016, 7, 12243.	5.8	74
36	Direct observation of dynamic shear jamming in dense suspensions. Nature, 2016, 532, 214-217.	13.7	249

#	Article	IF	CITATIONS
37	A facile one-step method to synthesize SiO ₂ @polydopamine core–shell nanospheres for shear thickening fluid. RSC Advances, 2016, 6, 29279-29287.	1.7	51
38	Shear time dependent viscosity of polystyrene-ethylacrylate based shear thickening fluid. Smart Materials and Structures, 2016, 25, 045005.	1.8	7
39	Rheo-PIV of Aerosil® R816/polypropylene glycol suspensions. Journal of Non-Newtonian Fluid Mechanics, 2016, 232, 22-32.	1.0	7
40	Unifying Impacts in Granular Matter from Quicksand to Cornstarch. Physical Review Letters, 2016, 117, 098003.	2.9	32
41	Tunable shear thickening in suspensions. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10774-10778.	3.3	74
42	Rheological Signature of Frictional Interactions in Shear Thickening Suspensions. Physical Review Letters, 2016, 116, 188301.	2.9	149
43	Frictional Fluid Dynamics and Plug Formation in Multiphase Millifluidic Flow. Physical Review Letters, 2016, 117, 028002.	2.9	13
44	Rheological chaos of frictional grains. Physical Review E, 2016, 93, 030901.	0.8	26
45	Shear-induced rigidity of frictional particles: Analysis of emergent order in stress space. Physical Review E, 2016, 93, 042901.	0.8	28
46	Discontinuous thinning in active microrheology of soft complex matter. Physical Review E, 2016, 94, 062610.	0.8	6
47	Colloidal crystals and water: Perspectives on liquid–solid nanoscale phenomena in wet particulate media. Advances in Colloid and Interface Science, 2016, 234, 142-160.	7.0	14
48	Shear thickening fluid–based energy-free damper: Design and dynamic characteristics. Journal of Intelligent Material Systems and Structures, 2016, 27, 208-220.	1.4	60
49	Does Shear Thickening Occur in Semisolid Metals?. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 1740-1750.	1.1	12
50	Shear thickening and dynamic glass transition of concentrated suspensions. State of the problem. Colloid Journal, 2016, 78, 1-8.	0.5	24
51	An investigation of shear thickening fluids using ejecta analysis techniques. International Journal of Impact Engineering, 2016, 93, 39-48.	2.4	11
52	Simplicity as a Route to Impact in Materials Research. Advanced Materials, 2017, 29, 1604681.	11.1	15
53	Rheology of fumed silica/polydimethylsiloxane suspensions. Journal of Rheology, 2017, 61, 205-215.	1.3	55
54	Shear dependent electrical property of conductive shear thickening fluid. Materials and Design, 2017, 121, 92-100.	3.3	26

#	Article	IF	CITATIONS
55	Direct evidence of entropy driven fluid-like – glass-like transition in microgel suspensions. Applied Physics Letters, 2017, 110, 071902.	1.5	2
56	Rheology of hydrating cement paste: Crossover between two aging processes. Cement and Concrete Research, 2017, 95, 226-231.	4.6	18
57	Micromechanical modeling of discontinuous shear thickening in granular media-fluid suspension. Journal of Rheology, 2017, 61, 265-277.	1.3	14
58	Revealing the frictional transition in shear-thickening suspensions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5147-5152.	3.3	121
59	Structural fingerprints of yielding mechanisms in attractive colloidal gels. Soft Matter, 2017, 13, 458-473.	1.2	54
60	Measuring the porosity and compressibility of liquid-suspended porous particles using ultrasound. Soft Matter, 2017, 13, 3506-3513.	1.2	26
61	Squeeze flow behavior of shear thickening fluid under constant volume. Smart Materials and Structures, 2017, 26, 065017.	1.8	10
62	Dynamic jamming in dense suspensions: Surface finishing and edge honing applications. CIRP Annals - Manufacturing Technology, 2017, 66, 321-324.	1.7	32
63	New dynamics in poly(propylene glycol) based glass-forming nanocomposites. Journal of Non-Crystalline Solids, 2017, 471, 95-100.	1.5	5
64	Shock wave interactions with liquid sheets. Experiments in Fluids, 2017, 58, 1.	1.1	7
65	Rheology of plastisol formulations for coating applications. Polymer Engineering and Science, 2017, 57, 982-988.	1.5	10
66	Rheology and applications of highly filled polymers: A review of current understanding. Progress in Polymer Science, 2017, 66, 22-53.	11.8	287
67	Mixing and transport from combined stretching-and-folding and cutting-and-shuffling. Physical Review E, 2017, 96, 042213.	0.8	9
68	Impact-induced solidlike behavior and elasticity in concentrated colloidal suspensions. Physical Review E, 2017, 96, 042601.	0.8	5
69	Kinetic theory of shear thickening for a moderately dense gas-solid suspension: From discontinuous thickening. Physical Review E, 2017, 96, 042903.	0.8	23
70	Rheological State Diagrams for Rough Colloids in Shear Flow. Physical Review Letters, 2017, 119, 158001.	2.9	93
71	Dynamic shear jamming in dense granular suspensions under extension. Physical Review E, 2017, 95, 012603.	0.8	28
72	Predictive Design of Shear-Thickening Electrolytes for Safety Considerations. Journal of the Electrochemical Society, 2017, 164, A2547-A2551.	1.3	13

#	Article	IF	CITATIONS
73	Microstructural description of shear-thickening suspensions. EPJ Web of Conferences, 2017, 140, 09023.	0.1	2
74	Prediction of rheology of shear thickening fluids using phenomenological and artificial neural network models. Korea Australia Rheology Journal, 2017, 29, 185-193.	0.7	14
75	Shear thickening fluids in protective applications: A review. Progress in Polymer Science, 2017, 75, 48-72.	11.8	272
76	Microsecond Structural Rheology. Journal of Physical Chemistry Letters, 2017, 8, 3581-3585.	2.1	8
77	Dramatic effect of fluid chemistry on cornstarch suspensions: Linking particle interactions to macroscopic rheology. Physical Review E, 2017, 95, 030602.	0.8	31
78	Shear banding, discontinuous shear thickening, and rheological phase transitions in athermally sheared frictionless disks. Physical Review E, 2017, 95, 052903.	0.8	12
79	Numerical and experimental investigations into the response of STF-treated fabric composites undergoing ballistic impact. Thin-Walled Structures, 2017, 119, 700-706.	2.7	52
80	Shear-induced organization of forces in dense suspensions: signatures of discontinuous shear thickening. EPJ Web of Conferences, 2017, 140, 09045.	0.1	5
81	Alcohol Stabilization of Low Water Content Pyrolysis Oil during High Temperature Treatment. Energy & Fuels, 2017, 31, 13666-13674.	2.5	16
82	Measuring the mechanical responses of a jammed discontinuous shear-thickening fluid. Applied Physics Letters, 2017, 111, .	1.5	8
83	New Shear Thickening Dilatancy Dispersion Based on Nano-Silica Beads for Oilfield Applications. , 2017, , .		2
84	Relaxation oscillation of borosilicate glasses in supercooled liquid region. Scientific Reports, 2017, 7, 15872.	1.6	3
85	Frictional shear thickening in suspensions: The effect of rigid asperities. Physics of Fluids, 2017, 29, .	1.6	24
86	Force and Mass Dynamics in Non-Newtonian Suspensions. Physical Review Letters, 2017, 119, 184501.	2.9	6
87	Revisiting ignited–quenched transition and the non-Newtonian rheology of a sheared dilute gas–solid suspension. Journal of Fluid Mechanics, 2017, 833, 206-246.	1.4	23
88	Direct observation of impact propagation and absorption in dense colloidal monolayers. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12150-12155.	3.3	19
89	Self-Organized Velocity Pulses of Dense Colloidal Suspensions in Microchannel Flow. Physical Review Letters, 2017, 119, 018002.	2.9	14
90	Kinetic theory of discontinuous shear thickening. EPJ Web of Conferences, 2017, 140, 09003.	0.1	7

			-
#	ARTICLE	IF	CITATIONS
91	PVP immobilized SiO2 nanospheres for high-performance shear thickening fluid. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	19
92	Anisotropic Nanoparticles Contributing to Shear-Thickening Behavior of Fumed Silica Suspensions. ACS Omega, 2017, 2, 8877-8887.	1.6	12
93	Dissipative Dynamics of Granular Materials. , 2017, , .		1
94	Self-Structuring of Granular material under Capillary Bulldozing. EPJ Web of Conferences, 2017, 140, 09016.	0.1	0
95	Criticality of the zero-temperature jamming transition probed by self-propelled particles. Soft Matter, 2018, 14, 853-860.	1.2	25
96	Shear Thickening Electrolyte Built from Sterically Stabilized Colloidal Particles. ACS Applied Materials & Interfaces, 2018, 10, 9424-9434.	4.0	19
97	Unraveling the Role of Order-to-Disorder Transition in Shear Thickening Suspensions. Physical Review Letters, 2018, 120, 028002.	2.9	24
98	A constitutive model for simple shear of dense frictional suspensions. Journal of Rheology, 2018, 62, 457-468.	1.3	150
99	Impact resistance of shear thickening fluid/Kevlar composite treated with shear-stiffening gel. Composites Part A: Applied Science and Manufacturing, 2018, 106, 82-90.	3.8	132
100	On the effectiveness of incorporating shear thickening fluid with fumed silica particles in hip protectors. Smart Materials and Structures, 2018, 27, 015021.	1.8	8
101	Compressive behaviour of shear-thickening fluid with concentrated polymers at high strain rates. Materials and Design, 2018, 140, 295-306.	3.3	30
102	Shock Wave Mitigation Using Liquids. Springer Transactions in Civil and Environmental Engineering, 2018, , 301-320.	0.3	0
103	Quantitative light microscopy of dense suspensions: Colloid science at the next decimal place. Current Opinion in Colloid and Interface Science, 2018, 34, 32-46.	3.4	12
104	Effects of the finite particle size in turbulent wall-bounded flows of dense suspensions. Journal of Fluid Mechanics, 2018, 843, 450-478.	1.4	40
105	Combined Lattice–Boltzmann and rigid-body method for simulations of shear-thickening dense suspensions of hard particles. Computers and Fluids, 2018, 172, 474-482.	1.3	15
106	Enhancement of thermoâ€rheological properties of smart materials based on SiO ₂ and <scp>PPG</scp> modificated with expanded graphite. International Journal of Applied Ceramic Technology, 2018, 15, 538-545.	1.1	5
107	Microparticles from Wheat-Gluten Proteins Soluble in Ethanol by Nanoprecipitation: Preparation, Characterization, and Their Study as a Prolonged-Release Fertilizer. International Journal of Polymer Science, 2018, 2018, 1-10.	1.2	10
108	Numerical Simulation and Experimental Comparison of the Low Velocity Impact of Shear Thickening Fluid. , 2018, , .		2

#	Article	IF	CITATIONS
109	Effect of Drilling Muds Wall Slip on Reliable Frictional Pressure Loss Estimations in Offshore Drilling. , 2018, , .		0
110	Interparticle hydrogen bonding can elicit shear jamming in dense suspensions. Nature Materials, 2018, 17, 965-970.	13.3	88
111	Constraint-Based Approach to Granular Dispersion Rheology. Physical Review Letters, 2018, 121, 128001.	2.9	54
112	Microscopic Origin of Frictional Rheology in Dense Suspensions: Correlations in Force Space. Physical Review Letters, 2018, 121, 128002.	2.9	33
113	Rheology of Inelastic Hard Spheres at Finite Density and Shear Rate. Physical Review Letters, 2018, 121, 148002.	2.9	11
114	Transition from Continuous to Discontinuous Shear Thickening: An Excluded-Volume Effect. Physical Review Letters, 2018, 121, 108001.	2.9	24
115	Dynamic Vorticity Banding in Discontinuously Shear Thickening Suspensions. Physical Review Letters, 2018, 121, 108003.	2.9	36
116	System-spanning dynamically jammed region in response to impact of cornstarch and water suspensions. Physical Review E, 2018, 97, 052603.	0.8	27
117	Testing constitutive relations by running and walking on cornstarch and water suspensions. Physical Review E, 2018, 97, 052604.	0.8	18
118	Effect of Nanorod Aspect Ratio on Shear Thickening Electrolytes for Safety-Enhanced Batteries. ACS Applied Nano Materials, 2018, 1, 2774-2784.	2.4	24
119	Adaptive head impact protection via a rate-activated helmet suspension. Materials and Design, 2018, 154, 153-169.	3.3	9
120	Shear thickening fluid with tunable structural colors. Smart Materials and Structures, 2018, 27, 095012.	1.8	13
121	Abnormal Behaviors in the Capillary Rheometry of Plastisol Formulations. International Polymer Processing, 2018, 33, 363-370.	0.3	1
122	The in vitro digestibility of starch fractions in maize tortilla can be rendered healthier by treating the nixtamalized masa with commercial baking yeast. Journal of Cereal Science, 2018, 82, 216-222.	1.8	6
123	Stress relaxation in the transition from shear thinning to shear jamming in shear thickening fluid. Smart Materials and Structures, 2018, 27, 085013.	1.8	8
124	Uncovering Instabilities in the Spatiotemporal Dynamics of a Shear-Thickening Cornstarch Suspension. Physical Review X, 2018, 8, .	2.8	25
125	Additive layer manufacturing of semi-hard model cheese: Effect of calcium levels on thermo-rheological properties and shear behavior. Journal of Food Engineering, 2018, 235, 89-97.	2.7	33
126	Characterization of Physicochemical Properties of Nanoemulsions: Appearance, Stability, and Rheology. , 2018, , 547-576.		9

#	Article	IF	CITATIONS
127	Constitutive relation for the system-spanning dynamically jammed region in response to impact of cornstarch and water suspensions. Physical Review E, 2018, 97, 052602.	0.8	28
128	Discontinuous shear thickening in Brownian suspensions. Physical Review E, 2018, 98, 012609.	0.8	26
129	Rheology of dense granular suspensions. Journal of Fluid Mechanics, 2018, 852, .	1.4	273
130	A generalized frictional and hydrodynamic model of the dynamics and structure of dense colloidal suspensions. Journal of Rheology, 2018, 62, 905-918.	1.3	46
131	Rheology of fumed silica/polypropylene glycol dispersions. Polymer, 2018, 148, 400-406.	1.8	25
132	The physics of jamming for granular materials: a review. Reports on Progress in Physics, 2019, 82, 012601.	8.1	162
133	Simple shear flow in granular suspensions: inelastic Maxwell models and BGK-type kinetic model. Journal of Statistical Mechanics: Theory and Experiment, 2019, 2019, 013206.	0.9	4
134	Force transmission and the order parameter of shear thickening. Soft Matter, 2019, 15, 6650-6659.	1.2	12
135	New analysis and correlation between steady and oscillatory tests in fumed silica-based shear thickening fluids. Rheologica Acta, 2019, 58, 647-655.	1.1	7
136	A new view on improving the preparation efficiency of shear thickening fluid. IOP Conference Series: Earth and Environmental Science, 2019, 295, 032088.	0.2	1
137	Bouncing of a projectile impacting a dense potato-starch suspension layer. Physics of Fluids, 2019, 31, 053304.	1.6	6
138	Stacked-Cup Carbon Nanotube Flexible Paper Based on Soy Lecithin and Natural Rubber. Nanomaterials, 2019, 9, 824.	1.9	12
139	Deconstructing the role of shear thickening fluid in enhancing the impact resistance of high-performance fabrics. Composites Part B: Engineering, 2019, 175, 107167.	5.9	86
140	Evaluation of ballistic performance of STF impregnated fabrics under high velocity impact. Composite Structures, 2019, 227, 111208.	3.1	33
141	Enhanced Mechanical Damping in Electrospun Polymer Fibers with Liquid Cores: Applications to Sound Damping. ACS Applied Polymer Materials, 2019, 1, 2068-2076.	2.0	12
142	Complex dynamical interplay between solid particles and flow in driven granular suspensions. Physical Review E, 2019, 100, 012907.	0.8	2
143	CNT/STF/Kevlar-based wearable electronic textile with excellent anti-impact and sensing performance. Composites Part A: Applied Science and Manufacturing, 2019, 126, 105612.	3.8	70
144	Shear thickening of dense suspensions: The role of friction. Physics of Fluids, 2019, 31, .	1.6	19

#	Article	IF	CITATIONS
145	Factors Influencing the Rheological Properties of MRSP Based on the Orthogonal Experimental Design and the Impact Energy Test. Advances in Materials Science and Engineering, 2019, 2019, 1-11.	1.0	4
146	Rheological Behavior of High Cell Density Pseudomonas putida LS46 Cultures during Production of Medium Chain Length Polyhydroxyalkanoate (PHA) Polymers. Bioengineering, 2019, 6, 93.	1.6	7
147	Response of active Brownian particles to boundary driving. Physical Review E, 2019, 100, 042610.	0.8	11
148	Kinetic theory of discontinuous rheological phase transition for a dilute inertial suspension. Progress of Theoretical and Experimental Physics, 2019, 2019, .	1.8	11
149	Using Acoustic Perturbations to Dynamically Tune Shear Thickening in Colloidal Suspensions. Physical Review Letters, 2019, 123, 128001.	2.9	17
150	Alternative Frictional Model for Discontinuous Shear Thickening of Dense Suspensions: Hydrodynamics. Physical Review Letters, 2019, 123, 138002.	2.9	69
151	A general constitutive model for dense, fine-particle suspensions validated in many geometries. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20828-20836.	3.3	33
152	Numerical investigation of ballistic performance of shear thickening fluid (STF)-Kevlar composite. International Journal of Mechanical Sciences, 2019, 164, 105174.	3.6	56
153	Simulation Study on Polishing of Complex Surfaces by Non-Newtonian Fluids. , 2019, , .		0
154	Dynamics and structure of colloidal aggregates under microchannel flow. Soft Matter, 2019, 15, 744-751.	1.2	6
155	Contact tribology also affects the slow flow behavior of granular emulsions. Journal of Rheology, 2019, 63, 275-283.	1.3	13
156	Dynamics and stability of a power-law film flowing down a slippery slope. Physics of Fluids, 2019, 31, .	1.6	21
157	Controlling the shear thickening behavior of suspensions by changing the surface properties of dispersed microspheres. RSC Advances, 2019, 9, 3469-3478.	1.7	6
158	Yielding and recovery of conductive pastes for screen printing. Rheologica Acta, 2019, 58, 361-382.	1.1	27
159	Energy analysis of fabric impregnated by shear thickening fluid in yarn pullout test. Composites Part B: Engineering, 2019, 174, 106901.	5.9	38
160	Experimental investigation on hysteretic behavior of a shear thickening fluid damper. Structural Control and Health Monitoring, 2019, 26, e2389.	1.9	31
161	Contact Networks Enhance Shear Thickening in Attractive Colloid-Polymer Mixtures. Physical Review Letters, 2019, 122, 228003.	2.9	23
162	Soft lubrication of cornstarch-based shear-thickening fluids. Smart Materials and Structures, 2019, 28, 085044.	1.8	2

ARTICLE IF CITATIONS # Effective packing fraction for better resolution near the critical point of shear thickening 163 0.8 1 suspensions. Physical Review E, 2019, 99, 042604. Conching chocolate is a prototypical transition from frictionally jammed solid to flowable suspension with maximal solid content. Proceedings of the National Academy of Sciences of the 164 3.3 United States of America, 2019, 116, 10303-10308. Experimental synthesis and characterization of rough particles for colloidal and granular rheology. 165 3.4 45 Current Opinion in Colloid and Interface Science, 2019, 43, 94-112. Drastic slowdown of the Rayleigh-like wave in unjammed granular suspensions. Physical Review E, 0.8 2019, 99, 042902. From Yielding to Shear Jamming in a Cohesive Frictional Suspension. Physical Review Letters, 2019, 122, 167 2.9 62 098004. Effects of STF and Fiber Characteristics on Quasi-Static Stab Resistant Properties of Shear Thickening Fluid (STF)-Impregnated UHMWPE/Kevlar Composite Fabrics. Fibers and Polymers, 2019, 20, 328-336. 1.1 Experimental study on shear thickening polishing of cemented carbide insert with complex shape. 169 1.5 36 International Journal of Advanced Manufacturing Technology, 2019, 103, 585-595. Effect of thermal surface activation of silica nanoparticles on the rheological behavior of shear 0.8 thickening fluid. Materials Research Express, 2019, 6, 065710. 171 Stress fluctuations in transient active networks. Soft Matter, 2019, 15, 3520-3526. 1.2 3 Probing the intensity of dilatancy of high performance shear-thickening fluids comprising silica in 0.8 polyethylene glycol. Materials Research Express, 2019, 6, 075702. Soil granular dynamics on-a-chip: fluidization inception under scrutiny. Lab on A Chip, 2019, 19, 173 3.1 10 1226-1235. Rheology in dense assemblies of spherocylinders: Frictional vs. frictionless. European Physical 174 Journal É, 2019, 42, 157. Soft body armour. Textile Progress, 2019, 51, 139-224. 175 1.3 32 Connecting the Drops: Observing Collective Flow Behavior in Emulsions. Frontiers in Physics, 2019, 7, . 1.0 Stress Controlled Rheology of Dense Suspensions Using Transient Flows. Physical Review Letters, 177 2.9 13 2019, 123, 248002. Shear-thickening performance of suspensions of mixed ceria and silica nanoparticles. Journal of 28 Materials Science, 2019, 54, 346-355. Global topology of contact force networks: Insight into shear thickening suspensions. Physical Review E, 2019, 99, 012607. 179 0.8 8 Dropwise Additive Manufacturing of Pharmaceutical Products Using Particle Suspensions. Journal of Pharmaceutical Sciences, 2019, 108, 914-928.

#	Article	IF	Citations
181	Shear thickening behavior and thermal properties of nanofluids with graphite fillers. Materials Research Express, 2019, 6, 015701.	0.8	3
182	Shear Thickening of Concentrated Suspensions: Recent Developments and Relation to Other Phenomena. Annual Review of Fluid Mechanics, 2020, 52, 121-144.	10.8	113
183	Study the safeguarding performance of shear thickening gel by the mechanoluminescence method. Composites Part B: Engineering, 2020, 180, 107564.	5.9	44
184	Rheo-SAS. , 2020, , 225-240.		1
185	A review of fibrous materials for soft body armour applications. RSC Advances, 2020, 10, 1066-1086.	1.7	70
186	Enhanced damping characteristics of carbon fiber reinforced polymer–based shear thickening fluid hybrid composite structures. Journal of Intelligent Material Systems and Structures, 2020, 31, 2291-2303.	1.4	16
187	Testing the Wyart–Cates model for non-Brownian shear thickening using bidisperse suspensions. Soft Matter, 2020, 16, 229-237.	1.2	32
188	Discrete fluidization of dense monodisperse emulsions in neutral wetting microchannels. Soft Matter, 2020, 16, 651-658.	1.2	9
189	Stagnant zone formation in a 2D bed of circular and elongated grains under penetration. Granular Matter, 2020, 22, 1.	1.1	4
190	Continuum theory for dense gas-solid flow: A state-of-the-art review. Chemical Engineering Science, 2020, 215, 115428.	1.9	200
191	Biocatalytic Feedback ontrolled Nonâ€Newtonian Fluids. Angewandte Chemie, 2020, 132, 4344-4349.	1.6	8
192	Biocatalytic Feedbackâ€Controlled Nonâ€Newtonian Fluids. Angewandte Chemie - International Edition, 2020, 59, 4314-4319.	7.2	17
193	Simulation of dense non-Brownian suspensions with the lattice Boltzmann method: shear jammed and fragile states. Soft Matter, 2020, 16, 945-959.	1.2	10
194	Signature of jamming under steady shear in dense particulate suspensions. Journal of Physics Condensed Matter, 2020, 32, 124002.	0.7	9
195	Dispersion stability and rheological properties of silica suspensions in aqueous solutions. Advances in Colloid and Interface Science, 2020, 284, 102248.	7.0	15
196	Shear thinning and thickening in dispersions of spherical nanoparticles. Physical Review E, 2020, 102, 012604.	0.8	21
197	Tool edge honing using shear jamming abrasive media. CIRP Annals - Manufacturing Technology, 2020, 69, 289-292.	1.7	12
198	Mechanical properties and cushioning mechanism of shear thickening fluid. Journal of Mechanical Science and Technology, 2020, 34, 4575-4588.	0.7	3

		CITATION RE	PORT	
#	Article		IF	Citations
199	Jet instability of a shear-thickening concentrated suspension. European Physical Journa	l E, 2020, 43, 69.	0.7	1
200	Modulating the rheological response of shear thickening fluids by variation in molecula carrier fluid and its correlation with impact resistance of treated p-aramid fabrics. Polyr 2020, 91, 106830.	r weight of ner Testing,	2.3	13
201	Non-Newtonian rheology in inertial suspensions of inelastic rough hard spheres under flow. Physics of Fluids, 2020, 32, 073315.	simple shear	1.6	9
202	A constitutive model for sheared dense suspensions of rough particles. Journal of Rhec 1107-1120.	logy, 2020, 64,	1.3	13
203	Shear-induced ordering in liquid microjets seen by x-ray cross correlation analysis. Stru Dynamics, 2020, 7, 054901.	ctural	0.9	5
204	Mixed-mode self-oscillations, stochastic excitability, and coherence resonance in flows concentrated suspensions. Nonlinear Dynamics, 2020, 102, 1837-1848.	of highly	2.7	9
205	Dilatancy in dense suspensions of model hard-sphere-like colloids under shear and exte Journal of Rheology, 2020, 64, 1179-1196.	nsional flow.	1.3	19
206	Integration through transients approach to the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>μ<Review E, 2020, 102, 032602.</mml:mi></mml:mrow></mml:math 	nl:mi> <mml:mo>(<td>o><mml:n< td=""><td>ni)₈Tj ETQq1</td></mml:n<></td></mml:mo>	o> <mml:n< td=""><td>ni)₈Tj ETQq1</td></mml:n<>	ni) ₈ Tj ETQq1
207	Particle Surface Roughness as a Design Tool for Colloidal Systems. Langmuir, 2020, 36	, 11171-11182.	1.6	15
208	Flow-Spurt Transition under Shear Deformation of Concentrated Suspensions. Colloid 82, 408-413.	Journal, 2020,	0.5	1
209	Shear Stiffening Gels for Intelligent Anti-impact Applications. Cell Reports Physical Scie 100266.	nce, 2020, 1,	2.8	52
210	Ultrastructure of Critical-Gel-like Polyzwitterion–Polyoxometalate Complex Coacerva Temperature, Salt Concentration, and Shear. Macromolecules, 2020, 53, 10972-10980	ates: Effects of D.	2.2	4
211	Enskog kinetic theory of rheology for a moderately dense inertial suspension. Physical 102, 022907.	Review E, 2020,	0.8	10
212	Investigation of Silica-Based Shear Thickening Fluid in Enhancing Composite Impact Re Composite Materials, 2020, 27, 209-229.	sistance. Applied	1.3	13
213	Discontinuous shear thickening in concentrated mixtures of isotropic-shaped and rod- tested through mixer type rheometry. Journal of Rheology, 2020, 64, 817-836.	ike particles	1.3	5
214	Applicability of Modified Cox-Merz Rule to Concentrated Suspensions. Journal of Non-I Fluid Mechanics, 2020, 282, 104322.	Newtonian	1.0	6
215	Shear Thickening and Jamming of Dense Suspensions: The "Roll―of Friction. Physi 2020, 124, 248005.	cal Review Letters,	2.9	80
216	Modeling stress relaxation in dense, fine-particle suspensions. Journal of Rheology, 202	20, 64, 367-377.	1.3	4

		CITATION RE	PORT	
#	Article		IF	CITATIONS
217	Shear thickening of suspensions of dimeric particles. Journal of Rheology, 2020, 64, 23	9-254.	1.3	2
218	Stress fluctuations and shear thickening in dense granular suspensions. Journal of Rhe 64, 321-328.	ology, 2020,	1.3	17
219	A hydrodynamic model for discontinuous shear-thickening in dense suspensions. Jourr 2020, 64, 379-394.	al of Rheology,	1.3	26
220	Unifying viscous and inertial regimes of discontinuous shear thickening suspensions. J Rheology, 2020, 64, 255-266.	burnal of	1.3	9
221	Investigating the nature of discontinuous shear thickening: Beyond a mean-field descr of Rheology, 2020, 64, 329-341.	ption. Journal	1.3	10
222	Shear jamming, discontinuous shear thickening, and fragile states in dry granular mate oscillatory shear. Physical Review E, 2020, 101, 032905.	rials under	0.8	18
223	Roughness induced shear thickening in frictional non-Brownian suspensions: A numeri Journal of Rheology, 2020, 64, 283-297.	cal study.	1.3	13
224	Experimental test of a frictional contact model for shear thickening in concentrated co suspensions. Journal of Rheology, 2020, 64, 267-282.	lloidal	1.3	23
225	Stability and rheological properties of silica suspensions in water- immiscible liquids. A Colloid and Interface Science, 2020, 278, 102139.	dvances in	7.0	7
226	Penetration and bouncing during impact in shallow cornstarch suspensions. Granular I 22, 1.	Matter, 2020,	1.1	0
227	Role of particle orientational order during shear thickening in suspensions of colloidal Physical Review E, 2020, 101, 040601.	rods.	0.8	7
228	Mixing and finger morphologies in miscible non-Newtonian solution displacement. Exp Fluids, 2020, 61, 1.	eriments in	1.1	6
229	Flow-to-fracture transition and pattern formation in a discontinuous shear thickening Communications Physics, 2020, 3, .	luid.	2.0	19
230	Simulation and experimental study on polishing of spherical steel by non-Newtonian fl International Journal of Advanced Manufacturing Technology, 2020, 107, 763-773.	uids.	1.5	19
231	Unsteady flow, clusters, and bands in a model shear-thickening fluid. Physical Review E 012602.	, 2020, 101,	0.8	9
232	Continuous shear thickening and discontinuous shear thickening of concentrated mor silica slurry. Advanced Powder Technology, 2020, 31, 1659-1664.	nodispersed	2.0	15
233	The CNT/PSt-EA/Kevlar composite with excellent ballistic performance. Composites Par 2020, 185, 107793.	t B: Engineering,	5.9	51
234	Rheological and energy absorption characteristics of a concentrated shear thickening various temperatures. International Journal of Impact Engineering, 2020, 139, 103525	fluid at 	2.4	22

#	Article	IF	CITATIONS
235	Dynamic and Programmable Cellular-Scale Granules Enable Tissue-like Materials. Matter, 2020, 2, 948-964.	5.0	30
236	The influence of the curing process on the shear thickening performance of RMG and property optimization. RSC Advances, 2020, 10, 12197-12205.	1.7	5
237	Machining parameter optimization in shear thickening polishing of gear surfaces. Journal of Materials Research and Technology, 2020, 9, 5112-5126.	2.6	71
238	Shear thickening fluid damper and its application to vibration mitigation of stay cable. Structures, 2020, 26, 214-223.	1.7	27
239	Modulating porosity and mechanical properties of pectin hydrogels by starch addition. Journal of Food Science and Technology, 2021, 58, 302-310.	1.4	10
240	Manufacturing of dilatant fluid embodied Kevlar-Glass-hybrid-3D-fabric sandwich composite panels for the enhancement of ballistic impact resistance. Chemical Engineering Journal, 2021, 406, 127102.	6.6	18
241	Tunable discontinuous shear thickening in capillary flow of MR suspensions. Journal of Intelligent Material Systems and Structures, 2021, 32, 1349-1357.	1.4	3
242	Vibration-free surface finish in the milling of a thin-walled cavity part using a corn starch suspension. Journal of Materials Processing Technology, 2021, 290, 116980.	3.1	12
243	Turning a yield-stress calcite suspension into a shear-thickening one by tuning inter-particle friction. Rheologica Acta, 2021, 60, 97-106.	1.1	17
244	Oleogelation of rapeseed oil with cellulose fibers as an innovative strategy for palm oil substitution in chocolate spreads. Journal of Food Engineering, 2021, 292, 110315.	2.7	12
245	Complex fluids in animal survival strategies. Soft Matter, 2021, 17, 3022-3036.	1.2	15
246	Relation between dilation and stress fluctuations in discontinuous shear thickening suspensions. Physical Review E, 2021, 103, 012603.	0.8	9
247	Finsler geometry modeling of complex fluids: reduction in viscous resistance. Journal of Physics: Conference Series, 2021, 1730, 012036.	0.3	2
248	Gelling Properties. , 2021, , 119-170.		3
249	From Diagnosis to Treatment: Recent Advances in Patient-Friendly Biosensors and Implantable Devices. ACS Nano, 2021, 15, 1960-2004.	7.3	171
250	Abuseâ€Tolerant Electrolytes for Lithiumâ€Ion Batteries. Advanced Science, 2021, 8, e2003694.	5.6	16
251	An empirical equation for shear viscosity of shear thickening fluids. Journal of Molecular Liquids, 2021, 325, 115220.	2.3	34
252	Shear localization in large amplitude oscillatory shear (LAOS) flows of particulate suspensions. Physical Review Fluids, 2021, 6, .	1.0	0

# 253	ARTICLE Influence of particle shape and sample preparation on shear thickening behavior of precipitated	IF 2.0	Citations
254	Exploring the roles of roughness, friction and adhesion in discontinuous shear thickening by means of thermo-responsive particles. Nature Communications, 2021, 12, 1477.	5.8	44
255	Altering and eliminating irreversible shear thickening of fumed silica slurries using spherical silica. Rheologica Acta, 2021, 60, 251-262.	1.1	4
256	Impact-induced hardening in dense frictional suspensions. Physical Review Fluids, 2021, 6, .	1.0	5
257	XPCS Microrheology and Rheology of Sterically Stabilized Nanoparticle Dispersions in Aprotic Solvents. ACS Applied Materials & amp; Interfaces, 2021, 13, 14267-14274.	4.0	6
258	Microstructure and rheology of shear-thickening colloidal suspensions with varying interparticle friction: Comparison of experiment with theory and simulation models. Physics of Fluids, 2021, 33, .	1.6	23
259	Rheology of Colloidal Glasses and Gels. , 2021, , 173-226.		11
260	Fluctuations and like-torque clusters at the onset of the discontinuous shear thickening transition in granular materials. Communications Physics, 2021, 4, .	2.0	6
261	Ultrafast viscosity measurement with ballistic optical tweezers. Nature Photonics, 2021, 15, 386-392.	15.6	25
262	Shear jamming onset in dense granular suspensions. Journal of Rheology, 2021, 65, 419-426.	1.3	6
263	Aging of cornstarch particles suspended in aqueous solvents at room temperature. Physical Review E, 2021, 103, 052609.	0.8	3
264	Design and Performance Test of a Magnetic Rate Controlled Stage Damper. Frontiers in Materials, 2021, 8, .	1.2	1
265	Time-Dependent Viscous Flow Behavior of a Hydrophobic Fumed Silica Suspension. Processes, 2021, 9, 807.	1.3	4
266	Effect of fine coke particles on rheological properties of the binder matrix of carbon anodes in aluminium production process. Canadian Journal of Chemical Engineering, 2022, 100, .	0.9	1
267	Particle-Level Visualization of Hydrodynamic and Frictional Couplings in Dense Suspensions of Spherical Colloids. Physical Review X, 2021, 11, .	2.8	6
268	Tuning of shear thickening behavior and elastic strength of polyvinylidene fluoride via doping of <scp>ZnOâ€graphene</scp> . Journal of Applied Polymer Science, 2021, 138, 51260.	1.3	8
269	Unifying disparate rate-dependent rheological regimes in non-Brownian suspensions. Physical Review E, 2021, 103, 062610.	0.8	16
270	Characterization of the rheological behaviors and mechanical properties of fabrics impregnated by different shear thickening fluids at changing temperatures. Smart Materials and Structures, 2021, 30, 085009.	1.8	5

#	Article	IF	CITATIONS
271	Intralayer interfacial sliding effect on the anti-impact performance of STF/Kevlar composite fabric. Composites Part A: Applied Science and Manufacturing, 2021, 145, 106401.	3.8	28
272	Getting jammed in all directions: Dynamic shear jamming around a cylinder towed through a dense suspension. Physical Review Fluids, 2021, 6, .	1.0	7
273	Study on strain stiffening of non-colloidal suspension in oscillating shear by a subsequent steady shear test. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 618, 126401.	2.3	7
274	Spatial Crossover Between Far-From-Equilibrium and Near-Equilibrium Dynamics in Locally Driven Suspensions. Physical Review Letters, 2021, 127, 038003.	2.9	3
275	Research on the rheological characteristic of magnetorheological shear thickening fluid for polishing process. International Journal of Advanced Manufacturing Technology, 2021, 117, 413-423.	1.5	13
276	The Manufacture of Unbreakable Bionics via Multifunctional and Selfâ€Healing Silk–Graphene Hydrogels. Advanced Materials, 2021, 33, e2100047.	11.1	87
277	Viscous-like forces control the impact response of shear-thickening dense suspensions. Journal of Fluid Mechanics, 2021, 923, .	1.4	7
278	Viscoelastic response of impact process on dense suspensions. Physics of Fluids, 2021, 33, 093110.	1.6	2
279	An optimization-based design approach for a novel self-adjuster using shear thickening fluid. Structural and Multidisciplinary Optimization, 2021, 64, 4161-4179.	1.7	3
280	Ballistic performance of B4C/STF/Twaron composite fabric. Composite Structures, 2022, 279, 114754.	3.1	17
281	Oscillating sessile liquid marble - A tool to assess effective surface tension. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127176.	2.3	10
282	Numerical simulations of dense granular suspensions in laminar flow under constant and varying shear rates. Computers and Fluids, 2021, 230, 105115.	1.3	2
283	Advances in the Rheological Characterization of Slurries of Elongated Particles. KONA Powder and Particle Journal, 2022, , .	0.9	1
284	Liquid or solid? a biologically inspired concentrated suspension for protective coating. Chemical Engineering Journal, 2022, 428, 131793.	6.6	13
285	Shear stress dependence of force networks in 3D dense suspensions. Soft Matter, 2021, 17, 7476-7486.	1.2	9
286	Ballistic Performance of Shear Thickening Fluids (STFs) Filled Paper Honeycomb Panel: Effects of Laminating Sequence and Rheological Property of STFs. Applied Composite Materials, 2021, 28, 201-218.	1.3	14
287	Dropwise Additive Manufacturing using Particulate Suspensions: Feasible Operating Space and Throughput Rates. Computer Aided Chemical Engineering, 2017, 40, 1207-1212.	0.3	4
288	Rate-dependent viscoelasticity of an impact-hardening polymer under oscillatory shear. Materials Research Express, 2020, 7, 075701.	0.8	2

# 289	ARTICLE Enhancing shear thickening. Physical Review Fluids, 2017, 2, .	IF 1.0	Citations 28
290	Analog of discontinuous shear thickening flows under confining pressure. Physical Review Fluids, 2017, 2, .	1.0	24
291	Giant deviation of a relaxation time from generalized Newtonian theory in discontinuous shear thickening suspensions. Physical Review Fluids, 2017, 2, .	1.0	24
292	Shear fronts in shear-thickening suspensions. Physical Review Fluids, 2018, 3, .	1.0	31
293	Micromechanics of intruder motion in wet granular medium. Physical Review Fluids, 2018, 3, .	1.0	16
294	Lubricated-to-frictional shear thickening scenario in dense suspensions. Physical Review Fluids, 2018, 3, .	1.0	45
295	Dynamic jamming of dense suspensions under tilted impact. Physical Review Fluids, 2019, 4, .	1.0	12
296	Capillary bulldozing of sedimented granular material confined in a millifluidic tube. Physical Review Fluids, 2020, 5, .	1.0	4
297	Jamming transition and emergence of fracturing in wet granular media. Physical Review Research, 2020, 2, .	1.3	20
298	Rotational Rheometry of a Fumed Silica Lubricating Grease. Journal of Tribology, 2020, 142, .	1.0	7
299	Influences of medium and temperature on the shear thickening behavior of nano fumed silica colloids. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 068301.	0.2	5
300	Effect of shear thickening gel on structure and properties of flexible polyurethane foam. Smart Materials and Structures, 2021, 30, 125008.	1.8	2
301	Jamming Distance Dictates Colloidal Shear Thickening. Physical Review Letters, 2021, 127, 158002.	2.9	23
302	Characterizing the surface texture of a dense suspension undergoing dynamic jamming. Experiments in Fluids, 2021, 62, 1.	1.1	0
303	Collision of dynamic jamming fronts in a dense suspension. Physical Review Fluids, 2021, 6, .	1.0	0
304	Concerted effect of boron and porosity on shear thickening behavior of hybrid mesoporous silica dispersions. Materials Today Chemistry, 2021, 22, 100565.	1.7	2
305	The Essential Role of Frictional Contact in Shear Thickening. Japanese Journal of Multiphase Flow, 2014, 28, 296-303.	0.1	1
306	TURBULENT MIXING IN NON-NEWTONIAN DISPERSIONS. , 0, , .		0

#	ARTICLE	IF	CITATIONS
307	Modelling of the Plastisol Knife Over Roll Coating Process. International Polymer Processing, 2017, 32, 555-561.	0.3	0
308	Enhanced Kevlar-based triboelectric nanogenerator with anti-impact and sensing performance towards wireless alarm system. Nano Energy, 2022, 91, 106657.	8.2	18
309	Potential of Chickpea Flours with Different Microstructures as Multifunctional Ingredient in an Instant Soup Application. Foods, 2021, 10, 2622.	1.9	5
310	Modeling Shear Fronts in One Dimension. Springer Theses, 2020, , 41-60.	0.0	0
311	Rheology in the Shear Jamming Regime. Springer Theses, 2020, , 61-70.	0.0	0
314	Capillary flow of a suspension in the presence of discontinuous shear thickening. Rheologica Acta, 2022, 61, 1-12.	1.1	5
315	Investigation of liquid marble shell using Xâ€ray: shell thickness and effective surface tension. ChemNanoMat, 2022, 8, .	1.5	4
316	Mechanical properties of magneto-sensitive shear thickening fluid absorber and application potential in a vehicle. Composites Part A: Applied Science and Manufacturing, 2022, 154, 106782.	3.8	16
317	Simulation study on polishing of gear surfaces in non-Newtonian fluid. Science & Technology Development Journal - Engineering and Technology, 2020, 3, First.	0.1	0
318	Origin of nonlinear force distributions in a composite system. Scientific Reports, 2022, 12, 632.	1.6	3
319	Influence of geometry constraint in finite space on impact resistance of shear thickening fluid. Smart Materials and Structures, 2022, 31, 035022.	1.8	3
320	Primary breakup of shearâ€ŧhickening suspension jet by an annular air jet. AICHE Journal, 2022, 68, .	1.8	3
321	Shape-Stable Composites of Electrospun Nonwoven Mats and Shear-Thickening Fluids. ACS Applied Materials & Interfaces, 2022, 14, 8373-8383.	4.0	5
322	Quantitative analysis of mercury in liquid samples using laser-induced breakdown spectroscopy combined with shear thickening fluid. Journal of Analytical Atomic Spectrometry, 2022, 37, 1023-1031.	1.6	3
324	Cavitation bubble dynamics in a shear-thickening fluid. Physical Review Fluids, 2022, 7, .	1.0	5
325	Nonlinear Rheology in Dense Suspensions. Nihon Reoroji Gakkaishi, 2022, 50, 63-67.	0.2	1
326	Study of DNA/RNA Aggregation Linked to Cadmium Oxide (CdO) Nanoparticles by Aryl Mercaptanes with Various Chain Length. Earthline Journal of Chemical Sciences, 0, , 13-34.	0.0	1
327	Study on the shear thickening mechanism of multifunctional shear thickening gel and its energy dissipation under impact load. Polymer, 2022, 247, 124800.	1.8	15

#	Article	IF	CITATIONS
328	Size-dependent filling effect of crystalline celluloses in structural engineering of composite oleogels. LWT - Food Science and Technology, 2022, 160, 113331.	2.5	7
329	A study on the mechanical polishing technique by using shear thickening fluids. Journal of Micromechanics and Molecular Physics, 2021, 06, 25-29.	0.7	2
330	Rheometric Flows of Concentrated Suspensions of Solid Particles. Journal of Applied Mechanics and Technical Physics, 2021, 62, 1165-1175.	0.1	0
331	Microstructure of the fluid particles around the rigid body at the shear-thickening state toward understanding of the fluid mechanics. Scientific Reports, 2021, 11, 24204.	1.6	1
333	Effect of graphene oxide doping on the room temperature shear and dynamic rheological behaviour of PVDF. Journal of Dispersion Science and Technology, 2023, 44, 1237-1247.	1.3	3
334	Fumed Silica-Based Suspensions for Shear Thickening Applications: A Full-Scale Rheological Study. Langmuir, 2022, 38, 5006-5019.	1.6	11
336	Minimum principle for the flow of inelastic non-Newtonian fluids in macroscopic heterogeneous porous media. Physical Review Fluids, 2022, 7, .	1.0	1
337	Complex viscous behaviour of a hydrophilic fumed silica suspension: Temperature and particle concentration influence. Journal of Molecular Liquids, 2022, 359, 119349.	2.3	4
338	Influence of molecular weight and concentration of carboxymethyl cellulose on rheological properties of concentrated anode slurries for lithium-ion batteries. Jcis Open, 2022, 6, 100048.	1.5	10
339	Evaluation of deep eutectic solvent pretreatment towards efficacy of enzymatic saccharification using multivariate analysis techniques. Journal of Cleaner Production, 2022, 360, 132239.	4.6	18
340	Microstructure of continuous shear thickening colloidal suspensions determined by rheo-VSANS and rheo-USANS. Soft Matter, 2022, 18, 4325-4337.	1.2	4
341	Stress-activated constraints in dense suspension rheology. Physical Review Fluids, 2022, 7, .	1.0	7
342	Effect of adhesive interaction on strain stiffening and dissipation in granular gels undergoing yielding. Communications Physics, 2022, 5, .	2.0	4
343	Darcy-Reynolds forces during intrusion into granular-fluid beds. Physical Review Fluids, 2022, 7, .	1.0	0
344	Promising aqueous dispersions of carbon black for semisolid flow battery application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129376.	2.3	5
345	Shear thickening in dense suspension: A master-curve and "roll―of friction. , 2022, 3, 100028.		2
346	Influence of Machining Conditions on Friction in Abrasive Flow Machining Process – A Review. MATEC Web of Conferences, 2022, 357, 03007.	0.1	1
347	Origin of Two Distinct Stress Relaxation Regimes in Shear Jammed Dense Suspensions. Physical Review Letters, 2022, 128, .	2.9	3

#	Article	IF	CITATIONS
348	Lasting effects of discontinuous shear thickening in cornstarch suspensions upon flow cessation. Physical Review Fluids, 2022, 7, .	1.0	4
349	Rheology and microstructure of discontinuous shear thickening suspensions. Journal of Rheology, 2022, 66, 731-747.	1.3	6
350	In Situ Observation of Shear-Induced Jamming Front Propagation during Low-Velocity Impact in Polypropylene Glycol/Fumed Silica Shear Thickening Fluids. Polymers, 2022, 14, 2768.	2.0	1
351	Scaling Analysis of Shear Thickening Suspensions. Frontiers in Physics, 0, 10, .	1.0	2
352	Puncture resistance behaviors and efficiencies of angle-interlock fabrics impregnated with shear thickening fluids. Journal of Materials Research and Technology, 2022, 20, 415-427.	2.6	3
353	Designing Stress-Adaptive Dense Suspensions Using Dynamic Covalent Chemistry. Macromolecules, 2022, 55, 6453-6461.	2.2	11
354	Ultrastable Shear-Jammed Granular Material. Physical Review X, 2022, 12, .	2.8	3
355	Jet instability of suspensions of different shaped particles exhibiting discontinuous shear thickening. Journal of Rheology, 2022, 66, 1005-1026.	1.3	1
356	Forced vibration mechanism and suppression method for thin-walled workpiece milling. International Journal of Mechanical Sciences, 2022, 230, 107553.	3.6	15
357	Energy polydisperse 2d Lennard–Jones fluid in the presence of flow field. Pramana - Journal of Physics, 2022, 96, .	0.6	0
358	The shattering of abrupt shear thickening suspension jet in an air-blast atomizer. International Journal of Multiphase Flow, 2022, 157, 104249.	1.6	1
359	Coexistence of solid and liquid phases in shear jammed colloidal drops. Communications Physics, 2022, 5, .	2.0	3
360	Shear thickening fabric composites for impact protection: a review. Textile Reseach Journal, 2023, 93, 1419-1444.	1.1	7
361	Discontinuous shear thickening (DST) transition with spherical iron particles coated by adsorbed brush polymer. Physics of Fluids, 0, , .	1.6	1
362	Effect of water to binder ratio, polycarboxylate superplasticizer and metakaolin dosages on rheological and viscoelastic properties of fresh metakaolin-air lime pastes. Journal of Building Engineering, 2022, 62, 105351.	1.6	5
363	Stab-Resistant Performance of the Well-Engineered Soft Body Armor Materials Using Shear Thickening Fluid. Molecules, 2022, 27, 6799.	1.7	2
364	Shear thickening properties of nano SiO ₂ /PEG dispersion system under impact loading. Waves in Random and Complex Media, 0, , 1-27.	1.6	1
365	Flexible and lightweight Kevlar composites towards flame retardant and impact resistance with excellent thermal stability. Chemical Engineering Journal, 2023, 452, 139565.	6.6	15

#	Article	IF	CITATIONS
366	Shear jamming and fragility in fractal suspensions under confinement. Soft Matter, 0, , .	1.2	0
367	Shear thickening in dense bidisperse suspensions. Journal of Rheology, 2023, 67, 91-104.	1.3	5
368	Universal scaling for disordered viscoelastic matter near the onset of rigidity. Physical Review E, 2022, 106, .	0.8	3
369	Granular piston-probing in microgravity: powder compression, from densification to jamming. Npj Microgravity, 2022, 8, .	1.9	4
370	Non-Newtonian fluid gating membranes with acoustically responsive and self-protective gas transport control. Materials Horizons, 2023, 10, 899-907.	6.4	2
371	Anisotropic flocculation in shear thickening colloid-polymer suspension via simultaneous observation of rheology and X-ray scattering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658, 130727.	2.3	2
372	Magnetically tunable rheological properties of PVDF doped with superparamagnetic Fe3O4 nanoparticles synthesized by rapid microwave method. Journal of Physics and Chemistry of Solids, 2023, 174, 111137.	1.9	6
373	Tensor electromagnetism and emergent elasticity in jammed solids. Physical Review E, 2022, 106, .	0.8	5
374	Advances in Organic Rheology-Modifiers (Chemical Admixtures) and Their Effects on the Rheological Properties of Cement-Based Materials. Materials, 2022, 15, 8730.	1.3	2
375	Rheology of 3D printable ceramic suspensions: effects of non-adsorbing polymer on discontinuous shear thickening. Soft Matter, 2023, 19, 882-891.	1.2	4
376	Climbing Colloidal Suspension. Liquids, 2023, 3, 40-47.	0.8	0
377	The rheological performance of shear-thickening fluids based on carbon fiber and silica nanocomposite. Physics of Fluids, 2023, 35, .	1.6	58
378	Large-size Si3N4 ceramic fabricated by additive manufacturing using long-term stable hydrogel-based suspensions. Additive Manufacturing, 2023, 69, 103534.	1.7	0
379	Effect of shear thickening gel on microstructure and impact resistance of ethylene–vinyl acetate foam. Composite Structures, 2023, 311, 116811.	3.1	9
380	Characterizing the rheology of lamellar gel networks with optical coherence tomography velocimetry. Journal of Rheology, 2023, 67, 589-600.	1.3	0
381	An impact-resistant and flame-retardant CNTs/STF/Kevlar composite with conductive property for safe wearable design. Composites Part A: Applied Science and Manufacturing, 2023, 168, 107489.	3.8	10
382	Capillary-Stress Controlled Rheometer Reveals the Dual Rheology of Shear-Thickening Suspensions. Physical Review X, 2023, 13, .	2.8	2
383	Preparation of STF-loaded micron scale polyurethane polyurea double layer microcapsules and study on the mechanical properties of composites. RSC Advances, 2023, 13, 7385-7391.	1.7	0

#	ARTICLE	IF	CITATIONS
384	Shear Thickening Fluid in Surface Finishing Operations. , 2023, , 99-114.		1
385	Rheology of Shear Thickening Fluid. , 2023, , 3-32.		0
395	Conductive Shear Thickening Fluids for Multifunctional Purposes. , 2023, , 13-25.		2
407	Twenty-five years of the jamming phase diagram. Nature Reviews Physics, 0, , .	11.9	0
419	Smart Polishing with Shear Thickening Fluid. , 2024, , 71-86.		0

Smart Polishing with Shear Thickening Fluid. , 2024, , 71-86. 419