Copper Signaling Axis as a Target for Prostate Cancer T

Cancer Research 74, 5819-5831 DOI: 10.1158/0008-5472.can-13-3527

Citation Report

#	Article	IF	CITATIONS
1	Copper unlocks therapeutic potential of disulfiram. Nature Reviews Urology, 2014, 11, 664-664.	3.8	6
2	Heterogeneous copper concentrations in cancerous human prostate tissues. Prostate, 2015, 75, 1510-1517.	2.3	22
3	Crystal Structure and Behavior in Solution of [Cu(HBPA)2]Cl2·4H2O [HBPAÂ=Â(2-hydroxybenzyl-2-pyridylmethyl)amine]. Journal of Chemical Crystallography, 2015, 45, 476-483.	1.1	6
4	Pharmacological activity of metal binding agents that alter copper bioavailability. Dalton Transactions, 2015, 44, 8760-8770.	3.3	76
5	Mechanistic basis of a combination d-penicillamine and platinum drugs synergistically inhibits tumor growth in oxaliplatin-resistant human cervical cancer cells in vitro and in vivo. Biochemical Pharmacology, 2015, 95, 28-37.	4.4	28
6	Induction of apoptosis in leukemia cell lines by new copper(II) complexes containing naphthyl groups via interaction with death receptors. Journal of Inorganic Biochemistry, 2015, 153, 68-87.	3.5	25
7	Targeting copper in cancer therapy: â€~Copper That Cancer'. Metallomics, 2015, 7, 1459-1476.	2.4	567
8	The cytotoxic mechanisms of disulfiram and copper(ii) in cancer cells. Toxicology Research, 2015, 4, 1439-1442.	2.1	66
9	Desferal regulates hCtr1 and transferrin receptor expression through Sp1 and exhibits synergistic cytotoxicity with platinum drugs in oxaliplatin-resistant human cervical cancer cells <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2016, 7, 49310-49321.	1.8	19
10	Copper as a target for prostate cancer therapeutics: copper-ionophore pharmacology and altering systemic copper distribution. Oncotarget, 2016, 7, 37064-37080.	1.8	69
11	Disulfiram when Combined with Copper Enhances the Therapeutic Effects of Temozolomide for the Treatment of Glioblastoma. Clinical Cancer Research, 2016, 22, 3860-3875.	7.0	142
12	Copper supplementation amplifies the anti-tumor effect of curcumin in oral cancer cells. Phytomedicine, 2016, 23, 1535-1544.	5.3	31
13	In vivo effect of copper status on cisplatin-induced nephrotoxicity. BioMetals, 2016, 29, 841-849.	4.1	7
14	InÂvitro and inÂvivo studies of the antineoplastic activity of copper (II) compounds against human leukemia THP-1 and murine melanoma B16-F10Âcell lines. European Journal of Medicinal Chemistry, 2016, 123, 128-140.	5.5	38
15	The comparative effects of diethyldithiocarbamate–copper complex with established proteasome inhibitors on expression levels of <scp>CYP</scp> 1A2/3A4 and their master regulators, aryl hydrocarbon and pregnane X receptor in primary cultures of human hepatocytes. Fundamental and Clinical Pharmacology, 2016, 30, 585-595.	1.9	4
16	Behind the Link between Copper and Angiogenesis: Established Mechanisms and an Overview on the Role of Vascular Copper Transport Systems. Journal of Vascular Research, 2015, 52, 172-196.	1.4	115
17	Dynamic internalization and recycling of a metal ion transporter: Cu homeostasis and hCTR1, the human Cu uptake system. Journal of Cell Science, 2016, 129, 1711-21.	2.0	50
18	Developing drugs targeting transition metal homeostasis. Current Opinion in Chemical Biology, 2017, 37, 26-32.	6.1	68

ATION RED

#	Article	IF	CITATIONS
19	An unlikely DNA cleaving agent: A photo-active trinuclear Cu(II) complex based on hexaazatriphenylene. Journal of Inorganic Biochemistry, 2017, 168, 55-66.	3.5	6
20	Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature, 2017, 552, 194-199.	27.8	516
21	Recent views of heavy metals as possible risk factors and potential preventive and therapeutic agents in prostate cancer. Molecular and Cellular Endocrinology, 2017, 457, 57-72.	3.2	42
22	Poly lactic-co-glycolic acid controlled delivery of disulfiram to target liver cancer stem-like cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 641-657.	3.3	68
23	Cuprous oxide nanoparticles inhibit prostate cancer by attenuating the stemness of cancer cells via inhibition of the Wnt signaling pathway. International Journal of Nanomedicine, 2017, Volume 12, 2569-2579.	6.7	28
24	Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nature Reviews Urology, 2018, 15, 271-286.	3.8	273
25	The emerging role of copper-64 radiopharmaceuticals as cancer theranostics. Drug Discovery Today, 2018, 23, 1489-1501.	6.4	74
26	16. Copper Complexes in Cancer Therapy. , 2018, 18, 469-506.		36
27	Biokinetic and dosimetric aspects of 64CuCl2 in human prostate cancer: possible theranostic implications. EJNMMI Research, 2018, 8, 18.	2.5	29
28	Copper signaling in the brain and beyond. Journal of Biological Chemistry, 2018, 293, 4628-4635.	3.4	121
29	Flavonoids-induced redox cycling of copper ions leads to generation of reactive oxygen species: A potential role in cancer chemoprevention. International Journal of Biological Macromolecules, 2018, 106, 569-578.	7.5	54
30	A New Type of Prostate Cancer Imaging: Will 64CuCl2 PET/CT Flourish or Vanish?. Journal of Nuclear Medicine, 2018, 59, 442-443.	5.0	5
31	Balancing nanotoxicity and returns in health applications: The Prisoner's Dilemma. Toxicology, 2018, 393, 83-89.	4.2	7
32	Iron and Copper Intracellular Chelation as an Anticancer Drug Strategy. Inorganics, 2018, 6, 126.	2.7	64
33	Anti-cancer effects of disulfiram in head and neck squamous cell carcinoma via autophagic cell death. PLoS ONE, 2018, 13, e0203069.	2.5	31
34	Drug Repositioning for Effective Prostate Cancer Treatment. Frontiers in Physiology, 2018, 9, 500.	2.8	85
35	Investigation of the key chemical structures involved in the anticancer activity of disulfiram in A549 non-small cell lung cancer cell line. BMC Cancer, 2018, 18, 753.	2.6	31
36	Leveraging γâ€Glutamyl Transferase To Direct Cytotoxicity of Copper Dithiocarbamates against Prostate Cancer Cells. Angewandte Chemie, 2018, 130, 12962-12966.	2.0	8

	CITATION REI	CITATION REPORT	
#	ARTICLE Molecular underpinnings of enzalutamide resistance. Endocrine-Related Cancer, 2018, 25, R545-R557.	IF 3.1	Citations
38	Leveraging γâ€Glutamyl Transferase To Direct Cytotoxicity of Copper Dithiocarbamates against Prostate Cancer Cells. Angewandte Chemie - International Edition, 2018, 57, 12780-12784.	13.8	53
39	Metal/Metal Oxide Nanoparticles for Cancer Therapy. Nanomedicine and Nanotoxicology, 2018, , 341-364.	0.2	11
40	Copper homeostasis as target of both consolidated and innovative strategies of anti-tumor therapy. Journal of Trace Elements in Medicine and Biology, 2019, 55, 204-213.	3.0	56
41	Enhanced Tumor-Specific Disulfiram Chemotherapy by <i>In Situ</i> Cu ²⁺ Chelation-Initiated Nontoxicity-to-Toxicity Transition. Journal of the American Chemical Society, 2019, 141, 11531-11539.	13.7	237
42	ALDH-Dependent Glycolytic Activation Mediates Stemness and Paclitaxel Resistance in Patient-Derived Spheroid Models of Uterine Endometrial Cancer. Stem Cell Reports, 2019, 13, 730-746.	4.8	59
43	Systematic chemical screening identifies disulfiram as a repurposed drug that enhances sensitivity to cisplatin in bladder cancer: a summary of preclinical studies. British Journal of Cancer, 2019, 121, 1027-1038.	6.4	36
44	Neuroendocrine Differentiation of Prostate Cancer—An Intriguing Example of Tumor Evolution at Play. Cancers, 2019, 11, 1405.	3.7	70
45	Anticancer response to disulfiram may be enhanced by co-treatment with MEK inhibitor or oxaliplatin: modulation by tetrathiomolybdate, KRAS/BRAF mutations and c-MYC/p53 status. Ecancermedicalscience, 2019, 13, 890.	1.1	12
46	Blockage of SLC31A1â€dependent copper absorption increases pancreatic cancer cell autophagy to resist cell death. Cell Proliferation, 2019, 52, e12568.	5.3	90
47	Inhibition of ERRα Prevents Mitochondrial Pyruvate Uptake Exposing NADPH-Generating Pathways as Targetable Vulnerabilities in Breast Cancer. Cell Reports, 2019, 27, 3587-3601.e4.	6.4	29
48	Dualâ€timeâ€point ⁶⁴ <scp>Cuâ€PSMA</scp> â€617â€ <scp>PET/CT</scp> in patients suffering fror prostate cancer. Journal of Labelled Compounds and Radiopharmaceuticals, 2019, 62, 523-532.	ⁿ 1.0	22
49	Enhancing the Effect of Pharmacological Ascorbate in Cancer Therapy via Acidâ€īriggered Ferritin Nanoparticles. Advanced Biology, 2019, 3, 1900006.	3.0	3
50	Copper as the Target for Anticancer Nanomedicine. Advanced Therapeutics, 2019, 2, 1800147.	3.2	29
51	12. Copper Depletion as a Therapeutic Strategy in Cancer. , 2019, 19, 303-330.		33
52	Development of Injectable PEGylated Liposome Encapsulating Disulfiram for Colorectal Cancer Treatment. Pharmaceutics, 2019, 11, 610.	4.5	53
53	Targeting genotoxic and proteotoxic stressâ€response pathways in human prostate cancer by clinically available PARP inhibitors, vorinostat and disulfiram. Prostate, 2019, 79, 352-362.	2.3	23
54	Arsenic trioxide encapsulated liposomes prepared via copper acetate gradient loading method and its antitumor efficiency. Asian Journal of Pharmaceutical Sciences, 2020, 15, 365-373.	9.1	13

#	Article	IF	CITATIONS
55	A disulfiram-loaded electrospun poly(vinylidene fluoride) nanofibrous scaffold for cancer treatment. Nanotechnology, 2020, 31, 115101.	2.6	11
56	InÂvitro and inÂvivo antitumoral activity of a ternary copper (II) complex. Biochemical and Biophysical Research Communications, 2020, 533, 1021-1026.	2.1	7
57	The Multifaceted Roles of Copper in Cancer: A Trace Metal Element with Dysregulated Metabolism, but Also a Target or a Bullet for Therapy. Cancers, 2020, 12, 3594.	3.7	126
58	Biomedical applications of copper ionophores. Coordination Chemistry Reviews, 2020, 422, 213474.	18.8	69
59	Copper Complexes as Anticancer Agents Targeting Topoisomerases I and II. Cancers, 2020, 12, 2863.	3.7	97
60	Graphene Oxide Nanosheets Tailored With Aromatic Dipeptide Nanoassemblies for a Tuneable Interaction With Cell Membranes. Frontiers in Bioengineering and Biotechnology, 2020, 8, 427.	4.1	6
61	Cystathionine-β-synthase: Molecular Regulation and Pharmacological Inhibition. Biomolecules, 2020, 10, 697.	4.0	113
62	Epigenetic modulations and lineage plasticity in advanced prostate cancer. Annals of Oncology, 2020, 31, 470-479.	1.2	103
63	Isoquinoline thiosemicarbazone displays potent anticancer activity with in vivo efficacy against aggressive leukemias. RSC Medicinal Chemistry, 2020, 11, 392-410.	3.9	6
64	The Personalisation of Glioblastoma Treatment Using Whole Exome Sequencing: A Pilot Study. Genes, 2020, 11, 173.	2.4	3
65	Dithiocarbamate prodrugs activated by prostate specific antigen to target prostate cancer. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127148.	2.2	12
66	Repurposing old drugs as new inhibitors of the ubiquitin-proteasome pathway for cancer treatment. Seminars in Cancer Biology, 2021, 68, 105-122.	9.6	27
67	Disulfiram: a novel repurposed drug for cancer therapy. Cancer Chemotherapy and Pharmacology, 2021, 87, 159-172.	2.3	68
68	Therapeutic potential of endogenous hydrogen sulfide inhibition in breast cancer (Review). Oncology Reports, 2021, 45, .	2.6	14
69	Age-Related Changes in Zinc, Copper and Selenium Levels in the Human Prostate. Nutrients, 2021, 13, 1403.	4.1	4
70	Therapeutic potential of a copper complex loaded in pH-sensitive long circulating liposomes for colon cancer management. International Journal of Pharmaceutics, 2021, 599, 120463.	5.2	27
71	Association between renin-angiotensin system and chronic lung allograft dysfunction. European Respiratory Journal, 2021, 58, 2002975.	6.7	6
72	Disulfiram and 6-Thioguanine synergistically inhibit the enzymatic activities of USP2 and USP21. International Journal of Biological Macromolecules, 2021, 176, 490-497.	7.5	11

#	Article	IF	CITATIONS
73	Modulation of Intracellular Copper Levels as the Mechanism of Action of Anticancer Copper Complexes: Clinical Relevance. Biomedicines, 2021, 9, 852.	3.2	93
74	Understanding the Therapeutic Potential of Ascorbic Acid in the Battle to Overcome Cancer. Biomolecules, 2021, 11, 1130.	4.0	22
75	Development of lactobionic acid conjugated-copper chelators as anticancer candidates for hepatocellular carcinoma. Arabian Journal of Chemistry, 2021, 14, 103241.	4.9	5
77	Tetraethylthiuram disulphide alleviates pulmonary fibrosis through modulating transforming growth factor-β signalling. Pharmacological Research, 2021, 174, 105923.	7.1	3
78	Hypoxia imaging and theranostic potential of [64Cu][Cu(ATSM)] and ionic Cu(II) salts: a review of current evidence and discussion of the retention mechanisms. EJNMMI Research, 2020, 10, 33.	2.5	34
79	Disulfiram anti-cancer efficacy without copper overload is enhanced by extracellular H2O2 generation: antagonism by tetrathiomolybdate. Oncotarget, 2015, 6, 29771-29781.	1.8	30
80	Two clinical drugs deubiquitinase inhibitor auranofin and aldehyde dehydrogenase inhibitor disulfiram trigger synergistic anti-tumor effects <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2016, 7, 2796-2808.	1.8	57
81	Cancer Pro-oxidant Therapy Through Copper Redox Cycling: Repurposing Disulfiram and Tetrathiomolybdate. Current Pharmaceutical Design, 2020, 26, 4461-4466.	1.9	15
82	Molecular imaging and therapy targeting copper metabolism in hepatocellular carcinoma. World Journal of Gastroenterology, 2016, 22, 221.	3.3	42
83	Copper in tumors and the use of copper-based compounds in cancer treatment. Journal of Inorganic Biochemistry, 2022, 226, 111634.	3.5	109
84	Repurposing Disulfiram for Targeting of Glioblastoma Stem Cells: An In Vitro Study. Biomolecules, 2021, 11, 1561.	4.0	8
85	Repositioning an Old Anti-Alcoholism Drug: Disulfiram as a Selective, Effective and Economical Anticancer Agent. Journal of Developing Drugs, 2016, 05, .	0.9	1
86	Reactive Oxygen Species in Melanoma Etiology. , 2016, , 259-275.		0
87	Leveraging disulfiram to treat cancer: Mechanisms of action, delivery strategies, and treatment regimens. Biomaterials, 2022, 281, 121335.	11.4	57
88	Copper (α)/ <i>cis</i> -platinum-loaded nanogels as an adjuvant potentiate disulfiram's antitumor efficacy. Biomaterials Science, 2022, 10, 1384-1392.	5.4	2
89	Applications of radiocomplexes with thiosemicarbazones and bis(thiosemicarbazones) in diagnostic and therapeutic nuclear medicine. Coordination Chemistry Reviews, 2022, 458, 214418.	18.8	26
90	Overcoming Drug Resistance in Advanced Prostate Cancer by Drug Repurposing. Medical Sciences (Basel, Switzerland), 2022, 10, 15.	2.9	13
91	Recent Advances in Cancer Imaging with 64CuCl2 PET/CT. Nuclear Medicine and Molecular Imaging, 2022, 56, 80-85.	1.0	4

#	Article	IF	CITATIONS
92	Population-level Patterns of Prostate Cancer Occurrence: Disparities in Virginia. Current Molecular Biology Reports, 2022, 8, 1-8.	1.6	0
93	Anti-Cancer Effects of Disulfiram in Cervical Cancer Cell Lines Are Mediated by Both Autophagy and Apoptosis. Bulletin of Experimental Biology and Medicine, 2022, 172, 642-648.	0.8	1
94	Selective Targeting of Cancer Cells by Copper Ionophores: An Overview. Frontiers in Molecular Biosciences, 2022, 9, 841814.	3.5	182
95	Prospective clinical trial of disulfiram plus copper in men with metastatic castrationâ€resistant prostate cancer. Prostate, 2022, 82, 858-866.	2.3	10
96	Essential Elements and Isoflavonoids in the Prevention of Prostate Cancer. Nutrients, 2022, 14, 1225.	4.1	6
97	Anticancer effects of disulfiram in T-cell malignancies through NPL4-mediated ubiquitin–proteasome pathway. Journal of Leukocyte Biology, 2022, 112, 919-929.	3.3	16
98	Copper enhances genotoxic drug resistance via ATOX1 activated DNA damage repair. Cancer Letters, 2022, 536, 215651.	7.2	18
99	Copper depletion modulates mitochondrial oxidative phosphorylation to impair triple negative breast cancer metastasis. Nature Communications, 2021, 12, 7311.	12.8	101
101	Cytotoxic effect of disulfiram/copper on human cervical cancer cell lines and LGR5-positive cancer stem-like cells. BMC Cancer, 2022, 22, 521.	2.6	5
102	Emerging Roles of the Copper–CTR1 Axis in Tumorigenesis. Molecular Cancer Research, 2022, 20, 1339-1353.	3.4	8
103	Cuproptosis-Related Gene – SLC31A1, FDX1 and ATP7B – Polymorphisms are Associated with Risk of Lung Cancer. Pharmacogenomics and Personalized Medicine, 0, Volume 15, 733-742.	0.7	19
104	Pan-cancer analyses confirmed the cuproptosis-related gene FDX1 as an immunotherapy predictor and prognostic biomarker. Frontiers in Genetics, 0, 13, .	2.3	44
105	The combined prognostic model of copper-dependent to predict the prognosis of pancreatic cancer. Frontiers in Genetics, 0, 13, .	2.3	4
106	Cuproptosis-related gene index: A predictor for pancreatic cancer prognosis, immunotherapy efficacy, and chemosensitivity. Frontiers in Immunology, 0, 13, .	4.8	24
107	Cul@graphene as antibody-free fluorosensor for prostate-specific antigen (PSA). Materials Today Chemistry, 2022, 26, 101196.	3.5	0
108	Molecular Subtypes Based on Cuproptosis-Related Genes and Tumor Microenvironment Infiltration Characterization in Colorectal Cancer. Journal of Oncology, 2022, 2022, 1-19.	1.3	2
109	Relationship between copper and immunity: The potential role of copper in tumor immunity. Frontiers in Oncology, 0, 12, .	2.8	22
110	Development of a copper metabolism-related gene signature in lung adenocarcinoma. Frontiers in Immunology, 0, 13, .	4.8	10

#	Article	IF	CITATIONS
111	Effect of Copper Chelators via the TGF-Î ² Signaling Pathway on Glioblastoma Cell Invasion. Molecules, 2022, 27, 8851.	3.8	3
112	The cuproptosis related genes signature predicts the prognosis and correlates with the immune status of clear cell renal cell carcinoma. Frontiers in Genetics, 0, 13, .	2.3	0
113	Cuproptosis-related LncRNAs signature as biomarker of prognosis and immune infiltration in pancreatic cancer. Frontiers in Genetics, 0, 14, .	2.3	1
114	Targeting Copper in Cancer Imaging and Therapy: A New Theragnostic Agent. Journal of Clinical Medicine, 2023, 12, 223.	2.4	11
115	DDTC-Cu(I) based metal-organic framework (MOF) for targeted melanoma therapy by inducing SLC7A11/GPX4-mediated ferroptosis. Colloids and Surfaces B: Biointerfaces, 2023, 225, 113253.	5.0	12
116	Comprehensive analysis of cuproptosis-related prognostic gene signature and tumor immune microenvironment in HCC. Frontiers in Genetics, 0, 14, .	2.3	3
118	Identification of copper metabolism-related subtypes and establishment of the prognostic model in ovarian cancer. Frontiers in Endocrinology, 0, 14, .	3.5	39
119	Copper overload impairs hematopoietic stem and progenitor cell proliferation via prompting HSF1/SP1 aggregation and the subsequently downregulating FOXM1-Cytoskeleton axis. IScience, 2023, 26, 106406.	4.1	6
121	Preparation and anticancer actions of CuET-nanoparticles dispersed by bovine serum albumin. Colloids and Surfaces B: Biointerfaces, 2023, 226, 113329.	5.0	2
122	Plant-derived chelators and ionophores as potential therapeutics for metabolic diseases. Chemical Society Reviews, 0, , .	38.1	0
124	Serum Essential Elements and Survival after Cancer Diagnosis. Nutrients, 2023, 15, 2611.	4.1	2
125	Copper deprivation enhances the chemosensitivity of pancreatic cancer to rapamycin by mTORC1/2 inhibition. Chemico-Biological Interactions, 2023, 382, 110546.	4.0	2
126	The immunomodulatory function and antitumor effect of disulfiram: paving the way for novel cancer therapeutics. Discover Oncology, 2023, 14, .	2.1	2
127	Development and validation of cuproptosis molecular subtype-related signature for predicting immune prognostic characterization in gliomas. Journal of Cancer Research and Clinical Oncology, 2023, 149, 11499-11515.	2.5	0
128	Comprehensive analysis of copper-metabolism-related genes about prognosis and immune microenvironment in osteosarcoma. Scientific Reports, 2023, 13, .	3.3	0
129	Dissecting copper biology and cancer treatment: â€~Activating Cuproptosis or suppressing Cuproplasia'. Coordination Chemistry Reviews, 2023, 495, 215395.	18.8	3
130	Development and validation of cuproptosis-related lncRNAs associated with pancreatic cancer immune microenvironment based on single-cell. Frontiers in Immunology, 0, 14, .	4.8	2
131	Cuproptosis: A novel therapeutic target for overcoming cancer drug resistance. Drug Resistance Updates, 2024, 72, 101018.	14.4	5

#	Article	IF	CITATIONS
132	CHMP4B and VSP4A reverse GSDMD-mediated pyroptosis by cell membrane remodeling in endometrial carcinoma. Biochimica Et Biophysica Acta - General Subjects, 2024, 1868, 130497.	2.4	1
133	CHMP4B and VSP4A reverse CSDMD-mediated pyroptosis by cell membrane remodeling in endometrial carcinoma. BBA Advances, 2023, , 100109.	1.6	0
134	Copper in Gynecological Diseases. International Journal of Molecular Sciences, 2023, 24, 17578.	4.1	1
136	Elements in trace amount with a significant role in human physiology: a tumor pathophysiological and diagnostic aspects. Journal of Drug Targeting, 2024, 32, 270-286.	4.4	0
137	Interplay of Ferroptosis and Cuproptosis in Cancer: Dissecting Metal-Driven Mechanisms for Therapeutic Potentials. Cancers, 2024, 16, 512.	3.7	0
138	Disulfiram: A novel repurposed drug for cancer therapy. Chinese Medical Journal, 0, , .	2.3	0
139	Cuproptosis: Mechanism, role, and advances in urological malignancies. Medicinal Research Reviews, 0, , .	10.5	0
140	Cuproptosis: Unraveling the Mechanisms of Copper-Induced Cell Death and Its Implication in Cancer Therapy. Cancers, 2024, 16, 647.	3.7	0
141	Combination of disulfiram and Copperâ^ Cysteamine nanoparticles induces mitochondria damage and promotes apoptosis in endometrial cancer. Bioactive Materials, 2024, 36, 96-111.	15.6	0
142	Differences in Gut Microbiota Profiles and Microbiota Steroid Hormone Biosynthesis in Men with and Without Prostate Cancer. European Urology Open Science, 2024, 62, 140-150.	0.4	0