m6A RNA Modification Controls Cell Fate Transition in

Cell Stem Cell 15, 707-719

DOI: 10.1016/j.stem.2014.09.019

Citation Report

#	Article	IF	CITATIONS
1	Stem Cell RNA Epigenetics: M6Arking Your Territory. Cell Stem Cell, 2014, 15, 669-670.	5.2	1
2	Long nonâ€coding RNA regulation of reproduction and development. Molecular Reproduction and Development, 2015, 82, 932-956.	1.0	140
3	Milk: an epigenetic amplifier of FTO-mediated transcription? Implications for Western diseases. Journal of Translational Medicine, 2015, 13, 385.	1.8	64
4	Probing RNA Modification Status at Single-Nucleotide Resolution in Total RNA. Methods in Enzymology, 2015, 560, 149-159.	0.4	37
5	N6-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell, 2015, 161, 1388-1399.	13.5	2,446
6	An association study of the m6A genes with major depressive disorder in Chinese Han population. Journal of Affective Disorders, 2015, 183, 279-286.	2.0	93
7	Non-homologous functions of the AlkB homologs. Journal of Molecular Cell Biology, 2015, 7, 494-504.	1.5	52
8	Posttranscriptional modification of messenger RNAs in eukaryotes. Molecular Biology, 2015, 49, 825-836.	0.4	O
9	m ⁶ A mRNA methylation facilitates resolution of na \tilde{A} -ve pluripotency toward differentiation. Science, 2015, 347, 1002-1006.	6.0	1,288
10	m6A RNA Methylation Is Regulated by MicroRNAs and Promotes Reprogramming to Pluripotency. Cell Stem Cell, 2015, 16, 289-301.	5. 2	483
11	Structure and Thermodynamics of N ⁶ -Methyladenosine in RNA: A Spring-Loaded Base Modification. Journal of the American Chemical Society, 2015, 137, 2107-2115.	6.6	331
12	A Me6Age for pluripotency. Science, 2015, 347, 614-615.	6.0	6
13	N6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions. Nature, 2015, 518, 560-564.	13.7	1,482
14	High-Resolution Mapping of N6-Methyladenosine in Transcriptome and Genome Using a Photo-Crosslinking-Assisted Strategy. Methods in Enzymology, 2015, 560, 161-185.	0.4	31
15	Transcriptome-wide measurement of plant RNA secondary structure. Current Opinion in Plant Biology, 2015, 27, 36-43.	3.5	14
16	RNA $\langle i \rangle N \langle i \rangle \langle sup \rangle 6 \langle sup \rangle$ -methyladenosine methylation in post-transcriptional gene expression regulation. Genes and Development, 2015, 29, 1343-1355.	2.7	727
17	Widespread occurrence of <i>N</i> ⁶ -methyladenosine in bacterial mRNA. Nucleic Acids Research, 2015, 43, 6557-6567.	6.5	165
18	Genome-wide detection of high abundance $\langle i \rangle N \langle i \rangle \langle sup \rangle 6 \langle sup \rangle$ -methyladenosine sites by microarray. Rna, 2015, 21, 1511-1518.	1.6	12

#	Article	IF	CITATIONS
19	Preparation of Human Nuclear RNA m6A Methyltransferases and Demethylases and Biochemical Characterization of Their Catalytic Activity. Methods in Enzymology, 2015, 560, 117-130.	0.4	7
20	Transcriptome-Wide Mapping of N6-Methyladenosine by m6A-Seq. Methods in Enzymology, 2015, 560, 131-147.	0.4	23
21	Fate by RNA methylation: m6A steers stem cell pluripotency. Genome Biology, 2015, 16, 43.	3.8	76
22	Structural imprints in vivo decode RNA regulatory mechanisms. Nature, 2015, 519, 486-490.	13.7	639
23	N6-methyladenosine marks primary microRNAs for processing. Nature, 2015, 519, 482-485.	13.7	1,054
24	Epigenetics: major regulators of embryonic neurogenesis. Science Bulletin, 2015, 60, 1734-1743.	4.3	4
25	A majority of m ⁶ A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes and Development, 2015, 29, 2037-2053.	2.7	653
26	From Genomics to Gene Therapy: Induced Pluripotent Stem Cells Meet Genome Editing. Annual Review of Genetics, 2015, 49, 47-70.	3.2	111
27	Coordination of m 6 A mRNA Methylation and Gene Transcription by ZFP217 Regulates Pluripotency and Reprogramming. Cell Stem Cell, 2015, 17, 689-704.	5.2	249
28	The Current State of Na $ ilde{A}$ -ve Human Pluripotency. Stem Cells, 2015, 33, 3181-3186.	1.4	33
29	HNRNPA2B1 Is a Mediator of m6A-Dependent Nuclear RNA Processing Events. Cell, 2015, 162, 1299-1308.	13.5	1,077
30	The Maternal-to-Zygotic Transition During Vertebrate Development. Current Topics in Developmental Biology, 2015, 113, 191-232.	1.0	98
31	Modeling of replicates variances for detecting RNA methylation site in MERIP-SEQ data., 2015,,.		0
32	Structural basis of asymmetric DNA methylation and ATP-triggered long-range diffusion by EcoP15I. Nature Communications, 2015, 6, 7363.	5.8	51
33	Long Noncoding RNAs as Targets and Regulators of Nuclear Receptors. Current Topics in Microbiology and Immunology, 2015, 394, 143-176.	0.7	11
34	Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells. Oncotarget, 2016, 7, 64527-64542.	0.8	215
35	Role of Non-Coding RNAs in the Transgenerational Epigenetic Transmission of the Effects of Reprotoxicants. International Journal of Molecular Sciences, 2016, 17, 452.	1.8	33
36	m6A-LAIC-seq reveals the census and complexity of the m6A epitranscriptome. Nature Methods, 2016, 13, 692-698.	9.0	310

#	ARTICLE	IF	Citations
37	N6-Methyladenosine RNA Modification Regulates Shoot Stem Cell Fate in Arabidopsis. Developmental Cell, 2016, 38, 186-200.	3.1	281
38	m6A modulates neuronal functions and sex determination in Drosophila. Nature, 2016, 540, 242-247.	13.7	453
39	<i>N ⁶ -Methyladenosine Methyltransferases and Demethylases: New Regulators of Stem Cell Pluripotency and Differentiation. Stem Cells and Development, 2016, 25, 1050-1059.	1.1	13
40	Nucleoside modifications in the regulation of gene expression: focus on tRNA. Cellular and Molecular Life Sciences, 2016, 73, 3075-3095.	2.4	106
41	ALKBHs-facilitated RNA modifications and de-modifications. DNA Repair, 2016, 44, 87-91.	1.3	50
43	Recent advances in dynamic m ⁶ A RNA modification. Open Biology, 2016, 6, 160003.	1.5	265
44	<i>N</i> 6â€methyladenosine modification in <scp>mRNA</scp> : machinery, function and implications for health and diseases. FEBS Journal, 2016, 283, 1607-1630.	2.2	167
45	Long Non-coding RNAs in Human Disease. Current Topics in Microbiology and Immunology, 2016, , .	0.7	4
46	Rapid and dynamic transcriptome regulation by RNA editing and RNA modifications. Journal of Cell Biology, 2016, 213, 15-22.	2.3	115
47	RNA modifications: what have we learned and where are we headed?. Nature Reviews Genetics, 2016, 17, 365-372.	7.7	215
48	The m 6 A Methyltransferase METTL3 Promotes Translation in Human Cancer Cells. Molecular Cell, 2016, 62, 335-345.	4.5	1,148
49	N 6-Methyladenosine (m6A) Methylation in mRNA with A Dynamic and Reversible Epigenetic Modification. Molecular Biotechnology, 2016, 58, 450-459.	1.3	101
50	Indispensable role for mouse ELP3 in embryonic stem cell maintenance and early development. Biochemical and Biophysical Research Communications, 2016, 478, 631-636.	1.0	18
51	Exposure to the widely used herbicide atrazine results in deregulation of global tissue-specific RNA transcription in the third generation and is associated with a global decrease of histone trimethylation in mice. Nucleic Acids Research, 2016, 44, gkw840.	6.5	47
52	Post-Transcriptional Modifications of RNA: Impact on RNA Function and Human Health. RNA Technologies, 2016, , 91-130.	0.2	4
53	RNA Modification N 6-Methyladenosine in Post-transcriptional Regulation. RNA Technologies, 2016, , 131-145.	0.2	1
54	Non-coding RNAs in Development and Disease: Background, Mechanisms, and Therapeutic Approaches. Physiological Reviews, 2016, 96, 1297-1325.	13.1	1,426
55	Responses of bovine early embryos to S-adenosyl methionine supplementation in culture. Epigenomics, 2016, 8, 1039-1060.	1.0	18

#	ARTICLE	IF	Citations
56	New Edges of RNA Adenosine Methylation Modifications. Genomics, Proteomics and Bioinformatics, 2016, 14, 172-175.	3.0	2
57	Dynamics of the human and viral m6A RNA methylomes during HIV-1 infection of T cells. Nature Microbiology, 2016, 1, 16011.	5.9	373
58	N6-Methyladenine: A Conserved and Dynamic DNA Mark. Advances in Experimental Medicine and Biology, 2016, 945, 213-246.	0.8	107
59	Update: Mechanisms Underlying N 6 -Methyladenosine Modification of Eukaryotic mRNA. Trends in Genetics, 2016, 32, 763-773.	2.9	50
60	Post-transcriptional modifications in development and stem cells. Development (Cambridge), 2016, 143, 3871-3881.	1.2	66
61	Dynamics of Human and Viral RNA Methylation during Zika Virus Infection. Cell Host and Microbe, 2016, 20, 666-673.	5.1	318
62	YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4–NOT deadenylase complex. Nature Communications, 2016, 7, 12626.	5.8	963
63	Computational Tools for Stem Cell Biology. Trends in Biotechnology, 2016, 34, 993-1009.	4.9	36
64	Epigenetic mechanisms in neurogenesis. Nature Reviews Neuroscience, 2016, 17, 537-549.	4.9	299
65	Messenger RNA modifications: Form, distribution, and function. Science, 2016, 352, 1408-1412.	6.0	479
66	An epigenetic view of developmental diseases: new targets, new therapies. World Journal of Pediatrics, 2016, 12, 291-297.	0.8	20
67	Cracking the epitranscriptome. Rna, 2016, 22, 169-174.	1.6	73
68	Epigenetic regulation of early neural fate commitment. Cellular and Molecular Life Sciences, 2016, 73, 1399-1411.	2.4	13
69	Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m ⁶ A-demethylation of NANOG mRNA. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2047-56.	3.3	807
70	Nuclear m 6 A Reader YTHDC1 Regulates mRNA Splicing. Molecular Cell, 2016, 61, 507-519.	4.5	1,432
71	Nucleic Acid Modifications in Regulation of Gene Expression. Cell Chemical Biology, 2016, 23, 74-85.	2.5	219
72	N6-methyladenosine–encoded epitranscriptomics. Nature Structural and Molecular Biology, 2016, 23, 98-102.	3.6	266
73	RNA binding proteins implicated in Xist-mediated chromosome silencing. Seminars in Cell and Developmental Biology, 2016, 56, 58-70.	2.3	37

#	ARTICLE	IF	CITATIONS
74	N6-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nature Structural and Molecular Biology, 2016, 23, 110-115.	3.6	202
75	N6-Methylated Adenosine in RNA: From Bacteria to Humans. Journal of Molecular Biology, 2016, 428, 2134-2145.	2.0	25
76	A Radioactivity-Based Assay for Screening Human m6A-RNA Methyltransferase, METTL3-METTL14 Complex, and Demethylase ALKBH5. Journal of Biomolecular Screening, 2016, 21, 290-297.	2.6	95
77	RNA epigenetics — chemical messages for posttranscriptional gene regulation. Current Opinion in Chemical Biology, 2016, 30, 46-51.	2.8	119
78	N6-Methyladenosine Modification in a Long Noncoding RNA Hairpin Predisposes Its Conformation to Protein Binding. Journal of Molecular Biology, 2016, 428, 822-833.	2.0	164
79	YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Research, 2017, 27, 315-328.	5.7	1,220
80	RNA modifications and structures cooperate to guide RNA–protein interactions. Nature Reviews Molecular Cell Biology, 2017, 18, 202-210.	16.1	225
81	Comparative and integrative analysis of RNA structural profiling data: current practices and emerging questions. Quantitative Biology, 2017, 5, 3-24.	0.3	37
82	Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain. Genome Biology, 2017, 18, 1.	3.8	587
83	The RNA code comes into focus. Nature, 2017, 542, 503-506.	13.7	12
84	Viral Epitranscriptomics. Journal of Virology, 2017, 91, .	1.5	66
85	m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature, 2017, 542, 475-478.	13.7	437
86	Long Noncoding RNAs: At the Intersection of Cancer and Chromatin Biology. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a026492.	2.9	60
87	Fat mass and obesity-associated (FTO) protein regulates adult neurogenesis. Human Molecular Genetics, 2017, 26, 2398-2411.	1.4	221
88	RNA editing-dependent epitranscriptome diversity in cancer stem cells. Nature Reviews Cancer, 2017, 17, 381-392.	12.8	86
89	m 6 A in mRNA: An Ancient Mechanism for Fine-Tuning Gene Expression. Trends in Genetics, 2017, 33, 380-390.	2.9	338
90	Observing the fate of tRNA and its modifications by nucleic acid isotope labeling mass spectrometry: NAIL-MS. RNA Biology, 2017, 14, 1260-1268.	1.5	44
91	Identifying N6-methyladenosine sites using multi-interval nucleotide pair position specificity and support vector machine. Scientific Reports, 2017, 7, 46757.	1.6	77

#	Article	IF	CITATIONS
92	Identification of N 6 -methyladenosine reader proteins. Methods, 2017, 126, 105-111.	1.9	5
93	Transcriptome-wide N 6 -methyladenosine methylome profiling of porcine muscle and adipose tissues reveals a potential mechanism for transcriptional regulation and differential methylation pattern. BMC Genomics, 2017, 18, 336.	1.2	49
94	Imagine. Microbes and Infection, 2017, 19, 75-78.	1.0	0
95	Epigenetics of cell fate reprogramming and its implications for neurological disorders modelling. Neurobiology of Disease, 2017, 99, 84-120.	2.1	11
96	Dynamic RNA Modifications in Gene Expression Regulation. Cell, 2017, 169, 1187-1200.	13.5	2,222
97	The Importance of Being Modified. The Enzymes, 2017, 41, 1-50.	0.7	87
98	Readers, writers and erasers of N6-methylated adenosine modification. Current Opinion in Structural Biology, 2017, 47, 67-76.	2.6	82
99	m ⁶ A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes and Development, 2017, 31, 990-1006.	2.7	448
100	The RNA Modification N 6 -methyladenosine and Its Implications in Human Disease. Genomics, Proteomics and Bioinformatics, 2017, 15, 154-163.	3.0	132
101	Understanding RNA modifications: the promises and technological bottlenecks of the â€~epitranscriptome'. Open Biology, 2017, 7, 170077.	1.5	112
102	m 6 A Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program. Cancer Cell, 2017, 31, 591-606.e6.	7.7	1,131
104	Dynamic RNA–protein interactions underlie the zebrafish maternal-to-zygotic transition. Genome Research, 2017, 27, 1184-1194.	2.4	58
105	A fly view on the roles and mechanisms of the m ⁶ A mRNA modification and its players. RNA Biology, 2017, 14, 1232-1240.	1.5	56
106	Genome-Wide Location Analyses of N6-Methyladenosine Modifications (m6A-Seq). Methods in Molecular Biology, 2017, 1562, 45-53.	0.4	20
107	m 6 A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells. Cell Reports, 2017, 18, 2622-2634.	2.9	1,026
108	Charting Developmental Dissolution of Pluripotency. Journal of Molecular Biology, 2017, 429, 1441-1458.	2.0	9
109	Reversible RNA modifications in meiosis and pluripotency. Nature Methods, 2017, 14, 18-22.	9.0	33
110	Epitranscriptome: m6A and its function in stem cell biology. Genes and Genomics, 2017, 39, 371-378.	0.5	4

#	Article	IF	CITATIONS
111	Ground rules of the pluripotency gene regulatory network. Nature Reviews Genetics, 2017, 18, 180-191.	7.7	131
112	Evolution of transcript modification by <i>N</i> ⁶ -methyladenosine in primates. Genome Research, 2017, 27, 385-392.	2.4	49
113	Chemical Modifications to RNA: A New Layer of Gene Expression Regulation. ACS Chemical Biology, 2017, 12, 316-325.	1.6	134
114	The RNA Epistructurome: Uncovering RNA Function by Studying Structure and Post-Transcriptional Modifications. Trends in Biotechnology, 2017, 35, 318-333.	4.9	36
115	N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and $3\hat{a}\in^2$ -end processing. Nucleic Acids Research, 2017, 45, 11356-11370.	6.5	337
116	"Gamete On―for m6A: YTHDF2 Exerts Essential Functions in Female Fertility. Molecular Cell, 2017, 67, 903-905.	4.5	23
117	CRISPR/Cas9 Genome-Editing System in Human Stem Cells: Current Status and Future Prospects. Molecular Therapy - Nucleic Acids, 2017, 9, 230-241.	2.3	82
118	Thiol-linked alkylation of RNA to assess expression dynamics. Nature Methods, 2017, 14, 1198-1204.	9.0	411
119	Mechanistic insights in X-chromosome inactivation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160356.	1.8	59
120	Temporal Control of Mammalian Cortical Neurogenesis by m6A Methylation. Cell, 2017, 171, 877-889.e17.	13.5	567
121	Regulation of m6A Transcripts by the $3\hat{E}^1\hat{a}\dagger'5\hat{E}^1$ RNA Helicase YTHDC2 Is Essential for a Successful Meiotic Program in the Mammalian Germline. Molecular Cell, 2017, 68, 374-387.e12.	4.5	370
122	Human METTL16 is a <i>N</i> ⁶ â€methyladenosine (m ⁶ A) methyltransferase that targets preâ€mRNAs and various nonâ€coding RNAs. EMBO Reports, 2017, 18, 2004-2014.	2.0	481
123	Gene regulation in the immune system by long noncoding RNAs. Nature Immunology, 2017, 18, 962-972.	7.0	611
124	Genome-Wide Maps of m6A circRNAs Identify Widespread and Cell-Type-Specific Methylation Patterns that Are Distinct from mRNAs. Cell Reports, 2017, 20, 2262-2276.	2.9	315
125	The RNA modification landscape in human disease. Rna, 2017, 23, 1754-1769.	1.6	427
126	Roles of RNA methylation by means of N6-methyladenosine (m6A) in human cancers. Cancer Letters, 2017, 408, 112-120.	3.2	223
127	The RNA m 6 A Reader YTHDF2 Is Essential for the Post-transcriptional Regulation of the Maternal Transcriptome and Oocyte Competence. Molecular Cell, 2017, 67, 1059-1067.e4.	4.5	287
128	The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nature Medicine, 2017, 23, 1369-1376.	15.2	971

#	Article	IF	CITATIONS
129	The requirement of Mettl3-promoted $\langle i \rangle$ MyoD $\langle i \rangle$ mRNA maintenance in proliferative myoblasts for skeletal muscle differentiation. Open Biology, 2017, 7, 170119.	1.5	71
130	Epitranscriptomic Enhancement of Influenza A Virus Gene Expression and Replication. Cell Host and Microbe, 2017, 22, 377-386.e5.	5.1	163
131	Region-specific RNA m ⁶ A methylation represents a new layer of control in the gene regulatory network in the mouse brain. Open Biology, 2017, 7, 170166.	1.5	126
132	MicroRNAs and RNA binding protein regulators of microRNAs in the control of pluripotency and reprogramming. Current Opinion in Genetics and Development, 2017, 46, 95-103.	1.5	33
133	Rethinking m ⁶ A Readers, Writers, and Erasers. Annual Review of Cell and Developmental Biology, 2017, 33, 319-342.	4.0	833
134	m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature, 2017, 548, 338-342.	13.7	668
135	CLIP-seq analysis of multi-mapped reads discovers novel functional RNA regulatory sites in the human transcriptome. Nucleic Acids Research, 2017, 45, 9260-9271.	6.5	39
136	Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Research, 2017, 27, 1115-1127.	5.7	696
137	Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature, 2017, 552, 126-131.	13.7	833
138	An epitranscriptomic vulnerability in myeloid malignancies. Nature Medicine, 2017, 23, 1252-1254.	15.2	2
139	ALKBH10B Is an RNA <i>N</i> ⁶ -Methyladenosine Demethylase Affecting Arabidopsis Floral Transition. Plant Cell, 2017, 29, 2995-3011.	3.1	235
140	Epitranscriptomics: regulation of mRNA metabolism through modifications. Current Opinion in Chemical Biology, 2017, 41, 93-98.	2.8	116
141	Detection of $\langle i \rangle N \langle i \rangle \langle \sup \rangle 6 \langle \sup \rangle$ -methyladenosine based on the methyl-sensitivity of MazF RNA endonuclease. Chemical Communications, 2017, 53, 12930-12933.	2.2	113
142	Post-transcriptional regulation of the pluripotent state. Current Opinion in Genetics and Development, 2017, 46, 15-23.	1.5	35
143	m ⁶ A RNA Modification Determines Cell Fate by Regulating mRNA Degradation. Cellular Reprogramming, 2017, 19, 225-231.	0.5	31
144	RNA fate determination through cotranscriptional adenosine methylation and microprocessor binding. Nature Structural and Molecular Biology, 2017, 24, 561-569.	3.6	117
145	The N6-Methyladenosine RNA modification in pluripotency and reprogramming. Current Opinion in Genetics and Development, 2017, 46, 77-82.	1.5	20
146	The roles of microRNAs in regulation of mammalian spermatogenesis. Journal of Animal Science and Biotechnology, 2017, 8, 35.	2.1	88

#	Article	IF	CITATIONS
147	Post-transcriptional gene regulation by mRNA modifications. Nature Reviews Molecular Cell Biology, 2017, 18, 31-42.	16.1	1,592
148	METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N 6â€methyladenosineâ€dependent primary MicroRNA processing. Hepatology, 2017, 65, 529-543.	3.6	685
149	LncVar: a database of genetic variation associated with long non-coding genes. Bioinformatics, 2017, 33, 112-118.	1.8	33
150	Translating the epitranscriptome. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1375.	3.2	38
151	The epitranscriptome m6A writer METTL3 promotes chemo- and radioresistance in pancreatic cancer cells. International Journal of Oncology, 2018, 52, 621-629.	1.4	231
152	S-Adenosylmethionine Synthesis Is Regulated by Selective N6-Adenosine Methylation and mRNA Degradation Involving METTL16 and YTHDC1. Cell Reports, 2017, 21, 3354-3363.	2.9	240
153	High-throughput single-base resolution mapping of RNA 2Î,,-O-methylated residues. Nucleic Acids Research, 2017, 45, 1433-1441.	6.5	100
154	Epitranscriptomics for Biomedical Discovery. , 2017, , .		0
155	Layered-up regulation in the developing brain. Nature, 2017, 551, 448-449.	13.7	4
156	YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. ELife, 2017, 6, .	2.8	815
157	Role of DNA and RNA N6-Adenine Methylation in Regulating Stem Cell Fate. Current Stem Cell Research and Therapy, 2017, 13, 31-38.	0.6	39
158	The conserved RNA helicase YTHDC2 regulates the transition from proliferation to differentiation in the germline. ELife, 2017, 6, .	2.8	167
159	High-throughput m6A-seq reveals RNA m6A methylation patterns in the chloroplast and mitochondria transcriptomes of Arabidopsis thaliana. PLoS ONE, 2017, 12, e0185612.	1.1	43
160	Epitranscriptomic influences on development and disease. Genome Biology, 2017, 18, 197.	3.8	97
161	Neural Stem Cell Activation and the Role of Protein Synthesis. Brain Plasticity, 2017, 3, 27-41.	1.9	30
162	The SMAD2/3 interactome reveals that TGF \hat{l}^2 controls m6A mRNA methylation in pluripotency. Nature, 2018, 555, 256-259.	13.7	283
163	N 6-Methyladenosine modification of lincRNA 1281 is critically required for mESC differentiation potential. Nucleic Acids Research, 2018, 46, 3906-3920.	6.5	208
164	Epigenetics and epitranscriptomics in temporal patterning of cortical neural progenitor competence. Journal of Cell Biology, 2018, 217, 1901-1914.	2.3	69

#	Article	IF	CITATIONS
166	An m ⁶ A-YTH Module Controls Developmental Timing and Morphogenesis in Arabidopsis. Plant Cell, 2018, 30, 952-967.	3.1	187
167	Emerging role of dynamic RNA modifications during animal development. Mechanisms of Development, 2018, 154, 24-32.	1.7	30
168	Meddling with METTLs in Normal and Leukemia Stem Cells. Cell Stem Cell, 2018, 22, 139-141.	5. 2	19
169	Distinguishing RNA modifications from noise in epitranscriptome maps. Nature Chemical Biology, 2018, 14, 215-225.	3.9	81
170	N6-methyladenosine links RNA metabolism to cancer progression. Cell Death and Disease, 2018, 9, 124.	2.7	381
171	A brave new world of RNA-binding proteins. Nature Reviews Molecular Cell Biology, 2018, 19, 327-341.	16.1	1,172
172	Epitranscriptomic m6A Regulation of Axon Regeneration in the Adult Mammalian Nervous System. Neuron, 2018, 97, 313-325.e6.	3.8	292
173	<i>Mettl3</i> Mutation Disrupts Gamete Maturation and Reduces Fertility in Zebrafish. Genetics, 2018, 208, 729-743.	1.2	77
174	N6-Methyladenosine Guides mRNA Alternative Translation during Integrated Stress Response. Molecular Cell, 2018, 69, 636-647.e7.	4.5	215
175	Modificaomics: deciphering the functions of biomolecule modifications. Science China Chemistry, 2018, 61, 381-392.	4.2	38
176	N6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications. Nature Neuroscience, 2018, 21, 195-206.	7.1	317
177	RNA methylation regulates hematopoietic stem/progenitor cell specification. Science China Life Sciences, 2018, 61, 610-612.	2.3	3
178	N6-Methyladenosines Modulate A-to-I RNA Editing. Molecular Cell, 2018, 69, 126-135.e6.	4.5	108
179	Most m6A RNA Modifications in Protein-Coding Regions Are Evolutionarily Unconserved and Likely Nonfunctional. Molecular Biology and Evolution, 2018, 35, 666-675.	3.5	43
180	MeT-DB V2.0: elucidating context-specific functions of N6-methyl-adenosine methyltranscriptome. Nucleic Acids Research, 2018, 46, D281-D287.	6.5	115
181	Epigenetic reprogramming during spermatogenesis and male factor infertility. Reproduction, 2018, 156, R9-R21.	1.1	77
182	Mechanism of N6-methyladenosine modification and its emerging role in cancer., 2018, 189, 173-183.		31
183	RNA epitranscriptomics: Regulation of infection of RNA and DNA viruses by <i>N</i> ⁶ 6668€methyladenosine (m ⁶ A). Reviews in Medical Virology, 2018, 28, e1983.	3.9	66

#	Article	IF	Citations
184	Zc3h13 Regulates Nuclear RNA m6A Methylation and Mouse Embryonic Stem Cell Self-Renewal. Molecular Cell, 2018, 69, 1028-1038.e6.	4.5	618
185	Mechanisms of protein homeostasis (proteostasis) maintain stem cell identity in mammalian pluripotent stem cells. Cellular and Molecular Life Sciences, 2018, 75, 275-290.	2.4	37
186	N 6 -adenine DNA methylation demystified in eukaryotic genome: From biology to pathology. Biochimie, 2018, 144, 56-62.	1.3	21
187	Reading m6A in the Transcriptome: m6A-Binding Proteins. Trends in Cell Biology, 2018, 28, 113-127.	3.6	445
188	Essential role of METTL3-mediated m6A modification in glioma stem-like cells maintenance and radioresistance. Oncogene, 2018, 37, 522-533.	2.6	486
189	RNA N6â€methyladenosine methyltransferaseâ€like 3 promotes liver cancer progression through YTHDF2â€dependent posttranscriptional silencing of SOCS2. Hepatology, 2018, 67, 2254-2270.	3.6	980
190	Birth, coming of age and death: The intriguing life of long noncoding RNAs. Seminars in Cell and Developmental Biology, 2018, 79, 143-152.	2.3	15
191	Potential link between m 6 A modification and systemic lupus erythematosus. Molecular Immunology, 2018, 93, 55-63.	1.0	68
193	N6-Methyladenosine in RNA and DNA: An Epitranscriptomic and Epigenetic Player Implicated in Determination of Stem Cell Fate. Stem Cells International, 2018, 2018, 1-18.	1.2	52
194	The Emerging Role of Epitranscriptomics in Cancer: Focus on Urological Tumors. Genes, 2018, 9, 552.	1.0	68
195	Circadian Clock Regulation of Hepatic Lipid Metabolism by Modulation of m6A mRNA Methylation. Cell Reports, 2018, 25, 1816-1828.e4.	2.9	207
196	Mettl3-mediated m6A RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis. Nature Communications, 2018, 9, 4772.	5.8	265
197	RNome and Chromatin Dynamics. , 2018, , 79-112.		0
198	DeepM6ASeq: prediction and characterization of m6A-containing sequences using deep learning. BMC Bioinformatics, 2018, 19, 524.	1.2	110
199	Single-cell mapping of lineage and identity in direct reprogramming. Nature, 2018, 564, 219-224.	13.7	255
200	A dynamic N6-methyladenosine methylome regulates intrinsic and acquired resistance to tyrosine kinase inhibitors. Cell Research, 2018, 28, 1062-1076.	5.7	152
201	RNA modifications modulate gene expression during development. Science, 2018, 361, 1346-1349.	6.0	762
202	Emerging function of N6‑methyladenosine in cancer (Review). Oncology Letters, 2018, 16, 5519-5524.	0.8	42

#	Article	IF	CITATIONS
203	Cross-talk among writers, readers, and erasers of m ⁶ A regulates cancer growth and progression. Science Advances, 2018, 4, eaar8263.	4.7	245
204	N6-Methyladenosine Inhibits Local Ribonucleolytic Cleavage to Stabilize mRNAs in Arabidopsis. Cell Reports, 2018, 25, 1146-1157.e3.	2.9	175
205	Methylation of Structured RNA by the m6A Writer METTL16 Is Essential for Mouse Embryonic Development. Molecular Cell, 2018, 71, 986-1000.e11.	4.5	250
206	Epigenetic Regulation of Skin Development and Regeneration. Pancreatic Islet Biology, 2018, , .	0.1	0
207	Chemical Modifications in the Life of an mRNA Transcript. Annual Review of Genetics, 2018, 52, 349-372.	3.2	147
208	Dawn of Epitranscriptomic Medicine. Circulation Genomic and Precision Medicine, 2018, 11, e001927.	1.6	24
209	Dissecting newly transcribed and old RNA using GRAND-SLAM. Bioinformatics, 2018, 34, i218-i226.	1.8	79
210	RNA Methylation in theÂControl of Stem Cell Activity and Epidermal Differentiation. Contributions To Management Science, 2018, , 215-229.	0.4	1
211	Aberrant Regulation of mRNA m6A Modification in Cancer Development. International Journal of Molecular Sciences, 2018, 19, 2515.	1.8	48
212	Maternal obesity aggravates the abnormality of porcine placenta by increasing N6-methyladenosine. International Journal of Obesity, 2018, 42, 1812-1820.	1.6	29
213	Identification of the Coiled-Coil Domain as an Essential Methyl-CpG-Binding Domain Protein 3 Element for Preserving Lineage Commitment Potential of Embryonic Stem Cells. Stem Cells, 2018, 36, 1355-1367.	1.4	7
214	RNA-modifying proteins as anticancer drug targets. Nature Reviews Drug Discovery, 2018, 17, 435-453.	21.5	107
215	Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Research, 2018, 28, 616-624.	5.7	1,045
216	Two $\langle i \rangle$ Ck1Î $\langle i \rangle$ transcripts regulated by m6A methylation code for two antagonistic kinases in the control of the circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5980-5985.	3.3	79
217	Glycogen synthase kinase-3 (GSK-3) activity regulates mRNA methylation in mouse embryonic stem cells. Journal of Biological Chemistry, 2018, 293, 10731-10743.	1.6	27
218	Gene editing of stem cells for kidney disease modelling and therapeutic intervention. Nephrology, 2018, 23, 981-990.	0.7	7
219	N6-Methyladenosine modification: a novel pharmacological target for anti-cancer drug development. Acta Pharmaceutica Sinica B, 2018, 8, 833-843.	5.7	58
220	Epigenetic Mechanisms of Learning and Memory. , 2018, , 345-382.		16

#	Article	IF	CITATIONS
221	Obesity, Fatty Liver and Liver Cancer. Advances in Experimental Medicine and Biology, 2018, , .	0.8	17
222	Dysregulated Epigenetic Modifications in the Pathogenesis of NAFLD-HCC. Advances in Experimental Medicine and Biology, 2018, 1061, 79-93.	0.8	11
223	Suppression of m6A reader Ythdf2 promotes hematopoietic stem cell expansion. Cell Research, 2018, 28, 904-917.	5.7	203
224	Link Between m6A Modification and Cancers. Frontiers in Bioengineering and Biotechnology, 2018, 6, 89.	2.0	244
225	Epitranscriptomics: A New Regulatory Mechanism of Brain Development and Function. Frontiers in Neuroscience, 2018, 12, 85.	1.4	27
226	trumpet: transcriptome-guided quality assessment of m6A-seq data. BMC Bioinformatics, 2018, 19, 260.	1.2	10
227	Above the Epitranscriptome: RNA Modifications and Stem Cell Identity. Genes, 2018, 9, 329.	1.0	39
228	Impact of DNA and RNA Methylation on Radiobiology and Cancer Progression. International Journal of Molecular Sciences, 2018, 19, 555.	1.8	26
229	RNA m6A methylation participates in regulation of postnatal development of the mouse cerebellum. Genome Biology, 2018, 19, 68.	3.8	166
230	New insights into the plant epitranscriptome. Journal of Experimental Botany, 2018, 69, 4659-4665.	2.4	30
231	Genome-wide CRISPR-KO Screen Uncovers mTORC1-Mediated Gsk3 Regulation in Naive Pluripotency Maintenance and Dissolution. Cell Reports, 2018, 24, 489-502.	2.9	77
232	Ythdf2-mediated m6A mRNA clearance modulates neural development in mice. Genome Biology, 2018, 19, 69.	3.8	216
233	The Emerging Field of Epitranscriptomics in Neurodevelopmental and Neuronal Disorders. Frontiers in Bioengineering and Biotechnology, 2018, 6, 46.	2.0	83
234	RNA m6A modification and its function in diseases. Frontiers of Medicine, 2018, 12, 481-489.	1.5	181
235	N6-Methyladenosine Role in Acute Myeloid Leukaemia. International Journal of Molecular Sciences, 2018, 19, 2345.	1.8	34
236	m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nature Cell Biology, 2018, 20, 1074-1083.	4.6	592
237	Epitranscriptomic Code and Its Alterations in Human Disease. Trends in Molecular Medicine, 2018, 24, 886-903.	3.5	101
238	The RNA Methyltransferase Complex of WTAP, METTL3, and METTL14 Regulates Mitotic Clonal Expansion in Adipogenesis. Molecular and Cellular Biology, 2018, 38, .	1.1	114

#	Article	IF	CITATIONS
239	Reciprocal Regulation of DUSP9 and DUSP16 Expression by HIF1 Controls ERK and p38 MAP Kinase Activity and Mediates Chemotherapy-Induced Breast Cancer Stem Cell Enrichment. Cancer Research, 2018, 78, 4191-4202.	0.4	65
240	RNA Framework: an all-in-one toolkit for the analysis of RNA structures and post-transcriptional modifications. Nucleic Acids Research, 2018, 46, e97-e97.	6.5	53
241	Modification of N6-methyladenosine RNA methylation on heat shock protein expression. PLoS ONE, 2018, 13, e0198604.	1.1	45
242	Neuroepigenetics of Schizophrenia. Progress in Molecular Biology and Translational Science, 2018, 158, 195-226.	0.9	20
243	Addition of m6A to SV40 late mRNAs enhances viral structural gene expression and replication. PLoS Pathogens, 2018, 14, e1006919.	2.1	118
244	Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genetics, 2018, 14, e1007412.	1.5	386
245	RNA methylation in nuclear preâ€mRNA processing. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1489.	3.2	37
246	m6A RNA Methylation Controls Neural Development and Is Involved in Human Diseases. Molecular Neurobiology, 2019, 56, 1596-1606.	1.9	127
247	The Epitranscriptome in Translation Regulation. Cold Spring Harbor Perspectives in Biology, 2019, 11, a032623.	2.3	30
248	<i>Mettl14</i> is required for mouse postimplantation development by facilitating epiblast maturation. FASEB Journal, 2019, 33, 1179-1187.	0.2	60
249	Methylation of RNA N6-methyladenosine in modulation of cytokine responses and tumorigenesis. Cytokine, 2019, 118, 35-41.	1.4	24
250	The Role of Dynamic m ⁶ A <scp>RNA</scp> Methylation in Photobiology. Photochemistry and Photobiology, 2019, 95, 95-104.	1.3	31
251	RNA methylomes reveal the m6A-mediated regulation of DNA demethylase gene SIDML2 in tomato fruit ripening. Genome Biology, 2019, 20, 156.	3.8	174
252	Targeting Chromatin Remodeling for Cancer Therapy. Current Molecular Pharmacology, 2019, 12, 215-229.	0.7	37
253	Significant epitranscriptomes in heterogeneous cancer. Cancer Science, 2019, 110, 2318-2327.	1.7	19
254	m6A RNA Methylation Maintains Hematopoietic Stem Cell Identity and Symmetric Commitment. Cell Reports, 2019, 28, 1703-1716.e6.	2.9	117
255	Epitranscriptomic mechanisms of N6-methyladenosine methylation regulating mammalian hypertension development by determined spontaneously hypertensive rats pericytes. Epigenomics, 2019, 11, 1359-1370.	1.0	26
256	Meclofenamic acid represses spermatogonial proliferation through modulating m6A RNA modification. Journal of Animal Science and Biotechnology, 2019, 10, 63.	2.1	26

#	Article	IF	CITATIONS
257	Small changes, big implications: The impact of m6A RNA methylation on gene expression in pluripotency and development. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 194402.	0.9	37
258	FunDMDeep-m6A: identification and prioritization of functional differential m6A methylation genes. Bioinformatics, 2019, 35, i90-i98.	1.8	34
259	FMRP Modulates Neural Differentiation through m6A-Dependent mRNA Nuclear Export. Cell Reports, 2019, 28, 845-854.e5.	2.9	188
260	m6A modification of a $3\hat{a} \in 2$ UTR site reduces RME1 mRNA levels to promote meiosis. Nature Communications, 2019, 10, 3414.	5. 8	53
261	Sequence-specific m ⁶ A demethylation in RNA by FTO fused to RCas9. Rna, 2019, 25, 1311-1323.	1.6	34
262	Single-base mapping of m ⁶ A by an antibody-independent method. Science Advances, 2019, 5, eaax0250.	4.7	270
263	Resveratrol and Curcumin Improve Intestinal Mucosal Integrity and Decrease m ⁶ A RNA Methylation in the Intestine of Weaning Piglets. ACS Omega, 2019, 4, 17438-17446.	1.6	43
264	CRISPR/Cas9 facilitates genomic editing for large-scale functional studies in pluripotent stem cell cultures. Human Genetics, 2019, 138, 1217-1225.	1.8	13
265	Quantitative assessment of the ecological effects of land use/cover change in the arid region of Northwest China. Environmental Monitoring and Assessment, 2019, 191, 704.	1.3	11
266	Flexible Binding of m ⁶ A Reader Protein YTHDC1 to Its Preferred RNA Motif. Journal of Chemical Theory and Computation, 2019, 15, 7004-7014.	2.3	18
267	The role of <i>N6</i> â€methyladenosine modification on diapause in silkworm (<i>Bombyx mori</i>) strains that exhibit different voltinism. Molecular Reproduction and Development, 2019, 86, 1981-1992.	1.0	18
268	N6-Methyladenosine Modification Controls Circular RNA Immunity. Molecular Cell, 2019, 76, 96-109.e9.	4.5	348
269	Metabolic–Epigenetic Axis in Pluripotent State Transitions. Epigenomes, 2019, 3, 13.	0.8	10
270	ZFP217 regulates adipogenesis by controlling mitotic clonal expansion in a METTL3-m ⁶ A dependent manner. RNA Biology, 2019, 16, 1785-1793.	1.5	41
271	The role of mRNA m6A methylation in the nervous system. Cell and Bioscience, 2019, 9, 66.	2.1	84
272	Accurate detection of m6A RNA modifications in native RNA sequences. Nature Communications, 2019, 10, 4079.	5.8	322
273	Reading, writing and erasing mRNA methylation. Nature Reviews Molecular Cell Biology, 2019, 20, 608-624.	16.1	1,403
274	Dysregulation of N6â€'methyladenosine regulators predicts poor patient survival in mantle cell lymphoma. Oncology Letters, 2019, 18, 3682-3690.	0.8	13

#	ARTICLE	IF	CITATIONS
275	The RNA Helicase DDX6 Controls Cellular Plasticity by Modulating P-Body Homeostasis. Cell Stem Cell, 2019, 25, 622-638.e13.	5.2	82
276	Hypoxia-inducible factors promote breast cancer stem cell specification and maintenance in response to hypoxia or cytotoxic chemotherapy. Advances in Cancer Research, 2019, 141, 175-212.	1.9	54
277	Readers of the m6A epitranscriptomic code. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 329-342.	0.9	40
278	Mettl3 Regulates Osteogenic Differentiation and Alternative Splicing of Vegfa in Bone Marrow Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2019, 20, 551.	1.8	93
279	Regulation of Virus Replication and T Cell Homeostasis by N6-Methyladenosine. Virologica Sinica, 2019, 34, 22-29.	1.2	12
280	Translational Control in Stem Cells. Frontiers in Genetics, 2018, 9, 709.	1.1	65
281	The m6A methyltransferase METTL3 promotes bladder cancer progression via AFF4/NF-κB/MYC signaling network. Oncogene, 2019, 38, 3667-3680.	2.6	290
282	Functional roles of hnRNPA2/B1 regulated by METTL3 in mammalian embryonic development. Scientific Reports, 2019, 9, 8640.	1.6	42
283	Interplay Between N6-Methyladenosine (m6A) and Non-coding RNAs in Cell Development and Cancer. Frontiers in Cell and Developmental Biology, 2019, 7, 116.	1.8	97
284	Epigenetic Methylations on N6-Adenine and N6-Adenosine with the same Input but Different Output. International Journal of Molecular Sciences, 2019, 20, 2931.	1.8	21
285	Genome wide analysis of $3\hat{a}\in^2$ UTR sequence elements and proteins regulating mRNA stability during maternal-to-zygotic transition in zebrafish. Genome Research, 2019, 29, 1100-1114.	2.4	49
286	Regulation of m6A RNA Methylation and Its Effect on Myogenic Differentiation in Murine Myoblasts. Molecular Biology, 2019, 53, 384-392.	0.4	15
287	Whsc1 links pluripotency exit with mesendoderm specification. Nature Cell Biology, 2019, 21, 824-834.	4.6	17
288	Reduced m6A modification predicts malignant phenotypes and augmented Wnt/PI3Kâ€Akt signaling in gastric cancer. Cancer Medicine, 2019, 8, 4766-4781.	1.3	201
289	Deciphering the Epitranscriptomic Signatures in Cell Fate Determination and Development. Stem Cell Reviews and Reports, 2019, 15, 474-496.	5.6	12
290	m6A Regulates Neurogenesis and Neuronal Development by Modulating Histone Methyltransferase Ezh2. Genomics, Proteomics and Bioinformatics, 2019, 17, 154-168.	3.0	135
291	METTL3/m6A/miRNA-873-5p Attenuated Oxidative Stress and Apoptosis in Colistin-Induced Kidney Injury by Modulating Keap1/Nrf2 Pathway. Frontiers in Pharmacology, 2019, 10, 517.	1.6	106
292	N6-methyladenosine modifications: interactions with novel RNA-binding proteins and roles in signal transduction. RNA Biology, 2019, 16, 991-1000.	1.5	49

#	Article	IF	CITATIONS
293	Current insights into the epigenetic mechanisms of skin cancer. Dermatologic Therapy, 2019, 32, e12964.	0.8	25
294	A Review in Research Progress Concerning m6A Methylation and Immunoregulation. Frontiers in Immunology, 2019, 10, 922.	2.2	209
295	The Yin and Yang of RNA Methylation: An Imbalance of Erasers Enhances Sensitivity to FTO Demethylase Small-Molecule Targeting in Leukemia Stem Cells. Cancer Cell, 2019, 35, 540-541.	7.7	16
296	DRUM: Inference of Disease-Associated m6A RNA Methylation Sites From a Multi-Layer Heterogeneous Network. Frontiers in Genetics, 2019, 10, 266.	1.1	32
297	Stage-specific requirement for Mettl3-dependent m6A mRNA methylation during haematopoietic stem cell differentiation. Nature Cell Biology, 2019, 21, 700-709.	4.6	172
298	Genome-wide identification of mRNA 5-methylcytosine in mammals. Nature Structural and Molecular Biology, 2019, 26, 380-388.	3.6	176
299	RNA modifications regulating cell fate in cancer. Nature Cell Biology, 2019, 21, 552-559.	4.6	257
300	m6Acomet: large-scale functional prediction of individual m6A RNA methylation sites from an RNA co-methylation network. BMC Bioinformatics, 2019, 20, 223.	1.2	32
301	The RNA N6-methyladenosine modification landscape of human fetal tissues. Nature Cell Biology, 2019, 21, 651-661.	4.6	124
302	N6-Methyladenosine (m6A): A Promising New Molecular Target in Acute Myeloid Leukemia. Frontiers in Oncology, 2019, 9, 251.	1.3	66
303	N6â€Methyladenosine detected in <scp>RNA</scp> of testicular germ cell tumors is controlled by <scp>METTL</scp> 3, <scp>ALKBH</scp> 5, <scp>YTHDC</scp> 1/F1/F2, and <scp>HNRNPC</scp> as writers, erasers, and readers. Andrology, 2019, 7, 498-506.	1.9	39
304	Noncoding RNAs in Cardiovascular Disease. , 2019, , 43-87.		2
305	RNA epigenetics and cardiovascular diseases. Journal of Molecular and Cellular Cardiology, 2019, 129, 272-280.	0.9	25
306	RNA structure maps across mammalian cellular compartments. Nature Structural and Molecular Biology, 2019, 26, 322-330.	3.6	183
307	The Critical Role of RNA m6A Methylation in Cancer. Cancer Research, 2019, 79, 1285-1292.	0.4	505
308	Discovery of Small Molecules that Activate RNA Methylation through Cooperative Binding to the METTL3-14-WTAP Complex Active Site. Cell Reports, 2019, 26, 3762-3771.e5.	2.9	121
309	Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally. Nature, 2019, 567, 414-419.	13.7	452
310	METTL3 inhibits BMSC adipogenic differentiation by targeting the JAK1/STAT5/C/EBPβ pathway ⟨i⟩via⟨/i⟩ an m ⟨sup⟩6⟨/sup⟩ A‥THDF2–dependent manner. FASEB Journal, 2019, 33, 7529-7544.	0.2	118

#	ARTICLE	IF	Citations
311	Regulation of Gene Expression by N-methyladenosine in Cancer. Trends in Cell Biology, 2019, 29, 487-499.	3.6	159
312	Tracking RNA structures as RNAs transit through the cell. Nature Structural and Molecular Biology, 2019, 26, 256-257.	3.6	3
313	m6A methylation controls pluripotency of porcine induced pluripotent stem cells by targeting SOCS3/JAK2/STAT3 pathway in a YTHDF1/YTHDF2-orchestrated manner. Cell Death and Disease, 2019, 10, 171.	2.7	68
314	Dynamic m6A mRNA methylation reveals the role of METTL3-m6A-CDCP1 signaling axis in chemical carcinogenesis. Oncogene, 2019, 38, 4755-4772.	2.6	142
315	KIAA1429 contributes to liver cancer progression through N6-methyladenosine-dependent post-transcriptional modification of GATA3. Molecular Cancer, 2019, 18, 186.	7.9	309
316	The interplay between m6A RNA methylation and noncoding RNA in cancer. Journal of Hematology and Oncology, 2019, 12, 121.	6.9	367
317	Reprogramming: identifying the mechanisms that safeguard cell identity. Development (Cambridge), 2019, 146, .	1.2	45
318	m6A mRNA methylation regulates CTNNB1 to promote the proliferation of hepatoblastoma. Molecular Cancer, 2019, 18, 188.	7.9	129
319	PIRCh-seq: functional classification of non-coding RNAs associated with distinct histone modifications. Genome Biology, 2019, 20, 292.	3.8	20
320	Hematopoietic stem cells: self-renewal and expansion. Current Opinion in Hematology, 2019, 26, 258-265.	1.2	13
321	Atlas of quantitativeÂsingle-base-resolution N6-methyl-adenine methylomes. Nature Communications, 2019, 10, 5636.	5.8	145
322	FTO Knockout Causes Chromosome Instability and G2/M Arrest in Mouse GC-1 Cells. Frontiers in Genetics, 2018, 9, 732.	1.1	28
323	The m ⁶ A Writer: Rise of a Machine for Growing Tasks. Biochemistry, 2019, 58, 363-378.	1.2	117
324	The role of RNA adenosine demethylases in the control of gene expression. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 343-355.	0.9	26
325	m6A modification of non-coding RNA and the control of mammalian gene expression. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 310-318.	0.9	132
326	m6A mRNA modification regulates mammalian spermatogenesis. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 403-411.	0.9	46
327	Steering pluripotency and differentiation with N6-methyladenosine RNA modification. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 394-402.	0.9	13
328	Cap-specific terminal <i>N</i> ⁶ -methylation of RNA by an RNA polymerase II–associated methyltransferase. Science, 2019, 363, .	6.0	262

#	Article	IF	CITATIONS
329	A dynamic reversible RNA N ⁶ â€methyladenosine modification: current status and perspectives. Journal of Cellular Physiology, 2019, 234, 7948-7956.	2.0	101
330	Understanding m6A Function Through Uncovering the Diversity Roles of YTH Domain-Containing Proteins. Molecular Biotechnology, 2019, 61, 355-364.	1.3	31
331	Mechanistic insights into m6A RNA enzymes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 222-229.	0.9	89
332	N6-Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nature Chemical Biology, 2019, 15, 88-94.	3.9	258
333	Profiling of N6-Methyladenosine in Zika Virus RNA and Host Cellular mRNA. Methods in Molecular Biology, 2019, 1870, 209-218.	0.4	9
334	A novel m6A reader Prrc2a controls oligodendroglial specification and myelination. Cell Research, 2019, 29, 23-41.	5.7	250
335	The N ⁶ -Methyladenosine mRNA Methylase METTL3 Controls Cardiac Homeostasis and Hypertrophy. Circulation, 2019, 139, 533-545.	1.6	279
336	The m6A‑methylase complex and mRNA export. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 319-328.	0.9	40
337	It's complicated… m6A-dependent regulation of gene expression in cancer. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 382-393.	0.9	31
338	Dynamic and reversible RNA <i>N</i> ⁶ â€methyladenosine methylation. Wiley Interdisciplinary Reviews RNA, 2019, 10, e1507.	3.2	31
339	RNA methylation and diseases: experimental results, databases, Web servers and computational models. Briefings in Bioinformatics, 2019, 20, 896-917.	3.2	74
340	Dissecting the m6A methylation affection on afatinib resistance in non-small cell lung cancer. Pharmacogenomics Journal, 2020, 20, 227-234.	0.9	27
341	The m6A methyltransferase METTL3 cooperates with demethylase ALKBH5 to regulate osteogenic differentiation through NF-κB signaling. Molecular and Cellular Biochemistry, 2020, 463, 203-210.	1.4	56
342	TNF-α suppresses sweat gland differentiation of MSCs by reducing FTO-mediated m6A-demethylation of Nanog mRNA. Science China Life Sciences, 2020, 63, 80-91.	2.3	22
343	Methylation of adenosine at the N6 position post-transcriptionally regulates hepatic P450s expression. Biochemical Pharmacology, 2020, 171, 113697.	2.0	26
344	New sights in cancer: Component and function of N6-methyladenosine modification. Biomedicine and Pharmacotherapy, 2020, 122, 109694.	2.5	20
345	Enhancer RNAs in cancer: regulation, mechanisms and therapeutic potential. RNA Biology, 2020, 17, 1550-1559.	1.5	66
346	Integrative network analysis identifies cell-specific trans regulators of m6A. Nucleic Acids Research, 2020, 48, 1715-1729.	6.5	55

#	Article	IF	CITATIONS
347	Programmable RNA methylation and demethylation using PUF RNA binding proteins. Chemical Communications, 2020, 56, 1365-1368.	2.2	23
348	Mono-(2-Ethylhexyl)phthalate Regulates Cholesterol Efflux via MicroRNAs Regulated m ⁶ A RNA Methylation. Chemical Research in Toxicology, 2020, 33, 461-469.	1.7	20
349	m6A mRNA Methylation Is Essential for Oligodendrocyte Maturation and CNS Myelination. Neuron, 2020, 105, 293-309.e5.	3.8	96
350	Essential Current Concepts in Stem Cell Biology. Learning Materials in Biosciences, 2020, , .	0.2	2
351	Post-transcriptional gene regulation regulates germline stem cell to oocyte transition during Drosophila oogenesis. Current Topics in Developmental Biology, 2020, 140, 3-34.	1.0	24
352	The m6A epitranscriptome: transcriptome plasticity in brain development and function. Nature Reviews Neuroscience, 2020, 21, 36-51.	4.9	195
353	Epitranscriptomic profiling in human placenta: N6â€methyladenosine modification at the 5′â€untranslated region is related to fetal growth and preeclampsia. FASEB Journal, 2020, 34, 494-512.	0.2	24
354	Epigenetic Modifications of mRNA and DNA in Plants. Molecular Plant, 2020, 13, 14-30.	3.9	124
355	PCB126 Exposure Revealed Alterations in m6A RNA Modifications in Transcripts Associated With AHR Activation. Toxicological Sciences, 2021, 179, 84-94.	1.4	13
356	An Emerging Role of m6A in Memory: A Case for Translational Priming. International Journal of Molecular Sciences, 2020, 21, 7447.	1.8	26
357	Principles of RNA methylation and their implications for biology and medicine. Biomedicine and Pharmacotherapy, 2020, 131, 110731.	2.5	72
358	The old and the new: DNA and RNA methylation in normal and malignant hematopoiesis. Experimental Hematology, 2020, 90, 1-11.	0.2	7
359	Regulation of N6-Methyladenosine in the Differentiation of Cancer Stem Cells and Their Fate. Frontiers in Cell and Developmental Biology, 2020, 8, 561703.	1.8	10
360	Surmounting cancer drug resistance: New insights from the perspective of N6-methyladenosine RNA modification. Drug Resistance Updates, 2020, 53, 100720.	6.5	107
361	New Insights on the Role of N6-Methyladenosine RNA Methylation in the Physiology and Pathology of the Nervous System. Frontiers in Molecular Biosciences, 2020, 7, 555372.	1.6	19
362	m6A RNA Methylation in Cardiovascular Diseases. Molecular Therapy, 2020, 28, 2111-2119.	3.7	73
363	Joint analysis of lncRNA m6A methylome and lncRNA/mRNA expression profiles in gastric cancer. Cancer Cell International, 2020, 20, 464.	1.8	22
364	Expression Profile Analysis of m6A RNA Methylation Regulators Indicates They Are Immune Signature Associated and Can Predict Survival in Kidney Renal Cell Carcinoma. DNA and Cell Biology, 2020, 39, 2194-2211.	0.9	23

#	Article	IF	Citations
365	The epitranscriptome in stem cell biology and neural development. Neurobiology of Disease, 2020, 146, 105139.	2.1	32
366	METTL3 counteracts premature aging via m6A-dependent stabilization of MIS12 mRNA. Nucleic Acids Research, 2020, 48, 11083-11096.	6.5	99
367	Comparative epigenetics in animal physiology: An emerging frontier. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2020, 36, 100745.	0.4	6
368	The Mammalian Cap-Specific m6Am RNA Methyltransferase PCIF1 Regulates Transcript Levels in Mouse Tissues. Cell Reports, 2020, 32, 108038.	2.9	50
369	A defined N6-methyladenosine (m6A) profile conferred by METTL3 regulates muscle stem cell/myoblast state transitions. Cell Death Discovery, 2020, 6, 95.	2.0	41
370	REW-ISA: unveiling local functional blocks in epi-transcriptome profiling data via an RNA expression-weighted iterative signature algorithm. BMC Bioinformatics, 2020, 21, 447.	1.2	5
371	Functional role of Tet-mediated RNA hydroxymethylcytosine in mouse ES cells and during differentiation. Nature Communications, 2020, 11 , 4956.	5.8	44
372	The m ⁶ A Methylation-Regulated AFF4 Promotes Self-Renewal of Bladder Cancer Stem Cells. Stem Cells International, 2020, 2020, 1-12.	1.2	38
373	Validation strategies for antibodies targeting modified ribonucleotides. Rna, 2020, 26, 1489-1506.	1.6	18
374	Reversible N6-methyladenosine of RNA: The regulatory mechanisms on gene expression and implications in physiology and pathology. Genes and Diseases, 2020, 7, 585-597.	1.5	23
375	N-methyladenosine methyltransferase plays a role in hypoxic preconditioning partially through the interaction with lncRNA H19. Acta Biochimica Et Biophysica Sinica, 2020, 52, 1306-1315.	0.9	14
376	N6-Adenosine Methylation of Socs1 mRNA Is Required to Sustain the Negative Feedback Control of Macrophage Activation. Developmental Cell, 2020, 55, 737-753.e7.	3.1	51
377	Epitranscriptomic(N6-methyladenosine) Modification of Viral RNA and Virus-Host Interactions. Frontiers in Cellular and Infection Microbiology, 2020, 10, 584283.	1.8	36
378	The epigenetics of pluripotent stem cells. , 2020, , 25-74.		0
379	The role of m6A modification in physiology and disease. Cell Death and Disease, 2020, 11, 960.	2.7	111
380	Stabilization of ERK-Phosphorylated METTL3 by USP5 Increases m6A Methylation. Molecular Cell, 2020, 80, 633-647.e7.	4.5	83
381	RNA N6-methyladenosine demethylase FTO regulates PD-L1 expression in colon cancer cells. Biochemical and Biophysical Research Communications, 2020, 530, 235-239.	1.0	50
382	<i>YTHDC1</i> gene polymorphisms and hepatoblastoma susceptibility in Chinese children: A sevenâ€center case–control study. Journal of Gene Medicine, 2020, 22, e3249.	1.4	17

#	Article	IF	Citations
383	Epigenetic Regulation of Endothelial Cell Function by Nucleic Acid Methylation in Cardiac Homeostasis and Disease. Cardiovascular Drugs and Therapy, 2021, 35, 1025-1044.	1.3	7
384	RNA demethylase Alkbh5 is widely expressed in neurons and decreased during brain development. Brain Research Bulletin, 2020, 163, 150-159.	1.4	36
385	Biphasic Liquid Microjunction Extraction for Profiling Neuronal RNA Modifications by Liquid Chromatography–Tandem Mass Spectrometry. Analytical Chemistry, 2020, 92, 12647-12655.	3.2	6
386	Sex-Dependent RNA Editing and N6-adenosine RNA Methylation Profiling in the Gonads of a Fish, the Olive Flounder (Paralichthys olivaceus). Frontiers in Cell and Developmental Biology, 2020, 8, 751.	1.8	13
387	Associations of smoking and air pollution with peripheral blood RNA N6-methyladenosine in the Beijing truck driver air pollution study. Environment International, 2020, 144, 106021.	4.8	25
388	Roles of N6-Methyladenosine (m6A) in Stem Cell Fate Decisions and Early Embryonic Development in Mammals. Frontiers in Cell and Developmental Biology, 2020, 8, 782.	1.8	57
389	Insight into m ⁶ A methylation from occurrence to functions. Open Biology, 2020, 10, 200091.	1.5	24
390	m6A RNA Methylation Regulators Participate in the Malignant Progression and Have Clinical Prognostic Value in Lung Adenocarcinoma. Frontiers in Genetics, 2020, 11, 994.	1.1	44
391	Comprehensive analysis of transcriptome-wide m $<$ sup $>$ 6 $<$ /sup $>$ A methylome in the anterior capsule of the lens of high myopia patients. Epigenetics, 2021, 16, 955-968.	1.3	15
392	Transcriptome-Wide N6-Methyladenosine (m6A) Methylome Profiling of Heat Stress in Pak-choi (Brassica rapa ssp. chinensis). Plants, 2020, 9, 1080.	1.6	33
393	m6A RNA methylation regulators could contribute to the occurrence of chronic obstructive pulmonary disease. Journal of Cellular and Molecular Medicine, 2020, 24, 12706-12715.	1.6	53
394	YTHDF2/3 Are Required for Somatic Reprogramming through Different RNA Deadenylation Pathways. Cell Reports, 2020, 32, 108120.	2.9	44
395	The Role of RNA Epigenetic Modification in Normal and Malignant Hematopoiesis. Current Stem Cell Reports, 2020, 6, 144-155.	0.7	12
396	METTL3 potentiates resistance to cisplatin through m $<$ sup $>$ 6 $<$ /sup $>$ A modification of TFAP2C in seminoma. Journal of Cellular and Molecular Medicine, 2020, 24, 11366-11380.	1.6	42
397	Hypoxia induces an endometrial cancer stem-like cell phenotype via HIF-dependent demethylation of SOX2 mRNA. Oncogenesis, 2020, 9, 81.	2.1	51
398	ALKBH5 regulates IGF1R expression to promote the Proliferation and Tumorigenicity of Endometrial Cancer. Journal of Cancer, 2020, 11, 5612-5622.	1.2	31
399	Musashi-1 promotes cancer stem cell properties of glioblastoma cells via upregulation of YTHDF1. Cancer Cell International, 2020, 20, 597.	1.8	47
400	Liver-specific Mettl3 ablation delays liver regeneration in mice. Genes and Diseases, 2022, 9, 697-704.	1.5	8

#	ARTICLE	IF	CITATIONS
401	m5UPred: A Web Server for the Prediction of RNA 5-Methyluridine Sites from Sequences. Molecular Therapy - Nucleic Acids, 2020, 22, 742-747.	2.3	28
402	Differential roles of YTHDF1 and YTHDF3 in embryonic stem cell-derived cardiomyocyte differentiation. RNA Biology, 2021, 18, 1-10.	1.5	33
403	The N6-Methyladenosine Features of mRNA and Aberrant Expression of m6A Modified Genes in Gastric Cancer and Their Potential Impact on the Risk and Prognosis. Frontiers in Genetics, 2020, 11, 561566.	1.1	9
404	The Distinct Function and Localization of METTL3/METTL14 and METTL16 Enzymes in Cardiomyocytes. International Journal of Molecular Sciences, 2020, 21, 8139.	1.8	15
405	Melatonin restores the pluripotency of longâ€termâ€cultured embryonic stem cells through melatonin receptorâ€dependent m6A RNA regulation. Journal of Pineal Research, 2020, 69, e12669.	3.4	29
406	Integrative analyses of the RNA modification machinery reveal tissue- and cancer-specific signatures. Genome Biology, 2020, 21, 97.	3.8	57
407	<scp>RNA</scp> m ⁶ A methylation regulates sorafenib resistance in liver cancer through <scp>FOXO</scp> 3â€mediated autophagy. EMBO Journal, 2020, 39, e103181.	3. 5	271
408	m6A Modification Prevents Formation of Endogenous Double-Stranded RNAs and Deleterious Innate Immune Responses during Hematopoietic Development. Immunity, 2020, 52, 1007-1021.e8.	6.6	99
409	Function and evolution of RNA N6-methyladenosine modification. International Journal of Biological Sciences, 2020, 16, 1929-1940.	2.6	70
410	Dynamic landscape and evolution of m6A methylation in human. Nucleic Acids Research, 2020, 48, 6251-6264.	6.5	173
411	How Do You Identify m6 A Methylation in Transcriptomes at High Resolution? A Comparison of Recent Datasets. Frontiers in Genetics, 2020, 11, 398.	1.1	17
412	Deoxycholic acid modulates the progression of gallbladder cancer through N6-methyladenosine-dependent microRNA maturation. Oncogene, 2020, 39, 4983-5000.	2.6	48
413	MoAIMS: efficient software for detection of enriched regions of MeRIP-Seq. BMC Bioinformatics, 2020, 21, 103.	1.2	13
414	YTHDF2 destabilizes m ⁶ A-modified neural-specific RNAs to restrain differentiation in induced pluripotent stem cells. Rna, 2020, 26, 739-755.	1.6	30
415	Hypoxia Promotes Vascular Smooth Muscle Cell (VSMC) Differentiation of Adipose-Derived Stem Cell (ADSC) by Regulating Mettl3 and Paracrine Factors. Stem Cells International, 2020, 2020, 1-11.	1.2	51
416	Smallâ€Molecule Inhibitors of METTL3, the Major Human Epitranscriptomic Writer. ChemMedChem, 2020, 15, 744-748.	1.6	106
417	Sequencing metabolically labeled transcripts in single cells reveals mRNA turnover strategies. Science, 2020, 367, 1151-1156.	6.0	92
418	Coordination of mRNA and tRNA methylations by TRMT10A. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7782-7791.	3.3	38

#	Article	IF	CITATIONS
419	Role of m6A in Embryonic Stem Cell Differentiation and in Gametogenesis. Epigenomes, 2020, 4, 5.	0.8	22
420	Long noncoding RNA pncRNA-D reduces cyclin D1 gene expression and arrests cell cycle through RNA m6A modification. Journal of Biological Chemistry, 2020, 295, 5626-5639.	1.6	24
421	The epitranscriptome landscape of small noncoding RNAs in stem cells. Stem Cells, 2020, 38, 1216-1228.	1.4	12
422	Programmable m6A modification of cellular RNAs with a Cas13-directed methyltransferase. Nature Biotechnology, 2020, 38, 1431-1440.	9.4	173
423	The Cancer Genome Atlas (TCGA) based m ⁶ A methylation-related genes predict prognosis in hepatocellular carcinoma. Bioengineered, 2020, 11, 759-768.	1.4	61
424	A New Model of Spontaneous Colitis in Mice Induced by Deletion of an RNA m6A Methyltransferase Component METTL14 in T Cells. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10, 747-761.	2.3	69
425	DNMT3A mutants provide proliferating advantage with augmentation of self-renewal activity in the pathogenesis of AML in KMT2A-PTD-positive leukemic cells. Oncogenesis, 2020, 9, 7.	2.1	6
426	Bone-derived mesenchymal stem cells alleviate compression-induced apoptosis of nucleus pulposus cells by N6 methyladenosine of autophagy. Cell Death and Disease, 2020, 11, 103.	2.7	35
427	MasterOfPores: A Workflow for the Analysis of Oxford Nanopore Direct RNA Sequencing Datasets. Frontiers in Genetics, 2020, 11, 211.	1.1	38
428	mRNA modification orchestrates cancer stem cell fate decisions. Molecular Cancer, 2020, 19, 38.	7.9	31
429	<scp>YTHDF</scp> 1â€mediated translation amplifies Wntâ€driven intestinal stemness. EMBO Reports, 2020, 21, e49229.	2.0	84
430	The emerging roles of N6-methyladenosine (m6A) deregulation in liver carcinogenesis. Molecular Cancer, 2020, 19, 44.	7.9	205
431	Molecular Mechanisms Driving mRNA Degradation by m6A Modification. Trends in Genetics, 2020, 36, 177-188.	2.9	251
432	<i>N</i> ⁶ -methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science, 2020, 367, 580-586.	6.0	406
433	RNA modifications and cancer. RNA Biology, 2020, 17, 1560-1575.	1.5	93
434	RNA N ⁶ -Methyladenosine Modifications and the Immune Response. Journal of Immunology Research, 2020, 2020, 1-6.	0.9	20
435	m6Acorr: an online tool for the correction and comparison of m6A methylation profiles. BMC Bioinformatics, 2020, 21, 31.	1.2	6
436	RNA m ⁶ A methylation regulates uveal melanoma cell proliferation, migration, and invasion by targeting câ€Met. Journal of Cellular Physiology, 2020, 235, 7107-7119.	2.0	47

#	Article	IF	Citations
437	Post-Transcriptional Regulation of Homeostatic, Stressed, and Malignant Stem Cells. Cell Stem Cell, 2020, 26, 138-159.	5.2	54
438	REPIC: a database for exploring the N6-methyladenosine methylome. Genome Biology, 2020, 21, 100.	3.8	71
439	Induced Pluripotent Stem Cells: Reprogramming Platforms and Applications in Cell Replacement Therapy. BioResearch Open Access, 2020, 9, 121-136.	2.6	50
440	Mechanistic insights into m6A modification of U6 snRNA by human METTL16. Nucleic Acids Research, 2020, 48, 5157-5168.	6.5	70
441	The rRNA m ⁶ A methyltransferase METTL5 is involved in pluripotency and developmental programs. Genes and Development, 2020, 34, 715-729.	2.7	93
442	Wilms' tumour 1â€associating protein inhibits endothelial cell angiogenesis by m6Aâ€dependent epigenetic silencing of desmoplakin in brain arteriovenous malformation. Journal of Cellular and Molecular Medicine, 2020, 24, 4981-4991.	1.6	43
443	Resveratrol Attenuates Aflatoxin B1-Induced ROS Formation and Increase of m6A RNA Methylation. Animals, 2020, 10, 677.	1.0	36
444	Global profiling of <i>N</i> ⁶ â€methyladenosine methylation in maize callus induction. Plant Genome, 2020, 13, e20018.	1.6	18
445	Occurrence and Functions of m ⁶ A and Other Covalent Modifications in Plant mRNA. Plant Physiology, 2020, 182, 79-96.	2.3	80
446	Limits in the detection of m6A changes using MeRIP/m6A-seq. Scientific Reports, 2020, 10, 6590.	1.6	136
447	YTHDF2 promotes mitotic entry and is regulated by cell cycle mediators. PLoS Biology, 2020, 18, e3000664.	2.6	50
448	M6A2Target: a comprehensive database for targets of m $<$ b $<$ 6 $<$ /b $>$ A writers, erasers and readers. Briefings in Bioinformatics, 2021, 22, .	3.2	97
449	Molecular and epigenetic pathogenesis of germ cell tumors. Asian Journal of Urology, 2021, 8, 144-154.	0.5	21
450	Fusaric acid decreases p53 expression by altering promoter methylation and m6A RNA methylation in human hepatocellular carcinoma (HepG2) cells. Epigenetics, 2021, 16, 79-91.	1.3	30
451	A functional m ⁶ Aâ€RNA methylation pathway in the oyster <i>Crassostrea gigas</i> epitranscriptomic regulation of lophotrochozoan development. FEBS Journal, 2021, 288, 1696-1711.	2.2	3
452	Decoding the epitranscriptional landscape from native RNA sequences. Nucleic Acids Research, 2021, 49, e7-e7.	6.5	149
453	M ⁶ A modification: A mechanism for protecting hematopoietic development in mammals. Cell Biology International, 2021, 45, 58-60.	1.4	1
454	Metabolic Coordination of Cell Fate by α-Ketoglutarate-Dependent Dioxygenases. Trends in Cell Biology, 2021, 31, 24-36.	3.6	63

#	ARTICLE	IF	Citations
455	Tagâ€Free Internal RNA Labeling and Photocaging Based on mRNA Methyltransferases. Angewandte Chemie - International Edition, 2021, 60, 4098-4103.	7.2	40
456	DNA adenine methylation in eukaryotes: Enzymatic mark or a form of DNA damage?. BioEssays, 2021, 43, e2000243.	1.2	30
457	Screening for functional circular RNAs using the CRISPR–Cas13 system. Nature Methods, 2021, 18, 51-59.	9.0	179
458	Tagâ€Free Internal RNA Labeling and Photocaging Based on mRNA Methyltransferases. Angewandte Chemie, 2021, 133, 4144-4149.	1.6	11
459	METTL3-Mediated m6A mRNA Methylation Modulates Tooth Root Formation by Affecting NFIC Translation. Journal of Bone and Mineral Research, 2020, 36, 412-423.	3.1	30
460	Epigenetic regulation of adipose tissue expansion and adipogenesis by <i>N</i> ⁶ â€methyladenosine. Obesity Reviews, 2021, 22, e13124.	3.1	14
462	Regulation of RNA Stability Through RNA Modification. RNA Technologies, 2021, , 217-246.	0.2	1
463	Epitranscriptomic Signatures in Neural Development and Disease. RNA Technologies, 2021, , 79-120.	0.2	1
465	Multifaceted regulation of translation by the epitranscriptomic modification N ⁶ -methyladenosine. Critical Reviews in Biochemistry and Molecular Biology, 2021, 56, 137-148.	2.3	11
466	BDBB: A Novel Beta-distribution-based Biclustering Algorithm for Revealing Local Co-methylation Patterns in Epi-transcriptome Profiling Data. IEEE Journal of Biomedical and Health Informatics, 2021, PP, 1-1.	3.9	5
467	m6A RNA methylation regulates the fate of endogenous retroviruses. Nature, 2021, 591, 312-316.	13.7	156
468	Role of N6-methyl-adenosine modification in mammalian embryonic development. Genetics and Molecular Biology, 2021, 44, e20200253.	0.6	9
469	Regulation of Gene Expression Associated With the N6-Methyladenosine (m6A) Enzyme System and Its Significance in Cancer. Frontiers in Oncology, 2020, 10, 623634.	1.3	27
470	m ⁶ A deposition is regulated by PRMT1â€mediated arginine methylation of METTL14 in its disordered Câ€ŧerminal region. EMBO Journal, 2021, 40, e106309.	3.5	30
471	Crosstalk between codon optimality and cis-regulatory elements dictates mRNA stability. Genome Biology, 2021, 22, 14.	3.8	33
472	Recent advances in functional annotation and prediction of the epitranscriptome. Computational and Structural Biotechnology Journal, 2021, 19, 3015-3026.	1.9	13
473	RNA m6A Modification Functions in Larval Development and Caste Differentiation in Honeybee (Apis) Tj ETQq0 C)	verlock 10 Tf
475	N6-Adenosine Methylation (m6A) RNA Modification: an Emerging Role in Cardiovascular Diseases. Journal of Cardiovascular Translational Research, 2021, 14, 857-872.	1.1	25

#	Article	IF	CITATIONS
476	Subcellular relocalization and nuclear redistribution of the RNA methyltransferases TRMT1 and TRMT1L upon neuronal activation. RNA Biology, 2021, 18, 1905-1919.	1.5	9
477	Targeting m6A modification inhibits herpes virus 1 infection. Genes and Diseases, 2022, 9, 1114-1128.	1.5	24
478	Comprehensive Analysis of Expression Regulation for RNA m6A Regulators With Clinical Significance in Human Cancers. Frontiers in Oncology, 2021, 11, 624395.	1.3	14
479	The Regulation of RNA Modification Systems: The Next Frontier in Epitranscriptomics?. Genes, 2021, 12, 345.	1.0	29
480	The role of m6A modification in the biological functions and diseases. Signal Transduction and Targeted Therapy, 2021, 6, 74.	7.1	718
481	YTH Domain Proteins: A Family of m6A Readers in Cancer Progression. Frontiers in Oncology, 2021, 11, 629560.	1.3	25
482	L1 retrotransposons exploit RNA m6A modification as an evolutionary driving force. Nature Communications, 2021, 12, 880.	5.8	32
483	METTL3-mediated m6A modification regulates cell cycle progression of dental pulp stem cells. Stem Cell Research and Therapy, 2021, 12, 159.	2.4	24
484	The networks of m6A-SARS-CoV-2 related genes and immune infiltration patterns in idiopathic pulmonary fibrosis. Aging, 2021, 13, 6273-6288.	1.4	5
486	Deciphering Epitranscriptome: Modification of mRNA Bases Provides a New Perspective for Post-transcriptional Regulation of Gene Expression. Frontiers in Cell and Developmental Biology, 2021, 9, 628415.	1.8	76
487	Roles of RNA Methylation on Tumor Immunity and Clinical Implications. Frontiers in Immunology, 2021, 12, 641507.	2.2	83
488	The RNA m6A reader YTHDC1 silences retrotransposons and guards ES cell identity. Nature, 2021, 591, 322-326.	13.7	187
490	Targeted RNA <i>N</i> ⁶ â€Methyladenosine Demethylation Controls Cell Fate Transition in Human Pluripotent Stem Cells. Advanced Science, 2021, 8, e2003902.	5.6	20
491	Structural insights of human N-acetyltransferase 10 and identification of its potential novel inhibitors. Scientific Reports, 2021, 11, 6051.	1.6	17
492	N6-methyladenosine modification of MALAT1 promotes metastasis via reshaping nuclear speckles. Developmental Cell, 2021, 56, 702-715.e8.	3.1	71
493	AMD1 upregulates hepatocellular carcinoma cells stemness by FTO mediated mRNA demethylation. Clinical and Translational Medicine, 2021, 11, e352.	1.7	42
494	Multilayer and MATR3-dependent regulation of mRNAs maintains pluripotency in human induced pluripotent stem cells. IScience, 2021, 24, 102197.	1.9	11
495	RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nature Communications, 2021, 12, 1394.	5.8	190

#	Article	IF	Citations
496	ATP-Independent Initiation during Cap-Independent Translation of m6A-Modified mRNA. International Journal of Molecular Sciences, 2021, 22, 3662.	1.8	3
497	Comprehensive analyses of m6A regulators and interactive coding and non-coding RNAs across 32 cancer types. Molecular Cancer, 2021, 20, 67.	7.9	65
499	Nuclear m6A reader YTHDC1 regulates the scaffold function of LINE1 RNA in mouse ESCs and early embryos. Protein and Cell, 2021, 12, 455-474.	4.8	84
500	The role of RNA m6A methylation in the regulation of postnatal hypoxia-induced pulmonary hypertension. Respiratory Research, 2021, 22, 121.	1.4	21
501	FTO regulates myoblast proliferation by controlling CCND1 expression in an m6A-YTHDF2-dependent manner. Experimental Cell Research, 2021, 401, 112524.	1.2	11
503	Multiple Functions of RNA Methylation in T Cells: A Review. Frontiers in Immunology, 2021, 12, 627455.	2.2	16
504	RNA demethylation by FTO stabilizes the FOXJ1 mRNA for proper motile ciliogenesis. Developmental Cell, 2021, 56, 1118-1130.e6.	3.1	14
506	REW-ISA V2: A Biclustering Method Fusing Homologous Information for Analyzing and Mining Epi-Transcriptome Data. Frontiers in Genetics, 2021, 12, 654820.	1.1	6
507	mRNA modifications in cardiovascular biology and disease: with a focus on m6A modification. Cardiovascular Research, 2022, 118, 1680-1692.	1.8	66
508	Post-translational modification of RNA m6A demethylase ALKBH5 regulates ROS-induced DNA damage response. Nucleic Acids Research, 2021, 49, 5779-5797.	6.5	92
509	<i>N</i> ⁶ â€Methyladenosine mRNA methylation is important for salt stress tolerance in <i>Arabidopsis</i> . Plant Journal, 2021, 106, 1759-1775.	2.8	101
510	Regulatory Mechanisms of the RNA Modification m6A and Significance in Brain Function in Health and Disease. Frontiers in Cellular Neuroscience, 2021, 15, 671932.	1.8	29
511	METTL3-Mediated m6A Methylation Regulates Muscle Stem Cells and Muscle Regeneration by Notch Signaling Pathway. Stem Cells International, 2021, 2021, 1-13.	1.2	30
512	A single m6A modification in U6 snRNA diversifies exon sequence at the 5' splice site. Nature Communications, 2021, 12, 3244.	5.8	30
514	Funm6AViewer: a web server and R package for functional analysis of context-specific m6A RNA methylation. Bioinformatics, 2021, 37, 4277-4279.	1.8	4
515	Implications of Enhancer Transcription and eRNAs in Cancer. Cancer Research, 2021, 81, 4174-4182.	0.4	38
516	m6A RNA methylation of major satellite repeat transcripts facilitates chromatin association and RNA:DNA hybrid formation in mouse heterochromatin. Nucleic Acids Research, 2021, 49, 5568-5587.	6.5	21
517	The m6A epitranscriptome on neural development and degeneration. Journal of Biomedical Science, 2021, 28, 40.	2.6	43

#	ARTICLE	IF	CITATIONS
518	The distinct roles of zinc finger CCHC-type (ZCCHC) superfamily proteins in the regulation of RNA metabolism. RNA Biology, 2021, 18, 2107-2126.	1.5	24
519	Emerging Role of m6 A Methylome in Brain Development: Implications for Neurological Disorders and Potential Treatment. Frontiers in Cell and Developmental Biology, 2021, 9, 656849.	1.8	15
520	Positive natural selection of N6-methyladenosine on the RNAs of processed pseudogenes. Genome Biology, 2021, 22, 180.	3.8	8
521	RNA modifications in hematopoietic malignancies: a new research frontier. Blood, 2021, 138, 637-648.	0.6	24
522	From A to m6A: The Emerging Viral Epitranscriptome. Viruses, 2021, 13, 1049.	1.5	34
523	Epitranscriptomic editing of the RNA N6-methyladenosine modification by dCasRx conjugated methyltransferase and demethylase. Nucleic Acids Research, 2021, 49, 7361-7374.	6.5	66
525	The METTL3-m6A Epitranscriptome: Dynamic Regulator of Epithelial Development, Differentiation, and Cancer. Genes, 2021, 12, 1019.	1.0	15
526	Hakai is required for stabilization of core components of the m6A mRNA methylation machinery. Nature Communications, 2021, 12, 3778.	5.8	77
527	Arginine methylation of METTL14 promotes RNA N6-methyladenosine modification and endoderm differentiation of mouse embryonic stem cells. Nature Communications, 2021, 12, 3780.	5.8	34
528	Splice site m6A methylation prevents binding of U2AF35 to inhibit RNA splicing. Cell, 2021, 184, 3125-3142.e25.	13.5	103
529	Potential roles of N6-methyladenosine (m6A) in immune cells. Journal of Translational Medicine, 2021, 19, 251.	1.8	36
530	Acute depletion of METTL3 implicates <i>N</i> ⁶ -methyladenosine in alternative intron/exon inclusion in the nascent transcriptome. Genome Research, 2021, 31, 1395-1408.	2.4	37
531	N6-methyladenosine RNA modification regulates strawberry fruit ripening in an ABA-dependent manner. Genome Biology, 2021, 22, 168.	3.8	72
532	PBRM1 Cooperates with YTHDF2 to Control HIF-1α Protein Translation. Cells, 2021, 10, 1425.	1.8	13
533	RNA N6-Methyladenosine in Cancer Metastasis: Roles, Mechanisms, and Applications. Frontiers in Oncology, 2021, 11, 681781.	1.3	13
534	A methionine-Mettl3-N-methyladenosine axis promotes polycystic kidney disease. Cell Metabolism, 2021, 33, 1234-1247.e7.	7.2	52
535	RNA methylation in mammalian development and cancer. Cell Biology and Toxicology, 2021, 37, 811-831.	2.4	47
536	N6-methyladenosine demethylase ALKBH5 suppresses malignancy of esophageal cancer by regulating microRNA biogenesis and RAI1 expression. Oncogene, 2021, 40, 5600-5612.	2.6	32

#	Article	IF	CITATIONS
537	Translational control of stem cell function. Nature Reviews Molecular Cell Biology, 2021, 22, 671-690.	16.1	69
538	The Emerging Clinical Application of m6A RNA Modification in Inflammatory Bowel Disease and Its Associated Colorectal Cancer. Journal of Inflammation Research, 2021, Volume 14, 3289-3306.	1.6	21
539	The role m6A RNA methylation is CNS development and glioma pathogenesis. Molecular Brain, 2021, 14, 119.	1.3	19
541	Genetic drivers of m6A methylation in human brain, lung, heart and muscle. Nature Genetics, 2021, 53, 1156-1165.	9.4	57
542	M6A Demethylase ALKBH5 Regulates PD-L1 Expression and Tumor Immunoenvironment in Intrahepatic Cholangiocarcinoma. Cancer Research, 2021, 81, 4778-4793.	0.4	102
543	End-labeling-based electrochemical strategy for detection of adenine methylation in nucleic acid by differential pulse voltammetry. Mikrochimica Acta, 2021, 188, 250.	2.5	5
545	Ascorbic Acid in Epigenetic Reprogramming. Current Stem Cell Research and Therapy, 2022, 17, 13-25.	0.6	9
546	RNA m6A Methyltransferase Mettl3 Regulates Spatial Neural Patterning in <i>Xenopus laevis</i> Molecular and Cellular Biology, 2021, 41, e0010421.	1.1	10
548	Interplays of different types of epitranscriptomic mRNA modifications. RNA Biology, 2021, 18, 19-30.	1.5	9
550	The detection and functions of RNA modification m6A based on m6A writers and erasers. Journal of Biological Chemistry, 2021, 297, 100973.	1.6	43
551	The component of the m6A writer complex VIRMA is implicated in aggressive tumor phenotype, DNA damage response and cisplatin resistance in germ cell tumors. Journal of Experimental and Clinical Cancer Research, 2021, 40, 268.	3.5	27
552	Analysis of m6A methylation in skin tissues of different sex Liaoning cashmere goats. Animal Biotechnology, 2021, , 1-11.	0.7	2
553	Protein-based molecular recognition tools for detecting and profiling RNA modifications. Current Opinion in Structural Biology, 2021, 69, 1-10.	2.6	3
554	<i>m6A-express</i> : uncovering complex and condition-specific m6A regulation of gene expression. Nucleic Acids Research, 2021, 49, e116-e116.	6.5	24
555	Bioinformatical identification of key genes regulated by IGF2BP2- mediated RNA N6-methyladenosine and prediction of prognosis in hepatocellular carcinoma. Journal of Gastrointestinal Oncology, 2021, 12, 1773-1785.	0.6	8
556	N6-Methylandenosine-Related IncRNAs Predict Prognosis and Immunotherapy Response in Bladder Cancer. Frontiers in Oncology, 2021, 11, 710767.	1.3	21
557	m6A writer complex promotes timely differentiation and survival of retinal progenitor cells in zebrafish. Biochemical and Biophysical Research Communications, 2021, 567, 171-176.	1.0	3
559	Transcriptome-Wide Dynamics of m 6 A mRNA Methylation During Porcine Spermatogenesis. Genomics, Proteomics and Bioinformatics, 2023, 21, 729-741.	3.0	6

#	Article	IF	Citations
560	m ⁶ A Pathway Regulators Are Frequently Mutated in Breast Invasive Carcinoma and May Play an Important Role in Disease Pathogenesis. OMICS A Journal of Integrative Biology, 2021, 25, 660-678.	1.0	4
561	METTL14 aggravates podocyte injury and glomerulopathy progression through N6-methyladenosine-dependent downregulating of Sirt1. Cell Death and Disease, 2021, 12, 881.	2.7	55
562	Systematic calibration of epitranscriptomic maps using a synthetic modification-free RNA library. Nature Methods, 2021, 18, 1213-1222.	9.0	44
563	Epitranscriptomic signatures in stem cell differentiation to the neuronal lineage. RNA Biology, 2021, 18, 51-60.	1.5	3
564	Transcriptome analysis provides insights into long noncoding RNAs in medaka gonads. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2021, 39, 100842.	0.4	6
566	Principles of mRNA targeting via the Arabidopsis m6A-binding protein ECT2. ELife, 2021, 10, .	2.8	41
567	m6A demethylase ALKBH5 suppression contributes to esophageal squamous cell carcinoma progression. Aging, 2021, 13, 21497-21512.	1.4	13
568	Multiplexed profiling facilitates robust m6A quantification at site, gene and sample resolution. Nature Methods, 2021, 18, 1060-1067.	9.0	57
569	METTL3-dependent MALAT1 delocalization drives c-Myc induction in thymic epithelial tumors. Clinical Epigenetics, 2021, 13, 173.	1.8	21
570	The Landscape of IFN/ISG Signaling in HIV-1-Infected Macrophages and Its Possible Role in the HIV-1 Latency. Cells, 2021, 10, 2378.	1.8	8
572	METTL3 Regulates Liver Homeostasis, Hepatocyte Ploidy, and Circadian Rhythm–Controlled Gene Expression in Mice. American Journal of Pathology, 2022, 192, 56-71.	1.9	26
574	Computational methods for RNA modification detection from nanopore direct RNA sequencing data. RNA Biology, 2021, 18, 31-40.	1.5	48
575	Polymorphisms in METTL3 gene and hepatoblastoma risk in Chinese children: A seven-center case-control study. Gene, 2021, 800, 145834.	1.0	8
576	Metabolic enzymes function as epigenetic modulators: A Trojan Horse for chromatin regulation and gene expression. Pharmacological Research, 2021, 173, 105834.	3.1	1
577	Relevance of N6-methyladenosine regulators for transcriptome: Implications for development and the cardiovascular system. Journal of Molecular and Cellular Cardiology, 2021, 160, 56-70.	0.9	9
578	The RNA m6A writer METTL14 in cancers: Roles, structures, and applications. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188609.	3.3	58
579	ALKBH5-mediated m6A mRNA methylation governs human embryonic stem cell cardiac commitment. Molecular Therapy - Nucleic Acids, 2021, 26, 22-33.	2.3	17
580	The Complex Roles and Therapeutic Implications of m6A Modifications in Breast Cancer. Frontiers in Cell and Developmental Biology, 2020, 8, 615071.	1.8	9

#	Article	IF	Citations
581	FBCwPlaid: A Functional Biclustering Analysis of Epi-Transcriptome Profiling Data Via a Weighted Plaid Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 1640-1650.	1.9	7
582	Epitranscriptomics and Diseases. RNA Technologies, 2021, , 121-140.	0.2	0
583	Metabolic Control of m6A RNA Modification. Metabolites, 2021, 11, 80.	1.3	24
584	m ⁶ A RNA methylation: from mechanisms to therapeutic potential. EMBO Journal, 2021, 40, e105977.	3.5	316
585	mRNA Traffic Control Reviewed: N6â€Methyladenosine (m ⁶ A) Takes the Driver's Seat. BioEssays, 2018, 40, 1700093.	1.2	62
586	Epigenetic processes and DNA repair in embryonic stem cells. , 2020, , 1-23.		1
587	Epigenetic regulation of cancer stem cell and tumorigenesis. Advances in Cancer Research, 2020, 148, 1-26.	1.9	12
588	Reading the Epitranscriptome. The Enzymes, 2017, 41, 269-298.	0.7	19
589	m6AmPred: Identifying RNA N6, 2′-O-dimethyladenosine (m6Am) sites based on sequence-derived information. Methods, 2021, , .	1.9	15
590	N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nature Structural and Molecular Biology, 2017, 24, 870-878.	3.6	432
591	Detection methods of epitranscriptomic mark <i>N</i> 6-methyladenosine. Essays in Biochemistry, 2020, 64, 967-979.	2.1	17
592	The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Research, 2020, 48, 3816-3831.	6.5	430
593	m6A RNA methylation, a new hallmark in virus-host interactions. Journal of General Virology, 2017, 98, 2207-2214.	1.3	85
604	CRISPR/Cas: a potential gene-editing tool in the nervous system. Cell Regeneration, 2020, 9, 12.	1.1	8
605	Beyond transcription factors: roles of mRNA decay in regulating gene expression in plants. F1000Research, 2018, 7, 1940.	0.8	13
606	RNAMethPre: A Web Server for the Prediction and Query of mRNA m6A Sites. PLoS ONE, 2016, 11, e0162707.	1.1	55
607	mRNA N6-methyladenosine methylation of postnatal liver development in pig. PLoS ONE, 2017, 12, e0173421.	1.1	48
608	The 18S <scp>rRNA</scp> m ⁶ A methyltransferase <scp>METTL</scp> 5 promotes mouse embryonic stem cell differentiation. EMBO Reports, 2020, 21, e49863.	2.0	42

#	Article	IF	CITATIONS
609	Erasing gametes to write blastocysts: metabolism as the new player in epigenetic reprogramming. Animal Reproduction, 2020, 17, e20200015.	0.4	15
610	Reduced m6A mRNA methylation is correlated with the progression of human cervical cancer. Oncotarget, 2017, 8, 98918-98930.	0.8	84
611	Dissecting the role of RNA modification regulatory proteins in melanoma. Oncotarget, 2019, 10, 3745-3759.	0.8	6
612	m6A Modification and Implications for microRNAs. MicroRNA (Shariqah, United Arab Emirates), 2017, 6, 97-101.	0.6	55
613	The m6A methyltransferase METTL3 aggravates the progression of nasopharyngeal carcinoma through inducing EMT by m6A-modified Snail mRNA. Minerva Medica, 2022, 113, .	0.3	22
614	The m ⁶ A pathway protects the transcriptome integrity by restricting RNA chimera formation in plants. Life Science Alliance, 2019, 2, e201900393.	1.3	53
615	Regulatory Role of RNA N6-Methyladenosine Modification in Bone Biology and Osteoporosis. Frontiers in Endocrinology, 2019, 10, 911.	1.5	50
616	Epitranscriptomics of cancer. World Journal of Clinical Oncology, 2018, 9, 42-55.	0.9	23
617	Structural insights into the molecular mechanism of the m6A writer complex. ELife, 2016, 5, .	2.8	386
618	m6A RNA methylation impacts fate choices during skin morphogenesis. ELife, 2020, 9, .	2.8	25
620	Metabolic turnover and dynamics of modified ribonucleosides by 13C labeling. Journal of Biological Chemistry, 2021, 297, 101294.	1.6	3
621	Novel evidence for m6A methylation regulators as prognostic biomarkers and FTO as a potential therapeutic target in gastric cancer. British Journal of Cancer, 2022, 126, 228-237.	2.9	25
622	METTL3-mediated mRNA N6-methyladenosine is required for oocyte and follicle development in mice. Cell Death and Disease, 2021, 12, 989.	2.7	31
623	Modifying the m6A brain methylome by ALKBH5-mediated demethylation: a new contender for synaptic tagging. Molecular Psychiatry, 2021, 26, 7141-7153.	4.1	19
624	RNA methylation and cancer treatment. Pharmacological Research, 2021, 174, 105937.	3.1	89
626	Methylation Modification, Alternative Splicing, and Noncoding RNA Play a Role in Cancer Metastasis through Epigenetic Regulation. BioMed Research International, 2021, 2021, 1-13.	0.9	9
627	Genome-wide RNA structure changes during human neurogenesis modulate gene regulatory networks. Molecular Cell, 2021, 81, 4942-4953.e8.	4.5	15
628	m6A RNA Immunoprecipitation Followed by High-Throughput Sequencing to Map N6-Methyladenosine. Methods in Molecular Biology, 2022, 2404, 355-362.	0.4	5

#	Article	IF	Citations
630	The M6A methyltransferase METTL3 regulates proliferation in esophageal squamous cell carcinoma. Biochemical and Biophysical Research Communications, 2021, 580, 48-55.	1.0	12
631	3 Genetic and Epigenetic Considerations in iPSC Technology. , 2017, , 51-86.		0
636	The Role of mRNA m6A in Regulation of Gene Expression. RNA Technologies, 2019, , 353-376.	0.2	0
642	Comprehensive Analysis of N6-Methyladenosine-Related IncRNA Signature for Predicting Prognosis and Immune Cell Infiltration in Patients with Colorectal Cancer. Disease Markers, 2021, 2021, 1-22.	0.6	7
643	METTL14 gene polymorphisms influence hepatoblastoma predisposition in Chinese children: Evidences from a seven-center case-control study. Gene, 2022, 809, 146050.	1.0	5
644	Epigenetics of Somatic Cell Reprogramming. Learning Materials in Biosciences, 2020, , 137-157.	0.2	0
646	Knockdown of METTL14 inhibits the growth and invasion of cervical cancer. Translational Cancer Research, 2019, 8, 2307-2315.	0.4	8
647	Regulation of pluripotency and reprogramming by RNA binding proteins. Current Topics in Developmental Biology, 2020, 138, 113-138.	1.0	6
648	METTL3-Mediated m6A RNA Modification Regulates Corneal Injury Repair. Stem Cells International, 2021, 2021, 1-14.	1.2	6
649	m6A Modification in Non-Coding RNA: The Role in Cancer Drug Resistance. Frontiers in Oncology, 2021, 11, 746789.	1.3	10
650	How does m ⁶ A regulation affect the differentiation and fate of embryonic stem cells?. Epigenomics, 2021, 13, 1787-1789.	1.0	0
651	Dual regulatory actions of LncBMP4 on BMP4 promote chicken primordial germ cell formation. EMBO Reports, 2022, 23, e52491.	2.0	9
652	The Roles of RNA N6-Methyladenosine in Regulating Stem Cell Fate. Frontiers in Cell and Developmental Biology, 2021, 9, 765635.	1.8	5
655	N6-methyladenine RNA modification and cancers. American Journal of Cancer Research, 2018, 8, 1957-1966.	1.4	14
656	Epitranscriptomic m6A modification in the stem cell field and its effects on cell death and survival. American Journal of Cancer Research, 2019, 9, 752-764.	1.4	13
657	Dissecting the role of RNA modification regulatory proteins in melanoma. Oncotarget, 2019, 10, 3745-3759.	0.8	4
658	Cycloleucine negatively regulates porcine oocyte maturation and embryo development by modulating N6-methyladenosine and histone modifications. Theriogenology, 2022, 179, 128-140.	0.9	5
659	N6-Methyladenosine Methylation of mRNA in Cell Senescence. Cellular and Molecular Neurobiology, 2023, 43, 27-36.	1.7	5

#	Article	IF	CITATIONS
660	Transcriptome-Wide Map of N6-Methyladenosine Methylome Profiling in Human Bladder Cancer. Frontiers in Oncology, 2021, 11, 717622.	1.3	5
661	Novel Insights Into the Potential Mechanisms of N6-Methyladenosine RNA Modification on Sepsis-Induced Cardiovascular Dysfunction: An Update Summary on Direct and Indirect Evidences. Frontiers in Cell and Developmental Biology, 2021, 9, 772921.	1.8	12
662	Enzymatic deamination of the epigenetic nucleoside <i>N6 < /i>-methyladenosine regulates gene expression. Nucleic Acids Research, 2021, 49, 12048-12068.</i>	6.5	7
663	m6A mRNA methylation-directed myeloid cell activation controls progression of NAFLD and obesity. Cell Reports, 2021, 37, 109968.	2.9	53
664	$\label{lem:methods} Mettl 14-Dependent\ M\ 6A\ Modification\ Controls\ iNKT\ Cell\ Development\ and\ Function.\ SSRN\ Electronic\ Journal,\ 0,\ ,\ .$	0.4	0
665	Novel insights into the interaction between N6-methyladenosine modification and circular RNA. Molecular Therapy - Nucleic Acids, 2022, 27, 824-837.	2.3	19
666	Partitioning RNAs by length improves transcriptome reconstruction from short-read RNA-seq data. Nature Biotechnology, 2022, 40, 741-750.	9.4	7
667	Parallel functional assessment of m6A sites in human endodermal differentiation with base editor screens. Nature Communications, 2022, 13, 478.	5.8	8
668	Diversification of muscle types in Drosophila embryos. Experimental Cell Research, 2022, 410, 112950.	1.2	6
669	Analysis of N6-Methyladenosine Methylome in Adenocarcinoma of Esophagogastric Junction. Frontiers in Genetics, 2021, 12, 787800.	1.1	1
670	RNA binding to human METTL3-METTL14 restricts N6-deoxyadenosine methylation of DNA in vitro. ELife, 2022, 11, .	2.8	11
671	$\langle i \rangle N \langle i \rangle$ 6-methyladenosine enhances post-transcriptional gene regulation by microRNAs. Bioinformatics Advances, 2022, 2, vbab046.	0.9	2
673	m6A-mRNA Methylation Regulates Gene Expression and Programmable m6A Modification of Cellular RNAs With CRISPR-Cas13b in Renal Cell Carcinoma. Frontiers in Genetics, 2021, 12, 795611.	1.1	5
674	The role of m6A RNA methylation in cancer metabolism. Molecular Cancer, 2022, 21, 14.	7.9	194
675	scDART-seq reveals distinct m6A signatures and mRNA methylation heterogeneity in single cells. Molecular Cell, 2022, 82, 868-878.e10.	4.5	73
676	Potential applications of <scp><i>N</i>⁶â€methyladenosine</scp> modification in the prognosis and treatment of cancers via modulating apoptosis, autophagy, and ferroptosis. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1719.	3.2	11
677	Involvement of N6-methyladenosine modifications of long noncoding RNAs in systemic lupus erythematosus. Molecular Immunology, 2022, 143, 77-84.	1.0	13
678	MicroRNA-135 inhibits initiation of epithelial-mesenchymal transition in breast cancer by targeting ZNF217 and promoting m6A modification of NANOG. Oncogene, 2022, 41, 1742-1751.	2.6	14

#	Article	IF	Citations
679	Adenosine-to-Inosine RNA Editing and <i>N</i> ⁶ -Methyladenosine Modification Modulating Expression of Drug Metabolizing Enzymes. Drug Metabolism and Disposition, 2022, 50, 624-633.	1.7	5
680	The methyltransferase METTL3 negatively regulates nonalcoholic steatohepatitis (NASH) progression. Nature Communications, 2021, 12, 7213.	5.8	51
681	m ⁶ Aâ€mediated regulation of crop development and stress responses. Plant Biotechnology Journal, 2022, 20, 1447-1455.	4.1	31
682	The m ⁶ A reader YTHDC2 is essential for escape from KSHV SOX-induced RNA decay. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	19
683	Driving Chromatin Organisation through N6-methyladenosine Modification of RNA: What Do We Know and What Lies Ahead?. Genes, 2022, 13, 340.	1.0	6
685	Multi-Omics Investigations Revealed Underlying Molecular Mechanisms Associated With Tumor Stiffness and Identified Sunitinib as a Potential Therapy for Reducing Stiffness in Pituitary Adenomas. Frontiers in Cell and Developmental Biology, 2022, 10, 820562.	1.8	1
686	An <scp>RNA</scp> methylation code to regulate protein translation and cell fate. Cell Proliferation, 2022, 55, e13224.	2.4	2
687	Roles of RNA Modifications in Diverse Cellular Functions. Frontiers in Cell and Developmental Biology, 2022, 10, 828683.	1.8	25
689	LncRNAs and Chromatin Modifications Pattern m6A Methylation at the Untranslated Regions of mRNAs. Frontiers in Genetics, 2022, 13, 866772.	1.1	2
690	The XRN1-regulated RNA helicase activity of YTHDC2 ensures mouse fertility independently of m6A recognition. Molecular Cell, 2022, 82, 1678-1690.e12.	4.5	31
691	Global profiling reveals common and distinct N6-methyladenosine (m6A) regulation of innate immune responses during bacterial and viral infections. Cell Death and Disease, 2022, 13, 234.	2.7	16
692	mAexpress-Reader: Prediction of m6A regulated expression genes by integrating m6A sites and reader binding information in specific- context. Methods, 2022, , .	1.9	2
693	M6A RNA Methylation Regulates Histone Ubiquitination to Support Cancer Growth and Progression. Cancer Research, 2022, 82, 1872-1889.	0.4	29
695	NMD is required for timely cell fate transitions by fine-tuning gene expression and regulating translation. Genes and Development, 2022, 36, 348-367.	2.7	17
696	MTA1â€mediated RNA m ⁶ A modification regulates autophagy and is required for infection of the rice blast fungus. New Phytologist, 2022, 235, 247-262.	3.5	19
697	m ⁶ A mRNA modification maintains colonic epithelial cell homeostasis via NF-κB–mediated antiapoptotic pathway. Science Advances, 2022, 8, eabl5723.	4.7	31
698	YTHDF1 promotes intrahepatic cholangiocarcinoma progression via regulating EGFR mRNA translation. Journal of Gastroenterology and Hepatology (Australia), 2022, 37, 1156-1168.	1.4	14
699	N6-Methyladenosine RNA Modification: A Potential Regulator of Stem Cell Proliferation and Differentiation. Frontiers in Cell and Developmental Biology, 2022, 10, 835205.	1.8	4

#	Article	IF	CITATIONS
700	LXA4 enhances prostate cancer progression by facilitating M2 macrophage polarization via inhibition of METTL3. International Immunopharmacology, 2022, 107, 108586.	1.7	12
701	N6-methyladenosine (m ⁶ A) depletion regulates pluripotency exit by activating signaling pathways in embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
703	Specific Regulation of m 6 A by SRSF7 Promotes the Progression of Glioblastoma. Genomics, Proteomics and Bioinformatics, 2023, 21, 707-728.	3.0	16
704	Transcriptome-wide N6-Methyladenosine Methylome Profiling Reveals m6A Regulation of Skeletal Myoblast Differentiation in Cattle (Bos taurus). Frontiers in Cell and Developmental Biology, 2021, 9, 785380.	1.8	10
705	Ethionine-mediated reduction of S-adenosylmethionine is responsible for the neural tube defects in the developing mouse embryo-mediated m6A modification and is involved in neural tube defects via modulating Wht \hat{l}^2 -catenin signaling pathway. Epigenetics and Chromatin, 2021, 14, 52.	1.8	10
707	Dysregulated mitochondrial and cytosolic tRNA m1A methylation in Alzheimer's disease. Human Molecular Genetics, 2022, 31, 1673-1680.	1.4	23
708	Emerging role of m6A methylation modification in ovarian cancer. Cancer Cell International, 2021, 21, 663.	1.8	9
709	Recognition of G-quadruplex RNA by a crucial RNA methyltransferase component, METTL14. Nucleic Acids Research, 2022, 50, 449-457.	6.5	21
710	Nuclear RNA Exosome and Pervasive Transcription: Dual Sculptors of Genome Function. International Journal of Molecular Sciences, 2021, 22, 13401.	1.8	8
711	Integrated Study of Transcriptome-wide m6A Methylome Reveals Novel Insights Into the Character and Function of m6A Methylation During Yak Adipocyte Differentiation. Frontiers in Cell and Developmental Biology, 2021, 9, 689067.	1.8	7
712	Developing CRISPR/Cas9-Mediated Fluorescent Reporter Human Pluripotent Stem-Cell Lines for High-Content Screening. Molecules, 2022, 27, 2434.	1.7	2
713	Regulatory Role of N6-Methyladenosine in Longissimus Dorsi Development in Yak. Frontiers in Veterinary Science, 2022, 9, 757115.	0.9	4
714	Genome-Wide Identification, Classification and Expression Analysis of m6A Gene Family in Solanum lycopersicum. International Journal of Molecular Sciences, 2022, 23, 4522.	1.8	9
715	An Alternatively Spliced Variant of METTL3 Mediates Tumor Suppression in Hepatocellular Carcinoma. Genes, 2022, 13, 669.	1.0	7
716	Exenatide ameliorates hydrogen peroxide-induced pancreatic \hat{l}^2 -cell apoptosis through regulation of METTL3-mediated m6A methylation. European Journal of Pharmacology, 2022, 924, 174960.	1.7	11
729	Cancer stem cells: a major culprit of intra-tumor heterogeneity American Journal of Cancer Research, 2021, 11, 5782-5811.	1.4	0
730	The functional roles of m6A modification in T lymphocyte responses and autoimmune diseases. Cytokine and Growth Factor Reviews, 2022, 65, 51-60.	3.2	11
731	FTO Alleviates CdCl2-Induced Apoptosis and Oxidative Stress via the AKT/Nrf2 Pathway in Bovine Granulosa Cells. International Journal of Molecular Sciences, 2022, 23, 4948.	1.8	19

#	Article	IF	CITATIONS
732	FTO mediates LINE1 m ⁶ A demethylation and chromatin regulation in mESCs and mouse development. Science, 2022, 376, 968-973.	6.0	97
734	SRSF9 promotes colorectal cancer progression via stabilizing DSN1 mRNA in an m6A-related manner. Journal of Translational Medicine, 2022, 20, 198.	1.8	10
735	The Mettl3 epitranscriptomic writer amplifies p53 stress responses. Molecular Cell, 2022, 82, 2370-2384.e10.	4.5	22
736	Maternal Oxidized Soybean Oil Administration in Rats during Pregnancy and Lactation Alters the Intestinal DNA Methylation in Offspring. Journal of Agricultural and Food Chemistry, 2022, 70, 6224-6238.	2.4	6
737	Dynamic Transcriptome Profiling Reveals LncRNA-Centred Regulatory Networks in the Modulation of Pluripotency. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	1
738	The crucial mechanism and therapeutic implication of RNA methylation in bone pathophysiology. Ageing Research Reviews, 2022, 79, 101641.	5.0	16
739	MEF2C Expression Is Regulated by the Post-transcriptional Activation of the METTL3-m6A-YTHDF1 Axis in Myoblast Differentiation. Frontiers in Veterinary Science, 2022, 9, 900924.	0.9	8
740	ALKBH5 regulates somatic cell reprogramming in a phase-specific manner. Journal of Cell Science, 2022, 135, .	1.2	3
741	Identification of epitranscriptomic methylation marker genes in Arabidopsis and their expression profiling in response to developmental, anatomical, and environmental modulations. Current Plant Biology, 2022, , 100247.	2.3	3
742	Deep learning modeling m6A deposition reveals the importance of downstream cis-element sequences. Nature Communications, 2022, 13, 2720.	5.8	12
743	N6-methyladenosine regulates maternal RNA maintenance in oocytes and timely RNA decay during mouse maternal-to-zygotic transition. Nature Cell Biology, 2022, 24, 917-927.	4.6	28
744	Gene Polymorphisms of m6A Erasers FTO and ALKBH1 Associated with Susceptibility to Gastric Cancer. Pharmacogenomics and Personalized Medicine, 0, Volume 15, 547-559.	0.4	4
745	Mettl3 downregulation in germinal vesicle oocytes inhibits mRNA decay and the first polar body extrusion during maturation. Biology of Reproduction, 2022, 107, 765-778.	1.2	3
746	m6A Modification Involves in Enriched Environment-Induced Neurogenesis and Cognition Enhancement. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	1
747	ZNF677 suppresses renal cell carcinoma progression through N6â€methyladenosine and transcriptional repression of CDKN3. Clinical and Translational Medicine, 2022, 12, .	1.7	21
748	Hidden codes in mRNA: Control of gene expression by m6A. Molecular Cell, 2022, 82, 2236-2251.	4.5	102
749	Mettl3â€mediated m ⁶ A modification of Lrp2 facilitates neurogenesis through Ythdc2 and elicits antidepressantâ€like effects. FASEB Journal, 2022, 36, .	0.2	9
750	Mechanisms and Strategies for Determining m $<$ sup $>$ 6 $<$ /sup $>$ A RNA Modification Sites by Natural and Engineered m $<$ sup $>$ 6 $<$ /sup $>$ A Effector Proteins. Chemistry - an Asian Journal, 2022, 17, .	1.7	3

#	Article	IF	CITATIONS
751	m6A in the Signal Transduction Network. Molecules and Cells, 2022, 45, 435-443.	1.0	20
752	Deletion of Mettl3 at the Pro-B Stage Marginally Affects B Cell Development and Profibrogenic Activity of B Cells in Liver Fibrosis. Journal of Immunology Research, 2022, 2022, 1-17.	0.9	3
753	<scp>mRNA N⁶</scp> â€methyladenosine is critical for cold tolerance in Arabidopsis. Plant Journal, 2022, 111, 1052-1068.	2.8	23
7 54	N6-Methyladenosine Methylome Profiling of Muscle and Adipose Tissues Reveals Methylase–mRNA Metabolic Regulatory Networks in Fat Deposition of Rex Rabbits. Biology, 2022, 11, 944.	1.3	1
755	Hypoxia induced ALKBH5 prevents spontaneous abortion by mediating m6A-demethylation of SMAD1/5 mRNAs. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119316.	1.9	12
756	m6A Methylation in Cardiovascular Diseases: From Mechanisms to Therapeutic Potential. Frontiers in Genetics, $0,13,1$.	1.1	11
757	M ⁶ A reader hnRNPA2/B1 is essential for porcine embryo development via gene expression regulation. Journal of Animal Reproduciton and Biotechnology, 2022, 37, 121-129.	0.3	1
758	Limited effects of m6A modification on mRNA partitioning into stress granules. Nature Communications, 2022, 13, .	5.8	28
759	Ibuprofen promotes p75 neurotrophin receptor expression through modifying promoter methylation and N6-methyladenosine-RNA-methylation in human gastric cancer cells. Bioengineered, 2022, 13, 14595-14604.	1.4	6
760	Research advances of <scp>N6</scp> â€methyladenosine in diagnosis and therapy of pancreatic cancer. Journal of Clinical Laboratory Analysis, 2022, 36, .	0.9	12
761	RNA N6-Methyladenine Modification, Cellular Reprogramming, and Cancer Stemness. Frontiers in Cell and Developmental Biology, $0,10,10$	1.8	1
762	m6A Topological Transition Coupled to Developmental Regulation of Gene Expression During Mammalian Tissue Development. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	0
763	The Maternal Microbiome Programs the m6A Epitranscriptome of the Mouse Fetal Brain and Intestine. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	4
764	$\langle i \rangle N \langle i \rangle \langle b \rangle 6 \langle b \rangle$ -Methyladenosine and Its Implications in Viruses. Genomics, Proteomics and Bioinformatics, 2023, 21, 695-706.	3.0	6
765	The Epitranscriptome in miRNAs: Crosstalk, Detection, and Function in Cancer. Genes, 2022, 13, 1289.	1.0	2
766	RNA m6A modification orchestrates the rhythm of immune cell development from hematopoietic stem cells to T and B cells. Frontiers in Immunology, 0, 13 , .	2.2	2
767	Emerging roles of the RNA modifications N6-methyladenosine and adenosine-to-inosine in cardiovascular diseases. Molecular Therapy - Nucleic Acids, 2022, 29, 426-461.	2.3	11
768	DL-m6A: Identification of N6-Methyladenosine Sites in Mammals Using Deep Learning Based on Different Encoding Schemes. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023, 20, 904-911.	1.9	17

#	Article	IF	CITATIONS
769	RNA m6A modification: Mapping methods, roles, and mechanisms in acute myeloid leukemia. Blood Science, 2022, 4, 116-124.	0.4	2
770	Alternative splicing of METTL3 explains apparently METTL3-independent m6A modifications in mRNA. PLoS Biology, 2022, 20, e3001683.	2.6	31
771	Enzymes flying under the radar: Cryptic METTL3 can persist in knockout cells. PLoS Biology, 2022, 20, e3001717.	2.6	0
772	Multifaceted Roles of the N6-Methyladenosine RNA Methyltransferase METTL3 in Cancer and Immune Microenvironment. Biomolecules, 2022, 12, 1042.	1.8	5
773	METTL14-dependent m6A modification controls iNKT cell development and function. Cell Reports, 2022, 40, 111156.	2.9	10
774	RNA m ⁶ A demethylase ALKBH5 regulates the development of $\hat{I}^3\hat{I}^*$ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	24
775	N6-adenomethylation of GsdmC is essential for Lgr5+ stem cell survival to maintain normal colonic epithelial morphogenesis. Developmental Cell, 2022, 57, 1976-1994.e8.	3.1	12
776	Research progress of m6A regulation during animal growth and development. Molecular and Cellular Probes, 2022, 65, 101851.	0.9	1
777	Regulatory role of RNA N6-methyladenosine modifications during skeletal muscle development. Frontiers in Cell and Developmental Biology, 0, 10 , .	1.8	7
778	Mettl14-driven senescence-associated secretory phenotype facilitates somatic cell reprogramming. Stem Cell Reports, 2022, 17, 1799-1809.	2.3	4
779	<scp>m6A</scp> is required for resolving progenitor identity during planarian stem cell differentiation. EMBO Journal, 2022, 41, .	3.5	11
780	Hepatic RNA adduction derived from metabolic activation of retrorsine in vitro and in vivo. Chemico-Biological Interactions, 2022, 365, 110047 .	1.7	2
781	Resetting the epigenome: Methylation dynamics in cancer stem cells. Frontiers in Cell and Developmental Biology, 0, 10 , .	1.8	3
782	Functional Characterization of Two RNA Methyltransferase Genes METTL3 and METTL14 Uncovers the Roles of m6A in Mediating Adaptation of Plutella xylostella to Host Plants. International Journal of Molecular Sciences, 2022, 23, 10013.	1.8	2
783	Exploring glioblastoma stem cell heterogeneity: Immune microenvironment modulation and therapeutic opportunities. Frontiers in Oncology, 0, 12, .	1.3	7
784	Transcriptional expression of m6A and m5C RNA methyltransferase genes in the brain and fat body of honey bee adult workers. Frontiers in Cell and Developmental Biology, 0, 10 , .	1.8	3
785	Wilms tumor 1 associated protein promotes epithelial mesenchymal transition of gastric cancer cells by accelerating TGF- \hat{l}^2 and enhances chemoradiotherapy resistance. Journal of Cancer Research and Clinical Oncology, 2023, 149, 3977-3988.	1.2	9
788	Exploration of N6-Methyladenosine Profiles of mRNAs and the Function of METTL3 in Atherosclerosis. Cells, 2022, 11, 2980.	1.8	5

#	Article	IF	CITATIONS
789	Inhibition of METTL5 improves preimplantation development of mouse somatic cell nuclear transfer embryos. Reproduction, 2022, 164, 221-230.	1.1	4
790	Exploring the epitranscriptome by native RNA sequencing. Rna, 2022, 28, 1430-1439.	1.6	21
791	Time-resolved single-cell RNA-seq using metabolic RNA labelling. Nature Reviews Methods Primers, 2022, 2, .	11.8	21
792	<scp>m6A</scp> modification–mediated <scp>lncRNA TP53TG1</scp> inhibits gastric cancer progression by regulating <scp>CIP2A</scp> stability. Cancer Science, 2022, 113, 4135-4150.	1.7	17
793	A programmable system to methylate and demethylate N6-methyladenosine (m6A) on specific RNA transcripts in mammalian cells. Journal of Biological Chemistry, 2022, 298, 102525.	1.6	6
794	The effects of <scp>RNA</scp> methylation on immune cells development and function. FASEB Journal, 2022, 36, .	0.2	5
795	Impact of N6-methyladenosine (m6A) modification on immunity. Cell Communication and Signaling, 2022, 20, .	2.7	11
797	Formation and removal of $1,<$ i>N6-dimethyladenosine in mammalian transfer RNA. Nucleic Acids Research, 2022, 50, 9858-9872.	6.5	15
798	Nuclear <scp> m ⁶ A </scp> reader <scp>YTHDC1</scp> suppresses proximal alternative polyadenylation sites by interfering with the 3′ processing machinery. EMBO Reports, 2022, 23, .	2.0	10
799	RNA m6A regulates transcription via DNA demethylation and chromatin accessibility. Nature Genetics, 2022, 54, 1427-1437.	9.4	49
800	METTLing in Stem Cell and Cancer Biology. Stem Cell Reviews and Reports, 2023, 19, 76-91.	1.7	11
801	RNA m6A modifications in mammalian gametogenesis and pregnancy. Reproduction, 2023, 165, R1-R8.	1.1	5
802	Profiling RNA at chromatin targets in situ by antibody-targeted tagmentation. Nature Methods, 2022, 19, 1383-1392.	9.0	9
803	YTHDC2 Promotes Malignant Phenotypes of Breast Cancer Cells. Journal of Oncology, 2022, 2022, 1-11.	0.6	3
804	N6-methyladenosine-associated prognostic pseudogenes contribute to predicting immunotherapy benefits and therapeutic agents in head and neck squamous cell carcinoma. Theranostics, 2022, 12, 7267-7288.	4.6	4
805	Biological roles of adenine methylation in RNA. Nature Reviews Genetics, 2023, 24, 143-160.	7.7	73
807	Reduction of Methyltransferase-like 3-Mediated RNA N6-Methyladenosine Exacerbates the Development of Psoriasis Vulgaris in Imiquimod-Induced Psoriasis-like Mouse Model. International Journal of Molecular Sciences, 2022, 23, 12672.	1.8	3
808	METTL3 acetylation impedes cancer metastasis via fine-tuning its nuclear and cytosolic functions. Nature Communications, 2022, 13, .	5.8	24

#	Article	IF	Citations
809	New insights into the epitranscriptomic control of pluripotent stem cell fate. Experimental and Molecular Medicine, 2022, 54, 1643-1651.	3.2	4
810	METTL3 modulates chromatin and transcription dynamics during cell fate transition. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	6
811	Effect of the m6ARNA gene on the prognosis of thyroid cancer, immune infiltration, and promising immunotherapy. Frontiers in Immunology, 0, 13 , .	2.2	3
812	N6-methyladenine: A Rare and Dynamic DNA Mark. Advances in Experimental Medicine and Biology, 2022, , 177-210.	0.8	O
813	FGFICA: Independent Component Analysis of Fusion Genomic Features for Mining Epi-transcriptome Profiling Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, , 1-12.	1.9	0
814	Involvement of METTL3 in arsenite-induced skin lesions by targeting the SOCS3/STAT3/Krt signaling pathway. Environmental Pollution, 2023, 316, 120634.	3.7	3
815	METTL1 drives tumor progression of bladder cancer via degrading ATF3 mRNA in an m7G-modified miR-760-dependent manner. Cell Death Discovery, 2022, 8, .	2.0	9
816	DirectRMDB: a database of post-transcriptional RNA modifications unveiled from direct RNA sequencing technology. Nucleic Acids Research, 2023, 51, D106-D116.	6.5	31
817	N ⁶ â€methyladenosineâ€modified IncRNA ARHGAP5â€AS1 stabilises CSDE1 and coordinates oncogenic RNA regulons in hepatocellular carcinoma. Clinical and Translational Medicine, 2022, 12, .	1.7	19
818	m6A readers, writers, erasers, and the m6A epitranscriptome in breast cancer. Journal of Molecular Endocrinology, 2023, 70, .	1.1	13
819	Fat mass and obesityâ€associated protein alleviates Aβ _{1–40} induced retinal pigment epithelial cells degeneration via PKA/CREB signaling pathway. Cell Biology International, 2023, 47, 584-597.	1.4	8
820	Detection of m6A from direct RNA sequencing using a multiple instance learning framework. Nature Methods, 2022, 19, 1590-1598.	9.0	54
821	Interactive regulation of DNA demethylase gene TET1 and m6A methyltransferase gene METTL3 in myoblast differentiation. International Journal of Biological Macromolecules, 2022, 223, 916-930.	3.6	8
822	Mettl3-mediated m6A modification of Fgf16 restricts cardiomyocyte proliferation during heart regeneration. ELife, 0, 11 , .	2.8	6
823	Analysis of N6-methyladenosine RNA Modification Levels by Dot Blotting. Bio-protocol, 2022, 12, .	0.2	1
824	Intertwined regulation between RNA m6A modification and cancer metabolism., 2023, 2, 100075.		1
825	The genetic and biochemical determinants of mRNA degradation rates in mammals. Genome Biology, 2022, 23, .	3.8	28
826	Comprehensive profiling of epigenetic modifications in fast-growing Moso bamboo shoots. Plant Physiology, 2023, 191, 1017-1035.	2.3	6

#	ARTICLE	IF	CITATIONS
827	The regulation of m ⁶ A-related proteins during whole-body freezing of the freeze-tolerant wood frog. Biochemistry and Cell Biology, 2023, 101, 77-86.	0.9	1
829	BTG2 suppresses renal cell carcinoma progression through N6-methyladenosine. Frontiers in Oncology, 0, 12 , .	1.3	5
830	RNA degradation eliminates developmental transcripts during murine embryonic stem cell differentiation via CAPRIN1-XRN2. Developmental Cell, 2022, 57, 2731-2744.e5.	3.1	7
831	RNA Epigenetics in Chronic Lung Diseases. Genes, 2022, 13, 2381.	1.0	3
832	The Role of the m6A RNA Methyltransferase METTL16 in Gene Expression and SAM Homeostasis. Genes, 2022, 13, 2312.	1.0	0
834	Stage-specific requirement for METTL3-dependent m6A modification during dental pulp stem cell differentiation. Journal of Translational Medicine, 2022, 20, .	1.8	3
835	m 6 A Profile Dynamics Indicates Regulation of Oyster Development by m 6 A-RNA Epitranscriptomes. Genomics, Proteomics and Bioinformatics, 2023, 21, 742-755.	3.0	2
836	Amentoflavone and methyl hesperidin, novel lead molecules targeting epitranscriptomic modulator in acute myeloid leukemia: in silico drug screening and molecular dynamics simulation approach. Journal of Molecular Modeling, 2023, 29, .	0.8	11
837	RNA modifications in cardiovascular health and disease. Nature Reviews Cardiology, 2023, 20, 325-346.	6.1	11
838	Dynamic regulation and key roles of ribonucleic acid methylation. Frontiers in Cellular Neuroscience, $0,16,.$	1.8	1
839	Interplay between <scp>m⁶A</scp> epitranscriptome and epigenome in cancer: current knowledge and therapeutic perspectives. International Journal of Cancer, 2023, 153, 464-475.	2.3	6
840	N6-methyladenosine (m6A) RNA modification as a metabolic switch between plant cell survival and death in leaf senescence. Frontiers in Plant Science, 0, 13, .	1.7	4
841	Transcriptome-wide profiling and quantification of N6-methyladenosine by enzyme-assisted adenosine deamination. Nature Biotechnology, 2023, 41, 993-1003.	9.4	47
842	YTHDF1 Enhances Chondrogenic Differentiation by Activating the Wnt $\hat{\mathbb{I}}^2$ -Catenin Signaling Pathway. Stem Cells and Development, 2023, 32, 115-130.	1.1	2
843	The roles of m6A RNA methylation modification in cancer stem cells: new opportunities for cancer suppression. , 0 , , .		6
844	Evolution of <scp>m6A</scp> â€related genes in insects and the function of <scp>METTL3</scp> in silkworm embryonic development. Insect Molecular Biology, 2023, 32, 316-327.	1.0	5
845	RNA N6-methyladenosine methylation and skin diseases. Autoimmunity, 2023, 56, .	1.2	3
846	METTL3 from Target Validation to the First Small-Molecule Inhibitors: A Medicinal Chemistry Journey. Journal of Medicinal Chemistry, 2023, 66, 1654-1677.	2.9	14

#	Article	IF	CITATIONS
847	Role of RNA epigenetics in development., 2023,, 137-151.		0
848	METTL3 is essential for normal progesterone signaling during embryo implantation via m ⁶ A-mediated translation control of progesterone receptor. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	14
849	Protein interaction studies in human induced neurons indicate convergent biology underlying autism spectrum disorders. Cell Genomics, 2023, 3, 100250.	3.0	12
850	Current Insights into m6A RNA Methylation and Its Emerging Role in Plant Circadian Clock. Plants, 2023, 12, 624.	1.6	1
852	bakR: uncovering differential RNA synthesis and degradation kinetics transcriptome-wide with Bayesian hierarchical modeling. Rna, 2023, 29, 958-976.	1.6	5
853	Segregation of the stemness program from the proliferation program in intestinal stem cells. Stem Cell Reports, 2023, 18, 1196-1210.	2.3	2
854	Critical role of transcriptome-wide m6A methylation in the aqueous humor of patients with pseudoexfoliation glaucoma. Experimental Eye Research, 2023, 231, 109473.	1.2	2
855	The deficiency of N6-methyladenosine demethylase ALKBH5 enhances the neurodegenerative damage induced by cobalt. Science of the Total Environment, 2023, 881, 163429.	3.9	5
856	Self-attention enabled deep learning of dihydrouridine (D)Âmodification on mRNAs unveiled a distinct sequence signature from tRNAs. Molecular Therapy - Nucleic Acids, 2023, 31, 411-420.	2.3	4
857	METTL3 promotes SMSCs chondrogenic differentiation by targeting the MMP3, MMP13, and GATA3. Regenerative Therapy, 2023, 22, 148-159.	1.4	1
858	mRNA ageing shapes the Cap2 methylome in mammalian mRNA. Nature, 2023, 614, 358-366.	13.7	14
859	The <scp>m6A</scp> reader <scp>YTHDC1</scp> regulates muscle stem cell proliferation via <scp>PI4K–Akt–mTOR</scp> signalling. Cell Proliferation, 2023, 56, .	2.4	2
860	RNA m6A methylation across the transcriptome. Molecular Cell, 2023, 83, 428-441.	4.5	60
861	METTL3 regulates breast cancer-associated alternative splicing switches. Oncogene, 2023, 42, 911-925.	2.6	12
862	Factors and Methods for the Detection of Gene Expression Regulation. Biomolecules, 2023, 13, 304.	1.8	0
863	Structure of the <i>Caenorhabditis elegans </i> m6A methyltransferase METT10 that regulates SAM homeostasis. Nucleic Acids Research, 2023, 51, 2434-2446.	6.5	6
864	Targeting FTO by Dac51 contributes to attenuating DSS-induced colitis. International Immunopharmacology, 2023, 116, 109789.	1.7	0
866	RNA methyltransferase BmMettl3 and BmMettl14 in silkworm (<i>Bombyx mori</i>) and the regulation of silkworm embryonic development. Archives of Insect Biochemistry and Physiology, 0, , .	0.6	0

#	Article	IF	CITATIONS
867	m6A methylation: Critical roles in aging and neurological diseases. Frontiers in Molecular Neuroscience, $0,16,.$	1.4	5
870	<scp>RNA</scp> â€mediated heterochromatin formation at repetitive elements in mammals. EMBO Journal, 2023, 42, .	3.5	2
871	Reduction of mRNA m6A associates with glucose metabolism via YTHDC1 in human and mice. Diabetes Research and Clinical Practice, 2023, 198, 110607.	1.1	8
872	The Diversity and Functions of Plant RNA Modifications: What We Know and Where We Go from Here. Annual Review of Plant Biology, 2023, 74, 53-85.	8.6	7
873	N6-methyladenosine modifications in maternal-fetal crosstalk and gestational diseases. Frontiers in Cell and Developmental Biology, 0, 11 , .	1.8	2
874	SPOC domain proteins in health and disease. Genes and Development, 2023, 37, 140-170.	2.7	2
875	Multi-task adaptive pooling enabled synergetic learning of RNA modification across tissue, type and species from low-resolution epitranscriptomes. Briefings in Bioinformatics, 2023, 24, .	3.2	3
876	Control of RNA degradation in cell fate decision. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	3
877	RNA modifications in hematological malignancies. International Journal of Hematology, 2023, 117, 807-820.	0.7	2
878	The essential roles of m6A modification in osteogenesis and common bone diseases. Genes and Diseases, 2024, 11, 335-345.	1.5	1
879	Systematic comparison of tools used for m6A mapping from nanopore direct RNA sequencing. Nature Communications, 2023, 14 , .	5.8	18
880	Reading and writing of mRNA m6A modification orchestrate maternal-to-zygotic transition in mice. Genome Biology, 2023, 24, .	3.8	4
883	YTHDF1 phase separation triggers the fate transition of spermatogonial stem cells by activating the lîB-NF-βB-CCND1 axis. Cell Reports, 2023, 42, 112403.	2.9	4
884	Exploring m6Aâ€RNA methylation as a potential therapeutic strategy for acute lung injury and acute respiratory distress syndrome. Pulmonary Circulation, 2023, 13, .	0.8	1
885	The Proteins of mRNA Modification: Writers, Readers, and Erasers. Annual Review of Biochemistry, 2023, 92, 145-173.	5.0	21
886	The RNA m6A landscape of mouse oocytes and preimplantation embryos. Nature Structural and Molecular Biology, 2023, 30, 703-709.	3.6	5
887	<scp>m⁶A</scp> promotes planarian regeneration. Cell Proliferation, 2023, 56, .	2.4	2
894	Novel mechanisms for gene regulation: Chemical tags on RNA molecules. , 2023, , 193-206.		0

#	Article	IF	CITATIONS
907	Epigenetic regulation in the tumor microenvironment: molecular mechanisms and therapeutic targets. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	30
908	m6A RNA modification regulates innate lymphoid cell responses in a lineage-specific manner. Nature Immunology, 2023, 24, 1256-1264.	7.0	3
927	RNA modification: mechanisms and therapeutic targets. Molecular Biomedicine, 2023, 4, .	1.7	9
955	RNA modification in cardiovascular disease: implications for therapeutic interventions. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	O
961	Multifaceted Functions of RNA m6A Modification in Modulating Regulated Cell Death. RNA Technologies, 2023, , 539-573.	0.2	0
968	RNA Modifications in Hematologic Malignancies. Cancer Treatment and Research, 2023, , 181-207.	0.2	O