Genome-Scale CRISPR-Mediated Control of Gene Repre

Cell 159, 647-661 DOI: 10.1016/j.cell.2014.09.029

Citation Report

#	Article	IF	CITATIONS
1	CRISPR screening from both ways. Nature Reviews Genetics, 2014, 15, 778-779.	7.7	3
2	Synthetic RNAs for Gene Regulation: Design Principles and Computational Tools. Frontiers in Bioengineering and Biotechnology, 2014, 2, 65.	2.0	33
4	Connecting genotypes, phenotypes and fitness: harnessing the power of <scp>CRISPR</scp> /Cas9 genome editing. Molecular Ecology, 2015, 24, 3810-3822.	2.0	49
5	CRISPR/Cas9â€mediated genome engineering of CHO cell factories: Application and perspectives. Biotechnology Journal, 2015, 10, 979-994.	1.8	104
7	Fifty Years After Huxley: The Roadmap of Reproductive Medicine Revisited and Updated. Reproductive Sciences, 2015, 22, 1330-1335.	1.1	0
8	The utility of transposon mutagenesis for cancer studies in the era of genome editing. Genome Biology, 2015, 16, 229.	3.8	28
9	Applications of Engineered DNA-Binding Molecules Such as TAL Proteins and the CRISPR/Cas System in Biology Research. International Journal of Molecular Sciences, 2015, 16, 23143-23164.	1.8	11
10	A new age in functional genomics using CRISPR/Cas9 in arrayed library screening. Frontiers in Genetics, 2015, 6, 300.	1.1	96
11	Genome-Wide Screening of Genes Required for Glycosylphosphatidylinositol Biosynthesis. PLoS ONE, 2015, 10, e0138553.	1.1	19
12	Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators. Genome Research, 2015, 25, 1158-1169.	2.4	114
13	Applications of the CRISPR–Cas9 system in cancer biology. Nature Reviews Cancer, 2015, 15, 387-393.	12.8	340
14	Expanding the Biologist's Toolkit with CRISPR-Cas9. Molecular Cell, 2015, 58, 568-574.	4.5	351
15	Toward Whole-Transcriptome Editing with CRISPR-Cas9. Molecular Cell, 2015, 58, 560-562.	4.5	11
16	Long Noncoding RNA in Hematopoiesis and Immunity. Immunity, 2015, 42, 792-804.	6.6	161
17	Rapid and Precise Engineering of the <i>Caenorhabditis elegans</i> Genome with Lethal Mutation Co-Conversion and Inactivation of NHEJ Repair. Genetics, 2015, 199, 363-377.	1.2	194
18	High-Throughput Sequencing Technologies. Molecular Cell, 2015, 58, 586-597.	4.5	968
19	Choosing the Right Tool for the Job: RNAi, TALEN, or CRISPR. Molecular Cell, 2015, 58, 575-585.	4.5	374
20	Inference of transcriptional regulation in cancers. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7731-7736.	3.3	84

TATION PEDO

#	Article	IF	CITATIONS
21	In Vitro Reconstitution and Crystallization of Cas9 Endonuclease Bound to a Guide RNA and a DNA Target. Methods in Enzymology, 2015, 558, 515-537.	0.4	23
22	Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nature Methods, 2015, 12, 664-670.	9.0	268
23	Functional annotation of cis-regulatory elements in human cells by dCas9/sgRNA. Cell Research, 2015, 25, 877-880.	5.7	5
24	High-Throughput Silencing Using the CRISPR-Cas9 System: A Review of the Benefits and Challenges. Journal of Biomolecular Screening, 2015, 20, 1027-1039.	2.6	31
25	Sequence determinants of improved CRISPR sgRNA design. Genome Research, 2015, 25, 1147-1157.	2.4	514
26	A Perspective on the Future of High-Throughput RNAi Screening: Will CRISPR Cut Out the Competition or Can RNAi Help Guide the Way?. Journal of Biomolecular Screening, 2015, 20, 1040-1051.	2.6	32
27	Rendering the Intractable More Tractable: Tools from <i>Caenorhabditis elegans</i> Ripe for Import into Parasitic Nematodes. Genetics, 2015, 201, 1279-1294.	1.2	47
28	CRISPR/Cas9 system as an innovative genetic engineering tool: Enhancements in sequence specificity and delivery methods. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1856, 234-243.	3.3	19
29	Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR. Genome Biology, 2015, 16, 281.	3.8	330
30	Resources for the design of CRISPR gene editing experiments. Genome Biology, 2015, 16, 260.	3.8	91
31	Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biology, 2015, 16, 280.	3.8	290
31 32	Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biology, 2015, 16, 280. Meeting report on Synthetic Biology Young Scholar Forum. Quantitative Biology, 2016, 3, 206-211.	3.8 0.3	290 0
32	Meeting report on Synthetic Biology Young Scholar Forum. Quantitative Biology, 2016, 3, 206-211. Epigenetic roots of immunologic disease and new methods for examining chromatin regulatory	0.3	0
32 33	Meeting report on Synthetic Biology Young Scholar Forum. Quantitative Biology, 2016, 3, 206-211. Epigenetic roots of immunologic disease and new methods for examining chromatin regulatory pathways. Immunology and Cell Biology, 2015, 93, 261-270. CRISPR genome engineering and viral gene delivery: A case of mutual attraction. Biotechnology	0.3 1.0	0 7
32 33 34	 Meeting report on Synthetic Biology Young Scholar Forum. Quantitative Biology, 2016, 3, 206-211. Epigenetic roots of immunologic disease and new methods for examining chromatin regulatory pathways. Immunology and Cell Biology, 2015, 93, 261-270. CRISPR genome engineering and viral gene delivery: A case of mutual attraction. Biotechnology Journal, 2015, 10, 258-272. Functional genomic screening approaches in mechanistic toxicology and potential future applications 	0.3 1.0 1.8	0 7 73
32 33 34 35	 Meeting report on Synthetic Biology Young Scholar Forum. Quantitative Biology, 2016, 3, 206-211. Epigenetic roots of immunologic disease and new methods for examining chromatin regulatory pathways. Immunology and Cell Biology, 2015, 93, 261-270. CRISPR genome engineering and viral gene delivery: A case of mutual attraction. Biotechnology Journal, 2015, 10, 258-272. Functional genomic screening approaches in mechanistic toxicology and potential future applications of CRISPR-Cas9. Mutation Research - Reviews in Mutation Research, 2015, 764, 31-42. 	0.3 1.0 1.8 2.4	0 7 73 23

#	Article	IF	CITATIONS
39	A split-Cas9 architecture for inducible genome editing and transcription modulation. Nature Biotechnology, 2015, 33, 139-142.	9.4	603
40	Genome editing-based HIV therapies. Trends in Biotechnology, 2015, 33, 172-179.	4.9	19
41	The impact of CRISPR–Cas9 on target identification and validation. Drug Discovery Today, 2015, 20, 450-457.	3.2	56
42	Mouse Genome Engineering via CRISPR-Cas9 for Study of Immune Function. Immunity, 2015, 42, 18-27.	6.6	91
43	Whole-genome RNAi screen highlights components of the endoplasmic reticulum/Golgi as a source of resistance to immunotoxin-mediated cytotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1135-42.	3.3	22
44	The Krüppel-associated box repressor domain induces reversible and irreversible regulation of endogenous mouse genes by mediating different chromatin states. Nucleic Acids Research, 2015, 43, 1549-1561.	6.5	20
45	CRISPR-Cas9: a new and promising player in gene therapy. Journal of Medical Genetics, 2015, 52, 289-296.	1.5	150
46	Highâ€ŧhroughput screens in mammalian cells using the CRISPR as9 system. FEBS Journal, 2015, 282, 2089-2096.	2.2	51
47	Nanoparticle-based autoimmune disease therapy. Clinical Immunology, 2015, 160, 3-13.	1.4	84
48	Divergent signalling pathways regulate lipopolysaccharideâ€induced eRNA expression in human monocytic THP1 cells. FEBS Letters, 2015, 589, 396-406.	1.3	14
49	Genomic Engineering and the Future of Medicine. JAMA - Journal of the American Medical Association, 2015, 313, 791.	3.8	25
50	Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nature Communications, 2015, 6, 6413.	5.8	287
51	Genetic screens and functional genomics using <scp>CRISPR</scp> /Cas9 technology. FEBS Journal, 2015, 282, 1383-1393.	2.2	82
52	Functional annotation of native enhancers with a Cas9–histone demethylase fusion. Nature Methods, 2015, 12, 401-403.	9.0	548
53	Genome-wide CRISPR Screen in a Mouse Model of Tumor Growth and Metastasis. Cell, 2015, 160, 1246-1260.	13.5	746
54	Adenovirus-Mediated Somatic Genome Editing of <i>Pten</i> by CRISPR/Cas9 in Mouse Liver in Spite of Cas9-Specific Immune Responses. Human Gene Therapy, 2015, 26, 432-442.	1.4	291
55	Next-generation libraries for robust RNA interference-based genome-wide screens. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3384-91.	3.3	83
56	CRISPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing, repression and activation: Fig. 1 Bioinformatics, 2015, 31, 3676-3678.	1.8	171

#	Article	IF	CITATIONS
57	<i>Lnc</i> ing Epigenetic Control of Transcription to Cardiovascular Development and Disease. Circulation Research, 2015, 117, 192-206.	2.0	56
58	Application of CRISPR/Cas9 for biomedical discoveries. Cell and Bioscience, 2015, 5, 33.	2.1	52
59	Precision cancer mouse models through genome editing with CRISPR-Cas9. Genome Medicine, 2015, 7, 53.	3.6	88
60	A CRISPR-Based Screen Identifies Genes Essential for West-Nile-Virus-Induced Cell Death. Cell Reports, 2015, 12, 673-683.	2.9	207
61	STARR-seq $\hat{a} \in \mathbb{C}^{2}$ Principles and applications. Genomics, 2015, 106, 145-150.	1.3	76
62	Enzymatically Generated CRISPR Libraries for Genome Labeling and Screening. Developmental Cell, 2015, 34, 373-378.	3.1	32
63	CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems. Annual Review of Microbiology, 2015, 69, 209-228.	2.9	160
64	A Genome-wide CRISPR Screen in Primary Immune Cells to Dissect Regulatory Networks. Cell, 2015, 162, 675-686.	13.5	383
65	The nucleotide exchange factors Grp170 and Sil1 induce cholera toxin release from BiP to enable retrotranslocation. Molecular Biology of the Cell, 2015, 26, 2181-2189.	0.9	20
66	Cas9-chromatin binding information enables more accurate CRISPR off-target prediction. Nucleic Acids Research, 2015, 43, e118-e118.	6.5	187
67	Generating patient-specific induced pluripotent stem cells-derived cardiomyocytes for the treatment of cardiac diseases. Expert Opinion on Biological Therapy, 2015, 15, 1399-1409.	1.4	18
68	Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nature Biotechnology, 2015, 33, 985-989.	9.4	882
69	Modeling cancer processes with CRISPR-Cas9. Trends in Biotechnology, 2015, 33, 317-319.	4.9	9
70	Application guide for omics approaches to cell signaling. Nature Chemical Biology, 2015, 11, 387-397.	3.9	69
71	Applications of CRISPR-Cas9 mediated genome engineering. Military Medical Research, 2015, 2, 11.	1.9	28
72	Dramatic Enhancement of Genome Editing by CRISPR/Cas9 Through Improved Guide RNA Design. Genetics, 2015, 199, 959-971.	1.2	210
73	Generation of a Knockout Mouse Embryonic Stem Cell Line Using a Paired CRISPR/Cas9 Genome Engineering Tool. Methods in Molecular Biology, 2015, 1341, 321-343.	0.4	20
74	Efficient Gene Disruption in Cultured Primary Human Endothelial Cells by CRISPR/Cas9. Circulation Research, 2015, 117, 121-128.	2.0	64

#	Article	IF	CITATIONS
75	RAS Synthetic Lethal Screens Revisited: Still Seeking the Elusive Prize?. Clinical Cancer Research, 2015, 21, 1802-1809.	3.2	146
76	Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference. Nucleic Acids Research, 2015, 43, 3407-3419.	6.5	124
77	CRISPR-Cas9 Based Engineering of Actinomycetal Genomes. ACS Synthetic Biology, 2015, 4, 1020-1029.	1.9	365
78	LncRNAs in vertebrates: Advances and challenges. Biochimie, 2015, 117, 3-14.	1.3	38
79	Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. Journal of General Virology, 2015, 96, 2381-2393.	1.3	168
80	High-throughput functional genomics using CRISPR–Cas9. Nature Reviews Genetics, 2015, 16, 299-311.	7.7	998
81	Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nature Biotechnology, 2015, 33, 510-517.	9.4	1,487
82	The therapeutic application of CRISPR/Cas9 technologies for HIV. Expert Opinion on Biological Therapy, 2015, 15, 819-830.	1.4	66
83	Enabling functional genomics with genome engineering. Genome Research, 2015, 25, 1442-1455.	2.4	89
84	Linking RNA biology to IncRNAs. Genome Research, 2015, 25, 1456-1465.	2.4	158
85	Genomic approaches to studying human-specific developmental traits. Development (Cambridge), 2015, 142, 3100-3112.	1.2	26
86	Human Induced Pluripotent Stem Cell <i>NEUROG2</i> Dual Knockin Reporter Lines Generated by the CRISPR/Cas9 System. Stem Cells and Development, 2015, 24, 2925-2942.	1.1	24
87	Modeling Disease In Vivo With CRISPR/Cas9. Trends in Molecular Medicine, 2015, 21, 609-621.	3.5	91
88	Functional Genomics in Pharmaceutical Drug Discovery. Handbook of Experimental Pharmacology, 2015, 232, 25-41.	0.9	4
89	Strategies for precision modulation of gene expression by epigenome editing: an overview. Epigenetics and Chromatin, 2015, 8, 34.	1.8	50
90	Combining CRISPR/Cas9 and rAAV Templates for Efficient Gene Editing. Nucleic Acid Therapeutics, 2015, 25, 287-296.	2.0	26
91	Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nature Methods, 2015, 12, 1143-1149.	9.0	808
92	Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells. Nature Protocols, 2015, 10, 1842-1859.	5.5	113

#	Article	IF	Citations
93	Network analysis of gene essentiality in functional genomics experiments. Genome Biology, 2015, 16, 239.	3.8	50
94	<i>In Vivo</i> Transcriptional Activation Using CRISPR/Cas9 in <i>Drosophila</i> . Genetics, 2015, 201, 433-442.	1.2	117
95	Studying Cellular Signal Transduction with OMIC Technologies. Journal of Molecular Biology, 2015, 427, 3416-3440.	2.0	4
96	Epigenetic diagnostics for neuropsychiatric disorders. Neurology, 2015, 84, 1618-1619.	1.5	3
97	An Updated Collection of Sequence Barcoded Temperature-Sensitive Alleles of Yeast Essential Genes. G3: Genes, Genomes, Genetics, 2015, 5, 1879-1887.	0.8	38
98	Ribosome profiling reveals the what, when, where and how of protein synthesis. Nature Reviews Molecular Cell Biology, 2015, 16, 651-664.	16.1	389
99	The emergence of commodity-scale genetic manipulation. Current Opinion in Chemical Biology, 2015, 28, 150-155.	2.8	4
100	Massively parallel high-order combinatorial genetics in human cells. Nature Biotechnology, 2015, 33, 952-961.	9.4	50
101	Conditionally Stabilized dCas9 Activator for Controlling Gene Expression in Human Cell Reprogramming and Differentiation. Stem Cell Reports, 2015, 5, 448-459.	2.3	158
102	The New State of the Art: Cas9 for Gene Activation and Repression. Molecular and Cellular Biology, 2015, 35, 3800-3809.	1.1	197
103	ceRNA in cancer: possible functions and clinical implications. Journal of Medical Genetics, 2015, 52, 710-718.	1.5	1,031
104	Electroporation Knows No Boundaries: The Use of Electrostimulation for siRNA Delivery in Cells and Tissues. Journal of Biomolecular Screening, 2015, 20, 932-942.	2.6	38
105	High-throughput bacterial functional genomics in the sequencing era. Current Opinion in Microbiology, 2015, 27, 86-95.	2.3	35
106	Bacterial CRISPR: accomplishments and prospects. Current Opinion in Microbiology, 2015, 27, 121-126.	2.3	74
107	Functional genomics to uncover drug mechanism of action. Nature Chemical Biology, 2015, 11, 942-948.	3.9	70
108	Synthetic CRISPR RNA-Cas9–guided genome editing in human cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E7110-7.	3.3	151
109	Biological Networks Governing the Acquisition, Maintenance, and Dissolution of Pluripotency: Insights from Functional Genomics Approaches. Cold Spring Harbor Symposia on Quantitative Biology, 2015, 80, 189-198.	2.0	2
110	Targeting the AAA ATPase p97 as an Approach to Treat Cancer through Disruption of Protein Homeostasis. Cancer Cell, 2015, 28, 653-665.	7.7	319

#	Article	IF	CITATIONS
111	Single-cell and multivariate approaches in genetic perturbation screens. Nature Reviews Genetics, 2015, 16, 18-32.	7.7	80
112	Engineering Complex Synthetic Transcriptional Programs with CRISPR RNA Scaffolds. Cell, 2015, 160, 339-350.	13.5	809
113	Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature, 2015, 517, 583-588.	13.7	2,272
114	CRISPR-Cas9: from Genome Editing to Cancer Research. International Journal of Biological Sciences, 2016, 12, 1427-1436.	2.6	31
115	Brain tumor modeling using the CRISPR/Cas9 system: state of the art and view to the future. Oncotarget, 2016, 7, 33461-33471.	0.8	19
116	A CRISPR-Based Toolbox for Studying T Cell Signal Transduction. BioMed Research International, 2016, 2016, 1-10.	0.9	24
117	Chemogenomic Profiling: Past, Present and Beyond. Cellular & Molecular Medicine: Open Access, 2016, 02, .	0.4	1
118	CRISPR: gene editing is just the beginning. Nature, 2016, 531, 156-159.	13.7	76
119	Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. ELife, 2016, 5, .	2.8	609
120	Advanced In vivo Use of CRISPR/Cas9 and Anti-sense DNA Inhibition for Gene Manipulation in the Brain. Frontiers in Genetics, 2015, 6, 362.	1.1	25
121	Emerging Technologies to Create Inducible and Genetically Defined Porcine Cancer Models. Frontiers in Genetics, 2016, 7, 28.	1.1	17
122	RNA Interference in the Age of CRISPR: Will CRISPR Interfere with RNAi?. International Journal of Molecular Sciences, 2016, 17, 291.	1.8	68
123	The CRISPR/Cas Genome-Editing Tool: Application in Improvement of Crops. Frontiers in Plant Science, 2016, 7, 506.	1.7	196
124	Design, execution, and analysis of pooled <i>inÂvitro </i> <scp>CRISPR</scp> /Cas9 screens. FEBS Journal, 2016, 283, 3170-3180.	2.2	66
125	<scp>CRISPR</scp> guide <scp>RNA</scp> design for research applications. FEBS Journal, 2016, 283, 3232-3238.	2.2	74
126	Genome Editing by <scp>CRISPR</scp> /Cas9: A Game Change in the Genetic Manipulation of Protists. Journal of Eukaryotic Microbiology, 2016, 63, 679-690.	0.8	55
127	Combination of the clustered regularly interspaced short palindromic repeats (CRISPR)â€associated 9 technique with the piggybac transposon system for mouse in utero electroporation to study cortical development. Journal of Neuroscience Research, 2016, 94, 814-824.	1.3	10
128	Next stop for the CRISPR revolution: RNAâ€guided epigenetic regulators. FEBS Journal, 2016, 283, 3181-3193.	2.2	63

#	Article	IF	CITATIONS
129	A comprehensive overview of computational resources to aid in precision genome editing with engineered nucleases. Briefings in Bioinformatics, 2017, 18, bbw052.	3.2	15
130	CRISPR as9 systems: versatile cancer modelling platforms and promising therapeutic strategies. International Journal of Cancer, 2016, 138, 1328-1336.	2.3	26
131	Applying CRISPR–Cas9 tools to identify and characterize transcriptional enhancers. Nature Reviews Molecular Cell Biology, 2016, 17, 597-604.	16.1	54
132	Using CRISPR/Cas to study gene function and model disease <i>in vivo</i> . FEBS Journal, 2016, 283, 3194-3203.	2.2	37
133	Conversion of embryonic stem cells into extraembryonic lineages by CRISPR-mediated activators. Scientific Reports, 2016, 6, 19648.	1.6	28
134	Efficient CRISPR-Mediated Post-Transcriptional Gene Silencing in a Hyperthermophilic Archaeon Using Multiplexed crRNA Expression. G3: Genes, Genomes, Genetics, 2016, 6, 3161-3168.	0.8	25
135	Proteomics to study DNA-bound and chromatin-associated gene regulatory complexes. Human Molecular Genetics, 2016, 25, R106-R114.	1.4	59
136	A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response. Cell, 2016, 167, 1867-1882.e21.	13.5	819
137	The mTOR Complex Controls HIV Latency. Cell Host and Microbe, 2016, 20, 785-797.	5.1	179
138	Reprogramming cell fate with a genome-scale library of artificial transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8257-E8266.	3.3	23
139	Establishment of MAGEC 2â€knockout cells and functional investigation of MAGEC 2 in tumor cells. Cancer Science, 2016, 107, 1888-1897.	1.7	11
140	Expansion of CRISPR targeting sites in Bombyx mori. Insect Biochemistry and Molecular Biology, 2016, 72, 31-40.	1.2	45
141	Designed nucleases for targeted genome editing. Plant Biotechnology Journal, 2016, 14, 448-462.	4.1	57
142	Genome Editing in Human Pluripotent Stem Cells. Cold Spring Harbor Protocols, 2016, 2016, pdb.top086819.	0.2	5
143	A Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria. Cell, 2016, 165, 1493-1506.	13.5	593
144	CRISPR/Cas9 for Human Genome Engineering and Disease Research. Annual Review of Genomics and Human Genetics, 2016, 17, 131-154.	2.5	80
145	The future of iPS cells in advancing regenerative medicine. Genetical Research, 2016, 98, e4.	0.3	5
146	Comparison of Cas9 activators in multiple species. Nature Methods, 2016, 13, 563-567.	9.0	438

#	Article	IF	CITATIONS
147	CRISPR-on system for the activation of the endogenous human INS gene. Gene Therapy, 2016, 23, 543-547.	2.3	40
148	Single-cell analysis of long non-coding RNAs in the developing human neocortex. Genome Biology, 2016, 17, 67.	3.8	295
149	Rapid generation of CRISPR/dCas9-regulated, orthogonally repressible hybrid T7-lac promoters for modular, tuneable control of metabolic pathway fluxes in <i>Escherichia coli</i> . Nucleic Acids Research, 2016, 44, 4472-4485.	6.5	74
150	Imaging Specific Genomic DNA in Living Cells. Annual Review of Biophysics, 2016, 45, 1-23.	4.5	67
151	Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes. Nature Biotechnology, 2016, 34, 634-636.	9.4	359
152	The expanding footprint of CRISPR/Cas9 in the plant sciences. Plant Cell Reports, 2016, 35, 1451-1468.	2.8	30
153	High-Content Screening for Quantitative Cell Biology. Trends in Cell Biology, 2016, 26, 598-611.	3.6	214
154	Induced Pluripotent Stem Cells Meet Genome Editing. Cell Stem Cell, 2016, 18, 573-586.	5.2	398
155	Network-based approaches for analysis of complex biological systems. Current Opinion in Biotechnology, 2016, 39, 157-166.	3.3	71
156	CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nature Biotechnology, 2016, 34, 631-633.	9.4	344
157	CRISPR/Cas9 for plant genome editing: accomplishments, problems and prospects. Plant Cell Reports, 2016, 35, 1417-1427.	2.8	72
158	Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Cell, 2016, 165, 949-962.	13.5	552
159	CRISPR/Cas9 in Genome Editing and Beyond. Annual Review of Biochemistry, 2016, 85, 227-264.	5.0	897
160	Golden Gate Assembly of CRISPR gRNA expression array for simultaneously targeting multiple genes. Cellular and Molecular Life Sciences, 2016, 73, 4315-4325.	2.4	52
161	A genome editing primer for the hematologist. Blood, 2016, 127, 2525-2535.	0.6	23
162	Development of Lightâ€Activated CRISPR Using Guide RNAs with Photocleavable Protectors. Angewandte Chemie, 2016, 128, 12628-12632.	1.6	29
163	Directing cellular information flow via CRISPR signal conductors. Nature Methods, 2016, 13, 938-944.	9.0	149
164	Applications of CRISPR Genome Engineering in Cell Biology. Trends in Cell Biology, 2016, 26, 875-888.	3.6	68

		CITATION REPORT		
#	Article	I	F	CITATIONS
165	Applications of CRISPR technologies in research and beyond. Nature Biotechnology, 2016, 34, 933	941. 9	9.4	735
166	Systematic mapping of functional enhancer–promoter connections with CRISPR interference. Sc 2016, 354, 769-773.	ence, d	5.0	512
167	Identification of oncogenic driver mutations by genome-wide CRISPR-Cas9 dropout screening. BMC Genomics, 2016, 17, 723.	2 1	1.2	31
168	Challenges of CRISPR/Cas9 applications for long non-coding RNA genes. Nucleic Acids Research, 20 45, gkw883.	17, 6	5.5	138
169	Genome-Editing Technologies: Principles and Applications. Cold Spring Harbor Perspectives in Biolo 2016, 8, a023754.	gy, ₂	2.3	209
170	Deciphering Combinatorial Genetics. Annual Review of Genetics, 2016, 50, 515-538.	ŝ	3.2	16
171	Efficient genome engineering approaches for the short-lived African turquoise killifish. Nature Protocols, 2016, 11, 2010-2028.	Ę	5.5	68
172	Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity. Molecular Cell, 2016, 63, 355-37	0. 4	1.5	247
173	Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science, 2016, 3 aad5147.	53, 6	5.0	523
174	Working with Stem Cells. , 2016, , .			2
176	Genome Editing in Stem Cells. , 2016, , 287-309.			0
177	CRISPR/Cas9 genome editing in human pluripotent stem cells: Harnessing human genetics in a dish Developmental Dynamics, 2016, 245, 788-806.	• 0	0.8	20
178	Emerging role of long noncoding RNAs as regulators of innate immune cell development and inflammatory gene expression. European Journal of Immunology, 2016, 46, 504-512.	1	1.6	125
179	Using CRISPR-Cas9 Genome Editing to Enhance Cell Based Therapies for the Treatment of Diabetes Mellitus. , 2016, , 127-147.			1
180	CRISPR-Cas9 for in vivo Gene Therapy: Promise and Hurdles. Molecular Therapy - Nucleic Acids, 201 e349.	6, 5, ₂	2.3	120
181	Depletion of Undecaprenyl Pyrophosphate Phosphatases Disrupts Cell Envelope Biogenesis in Bacil subtilis. Journal of Bacteriology, 2016, 198, 2925-2935.	us 1	1.0	50
182	Development of Lightâ€Activated CRISPR Using Guide RNAs with Photocleavable Protectors. Angev Chemie - International Edition, 2016, 55, 12440-12444.	vandte 7	7.2	144
183	CRISPR-Cas9 mediated genetic engineering for the purification of the endogenous integrator comp from mammalian cells. Protein Expression and Purification, 2016, 128, 101-108.	lex	0.6	17

ARTICLE IF CITATIONS # CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid 184 3.6 132 production. Metabolic Engineering, 2016, 38, 228-240. Massively Parallel Interrogation of the Effects of Gene Expression Levels on Fitness. Cell, 2016, 166, 1282-1294.e18. 13.5 168 Quantification of dopaminergic neuron differentiation and neurotoxicity via a genetic reporter. 186 1.6 16 Scientific Reports, 2016, 6, 25181. Genetic dissection of mammalian ERAD through comparative haploid and CRISPR forward genetic 5.8 64 screens. Nature Communications, 2016, 7, 11786. <scp>CRISPR</scp>â€Cas9 technology and its application in haematological disorders. British Journal of 188 1.2 22 Haematology, 2016, 175, 208-225. Could CRISPR be the solution for gene editing's Gordian knot?. Cell Biology and Toxicology, 2016, 32, 189 2.4 465-467. Inheritable Silencing of Endogenous Genes by Hit-and-Run Targeted Epigenetic Editing. Cell, 2016, 167, 190 13.5 363 219-232.e14. CRISPR-Cas9 therapeutics in cancer: promising strategies and present challenges. Biochimica Et 3.3 Biophysica Acta: Reviews on Cancer, 2016, 1866, 197-207. TSSC1 is novel component of the endosomal retrieval machinery. Molecular Biology of the Cell, 2016, 192 0.9 27 27, 2867-2878. Synthetic lethality: the road to novel therapies for breast cancer. Endocrine-Related Cancer, 2016, 23, 1.6 T39-T55. Methods of genome engineering: a new era of molecular biology. Biochemistry (Moscow), 2016, 81, 194 7 0.7 662-677. The present and future of genome editing in cancer research. Human Genetics, 2016, 135, 1083-1092. 1.8 Libraries of Synthetic TALE-Activated Promoters. Methods in Enzymology, 2016, 576, 361-378. 196 0.4 8 Genome editing: the road of CRISPR/Cas9 from bench to clinic. Experimental and Molecular Medicine, 3.2 74 2016, 48, e265-e265. Versatile protein tagging in cells with split fluorescent protein. Nature Communications, 2016, 7, 198 5.8 331 11046. Gene and cellâ€based therapies for inherited retinal disorders: An update. American Journal of Medical 199 Genetics, Part C: Seminars in Medical Genetics, 2016, 172, 349-366. Delivery methods for site-specific nucleases: Achieving the full potential of therapeutic gene editing. 200 4.8 17 Journal of Controlled Release, 2016, 244, 83-97. Making the cut in the dark genome. Science, 2016, 354, 705-706. 6.0

#	Article	IF	CITATIONS
202	A Molecular Chipper technology for CRISPR sgRNA library generation and functional mapping of noncoding regions. Nature Communications, 2016, 7, 11178.	5.8	19
203	Precision Modulation of Neurodegenerative Disease-Related Gene Expression in Human iPSC-Derived Neurons. Scientific Reports, 2016, 6, 28420.	1.6	67
204	CNS disease models with human pluripotent stem cells in the CRISPR age. Current Opinion in Cell Biology, 2016, 43, 96-103.	2.6	19
205	Different Effects of sgRNA Length on CRISPR-mediated Gene Knockout Efficiency. Scientific Reports, 2016, 6, 28566.	1.6	77
206	Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR–Cas9 library. Nature Biotechnology, 2016, 34, 1279-1286.	9.4	380
207	Ligand-binding domains of nuclear receptors facilitate tight control of split CRISPR activity. Nature Communications, 2016, 7, 12009.	5.8	90
208	Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nature Methods, 2016, 13, 1036-1042.	9.0	378
209	The functions of long noncoding RNAs in development and stem cells. Development (Cambridge), 2016, 143, 3882-3894.	1.2	180
210	Pathway-based network modeling finds hidden genes in shRNA screen for regulators of acute lymphoblastic leukemia. Integrative Biology (United Kingdom), 2016, 8, 761-774.	0.6	5
211	Versatile in vivo regulation of tumor phenotypes by dCas9-mediated transcriptional perturbation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3892-900.	3.3	87
212	Transcriptional regulation with CRISPR-Cas9: principles, advances, and applications. Current Opinion in Biotechnology, 2016, 40, 177-184.	3.3	69
213	Development of a CRISPR-Cas9 Tool Kit for Comprehensive Engineering of Bacillus subtilis. Applied and Environmental Microbiology, 2016, 82, 4876-4895.	1.4	157
214	"Cat's Cradling―the 3D Genome by the Act of LncRNA Transcription. Molecular Cell, 2016, 62, 657-664.	4.5	128
216	CRISPR/Cas9: From Genome Engineering to Cancer Drug Discovery. Trends in Cancer, 2016, 2, 313-324.	3.8	43
217	CRISPR Screens Provide a Comprehensive Assessment of Cancer Vulnerabilities but Generate False-Positive Hits for Highly Amplified Genomic Regions. Cancer Discovery, 2016, 6, 900-913.	7.7	320
218	Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting. Cancer Discovery, 2016, 6, 914-929.	7.7	485
219	The Chromatin Remodeling Component <i>Arid1a</i> Is a Suppressor of Spontaneous Mammary Tumors in Mice. Genetics, 2016, 203, 1601-1611.	1.2	8
220	Cellular Therapies: Gene Editing and Next-Gen CAR T Cells. , 2016, , 203-247.		1

#	Article	IF	CITATIONS
221	Optimizing sgRNA position markedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression. Nucleic Acids Research, 2016, 44, e141-e141.	6.5	118
222	Engineering Synthetic Gene Circuits in Living Cells with CRISPR Technology. Trends in Biotechnology, 2016, 34, 535-547.	4.9	111
223	Development and potential applications of CRISPR-Cas9 genome editing technology in sarcoma. Cancer Letters, 2016, 373, 109-118.	3.2	30
224	Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nature Methods, 2016, 13, 127-137.	9.0	341
225	Expanding the CRISPR imaging toolset with <i>Staphylococcus aureus</i> Cas9 for simultaneous imaging of multiple genomic loci. Nucleic Acids Research, 2016, 44, e75-e75.	6.5	155
226	Specific Reactivation of Latent HIV-1 by dCas9-SunTag-VP64-mediated Guide RNA Targeting the HIV-1 Promoter. Molecular Therapy, 2016, 24, 508-521.	3.7	67
227	Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature Biotechnology, 2016, 34, 184-191.	9.4	3,168
228	Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation. Nature Reviews Molecular Cell Biology, 2016, 17, 5-15.	16.1	698
229	CRISPR-Cas9 for medical genetic screens: applications and future perspectives. Journal of Medical Genetics, 2016, 53, 91-97.	1.5	45
230	Towards a compendium of essential genes – From model organisms to synthetic lethality in cancer cells. Critical Reviews in Biochemistry and Molecular Biology, 2016, 51, 74-85.	2.3	42
231	CRISPR library designer (CLD): software for multispecies design of single guide RNA libraries. Genome Biology, 2016, 17, 55.	3.8	68
232	Concise review: programming human pluripotent stem cells into blood. British Journal of Haematology, 2016, 173, 671-679.	1.2	14
233	Using RNA as Molecular Code for Programming Cellular Function. ACS Synthetic Biology, 2016, 5, 795-809.	1.9	49
234	NCG 5.0: updates of a manually curated repository of cancer genes and associated properties from cancer mutational screenings. Nucleic Acids Research, 2016, 44, D992-D999.	6.5	95
235	Parallel shRNA and CRISPR-Cas9 screens enable antiviral drug target identification. Nature Chemical Biology, 2016, 12, 361-366.	3.9	157
236	Energy biotechnology in the CRISPR-Cas9 era. Current Opinion in Biotechnology, 2016, 38, 79-84.	3.3	26
237	Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2544-2549.	3.3	210
238	Effective knockdown of <i>Drosophila</i> long non-coding RNAs by CRISPR interference. Nucleic Acids Research, 2016, 44, e84-e84.	6.5	54

#	Article	IF	CITATIONS
239	Post-translational Regulation of Cas9 during G1 Enhances Homology-Directed Repair. Cell Reports, 2016, 14, 1555-1566.	2.9	237
240	TSGene 2.0: an updated literature-based knowledgebase for tumor suppressor genes. Nucleic Acids Research, 2016, 44, D1023-D1031.	6.5	332
241	Chemical and Biophysical Modulation of Cas9 for Tunable Genome Engineering. ACS Chemical Biology, 2016, 11, 681-688.	1.6	83
242	Transcriptional silencing of long noncoding RNA GNG12-AS1 uncouples its transcriptional and product-related functions. Nature Communications, 2016, 7, 10406.	5.8	77
243	Harnessing the Prokaryotic Adaptive Immune System as a Eukaryotic Antiviral Defense. Trends in Microbiology, 2016, 24, 294-306.	3.5	25
244	Pseudogene transcripts: Participants in tumorigenicity and promising therapeutic targets. Leukemia Research, 2016, 42, 105-106.	0.4	1
245	Cas-Database: web-based genome-wide guide RNA library design for gene knockout screens using CRISPR-Cas9. Bioinformatics, 2016, 32, 2017-2023.	1.8	46
246	CRISPR/Cas9: A powerful tool for crop genome editing. Crop Journal, 2016, 4, 75-82.	2.3	150
247	Functional Genomic Strategies for Elucidating Human–Virus Interactions. Advances in Virus Research, 2016, 94, 1-51.	0.9	27
248	Chemical Biology Approaches to Genome Editing: Understanding, Controlling, and Delivering Programmable Nucleases. Cell Chemical Biology, 2016, 23, 57-73.	2.5	42
250	CRISPR Interference Efficiently Induces Specific and Reversible Gene Silencing in Human iPSCs. Cell Stem Cell, 2016, 18, 541-553.	5.2	418
251	Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design. Genome Biology, 2016, 17, 45.	3.8	165
252	CRISPR/Cas9 advances engineering of microbial cell factories. Metabolic Engineering, 2016, 34, 44-59.	3.6	179
253	Protein Delivery of an Artificial Transcription Factor Restores Widespread Ube3a Expression in an Angelman Syndrome Mouse Brain. Molecular Therapy, 2016, 24, 548-555.	3.7	67
254	CRISPR Technology for Genome Activation and Repression in Mammalian Cells. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot090175.	0.2	20
255	An Introduction to CRISPR Technology for Genome Activation and Repression in Mammalian Cells. Cold Spring Harbor Protocols, 2016, 2016, pdb.top086835.	0.2	7
256	CRISPR/dCas9-mediated Transcriptional Inhibition Ameliorates the Epigenetic Dysregulation at D4Z4 and Represses DUX4-fl in FSH Muscular Dystrophy. Molecular Therapy, 2016, 24, 527-535.	3.7	73
258	Stimulus-specific combinatorial functionality of neuronal c-fos enhancers. Nature Neuroscience, 2016, 19, 75-83.	7.1	187

		CITATION REPORT		
#	Article		IF	Citations
259	CRISPR-mediated Activation of Latent HIV-1 Expression. Molecular Therapy, 2016, 24,	499-507.	3.7	89
260	Synthetic Biology—Toward Therapeutic Solutions. Journal of Molecular Biology, 2016	5, 428, 945-962.	2.0	27
261	Transcriptional Regulation with CRISPR/Cas9 Effectors in Mammalian Cells. Methods in Biology, 2016, 1358, 43-57.	ו Molecular	0.4	28
262	Application of CRISPR-mediated genome engineering in cancer research. Cancer Letter	rs, 2017, 387, 10-17.	3.2	16
263	Neurofibromatosis as a gateway to better treatment for a variety of malignancies. Prog Neurobiology, 2017, 152, 149-165.	gress in	2.8	10
264	Genome-scale CRISPR pooled screens. Analytical Biochemistry, 2017, 532, 95-99.		1.1	52
265	Update of neurotrophic factors in neurobiology of addiction and future directions. Neu Disease, 2017, 97, 189-200.	urobiology of	2.1	48
266	Targeted genome regulation via synthetic programmable transcriptional regulators. Cr in Biotechnology, 2017, 37, 429-440.	itical Reviews	5.1	22
267	CRISPR-Based Epigenome Editing of Cytokine Receptors for the Promotion of C Tissue Deposition in Inflammatory Environments. Tissue Engineering - Part A, 2017, 23	Cell Survival and 5, 738-749.	1.6	68
268	Genome engineering of stem cell organoids for disease modeling. Protein and Cell, 20	17, 8, 315-327.	4.8	30
269	Induced pluripotent stem cell technology: A window for studying the pathogenesis of aplastic anemia and possible applications. Experimental Hematology, 2017, 49, 9-18.	acquired	0.2	4
270	GB3.0: a platform for plant bio-design that connects functional DNA elements with as biological data. Nucleic Acids Research, 2017, 45, gkw1326.	sociated	6.5	70
271	Development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Mycelio and its application to hyper-cellulase production strain engineering. Biotechnology for 10, 1.		6.2	518
272	Single-cell epigenomic variability reveals functional cancer heterogeneity. Genome Bio	logy, 2017, 18, 15.	3.8	92
273	Gene therapy for diabetic retinopathy: Are we ready to make the leap from bench to b 1-18.	edside?. , 2017, 173,		34
274	CRISPR-Cas type II-based Synthetic Biology applications in eukaryotic cells. RNA Biolog 1286-1293.	y, 2017, 14,	1.5	10
275	Cas9, Cpf1 and C2c1/2/3―What's next?. Bioengineered, 2017, 8, 265-273.		1.4	80
276	Gene Essentiality Profiling Reveals Gene Networks and Synthetic Lethal Interactions w Ras. Cell, 2017, 168, 890-903.e15.	ith Oncogenic	13.5	535

#	Article	IF	CITATIONS
277	Future of rAAV Gene Therapy: Platform for RNAi, Gene Editing, and Beyond. Human Gene Therapy, 2017, 28, 361-372.	1.4	40
278	Painting a specific chromosome with CRISPR/Cas9 for live-cell imaging. Cell Research, 2017, 27, 298-301.	5.7	53
279	Application of the <scp>CRISPR</scp> geneâ€editing technique in insect functional genome studies – a review. Entomologia Experimentalis Et Applicata, 2017, 162, 124-132.	0.7	20
280	Strain Development by Whole-Cell Directed Evolution. , 2017, , 173-200.		2
281	A stable but reversible integrated surrogate reporter for assaying CRISPR/Cas9-stimulated homology-directed repair. Journal of Biological Chemistry, 2017, 292, 6148-6162.	1.6	13
282	Marked for death: targeting epigenetic changes in cancer. Nature Reviews Drug Discovery, 2017, 16, 241-263.	21.5	244
283	Integration of metabolic, regulatory and signaling networks towards analysis of perturbation and dynamic responses. Current Opinion in Systems Biology, 2017, 2, 59-66.	1.3	13
284	Linking Protein and RNA Function within the Same Gene. Cell, 2017, 168, 753-755.	13.5	2
285	Genetic screening enters the single-cell era. Nature Methods, 2017, 14, 237-238.	9.0	8
286	An inducible CRISPR-ON system for controllable gene activation in human pluripotent stem cells. Protein and Cell, 2017, 8, 379-393.	4.8	36
287	What rheumatologists need to know about CRISPR/Cas9. Nature Reviews Rheumatology, 2017, 13, 205-216.	3.5	18
288	Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease. Circulation Research, 2017, 120, 876-894.	2.0	61
289	Genome Editing in Cardiovascular Biology. Circulation Research, 2017, 120, 778-780.	2.0	40
290	Metabolic gatekeeper function of B-lymphoid transcription factors. Nature, 2017, 542, 479-483.	13.7	175
291	Therapeutic genome engineering via <scp>CRISPR</scp> as systems. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2017, 9, e1380.	6.6	22
292	Defining Functional Genic Regions in the Human Genome through Integration of Biochemical, Evolutionary, and Genetic Evidence. Molecular Biology and Evolution, 2017, 34, 1788-1798.	3.5	8
293	Gene Regulatory Elements, Major Drivers of Human Disease. Annual Review of Genomics and Human Genetics, 2017, 18, 45-63.	2.5	115
294	Single-molecule and super-resolution imaging of transcription in living bacteria. Methods, 2017, 120, 103-114.	1.9	54

	CITATION R	EPORT	
#	Article	IF	Citations
295	A CRISPR toolbox to study virus–host interactions. Nature Reviews Microbiology, 2017, 15, 351-364.	13.6	147
296	Locus-specific histone deacetylation using a synthetic CRISPR-Cas9-based HDAC. Nature Communications, 2017, 8, 15315.	5.8	176
297	Use of CRISPR/Cas9 for Symbiotic Nitrogen Fixation Research in Legumes. Progress in Molecular Biology and Translational Science, 2017, 149, 187-213.	0.9	24
298	Genetic interaction mapping in mammalian cells using CRISPR interference. Nature Methods, 2017, 14, 577-580.	9.0	142
299	Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nature Communications, 2017, 8, 15267.	5.8	297
300	Elucidating drug targets and mechanisms of action by genetic screens in mammalian cells. Chemical Communications, 2017, 53, 7162-7167.	2.2	26
301	CRISPR Editing in Biological and Biomedical Investigation. Journal of Cellular Biochemistry, 2017, 118, 4152-4162.	1.2	6
302	Mouse Mammary Tumor Virus Signal Peptide Uses a Novel p97-Dependent and Derlin-Independent Retrotranslocation Mechanism To Escape Proteasomal Degradation. MBio, 2017, 8, .	1.8	12
303	A CRISPR Approach to Neurodegenerative Diseases. Trends in Molecular Medicine, 2017, 23, 483-485.	3.5	41
304	Genome-scale measurement of off-target activity using Cas9 toxicity in high-throughput screens. Nature Communications, 2017, 8, 15178.	5.8	284
305	Dramatic Improvement of CRISPR/Cas9 Editing in Candida albicans by Increased Single Guide RNA Expression. MSphere, 2017, 2, .	1.3	83
306	CRISPRi–sRNA: Transcriptional–Translational Regulation of Extracellular Electron Transfer in <i>Shewanella oneidensis</i> . ACS Synthetic Biology, 2017, 6, 1679-1690.	1.9	76
307	Green listed—a CRISPR screen tool. Bioinformatics, 2017, 33, 1099-1100.	1.8	12
308	CRISPR system in filamentous fungi: Current achievements and future directions. Gene, 2017, 627, 212-221.	1.0	65
309	Chromatin-enriched IncRNAs can act as cell-type specific activators of proximal gene transcription. Nature Structural and Molecular Biology, 2017, 24, 596-603.	3.6	70
310	Widespread Influence of 3′-End Structures on Mammalian mRNA Processing and Stability. Cell, 2017, 169, 905-917.e11.	13.5	123
311	RNA Activation. Advances in Experimental Medicine and Biology, 2017, , .	0.8	1
312	One-Step piggyBac Transposon-Based CRISPR/Cas9 Activation of Multiple Genes. Molecular Therapy - Nucleic Acids, 2017, 8, 64-76.	2.3	30

#	Article	IF	CITATIONS
313	CRISPRcloud: a secure cloud-based pipeline for CRISPR pooled screen deconvolution. Bioinformatics, 2017, 33, 2963-2965.	1.8	22
314	Mammalian Synthetic Biology: Engineering Biological Systems. Annual Review of Biomedical Engineering, 2017, 19, 249-277.	5.7	47
315	Progress and Application of CRISPR/Cas Technology in Biological and Biomedical Investigation. Journal of Cellular Biochemistry, 2017, 118, 3061-3071.	1.2	10
316	Challenges and progress in interpretation of non-coding genetic variants associated with human disease. Experimental Biology and Medicine, 2017, 242, 1325-1334.	1.1	44
317	Multiplex gene regulation by CRISPR-ddCpf1. Cell Discovery, 2017, 3, 17018.	3.1	151
318	Complementary information derived from CRISPR Cas9 mediated gene deletion and suppression. Nature Communications, 2017, 8, 15403.	5.8	93
319	Recent advances in functional perturbation and genome editing techniques in studying sea urchin development. Briefings in Functional Genomics, 2017, 16, 309-318.	1.3	11
320	System-level perturbations of cell metabolism using CRISPR/Cas9. Current Opinion in Biotechnology, 2017, 46, 134-140.	3.3	25
321	CRISPR–Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nature Biotechnology, 2017, 35, 561-568.	9.4	362
322	Purified Cas9 Fusion Proteins for Advanced Genome Manipulation. Small Methods, 2017, 1, 1600052.	4.6	11
323	Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nature Protocols, 2017, 12, 828-863.	5.5	858
325	A method for highâ€ŧhroughput production of sequenceâ€verified <scp>DNA</scp> libraries and strain collections. Molecular Systems Biology, 2017, 13, 913.	3.2	41
326	Applications of CRISPR genome editing technology in drug target identification and validation. Expert Opinion on Drug Discovery, 2017, 12, 541-552.	2.5	15
327	Slow Chromatin Dynamics Allow Polycomb Target Genes to Filter Fluctuations in Transcription Factor Activity. Cell Systems, 2017, 4, 445-457.e8.	2.9	99
328	Imaging Translational and Post-Translational Gene Regulatory Dynamics in Living Cells with Antibody-Based Probes. Trends in Genetics, 2017, 33, 322-335.	2.9	30
329	Functional interrogation of non-coding DNA through CRISPR genome editing. Methods, 2017, 121-122, 118-129.	1.9	28
330	Re-engineered RNA-Guided FokI-Nucleases for Improved Genome Editing in Human Cells. Molecular Therapy, 2017, 25, 342-355.	3.7	25
331	Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9. Nature Communications, 2017, 8, 14725.	5.8	199

#	ARTICLE Guide Picker is a comprehensive design tool for visualizing and selecting guides for CRISPR	IF	Citations
332	experiments. BMC Bioinformatics, 2017, 18, 167.	1.2	23
333	Editing the genome of hiPSC with CRISPR/Cas9: disease models. Mammalian Genome, 2017, 28, 348-364.	1.0	72
334	CRISPR/Cas9-mediated genome editing in plants. Methods, 2017, 121-122, 94-102.	1.9	46
335	Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nature Biotechnology, 2017, 35, 463-474.	9.4	408
336	Combinatorial CRISPR–Cas9 screens for de novo mapping of genetic interactions. Nature Methods, 2017, 14, 573-576.	9.0	287
337	Cornerstones of CRISPR–Cas in drug discovery and therapy. Nature Reviews Drug Discovery, 2017, 16, 89-100.	21.5	370
338	Design and Experimental Validation of Small Activating RNAs Targeting an Exogenous Promoter in Human Cells. ACS Synthetic Biology, 2017, 6, 628-637.	1.9	2
339	Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering. Nature Biotechnology, 2017, 35, 48-55.	9.4	298
340	Molecular basis, applications and challenges of CRISPR/Cas9: a continuously evolving tool for genome editing. Briefings in Functional Genomics, 2017, 16, elw038.	1.3	9
341	CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science, 2017, 355, .	6.0	566
342	Inducible and multiplex gene regulation using CRISPR–Cpf1-based transcription factors. Nature Methods, 2017, 14, 1163-1166.	9.0	170
343	Key elements for designing and performing a CRISPR/Cas9-based genetic screen. Journal of Genetics and Genomics, 2017, 44, 439-449.	1.7	16
344	High-Throughput Approaches to Pinpoint Function within the Noncoding Genome. Molecular Cell, 2017, 68, 44-59.	4.5	54
345	Methods and Applications of CRISPR-Mediated Base Editing in Eukaryotic Genomes. Molecular Cell, 2017, 68, 26-43.	4.5	199
346	CRISPR/Cas9-Based Engineering of the Epigenome. Cell Stem Cell, 2017, 21, 431-447.	5.2	215
347	The role of long non-coding RNAs in rheumatic diseases. Nature Reviews Rheumatology, 2017, 13, 657-669.	3.5	65
348	The chemistry of Cas9 and its CRISPR colleagues. Nature Reviews Chemistry, 2017, 1, .	13.8	111
349	Drug-tunable multidimensional synthetic gene control using inducible degron-tagged dCas9 effectors. Nature Communications, 2017, 8, 1191.	5.8	49

#	Article	IF	CITATIONS
350	Genome editing technologies to fight infectious diseases. Expert Review of Anti-Infective Therapy, 2017, 15, 1001-1013.	2.0	10
351	Transcription control engineering and applications in synthetic biology. Synthetic and Systems Biotechnology, 2017, 2, 176-191.	1.8	70
352	Randomized CRISPR-Cas Transcriptional Perturbation Screening Reveals Protective Genes against Alpha-Synuclein Toxicity. Molecular Cell, 2017, 68, 247-257.e5.	4.5	31
353	CRISPR/Cas9 screening using unique molecular identifiers. Molecular Systems Biology, 2017, 13, 945.	3.2	51
354	Combined CRISPRi/a-Based Chemical Genetic Screens Reveal that Rigosertib Is a Microtubule-Destabilizing Agent. Molecular Cell, 2017, 68, 210-223.e6.	4.5	197
355	Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements. Nature Genetics, 2017, 49, 1602-1612.	9.4	419
356	A B Cell Regulome Links Notch to Downstream Oncogenic Pathways in Small B Cell Lymphomas. Cell Reports, 2017, 21, 784-797.	2.9	65
357	Impeding Transcription of Expanded Microsatellite Repeats by Deactivated Cas9. Molecular Cell, 2017, 68, 479-490.e5.	4.5	99
358	DNA-binding of the Tet-transactivator curtails antigen-induced lymphocyte activation in mice. Nature Communications, 2017, 8, 1028.	5.8	8
359	CRISPR/Cas-based screening of long non-coding RNAs (IncRNAs) in macrophages with an NF-κB reporter. Journal of Biological Chemistry, 2017, 292, 20911-20920.	1.6	60
360	The REMOTE-control system: a system for reversible and tunable control of endogenous gene expression in mice. Nucleic Acids Research, 2017, 45, 12256-12269.	6.5	10
361	A Broad-Spectrum Inhibitor of CRISPR-Cas9. Cell, 2017, 170, 1224-1233.e15.	13.5	211
362	Genome and Epigenome Editing to Treat Disorders of the Hematopoietic System. Human Gene Therapy, 2017, 28, 1105-1115.	1.4	20
363	Long Non Coding RNA Biology. Advances in Experimental Medicine and Biology, 2017, , .	0.8	18
364	Emerging Gene Therapies for Genetic Hearing Loss. JARO - Journal of the Association for Research in Otolaryngology, 2017, 18, 649-670.	0.9	86
365	Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature, 2017, 549, 111-115.	13.7	247
366	The Role of KRAB-ZFPs in Transposable Element Repression and Mammalian Evolution. Trends in Genetics, 2017, 33, 871-881.	2.9	156
367	Lenalidomide modulates gene expression in human ABC-DLBCL cells by regulating IKAROS interaction with an intronic control region of SPIB. Experimental Hematology, 2017, 56, 46-57.e1.	0.2	8

#	ARTICLE	IF	CITATIONS
368	Variant Interpretation: Functional Assays to the Rescue. American Journal of Human Genetics, 2017, 101, 315-325.	2.6	275
369	APOBEC: From mutator to editor. Journal of Genetics and Genomics, 2017, 44, 423-437.	1.7	54
370	RABIF/MSS4 is a Rab-stabilizing holdase chaperone required for GLUT4 exocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8224-E8233.	3.3	52
371	Determination of the physiological and pathological roles of E2F3 in adult tissues. Scientific Reports, 2017, 7, 9932.	1.6	5
372	Systems-level interference strategies to decipher host factors involved in bacterial pathogen interaction: from RNAi to CRISPRi. Current Opinion in Microbiology, 2017, 39, 34-41.	2.3	10
373	The non-coding RNA landscape of human hematopoiesis and leukemia. Nature Communications, 2017, 8, 218.	5.8	131
374	A Landscape of Therapeutic Cooperativity in KRAS Mutant Cancers Reveals Principles for Controlling Tumor Evolution. Cell Reports, 2017, 20, 999-1015.	2.9	77
375	Synthetic essentiality: Targeting tumor suppressor deficiencies in cancer. BioEssays, 2017, 39, 1700076.	1.2	22
376	Bidirectional manipulation of gene expression in adipocytes using CRISPRa and siRNA. Molecular Metabolism, 2017, 6, 1313-1320.	3.0	38
377	A CRISPR/Cas9 guidance RNA screen platform for HIV provirus disruption and HIV/AIDS gene therapy in astrocytes. Scientific Reports, 2017, 7, 5955.	1.6	20
378	Prioritising Causal Genes at Type 2 Diabetes Risk Loci. Current Diabetes Reports, 2017, 17, 76.	1.7	25
379	Technical considerations for the use of CRISPR/Cas9 in hematology research. Experimental Hematology, 2017, 54, 4-11.	0.2	18
380	Evaluating Synthetic Activation and Repression of Neuropsychiatric-Related Genes in hiPSC-Derived NPCs, Neurons, and Astrocytes. Stem Cell Reports, 2017, 9, 615-628.	2.3	76
381	RNA Polymerase Tags To Monitor Multidimensional Protein–Protein Interactions Reveal Pharmacological Engagement of Bcl-2 Proteins. Journal of the American Chemical Society, 2017, 139, 11964-11972.	6.6	16
382	Optimised metrics for CRISPR-KO screens with second-generation gRNA libraries. Scientific Reports, 2017, 7, 7384.	1.6	37
383	Recent advances in CRISPR/Cas mediated genome editing for crop improvement. Plant Biotechnology Reports, 2017, 11, 193-207.	0.9	37
384	Targeted genome editing in <i>Caenorhabditis elegans</i> using <scp>CRISPR</scp> /Cas9. Wiley Interdisciplinary Reviews: Developmental Biology, 2017, 6, e287.	5.9	15
385	Application of genomeâ€editing technology in crop improvement. Cereal Chemistry, 2018, 95, 35-48.	1.1	8

#	Article	IF	CITATIONS
386	Technological Developments in IncRNA Biology. Advances in Experimental Medicine and Biology, 2017, 1008, 283-323.	0.8	296
387	Mapping a diversity of genetic interactions in yeast. Current Opinion in Systems Biology, 2017, 6, 14-21.	1.3	20
388	Optimized strategy for in vivo Cas9-activation in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9409-9414.	3.3	75
389	Characterization of noncoding regulatory DNA in the human genome. Nature Biotechnology, 2017, 35, 732-746.	9.4	79
390	InÂVivo Target Gene Activation via CRISPR/Cas9-Mediated Trans-epigenetic Modulation. Cell, 2017, 171, 1495-1507.e15.	13.5	334
391	Techniques and strategies employing engineered transcription factors. Current Opinion in Biomedical Engineering, 2017, 4, 152-162.	1.8	1
392	Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system. Nature Communications, 2017, 8, 1688.	5.8	244
393	Genome Editing. Journal of the American College of Cardiology, 2017, 70, 2808-2821.	1.2	27
394	A potent Cas9-derived gene activator for plant and mammalian cells. Nature Plants, 2017, 3, 930-936.	4.7	187
395	Targeted Gene Editing in Human Pluripotent Stem Cells Using Site-Specific Nucleases. Advances in Biochemical Engineering/Biotechnology, 2017, 163, 169-186.	0.6	4
396	Precision Medicine, CRISPR, and Genome Engineering. Advances in Experimental Medicine and Biology, 2017, , .	0.8	2
397	From Reductionism to Holism: Toward a More Complete View of Development Through Genome Engineering. Advances in Experimental Medicine and Biology, 2017, 1016, 45-74.	0.8	7
398	Target Discovery for Precision Medicine Using High-Throughput Genome Engineering. Advances in Experimental Medicine and Biology, 2017, 1016, 123-145.	0.8	6
399	Functional roles of intrinsic disorder in CRISPR-associated protein Cas9. Molecular BioSystems, 2017, 13, 1770-1780.	2.9	5
400	Synthetic lethality and cancer. Nature Reviews Genetics, 2017, 18, 613-623.	7.7	444
401	Identifying synthetic lethal targets using CRISPR/Cas9 system. Methods, 2017, 131, 66-73.	1.9	24
402	Enabling Graded and Large-Scale Multiplex of Desired Genes Using a Dual-Mode dCas9 Activator in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2017, 6, 1931-1943.	1.9	53
403	A convenient method to pre-screen candidate guide RNAs for CRISPR/Cas9 gene editing by NHEJ-mediated integration of a â€~self-cleaving' GFP-expression plasmid. DNA Research, 2017, 24, 609-621.	1.5	21

		CITATION R	EPORT	
#	Article		IF	CITATIONS
404	A decade of discovery: CRISPR functions and applications. Nature Microbiology, 2017,	2, 17092.	5.9	238
405	The applications and advances of CRISPR-Cas9 in medical research. Briefings in Functic 2017, 16, 1-3.	nal Genomics,	1.3	0
406	Loss-of-function genetic tools for animal models: cross-species and cross-platform diffe Nature Reviews Genetics, 2017, 18, 24-40.	erences.	7.7	159
407	GenomeCRISPR - a database for high-throughput CRISPR/Cas9 screens. Nucleic Acids R D679-D686.	esearch, 2017, 45,	6.5	65
408	Eukaryotic Transcriptional and Post-Transcriptional Gene Expression Regulation. Metho Molecular Biology, 2017, , .	ods in	0.4	3
409	Using an Inducible CRISPR-dCas9-KRAB Effector System to Dissect Transcriptional Reg Embryonic Stem Cells. Methods in Molecular Biology, 2017, 1507, 221-233.	ulation in Human	0.4	31
410	Applications of genome editing by programmable nucleases to the metabolic engineer metabolites. Journal of Biotechnology, 2017, 241, 50-60.	ing of secondary	1.9	9
411	CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell, 2017, 1	68, 20-36.	13.5	783
412	CRISPR/Cas9-The ultimate weapon to battle infectious diseases?. Cellular Microbiology	, 2017, 19, e12693.	1.1	56
413	CRISPR/Cas9 in allergic and immunologic diseases. Expert Review of Clinical Immunolo	gy, 2017, 13, 5-9.	1.3	8
414	Adaptation of CRISPR nucleases for eukaryotic applications. Analytical Biochemistry, 20	017, 532, 90-94.	1.1	8
415	Genome editing in cardiovascular diseases. Nature Reviews Cardiology, 2017, 14, 11-2	0.	6.1	76
417	Targeted Gene Activation Using RNA-Guided Nucleases. Methods in Molecular Biology, 235-250.	2017, 1468,	0.4	5
418	Precision genome editing in the CRISPR era. Biochemistry and Cell Biology, 2017, 95, 1	87-201.	0.9	120
419	Largeâ€scale imageâ€based screening and profiling of cellular phenotypes. Cytometry of the International Society for Analytical Cytology, 2017, 91, 115-125.	Part A: the Journal	1.1	55
420	A vital sugar code for ricin toxicity. Cell Research, 2017, 27, 1351-1364.		5.7	20
421	Dual direction CRISPR transcriptional regulation screening uncovers gene networks dri resistance. Scientific Reports, 2017, 7, 17693.	ving drug	1.6	43
422	Role of the CRISPR system in controlling gene transcription and monitoring cell fate (R Molecular Medicine Reports, 2017, 17, 1421-1427.	eview).	1.1	14

#	Article	IF	CITATIONS
423	Human evolution: the non-coding revolution. BMC Biology, 2017, 15, 89.	1.7	67
424	ENCoRE: an efficient software for CRISPR screens identifies new players in extrinsic apoptosis. BMC Genomics, 2017, 18, 905.	1.2	15
425	Correction of Monogenic and Common Retinal Disorders with Gene Therapy. Genes, 2017, 8, 53.	1.0	37
426	CRISPR Genome Engineering for Human Pluripotent Stem Cell Research. Theranostics, 2017, 7, 4445-4469.	4.6	22
427	CRISPR–Cas9., 2017, , .		0
428	Elucidating the Role of Host Long Non-Coding RNA during Viral Infection: Challenges and Paths Forward. Vaccines, 2017, 5, 37.	2.1	12
429	How to Train a Cell–Cutting-Edge Molecular Tools. Frontiers in Chemistry, 2017, 5, 12.	1.8	8
430	A permutation-based non-parametric analysis of CRISPR screen data. BMC Genomics, 2017, 18, 545.	1.2	26
431	Mechanisms of Long Non-Coding RNAs in the Assembly and Plasticity of Neural Circuitry. Frontiers in Neural Circuits, 2017, 11, 76.	1.4	37
432	CRISPR Libraries and Screening. Progress in Molecular Biology and Translational Science, 2017, 152, 69-82.	0.9	12
433	Epigenetics in Chronic Pain. , 2017, , 185-226.		1
434	When Long Noncoding RNAs Meet Genome Editing in Pluripotent Stem Cells. Stem Cells International, 2017, 2017, 1-13.	1.2	3
435	New Insights Into Cellular Stress Responses to Environmental Metal Toxicants. International Review of Cell and Molecular Biology, 2017, 331, 55-82.	1.6	6
436	CRISPRi is not strand-specific at all loci and redefines the transcriptional landscape. ELife, 2017, 6, .	2.8	27
437	MELK is not necessary for the proliferation of basal-like breast cancer cells. ELife, 2017, 6, .	2.8	86
438	CRISPR History: Discovery, Characterization, and Prosperity. Progress in Molecular Biology and Translational Science, 2017, 152, 1-21.	0.9	20
439	Systematic analysis of transcription start sites in avian development. PLoS Biology, 2017, 15, e2002887.	2.6	68
440	CRISPulator: a discrete simulation tool for pooled genetic screens. BMC Bioinformatics, 2017, 18, 347.	1.2	19

#	Article	IF	Citations
441	Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage. Genome Biology, 2017, 18, 190.	3.8	102
442	Current status and perspectives of genome editing technology for microalgae. Biotechnology for Biofuels, 2017, 10, 267.	6.2	102
443	CRISPR/Cas9 Technology: Applications and Human Disease Modeling. Progress in Molecular Biology and Translational Science, 2017, 152, 23-48.	0.9	17
444	Genetic and epigenetic control of gene expression by CRISPR–Cas systems. F1000Research, 2017, 6, 747.	0.8	58
445	Drug Discovery Technologies: Current and Future Trends. , 2017, , 1-32.		4
446	Current Progress and Future Prospects in Nucleic Acid Based Therapeutics. , 2017, , 280-313.		4
447	Recent developments in genome editing for potential use in plants. Bioscience Horizons, 2017, 10, .	0.6	6
448	Dissecting super-enhancer hierarchy based on chromatin interactions. Nature Communications, 2018, 9, 943.	5.8	179
449	Knockdown of Human AMPK Using the CRISPR/Cas9 Genome-Editing System. Methods in Molecular Biology, 2018, 1732, 171-194.	0.4	8
450	Editing of DNA Methylation Using dCas9-Peptide Repeat and scFv-TET1 Catalytic Domain Fusions. Methods in Molecular Biology, 2018, 1767, 419-428.	0.4	14
451	Engineering and Application of Pluripotent Stem Cells. Advances in Biochemical Engineering/Biotechnology, 2018, , .	0.6	0
452	CRISPR-based methods for high-throughput annotation of regulatory DNA. Current Opinion in Biotechnology, 2018, 52, 32-41.	3.3	13
453	New tools for old drugs: Functional genetic screens to optimize current chemotherapy. Drug Resistance Updates, 2018, 36, 30-46.	6.5	33
454	CRISPR–Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity. Nature Genetics, 2018, 50, 603-612.	9.4	178
455	The potential of CRISPR/Cas9 genome editing for the study and treatment of intervertebral disc pathologies. JOR Spine, 2018, 1, e1003.	1.5	26
456	Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications. Metabolic Engineering, 2018, 50, 85-108.	3.6	228
457	Tau Internalization is Regulated by 6-O Sulfation on Heparan Sulfate Proteoglycans (HSPGs). Scientific Reports, 2018, 8, 6382.	1.6	162
458	An Integrated Genome-wide CRISPRa Approach to Functionalize IncRNAs in Drug Resistance. Cell, 2018, 173, 649-664.e20.	13.5	238

#	Article	IF	CITATIONS
459	Development and application of CRISPR/Cas9 technologies in genomic editing. Human Molecular Genetics, 2018, 27, R79-R88.	1.4	47
460	Rapid identification of unknown carboxyl esterase activity in Corynebacterium glutamicum using RNA-guided CRISPR interference. Enzyme and Microbial Technology, 2018, 114, 63-68.	1.6	19
461	Proteome-Wide Evaluation of Two Common Protein Quantification Methods. Journal of Proteome Research, 2018, 17, 1934-1942.	1.8	143
462	High GC Content Cas9-Mediated Genome-Editing and Biosynthetic Gene Cluster Activation in <i>Saccharopolyspora erythraea</i> . ACS Synthetic Biology, 2018, 7, 1338-1348.	1.9	22
463	High-throughput genetic screens using CRISPR–Cas9 system. Archives of Pharmacal Research, 2018, 41, 875-884.	2.7	23
464	Review of CRISPR/Cas9 sgRNA Design Tools. Interdisciplinary Sciences, Computational Life Sciences, 2018, 10, 455-465.	2.2	180
465	Integrated design, execution, and analysis of arrayed and pooled CRISPR genome-editing experiments. Nature Protocols, 2018, 13, 946-986.	5.5	70
466	CRISPR/Cas9 Inhibits Multiple Steps of HIV-1 Infection. Human Gene Therapy, 2018, 29, 1264-1276.	1.4	33
467	Multigene delivery in mammalian cells: Recent advances and applications. Biotechnology Advances, 2018, 36, 871-879.	6.0	10
468	CRISPR interference-based specific and efficient gene inactivation in the brain. Nature Neuroscience, 2018, 21, 447-454.	7.1	133
469	Hallmarks of cancer: The CRISPR generation. European Journal of Cancer, 2018, 93, 10-18.	1.3	54
470	Therapeutic Targeting of Long Non-Coding RNAs in Cancer. Trends in Molecular Medicine, 2018, 24, 257-277.	3.5	453
471	Boosting, Not Breaking: CRISPR Activators Treat Disease Models. Molecular Therapy, 2018, 26, 334-336.	3.7	3
472	Rescue of Fragile X Syndrome Neurons by DNA Methylation Editing of the FMR1 Gene. Cell, 2018, 172, 979-992.e6.	13.5	351
473	Distinct roles for phosphoinositide 3-kinases Î ³ and δ in malignant B cell migration. Leukemia, 2018, 32, 1958-1969.	3.3	40
474	Pooled <i>in vivo</i> screens for cancer immunotherapy target discovery. Immunotherapy, 2018, 10, 167-170.	1.0	3
475	Reprogramming cell fate with artificial transcription factors. FEBS Letters, 2018, 592, 888-900.	1.3	13
476	Modulating Gene Expression in Epsteinâ€Barr Virus (EBV)â€Positive B Cell Lines with CRISPRa and CRISPRi. Current Protocols in Molecular Biology, 2018, 121, 31.13.1-31.13.18.	2.9	4

	CHAIC	ON REPORT	
#	Article	IF	Citations
477	CRISPR/Cas9: A tool for immunological research. European Journal of Immunology, 2018, 48, 576-583.	1.6	19
478	CRISPR-Cas9: a promising genetic engineering approach in cancer research. Therapeutic Advances in Medical Oncology, 2018, 10, 175883401875508.	1.4	31
479	Advancing biotechnology with CRISPR/Cas9: recent applications and patent landscape. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 467-480.	1.4	23
480	Orthologous CRISPR–Cas9 enzymes for combinatorial genetic screens. Nature Biotechnology, 2018, 36, 179-189.	9.4	216
481	CRISPR Approaches to Small Molecule Target Identification. ACS Chemical Biology, 2018, 13, 366-375.	1.6	68
482	CRISPR-Cas9-based genome-wide screening of Toxoplasma gondii. Nature Protocols, 2018, 13, 307-323.	5.5	46
483	Use of CRISPR/Cas9 gene-editing tools for developing models in drug discovery. Drug Discovery Today, 2018, 23, 519-533.	3.2	31
484	Dual gene activation and knockout screen reveals directional dependencies in genetic networks. Nature Biotechnology, 2018, 36, 170-178.	9.4	120
485	A small-molecule inhibitor of the ubiquitin activating enzyme for cancer treatment. Nature Medicine, 2018, 24, 186-193.	15.2	258
486	In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR–dCas9-activator transgenic mice. Nature Neuroscience, 2018, 21, 440-446.	7.1	218
487	Split Cas9, Not Hairs â~ Advancing the Therapeutic Index of CRISPR Technology. Biotechnology Journal, 2018, 13, e1700432.	1.8	26
488	Multimode drug inducible CRISPR/Cas9 devices for transcriptional activation and genome editing. Nucleic Acids Research, 2018, 46, e25-e25.	6.5	38
489	Rapid and Scalable Characterization of CRISPR Technologies Using an E.Âcoli Cell-Free Transcription-Translation System. Molecular Cell, 2018, 69, 146-157.e3.	4.5	165
490	Promoter of IncRNA Gene PVT1 Is a Tumor-Suppressor DNA Boundary Element. Cell, 2018, 173, 1398-1412.e22.	13.5	362
491	Pulling the genome in opposite directions to dissect gene networks. Genome Biology, 2018, 19, 42.	3.8	1
492	Emerging Approaches for the Identification of Protein Targets of Small Molecules - A Practitioners' Perspective. Journal of Medicinal Chemistry, 2018, 61, 8504-8535.	2.9	55
493	Arrayed CRISPR screen with image-based assay reliably uncovers host genes required for coxsackievirus infection. Genome Research, 2018, 28, 859-868.	2.4	45
494	A Mixed-Effects Model for Powerful Association Tests in Integrative Functional Genomics. American Journal of Human Genetics, 2018, 102, 904-919.	2.6	30

#	Article	IF	CITATIONS
495	RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors. Nature Communications, 2018, 9, 1674.	5.8	123
496	CRISPR-based genomic tools for the manipulation of genetically intractable microorganisms. Nature Reviews Microbiology, 2018, 16, 333-339.	13.6	88
497	The long noncoding RNA lncZic2 drives the self-renewal of liver tumor–initiating cells via the protein kinase C substrates MARCKS and MARCKSL1. Journal of Biological Chemistry, 2018, 293, 7982-7992.	1.6	36
498	Cancer CRISPR Screens In Vivo. Trends in Cancer, 2018, 4, 349-358.	3.8	70
499	Combinatorial pathway engineering using type lâ€E CRISPR interference. Biotechnology and Bioengineering, 2018, 115, 1878-1883.	1.7	23
500	Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors. Cell, 2018, 173, 665-676.e14.	13.5	789
501	Chemically Modified Cpf1-CRISPR RNAs Mediate Efficient Genome Editing in Mammalian Cells. Molecular Therapy, 2018, 26, 1228-1240.	3.7	60
502	Off and back-on again: a tumor suppressor's tale. Oncogene, 2018, 37, 3058-3069.	2.6	12
503	The physicist's guide to one of biotechnology's hottest new topics: CRISPR-Cas. Physical Biology, 2018, 15, 041002.	0.8	13
504	Mouse Embryogenesis. Methods in Molecular Biology, 2018, , .	0.4	0
505	Genome Editing During Development Using the CRISPR-Cas Technology. Methods in Molecular Biology, 2018, 1752, 177-190.	0.4	0
506	Screening Regulatory Element Function with CRISPR/Cas9-based Epigenome Editing. Methods in Molecular Biology, 2018, 1767, 447-480.	0.4	5
507	Designing Epigenome Editors: Considerations of Biochemical and Locus Specificities. Methods in Molecular Biology, 2018, 1767, 65-87.	0.4	2
508	High efficient multisites genome editing in allotetraploid cotton (<i>Gossypium hirsutum</i>) using CRISPR/Cas9 system. Plant Biotechnology Journal, 2018, 16, 137-150.	4.1	202
509	CRISPR Editing in Biological and Biomedical Investigation. Journal of Cellular Biochemistry, 2018, 119, 52-61.	1.2	17
510			
010	Combinatorial genetics in liver repopulation and carcinogenesis with a in vivo CRISPR activation platformâ€. Hepatology, 2018, 68, 663-676.	3.6	63
511	Combinatorial genetics in liver repopulation and carcinogenesis with a in vivo CRISPR activation platformâ€. Hepatology, 2018, 68, 663-676. Genomes in Focus: Development and Applications of CRISPRâ€Cas9 Imaging Technologies. Angewandte Chemie - International Edition, 2018, 57, 4329-4337.	3.6 7.2	63 67

#	Article	IF	CITATIONS
513	PICKLES: the database of pooled in-vitro CRISPR knockout library essentiality screens. Nucleic Acids Research, 2018, 46, D776-D780.	6.5	74
514	Somatic Superenhancer Duplications and Hotspot Mutations Lead to Oncogenic Activation of the KLF5 Transcription Factor. Cancer Discovery, 2018, 8, 108-125.	7.7	99
515	CRISPR/Cas9-mediated noncoding RNA editing in human cancers. RNA Biology, 2018, 15, 35-43.	1.5	78
516	Emerging and evolving concepts in gene essentiality. Nature Reviews Genetics, 2018, 19, 34-49.	7.7	230
517	CRISPRi and CRISPRa Screens in Mammalian Cells for Precision Biology and Medicine. ACS Chemical Biology, 2018, 13, 406-416.	1.6	248
518	Genome Editing: Insights from Chemical Biology to Support Safe and Transformative Therapeutic Applications. ACS Chemical Biology, 2018, 13, 333-342.	1.6	7
519	A CRISPR reimagining: New twists and turns of CRISPR beyond the genomeâ€engineering revolution. Journal of Cellular Biochemistry, 2018, 119, 1299-1308.	1.2	7
520	Synthetic Lethal Vulnerabilities in <i>KRAS</i> -Mutant Cancers. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031518.	2.9	63
521	Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation. Biotechnology Advances, 2018, 36, 295-310.	6.0	87
522	Next-Generation Sequencing of Genome-Wide CRISPR Screens. Methods in Molecular Biology, 2018, 1712, 203-216.	0.4	36
523	Next Generation Sequencing. Methods in Molecular Biology, 2018, , .	0.4	2
524	Identification of BABY BOOM homolog in bread wheat. Agri Gene, 2018, 7, 43-51.	1.9	11
525	Genome im Fokus: Entwicklung und Anwendungen von CRISPR as9â€Bildgebungstechnologien. Angewandte Chemie, 2018, 130, 4412-4420.	1.6	7
526	Modeling Cancer in the CRISPR Era. Annual Review of Cancer Biology, 2018, 2, 111-131.	2.3	15
527	CRISPR/Cas9 library screening for drug target discovery. Journal of Human Genetics, 2018, 63, 179-186.	1.1	70
528	Multiplexed CRISPR/Cas9 Genome Editing and Gene Regulation Using Csy4 in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2018, 7, 10-15.	1.9	82
529	A heart-enriched antisense long non-coding RNA regulates the balance between cardiac and skeletal muscle triadin. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 247-258.	1.9	15
530	CRISPR-Cas based antiviral strategies against HIV-1. Virus Research, 2018, 244, 321-332.	1.1	69

ARTICLE IF CITATIONS # CRISPR editing in biological and biomedical investigation. Journal of Cellular Physiology, 2018, 233, 531 2.0 19 3875-3891. Genome modularity and synthetic biology: Engineering systems. Progress in Biophysics and Molecular 1.4 Biology, 2018, 132, 43-51. Development of an integrated CRISPRi targeting Î"Np63 for treatment of squamous cell carcinoma. 533 0.8 27 Oncotarget, 2018, 9, 29220-29232. Centromere and Pericentromere Transcription: Roles and Regulation $\hat{a} \in |$ in Sickness and in Health. 534 1.1 Frontiers in Genetics, 2018, 9, 674. Targeting Non-coding RNA in Vascular Biology and Disease. Frontiers in Physiology, 2018, 9, 1655. 535 1.3 50 Pooled extracellular receptor-ligand interaction screening using CRISPR activation. Genome Biology, 3.8 44 2018, 19, 205. Noncoding RNAs as therapeutic targets in early stage diabetic kidney disease. Kidney Research and 537 0.9 47 Clinical Practice, 2018, 37, 197-209. Modulating the expression of long non $\hat{\epsilon}$ coding $\langle scp \rangle RNA \langle scp \rangle$ s for functional studies. EMBO 538 57 Reports, 2018, 19, . Genome-wide CRISPR Screens in Primary Human T Cells Reveal Key Regulators of Immune Function. Cell, 539 13.5 378 2018, 175, 1958-1971.e15. 540 CRISPR/Cas9 for Cancer Therapy: Hopes and Challenges. Biomedicines, 2018, 6, 105. 1.4 Long Non-coding RNAs as Local Regulators of Pancreatic Islet Transcription Factor Genes. Frontiers 541 1.1 26 in Genetics, 2018, 9, 524. Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nature Communications, 5.8 535 2018, 9, 5416. Applications of CRISPR-Cas in Bioengineering, Biotechnology, and Translational Research. CRISPR 543 1.4 17 Journal, 2018, 1, 379-404. Highâ€resolution mapping of cancer cell networks using coâ€functional interactions. Molecular Systems 544 3.2 Biology, 2018, 14, e8594 New Developments in CRISPR Technology: Improvements in Specificity and Efficiency. Current 545 0.9 12 Pharmaceutical Biotechnology, 2018, 18, 1038-1054. Chromatin Accessibility and Interactions in the Transcriptional Regulation of T Cells. Frontiers in 546 2.2 36 Immunology, 2018, 9, 2738. Pathway sensor-based functional genomics screening identifies modulators of neuronal activity. 547 1.6 7 Scientific Reports, 2018, 8, 17597. Blank spots on the map: some current questions on nuclear organization and genome architecture. 548 24 Histochemistry and Cell Biology, 2018, 150, 579-592.

#	Article	IF	CITATIONS
549	CBP Modulates Sensitivity to Dasatinib in Pre-BCR+ Acute Lymphoblastic Leukemia. Cancer Research, 2018, 78, 6497-6508.	0.4	10
550	Towards quantitative and multiplexed in vivo functional cancer genomics. Nature Reviews Genetics, 2018, 19, 741-755.	7.7	45
551	CRISPR/Cas9 gene-editing: Research technologies, clinical applications and ethical considerations. Seminars in Perinatology, 2018, 42, 487-500.	1.1	50
552	A Druggable Genome Screen Identifies Modifiers of α-Synuclein Levels via a Tiered Cross-Species Validation Approach. Journal of Neuroscience, 2018, 38, 9286-9301.	1.7	49
553	CRISPhieRmix: a hierarchical mixture model for CRISPR pooled screens. Genome Biology, 2018, 19, 159.	3.8	36
554	CRISPR-Mediated Programmable 3D Genome Positioning and Nuclear Organization. Cell, 2018, 175, 1405-1417.e14.	13.5	164
555	CRISPR Activation Screens Systematically Identify Factors that Drive Neuronal Fate and Reprogramming. Cell Stem Cell, 2018, 23, 758-771.e8.	5.2	161
556	Genome-wide screening for functional long noncoding RNAs in human cells by Cas9 targeting of splice sites. Nature Biotechnology, 2018, 36, 1203-1210.	9.4	120
557	CRISPR/Cas9 System: A Bacterial Tailor for Genomic Engineering. Genetics Research International, 2018, 2018, 1-17.	2.0	19
558	Stem Cells, Genome Editing, and the Path to Translational Medicine. Cell, 2018, 175, 615-632.	13.5	105
558 559	Stem Cells, Genome Editing, and the Path to Translational Medicine. Cell, 2018, 175, 615-632. LncGata6 maintains stemness of intestinal stem cells and promotes intestinal tumorigenesis. Nature Cell Biology, 2018, 20, 1134-1144.	13.5 4.6	105 101
	LncGata6 maintains stemness of intestinal stem cells and promotes intestinal tumorigenesis. Nature		
559	LncGata6 maintains stemness of intestinal stem cells and promotes intestinal tumorigenesis. Nature Cell Biology, 2018, 20, 1134-1144.	4.6	101
559 560	LncGata6 maintains stemness of intestinal stem cells and promotes intestinal tumorigenesis. Nature Cell Biology, 2018, 20, 1134-1144. L1 retrotransposition in the soma: a field jumping ahead. Mobile DNA, 2018, 9, 22. Microfluidic Flow Cell Array for Controlled Cell Deposition in Engineered Musculoskeletal Tissues.	4.6 1.3	101 63
559 560 562	LncGata6 maintains stemness of intestinal stem cells and promotes intestinal tumorigenesis. Nature Cell Biology, 2018, 20, 1134-1144. L1 retrotransposition in the soma: a field jumping ahead. Mobile DNA, 2018, 9, 22. Microfluidic Flow Cell Array for Controlled Cell Deposition in Engineered Musculoskeletal Tissues. Tissue Engineering - Part C: Methods, 2018, 24, 546-556. Robust Approaches to Generating Reliable Predictive Models in Systems Biology. RNA Technologies,	4.6 1.3 1.1	101 63 8
559 560 562 563	LncGata6 maintains stemness of intestinal stem cells and promotes intestinal tumorigenesis. Nature Cell Biology, 2018, 20, 1134-1144. L1 retrotransposition in the soma: a field jumping ahead. Mobile DNA, 2018, 9, 22. Microfluidic Flow Cell Array for Controlled Cell Deposition in Engineered Musculoskeletal Tissues. Tissue Engineering - Part C: Methods, 2018, 24, 546-556. Robust Approaches to Generating Reliable Predictive Models in Systems Biology. RNA Technologies, 2018, 301-312. A Genetic Interaction Map of Insulin Production Identifies Mfi as an Inhibitor of Mitochondrial	4.6 1.3 1.1 0.2	101 63 8 1
559 560 562 563 564	LncCata6 maintains stemness of intestinal stem cells and promotes intestinal tumorigenesis. Nature Cell Biology, 2018, 20, 1134-1144. L1 retrotransposition in the soma: a field jumping ahead. Mobile DNA, 2018, 9, 22. Microfluidic Flow Cell Array for Controlled Cell Deposition in Engineered Musculoskeletal Tissues. Tissue Engineering - Part C: Methods, 2018, 24, 546-556. Robust Approaches to Generating Reliable Predictive Models in Systems Biology. RNA Technologies, 2018, 301-312. A Genetic Interaction Map of Insulin Production Identifies Mfi as an Inhibitor of Mitochondrial Fission. Endocrinology, 2018, 159, 3321-3330.	4.6 1.3 1.1 0.2	101 63 8 1 1

#	Article	IF	CITATIONS
568	Metabolic Engineering of Saccharomyces cerevisiae Using a Trifunctional CRISPR/Cas System for Simultaneous Gene Activation, Interference, and Deletion. Methods in Enzymology, 2018, 608, 265-276.	0.4	6
569	Editing the Epigenome: Reshaping the Genomic Landscape. Annual Review of Genomics and Human Genetics, 2018, 19, 43-71.	2.5	109
570	Application of the CRISPR/Cas9 System to Drug Resistance in Breast Cancer. Advanced Science, 2018, 5, 1700964.	5.6	61
571	Identification of Epigenetic Regulators of DUX4-fl for Targeted Therapy of Facioscapulohumeral Muscular Dystrophy. Molecular Therapy, 2018, 26, 1797-1807.	3.7	29
572	Programmable sequential mutagenesis by inducible Cpf1 crRNA array inversion. Nature Communications, 2018, 9, 1903.	5.8	9
573	A CRISPRi screen in E. coli reveals sequence-specific toxicity of dCas9. Nature Communications, 2018, 9, 1912.	5.8	203
574	Novel internal regulators and candidate miRNAs within miR-379/miR-656 miRNA cluster can alter cellular phenotype of human glioblastoma. Scientific Reports, 2018, 8, 7673.	1.6	25
575	Applications of the CRISPR/Cas system beyond gene editing. Biology Methods and Protocols, 2018, 3, bpy002.	1.0	21
576	NuRD and CAF-1-mediated silencing of the D4Z4 array is modulated by DUX4-induced MBD3L proteins. ELife, 2018, 7, .	2.8	47
577	Genome Editing Redefines Precision Medicine in the Cardiovascular Field. Stem Cells International, 2018, 2018, 1-11.	1.2	8
578	Emerging Roles of Non-Coding RNA Transcription. Trends in Biochemical Sciences, 2018, 43, 654-667.	3.7	116
579	Pooled CRISPR interference screening enables genome-scale functional genomics study in bacteria with superior performance. Nature Communications, 2018, 9, 2475.	5.8	168
580	Is Pooled CRISPR-Screening the Dawn of a New Era for Functional Genomics. Advances in Experimental Medicine and Biology, 2018, 1068, 171-176.	0.8	3
581	Mouse medulloblastoma driven by CRISPR activation of cellular Myc. Scientific Reports, 2018, 8, 8733.	1.6	17
582	Platforms for Investigating LncRNA Functions. SLAS Technology, 2018, 23, 493-506.	1.0	136
584	Exploration of Benzothiazole Rhodacyanines as Allosteric Inhibitors of Protein–Protein Interactions with Heat Shock Protein 70 (Hsp70). Journal of Medicinal Chemistry, 2018, 61, 6163-6177.	2.9	84
585	Synthetic CRISPR-Cas gene activators for transcriptional reprogramming in bacteria. Nature Communications, 2018, 9, 2489.	5.8	140
586	Live-Cell Imaging of Chromatin Condensation Dynamics by CRISPR. IScience, 2018, 4, 216-235.	1.9	23

ARTICLE IF CITATIONS Identification of a transporter complex responsible for the cytosolic entry of nitrogen-containing 587 2.8 42 bisphosphonates. ELife, 2018, 7, . Targeting RAS-driven human cancer cells with antibodies to upregulated and essential cell-surface 2.8 proteins. ELife, 2018, 7, . 589 RNA-dependent RNA targeting by CRISPR-Cas9. ELife, 2018, 7, . 2.8 152 CRISPR-Cas systems: ushering in the new genome editing era. Bioengineered, 2018, 9, 214-221. 590 Guiding Lights in Genome Editing for Inherited Retinal Disorders: Implications for Gene and Cell 591 1.0 29 Therapy. Neural Plasticity, 2018, 2018, 1-15. Functional Genomics., 2018,, 77-88. Synthetic Lethal Networks for Precision Oncology: Promises and Pitfalls. Journal of Molecular 593 2.0 21 Biology, 2018, 430, 2900-2912. Targeted Genome Editing Techniques in C. elegans and Other Nematode Species., 0,, 3-21. 594 Development of Toolboxes for Precision Genome/Epigenome Editing and Imaging of Epigenetics. 595 2.9 5 Chemical Record, 2018, 18, 1717-1726. Developments in IncRNA drug discovery: where are we heading?. Expert Opinion on Drug Discovery, 2.5 54 2018, 13, 837-849. CRISPR–Cas9 genome editing in human cells occurs via the Fanconi anemia pathway. Nature Genetics, 597 9.4 187 2018, 50, 1132-1139. Epigenome editing of microsatellite repeats defines tumor-specific enhancer functions and 598 dependencies. Genes and Development, 2018, 32, 1008-1019. Neuro-Immuno-Gene- and Genome-Editing-Therapy for Alzheimer's Disease: Are We There Yet?. Journal of 599 1.2 17 Alzheimer's Disease, 2018, 65, 321-344. Cell division cycle 7 kinase is a negative regulator of cell-mediated collagen degradation. American 1.3 Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L360-L370. Application of CRISPR for Pooled, Vector-based Functional Genomic Screening in Mammalian Cell 601 0 Lines. , 0, , 209-222. Generation and Utilization of CRISPR/Cas9 Screening Libraries in Mammalian Cells., 0, , 223-234. CRISPR/Cas9-based In Vivo Models of Cancer., 0, , 315-336. 603 1 Use of the CRISPR/Cas9 System for Genome Editing of Immune System Cells, Defense Against HIV-1 and

CITATION REPORT

Cancer Therapies. , 0, , 401-413.

604

#

#	Article	lF	CITATIONS
605	CRISPR-Based Perturbation of Gene Function in Drosophila Cells. , 2018, , 193-206.		0
606	Small RNA-mediated prevention, diagnosis and therapies of cancer. , 2018, , 341-436.		0
607	Applications of CRISPR/Cas System to Bacterial Metabolic Engineering. International Journal of Molecular Sciences, 2018, 19, 1089.	1.8	108
608	Genome Editing Weds CRISPR: What Is in It for Phytoremediation?. Plants, 2018, 7, 51.	1.6	69
609	CRISPR–Cas9 Genetic Analysis of Virus–Host Interactions. Viruses, 2018, 10, 55.	1.5	20
610	An enhanced CRISPR repressor for targeted mammalian gene regulation. Nature Methods, 2018, 15, 611-616.	9.0	361
611	Functional Interrogation of Primary Human T Cells via CRISPR Genetic Editing. Journal of Immunology, 2018, 201, 1586-1598.	0.4	27
612	An automated microfluidic gene-editing platform for deciphering cancer genes. Lab on A Chip, 2018, 18, 2300-2312.	3.1	31
613	Single-Cell Multi-omics: An Engine for New Quantitative Models of Gene Regulation. Trends in Genetics, 2018, 34, 653-665.	2.9	86
614	Mapping the Genetic Landscape of Human Cells. Cell, 2018, 174, 953-967.e22.	13.5	226
615	CRISPR-based reagents to study the influence of the epigenome on gene expression. Clinical and Experimental Immunology, 2018, 194, 9-16.	1.1	9
616	The KAT5-Acetyl-Histone4-Brd4 axis silences HIV-1 transcription and promotes viral latency. PLoS Pathogens, 2018, 14, e1007012.	2.1	38
617	Rapid Control of Genome Editing in Human Cells by Chemical-Inducible CRISPR-Cas Systems. Methods in Molecular Biology, 2018, 1772, 267-288.	0.4	2
618	Construction of CRISPR Libraries for Functional Screening. Methods in Molecular Biology, 2018, 1772, 139-150.	0.4	2
619	Novel Genetic Activation Screening in Liver Repopulation and Cancer: Now CRISPR Than Ever!. Hepatology, 2018, 68, 408-411.	3.6	1
620	CRISPR/dCas9-mediated transcriptional improvement of the biosynthetic gene cluster for the epothilone production in Myxococcus xanthus. Microbial Cell Factories, 2018, 17, 15.	1.9	47
621	Design principles for nuclease-deficient CRISPR-based transcriptional regulators. FEMS Yeast Research, 2018, 18, .	1.1	34
622	Carvacrol and human health: A comprehensive review. Phytotherapy Research, 2018, 32, 1675-1687.	2.8	330

#	Article	IF	Citations
623	Prospects for engineering dynamic CRISPR–Cas transcriptional circuits to improve bioproduction. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 481-490.	1.4	14
625	Atlastins remodel the endoplasmic reticulum for selective autophagy. Journal of Cell Biology, 2018, 217, 3354-3367.	2.3	110
626	A high-throughput screen of real-time ATP levels in individual cells reveals mechanisms of energy failure. PLoS Biology, 2018, 16, e2004624.	2.6	47
627	Anti-CRISPR-based biosensors in the yeast S. cerevisiae. Journal of Biological Engineering, 2018, 12, 11.	2.0	24
628	CRISPR Technology for Breast Cancer: Diagnostics, Modeling, and Therapy. Advanced Biology, 2018, 2, 1800132.	3.0	11
629	Improved sgRNA design in bacteria via genome-wide activity profiling. Nucleic Acids Research, 2018, 46, 7052-7069.	6.5	73
630	Exploring Long Noncoding RNAs in Glioblastoma: Regulatory Mechanisms and Clinical Potentials. International Journal of Genomics, 2018, 2018, 1-13.	0.8	39
631	Specificity of RNAi, LNA and CRISPRi as loss-of-function methods in transcriptional analysis. Nucleic Acids Research, 2018, 46, 5950-5966.	6.5	101
632	Genetic Epidemiology. Methods in Molecular Biology, 2018, , .	0.4	1
633	A Network of Noncoding Regulatory RNAs Acts in the Mammalian Brain. Cell, 2018, 174, 350-362.e17.	13.5	485
634	Unpackaging the genetics of mammalian fertility: strategies to identify the "reproductive genomeâ€â€. Biology of Reproduction, 2018, 99, 1119-1128.	1.2	18
635	NF-κB–Dependent Lymphoid Enhancer Co-option Promotes Renal Carcinoma Metastasis. Cancer Discovery, 2018, 8, 850-865.	7.7	41
636	Applications of CRISPR-Cas Enzymes in Cancer Therapeutics and Detection. Trends in Cancer, 2018, 4, 499-512.	3.8	89
637	From Identification to Function: Current Strategies to Prioritise and Follow-Up GWAS Results. Methods in Molecular Biology, 2018, 1793, 259-275.	0.4	2
638	Genome Editing. , 2018, , 19-31.		1
639	CRISPR therapeutic tools for complex genetic disorders and cancer (Review). International Journal of Oncology, 2018, 53, 443-468.	1.4	28
640	Long Noncoding RNAs in the Immune Response. , 2018, , 107-131.		0
641	CRISPRâ€Enabled Tools for Engineering Microbial Genomes and Phenotypes. Biotechnology Journal, 2018, 13, e1700586.	1.8	30

#	Article	IF	CITATIONS
642	Straightforward Delivery of Linearized Double-Stranded DNA Encoding sgRNA and Donor DNA for the Generation of Single Nucleotide Variants Based on the CRISPR/Cas9 System. ACS Synthetic Biology, 2018, 7, 1651-1659.	1.9	1
643	5′ capped and 3′ polyA-tailed sgRNAs enhance the efficiency of CRISPR-Cas9 system. Protein and Cell, 2019, 10, 223-228.	4.8	17
644	Genome editing in the mammalian brain using the CRISPR–Cas system. Neuroscience Research, 2019, 141, 4-12.	1.0	21
645	Ribosome Profiling: Global Views of Translation. Cold Spring Harbor Perspectives in Biology, 2019, 11, a032698.	2.3	205
646	Functional Genomics via CRISPR–Cas. Journal of Molecular Biology, 2019, 431, 48-65.	2.0	62
647	A CRISPR–dCas Toolbox for Genetic Engineering and Synthetic Biology. Journal of Molecular Biology, 2019, 431, 34-47.	2.0	225
648	Temporal and Spatial Epigenome Editing Allows Precise Gene Regulation in Mammalian Cells. Journal of Molecular Biology, 2019, 431, 111-121.	2.0	31
649	Programmable activation of <i>Bombyx</i> gene expression using CRISPR/dCas9 fusion systems. Insect Science, 2019, 26, 983-990.	1.5	9
650	Exploring genetic interaction manifolds constructed from rich single-cell phenotypes. Science, 2019, 365, 786-793.	6.0	155
651	Systematic Evaluation of CRISPRa and CRISPRi Modalities Enables Development of a Multiplexed, Orthogonal Gene Activation and Repression System. ACS Synthetic Biology, 2019, 8, 1998-2006.	1.9	41
652	CRISPR Interference-Based Platform for Multimodal Genetic Screens in Human iPSC-Derived Neurons. Neuron, 2019, 104, 239-255.e12.	3.8	288
653	The Intricate Interplay between Epigenetic Events, Alternative Splicing and Noncoding RNA Deregulation in Colorectal Cancer. Cells, 2019, 8, 929.	1.8	28
654	Establishment of Primary Transgenic Human Airway Epithelial Cell Cultures to Study Respiratory Virus–Host Interactions. Viruses, 2019, 11, 747.	1.5	9
655	CRISPR Tools for Systematic Studies of RNA Regulation. Cold Spring Harbor Perspectives in Biology, 2019, 11, a035386.	2.3	22
656	CRISPR/Cas9-mediated gfp gene inactivation in Arabidopsis suspension cells. Molecular Biology Reports, 2019, 46, 5735-5743.	1.0	9
657	Genomic Resolution of DLX-Orchestrated Transcriptional Circuits Driving Development of Forebrain GABAergic Neurons. Cell Reports, 2019, 28, 2048-2063.e8.	2.9	68
658	Strategies for in vivo reprogramming. Current Opinion in Cell Biology, 2019, 61, 9-15.	2.6	19
659	The emerging and uncultivated potential of CRISPR technology in plant science. Nature Plants, 2019, 5, 778-794.	4.7	294

#	ARTICLE Long Non-Coding RNA Function in CD4+ T Cells: What We Know and What Next?. Non-coding RNA, 2019,	IF 1.3	CITATIONS
000	5, 43.	1.0	10
661	Integrated analyses of murine breast cancer models reveal critical parallels with human disease. Nature Communications, 2019, 10, 3261.	5.8	43
662	Importance of genetic screens in precision oncology. ESMO Open, 2019, 4, e000505.	2.0	10
663	Cutting back malaria: CRISPR/Cas9 genome editing of Plasmodium. Briefings in Functional Genomics, 2019, 18, 281-289.	1.3	38
664	CRISPR–Cas Gene Editing for Neurological Disease. , 2019, , 365-376.		1
665	SOX4 regulates invasion of bladder cancer cells via repression of WNT5a. International Journal of Oncology, 2019, 55, 359-370.	1.4	20
666	Optical Pooled Screens in Human Cells. Cell, 2019, 179, 787-799.e17.	13.5	170
667	CRISPR-Cas12a Nucleases Bind Flexible DNA Duplexes without RNA/DNA Complementarity. ACS Omega, 2019, 4, 17140-17147.	1.6	14
668	Compromised function of the ESCRT pathway promotes endolysosomal escape of tau seeds and propagation of tau aggregation. Journal of Biological Chemistry, 2019, 294, 18952-18966.	1.6	103
670	CRISPR-Cas9-mediated loss-of-function screens. Frontiers in Life Science: Frontiers of Interdisciplinary Research in the Life Sciences, 2019, 12, 1-13.	1.1	3
671	PRMT5 methylome profiling uncovers a direct link to splicing regulation in acute myeloid leukemia. Nature Structural and Molecular Biology, 2019, 26, 999-1012.	3.6	105
672	STING-Mediated IFI16 Degradation Negatively Controls Type I Interferon Production. Cell Reports, 2019, 29, 1249-1260.e4.	2.9	52
673	Structural mechanism of a Rag GTPase activation checkpoint by the lysosomal folliculin complex. Science, 2019, 366, 971-977.	6.0	108
674	Reprogramming of Fibroblasts to Oligodendrocyte Progenitor-like Cells Using CRISPR/Cas9-Based Synthetic Transcription Factors. Stem Cell Reports, 2019, 13, 1053-1067.	2.3	21
675	Anti-CRISPR AcrIIA5 Potently Inhibits All Cas9 Homologs Used for Genome Editing. Cell Reports, 2019, 29, 1739-1746.e5.	2.9	35
676	Review of high-content screening applications in toxicology. Archives of Toxicology, 2019, 93, 3387-3396.	1.9	54
677	Prediction of sgRNA on-target activity in bacteria by deep learning. BMC Bioinformatics, 2019, 20, 517.	1.2	19
678	Mitochondria in Health and in Sickness. Advances in Experimental Medicine and Biology, 2019, , .	0.8	6

#	Article	IF	CITATIONS
679	Microbial CRISPRi and CRISPRa Systems for Metabolic Engineering. Biotechnology and Bioprocess Engineering, 2019, 24, 579-591.	1.4	31
680	Genomically informed small-molecule drugs overcome resistance to a sustained-release formulation of an engineered death receptor agonist in patient-derived tumor models. Science Advances, 2019, 5, eaaw9162.	4.7	11
681	Functional Dissection of pri-miR-290~295 in Dgcr8 Knockout Mouse Embryonic Stem Cells. International Journal of Molecular Sciences, 2019, 20, 4345.	1.8	3
682	Targeted delivery of CRISPR interference system against <i>Fabp4</i> to white adipocytes ameliorates obesity, inflammation, hepatic steatosis, and insulin resistance. Genome Research, 2019, 29, 1442-1452.	2.4	54
683	Targeting HIV-1 proviral transcription. Current Opinion in Virology, 2019, 38, 89-96.	2.6	5
684	Mitigation of off-target toxicity in CRISPR-Cas9 screens for essential non-coding elements. Nature Communications, 2019, 10, 4063.	5.8	104
685	SLC19A1 transports immunoreactive cyclic dinucleotides. Nature, 2019, 573, 434-438.	13.7	230
686	Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Science Translational Medicine, 2019, 11, .	5.8	418
687	Genetically Engineered Mouse Models of Gliomas: Technological Developments for Translational Discoveries. Cancers, 2019, 11, 1335.	1.7	31
688	Molecular mechanism for the multiple sclerosis risk variant rs17594362. Human Molecular Genetics, 2019, 28, 3600-3609.	1.4	5
689	Cooperation of cancer drivers with regulatory germline variants shapes clinical outcomes. Nature Communications, 2019, 10, 4128.	5.8	51
690	Enhanced CRISPR-based DNA demethylation by Casilio-ME-mediated RNA-guided coupling of methylcytosine oxidation and DNA repair pathways. Nature Communications, 2019, 10, 4296.	5.8	41
691	A Broad Application of CRISPR Cas9 in Infectious Diseases of Central Nervous System. Journal of NeuroImmune Pharmacology, 2019, 14, 578-594.	2.1	5
692	CRISPR technologies for stem cell engineering and regenerative medicine. Biotechnology Advances, 2019, 37, 107447.	6.0	59
693	Mapping human cell phenotypes to genotypes with single-cell genomics. Science, 2019, 365, 1401-1405.	6.0	71
694	Targeted genomic CRISPR-Cas9 screen identifies MAP4K4 as essential for glioblastoma invasion. Scientific Reports, 2019, 9, 14020.	1.6	38
695	Functions and Regulatory Mechanisms of IncRNAs in Skeletal Myogenesis, Muscle Disease and Meat Production. Cells, 2019, 8, 1107.	1.8	71
696	A Brief Overview of IncRNAs in Endothelial Dysfunction-Associated Diseases: From Discovery to Characterization. Epigenomes, 2019, 3, 20.	0.8	1

#	Article	IF	Citations
697	Validation of a Miniaturized Permeability Assay Compatible with CRISPR-Mediated Genome-Wide Screen. Scientific Reports, 2019, 9, 14238.	1.6	1
698	A CRISPR Screen Identifies LAPTM4A and TM9SF Proteins as Clycolipid-Regulating Factors. IScience, 2019, 11, 409-424.	1.9	53
699	CRISPR–Cas: a tool for cancer research and therapeutics. Nature Reviews Clinical Oncology, 2019, 16, 281-295.	12.5	127
700	Integrative single-cell analysis. Nature Reviews Genetics, 2019, 20, 257-272.	7.7	932
701	CRISPR-Based Tools in Immunity. Annual Review of Immunology, 2019, 37, 571-597.	9.5	38
702	Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute. Nature Protocols, 2019, 14, 756-780.	5.5	260
703	CRISPR-Cas9 for cancer therapy: Opportunities and challenges. Cancer Letters, 2019, 447, 48-55.	3.2	135
704	Guide RNAs with embedded barcodes boost CRISPR-pooled screens. Genome Biology, 2019, 20, 20.	3.8	50
705	Improved <i>n</i> -Butanol Production from Clostridium cellulovorans by Integrated Metabolic and Evolutionary Engineering. Applied and Environmental Microbiology, 2019, 85, .	1.4	67
707	Progress and Challenges: Development and Implementation of CRISPR/Cas9 Technology in Filamentous Fungi. Computational and Structural Biotechnology Journal, 2019, 17, 761-769.	1.9	53
708	CRISPR/Cas9 guided genome and epigenome engineering and its therapeutic applications in immune mediated diseases. Seminars in Cell and Developmental Biology, 2019, 96, 32-43.	2.3	9
709	A CRISPR Interference of CBP and p300 Selectively Induced Synthetic Lethality in Bladder Cancer Cells <i>In Vitro</i> . International Journal of Biological Sciences, 2019, 15, 1276-1286.	2.6	24
710	Targeted DNA transposition in vitro using a dCas9-transposase fusion protein. Nucleic Acids Research, 2019, 47, 8126-8135.	6.5	22
711	Development of CRISPR-Cas systems for genome editing and beyond. Quarterly Reviews of Biophysics, 2019, 52, .	2.4	108
712	Transcriptional States and Chromatin Accessibility Underlying Human Erythropoiesis. Cell Reports, 2019, 27, 3228-3240.e7.	2.9	122
713	Large scale control and programming of gene expression using CRISPR. Seminars in Cell and Developmental Biology, 2019, 96, 124-132.	2.3	5
714	KRAS ^{G12C} inhibition produces a driver-limited state revealing collateral dependencies. Science Signaling, 2019, 12, .	1.6	123
715	Genome Editing as a Treatment for the Most Prevalent Causative Genes of Autosomal Dominant Retinitis Pigmentosa. International Journal of Molecular Sciences, 2019, 20, 2542.	1.8	40

#	Article	IF	CITATIONS
716	Role of long non-coding RNAs in lymphoma: A systematic review and clinical perspectives. Critical Reviews in Oncology/Hematology, 2019, 141, 13-22.	2.0	10
717	Lentiviral CRISPR Epigenome Editing of Inflammatory Receptors as a Gene Therapy Strategy for Disc Degeneration. Human Gene Therapy, 2019, 30, 1161-1175.	1.4	44
718	The giant titin: how to evaluate its role in cardiomyopathies. Journal of Muscle Research and Cell Motility, 2019, 40, 159-167.	0.9	11
719	Improved drought stress tolerance in Arabidopsis by CRISPR/dCas9 fusion with a Histone AcetylTransferase. Scientific Reports, 2019, 9, 8080.	1.6	157
720	A CRISPR Activation Screen Identifies Genes That Protect against Zika Virus Infection. Journal of Virology, 2019, 93, .	1.5	50
721	Identification of Renal Long Non-coding RNA RP11-2B6.2 as a Positive Regulator of Type I Interferon Signaling Pathway in Lupus Nephritis. Frontiers in Immunology, 2019, 10, 975.	2.2	52
722	Gene editing based hearing impairment research and therapeutics. Neuroscience Letters, 2019, 709, 134326.	1.0	3
723	CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity. Methods, 2019, 164-165, 109-119.	1.9	42
724	A CRISPR Screen Using Subtilase Cytotoxin Identifies SLC39A9 as a Glycan-Regulating Factor. IScience, 2019, 15, 407-420.	1.9	34
725	Ezh2-dCas9 and KRAB-dCas9 enable engineering of epigenetic memory in a context-dependent manner. Epigenetics and Chromatin, 2019, 12, 26.	1.8	101
726	Computational Methods for Mapping, Assembly and Quantification for Coding and Non-coding Transcripts. Computational and Structural Biotechnology Journal, 2019, 17, 628-637.	1.9	25
727	Imaging-based pooled CRISPR screening reveals regulators of IncRNA localization. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10842-10851.	3.3	79
728	Transcriptional repression of endogenous genes in BmE cells using CRISPRi system. Insect Biochemistry and Molecular Biology, 2019, 111, 103172.	1.2	4
729	â€~Artificial spermatid'-mediated genome editingâ€. Biology of Reproduction, 2019, 101, 538-548.	1.2	8
730	Molecular recording of mammalian embryogenesis. Nature, 2019, 570, 77-82.	13.7	257
731	The <scp>CRIPSR</scp> /Cas geneâ€editing system—an immature but useful toolkit for experimental and clinical medicine. Animal Models and Experimental Medicine, 2019, 2, 5-8.	1.3	7
732	In vivo Application of the REMOTE-control System for the Manipulation of Endogenous Gene Expression. Journal of Visualized Experiments, 2019, , .	0.2	2
733	CRISPRai for simultaneous gene activation and inhibition to promote stem cell chondrogenesis and calvarial bone regeneration. Nucleic Acids Research, 2019, 47, e74-e74.	6.5	48

ARTICLE IF CITATIONS # Discovery of a stable expression hot spot in the genome of Chinese hamster ovary cells using 734 0.5 10 lentivirus-based random integration. Biotechnology and Biotechnological Equipment, 2019, 33, 605-612. Beta-binomial modeling of CRISPR pooled screen data identifies target genes with greater sensitivity 2.4 and fewer false negatives. Genome Research, 2019, 29, 999-1008. Molecular dissection of box jellyfish venom cytotoxicity highlights an effective venom antidote. 736 5.8 35 Nature Communications, 2019, 10, 1655. Reversible Disruption of Specific Transcription Factor-DNA Interactions Using CRISPR/Cas9. Molecular Cell, 2019, 74, 622-633.e4. ETV6-RUNX1 interacts with a region in SPIB intron 1 to regulate gene expression in pre-B-cell acute 738 0.2 6 lymphoblastic leukemia. Experimental Hematology, 2019, 73, 50-63.e2. Single-Cell RNA-Sequencing-Based CRISPRi Screening Resolves Molecular Drivers of Early Human Endoderm Development. Cell Reports, 2019, 27, 708-718.e10. Perspectives on gene expression regulation techniques in Drosophila. Journal of Genetics and 740 1.7 6 Genomics, 2019, 46, 213-220. Genome-wide CRISPR-Cas9 screening in mammalian cells. Methods, 2019, 164-165, 29-35. 741 1.9 49 CRISPR/Cas9 – An evolving biological tool kit for cancer biology and oncology. Npj Precision 742 2.3 61 Oncology, 2019, 3, 8. Application of CRISPR/Cas9-Based Gene Editing in HIV-1/AIDS Therapy. Frontiers in Cellular and Infection 743 1.8 Microbiology, 2019, 9, 69. Reduced apoptosis in Chinese hamster ovary cells via optimized CRISPR interference. Biotechnology 744 1.7 39 and Bioengineering, 2019, 116, 1813-1819. Applications of CRISPR Technologies Across the Food Supply Chain. Annual Review of Food Science 745 5.1 38 and Technology, 2019, 10, 133-<u>150</u>. Genome Editing with mRNA Encoding ZFN, TALEN, and Cas9. Molecular Therapy, 2019, 27, 735-746. 746 3.7 148 Applications of CRISPR systems in respiratory health: Entering a new â€~red pen' era in genome editing. 747 1.3 Respirology, 2019, 24, 628-637. CRISPR genomic screening informs gene–environment interactions. Current Opinion in Toxicology, 748 2.6 6 2019, 18, 46-53. Overexpressing Long Noncoding RNAs Using Gene-activating CRISPR. Journal of Visualized Experiments, 749 Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nature Reviews 750 327 4.1 Nephrology, 2019, 15, 327-345. Big science and big data in nephrology. Kidney International, 2019, 95, 1326-1337.

#	Article	IF	CITATIONS
752	Site-specific integration of light chain and heavy chain genes of antibody into CHO-K1 stable hot spot and detection of antibody and fusion protein expression level. Preparative Biochemistry and Biotechnology, 2019, 49, 384-390.	1.0	11
753	CRISPR links to long noncoding RNA function in mice: A practical approach. Vascular Pharmacology, 2019, 114, 1-12.	1.0	9
755	Rapid and Simple Screening of CRISPR Guide RNAs (gRNAs) in Cultured Cells Using Adeno-Associated Viral (AAV) Vectors. Methods in Molecular Biology, 2019, 1961, 111-126.	0.4	10
756	Single-Cell Heterogeneity Analysis and CRISPR Screen Identify Key β-Cell-Specific Disease Genes. Cell Reports, 2019, 26, 3132-3144.e7.	2.9	90
757	Systems immunology: Integrating multi-omics data to infer regulatory networks and hidden drivers of immunity. Current Opinion in Systems Biology, 2019, 15, 19-29.	1.3	32
758	A KLF6-driven transcriptional network links lipid homeostasis and tumour growth in renal carcinoma. Nature Communications, 2019, 10, 1152.	5.8	60
759	CRISPR-mediated activation of endogenous BST-2/tetherin expression inhibits wild-type HIV-1 production. Scientific Reports, 2019, 9, 3134.	1.6	17
760	The lncRNA TP73-AS1 is linked to aggressiveness in glioblastoma and promotes temozolomide resistance in glioblastoma cancer stem cells. Cell Death and Disease, 2019, 10, 246.	2.7	129
761	A Practical Guide to Genome Editing Using Targeted Nuclease Technologies. , 2019, 9, 665-714.		7
762	Cellular response to small molecules that selectively stall protein synthesis by the ribosome. PLoS Genetics, 2019, 15, e1008057.	1.5	31
763	Applications of Lgr5-Positive Cochlear Progenitors (LCPs) to the Study of Hair Cell Differentiation. Frontiers in Cell and Developmental Biology, 2019, 7, 14.	1.8	32
764	Genomic and epigenomic mapping of leptin-responsive neuronal populations involved in body weight regulation. Nature Metabolism, 2019, 1, 475-484.	5.1	17
765	Molecular mechanism of the RNA helicase DHX37 and its activation by UTP14A in ribosome biogenesis. Rna, 2019, 25, 685-701.	1.6	33
766	Targeted Transcriptional Activation in Plants Using a Potent Dead Cas9–Derived Synthetic Gene Activator. Current Protocols in Molecular Biology, 2019, 127, e89.	2.9	10
767	Toxins Utilize the Endoplasmic Reticulum-Associated Protein Degradation Pathway in Their Intoxication Process. International Journal of Molecular Sciences, 2019, 20, 1307.	1.8	32
768	Increasing the specificity of CRISPR systems with engineered RNA secondary structures. Nature Biotechnology, 2019, 37, 657-666.	9.4	252
769	Lentiviral Vector Platform for the Efficient Delivery of Epigenome-editing Tools into Human Induced Pluripotent Stem Cell-derived Disease Models. Journal of Visualized Experiments, 2019, , .	0.2	9
770	CRISPR-mediated gene editing for the surgeon scientist. Surgery, 2019, 166, 129-137.	1.0	5

ARTICLE IF CITATIONS # Liver Cancer Gene Discovery Using Gene Targeting, Sleeping Beauty, and CRISPR/Cas9. Seminars in Liver 771 1.8 21 Disease, 2019, 39, 261-274. MicroRNAs tame CRISPRâ€"Cas9. Nature Cell Biology, 2019, 21, 416-417. 4.6 773 Endothelial cells revealed as chondroclasts. Nature Cell Biology, 2019, 21, 417-419. 2 4.6 Multiplexed and tunable transcriptional activation by promoter insertion using nuclease-assisted 774 vector integration. Nucleic Acids Research, 2019, 47, e67-e67. Disruptive Technology: CRISPR/Cas-Based Tools and Approaches. Molecular Diagnosis and Therapy, 775 22 1.6 2019, 23, 187-200. Targeted Therapeutic Genome Engineering: Opportunities and Bottlenecks in Medical Translation. ACS Symposium Series, 2019, , 1-34. Functional-genetic approaches to understanding drug response and resistance. Current Opinion in 777 1.5 3 Genetics and Development, 2019, 54, 41-47. Unique features in the intracellular transport of typhoid toxin revealed by a genome-wide screen. 2.1 PLoS Pathogens, 2019, 15, e1007704. DNA stretching induces Cas9 off-target activity. Nature Structural and Molecular Biology, 2019, 26, 779 3.6 105 185-192. Identification of Novel Regulatory Genes in APAP Induced Hepatocyte Toxicity by a Genome-Wide 1.6 CRISPR-Cas9 Screen. Scientific Reports, 2019, 9, 1396. Evidence for an Integrated Gene Repression Mechanism Based on mRNA Isoform Toggling in Human 781 0.8 25 Cells. G3: Genes, Genomes, Genetics, 2019, 9, 1045-1053. Tracing cellular heterogeneity in pooled genetic screens via multi-level barcoding. BMC Genomics, 1.2 2019, 20, 107. A microRNA-inducible CRISPRâ€"Cas9 platform serves as a microRNA sensor and cell-type-specific genome 784 4.6 117 regulation tool. Nature Cell Biology, 2019, 21, 522-530. Breast cancer cells rely on environmental pyruvate to shape the metastatic niche. Nature, 2019, 568, 13.7 117-121. A CRISPR Interference Platform for Efficient Genetic Repression in <i>Candida albicans</i>. MSphere, 786 49 1.3 2019, 4, . Protocols for CRISPR-Cas9 Screening in Lymphoma Cell Lines. Methods in Molecular Biology, 2019, 1956, 337-350. Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. Nature 788 5.8 215 Communications, 2019, 10, 729. Heterochromatin anomalies and double-stranded RNA accumulation underlie <i>C9orf72 </i> toxicity. Science, 2019, 363, .

#	Article	IF	CITATIONS
790	New factors for protein transport identified by a genome-wide CRISPRi screen in mammalian cells. Journal of Cell Biology, 2019, 218, 3861-3879.	2.3	25
791	Beyond classic editing: innovative CRISPR approaches for functional studies of long non-coding RNA. Biology Methods and Protocols, 2019, 4, bpz017.	1.0	16
793	microRNA-22 promotes megakaryocyte differentiation through repression of its target, GFI1. Blood Advances, 2019, 3, 33-46.	2.5	14
794	Advances in Plant Transgenics: Methods and Applications. , 2019, , .		2
795	Circ-HuR suppresses HuR expression and gastric cancer progression by inhibiting CNBP transactivation. Molecular Cancer, 2019, 18, 158.	7.9	157
796	Application of CRISPR genetic screens to investigate neurological diseases. Molecular Neurodegeneration, 2019, 14, 41.	4.4	25
797	Chemogenetic interactions in human cancer cells. Computational and Structural Biotechnology Journal, 2019, 17, 1318-1325.	1.9	8
798	Multi-functional genome-wide CRISPR system for high throughput genotype–phenotype mapping. Nature Communications, 2019, 10, 5794.	5.8	104
799	Novel gRNA design pipeline to develop broad-spectrum CRISPR/Cas9 gRNAs for safe targeting of the HIV-1 quasispecies in patients. Scientific Reports, 2019, 9, 17088.	1.6	23
800	CRISPR-based Activation of Endogenous Neurotrophic Genes in Adipose Stem Cell Sheets to Stimulate Peripheral Nerve Regeneration. Theranostics, 2019, 9, 6099-6111.	4.6	44
802	Transcriptional control by enhancers and enhancer RNAs. Transcription, 2019, 10, 171-186.	1.7	49
803	Effective CRISPR interference of an endogenous gene via a single transgene in mice. Scientific Reports, 2019, 9, 17312.	1.6	25
804	Advancing CRISPR-Based Programmable Platforms beyond Genome Editing in Mammalian Cells. ACS Synthetic Biology, 2019, 8, 2607-2619.	1.9	5
805	Long Non-coding RNA DANCR as an Emerging Therapeutic Target in Human Cancers. Frontiers in Oncology, 2019, 9, 1225.	1.3	64
806	The MITF-SOX10 regulated long non-coding RNA DIRC3 is a melanoma tumour suppressor. PLoS Genetics, 2019, 15, e1008501.	1.5	52
807	Dead Cas Systems: Types, Principles, and Applications. International Journal of Molecular Sciences, 2019, 20, 6041.	1.8	74
809	Reading and writing: the evolution of molecular pain genetics. Pain, 2019, 160, 2177-2185.	2.0	2
810	Functional genomic approaches to elucidate the role of enhancers during development. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2019, 12, e1467.	6.6	19

	Сітатіо	N REPORT	
#	Article	IF	CITATIONS
811	Leaky endosomes push tau over the seed limit. Journal of Biological Chemistry, 2019, 294, 18967-18968.	1.6	5
812	Understanding CRISPR/Cas9: A Magnificent Tool for Plant Genome Editing. , 2019, , .		1
813	The Biology of mRNA: Structure and Function. Advances in Experimental Medicine and Biology, 2019, , .	0.8	3
814	Gene therapy for visual loss: Opportunities and concerns. Progress in Retinal and Eye Research, 2019, 68, 31-53.	7.3	78
815	RNAi/CRISPR Screens: from a Pool to a Valid Hit. Trends in Biotechnology, 2019, 37, 38-55.	4.9	90
816	Systematic genetic mapping of necroptosis identifies SLC39A7 as modulator of death receptor trafficking. Cell Death and Differentiation, 2019, 26, 1138-1155.	5.0	26
817	Creation of versatile cloning platforms for transgene expression and dCas9-based epigenome editing. Nucleic Acids Research, 2019, 47, e23-e23.	6.5	27
819	Cancer Gene Discovery: Past to Present. Methods in Molecular Biology, 2019, 1907, 1-15.	0.4	1
820	CRISPR/Cas9-Based Positive Screens for Cancer-Related Traits. Methods in Molecular Biology, 2019, 1907, 137-144.	0.4	4
821	CRISPR–Cas9 genome engineering of primary CD4+ T cells for the interrogation of HIV–host factor interactions. Nature Protocols, 2019, 14, 1-27.	5.5	98
822	CRISPR RNA-guided autonomous delivery of Cas9. Nature Structural and Molecular Biology, 2019, 26, 14-24.	3.6	27
823	CRISPR-Mediated Approaches to Regulate YAP/TAZ Levels. Methods in Molecular Biology, 2019, 1893, 203-214.	0.4	0
824	To kill a piroplasm: genetic technologies to advance drug discovery and target identification in Babesia. International Journal for Parasitology, 2019, 49, 153-163.	1.3	15
825	<pre><scp>CRISPR</scp>/Casâ€based screening of a gene activation library in <i>Saccharomyces cerevisiae</i> identifies a crucial role of <i><scp>OLE</scp>1</i> in thermotolerance. Microbial Biotechnology, 2019, 12, 1154-1163.</pre>	2.0	34
826	CRISPR-DT: designing gRNAs for the CRISPR-Cpf1 system with improved target efficiency and specificity. Bioinformatics, 2019, 35, 2783-2789.	1.8	62
827	Metabolic engineering of bacterial strains using CRISPR/Cas9 systems for biosynthesis of value-added products. Food Bioscience, 2019, 28, 125-132.	2.0	32
828	Enabling genetic analysis of diverse bacteria with Mobile-CRISPRi. Nature Microbiology, 2019, 4, 244-250.	5.9	163
829	Reiterative Enrichment and Authentication of CRISPRi Targets (REACT) identifies the proteasome as a key contributor to HIV-1 latency. PLoS Pathogens, 2019, 15, e1007498.	2.1	46

#	Article	IF	CITATIONS
830	CRISPR-Cas9 Circular Permutants as Programmable Scaffolds for Genome Modification. Cell, 2019, 176, 254-267.e16.	13.5	73
831	The histone H3 Lys 27 demethylase KDM6B promotes migration and invasion of glioma cells partly by regulating the expression of SNAI1. Neurochemistry International, 2019, 124, 123-129.	1.9	24
832	Precision Control of CRISPR-Cas9 Using Small Molecules and Light. Biochemistry, 2019, 58, 234-244.	1.2	92
833	CRISPR–Cas9 a boon or bane: the bumpy road ahead to cancer therapeutics. Cancer Cell International, 2019, 19, 12.	1.8	46
834	Multistage Delivery Nanoparticle Facilitates Efficient CRISPR/dCas9 Activation and Tumor Growth Suppression In Vivo. Advanced Science, 2019, 6, 1801423.	5.6	128
835	CRISPR–Cas9 in genome editing: Its function and medical applications. Journal of Cellular Physiology, 2019, 234, 5751-5761.	2.0	29
836	Efficient CRISPR/Cas9â€Mediated Mutagenesis in Primary Murine T Lymphocytes. Current Protocols in Immunology, 2019, 124, e62.	3.6	13
838	A New Tool for Inducible Gene Expression in <i>Caenorhabditis elegans</i> . Genetics, 2019, 211, 419-430.	1.2	18
839	New Technologies To Enhance In Vivo Reprogramming for Regenerative Medicine. Trends in Biotechnology, 2019, 37, 604-617.	4.9	23
840	A Road Map to Personalizing Targeted Cancer Therapies Using Synthetic Lethality. Trends in Cancer, 2019, 5, 11-29.	3.8	21
841	A revolutionary tool: CRISPR technology plays an important role in construction of intelligentized gene circuits. Cell Proliferation, 2019, 52, e12552.	2.4	7
842	Functional Genomics for Cancer Research: Applications In Vivo and In Vitro. Annual Review of Cancer Biology, 2019, 3, 345-363.	2.3	9
843	Prediction of CRISPR sgRNA Activity Using a Deep Convolutional Neural Network. Journal of Chemical Information and Modeling, 2019, 59, 615-624.	2.5	64
844	Transcriptional activation of fucosyltransferase (FUT) genes using the CRISPR-dCas9-VPR technology reveals potent N-glycome alterations in colorectal cancer cells. Glycobiology, 2019, 29, 137-150.	1.3	27
845	Quantitative proteomics analysis identifies MUC1 as an effect sensor of EGFR inhibition. Oncogene, 2019, 38, 1477-1488.	2.6	11
846	Identification of Antinorovirus Genes in Human Cells Using Genome-Wide CRISPR Activation Screening. Journal of Virology, 2019, 93, .	1.5	40
847	Yeast genetic interaction screens in the age of CRISPR/Cas. Current Genetics, 2019, 65, 307-327.	0.8	29
848	Fluorescence Activated Cell Sorting (FACS) in Genomeâ€Wide Genetic Screening of Membrane Trafficking. Current Protocols in Cell Biology, 2019, 82, e68.	2.3	7

# 849	ARTICLE Modeling genetic epilepsies in a dish. Developmental Dynamics, 2020, 249, 56-75.	IF 0.8	Citations 27
850	Translatable gene therapy for lung cancer using Crispr CAS9—an exploratory review. Cancer Gene Therapy, 2020, 27, 116-124.	2.2	20
851	CRISPRi as an efficient tool for gene repression in archaea. Methods, 2020, 172, 76-85.	1.9	17
852	Genome editing-based approaches for imaging protein localization and dynamics in the mammalian brain. Neuroscience Research, 2020, 150, 2-7.	1.0	6
853	Tailored chromatin modulation to promote tissue regeneration. Seminars in Cell and Developmental Biology, 2020, 97, 3-15.	2.3	10
854	CRISPR/Cas9 gene-editing strategies in cardiovascular cells. Cardiovascular Research, 2020, 116, 894-907.	1.8	40
855	Positional effects on efficiency of CRISPR/Cas9-based transcriptional activation in rice plants. ABIOTECH, 2020, 1, 1-5.	1.8	13
856	The working dead: repurposing inactive CRISPR-associated nucleases as programmable transcriptional regulators in plants. ABIOTECH, 2020, 1, 32-40.	1.8	8
857	The how and why of IncRNA function: An innate immune perspective. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194419.	0.9	196
858	The Impact of CRISPR-Cas9 on Age-related Disorders: From Pathology to Therapy. , 2020, 11, 895.		8
859	A glance at genome editing with CRISPR–Cas9 technology. Current Genetics, 2020, 66, 447-462.	0.8	57
860	Modelling the Cancer Phenotype in the Era of CRISPR-Cas9 Gene Editing. Clinical Oncology, 2020, 32, 69-74.	0.6	2
861	Synthetic lethality as an engine for cancer drug target discovery. Nature Reviews Drug Discovery, 2020, 19, 23-38.	21.5	295
862	Awakening dormant glycosyltransferases in CHO cells with CRISPRa. Biotechnology and Bioengineering, 2020, 117, 593-598.	1.7	27
863	Plant gene expression control using genome- and epigenome-editing technologies. Journal of Crop Improvement, 2020, 34, 1-63.	0.9	14
864	Artificial escape from XCI by DNA methylation editing of the CDKL5 gene. Nucleic Acids Research, 2020, 48, 2372-2387.	6.5	30
865	Advances in high-throughput methods for the identification of virus receptors. Medical Microbiology and Immunology, 2020, 209, 309-323.	2.6	14
866	Ultrasound-activated particles as CRISPR/Cas9 delivery system for androgenic alopecia therapy. Biomaterials, 2020, 232, 119736.	5.7	68

#	Article	IF	CITATIONS
867	Target Discovery of Selective Non-Small-Cell Lung Cancer Toxins Reveals Inhibitors of Mitochondrial Complex I. ACS Chemical Biology, 2020, 15, 158-170.	1.6	18
868	Heat-Triggered Remote Control of CRISPR-dCas9 for Tunable Transcriptional Modulation. ACS Chemical Biology, 2020, 15, 533-542.	1.6	23
869	Computational approaches for effective CRISPR guide RNA design and evaluation. Computational and Structural Biotechnology Journal, 2020, 18, 35-44.	1.9	119
870	Cas9 Protein Triggers Differential Expression of Inherent Genes Especially NGFR Expression in 293T Cells. Cellular and Molecular Bioengineering, 2020, 13, 61-72.	1.0	3
871	Genome-wide synthetic lethal CRISPR screen identifies FIS1 as a genetic interactor of ALS-linked C9ORF72. Brain Research, 2020, 1728, 146601.	1.1	16
872	Overcoming challenges and dogmas to understand the functions of pseudogenes. Nature Reviews Genetics, 2020, 21, 191-201.	7.7	151
873	Coactivation of Endogenous Wnt10b and Foxc2 by CRISPR Activation Enhances BMSC Osteogenesis and Promotes Calvarial Bone Regeneration. Molecular Therapy, 2020, 28, 441-451.	3.7	37
874	Prostate cancer research: The next generation; report from the 2019 Coffeyâ€Holden Prostate Cancer Academy Meeting. Prostate, 2020, 80, 113-132.	1.2	25
875	A genome-wide long noncoding RNA CRISPRi screen identifies <i>PRANCR</i> as a novel regulator of epidermal homeostasis. Genome Research, 2020, 30, 22-34.	2.4	59
876	Wholeâ€Genome Regulation for Yeast Metabolic Engineering. Small Methods, 2020, 4, 1900640.	4.6	12
877	Experimental Approaches to Identify Host Factors Important for Influenza Virus. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a038521.	2.9	9
878	An Improved CRISPR/dCas9 Interference Tool for Neuronal Gene Suppression. Frontiers in Genome Editing, 2020, 2, 9.	2.7	23
879	Mismatch-CRISPRi Reveals the Co-varying Expression-Fitness Relationships of Essential Genes in Escherichia coli and Bacillus subtilis. Cell Systems, 2020, 11, 523-535.e9.	2.9	72
880	Conditional guide RNA through two intermediate hairpins for programmable CRISPR/Cas9 function: building regulatory connections between endogenous RNA expressions. Nucleic Acids Research, 2020, 48, 11773-11784.	6.5	25
881	The Interplay between Long Noncoding RNAs and Proteins of the Epigenetic Machinery in Ovarian Cancer. Cancers, 2020, 12, 2701.	1.7	6
882	Efficient Genome Editing in Multiple Salmonid Cell Lines Using Ribonucleoprotein Complexes. Marine Biotechnology, 2020, 22, 717-724.	1.1	15
883	Illuminating Host-Mycobacterial Interactions with Genome-wide CRISPR Knockout and CRISPRi Screens. Cell Systems, 2020, 11, 239-251.e7.	2.9	23
884	A High-Efficacy CRISPR Interference System for Gene Function Discovery in Zymomonas mobilis. Applied and Environmental Microbiology, 2020, 86, .	1.4	26

#	Article	IF	CITATIONS
885	The present and potential future methods for delivering CRISPR/Cas9 components in plants. Journal of Genetic Engineering and Biotechnology, 2020, 18, 25.	1.5	75
886	ALS Genetics: Gains, Losses, and Implications for Future Therapies. Neuron, 2020, 108, 822-842.	3.8	212
887	A high-throughput CRISPR interference screen for dissecting functional regulators of GPCR/cAMP signaling. PLoS Genetics, 2020, 16, e1009103.	1.5	15
888	In Vivo Cancer-Based Functional Genomics. Trends in Cancer, 2020, 6, 1002-1017.	3.8	5
889	Conserved Functions of Ether Lipids and Sphingolipids in the Early Secretory Pathway. Current Biology, 2020, 30, 3775-3787.e7.	1.8	59
890	Wnt-regulated IncRNA discovery enhanced by in vivo identification and CRISPRi functional validation. Genome Medicine, 2020, 12, 89.	3.6	12
891	Gene Editing by Extracellular Vesicles. International Journal of Molecular Sciences, 2020, 21, 7362.	1.8	30
892	Pharmaceutical-Grade Rigosertib Is a Microtubule-Destabilizing Agent. Molecular Cell, 2020, 79, 191-198.e3.	4.5	22
893	Autophagy Assays for Biological Discovery and Therapeutic Development. Trends in Biochemical Sciences, 2020, 45, 1080-1093.	3.7	100
894	Strategies and technologies for exploring long noncoding RNAs in heart failure. Biomedicine and Pharmacotherapy, 2020, 131, 110572.	2.5	6
895	DNA Processing in the Context of Noncoding Transcription. Trends in Biochemical Sciences, 2020, 45, 1009-1021.	3.7	20
896	Modulating gene regulation to treat genetic disorders. Nature Reviews Drug Discovery, 2020, 19, 757-775.	21.5	41
897	An efficient KRAB domain for CRISPRi applications in human cells. Nature Methods, 2020, 17, 1093-1096.	9.0	116
898	Computational Methods for Analysis of Large-Scale CRISPR Screens. Annual Review of Biomedical Data Science, 2020, 3, 137-162.	2.8	4
900	CRISPR/Cas9 technologies in epigenetics research. , 2020, , 537-567.		1
901	Critical cancer vulnerabilities identified by unbiased CRISPR/Cas9 screens inform on efficient cancer Immunotherapy. European Journal of Immunology, 2020, 50, 1871-1884.	1.6	6
902	Genome Editing for CNS Disorders. Frontiers in Neuroscience, 2020, 14, 579062.	1.4	18
903	Understanding and Engineering Chromatin as a Dynamical System across Length and Timescales. Cell Systems, 2020, 11, 424-448.	2.9	16

	CITATION	Report	
#	Article	IF	CITATIONS
904	Is microfluidics the "assembly line―for CRISPR-Cas9 gene-editing?. Biomicrofluidics, 2020, 14, 061301.	1.2	4
905	Comprehensive Mapping of Key Regulatory Networks that Drive Oncogene Expression. Cell Reports, 2020, 33, 108426.	2.9	14
906	Novel Prokaryotic CRISPR-Cas12a-Based Tool for Programmable Transcriptional Activation and Repression. ACS Synthetic Biology, 2020, 9, 3353-3363.	1.9	19
907	First Steps toward Uncovering Gene Doping with CRISPR/Cas by Identifying SpCas9 in Plasma via HPLC‪HRMS/MS. Analytical Chemistry, 2020, 92, 16322-16328.	3.2	13
908	An inducible CRISPR interference library for genetic interrogation of Saccharomyces cerevisiae biology. Communications Biology, 2020, 3, 723.	2.0	24
909	Photocontrol of CRISPR/Cas9 function by site-specific chemical modification of guide RNA. Chemical Science, 2020, 11, 11478-11484.	3.7	22
910	Master Regulators and Cofactors of Human Neuronal Cell Fate Specification Identified by CRISPR Gene Activation Screens. Cell Reports, 2020, 33, 108460.	2.9	38
911	The hexosamine biosynthesis pathway is a targetable liability in KRAS/LKB1 mutant lung cancer. Nature Metabolism, 2020, 2, 1401-1412.	5.1	82
912	The ZSWIM8 ubiquitin ligase mediates target-directed microRNA degradation. Science, 2020, 370, .	6.0	138
913	Epigenome engineering: new technologies for precision medicine. Nucleic Acids Research, 2020, 48, 12453-12482.	6.5	34
914	Network Approaches for Dissecting the Immune System. IScience, 2020, 23, 101354.	1.9	28
915	CRISPR/Cas systems to overcome challenges in developing the next generation of T cells for cancer therapy. Advanced Drug Delivery Reviews, 2020, 158, 17-35.	6.6	14
916	Cell Reprogramming With CRISPR/Cas9 Based Transcriptional Regulation Systems. Frontiers in Bioengineering and Biotechnology, 2020, 8, 882.	2.0	29
917	Critical Roles of Translation Initiation and RNA Uridylation in Endogenous Retroviral Expression and Neural Differentiation in Pluripotent Stem Cells. Cell Reports, 2020, 31, 107715.	2.9	21
918	Integration of CRISPR-engineering and hiPSC-based models of psychiatric genomics. Molecular and Cellular Neurosciences, 2020, 107, 103532.	1.0	8
919	A Cellular Stress Response Induced by the CRISPR-dCas9 Activation System Is Not Heritable Through Cell Divisions. CRISPR Journal, 2020, 3, 188-197.	1.4	2
920	Aspects of Gene Therapy Products Using Current Genome-Editing Technology in Japan. Human Gene Therapy, 2020, 31, 1043-1053.	1.4	8
921	Cohesin-Dependent and -Independent Mechanisms Mediate Chromosomal Contacts between Promoters and Enhancers. Cell Reports, 2020, 32, 107929.	2.9	106

# 922	ARTICLE GIGYF2 and 4EHP Inhibit Translation Initiation of Defective Messenger RNAs to Assist Ribosome-Associated Quality Control. Molecular Cell, 2020, 79, 950-962.e6.	IF 4.5	CITATIONS
923	High-Throughput Screening: today's biochemical and cell-based approaches. Drug Discovery Today, 2020, 25, 1807-1821.	3.2	119
924	Controlling metabolic flux by toehold-mediated strand displacement. Current Opinion in Biotechnology, 2020, 66, 150-157.	3.3	13
925	CRISPR/Cas9 in Male Factor Infertility. Current Tissue Microenvironment Reports, 2020, 1, 89-97.	1.3	3
926	Functional genetic analysis in a jawless vertebrate, the sea lamprey: insights into the developmental evolution of early vertebrates. Journal of Experimental Biology, 2020, 223, .	0.8	13
927	CRISPR-Cas Activators for Engineering Gene Expression in Higher Eukaryotes. CRISPR Journal, 2020, 3, 350-364.	1.4	32
928	Replication stress conferred by POT1 dysfunction promotes telomere relocalization to the nuclear pore. Genes and Development, 2020, 34, 1619-1636.	2.7	36
929	In silico Method in CRISPR/Cas System: An Expedite and Powerful Booster. Frontiers in Oncology, 2020, 10, 584404.	1.3	7
930	Kaposi's Sarcoma-Associated Herpesvirus Reactivation by Targeting of a dCas9-Based Transcription Activator to the ORF50 Promoter. Viruses, 2020, 12, 952.	1.5	3
931	Synthetic immunomodulation with a CRISPR super-repressor in vivo. Nature Cell Biology, 2020, 22, 1143-1154.	4.6	27
932	Lentiviral delivery of combinatorial CAR/CRISPRi circuit into human primary T cells is enhanced by TBK1/IKKÉ› complex inhibitor BX795. Journal of Translational Medicine, 2020, 18, 363.	1.8	12
933	Designing custom CRISPR libraries for hypothesis-driven drug target discovery. Computational and Structural Biotechnology Journal, 2020, 18, 2237-2246.	1.9	10
934	The era of editing plant genomes using CRISPR/Cas: A critical appraisal. Journal of Biotechnology, 2020, 324, 34-60.	1.9	12
935	Interrogating genome function using CRISPR tools: a narrative review. Journal of Bio-X Research, 2020, 3, 83-91.	0.3	0
936	CrisPam: SNP-Derived PAM Analysis Tool for Allele-Specific Targeting of Genetic Variants Using CRISPR-Cas Systems. Frontiers in Genetics, 2020, 11, 851.	1.1	16
937	A Single Cas9-VPR Nuclease for Simultaneous Gene Activation, Repression, and Editing in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2020, 9, 2252-2257.	1.9	24
938	Mapping cancer genetics at single-cell resolution. Science Translational Medicine, 2020, 12, .	5.8	3
939	Defining the ATPome reveals cross-optimization of metabolic pathways. Nature Communications, 2020, 11, 4319.	5.8	17

#	Article	IF	CITATIONS
940	Back to the Future: Rethinking the Great Potential of IncRNAS for Optimizing Chemotherapeutic Response in Ovarian Cancer. Cancers, 2020, 12, 2406.	1.7	17
941	Generation of Inducible CRISPRi and CRISPRa Human Stromal/Stem Cell Lines for Controlled Target Gene Transcription during Lineage Differentiation. Stem Cells International, 2020, 2020, 1-11.	1.2	6
942	Discovering functional sequences with RELICS, an analysis method for CRISPR screens. PLoS Computational Biology, 2020, 16, e1008194.	1.5	7
943	Pooled analysis of radiation hybrids identifies loci for growth and drug action in mammalian cells. Genome Research, 2020, 30, 1458-1467.	2.4	6
944	Therapeutic Target Discovery Using High-Throughput Genetic Screens in Acute Myeloid Leukemia. Cells, 2020, 9, 1888.	1.8	4
945	CRISPR and transposon in vivo screens for cancer drivers and therapeutic targets. Genome Biology, 2020, 21, 204.	3.8	14
946	Methodologies and Challenges for CRISPR/Cas9 Mediated Genome Editing of the Mammalian Brain. Frontiers in Genome Editing, 2020, 2, 602970.	2.7	17
947	Programmable Gene Knockdown in Diverse Bacteria Using Mobileâ€CRISPRi. Current Protocols in Microbiology, 2020, 59, e130.	6.5	16
948	Interphotoreceptor Retinoid-Binding Protein (IRBP) in Retinal Health and Disease. Frontiers in Cellular Neuroscience, 2020, 14, 577935.	1.8	15
949	Emerging Role and Therapeutic Potential of IncRNAs in Colorectal Cancer. Cancers, 2020, 12, 3843.	1.7	29
950	From Phenotypic Hit to Chemical Probe: Chemical Biology Approaches to Elucidate Small Molecule Action in Complex Biological Systems. Molecules, 2020, 25, 5702.	1.7	14
951	Functional Screening Techniques to Identify Long Non-Coding RNAs as Therapeutic Targets in Cancer. Cancers, 2020, 12, 3695.	1.7	11
952	High-Throughput Discovery and Characterization of Human Transcriptional Effectors. Cell, 2020, 183, 2020-2035.e16.	13.5	71
953	Crispr as9 in der Anwendung – wo wir heute stehen. Nachrichten Aus Der Chemie, 2020, 68, 62-64.	0.0	0
954	Functional Genomics in Pancreatic β Cells: Recent Advances in Gene Deletion and Genome Editing Technologies for Diabetes Research. Frontiers in Endocrinology, 2020, 11, 576632.	1.5	13
955	LncRNAs in Cancer: From garbage to Junk. Cancers, 2020, 12, 3220.	1.7	41
956	Self-adaptive biosystems through tunable genetic parts and circuits. Current Opinion in Systems Biology, 2020, 24, 78-85.	1.3	17
957	CRISPR-Cas Tools and Their Application in Genetic Engineering of Human Stem Cells and Organoids. Cell Stem Cell, 2020, 27, 705-731.	5.2	95

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
958	Specificity and application of SOX2 antibody. Poultry Science, 2020, 99, 2385-2394.		1.5	1
959	A redox-based electrogenetic CRISPR system to connect with and control biological info networks. Nature Communications, 2020, 11, 2427.	rmation	5.8	46
960	Genome editing technology and application in soybean improvement. Oil Crop Science,	2020, 5, 31-40.	0.9	32
961	Generation and Profiling of 2,135 Human ESC Lines for the Systematic Analyses of Cell Perturbed by Inducing Single Transcription Factors. Cell Reports, 2020, 31, 107655.	States	2.9	28
962	Zika Virus. Methods in Molecular Biology, 2020, , .		0.4	0
963	Programming PAM antennae for efficient CRISPR-Cas9 DNA editing. Science Advances, 2	2020, 6, eaay9948.	4.7	17
964	Automated 3D light-sheet screening with high spatiotemporal resolution reveals mitotic Journal of Cell Science, 2020, 133, .	: phenotypes.	1.2	21
965	CLUE: a bioinformatic and wet-lab pipeline for multiplexed cloning of custom sgRNA libr Acids Research, 2020, 48, e78.	aries. Nucleic	6.5	2
966	Single-cell transcriptional landscapes reveal HIV-1–driven aberrant host gene transcrip potential therapeutic target. Science Translational Medicine, 2020, 12, .	otion as a	5.8	75
967	CRISPR screen in mechanism and target discovery for cancer immunotherapy. Biochimic Acta: Reviews on Cancer, 2020, 1874, 188378.	a Et Biophysica	3.3	25
968	CRISPR-mediated transcriptional activation with synthetic guide RNA. Journal of Biotech 319, 25-35.	nology, 2020,	1.9	12
969	Synergistic CRISPRa-Regulated Chondrogenic Extracellular Matrix Deposition Without E Growth Factors. Tissue Engineering - Part A, 2020, 26, 1169-1179.	xogenous	1.6	11
970	Genome Editing Fidelity in the Context of DNA Sequence and Chromatin Structure. Fror and Developmental Biology, 2020, 8, 319.	ntiers in Cell	1.8	11
971	Development and Application of CRISPR/Cas in Microbial Biotechnology. Frontiers in Bic and Biotechnology, 2020, 8, 711.	bengineering	2.0	37
972	Towards systems tissue engineering: Elucidating the dynamics, spatial coordination, and cells driving emergent behaviors. Biomaterials, 2020, 255, 120189.	l individual	5.7	8
973	FOXO1 promotes HIV latency by suppressing ER stress in T cells. Nature Microbiology, 2	2020, 5, 1144-1157.	5.9	18
974	Getting back on track: exploiting canalization to uncover the mechanisms of developme robustness. Current Opinion in Genetics and Development, 2020, 63, 53-60.	ental	1.5	2
975	Recommended Guidelines for Developing, Qualifying, and Implementing Complex In Viti (CIVMs) for Drug Discovery. SLAS Discovery, 2020, 25, 1174-1190.	ro Models	1.4	33

#	Article	IF	CITATIONS
976	Gene regulatory programmes of tissue regeneration. Nature Reviews Genetics, 2020, 21, 511-525.	7.7	99
977	Genomic resources for dissecting the role of non-protein coding variation in gene-environment interactions. Toxicology, 2020, 441, 152505.	2.0	2
978	Gain-of-function genetic screen of the kinome reveals BRSK2 as an inhibitor of the NRF2 transcription factor. Journal of Cell Science, 2020, 133, .	1.2	17
979	AP-1 imprints a reversible transcriptional programme of senescent cells. Nature Cell Biology, 2020, 22, 842-855.	4.6	114
980	CRISPR/Cas system of prokaryotic extremophiles and its applications. , 2020, , 155-168.		1
981	Tumor Interferon Signaling Is Regulated by a IncRNA INCR1 Transcribed from the PD-L1 Locus. Molecular Cell, 2020, 78, 1207-1223.e8.	4.5	43
982	CRISPR-CAS Replacing Antiviral Drugs against HIV: An Update. Critical Reviews in Eukaryotic Gene Expression, 2020, 30, 77-83.	0.4	8
983	Synthetic Biology Speeds Up Drug Target Discovery. Frontiers in Pharmacology, 2020, 11, 119.	1.6	13
984	Spatiotemporal Control of CRISPR/Cas9 Function in Cells and Zebrafish using Lightâ€Activated Guide RNA. Angewandte Chemie - International Edition, 2020, 59, 8998-9003.	7.2	90
985	A Genome-wide ER-phagy Screen Highlights Key Roles of Mitochondrial Metabolism and ER-Resident UFMylation. Cell, 2020, 180, 1160-1177.e20.	13.5	163
986	Development and challenges of using CRISPR-Cas9 system in mammalians. , 2020, , 83-93.		2
987	CRISPR screens in cancer spheroids identify 3D growth-specific vulnerabilities. Nature, 2020, 580, 136-141.	13.7	203
988	Pervasive functional translation of noncanonical human open reading frames. Science, 2020, 367, 1140-1146.	6.0	400
989	gscreend: modelling asymmetric count ratios in CRISPR screens to decrease experiment size and improve phenotype detection. Genome Biology, 2020, 21, 53.	3.8	34
990	CAMIO: a transgenic CRISPR pipeline to create diverse targeted genome deletions in Drosophila. Nucleic Acids Research, 2020, 48, 4344-4356.	6.5	3
991	FAM13A affects body fat distribution and adipocyte function. Nature Communications, 2020, 11, 1465.	5.8	36
992	Establishment of CRISPR interference in Methylorubrum extorquens and application of rapidly mining a new phytoene desaturase involved in carotenoid biosynthesis. Applied Microbiology and Biotechnology, 2020, 104, 4515-4532.	1.7	32
994	Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing. Nature Biotechnology, 2020, 38, 954-961.	9.4	232

#	Article	IF	CITATIONS
995	Genome-Scale CRISPR Screening in Human Intestinal Organoids Identifies Drivers of TGF-Î ² Resistance. Cell Stem Cell, 2020, 26, 431-440.e8.	5.2	103
996	Mitochondrial stress is relayed to the cytosol by an OMA1–DELE1–HRI pathway. Nature, 2020, 579, 427-432.	13.7	343
997	Technologies and Computational Analysis Strategies for CRISPR Applications. Molecular Cell, 2020, 79, 11-29.	4.5	28
998	Targeting MEF2D-fusion Oncogenic Transcriptional Circuitries in B-cell Precursor Acute Lymphoblastic Leukemia. Blood Cancer Discovery, 2020, 1, 82-95.	2.6	12
999	A Tale of Two Moieties: Rapidly Evolving CRISPR/Cas-Based Genome Editing. Trends in Biochemical Sciences, 2020, 45, 874-888.	3.7	23
1000	A Single-Cell Transcriptomics CRISPR-Activation Screen Identifies Epigenetic Regulators of the Zygotic Genome Activation Program. Cell Systems, 2020, 11, 25-41.e9.	2.9	59
1001	CRISPR-based functional genomics for neurological disease. Nature Reviews Neurology, 2020, 16, 465-480.	4.9	89
1002	How Crisp is CRISPR? CRISPR-Cas-mediated crop improvement with special focus on nutritional traits. , 2020, , 159-197.		5
1003	Application of Various Delivery Methods for CRISPR/dCas9. Molecular Biotechnology, 2020, 62, 355-363.	1.3	11
1004	Klotho and the Treatment of Human Malignancies. Cancers, 2020, 12, 1665.	1.7	23
1004 1005	Klotho and the Treatment of Human Malignancies. Cancers, 2020, 12, 1665. CRISPR-based screens uncover determinants of immunotherapy response in multiple myeloma. Blood Advances, 2020, 4, 2899-2911.	1.7 2.5	23 36
	CRISPR-based screens uncover determinants of immunotherapy response in multiple myeloma. Blood		
1005	CRISPR-based screens uncover determinants of immunotherapy response in multiple myeloma. Blood Advances, 2020, 4, 2899-2911. The novel insight into the outcomes of CRISPR/Cas9 editing intra- and inter-species. International	2.5	36
1005 1006	CRISPR-based screens uncover determinants of immunotherapy response in multiple myeloma. Blood Advances, 2020, 4, 2899-2911. The novel insight into the outcomes of CRISPR/Cas9 editing intra- and inter-species. International Journal of Biological Macromolecules, 2020, 163, 711-717. Challenges and opportunities with CRISPR activation in bacteria for data-driven metabolic	2.5 3.6	36 7
1005 1006 1007	CRISPR-based screens uncover determinants of immunotherapy response in multiple myeloma. Blood Advances, 2020, 4, 2899-2911. The novel insight into the outcomes of CRISPR/Cas9 editing intra- and inter-species. International Journal of Biological Macromolecules, 2020, 163, 711-717. Challenges and opportunities with CRISPR activation in bacteria for data-driven metabolic engineering. Current Opinion in Biotechnology, 2020, 64, 190-198. Selective monitoring of insulin secretion after CRISPR interference in intact pancreatic islets despite	2.5 3.6 3.3	36 7 29
1005 1006 1007 1008	CRISPR-based screens uncover determinants of immunotherapy response in multiple myeloma. Blood Advances, 2020, 4, 2899-2911. The novel insight into the outcomes of CRISPR/Cas9 editing intra- and inter-species. International Journal of Biological Macromolecules, 2020, 163, 711-717. Challenges and opportunities with CRISPR activation in bacteria for data-driven metabolic engineering. Current Opinion in Biotechnology, 2020, 64, 190-198. Selective monitoring of insulin secretion after CRISPR interference in intact pancreatic islets despite submaximal infection. Islets, 2020, 12, 59-69. Cancer Cell–Derived Matrisome Proteins Promote Metastasis in Pancreatic Ductal Adenocarcinoma.	2.5 3.6 3.3 0.9	36 7 29 2
1005 1006 1007 1008	CRISPR-based screens uncover determinants of immunotherapy response in multiple myeloma. Blood Advances, 2020, 4, 2899-2911. The novel insight into the outcomes of CRISPR/Cas9 editing intra- and inter-species. International Journal of Biological Macromolecules, 2020, 163, 711-717. Challenges and opportunities with CRISPR activation in bacteria for data-driven metabolic engineering. Current Opinion in Biotechnology, 2020, 64, 190-198. Selective monitoring of insulin secretion after CRISPR interference in intact pancreatic islets despite submaximal infection. Islets, 2020, 12, 59-69. Cancer Cell–Derived Matrisome Proteins Promote Metastasis in Pancreatic Ductal Adenocarcinoma. Cancer Research, 2020, 80, 1461-1474. Systematic functional identification of cancer multi-drug resistance genes. Genome Biology, 2020, 21,	2.5 3.6 3.3 0.9 0.4	36 7 29 2 99

#	Article	IF	CITATIONS
1013	Comprehensive Genome-wide Perturbations via CRISPR Adaptation Reveal Complex Genetics of Antibiotic Sensitivity. Cell, 2020, 180, 1002-1017.e31.	13.5	36
1014	Dual threshold optimization and network inference reveal convergent evidence from TF binding locations and TF perturbation responses. Genome Research, 2020, 30, 459-471.	2.4	24
1015	Systematic identification of silencers in human cells. Nature Genetics, 2020, 52, 254-263.	9.4	119
1016	The rapidly advancing Class 2 CRISPR as technologies: A customizable toolbox for molecular manipulations. Journal of Cellular and Molecular Medicine, 2020, 24, 3256-3270.	1.6	39
1017	Recent Advances of CRISPR/Cas9-Based Genetic Engineering and Transcriptional Regulation in Industrial Biology. Frontiers in Bioengineering and Biotechnology, 2019, 7, 459.	2.0	42
1018	Therapeutic targeting of YY1/MZF1 axis by MZF1-uPEP inhibits aerobic glycolysis and neuroblastoma progression. Theranostics, 2020, 10, 1555-1571.	4.6	21
1019	The promise and challenge of therapeutic genome editing. Nature, 2020, 578, 229-236.	13.7	599
1020	Titrating gene expression using libraries of systematically attenuated CRISPR guide RNAs. Nature Biotechnology, 2020, 38, 355-364.	9.4	108
1021	Interrogation of enhancer function by enhancer-targeting CRISPR epigenetic editing. Nature Communications, 2020, 11, 485.	5.8	139
1022	Sensitive detection of a bacterial pathogen using allosteric probe-initiated catalysis and CRISPR-Cas13a amplification reaction. Nature Communications, 2020, 11, 267.	5.8	200
1023	A multiplexed gRNA piggyBac transposon system facilitates efficient induction of CRISPRi and CRISPRa in human pluripotent stem cells. Scientific Reports, 2020, 10, 635.	1.6	28
1024	EMT signaling: potential contribution of CRISPR/Cas gene editing. Cellular and Molecular Life Sciences, 2020, 77, 2701-2722.	2.4	22
1025	CRISPR screen in regulatory T cells reveals modulators of Foxp3. Nature, 2020, 582, 416-420.	13.7	141
1026	Multiplex Generation, Tracking, and Functional Screening of Substitution Mutants Using a CRISPR/Retron System. ACS Synthetic Biology, 2020, 9, 1003-1009.	1.9	17
1027	A Universal, Genomewide GuideFinder for CRISPR/Cas9 Targeting in Microbial Genomes. MSphere, 2020, 5, .	1.3	13
1028	Spatiotemporal Control of CRISPR/Cas9 Function in Cells and Zebrafish using Lightâ€Activated Guide RNA. Angewandte Chemie, 2020, 132, 9083-9088.	1.6	23
1029	Gene delivery into cells and tissues. , 2020, , 519-554.		3
1030	CRISPR-Based Therapeutic Genome Editing: Strategies and InÂVivo Delivery by AAV Vectors. Cell, 2020, 181, 136-150.	13.5	289

#	Article	IF	CITATIONS
1031	Medical applications of clustered regularly interspaced short palindromic repeats (CRISPR/Cas) tool: A comprehensive overview. Gene, 2020, 745, 144636.	1.0	17
1032	Photoswitchable gRNAs for Spatiotemporally Controlled CRISPR-Cas-Based Genomic Regulation. ACS Central Science, 2020, 6, 695-703.	5.3	69
1033	Genome-Wide CRISPRi-Based Identification of Targets for Decoupling Growth from Production. ACS Synthetic Biology, 2020, 9, 1030-1040.	1.9	29
1034	Effective CRISPRa-mediated control of gene expression in bacteria must overcome strict target site requirements. Nature Communications, 2020, 11, 1618.	5.8	65
1035	Design and analysis of CRISPR–Cas experiments. Nature Biotechnology, 2020, 38, 813-823.	9.4	127
1036	Transgenic Breeding Approaches for Improving Abiotic Stress Tolerance: Recent Progress and Future Perspectives. International Journal of Molecular Sciences, 2020, 21, 2695.	1.8	86
1037	Innovative Precision Geneâ€Editing Tools in Personalized Cancer Medicine. Advanced Science, 2020, 7, 1902552.	5.6	9
1038	Modeling Psychiatric Disorder Biology with Stem Cells. Current Psychiatry Reports, 2020, 22, 24.	2.1	25
1039	Pooled Knockin Targeting for Genome Engineering of Cellular Immunotherapies. Cell, 2020, 181, 728-744.e21.	13.5	131
1040	The integrated stress response: From mechanism to disease. Science, 2020, 368, .	6.0	715
1040 1041	The integrated stress response: From mechanism to disease. Science, 2020, 368, . CRISPR/Cas9 Epigenome Editing Potential for Rare Imprinting Diseases: A Review. Cells, 2020, 9, 993.	6.0 1.8	715 33
1041	CRISPR/Cas9 Epigenome Editing Potential for Rare Imprinting Diseases: A Review. Cells, 2020, 9, 993. CGD: Comprehensive guide designer for CRISPR-Cas systems. Computational and Structural	1.8	33
1041 1042	CRISPR/Cas9 Epigenome Editing Potential for Rare Imprinting Diseases: A Review. Cells, 2020, 9, 993. CCD: Comprehensive guide designer for CRISPR-Cas systems. Computational and Structural Biotechnology Journal, 2020, 18, 814-820. MicroRNA Clustering Assists Processing of Suboptimal MicroRNA Hairpins through the Action of the	1.8 1.9	33 6
1041 1042 1043	CRISPR/Cas9 Epigenome Editing Potential for Rare Imprinting Diseases: A Review. Cells, 2020, 9, 993. CGD: Comprehensive guide designer for CRISPR-Cas systems. Computational and Structural Biotechnology Journal, 2020, 18, 814-820. MicroRNA Clustering Assists Processing of Suboptimal MicroRNA Hairpins through the Action of the ERH Protein. Molecular Cell, 2020, 78, 289-302.e6. CRISPR/Cas9 Based Knockout of miR-145 Affects Intracellular Fatty Acid Metabolism by Targeting <i>NSIG1</i> in Goat Mammary Epithelial Cells. Journal of Agricultural and Food Chemistry, 2020, 68,	1.8 1.9 4.5	33 6 48
1041 1042 1043 1044	CRISPR/Cas9 Epigenome Editing Potential for Rare Imprinting Diseases: A Review. Cells, 2020, 9, 993. CGD: Comprehensive guide designer for CRISPR-Cas systems. Computational and Structural Biotechnology Journal, 2020, 18, 814-820. MicroRNA Clustering Assists Processing of Suboptimal MicroRNA Hairpins through the Action of the ERH Protein. Molecular Cell, 2020, 78, 289-302.e6. CRISPR/Cas9 Based Knockout of miR-145 Affects Intracellular Fatty Acid Metabolism by Targeting <i>>INSIG1</i> > in Goat Mammary Epithelial Cells. Journal of Agricultural and Food Chemistry, 2020, 68, 5138-5146. A high-content RNAi screen reveals multiple roles for long noncoding RNAs in cell division. Nature	1.8 1.9 4.5 2.4	33 6 48 11
1041 1042 1043 1044 1045	 CRISPR/Cas9 Epigenome Editing Potential for Rare Imprinting Diseases: A Review. Cells, 2020, 9, 993. CGD: Comprehensive guide designer for CRISPR-Cas systems. Computational and Structural Biotechnology Journal, 2020, 18, 814-820. MicroRNA Clustering Assists Processing of Suboptimal MicroRNA Hairpins through the Action of the ERH Protein. Molecular Cell, 2020, 78, 289-302.e6. CRISPR/Cas9 Based Knockout of miR-145 Affects Intracellular Fatty Acid Metabolism by Targeting (i) INSIG1 (i) in Goat Mammary Epithelial Cells. Journal of Agricultural and Food Chemistry, 2020, 68, 5138-5146. A high-content RNAi screen reveals multiple roles for long noncoding RNAs in cell division. Nature Communications, 2020, 11, 1851. A Tandem Guide RNA-Based Strategy for Efficient CRISPR Cene Editing of Cell Populations with Low 	1.8 1.9 4.5 2.4 5.8	 33 6 48 11 43

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1049	Placental imprinting: Emerging mechanisms and functions. PLoS Genetics, 2020, 16, e	1008709.	1.5	50
1050	Human cytomegalovirus long noncoding RNA4.9 regulates viral DNA replication. PLoS 2020, 16, e1008390.	Pathogens,	2.1	31
1051	Mouse Î ³ -Synuclein Promoter-Mediated Gene Expression and Editing in Mammalian Ret Cells. Journal of Neuroscience, 2020, 40, 3896-3914.	inal Ganglion	1.7	46
1052	Noncoding Variants Connect Enhancer Dysregulation with Nuclear Receptor Signaling Hematopoietic Malignancies. Cancer Discovery, 2020, 10, 724-745.	in	7.7	25
1053	CRISPRi-based radiation modifier screen identifies long non-coding RNA therapeutic ta Genome Biology, 2020, 21, 83.	rgets in glioma.	3.8	76
1054	CRISPR Interference–Potential Application in Retinal Disease. International Journal of Sciences, 2020, 21, 2329.	Molecular	1.8	22
1055	Second Generation Genome Editing Technologies in Drug Discovery. , 2020, , 213-242			0
1056	Targeting cancer epigenetics with CRISPR-dCAS9: Principles and prospects. Methods, 2	2021, 187, 77-91.	1.9	16
1057	CRISPR/Cas9 for the treatment of haematological diseases: a journey from bacteria to British Journal of Haematology, 2021, 192, 33-49.	the bedside.	1.2	4
1058	Isolating live cell clones from barcoded populations using CRISPRa-inducible reporters. Biotechnology, 2021, 39, 174-178.	Nature	9.4	63
1059	Technologies for targeting DNA methylation modifications: Basic mechanism and pote in cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188454.	ntial application	3.3	23
1060	Revisiting gene delivery to the brain: silencing and editing. Biomaterials Science, 2021,	9, 1065-1087.	2.6	14
1061	Transformative Network Modeling of Multi-omics Data Reveals Detailed Circuits, Key R Potential Therapeutics for Alzheimer's Disease. Neuron, 2021, 109, 257-272.e14.	egulators, and	3.8	108
1062	Machine learning for metabolic engineering: A review. Metabolic Engineering, 2021, 63	3, 34-60.	3.6	135
1063	Repeat RNA expansion disorders of the nervous system: post-transcriptional mechanis therapeutic strategies. Critical Reviews in Biochemistry and Molecular Biology, 2021, 5		2.3	20
1064	Lipid nanoparticles loaded with ribonucleoprotein–oligonucleotide complexes synthemicrofluidic device exhibit robust genome editing and hepatitis B virus inhibition. Journ Controlled Release, 2021, 330, 61-71.	esized using a al of	4.8	54
1066	Promoter-interacting expression quantitative trait loci are enriched for functional gene Nature Genetics, 2021, 53, 110-119.	tic variants.	9.4	62
1067	CRISPR-based metabolic pathway engineering. Metabolic Engineering, 2021, 63, 148-1	59.	3.6	24

#	Article	IF	CITATIONS
1068	Transcriptional enhancers: from prediction to functional assessment on a genome-wide scale. Genome, 2021, 64, 426-448.	0.9	12
1069	Massively parallel kinetic profiling of natural and engineered CRISPR nucleases. Nature Biotechnology, 2021, 39, 84-93.	9.4	80
1070	CRISPR Guide RNA Design. Methods in Molecular Biology, 2021, , .	0.4	2
1071	Strategies to Study the Functions of Pseudogenes in Mouse Models of Cancer. Methods in Molecular Biology, 2021, 2324, 287-304.	0.4	1
1073	Functional Genomics Approaches to Elucidate Vulnerabilities of Intrinsic and Acquired Chemotherapy Resistance. Cells, 2021, 10, 260.	1.8	4
1074	CRISPR/Cas9 in epigenetics studies of health and disease. Progress in Molecular Biology and Translational Science, 2021, 181, 309-343.	0.9	6
1075	Functional genomics of psychiatric disease risk using genome engineering. , 2021, , 711-734.		0
1076	Development of Hostâ€Orthogonal Genetic Systems for Synthetic Biology. Advanced Biology, 2021, 5, 2000252.	1.4	7
1078	CRISPR–Cas systems in bioactive peptide research. , 2021, , 285-307.		0
1079	Identification of Drug Resistance Genes Using a Pooled Lentiviral CRISPR/Cas9 Screening Approach. Methods in Molecular Biology, 2021, 2381, 227-242.	0.4	5
1080	CRISPR genome engineering for retinal diseases. Progress in Molecular Biology and Translational Science, 2021, 182, 29-79.	0.9	13
1081	New Technologies to Study Functional Genomics of Age-Related Macular Degeneration. Frontiers in Cell and Developmental Biology, 2020, 8, 604220.	1.8	10
1082	Alternative types of editing. , 2021, , 123-143.		1
1083	Fungi endophytes for biofactory of secondary metabolites: Genomics and metabolism. , 2021, , 1-21.		2
1085	CRISPR-Cas9 in cancer therapeutics. Progress in Molecular Biology and Translational Science, 2021, 181, 129-163.	0.9	2
1086	Strategies for site-specific recombination with high efficiency and precise spatiotemporal resolution. Journal of Biological Chemistry, 2021, 296, 100509.	1.6	38
1087	Genome editing for plant research and crop improvement. Journal of Integrative Plant Biology, 2021, 63, 3-33.	4.1	70
1088	Using CRISPR-Cas9-based genome engineering tools in Drosophila melanogaster. Progress in Molecular Biology and Translational Science, 2021, 180, 85-121.	0.9	1

		_	
Citati	ON		DT
CHAH		REPU	I N

#	Article	IF	CITATIONS
1089	Large remodeling of the Myc-induced cell surface proteome in B cells and prostate cells creates new opportunities for immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	8
1090	Reprogramming translation for gene therapy. Progress in Molecular Biology and Translational Science, 2021, 182, 439-476.	0.9	5
1091	Levels of sgRNA as a Major Factor Affecting CRISPRi Knockdown Efficiency in K562 Cells. Molecular Biology, 2021, 55, 75-82.	0.4	1
1092	Targeted genome editing. , 2021, , 75-89.		7
1093	Genome Editing Technologies for Plant Improvement: Advances, Applications and Challenges. , 2021, , 213-240.		0
1094	Epidermal progenitors suppress GRHL3-mediated differentiation through intronic polyadenylation promoted by CPSF-HNRNPA3 collaboration. Nature Communications, 2021, 12, 448.	5.8	14
1095	CRISPR/Cas9 technologies to manipulate human induced pluripotent stem cells. , 2021, , 249-287.		0
1096	CRISPR technologies and the search for the PAM-free nuclease. Nature Communications, 2021, 12, 555.	5.8	148
1097	Nanobody-mediated control of gene expression and epigenetic memory. Nature Communications, 2021, 12, 537.	5.8	25
1098	Genetic transformation methods and advancement of CRISPR/Cas9 technology in wheat. , 2021, , 253-275.		0
1099	Guide-target mismatch effects on dCas9–sgRNA binding activity in living bacterial cells. Nucleic Acids Research, 2021, 49, 1263-1277.	6.5	16
1100	Applications of CRISPR/Cas Beyond Simple Traits in Crops. , 2021, , 231-260.		0
1101	CRISPR/dCas system as the modulator of gene expression. Progress in Molecular Biology and Translational Science, 2021, 178, 99-122.	0.9	10
1102	CRISPRi screens reveal genes modulating yeast growth in lignocellulose hydrolysate. Biotechnology for Biofuels, 2021, 14, 41.	6.2	15
1105	A Simple and Efficient Method to Generate Gene-Knockout and Transgenic Cell Lines. DNA and Cell Biology, 2021, 40, 239-246.	0.9	0
1106	RSPO4-CRISPR alleviates liver injury and restores gut microbiota in a rat model of liver fibrosis. Communications Biology, 2021, 4, 230.	2.0	15
1107	Genetic Mechanisms Underlying Cortical Evolution in Mammals. Frontiers in Cell and Developmental Biology, 2021, 9, 591017.	1.8	15
1108	Applications of CRISPR/Cas9 in the Synthesis of Secondary Metabolites in Filamentous Fungi. Frontiers in Microbiology, 2021, 12, 638096.	1.5	42

#	Article	IF	CITATIONS
1109	Evolving AAV-delivered therapeutics towards ultimate cures. Journal of Molecular Medicine, 2021, 99, 593-617.	1.7	41
1110	Understanding How Genetic Mutations Collaborate with Genomic Instability in Cancer. Cells, 2021, 10, 342.	1.8	5
1112	AAV-Mediated CRISPRi and RNAi Based Gene Silencing in Mouse Hippocampal Neurons. Cells, 2021, 10, 324.	1.8	5
1113	Evaluating Capture Sequence Performance for Single-Cell CRISPR Activation Experiments. ACS Synthetic Biology, 2021, 10, 640-645.	1.9	3
1114	Imaging-based screens of pool-synthesized cell libraries. Nature Methods, 2021, 18, 358-365.	9.0	15
1116	Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts. Science, 2021, 371, .	6.0	166
1118	Baboon Envelope Pseudotyped "Nanoblades―Carrying Cas9/gRNA Complexes Allow Efficient Genome Editing in Human T, B, and CD34+ Cells and Knock-in of AAV6-Encoded Donor DNA in CD34+ Cells. Frontiers in Genome Editing, 2021, 3, 604371.	2.7	25
1119	Identification of a long non-coding RNA regulator of liver carcinoma cell survival. Cell Death and Disease, 2021, 12, 178.	2.7	4
1120	Implementation of dCas9-mediated CRISPRi in the fission yeast <i>Schizosaccharomyces pombe</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	10
1121	CRISPR-cas9 genome editing delivery systems for targeted cancer therapy. Life Sciences, 2021, 267, 118969.	2.0	31
1122	A Curious Case for Development of Kinase Inhibitors as Antigiardiasis Treatments Using Advanced Drug Techniques. ACS Infectious Diseases, 2021, 7, 943-947.	1.8	4
1123	The role of hypoxia-induced long noncoding RNAs (IncRNAs) in tumorigenesis and metastasis. Biomedical Journal, 2021, 44, 521-533.	1.4	16
1124	Synthetic biology-driven microbial production of folates: Advances and perspectives. Bioresource Technology, 2021, 324, 124624.	4.8	4
1125	CRISPR/Cas: Advances, Limitations, and Applications for Precision Cancer Research. Frontiers in Medicine, 2021, 8, 649896.	1.2	48
1126	Nonâ€ʿcoding RNAs (miRNAs and IncRNAs) and their roles in lymphogenesis in all types of lymphomas and lymphoid malignancies (Review). Oncology Letters, 2021, 21, 393.	0.8	2
1127	Epigenetic editing: Dissecting chromatin function in context. BioEssays, 2021, 43, e2000316.	1.2	22
1129	Nuclease-Deficient Clustered Regularly Interspaced Short Palindromic Repeat-Based Approaches for In Vitro and In Vivo Gene Activation. Human Gene Therapy, 2021, 32, 260-274.	1.4	2
1131	Long-lasting analgesia via targeted in situ repression of Na _V 1.7 in mice. Science Translational Medicine, 2021, 13, .	5.8	56

#	Article	IF	CITATIONS
1132	A genome-scale CRISPR interference guide library enables comprehensive phenotypic profiling in yeast. BMC Genomics, 2021, 22, 205.	1.2	22
1133	Application of CRISPR/Cas System in the Metabolic Engineering of Small Molecules. Molecular Biotechnology, 2021, 63, 459-476.	1.3	6
1135	An interdependent network of functional enhancers regulates transcription and EZH2 loading at the INK4a/ARF locus. Cell Reports, 2021, 34, 108898.	2.9	19
1137	eIF2B conformation and assembly state regulate the integrated stress response. ELife, 2021, 10, .	2.8	46
1138	Selective Activation of CNS and Reference PPARGC1A Promoters Is Associated with Distinct Gene Programs Relevant for Neurodegenerative Diseases. International Journal of Molecular Sciences, 2021, 22, 3296.	1.8	5
1139	Surface Proteomics Reveals CD72 as a Target for <i>In Vitro</i> –Evolved Nanobody-Based CAR-T Cells in <i>KMT2A/MLL1</i> -Rearranged B-ALL. Cancer Discovery, 2021, 11, 2032-2049.	7.7	37
1141	Neuronal enhancers are hotspots for DNA single-strand break repair. Nature, 2021, 593, 440-444.	13.7	126
1142	Harnessing the central dogma for stringent multi-level control of gene expression. Nature Communications, 2021, 12, 1738.	5.8	26
1143	Expanding the Toolbox and Targets for Gene Editing. Trends in Molecular Medicine, 2021, 27, 203-206.	3.5	4
1144	An In Vivo Proposal of Cell Computing Inspired by Membrane Computing. Processes, 2021, 9, 511.	1.3	3
1145	Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination. Molecular Cell, 2021, 81, 1084-1099.e6.	4.5	57
1146	Editing GWAS: experimental approaches to dissect and exploit disease-associated genetic variation. Genome Medicine, 2021, 13, 41.	3.6	32
1147	CRISPRi screens reveal a DNA methylation-mediated 3D genome dependent causal mechanism in prostate cancer. Nature Communications, 2021, 12, 1781.	5.8	32
1149	Functional annotation of IncRNA in high-throughput screening. Essays in Biochemistry, 2021, 65, 761-773.	2.1	14
1150	Perspectives for epigenetic editing in crops. Transgenic Research, 2021, 30, 381-400.	1.3	13
1151	Emerging Roles of Long Non-coding RNAs in Uterine Leiomyoma Pathogenesis: a Review. Reproductive Sciences, 2022, 29, 1086-1101.	1.1	9
1152	Dead Cas9–sgRNA Complex Shelters Vulnerable DNA Restriction Enzyme Sites from Cleavage for Cloning Applications. CRISPR Journal, 2021, 4, 275-289.	1.4	7
1154	Using CRISPR to understand and manipulate gene regulation. Development (Cambridge), 2021, 148, .	1.2	9

#	Article	IF	CITATIONS
1155	Role of IncRNAs in the Development of Ischemic Stroke and Their Therapeutic Potential. Molecular Neurobiology, 2021, 58, 3712-3728.	1.9	18
1156	CRISPR Interference Efficiently Silences Latent and Lytic Viral Genes in Kaposi's Sarcoma-Associated Herpesvirus-Infected Cells. Viruses, 2021, 13, 783.	1.5	6
1157	Frontiers of CRISPR-Cas9 for Cancer Research and Therapy. Journal of Exploratory Research in Pharmacology, 2021, 000, 000-000.	0.2	1
1158	SIGNAL: A web-based iterative analysis platform integrating pathway and network approaches optimizes hit selection from genome-scale assays. Cell Systems, 2021, 12, 338-352.e5.	2.9	7
1160	The World of Stable Ribonucleoproteins and Its Mapping With Grad-Seq and Related Approaches. Frontiers in Molecular Biosciences, 2021, 8, 661448.	1.6	18
1161	Dynamic post-transcriptional regulation by Mrn1 links cell wall homeostasis to mitochondrial structure and function. PLoS Genetics, 2021, 17, e1009521.	1.5	7
1162	CRISPR/dCas-mediated transcriptional and epigenetic regulation in plants. Current Opinion in Plant Biology, 2021, 60, 101980.	3.5	50
1163	CRISPER/CAS System, a Novel Tool of Targeted Therapy of Drug-resistant Lung Cancer. Advanced Pharmaceutical Bulletin, 2021, , .	0.6	4
1164	High-throughput functional variant screens via in vivo production of single-stranded DNA. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	53
1167	STING enhances cell death through regulation of reactive oxygen species and DNA damage. Nature Communications, 2021, 12, 2327.	5.8	78
1168	Here to stay: Writing lasting epigenetic memories. Cell, 2021, 184, 2281-2283.	13.5	3
1169	Identification of X-chromosomal genes that drive sex differences in embryonic stem cells through a hierarchical CRISPR screening approach. Genome Biology, 2021, 22, 110.	3.8	28
1170	CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement. Journal of Zhejiang University: Science B, 2021, 22, 253-284.	1.3	97
1171	Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell, 2021, 184, 2503-2519.e17.	13.5	312
1173	Long non-coding RNAs in recurrent ovarian cancer: Theranostic perspectives. Cancer Letters, 2021, 502, 97-107.	3.2	14
1174	Integrating Biomaterials and Genome Editing Approaches to Advance Biomedical Science. Annual Review of Biomedical Engineering, 2021, 23, 493-516.	5.7	4
1175	CRISPR Screens in Toxicology Research: An Overview. Current Protocols, 2021, 1, e136.	1.3	5
1178	<i>In vivo</i> CRISPR screening for novel noncoding RNA functional targets in glioblastoma models. Journal of Neuroscience Research, 2021, 99, 2029-2045.	1.3	6

ARTICLE IF CITATIONS DNA and the Administrative State., 2021, , 287-329. 1179 0 The application of genome editing technology in fish. Marine Life Science and Technology, 2021, 3, 1.8 9 326-346. Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nature 1182 170 7.1 Neuroscience, 2021, 24, 1020-1034. Genome-wide CRISPRi screening identifies OCIAD1 as a prohibitin client and regulatory determinant of mitochondrial Complex III assembly in human cells. ELife, 2021, 10, . High-throughput single-cell chromatin accessibility CRISPR screens enable unbiased identification of 1184 5.8 73 regulatory networks in cancer. Nature Communications, 2021, 12, 2969. CRISPR-Cas system: a precise tool for plant genome editing. Nucleus (India), 0, , 1. Exploring liver cancer biology through functional genetic screens. Nature Reviews Gastroenterology 1186 8.2 31 and Hepatology, 2021, 18, 690-704. Development of synthetic biology tools to engineer Pichia pastoris as a chassis for the production of natural products. Synthetic and Systems Biotechnology, 2021, 6, 110-119. 1188 1.8 46 Timing without coding: How do long non-coding RNAs regulate circadian rhythms?. Seminars in Cell 1189 2.3 11 and Developmental Biology, 2022, 126, 79-86. CRISPR-Cas System: The Powerful Modulator of Accessory Genomes in Prokaryotes. Microbial 1.1 Physiology, 2022, 32, 2-17. The Inducible lac Operator-Repressor System Is Functional in Zebrafish Cells. Frontiers in Genetics, 1191 1.1 0 2021, 12, 683394. Genome engineering and disease modeling <i>via</i> programmable nucleases for insulin gene therapy; promises of CRISPR/Cas9 technology. World Journal of Stem Cells, 2021, 13, 485-502. 1.3 An extensive review to facilitate understanding of CRISPR technology as a gene editing possibility for 1195 1.0 9 enhanced therapeutic applications. Gene, 2021, 785, 145615. LncRNAs associated with glioblastoma: From transcriptional noise to novel regulators with a 2.3 promising role in therapeutics. Molecular Therapy - Nucleic Acids, 2021, 24, 728-742. Efficient C•G-to-G•C base editors developed using CRISPRi screens, target-library analysis, and machine 1197 9.4 118 learning. Nature Biotechnology, 2021, 39, 1414-1425. BACH1 Binding Links the Genetic Risk for Severe Periodontitis with <i>ST8SIA1</i>. Journal of Dental Research, 2022, 101, 93-101. Computational pipeline for designing guide RNAs for mismatch-CRISPRi. STAR Protocols, 2021, 2, 100521. 1200 0.5 9 CRISPR–Act3.0 for highly efficient multiplexed gene activation in plants. Nature Plants, 2021, 7, 942-953. 99

		CITATION REPORT		
#	Article		IF	CITATIONS
1202	Exploiting DNA Endonucleases to Advance Mechanisms of DNA Repair. Biology, 2021,	10, 530.	1.3	7
1203	Diversification of the CRISPR Toolbox: Applications of CRISPR-Cas Systems Beyond Ger CRISPR Journal, 2021, 4, 400-415.	nome Editing.	1.4	5
1204	Revealing molecular pathways for cancer cell fitness through a genetic screen of the ca translatome. Cell Reports, 2021, 35, 109321.	ancer	2.9	8
1205	An Overview of the Role of Long Non-Coding RNAs in Human Choriocarcinoma. Interna of Molecular Sciences, 2021, 22, 6506.	ational Journal	1.8	8
1206	CRISPR screens in physiologic medium reveal conditionally essential genes in human co Metabolism, 2021, 33, 1248-1263.e9.	ells. Cell	7.2	77
1207	Diagnosis and Intervention of Genetic Hearing Loss. Journal of Clinical Otolaryngology	, 2021, 32, 5-19.	0.1	0
1208	Identification of potential chemical compounds enhancing generation of enucleated co immortalized human erythroid cell lines. Communications Biology, 2021, 4, 677.	ells from	2.0	7
1209	Spatiotemporal control of CRISPR/Cas9 gene editing. Signal Transduction and Targete 6, 238.	d Therapy, 2021,	7.1	73
1210	Challenges in delivery systems for CRISPR-based genome editing and opportunities of Biomedical Engineering Letters, 2021, 11, 217-233.	nanomedicine.	2.1	11
1211	A metabolic CRISPR-Cas9 screen in Chinese hamster ovary cells identifies glutamine-se Metabolic Engineering, 2021, 66, 114-122.	nsitive genes.	3.6	17
1212	Portable bacterial CRISPR transcriptional activation enables metabolic engineering in P putida. Metabolic Engineering, 2021, 66, 283-295.	seudomonas	3.6	30
1213	dCas9 techniques for transcriptional repression in mammalian cells: Progress, applicat challenges. BioEssays, 2021, 43, 2100086.	ons and	1.2	3
1214	Extracellular vesicles from neurons promote neural induction of stem cells through cyc Journal of Cell Biology, 2021, 220, .	lin D1.	2.3	20
1215	Efficient multiplexed gene regulation in <i>Saccharomyces cerevisiae</i> using dCas12 Research, 2021, 49, 7775-7790.	a. Nucleic Acids	6.5	24
1216	Synaptotagmin-7–mediated activation of spontaneous NMDAR currents is disrupted susceptibility variants. PLoS Biology, 2021, 19, e3001323.	l in bipolar disorder	2.6	3
1217	Direct characterization of cis-regulatory elements and functional dissection of complex associations using HCR–FlowFISH. Nature Genetics, 2021, 53, 1166-1176.	k genetic	9.4	36
1218	Identifying oligodendrocyte enhancers governing <i>Plp1</i> expression. Human Mole 2021, 30, 2225-2239.	cular Genetics,	1.4	14
1219	An integrated functional and clinical genomics approach reveals genes driving aggress prostate cancer. Nature Communications, 2021, 12, 4601.	ive metastatic	5.8	18

#	Article	IF	CITATIONS
1220	Durable CRISPR-Based Epigenetic Silencing. Biodesign Research, 2021, 2021, .	0.8	14
1221	From Junk to Function: LncRNAs in CNS Health and Disease. Frontiers in Molecular Neuroscience, 2021, 14, 714768.	1.4	27
1222	Inducible CRISPRa screen identifies putative enhancers. Journal of Genetics and Genomics, 2021, 48, 917-927.	1.7	13
1223	Methodologies for Measuring Protein Trafficking across Cellular Membranes. ChemPlusChem, 2021, 86, 1397-1415.	1.3	4
1226	Targeted regulation of transcription in primary cells using CRISPRa and CRISPRi. Genome Research, 2021, 31, 2120-2130.	2.4	29
1227	Cost-Effective Mapping of Genetic Interactions in Mammalian Cells. Frontiers in Genetics, 2021, 12, 703738.	1.1	1
1228	Approaches to Enhance Precise CRISPR/Cas9-Mediated Genome Editing. International Journal of Molecular Sciences, 2021, 22, 8571.	1.8	9
1230	CRISPR-Mediated Gene Activation (CRISPRa) of pp38/pp24 Orchestrates Events Triggering Lytic Infection in Marek's Disease Virus-Transformed Cell Lines. Microorganisms, 2021, 9, 1681.	1.6	5
1231	Augmenting and directing long-range CRISPR-mediated activation in human cells. Nature Methods, 2021, 18, 1075-1081.	9.0	17
1232	Establishment of two homozygous CRISPR interference (CRISPRi) knock-in human induced pluripotent stem cell (hiPSC) lines for titratable endogenous gene repression. Stem Cell Research, 2021, 55, 102473.	0.3	3
1233	Forward and Reverse Genetics of B Cell Malignancies: From Insertional Mutagenesis to CRISPR-Cas. Frontiers in Immunology, 2021, 12, 670280.	2.2	1
1235	Bi-directional gene activation and repression promote ASC differentiation and enhance bone healing in osteoporotic rats. Molecular Therapy, 2022, 30, 92-104.	3.7	5
1239	Harnessing model organism genomics to underpin the machine learning-based prediction of essential genes in eukaryotes – Biotechnological implications. Biotechnology Advances, 2022, 54, 107822.	6.0	9
1240	Genome-wide gene expression tuning reveals diverse vulnerabilities of M.Âtuberculosis. Cell, 2021, 184, 4579-4592.e24.	13.5	131
1241	Applications of the versatile <scp>CRISPR as13 RNA</scp> targeting system. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1694.	3.2	26
1242	CRAGE-CRISPR facilitates rapid activation of secondary metabolite biosynthetic gene clusters in bacteria. Cell Chemical Biology, 2022, 29, 696-710.e4.	2.5	15
1243	Deficiency of the Lysosomal Protein CLN5 Alters Lysosomal Function and Movement. Biomolecules, 2021, 11, 1412.	1.8	13
1244	CRISPR-Cas Gene Perturbation and Editing in Human Induced Pluripotent Stem Cells. CRISPR Journal, 2021, 4, 634-655.	1.4	5

ARTICLE IF CITATIONS # CRISPR-based peptide library display and programmable microarray self-assembly for rapid quantitative 1246 4.5 13 protein binding assays. Molecular Cell, 2021, 81, 3650-3658.e5. A new era in functional genomics screens. Nature Reviews Genetics, 2022, 23, 89-103. 1247 104 A simple and rapid method for enzymatic synthesis of CRISPR-Cas9 sgRNA libraries. Nucleic Acids 1248 6.5 4 Research, 2021, 49, e131-e131. Enhanced Cas12a multi-gene regulation using a CRISPR array separator. ELife, 2021, 10, . 1249 KRAS-related long noncoding RNAs in human cancers. Cancer Gene Therapy, 2022, 29, 418-427. 1250 2.2 8 A CRISPR knockout screen reveals new regulators of canonical Wnt signaling. Oncogenesis, 2021, 10, 2.1 63 1253 InÂvivo somatic cell base editing and prime editing. Molecular Therapy, 2021, 29, 3107-3124. 3.7 87 ERα is an RNA-binding protein sustaining tumor cell survival and drug resistance. Cell, 2021, 184, 1254 13.5 76 5215-5229.e17. Application of CHyMErA Cas9-Cas12a combinatorial genome-editing platform for genetic interaction 1255 5.5 8 mapping and gene fragment deletion screening. Nature Protocols, 2021, 16, 4722-4765. The adaptive immune system is a major driver of selection for tumor suppressor gene inactivation. 6.0 83 Science, 2021, 373, 1327-1335. Using CRISPR Interference as a Therapeutic Approach to Treat TGFÎ²2-Induced Ocular Hypertension and 1257 8 Glaucoma., 2021, 62, 7. Roadmap for the use of base editors to decipher drug mechanism of action. PLoS ONE, 2021, 16, 1259 1.1 e0257537. Optical Control of Base Editing and Transcription through Lightâ€Activated Guide RNA. 1260 1.5 8 ChemPhotoChem, 0, , . p113 isoform encoded by CUX1 circular RNA drives tumor progression via facilitating ZRF1/BRD4 transactivation. Moleculár Cancer, 2021, 20, 123. Lipid- and polymer-based nanoparticle systems for the delivery of CRISPR/Cas9. Journal of Drug 1264 19 1.4 Delivery Science and Technology, 2021, 65, 102728. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy 86 of cancer. Molecular Cancer, 2021, 20, 126. Gene-Targeted, CREB-Mediated Induction of î"FosB Controls Distinct Downstream Transcriptional 1266 0.7 17 Patterns Within D1 and D2 Medium Spiny Neurons. Biological Psychiatry, 2021, 90, 540-549. Of form and function: Early cardiac morphogenesis across classical and emerging model systems. 2.3 Seminars in Cell and Developmental Biology, 2021, 118, 107-118.

#	Article	IF	CITATIONS
1268	Toward the Treatment of Inherited Diseases of the Retina Using CRISPR-Based Gene Editing. Frontiers in Medicine, 2021, 8, 698521.	1.2	6
1269	Genetical engineering for NK and T cell immunotherapy with CRISPR/Cas9 technology: Implications and challenges. Cellular Immunology, 2021, 369, 104436.	1.4	5
1270	A CRISPR/dCas9-assisted system to clone toxic genes in Escherichia coli. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129994.	1.1	0
1271	Moving from in vitro to in vivo CRISPR screens. Gene and Genome Editing, 2021, 2, 100008.	1.3	25
1272	Fourth generation biofuel from genetically modified algal biomass: Challenges and future directions. Chemosphere, 2021, 285, 131535.	4.2	57
1273	Towards a CRISPeR understanding of homologous recombination with high-throughput functional genomics. Current Opinion in Genetics and Development, 2021, 71, 171-181.	1.5	6
1274	The African turquoise killifish (Nothobranchius furzeri): biology and research applications. , 2022, , 245-287.		15
1275	CRISPR/Cas-Based Techniques in Plants. , 2021, , 37-61.		3
1276	CRISPR/Cas Technologies Applied to Pseudogenes. Methods in Molecular Biology, 2021, 2324, 265-284.	0.4	0
1277	In Vivo Silencing/Overexpression of IncRNAs by CRISPR/Cas System. Methods in Molecular Biology, 2021, 2348, 205-220.	0.4	3
1278	CRISPR Interference (CRISPRi) and CRISPR Activation (CRISPRa) to Explore the Oncogenic IncRNA Network. Methods in Molecular Biology, 2021, 2348, 189-204.	0.4	12
1280	Genome-wide CRISPR screening reveals nucleotide synthesis negatively regulates autophagy. Journal of Biological Chemistry, 2021, 296, 100780.	1.6	9
1281	High-content imaging-based pooled CRISPR screens in mammalian cells. Journal of Cell Biology, 2021, 220, .	2.3	53
1282	Targeted attenuation of elevated histone marks at <i>SNCA</i> alleviates αâ€synuclein in Parkinson's disease. EMBO Molecular Medicine, 2021, 13, e12188.	3.3	43
1283	Elucidation of the BMI1 interactome identifies novel regulatory roles in glioblastoma. NAR Cancer, 2021, 3, zcab009.	1.6	4
1284	CRISPR interference and its applications. Progress in Molecular Biology and Translational Science, 2021, 180, 123-140.	0.9	8
1285	CRISPR/Cas-mediated genome editing for improved stress tolerance in plants. , 2021, , 259-291.		6
1286	Image-based pooled whole-genome CRISPRi screening for subcellular phenotypes. Journal of Cell Biology, 2021, 220, .	2.3	48

#	Article	IF	CITATIONS
1287	Genetic manipulation of pathogenic Leptospira: CRISPR interference (CRISPRi)-mediated gene silencing and rapid mutant recovery at 37°C. Scientific Reports, 2021, 11, 1768.	1.6	27
1288	Genome-Wide CRISPRi/a Screening in an In Vitro Coculture Assay of Human Immune Cells with Tumor Cells. Methods in Molecular Biology, 2020, 2097, 231-252.	0.4	2
1289	Genome-Wide CRISPR Off-Target DNA Break Detection by the BLISS Method. Methods in Molecular Biology, 2021, 2162, 261-281.	0.4	4
1290	Genome-Scale Perturbation of Long Noncoding RNA Expression Using CRISPR Interference. Methods in Molecular Biology, 2021, 2254, 323-338.	0.4	5
1291	CRISPR-Cas RNA Scaffolds for Transcriptional Programming in Yeast. Methods in Molecular Biology, 2017, 1632, 341-357.	0.4	3
1292	CRISPR/Cas9 Editing in Induced Pluripotent Stem Cells: A Way Forward for Treating Cystic Fibrosis?. , 2019, , 153-178.		2
1293	DivergingÂRNPs: Toward Understanding IncRNA-Protein Interactions and Functions. Advances in Experimental Medicine and Biology, 2019, 1203, 285-312.	0.8	14
1294	Repurposing CRISPR System for Transcriptional Activation. Advances in Experimental Medicine and Biology, 2017, 983, 147-157.	0.8	25
1295	Application of CRISPR-Cas9 Screening Technologies to Study Mitochondrial Biology in Healthy and Disease States. Advances in Experimental Medicine and Biology, 2019, 1158, 269-277.	0.8	2
1296	CRISPR Applications in Plant Genetic Engineering and Biotechnology. , 2019, , 429-459.		3
1297	MicroRNAs (miRNAs) and Long Non-Coding RNAs (IncRNAs) as New Tools for Cancer Therapy: First Steps from Bench to Bedside. Targeted Oncology, 2020, 15, 261-278.	1.7	183
1298	CRISPR interference-mediated noggin knockdown promotes BMP2-induced osteogenesis and calvarial bone healing. Biomaterials, 2020, 252, 120094.	5.7	32
1299	Functional Genomics for Cancer Drug Target Discovery. Cancer Cell, 2020, 38, 31-43.	7.7	46
1300	CRISPR screens in the era of microbiomes. Current Opinion in Microbiology, 2020, 57, 70-77.	2.3	15
1301	Am I ready for CRISPR? A user's guide to genetic screens. Nature Reviews Genetics, 2018, 19, 67-80.	7.7	325
1302	Rewiring of endogenous signaling pathways to genomic targets for therapeutic cell reprogramming. Nature Communications, 2020, 11, 608.	5.8	32
1303	Gene editing and CRISPR in the clinic: current and future perspectives. Bioscience Reports, 2020, 40, .	1.1	122
1304	CRISPR-based gene expression control for synthetic gene circuits. Biochemical Society Transactions, 2020, 48, 1979-1993.	1.6	30

#	Article	IF	Citations
т 1305	A simplified strategy for titrating gene expression reveals new relationships between genotype,	6.5	14
1305	environment, and bacterial growth. Nucleic Acids Research, 2021, 49, e6-e6.	0.0	14
1361	Gene therapy in wound healing using nanotechnology. Wound Repair and Regeneration, 2021, 29, 225-239.	1.5	11
1362	DNA methyltransferase inhibition overcomes diphthamide pathway deficiencies underlying CD123-targeted treatment resistance. Journal of Clinical Investigation, 2019, 129, 5005-5019.	3.9	59
1363	CRISPR/Cas: a potential gene-editing tool in the nervous system. Cell Regeneration, 2020, 9, 12.	1.1	8
1364	Recent advances in lineage differentiation from stem cells: hurdles and opportunities?. F1000Research, 2018, 7, 220.	0.8	16
1365	Evaluation of RNAi and CRISPR technologies by large-scale gene expression profiling in the Connectivity Map. PLoS Biology, 2017, 15, e2003213.	2.6	136
1366	Generation and validation of versatile inducible CRISPRi embryonic stem cell and mouse model. PLoS Biology, 2020, 18, e3000749.	2.6	12
1367	Wnt/Tcf1 pathway restricts embryonic stem cell cycle through activation of the Ink4/Arf locus. PLoS Genetics, 2017, 13, e1006682.	1.5	43
1368	A High-Throughput Strategy for Dissecting Mammalian Genetic Interactions. PLoS ONE, 2016, 11, e0167617.	1.1	4
1369	Tailor-made gene silencing of Staphylococcus aureus clinical isolates by CRISPR interference. PLoS ONE, 2018, 13, e0185987.	1.1	28
1370	CRISPR/Cas-based customization of pooled CRISPR libraries. PLoS ONE, 2018, 13, e0199473.	1.1	6
1371	Bacterial genome editing by coupling Cre-lox and CRISPR-Cas9 systems. PLoS ONE, 2020, 15, e0241867.	1.1	7
1372	Identification of unrecognized host factors promoting HIV-1 latency. PLoS Pathogens, 2020, 16, e1009055.	2.1	16
1373	The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models. Zoological Research, 2016, 37, 191-204.	0.6	13
1374	Generation of genetically modified mice using CRISPR/Cas9 and haploid embryonic stem cell systems. Zoological Research, 2016, 37, 205-13.	0.6	9
1376	Narrowing the focus: a toolkit to systematically connect oncogenic signaling pathways with cancer phenotypes. Genes and Cancer, 2016, 7, 218-228.	0.6	5
1377	TUBB3 overexpression has a negligible effect on the sensitivity to taxol in cultured cell lines. Oncotarget, 2017, 8, 71536-71547.	0.8	17
1378	Targeted silencing of SOX2 by an artificial transcription factor showed antitumor effect in lung and esophageal squamous cell carcinoma. Oncotarget, 2017, 8, 103063-103076.	0.8	11

#	Article	IF	CITATIONS
1379	Drugs in a Curative Combination Therapy for Lymphoma Exhibit Low Cross-Resistance But Not Pharmacological Synergy. SSRN Electronic Journal, 0, , .	0.4	3
1380	Engineered Probiotic and Prebiotic Nutraceutical Supplementations in Combating Non-communicable Disorders: A Review. Current Pharmaceutical Biotechnology, 2022, 23, 72-97.	0.9	3
1382	dCas9: A Versatile Tool for Epigenome Editing. Current Issues in Molecular Biology, 2018, 26, 15-32.	1.0	70
1383	multicrispr: gRNA design for prime editing and parallel targeting of thousands of targets. Life Science Alliance, 2020, 3, e202000757.	1.3	21
1384	The CRISPR/Cas9 system for gene editing and its potential application in pain research. Translational Perioperative and Pain Medicine, 2016, 3, .	0.0	6
1385	Genetic and epigenetic editing in nervous system. Dialogues in Clinical Neuroscience, 2019, 21, 359-368.	1.8	7
1386	Up-Regulated Expression of Pro-Apoptotic Long Noncoding RNA lincRNA-p21 with Enhanced Cell Apoptosis in Lupus Nephritis. International Journal of Molecular Sciences, 2021, 22, 301.	1.8	11
1387	Diagnostic and prognostic potential of tissue and circulating long non-coding RNAs in colorectal tumors. World Journal of Gastroenterology, 2019, 25, 5026-5048.	1.4	81
1388	An Overview Of The Crispr-Based Genomic- And Epigenome-Editing System: Function, Applications, And Challenges. Advanced Biomedical Research, 2019, 8, 49.	0.2	5
1389	A forward genetic screen reveals novel independent regulators of ULBP1, an activating ligand for natural killer cells. ELife, 2015, 4, .	2.8	36
1390	Nucleosomes impede Cas9 access to DNA in vivo and in vitro. ELife, 2016, 5, .	2.8	349
1391	The anticancer natural product ophiobolin A induces cytotoxicity by covalent modification of phosphatidylethanolamine. ELife, 2016, 5, .	2.8	44
1392	Rewiring MAP kinases in Saccharomyces cerevisiae to regulate novel targets through ubiquitination. ELife, 2016, 5, .	2.8	11
1393	Comparative genetic screens in human cells reveal new regulatory mechanisms in WNT signaling. ELife, 2016, 5, .	2.8	49
1394	Pooled genome-wide CRISPR screening for basal and context-specific fitness gene essentiality in Drosophila cells. ELife, 2018, 7, .	2.8	64
1395	Ceapins block the unfolded protein response sensor ATF61 \pm by inducing a neomorphic inter-organelle tether. ELife, 2019, 8, .	2.8	46
1396	Distinct mechanisms of microRNA sorting into cancer cell-derived extracellular vesicle subtypes. ELife, 2019, 8, .	2.8	164
1397	Retro-2 protects cells from ricin toxicity by inhibiting ASNA1-mediated ER targeting and insertion of tail-anchored proteins. ELife, 2019, 8, .	2.8	17

#	Article	IF	CITATIONS
1398	A curative combination cancer therapy achieves high fractional cell killing through low cross-resistance and drug additivity. ELife, 2019, 8, .	2.8	78
1399	Discovery of a molecular glue promoting CDK12-DDB1 interaction to trigger cyclin K degradation. ELife, 2020, 9, .	2.8	114
1400	Simultaneous quantification of mRNA and protein in single cells reveals post-transcriptional effects of genetic variation. ELife, 2020, 9, .	2.8	33
1401	Structural and mechanistic basis of the EMC-dependent biogenesis of distinct transmembrane clients. ELife, 2020, 9, .	2.8	66
1402	CRISPR screening identifies M1AP as a new MYC regulator with a promoter-reporter system. PeerJ, 2020, 8, e9046.	0.9	5
1403	A programmable hierarchical-responsive nanoCRISPR elicits robust activation of endogenous target to treat cancer. Theranostics, 2021, 11, 9833-9846.	4.6	13
1405	Interrogating Mitochondrial Biology and Disease Using CRISPR/Cas9 Gene Editing. Genes, 2021, 12, 1604.	1.0	10
1406	Integrative epigenomic and high-throughput functional enhancer profiling reveals determinants of enhancer heterogeneity in gastric cancer. Genome Medicine, 2021, 13, 158.	3.6	7
1407	Glioblastoma pharmacotherapy: A multifaceted perspective of conventional and emerging treatments (Review). Experimental and Therapeutic Medicine, 2021, 22, 1408.	0.8	16
1409	Functional single-cell genomics of human cytomegalovirus infection. Nature Biotechnology, 2022, 40, 391-401.	9.4	60
1410	CRISPR-Mediated Transcriptional Repression in Toxoplasma gondii. MSphere, 2021, 6, e0047421.	1.3	4
1411	Fine-tuning gene expression for improved biosynthesis of natural products: From transcriptional to post-translational regulation. Biotechnology Advances, 2022, 54, 107853.	6.0	10
1412	A mechanistic view of long noncoding <scp>RNAs</scp> in cancer. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1699.	3.2	24
1413	Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell, 2021, 184, 5635-5652.e29.	13.5	332
1414	CRISPR activation of endogenous genes reprograms fibroblasts into cardiovascular progenitor cells for myocardial infarction therapy. Molecular Therapy, 2022, 30, 54-74.	3.7	22
1416	Current Status and Perspectives on the Application of CRISPR/Cas9 Gene-Editing System to Develop a Low-Gluten, Non-Transgenic Wheat Variety. Foods, 2021, 10, 2351.	1.9	14
1418	Mapping the genetic landscape of DNA double-strand break repair. Cell, 2021, 184, 5653-5669.e25.	13.5	98
1421	Advances in Genome Directional Editing Technologies of CRISPR/Cas9. Hans Journal of Agricultural Sciences, 2014, 04, 142-150.	0.0	0

#	Article	IF	Citations
1423	Genome Editing in Human Pluripotent Stem Cells. Pancreatic Islet Biology, 2016, , 43-67.	0.1	0
1425	Making better CRISPR libraries. ELife, 2016, 5, .	2.8	0
1429	4 CRISPR-Based Genome Engineering in Human Stem Cells. , 2017, , 87-100.		0
1431	Optimizing Crispr Cas9 Genome Editing System:A Review. International Journal of Endorsing Health Science Research (ijehsr), 2017, 5, 48.	0.0	0
1435	Genome Editing with Crispr-Cas9 Systems: Basic Research and Clinical Applications. Indonesian Biomedical Journal, 2017, 9, 1.	0.2	4
1446	Applications of CRSIPR/Cas9 in Cancer Research. Journal of Cancer Science and Research, 2018, 01, .	0.1	0
1462	Current Trends in Biotechnology: From Genome Sequence to Crop Improvement. , 2019, , 91-108.		0
1463	Applications of Genome Engineering/Editing Tools in Plants. , 2019, , 143-165.		1
1465	Construction of Microbial Cell Factories by Systems and Synthetic Biotechnology. , 2019, , 9-43.		1
1466	CRISPR-based Technologies for Genome Engineering: Properties, Current Improvements and Applications in Medicine. RSC Drug Discovery Series, 2019, , 400-433.	0.2	1
1467	One Anti-CRISPR to Rule Them All: Potent Inhibition of Cas9 Homologs Used for Genome Editing. SSRN Electronic Journal, 0, , .	0.4	1
1469	Genomic Resolution of DLX-Orchestrated Transcriptional Circuits Driving Development of Forebrain GABAergic Neurons. SSRN Electronic Journal, 0, , .	0.4	0
1470	An Update on the Applications of CRISPR/Cas9 Technology in Tomato. Energy, Environment, and Sustainability, 2019, , 249-263.	0.6	0
1483	The Synergy between CRISPR and Chemical Engineering. Current Gene Therapy, 2019, 19, 147-171.	0.9	3
1493	Discovery of Zika Virus Dependency and Restriction Factors Using Flow-Based Arrayed CRISPR Screening for Identification of Targets (FACS-IT). Methods in Molecular Biology, 2020, 2142, 215-234.	0.4	1
1494	Evolving Roles of Long Noncoding RNAs. RNA Technologies, 2020, , 59-84.	0.2	1
1497	Novel Approaches to Profile Functional Long Noncoding RNAs Associated with Stem Cell Pluripotency. Current Genomics, 2020, 21, 37-45.	0.7	2
1502	Inhibitory Studies of Tamarindus indica Seed Extract and Fractions on Hematological Activities of Bitis arietans Venom. Journal of Advances in Biology & Biotechnology, 0, , 48-57.	0.2	4

#	Article	IF	CITATIONS
1510	CRISPR approach in environmental chemical screening focusing on population variability. Journal of Toxicological Sciences, 2021, 46, 499-507.	0.7	0
1511	CRISPR/Cas9 in lepidopteran insects: Progress, application and prospects. Journal of Insect Physiology, 2021, 135, 104325.	0.9	29
1512	Establishment of a pig CRISPR/Cas9 knockout library for functional gene screening in pig cells. Biotechnology Journal, 2022, 17, e2100408.	1.8	6
1513	CRISPR Tackles Emerging Viral Pathogens. Viruses, 2021, 13, 2157.	1.5	6
1514	CRISPR/Cas9 Screening to Identify Conditionally Essential Genes in Human Cell Lines. Methods in Molecular Biology, 2022, 2377, 29-42.	0.4	0
1515	An Outlook on Global Regulatory Landscape for Genome-Edited Crops. International Journal of Molecular Sciences, 2021, 22, 11753.	1.8	43
1516	CRISPR/Cas-based Functional Genomic Approaches to Phenotypic Screening. RSC Drug Discovery Series, 2020, , 58-82.	0.2	0
1519	High-Throughput CRISPR Screening Identifies Genes Involved in Macrophage Viability and Inflammatory Pathways. Cell Reports, 2020, 33, 108541.	2.9	25
1522	Computer Designed PRC2 Inhibitor, EBdCas9, Reveals Functional TATA Boxes in Distal Promoter Regions. SSRN Electronic Journal, 0, , .	0.4	0
1524	Application of mouse genetics to human disease: generation and analysis of mouse models. , 2020, , 95-108.		0
1525	Recent Advances in Genetic Engineering Tools for Metabolic Engineering. , 2020, , 93-109.		0
1526	Tumorigenesis-Related Long Noncoding RNAs and Their Targeting as Therapeutic Approach in Cancer. RNA Technologies, 2020, , 277-303.	0.2	0
1527	Tuning the Expression of Long Noncoding RNA Loci with CRISPR Interference. Methods in Molecular Biology, 2020, 2161, 1-16.	0.4	2
1530	Genome Engineering Tools in Immunotherapy. , 2020, , 73-102.		0
1539	Prostate cancer research in the 21st century; report from the 2021 Coffeyâ€Holden prostate cancer academy meeting. Prostate, 2021, , .	1.2	2
1540	Genome-wide CRISPR interference screen identifies long non-coding RNA loci required for differentiation and pluripotency. PLoS ONE, 2021, 16, e0252848.	1.1	12
1541	CRISPR interference and activation of the microRNA-3662-HBP1 axis control progression of triple-negative breast cancer. Oncogene, 2022, 41, 268-279.	2.6	10
1542	Contextual reprogramming of CAR-T cells for treatment of HER2+ cancers. Journal of Translational Medicine, 2021, 19, 459.	1.8	11

#	Article	IF	CITATIONS
1543	Human iPSC-Derived Neurons as A Platform for Deciphering the Mechanisms behind Brain Aging. Biomedicines, 2021, 9, 1635.	1.4	5
1544	Competitive dCas9 binding as a mechanism for transcriptional control. Molecular Systems Biology, 2021, 17, e10512.	3.2	13
1545	Transposable elements that have recently been mobile in the human genome. BMC Genomics, 2021, 22, 789.	1.2	12
1551	Controlling the Activity of CRISPR Transcriptional Regulators with Inducible sgRNAs. Methods in Molecular Biology, 2021, 2162, 153-184.	0.4	0
1555	The CRISPR/Cas9 system for gene editing and its potential application in pain research. Translational Perioperative and Pain Medicine, 2016, 1, 22-33.	0.0	12
1556	Editing the Neuronal Genome: a CRISPR View of Chromatin Regulation in Neuronal Development, Function, and Plasticity. Yale Journal of Biology and Medicine, 2016, 89, 457-470.	0.2	4
1557	CRISPR-Mediated Epigenome Editing. Yale Journal of Biology and Medicine, 2016, 89, 471-486.	0.2	30
1559	Emerging roles of IncRNA in cancer and therapeutic opportunities. American Journal of Cancer Research, 2019, 9, 1354-1366.	1.4	162
1560	Gene surgery: Potential applications for human diseases. EXCLI Journal, 2019, 18, 908-930.	0.5	4
1562	CRISPR screen in cancer: status quo and future perspectives. American Journal of Cancer Research, 2021, 11, 1031-1050.	1.4	4
1563	Using Multiplexed CRISPR/Cas9 for Suppression of Cotton Leaf Curl Virus. International Journal of Molecular Sciences, 2021, 22, 12543.	1.8	16
1564	CRISPR/Cas System and Factors Affecting Its Precision and Efficiency. Frontiers in Cell and Developmental Biology, 2021, 9, 761709.	1.8	20
1565	Long Non-Coding RNAs (IncRNAs) in Response and Resistance to Cancer Immunosurveillance and Immunotherapy. Cells, 2021, 10, 3313.	1.8	24
1567	Engineering a PAM-flexible SpdCas9 variant as a universal gene repressor. Nature Communications, 2021, 12, 6916.	5.8	17
1568	Mammalian chemical genomics towards identifying targets and elucidating modesâ€ofâ€action of bioactive compounds. ChemBioChem, 2021, , .	1.3	2
1569	CRISPR-Cas Technology: Emerging Applications in Clinical Microbiology and Infectious Diseases. Pharmaceuticals, 2021, 14, 1171.	1.7	11
1570	Click chemistry–enabled CRISPR screening reveals GSK3 as a regulator of PLD signaling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
1572	Comprehensive Genome Engineering Toolbox for Microalgae <i>Nannochloropsis oceanica</i> Based on CRISPR-Cas Systems. ACS Synthetic Biology, 2021, 10, 3369-3378.	1.9	29

<u></u>			D	
(. IT	ГАТ	ION.	REE	ORT
<u> </u>			1.001	

#	Article	IF	CITATIONS
1573	Building Endogenous Gene Connections through RNA Self-Assembly Controlled CRISPR/Cas9 Function. Journal of the American Chemical Society, 2021, 143, 19834-19843.	6.6	17
1574	CRISPR Screen Contributes to Novel Target Discovery in Prostate Cancer. International Journal of Molecular Sciences, 2021, 22, 12777.	1.8	16
1575	CRISPR Screening: Molecular Tools for Studying Virus–Host Interactions. Viruses, 2021, 13, 2258.	1.5	7
1576	Evolution of metastasis: new tools and insights. Trends in Cancer, 2022, 8, 98-109.	3.8	40
1577	Development of Lipid Nanoparticles for the Delivery of Macromolecules Based on the Molecular Design of pH-Sensitive Cationic Lipids. Chemical and Pharmaceutical Bulletin, 2021, 69, 1141-1159.	0.6	14
1578	Integrated genome and tissue engineering enables screening of cancer vulnerabilities in physiologically relevant perfusable ex vivo cultures. Biomaterials, 2022, 280, 121276.	5.7	5
1579	Applications of CRISPR-Cas System in Tumor Biology. Oncologie, 2021, 23, 463-492.	0.2	1
1580	Moving toward genome-editing therapies for cardiovascular diseases. Journal of Clinical Investigation, 2022, 132, .	3.9	22
1581	Delivery of CRISPR-Cas tools for in vivo genome editing therapy: Trends and challenges. Journal of Controlled Release, 2022, 342, 345-361.	4.8	82
1582	Preparation and Evaluation of Multistage Delivery Nanoparticle for Efficient CRISPR Activation In Vivo. Biomaterial Engineering, 2021, , 1-27.	0.1	0
1583	How to find genomic regions relevant for gene regulation. Medizinische Genetik, 2021, 33, 157-165.	0.1	0
1584	Editing the Epigenome in Neurodegenerative Diseases. Neurochemical Journal, 2021, 15, 359-366.	0.2	0
1585	NudC guides client transfer between the Hsp40/70 and Hsp90 chaperone systems. Molecular Cell, 2022, 82, 555-569.e7.	4.5	20
1586	BRD2 inhibition blocks SARS-CoV-2 infection by reducing transcription of the host cell receptor ACE2. Nature Cell Biology, 2022, 24, 24-34.	4.6	47
1587	The CRISPR-Cas toolbox and gene editing technologies. Molecular Cell, 2022, 82, 333-347.	4.5	151
1588	High-throughput methods for genome editing: the more the better. Plant Physiology, 2022, 188, 1731-1745.	2.3	10
1589	Applications of CRISPR/Cas System in Plants. , 2022, , 285-309.		1
1590	Cure and Long-Term Remission Strategies. Methods in Molecular Biology, 2022, 2407, 391-428.	0.4	5

	Сітатіс	on Report	
#	Article	IF	CITATIONS
1593	High-throughput navigation of the sequence space. , 2022, , 123-146.		0
1594	Targeting S100A9–ALDH1A1–Retinoic Acid Signaling to Suppress Brain Relapse in <i>EGFR</i> Mutant Lung Cancer. Cancer Discovery, 2022, 12, 1002-1021.	7.7	22
1596	Classification of CRISPR/Cas system and its application in tomato breeding. Theoretical and Applied Genetics, 2022, 135, 367-387.	1.8	29
1597	Therapy development for spinal muscular atrophy: perspectives for muscular dystrophies and neurodegenerative disorders. Neurological Research and Practice, 2022, 4, 2.	1.0	27
1598	Applications of CRISPR/Cas9 technology for modification of the plant genome. Genetica, 2022, 150, 1-12.	0.5	8
1599	An in vivo Cell-Based Delivery Platform for Zinc Finger Artificial Transcription Factors in Pre-clinical Animal Models. Frontiers in Molecular Neuroscience, 2021, 14, 789913.	1.4	2
1600	InÂvivo CRISPR screening identifies BAZ2 chromatin remodelers as druggable regulators of mammalian liver regeneration. Cell Stem Cell, 2022, 29, 372-385.e8.	5.2	18
1601	Tailoring Cardiac Synthetic Transcriptional Modulation Towards Precision Medicine. Frontiers in Cardiovascular Medicine, 2021, 8, 783072.	1.1	1
1602	Advances and application of CRISPR-Cas systems. , 2022, , 331-348.		0
1603	Application of CRISPR/Cas system in iPSC-based disease model of hereditary deafness. , 2022, , 225-245.		0
1604	Lysosomal dysfunction in neurodegeneration: emerging concepts and methods. Trends in Neurosciences, 2022, 45, 184-199.	4.2	54
1605	Key sequence features of CRISPR RNA for dual-guide CRISPR-Cas9 ribonucleoprotein complexes assembled with wild-type or HiFi Cas9. Nucleic Acids Research, 2022, 50, 2854-2871.	6.5	2
1606	Bacterial Retrons Enable Precise Gene Editing in Human Cells. CRISPR Journal, 2022, 5, 31-39.	1.4	22
1607	Systematic decomposition of sequence determinants governing CRISPR/Cas9 specificity. Nature Communications, 2022, 13, 474.	5.8	23
1608	shRNAs targeting mouse <i>Adam10</i> diminish cell response to proinflammatory stimuli independently of <i>Adam10</i> silencing. Biology Open, 2022, 11, .	0.6	1
1609	Microbial DNA Enrichment Promotes Adrenomedullary Inflammation, Catecholamine Secretion, and Hypertension in Obese Mice. Journal of the American Heart Association, 2022, , e024561.	1.6	5
1610	CRISPR-based therapeutics: current challenges and future applications. Trends in Pharmacological Sciences, 2022, 43, 151-161.	4.0	32
1611	Time-resolved single-cell sequencing identifies multiple waves of mRNA decay during the mitosis-to-G1 phase transition. ELife, 2022, 11, .	2.8	20

#	Article	IF	CITATIONS
1613	High-content CRISPR screening. Nature Reviews Methods Primers, 2022, 2, .	11.8	155
1614	Identification of an endoplasmic reticulum proteostasis modulator that enhances insulin production in pancreatic β cells. Cell Chemical Biology, 2022, , .	2.5	4
1615	High-content CRISPR screening. Nature Reviews Methods Primers, 2022, 2, .	11.8	24
1616	The use of new CRISPR tools in cardiovascular research and medicine. Nature Reviews Cardiology, 2022, 19, 505-521.	6.1	21
1617	How to train your cell - Towards controlling phenotypes by harnessing the epigenome of Chinese hamster ovary production cell lines. Biotechnology Advances, 2022, 56, 107924.	6.0	9
1618	dCas9-VPR-mediated transcriptional activation of functionally equivalent genes for gene therapy. Nature Protocols, 2022, 17, 781-818.	5.5	11
1619	Insights into gene manipulation techniques for Acari functional genomics. Insect Biochemistry and Molecular Biology, 2022, 143, 103705.	1.2	3
1621	Activation of melatonin receptor 1 by CRISPR as9 activator ameliorates cognitive deficits in an Alzheimer's disease mouse model. Journal of Pineal Research, 2022, 72, .	3.4	12
1623	CRISPR Guide RNA Library Screens in Human Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2022, , 1.	0.4	1
1624	LncRNAs and Cardiovascular Disease. Advances in Experimental Medicine and Biology, 2022, 1363, 71-95.	0.8	4
1625	Dissecting Molecular Phenotypes Through FACS-Based Pooled CRISPR Screens. Methods in Molecular Biology, 2022, , 1-24.	0.4	7
1626	TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A. Nature, 2022, 603, 131-137.	13.7	188
1627	IQCELL: A platform for predicting the effect of gene perturbations on developmental trajectories using single-cell RNA-seq data. PLoS Computational Biology, 2022, 18, e1009907.	1.5	13
1628	CRISPR in cancer biology and therapy. Nature Reviews Cancer, 2022, 22, 259-279.	12.8	157
1629	Genome-wide functional screens enable the prediction of high activity CRISPR-Cas9 and -Cas12a guides in Yarrowia lipolytica. Nature Communications, 2022, 13, 922.	5.8	25
1630	GeneTargeter: Automated <i>In Silico</i> Design for Genome Editing in the Malaria Parasite, <i>Plasmodium falciparum</i> . CRISPR Journal, 2022, 5, 155-164.	1.4	3
1632	CRISPR based therapeutics: a new paradigm in cancer precision medicine. Molecular Cancer, 2022, 21, 85.	7.9	15
1633	Epigenetic basis and targeting of cancer metastasis. Trends in Cancer, 2022, 8, 226-241.	3.8	20

#	Article	IF	CITATIONS
1635	CRISPR-Cas gene editing technology and its application prospect in medicinal plants. Chinese Medicine, 2022, 17, 33.	1.6	19
1636	CRISPR signal conductor 2.0 for redirecting cellular information flow. Cell Discovery, 2022, 8, 26.	3.1	2
1637	Precise tumor immune rewiring via synthetic CRISPRa circuits gated by concurrent gain/loss of transcription factors. Nature Communications, 2022, 13, 1454.	5.8	6
1638	Preclinical Evaluation of CAR T Cell Function: In Vitro and In Vivo Models. International Journal of Molecular Sciences, 2022, 23, 3154.	1.8	15
1639	Therapeutic targeting of the USP2-E2F4 axis inhibits autophagic machinery essential for zinc homeostasis in cancer progression. Autophagy, 2022, 18, 2615-2635.	4.3	16
1640	<scp>CRISPR</scp> /Cas9â€Based Functional Genomics in Human Induced Pluripotent Stem Cell–Derived Models: Can "the Stars Align―for Neurodegenerative Diseases?. Movement Disorders, 2022, 37, 886-890.	2.2	1
1641	dCas9 fusion to computer-designed PRC2 inhibitor reveals functional TATA box in distal promoter region. Cell Reports, 2022, 38, 110457.	2.9	12
1642	Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Molecular Cancer, 2022, 21, 78.	7.9	88
1643	Cas13d: A New Molecular Scissor for Transcriptome Engineering. Frontiers in Cell and Developmental Biology, 2022, 10, 866800.	1.8	21
1644	Avian influenza viruses suppress innate immunity by inducing trans-transcriptional readthrough via SSU72. , 2022, 19, 702-714.		5
1646	New Advances of CRISPR/Cas9 Technique and its Application in Disease Treatment and Medicinal Plants Research. Current Pharmaceutical Biotechnology, 2022, 23, 1678-1690.	0.9	1
1648	Principles and Applications of CRISPR Toolkit in Virus Manipulation, Diagnosis, and Virus-Host Interactions. Cells, 2022, 11, 999.	1.8	3
1651	Leucyl-tRNA synthetase is a tumour suppressor in breast cancer and regulates codon-dependent translation dynamics. Nature Cell Biology, 2022, 24, 307-315.	4.6	25
1652	Predicting base editing outcomes using position-specific sequence determinants. Nucleic Acids Research, 2022, 50, 3551-3564.	6.5	15
1653	The physiology and genetics of bacterial responses to antibiotic combinations. Nature Reviews Microbiology, 2022, 20, 478-490.	13.6	54
1654	Small molecule C381 targets the lysosome to reduce inflammation and ameliorate disease in models of neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121609119.	3.3	14
1659	Robust, Durable Gene Activation In Vivo via mRNA-Encoded Activators. ACS Nano, 2022, 16, 5660-5671.	7.3	10
1661	Development and Application of CRISPR-Cas Based Tools. Frontiers in Cell and Developmental Biology, 2022, 10, 834646.	1.8	13

#	Article	IF	CITATIONS
1662	CRISPR and cardiovascular diseases. Cardiovascular Research, 2023, 119, 79-93.	1.8	10
1663	Patient-Derived Tumor Organoids: New Progress and Opportunities to Facilitate Precision Cancer Immunotherapy. Frontiers in Oncology, 2022, 12, 872531.	1.3	16
1665	A genome-scale gain-of-function CRISPR screen in CD8 TÂcells identifies proline metabolism as a means to enhance CAR-T therapy. Cell Metabolism, 2022, 34, 595-614.e14.	7.2	70
1666	Refactoring transcription factors for metabolic engineering. Biotechnology Advances, 2022, 57, 107935.	6.0	35
1667	CRISPR-Based Genetic Switches and Other Complex Circuits: Research and Application. Life, 2021, 11, 1255.	1.1	5
1670	Systematic identification of genomic elements that regulate <i>FCGR2A</i> expression and harbor variants linked with autoimmune disease. Human Molecular Genetics, 2022, 31, 1946-1961.	1.4	7
1671	CRISPRi-mediated knock-down of PRDM1/BLIMP1 programs central memory differentiation in <i>ex vivo</i> -expanded human T cells. BioImpacts, 2021, , .	0.7	0
1672	Improving CRISPR tools by elucidating DNA repair. Nature Biotechnology, 2021, 39, 1512-1514.	9.4	1
1674	CRISPR-Based Approaches for the High-Throughput Characterization of Long Non-Coding RNAs. Non-coding RNA, 2021, 7, 79.	1.3	6
1675	Increase in Phytoextraction Potential by Genome Editing and Transformation: A Review. Plants, 2022, 11, 86.	1.6	18
1676	CRISPR Screens to Identify Regulators of Tumor Immunity. Annual Review of Cancer Biology, 2022, 6, 103-122.	2.3	5
1677	State-of-the-art CRISPR for in vivo and cell-based studies in Drosophila. Trends in Genetics, 2022, 38, 437-453.	2.9	26
1678	Multiplexed activation in mammalian cells using a split-intein CRISPR/Cas12a based synthetic transcription factor. Nucleic Acids Research, 2022, 50, 549-560.	6.5	8
1679	The use of base editing technology to characterize single nucleotide variants. Computational and Structural Biotechnology Journal, 2022, 20, 1670-1680.	1.9	4
1680	CRISPRâ€Act3.0â€Based Highly Efficient Multiplexed Gene Activation in Plants. Current Protocols, 2022, 2, e365.	1.3	1
1681	CRISPR-Mediated Activation of αV Integrin Subtypes Promotes Neuronal Differentiation of Neuroblastoma Neuro2a Cells. Frontiers in Genome Editing, 2022, 4, 846669.	2.7	5
1682	Oncogenic inspiration for programmable activators. Cell Genomics, 2022, 2, 100122.	3.0	0
1683	Ferroptosis Biology and Implication in Cancers. Frontiers in Molecular Biosciences, 2022, 9, 892957.	1.6	15

		CITATION RE	EPORT	
#	ARTICLE Genome editing: An essential technology for cancer treatment. Medicine in Omics, 202	2 100015.	IF 0.6	CITATIONS 3
1686	CRISPR-Based Genome Editing: Advancements and Opportunities for Rice Improvement Journal of Molecular Sciences, 2022, 23, 4454.		1.8	14
1696	Preparation and Evaluation of Multistage Delivery Nanoparticle for Efficient CRISPR Acti Vivo. Biomaterial Engineering, 2022, , 155-180.	vation In	0.1	0
1697	CRISPR-Cas9 library screening approach for anti-cancer drug discovery: overview and pe Theranostics, 2022, 12, 3329-3344.	rspectives.	4.6	16
1698	Stepwise-edited, human melanoma models reveal mutations' effect on tumor and n Science, 2022, 376, eabi8175.	iicroenvironment.	6.0	24
1700	The microRNA-3622 family at the 8p21 locus exerts oncogenic effects by regulating the gene network in prostate cancer progression. Oncogene, 2022, , .	p53-downstream	2.6	3
1701	CRISPR/Cas therapeutic strategies for autosomal dominant disorders. Journal of Clinical Investigation, 2022, 132, .		3.9	8
1702	CRISPR/Cas9 in Chronic Lymphocytic Leukemia. Encyclopedia, 2022, 2, 928-936.		2.4	1
1703	Understanding astrocyte differentiation: Clinical relevance, technical challenges, and ne opportunities in the omics era. WIREs Mechanisms of Disease, 2022, 14, e1557.	w	1.5	7
1704	Signaling by the integrated stress response kinase PKR is fine-tuned by dynamic clusteri Cell Biology, 2022, 221, .	ng. Journal of	2.3	17
1705	Meningioma DNA methylation groups identify biological drivers and therapeutic vulnera Nature Genetics, 2022, 54, 649-659.	bilities.	9.4	93
1706	Development and expansion of the CRISPR/Cas9 toolboxes for powerful genome engine Enzyme and Microbial Technology, 2022, 159, 110056.	ering in yeast.	1.6	4
1707	Coupling CRISPR interference with FACS enrichment: New approach in glycoengineering lines for therapeutic glycoprotein production. Biotechnology Journal, 2022, , 2100499.	g of CHO cell	1.8	2
1708	A CRISPR view on autophagy. Trends in Cell Biology, 2022, , .		3.6	2
1709	Specific High-Sensitivity Enzymatic Molecular Detection System Termed RPA-Based CRIS Duck Tembusu Virus Diagnostics. Bioconjugate Chemistry, 2022, 33, 1232-1240.	SPR-Cas13a for	1.8	5
1710	Targeting CISH enhances natural cytotoxicity receptor signaling and reduces NK cell exhimprove solid tumor immunity. , 2022, 10, e004244.	austion to		23
1712	Pediatric Sarcomas: The Next Generation of Molecular Studies. Cancers, 2022, 14, 2515	j.	1.7	0
1713	CRISPR/Cas Genome Editing in Engineering Plant Secondary Metabolites of Therapeutic 187-208.	Benefits. , 2022, ,		2

	CITATION	Report	
#	Article	IF	CITATIONS
1716	PAM-flexible dual base editor-mediated random mutagenesis and self-activation strategies to improve CRISPRa potency. Molecular Therapy - Methods and Clinical Development, 2022, 26, 26-37.	1.8	1
1717	<pre><scp>Siteâ€directed</scp> integration of exogenous <scp>DNA</scp> into the soybean genome by <scp>LbCas12a</scp> fused to a plant viral <scp>HUH</scp> endonuclease. Plant Journal, 2022, 111, 905-916.</pre>	2.8	2
1718	Ingestion of single guide RNAs induces gene overexpression and extends lifespan in Caenorhabditis elegans via CRISPR activation. Journal of Biological Chemistry, 2022, 298, 102085.	1.6	5
1719	XIST loss impairs mammary stem cell differentiation and increases tumorigenicity through Mediator hyperactivation. Cell, 2022, 185, 2164-2183.e25.	13.5	22
1721	Epigenetic regulation of T cell exhaustion. Nature Immunology, 2022, 23, 848-860.	7.0	82
1722	Finding meaning in chaos: a selection signature for functional interactions and its use in molecular biology. FEBS Journal, 2023, 290, 3914-3927.	2.2	1
1724	Histone editing elucidates the functional roles of H3K27 methylation and acetylation in mammals. Nature Genetics, 2022, 54, 754-760.	9.4	59
1725	Using population selection and sequencing to characterize natural variation of starvation resistance in Caenorhabditis elegans. ELife, 0, 11, .	2.8	4
1726	CRISPR activation screen identifies TGFβ-associated PEG10 as a crucial tumor suppressor in Ewing sarcoma. Scientific Reports, 2022, 12, .	1.6	0
1727	Advancement in CRISPR/Cas9 Technology to Better Understand and Treat Neurological Disorders. Cellular and Molecular Neurobiology, 2023, 43, 1019-1035.	1.7	3
1728	Oncofusion-driven de novo enhancer assembly promotes malignancy in Ewing sarcoma via aberrant expression of the stereociliary protein LOXHD1. Cell Reports, 2022, 39, 110971.	2.9	6
1729	Bridging Clycomics and Genomics: New Uses of Functional Genetics in the Study of Cellular Glycosylation. Frontiers in Molecular Biosciences, 0, 9, .	1.6	3
1730	T cell stimulation remodels the latently HIV-1 infected cell population by differential activation of proviral chromatin. PLoS Pathogens, 2022, 18, e1010555.	2.1	5
1731	Chromatin interaction maps identify Wnt responsive cis-regulatory elements coordinating Paupar-Pax6 expression in neuronal cells. PLoS Genetics, 2022, 18, e1010230.	1.5	6
1732	Genome-wide CRISPR screens of TÂcell exhaustion identify chromatin remodeling factors that limit TÂcell persistence. Cancer Cell, 2022, 40, 768-786.e7.	7.7	104
1733	Integrated screens uncover a cell surface tumor suppressor gene <i>KIRREL</i> involved in Hippo pathway. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	10
1734	Dissecting Plant Gene Functions Using CRISPR Toolsets for Crop Improvement. Journal of Agricultural and Food Chemistry, 2022, 70, 7343-7359.	2.4	4
1736	Ablation of cDC2 development by triple mutations within the Zeb2 enhancer. Nature, 2022, 607, 142-148.	13.7	34

#	Article	IF	CITATIONS
1738	Innovative cancer nanomedicine based on immunology, gene editing, intracellular trafficking control. Journal of Controlled Release, 2022, 348, 357-369.	4.8	3
1739	dCas9-mediated dysregulation of gene expression in human induced pluripotent stem cells during primitive streak differentiation. Metabolic Engineering, 2022, 73, 70-81.	3.6	1
1740	Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq. Cell, 2022, 185, 2559-2575.e28.	13.5	169
1741	Enhancing Animal Disease Resistance, Production Efficiency, and Welfare through Precise Genome Editing. International Journal of Molecular Sciences, 2022, 23, 7331.	1.8	2
1743	A Genome-Wide Screen Identifies PDPK1 as a Target to Enhance the Efficacy of MEK1/2 Inhibitors in <i>NRAS</i> Mutant Melanoma. Cancer Research, 2022, 82, 2625-2639.	0.4	11
1744	A Special Phenotype of Aconidial Aspergillus niger SH2 and Its Mechanism of Formation via CRISPRi. Journal of Fungi (Basel, Switzerland), 2022, 8, 679.	1.5	4
1747	A campaign targeting a conserved Hsp70 binding site uncovers how subcellular localization is linked to distinct biological activities. Cell Chemical Biology, 2022, 29, 1303-1316.e3.	2.5	7
1749	Transcriptional Activation of Biosynthetic Gene Clusters in Filamentous Fungi. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	14
1750	Tutorial: design and execution of CRISPR in vivo screens. Nature Protocols, 2022, 17, 1903-1925.	5.5	12
1752	Message in hand: the application of CRISPRi, RNAi, and LncRNA in adenocarcinoma. , 2022, 39, .		0
1753	Programmable Transcriptional Modulation with a Structured RNA-Mediated CRISPR-dCas9 Complex. Journal of the American Chemical Society, 2022, 144, 12690-12697.	6.6	4
1757	Ras-mutant cancers are sensitive to small molecule inhibition of V-type ATPases in mice. Nature Biotechnology, 2022, 40, 1834-1844.	9.4	13
1758	High-Throughput CRISPR Screening in Hematological Neoplasms. Cancers, 2022, 14, 3612.	1.7	3
1760	Modular safe-harbor transgene insertion for targeted single-copy and extrachromosomal array integration in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	15
1761	Small noncoding RNAs play superior roles in maintaining hematopoietic stem cell homeostasis. Blood Science, 2022, 4, 125-132.	0.4	0
1762	RISC-y Business: Limitations of Short Hairpin RNA-Mediated Gene Silencing in the Brain and a Discussion of CRISPR/Cas-Based Alternatives. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	10
1763	Inducible expression of large gRNA arrays for multiplexed CRISPRai applications. Nature Communications, 2022, 13, .	5.8	21
1764	Nested epistasis enhancer networks for robust genome regulation. Science, 2022, 377, 1077-1085.	6.0	40

#	Article	IF	CITATIONS
1766	A CRISPRi/a platform in human iPSC-derived microglia uncovers regulators of disease states. Nature Neuroscience, 2022, 25, 1149-1162.	7.1	79
1767	The CRISPR Revolution in the Drug Discovery Workflow: An Industry Perspective. CRISPR Journal, 2022, 5, 634-641.	1.4	2
1769	PIWI-Interacting RNA (piRNA) and Epigenetic Editing in Environmental Health Sciences. Current Environmental Health Reports, 2022, 9, 650-660.	3.2	4
1771	Translational potential of base-editing tools for gene therapy of monogenic diseases. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	5
1772	Selective Polyprotein Processing Determines Norovirus Sensitivity to Trim7. Journal of Virology, 2022, 96, .	1.5	1
1773	Generation of a CRISPR activation mouse that enables modelling of aggressive lymphoma and interrogation of venetoclax resistance. Nature Communications, 2022, 13, .	5.8	12
1774	CRISPR-RNAa: targeted activation of translation using dCas13 fusions to translation initiation factors. Nucleic Acids Research, 2022, 50, 8986-8998.	6.5	17
1777	Generation of dual-gRNA library for combinatorial CRISPR screening of synthetic lethal gene pairs. STAR Protocols, 2022, 3, 101556.	0.5	1
1778	Short open reading frame genes in innate immunity: from discovery to characterization. Trends in Immunology, 2022, 43, 741-756.	2.9	9
1779	<scp>SOX9</scp> maintains human foetal lung tip progenitor state by enhancing <scp>WNT</scp> and <scp>RTK</scp> signalling. EMBO Journal, 2022, 41, .	3.5	15
1781	CRISPR/Cas9 Technology and Its Utility for Crop Improvement. International Journal of Molecular Sciences, 2022, 23, 10442.	1.8	12
1782	Defining and targeting patterns of T cell dysfunction in inborn errors of immunity. Frontiers in Immunology, 0, 13, .	2.2	3
1783	Capturing nucleic acid variants with precision using CRISPR diagnostics. Biosensors and Bioelectronics, 2022, 217, 114712.	5.3	4
1784	Improving isoprenol production <i>via</i> systematic CRISPRi screening in engineered <i>Escherichia coli</i> . Green Chemistry, 2022, 24, 6955-6964.	4.6	7
1785	Mechanobiology of immune cells: Messengers, receivers and followers in leishmaniasis aiding synthetic devices. Current Research in Immunology, 2022, 3, 186-198.	1.2	4
1786	CRISPR-Cas Technology: A Genome-Editing Powerhouse for Molecular Plant Breeding. , 2022, , 803-879.		4
1787	Long non-coding RNA in Non-alcoholic fatty liver disease. Advances in Clinical Chemistry, 2022, , 1-35.	1.8	4
1788	Genome-Wide CRISPR Screening to Identify Mammalian Factors that Regulate Intron Retention. Methods in Molecular Biology, 2022, , 263-284.	0.4	0

#	Article	IF	CITATIONS
1789	Identification of Genes Regulating Hepatocyte Injury by a Genome-Wide CRISPR-Cas9 Screen. Methods in Molecular Biology, 2022, , 227-251.	0.4	0
1790	CRISPR/Cas-Mediated Functional Gene Editing for Improvement in Bioremediation: An Emerging Strategy. , 2022, , 635-664.		1
1791	Phytoremediation using CRISPR-Cas9 technology. , 2022, , 39-53.		0
1792	Enhancing Cardiomyocyte Transcription Using In Vivo CRISPR/Cas9 Systems. Methods in Molecular Biology, 2022, , 53-61.	0.4	2
1794	Emerging CRISPR Technologies. , 0, , .		0
1796	CRISPR/Cas9 system: a reliable and facile genome editing tool in modern biology. Molecular Biology Reports, 2022, 49, 12133-12150.	1.0	9
1797	Adaptive exchange sustains cullin–RING ubiquitin ligase networks and proper licensing of DNA replication. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
1800	Gain-of-function genetic screens in human cells identify SLC transporters overcoming environmental nutrient restrictions. Life Science Alliance, 2022, 5, e202201404.	1.3	8
1801	A comprehensive overview of CRISPR/Cas 9 technology and application thereof in drug discovery. Journal of Cellular Biochemistry, 2022, 123, 1674-1698.	1.2	7
1802	Scalable Functional Assays for the Interpretation of Human Genetic Variation. Annual Review of Genetics, 2022, 56, 441-465.	3.2	18
1805	Dual genome-wide coding and IncRNA screens in neural induction of induced pluripotent stem cells. Cell Genomics, 2022, 2, 100177.	3.0	10
1807	Identification of orphan ligand-receptor relationships using a cell-based CRISPRa enrichment screening platform. ELife, 0, 11, .	2.8	9
1808	New Players in Neuronal Iron Homeostasis: Insights from CRISPRi Studies. Antioxidants, 2022, 11, 1807.	2.2	1
1809	Primary and metastatic tumors exhibit systems-level differences in dependence on mitochondrial respiratory function. PLoS Biology, 2022, 20, e3001753.	2.6	2
1810	Big data in basic and translational cancer research. Nature Reviews Cancer, 2022, 22, 625-639.	12.8	67
1811	Resurrecting essential amino acid biosynthesis in mammalian cells. ELife, 0, 11, .	2.8	9
1812	CRISPR/Cas9 in the era of nanomedicine and synthetic biology. Drug Discovery Today, 2023, 28, 103375.	3.2	2
1813	Accounting for small variations in the tracrRNA sequence improves sgRNA activity predictions for CRISPR screening. Nature Communications, 2022, 13, .	5.8	10

#	Article	IF	CITATIONS
1814	A competitive precision CRISPR method to identify the fitness effects of transcription factor binding sites. Nature Biotechnology, 0, , .	9.4	3
1815	Cold shock domain–containing protein E1 is a posttranscriptional regulator of the LDL receptor. Science Translational Medicine, 2022, 14, .	5.8	8
1816	Targeted demethylation at ZNF154 promotor upregulates ZNF154 expression and inhibits the proliferation and migration of Esophageal Squamous Carcinoma cells. Oncogene, 2022, 41, 4537-4546.	2.6	7
1817	Design, Construction, and Validation of Targeted Gene Activation with TREE System in Human Cells. Methods in Molecular Biology, 2023, , 211-226.	0.4	0
1818	Lineage-coupled clonal capture identifies clonal evolution mechanisms and vulnerabilities of BRAFV600E inhibition resistance in melanoma. Cell Discovery, 2022, 8, .	3.1	2
1819	Identifying an oligodendrocyte enhancer that regulates <i>Olig2</i> expression. Human Molecular Genetics, 0, , .	1.4	2
1822	Long non-coding RNAs (IncRNAs) signaling in cancer chemoresistance: From prediction to druggability. Drug Resistance Updates, 2022, 65, 100866.	6.5	21
1823	How to detect CRISPR with CRISPR – employing SHERLOCK for doping control purposes. Analyst, The, 2022, 147, 5528-5536.	1.7	5
1824	Flavivirus–Host Interaction Landscape Visualized through Genome-Wide CRISPR Screens. Viruses, 2022, 14, 2164.	1.5	5
1825	Quantitative Framework for Bench-to-Bedside Cancer Research. Cancers, 2022, 14, 5254.	1.7	0
1826	CasPlay provides a gRNA-barcoded CRISPR-based display platform for antibody repertoire profiling. Cell Reports Methods, 2022, 2, 100318.	1.4	1
1827	CRISPRi screens in human iPSC-derived astrocytes elucidate regulators of distinct inflammatory reactive states. Nature Neuroscience, 2022, 25, 1528-1542.	7.1	35
1828	Eco-Friendly Biocontrol Strategies of Alternaria Phytopathogen Fungus: A Focus on Gene-Editing Techniques. Agriculture (Switzerland), 2022, 12, 1722.	1.4	4
1830	A Novel CRISPR Interference Effector Enabling Functional Gene Characterization with Synthetic Guide RNAs. CRISPR Journal, 2022, 5, 769-786.	1.4	2
1831	Perturbation of Gene Regulation by Genome Editing. Methods in Molecular Biology, 2023, , 59-68.	0.4	0
1833	Identification of acetic acid sensitive strains through biosensor-based screening of a Saccharomyces cerevisiae CRISPRi library. Microbial Cell Factories, 2022, 21, .	1.9	2
1834	Development and Applications of CRISPR/Cas9-Based Genome Editing in Lactobacillus. International Journal of Molecular Sciences, 2022, 23, 12852.	1.8	6
1836	MTCH2 is a mitochondrial outer membrane protein insertase. Science, 2022, 378, 317-322.	6.0	53

#	Article	IF	CITATIONS
1837	CRISPR Activation/Interference Screen to Identify Genetic Networks in HDAC-Inhibitor-Resistant Cells. Methods in Molecular Biology, 2023, , 429-454.	0.4	1
1838	CRISPRi screening identifies CASP8AP2 as an essential viability factor in lung cancer controlling tumor cell death via the AP-1 pathway. Cancer Letters, 2023, 552, 215958.	3.2	6
1839	Pooled image-base screening of mitochondria with microraft isolation distinguishes pathogenic mitofusin 2 mutations. Communications Biology, 2022, 5, .	2.0	1
1840	GATOR2-dependent mTORC1 activity is a therapeutic vulnerability in FOXO1 fusion–positive rhabdomyosarcoma. JCI Insight, 2022, 7, .	2.3	6
1841	The N6-methyladenosine methyltransferase METTL16 enables erythropoiesis through safeguarding genome integrity. Nature Communications, 2022, 13, .	5.8	13
1842	In silico design of CMV promoter binding oligonucleotides and their impact on inhibition of gene expression in Chinese hamster ovary cells. Journal of Biotechnology, 2022, 359, 185-193.	1.9	0
1844	A comprehensive Bioconductor ecosystem for the design of CRISPR guide RNAs across nucleases and technologies. Nature Communications, 2022, 13, .	5.8	10
1845	The evaluation of active transcriptional repressor domain for CRISPRi in plants. Gene, 2023, 851, 146967.	1.0	5
1846	Transcriptomics and genetic engineering. , 2023, , 43-65.		0
1847	Genome Editing: A Review of the Challenges and Approaches. , 2022, , 71-101.		0
1848	Biosensor-assisted titratable CRISPRi high-throughput (BATCH) screening for over-production phenotypes. Metabolic Engineering, 2023, 75, 58-67.	3.6	14
1849	Antibody-mediated delivery of CRISPR-Cas9 ribonucleoproteins in human cells. Protein Engineering, Design and Selection, 2022, 35, .	1.0	3
1849 1850		1.0 0.4	3 0
	Design and Selection, 2022, 35, . Studying Virus-Host Interactions with CRISPR Technology. Methods in Molecular Biology, 2023, ,		
1850	Design and Selection, 2022, 35, . Studying Virus-Host Interactions with CRISPR Technology. Methods in Molecular Biology, 2023, , 105-117.	0.4	0
1850 1851	 Design and Selection, 2022, 35, . Studying Virus-Host Interactions with CRISPR Technology. Methods in Molecular Biology, 2023, , 105-117. Pooled genetic screens with imageâ€based profiling. Molecular Systems Biology, 2022, 18, . 	0.4 3.2	0 8
1850 1851 1853	Design and Selection, 2022, 35, . Studying Virus-Host Interactions with CRISPR Technology. Methods in Molecular Biology, 2023, , 105-117. Pooled genetic screens with imageâ€based profiling. Molecular Systems Biology, 2022, 18, . Genetic tools to dissect functions of long noncoding <scp>RNAs</scp> . IUBMB Life, 2023, 75, 458-470.	0.4 3.2 1.5	0 8 0

#	Article	IF	CITATIONS
1857	Integration of CRISPR/Cas9 with artificial intelligence for improved cancer therapeutics. Journal of Translational Medicine, 2022, 20, .	1.8	11
1859	Towards elucidating disease-relevant states of neurons and glia by CRISPR-based functional genomics. Genome Medicine, 2022, 14, .	3.6	1
1860	Recent advances in machine learning applications in metabolic engineering. Biotechnology Advances, 2023, 62, 108069.	6.0	18
1861	Forward Genetic Screens as Tools to Investigate Role and Mechanisms of EMT in Cancer. Cancers, 2022, 14, 5928.	1.7	3
1863	Gene activation guided by nascent RNA-bound transcription factors. Nature Communications, 2022, 13, .	5.8	2
1865	Multiplexed engineering and precision gene editing in cellular immunotherapy. Frontiers in Immunology, 0, 13, .	2.2	4
1866	CRISPR-Based Tools for Fighting Rare Diseases. Life, 2022, 12, 1968.	1.1	2
1867	SUMO conjugation regulates the activity of the Integrator complex. Nucleic Acids Research, 2022, 50, 12444-12461.	6.5	4
1868	Transcription regulation strategies in methylotrophs: progress and challenges. Bioresources and Bioprocessing, 2022, 9, .	2.0	3
1869	CRISPR screens for functional interrogation of immunity. Nature Reviews Immunology, 2023, 23, 363-380.	10.6	11
1870	Genomic characterization and therapeutic utilization of IL-13-responsive sequences in asthma. Cell Genomics, 2023, 3, 100229.	3.0	5
1871	Development and applications of a CRISPR activation system for facile genetic overexpression in <i>Candida albicans</i> . G3: Genes, Genomes, Genetics, 2023, 13, .	0.8	5
1872	An Optogeneticâ€Controlled Cell Reprogramming System for Driving Cell Fate and Lightâ€Responsive Chimeric Mice. Advanced Science, 2023, 10, .	5.6	2
1874	IFITM proteins assist cellular uptake of diverse linked chemotypes. Science, 2022, 378, 1097-1104.	6.0	12
1875	Shifting the focus of zebrafish toward a model of the tumor microenvironment. ELife, 0, 11, .	2.8	6
1877	Viewing AML through a New Lens: Technological Advances in the Study of Epigenetic Regulation. Cancers, 2022, 14, 5989.	1.7	0
1878	An Overview of Genome Editing in Cardiovascular and Metabolic Diseases. Advances in Experimental Medicine and Biology, 2023, , 3-16.	0.8	1
1880	ACTR5 controls CDKN2A and tumor progression in an INO80-independent manner. Science Advances, 2022, 8, .	4.7	6

#	Article	IF	CITATIONS
1882	From DNA-protein interactions to the genetic circuit design using CRISPR-dCas systems. Frontiers in Molecular Biosciences, 0, 9, .	1.6	1
1883	Large-Scale CRISPRi and Transcriptomics of Staphylococcus epidermidis Identify Genetic Factors Implicated in Lifestyle Versatility. MBio, 2022, 13, .	1.8	4
1884	CRISPR activation and interference as investigative tools in the cardiovascular system. International Journal of Biochemistry and Cell Biology, 2023, 155, 106348.	1.2	1
1885	A Tet-Inducible CRISPR Platform for High-Fidelity Editing of Human Pluripotent Stem Cells. Genes, 2022, 13, 2363.	1.0	2
1887	Entry receptors $\hat{a} \in \hat{~}$ the gateway to alphavirus infection. Journal of Clinical Investigation, 2023, 133, .	3.9	14
1889	Single-cell profiling of lncRNAs in human germ cells and molecular analysis reveals transcriptional regulation of LNC1845 on LHX8. ELife, 0, 12, .	2.8	0
1891	CRISPR interference for sequence-specific regulation of fibroblast growth factor receptor A in Schistosoma mansoni. Frontiers in Immunology, 0, 13, .	2.2	2
1892	CRISPR/Cas9-based genome editing for multimodal synergistic cancer nanotherapy. Nano Today, 2023, 48, 101734.	6.2	5
1893	Maximizing CRISPRi efficacy and accessibility with dual-sgRNA libraries and optimal effectors. ELife, 0, 11, .	2.8	27
1894	Construction of a Set of Novel Transposon Vectors for Efficient Silencing of Protein and IncRNA Genes via CRISPR Interference. Molecular Biotechnology, 0, , .	1.3	0
1896	A universal deep-learning model for zinc finger design enables transcription factor reprogramming. Nature Biotechnology, 2023, 41, 1117-1129.	9.4	13
1897	T-REX17 is a transiently expressed non-coding RNA essential for human endoderm formation. ELife, 0, 12, .	2.8	1
1898	Rapid Multiplexed Flow Cytometric Validation of CRISPRi sgRNAs in Tissue Culture. Bio-protocol, 2023, 13, .	0.2	0
1900	MS0621, a novel small-molecule modulator of Ewing sarcoma chromatin accessibility, interacts with an RNA-associated macromolecular complex and influences RNA splicing. Frontiers in Oncology, 0, 13, .	1.3	1
1901	The genome editing revolution. Trends in Biotechnology, 2023, 41, 396-409.	4.9	22
1904	Enhancement of protein translation by CRISPR/dCasRx coupled with SINEB2 repeat of noncoding RNAs. Nucleic Acids Research, 2023, 51, e33-e33.	6.5	9
1908	Identifying Genetic Regulators of Proteinâ€Glycan Interactions with Genomeâ€Wide CRISPR Screening. Current Protocols, 2023, 3, .	1.3	0
1909	Gene Modulation with CRISPR-based Tools in Human iPSC-Cardiomyocytes. Stem Cell Reviews and Reports, 0, , .	1.7	3

#	Article	IF	CITATIONS
1910	Roles of innovative genome editing technologies in stem cell engineering, rheumatic diseases and other joint/bone diseases. , 2023, , 53-77.		0
1911	Toward the Development of Epigenome Editing-Based Therapeutics: Potentials and Challenges. International Journal of Molecular Sciences, 2023, 24, 4778.	1.8	10
1913	Translating non-coding genetic associations into a better understanding of immune-mediated disease. DMM Disease Models and Mechanisms, 2023, 16, .	1.2	0
1914	Targeting epigenetic aberrations of sarcoma in <scp>CRISPR</scp> era. Genes Chromosomes and Cancer, 2023, 62, 510-525.	1.5	0
1915	The landscape of cryptic antisense transcription in human cancers reveals an oncogenic noncoding RNA in lung cancer. Science Advances, 2023, 9, .	4.7	0
1916	Enrichment of transgene integrations by transient CRISPR activation of a silent reporter gene. Molecular Therapy - Methods and Clinical Development, 2023, 29, 1-16.	1.8	1
1917	Production of CRISPRi-engineered primary human mammary epithelial cells with baboon envelope pseudotyped lentiviral vectors. STAR Protocols, 2023, 4, 102055.	0.5	0
1918	Rare immune diseases paving the road for genome editing-based precision medicine. Frontiers in Genome Editing, 0, 5, .	2.7	5
1919	Development of a CRISPRi Human Retinal Pigmented Epithelium Model for Functional Study of Age-Related Macular Degeneration Genes. International Journal of Molecular Sciences, 2023, 24, 3417.	1.8	3
1920	Revolutionizing DNA repair research and cancer therapy with CRISPR–Cas screens. Nature Reviews Molecular Cell Biology, 2023, 24, 477-494.	16.1	17
1921	Histone malonylation is regulated by SIRT5 and KAT2A. IScience, 2023, 26, 106193.	1.9	6
1922	Recent advances in nanocomposite-based delivery systems for targeted CRISPR/Cas delivery and therapeutic genetic manipulation. Journal of Materials Chemistry B, 2023, 11, 5251-5271.	2.9	5
1923	New Target Gene Screening Using Shortened and Random sgRNA Libraries in Microbial CRISPR Interference. ACS Synthetic Biology, 2023, 12, 800-808.	1.9	1
1924	Transplantation of Adipose-Tissue-Engineered Constructs with CRISPR-Mediated UCP1 Activation. International Journal of Molecular Sciences, 2023, 24, 3844.	1.8	1
1925	A versatile, high-efficiency platform for CRISPR-based gene activation. Nature Communications, 2023, 14, .	5.8	9
1926	Applications of CRISPR/Cas9 in the field of microbiology. Methods in Microbiology, 2023, , .	0.4	0
1927	Hacking hematopoiesis $\hat{a} \in$ " emerging tools for examining variant effects. DMM Disease Models and Mechanisms, 2023, 16, .	1.2	0
1928	Interstrand crosslinking of homologous repair template DNA enhances gene editing in human cells. Nature Biotechnology, 2023, 41, 1398-1404.	9.4	1

#	Article	IF	CITATIONS
1929	Nanoscale, antigen encounter-dependent, IL-12 delivery by CAR T cells plus PD-L1 blockade for cancer treatment. Journal of Translational Medicine, 2023, 21, .	1.8	3
1930	ATM-SPARK: A GFP phase separation–based activity reporter of ATM. Science Advances, 2023, 9, .	4.7	4
1932	Synthetic biology tools for engineering Corynebacterium glutamicum. Computational and Structural Biotechnology Journal, 2023, 21, 1955-1965.	1.9	5
1933	Induced Pluripotent Stem Cells in the Era of Precise Genome Editing. Current Stem Cell Research and Therapy, 2024, 19, 307-315.	0.6	0
1934	Oxygen toxicity causes cyclic damage by destabilizing specific Fe-S cluster-containing protein complexes. Molecular Cell, 2023, 83, 942-960.e9.	4.5	8
1935	Lipid peroxidation increases membrane tension, Piezo1 gating, and cation permeability to execute ferroptosis. Current Biology, 2023, 33, 1282-1294.e5.	1.8	44
1936	Syncytin-mediated open-ended membrane tubular connections facilitate the intercellular transfer of cargos including Cas9 protein. ELife, 0, 12, .	2.8	7
1937	Remodeling Tumor Immunogenicity with Dual-Activatable Binary CRISPR Nanomedicine for Cancer Immunotherapy. ACS Nano, 2023, 17, 5713-5726.	7.3	5
1938	CRISPR-assisted transcription activation by phase-separation proteins. Protein and Cell, 2023, 14, 874-887.	4.8	4
1941	Seedlessness Trait and Genome Editing—A Review. International Journal of Molecular Sciences, 2023, 24, 5660.	1.8	3
1942	Biomaterial-assisted targeted and controlled delivery of CRISPR/Cas9 for precise gene editing. Biomaterials Science, 2023, 11, 3762-3783.	2.6	16
1943	Methyltransferase Inhibition Enables Tgf β Driven Induction of <i>CDKN2A</i> and <i>B</i> in Cancer Cells. Molecular and Cellular Biology, 2023, 43, 115-129.	1.1	0
1944	CRISPR-Cas-mediated transcriptional modulation: The therapeutic promises of CRISPRa and CRISPRi. Molecular Therapy, 2023, 31, 1920-1937.	3.7	15
1945	MORF2-mediated plastidial retrograde signaling is involved in stress response and skotomorphogenesis beyond RNA editing. Frontiers in Plant Science, 0, 14, .	1.7	4
1946	Collateral activity of the CRISPR/RfxCas13d system in human cells. Communications Biology, 2023, 6, .	2.0	16
1949	<scp>CRISPR</scp> â€Based <scp>KCC2</scp> Upregulation Attenuates Drugâ€Resistant Seizure in Mouse Models of Epilepsy. Annals of Neurology, 2023, 94, 91-105.	2.8	2
1950	Plant Mutagenesis Tools for Precision Breeding: Conventional CRISPR/Cas9 Tools and Beyond. , 2023, , 269-291.		0
1951	Optimized whole-genome CRISPR interference screens identify ARID1A-dependent growth regulators in human induced pluripotent stem cells. Stem Cell Reports, 2023, , .	2.3	3

ARTICLE IF CITATIONS # Lnc-ing epigenetic mechanisms with autophagy and cancer drug resistance. Advances in Cancer 1952 1.9 0 Research, 2023, , . CRISPR-Cas System: The Current and Emerging Translational Landscape. Cells, 2023, 12, 1103. 1.8 Understanding neural development and diseases using CRISPR screens in human pluripotent stem 1954 1.8 1 cell-derived cultures. Frontiers in Cell and Developmental Biology, 0, 11, . Targeted Modulation of Chicken Genes In Vitro Using CRISPRa and CRISPRi Toolkit. Genes, 2023, 14, 906. KaryoCreate: A CRISPR-based technology to study chromosome-specific aneuploidy by targeting human 1957 13.5 16 centromeres. Cell, 2023, 186, 1985-2001.e19. Validation of CRISPR activation system in Aedes cells using multicistronic plasmid vectors. Frontiers in Bioengineering and Biotechnology, 0, 11, . Genome-scale CRISPRi screening: A powerful tool in engineering microbiology. Engineering 1959 2.2 7 Microbiology, 2023, 3, 100089. Using traditional machine learning and deep learning methods for on- and off-target prediction in 1960 3.2 CRISPR/Cas9: a review. Briefings in Bioinformatics, 2023, 24, . 1961 CRISPR technology and its potential role in treating rare imprinting diseases., 2023, , 273-300. 0 Necessity of <i>HuR</i>/i>ELAVL1</i> for the activation-induced cytidine deaminase-dependent 1.8 decrease in topoisomerase 1 in antibody diversification. International Immunology, 2023, 35, 361-375. Long noncoding RNA in human cancers: to be or not to be, that is the question., 2023, 109-127. 1975 0 1997 Devices and genomic therapies., 2024, , 207-218. Genome-Wide CRISPR Screening for the Identification of Therapy Resistance-Associated Genes in 2011 0.4 0 Urothelial Carcinoma. Methods in Molecular Biology, 2023, , 155-165. Modeling specific aneuploidies: from karyotype manipulations to biological insights. Chromosome 1.0 Research, 2023, 31, . Metastasis suppressor genes in clinical practice: are they druggable?. Cancer and Metastasis Reviews, 2046 2.7 1 2023, 42, 1169-1188. Sequencing-based methods for single-cell multi-omics studies. Science China Chemistry, 0, , . 2053 Design principles for synthetic control systems to engineer plants. Plant Cell Reports, 2023, 42, 2056 2.8 1 1875-1889. Investigating Pseudomonas aeruginosa Gene Function During Pathogenesis Using Mobile-CRISPRi. 2078 0.4 Methods in Molecular Biology, 2024, , 13-32.

#	Article	IF	CITATIONS
2109	Modern Tools of Genome Engineering and Their Applications. , 2023, , 193-232.		0
2110	CRISPR-Cas Fundamentals and Advancements in Translational Biotechnology. , 2023, , 281-291.		0
2142	CRISPR/Cas-mediated germplasm improvement and new strategies for crop protection. , 2024, 2, .		0