Recovery of Freshwater from Wastewater: Upgrading P Energy Recovery and Minimize Residuals

Environmental Science & amp; Technology 48, 8420-8432 DOI: 10.1021/es501701s

Citation Report

#	Article	IF	CITATIONS
1	Current state of sewage treatment in China. Water Research, 2014, 66, 85-98.	5.3	383
2	Toward energy-neutral wastewater treatment: A high-rate contact stabilization process to maximally recover sewage organics. Bioresource Technology, 2015, 179, 373-381.	4.8	130
3	Environmental sustainability of an energy self-sufficient sewage treatment plant: Improvements through DEMON and co-digestion. Water Research, 2015, 74, 166-179.	5.3	128
4	On-site cogeneration with sewage biogas via high-temperature fuel cells: Benchmarking against other options based on industrial-scale data. Fuel Processing Technology, 2015, 138, 654-662.	3.7	23
5	Vitamin B ₂ -Initiated Hydroxyl Radical Generation under Visible Light in the Presence of Dissolved Iron. ACS Sustainable Chemistry and Engineering, 2015, 3, 1756-1763.	3.2	24
6	Does carbon reduction increase sustainability? A study in wastewater treatment. Water Research, 2015, 87, 522-530.	5.3	24
7	EBP2R – An innovative enhanced biological nutrient recovery activated sludge system to produce growth medium for green microalgae cultivation. Water Research, 2015, 68, 821-830.	5.3	35
8	Greenhouse Gases Emissions from Wastewater Treatment Plants: Minimization, Treatment, and Prevention. Journal of Chemistry, 2016, 2016, 1-12.	0.9	91
9	Discovery and application of exemplary models of innovation. MRS Bulletin, 2016, 41, 479-487.	1.7	0
11	Barriers to Innovation in Urban Wastewater Utilities: Attitudes of Managers in California. Environmental Management, 2016, 57, 1204-1216.	1.2	34
12	Synthesis and Stabilization of Blue-Black TiO ₂ Nanotube Arrays for Electrochemical Oxidant Generation and Wastewater Treatment. Environmental Science & Technology, 2016, 50, 11888-11894.	4.6	195
13	Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Applied Energy, 2016, 168, 706-723.	5.1	599
14	Recover energy from domestic wastewater using anaerobic membrane bioreactor: Operating parameters optimization and energy balance analysis. Energy, 2016, 98, 146-154.	4.5	64
15	The integrated processes for wastewater treatment based on the principle of microbial fuel cells: A review. Critical Reviews in Environmental Science and Technology, 2016, 46, 60-91.	6.6	144
16	Alkali-assisted membrane cleaning for fouling control of anaerobic ceramic membrane bioreactor. Bioresource Technology, 2017, 240, 25-32.	4.8	61
17	Energy use and carbon footprints differ dramatically for diverse wastewater-derived carbonaceous substrates: An integrated exploration of biokinetics and life-cycle assessment. Scientific Reports, 2017, 7, 243.	1.6	7
18	Nutrient management from biogas digester effluents: a bibliometric-based analysis of publications and patents. International Journal of Environmental Science and Technology, 2017, 14, 1739-1756.	1.8	25
19	Advances in microbial fuel cells for wastewater treatment. Renewable and Sustainable Energy Reviews, 2017, 71, 388-403.	8.2	304

TATION PEDO

CITATION REPORT

#	Article	IF	CITATIONS
20	Recovery of Ammonium by Powder Synthetic Zeolites from Wastewater Effluents: Optimization of the Regeneration Step. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	29
21	Effect of Hydraulic Retention Time on the Performance of High-Rate Activated Sludge System: a Pilot-Scale Study. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	25
22	An integrated microbial electrolysis-anaerobic digestion process combined with pretreatment of wastewater solids to improve hydrogen production. Environmental Science: Water Research and Technology, 2017, 3, 1073-1085.	1.2	25
23	Chemically induced alterations in the characteristics of fouling-causing bio-macromolecules – Implications for the chemical cleaning of fouled membranes. Water Research, 2017, 108, 115-123.	5.3	77
24	Challenges and opportunities at the nexus of energy, water, and food: A perspective from the southwest United States. MRS Energy & Sustainability, 2018, 5, 1.	1.3	10
25	Comprehensive evaluation of nitrogen removal rate and biomass, ethanol, and methane production yields by combination of four major duckweeds and three types of wastewater effluent. Bioresource Technology, 2018, 250, 464-473.	4.8	74
26	A novel concept to integrate energy recovery into potable water reuse treatment schemes. Journal of Water Reuse and Desalination, 2018, 8, 455-467.	1.2	23
28	Applications of Emerging Bioelectrochemical Technologies in Agricultural Systems: A Current Review. Energies, 2018, 11, 2951.	1.6	19
29	Research Trends on Nutrient Management From Digestates Assessed Using a Bibliometric Approach. Frontiers in Sustainable Food Systems, 2018, 2, .	1.8	8
30	Evolving wastewater infrastructure paradigm to enhance harmony with nature. Science Advances, 2018, 4, eaaq0210.	4.7	73
31	Energy production from waste: Evaluation of anaerobic digestion and bioelectrochemical systems based on energy efficiency and economic factors. Renewable and Sustainable Energy Reviews, 2018, 96, 343-351.	8.2	84
32	Lifecycle Comparison of Mainstream Anaerobic Baffled Reactor and Conventional Activated Sludge Systems for Domestic Wastewater Treatment. Environmental Science & Technology, 2018, 52, 10500-10510.	4.6	11
33	Water-energy nexus. Smart and Sustainable Built Environment, 2018, 9, 54-70.	2.2	10
34	Unit Energy Consumption as Benchmark to Select Energy Positive Retrofitting Strategies for Finnish Wastewater Treatment Plants (WWTPs): a Case Study of Mikkeli WWTP. Environmental Processes, 2018, 5, 667-681.	1.7	26
35	Towards mainstream deammonification of municipal wastewater: Partial nitrification-anammox versus partial denitrification-anammox. Science of the Total Environment, 2019, 692, 393-401.	3.9	149
36	Characterization of implementation limits and identification of optimization strategies for sustainable water resource recovery through life cycle impact analysis. Environment International, 2019, 133, 105266.	4.8	12
37	Determination of the Relationship between the Energy Content of Municipal Wastewater and Its Chemical Oxygen Demand. Environmental Science and Technology Letters, 2019, 6, 396-400.	3.9	25
38	Towards sustainable and energy efficient municipal wastewater treatment by up-concentration of organics. Progress in Energy and Combustion Science, 2019, 70, 145-168.	15.8	103

#	Article	IF	CITATIONS
39	Anaerobic digestion and biogas beneficial use at municipal wastewater treatment facilities in Colorado: A case study examining barriers to widespread implementation. Journal of Cleaner Production, 2019, 206, 97-107.	4.6	26
40	A technical-economical approach to promote the water treatment & reuse processes. Journal of Cleaner Production, 2019, 207, 85-96.	4.6	52
41	A hydraulically optimized fluidized bed UF membrane reactor (FB-UF-MR) for direct treatment of raw municipal wastewater to enable water reclamation with integrated energy recovery. Separation and Purification Technology, 2020, 235, 116165.	3.9	17
42	Nitrous oxide production from wastewater treatment: The potential as energy resource rather than potent greenhouse gas. Journal of Hazardous Materials, 2020, 387, 121694.	6.5	26
43	Recent advances in partial denitrification in biological nitrogen removal: From enrichment to application. Bioresource Technology, 2020, 298, 122444.	4.8	125
44	Influence of crude glycerol load and pH shocks on the granulation and microbial diversity of a sulfidogenic Upflow Anaerobic Sludge Blanket reactor. Chemical Engineering Research and Design, 2020, 133, 159-168.	2.7	9
45	Renewable energy recovery from sewage sludge derived from chemically enhanced precipitation. Renewable Energy, 2020, 162, 1811-1818.	4.3	22
46	Responsible science, engineering and education for water resource recovery and circularity. Environmental Science: Water Research and Technology, 2020, 6, 1952-1966.	1.2	15
47	Validation and Mechanism of a Low-Cost Graphite Carbon Electrode for Electrochemical Brine Valorization. ACS Sustainable Chemistry and Engineering, 2020, 8, 8648-8654.	3.2	6
48	Reuse of Waste Geothermal Brine: Process, Thermodynamic and Economic Analysis. Water (Switzerland), 2020, 12, 316.	1.2	12
49	Recent advancement on biological technologies and strategies for resource recovery from swine wastewater. Bioresource Technology, 2020, 303, 122861.	4.8	89
50	Flexible Nitrite Supply Alternative for Mainstream Anammox: Advances in Enhancing Process Stability. Environmental Science & Technology, 2020, 54, 6353-6364.	4.6	168
51	Stretched 1000-L microbial fuel cell. Journal of Power Sources, 2021, 483, 229130.	4.0	53
52	More than a fertilizer: wastewater-derived struvite as a high value, sustainable fire retardant. Green Chemistry, 2021, 23, 4510-4523.	4.6	18
53	Technologies for Water Reuse: Current Status and Future Challenges. Water (Switzerland), 2021, 13, 832.	1.2	0
54	Effect of operating temperature on the efficiency of ultra-short-sludge retention time activated sludge systems. Environmental Science and Pollution Research, 2021, 28, 39257-39267.	2.7	3
55	Systematic Evaluation of Emerging Wastewater Nutrient Removal and Recovery Technologies to Inform Practice and Advance Resource Efficiency. ACS ES&T Engineering, 2021, 1, 662-684.	3.7	29
56	Precious Data from Tiny Samples: Revealing the Correlation Between Energy Content and the Chemical Oxygen Demand of Municipal Wastewater by Micro-Bomb Combustion Calorimetry. Frontiers in Energy Research, 2021, 9, .	1.2	4

CITATION REPORT

#	Article	IF	CITATIONS
57	Energy efficiency assessment of China wastewater treatment plants by unit energy consumption per kg COD removed. Environmental Technology (United Kingdom), 2023, 44, 278-292.	1.2	6
58	Geographic distribution of net-zero energy wastewater treatment in China. Renewable and Sustainable Energy Reviews, 2021, 150, 111462.	8.2	9
59	Robust Nitritation of Anaerobic Digester Centrate Using Dual Stressors and Timed Alkali Additions. Environmental Science & Technology, 2021, 55, 2016-2026.	4.6	9
60	An overview of membrane bioreactor coupled bioelectrochemical systems. , 2020, , 249-272.		1
61	Energy self-sufficiency in wastewater treatment plants: perspectives, challenges, and opportunities. , 2022, , 105-122.		2
62	Integrated Design and Optimization of Water-Energy Nexus: Combining Wastewater Treatment and Energy System. Frontiers in Sustainable Cities, 2022, 4, .	1.2	1
63	Phylogenetic diversity of NO reductases, new tools for nor monitoring, and insights into N2O production in natural and engineered environments. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	3.3	2
64	Process characteristics and energy self-sufficient operation of a low-fouling anaerobic dynamic membrane bioreactor for up-concentrated municipal wastewater treatment. Science of the Total Environment, 2022, 843, 156992.	3.9	9
65	Wastewater as a Renewable Energy Source—Utilisation of Microbial Fuel Cell Technology. Energies, 2022, 15, 6928.	1.6	7
66	Benchmarking sidestream shortcut nitrogen removal processes against nitrous oxide recovery from a life cycle perspective. Journal of Cleaner Production, 2023, 384, 135530.	4.6	4
67	Chemical-Free Biologically Enhanced Primary Treatment of Raw Wastewater for Improved Capture Carbon. Water (Switzerland), 2022, 14, 3825.	1.2	0
68	Spatiotemporal pattern of greenhouse gas emissions in China's wastewater sector and pathways towards carbon neutrality. , 2023, 1, 166-175.		29
69	Impact of primary treatment methods on sludge characteristics and digestibility, and wastewater treatment plant-wide economics. Water Research, 2023, 235, 119920.	5.3	7
71	Bio-treatment of the swine wastewater and resource recovery: A sustainable approach towards circular bioeconomy. , 2023, , 299-329.		1
75	Microbial Fuel Cell and Wastewater Treatment. Springer Water, 2023, , 293-322.	0.2	0

CITATION REPORT