The in vitro and in vivo degradation behavior of poly

Polymer 55, 5111-5124 DOI: 10.1016/j.polymer.2014.08.027

Citation Report

#	Article	IF	CITATIONS
1	InÂvitro enzymatic degradation of the cross-linked poly(ε-caprolactone) implants. Polymer Degradation and Stability, 2015, 112, 10-19.	2.7	41
2	The degradation of poly(trimethylene carbonate) implants: The role of molecular weight and enzymes. Polymer Degradation and Stability, 2015, 122, 77-87.	2.7	47
3	The in Vitro and in Vivo Degradation of Cross-Linked Poly(trimethylene carbonate)-Based Networks. Polymers, 2016, 8, 151.	2.0	29
4	Studies on the <i>in vitro</i> and <i>in vivo</i> degradation behavior of amino acid derivative-based organogels. Drug Development and Industrial Pharmacy, 2016, 42, 1732-1741.	0.9	12
5	Postpolymerization Modifications of Alkeneâ€Functional Polycarbonates for the Development of Advanced Materials Biomaterials. Macromolecular Bioscience, 2016, 16, 1762-1775.	2.1	34
6	Poly(trimethylene carbonate)-based polymers engineered for biodegradable functional biomaterials. Biomaterials Science, 2016, 4, 9-24.	2.6	252
7	Fullâ€Thickness Heart Repair with an Engineered Multilayered Myocardial Patch in Rat Model. Advanced Healthcare Materials, 2017, 6, 1600549.	3.9	29
8	Synthesis of trimethylene carbonate/ <i>ïµ</i> -caprolactone copolymers initiated with zinc alkoxide: influence of copolymer chain microstructure on thermal and mechanical properties. Polymer International, 2017, 66, 1259-1268.	1.6	2
9	Oxidation Degradable Aliphatic Polycarbonates with Pendent Phenylboronic Ester. Macromolecules, 2017, 50, 23-34.	2.2	35
10	Main-chain biodegradable liquid crystal based on cholesteryl end-capped polycarbonate copolymers. Liquid Crystals, 2017, 44, 925-932.	0.9	8
11	The In Vitro Enzymatic Degradation of Cross-Linked Poly(trimethylene carbonate) Networks. Polymers, 2017, 9, 605.	2.0	17
12	Fully Printed Lightâ€Emitting Electrochemical Cells Utilizing Biocompatible Materials. Advanced Functional Materials, 2018, 28, 1705795.	7.8	56
13	Polyester elastomers for soft tissue engineering. Chemical Society Reviews, 2018, 47, 4545-4580.	18.7	168
14	A comparative study on inÂvitro degradation behavior of PLLA-based copolymer monofilaments. Polymer Degradation and Stability, 2018, 158, 148-156.	2.7	18
15	pH responsive self-assembly and drug release behavior of aliphatic liquid crystal block polycarbonate with pendant cholesteryl groups. Journal of Molecular Liquids, 2018, 266, 405-412.	2.3	10
16	Mechanical Properties and Degradability of Electrospun PCL/PLGA Blended Scaffolds as Vascular Grafts. Transactions of Tianjin University, 2019, 25, 152-160.	3.3	32
17	The in vitro enzymatic degradation of poly(trimethylene carbonate-co-2, 2′-dimethyltrimethylene) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf

18	Tailoring the degradation and mechanical properties of poly(ε-caprolactone) incorporating functional ε-caprolactone-based copolymers. Polymer Chemistry, 2019, 10, 3786-3796.	1.9	12
----	--	-----	----

#	Article	IF	CITATIONS
19	Iodine-Rich Polymersomes Enable Versatile SPECT/CT Imaging and Potent Radioisotope Therapy for Tumor in Vivo. ACS Applied Materials & Interfaces, 2019, 11, 18953-18959.	4.0	38
20	Load-bearing PTMC-beta tri-calcium phosphate and dexamethasone biphasic composite microsphere scaffolds for bone tissue engineering. Materials Letters, 2020, 260, 126939.	1.3	6
21	A composite polytrimethylene carbonate microsphere-reinforced porous scaffold for osteoblast regeneration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 587, 124325.	2.3	3
22	Lapatinib-loaded acidity-triggered charge switchable polycarbonate-doxorubicin conjugate micelles for synergistic breast cancer chemotherapy. Acta Biomaterialia, 2020, 118, 182-195.	4.1	24
23	The highly cross-linked poly(ε-caprolactone) as biodegradable implants for prostate cancer treatment-part I: Synthesis and inÂvivo degradation. Polymer Degradation and Stability, 2020, 180, 109307.	2.7	1
24	<p>Fabrication of Photo-Crosslinkable Poly(Trimethylene Carbonate)/Polycaprolactone Nanofibrous Scaffolds for Tendon Regeneration</p> . International Journal of Nanomedicine, 2020, Volume 15, 6373-6383.	3.3	14
25	The effect of molecular weight on thermal properties and degradation behavior of copolymers based on TMC and DTC. Polymer Degradation and Stability, 2020, 175, 109128.	2.7	15
26	Syntheses and characterization of anti-thrombotic and anti-oxidative Gastrodin-modified polyurethane for vascular tissue engineering. Bioactive Materials, 2021, 6, 404-419.	8.6	22
27	Aliphatic Polycarbonates from Cyclic Carbonate Monomers and Their Application as Biomaterials. Chemical Reviews, 2021, 121, 10865-10907.	23.0	150
28	Biodegradable crossâ€linked poly(1,3â€trimethylene carbonate) networks formed by gamma irradiation under vacuum. Polymers for Advanced Technologies, 2021, 32, 4373.	1.6	5
29	Controllable Degradation of Poly (trimethylene carbonate) via Self-blending with Different Molecular Weights. Polymer Degradation and Stability, 2021, 189, 109596.	2.7	11
30	2,2-Bis(hydroxymethyl) propionic acid based cyclic carbonate monomers and their (co)polymers as advanced materials for biomedical applications. Biomaterials, 2021, 275, 120953.	5.7	12
31	More Precise Control of the In Vitro Enzymatic Degradation via Ternary Self-Blending of High/Medium/Low Molecular Weight Poly(trimethylene carbonate). Frontiers in Materials, 2021, 8, .	1.2	4
32	pH-Responsive expandable polycarbonate–doxorubicin conjugate nanoparticles for fast intracellular drug release. New Journal of Chemistry, 2021, 45, 7261-7269.	1.4	2
33	Poly(trimethylene carbonate- <i>co</i> -valerolactone) copolymers are materials with tailorable properties: from soft to thermoplastic elastomers. RSC Advances, 2020, 10, 44111-44120.	1.7	7
34	Efficacy Evaluation of Ciprofloxacin-Loaded Poly (Trimethylene Carbonate) Implants in the Treatment of Chronic Osteomyelitis. Frontiers in Bioengineering and Biotechnology, 2022, 10, 864041.	2.0	2
35	Biocompatible Synthetic Polymers for Tissue Engineering Purposes. Biomacromolecules, 2022, 23, 1841-1863.	2.6	61
37	The effect of chemical composition on the degradation kinetics of high molecular weight poly(trimethylene carbonate-co-L-lactide). Polymer Degradation and Stability, 2022, 206, 110183.	2.7	0

	Сітат	CITATION REPORT		
#	Article	IF	CITATIONS	
38	Polymersome-based protein drug delivery – quo vadis?. Chemical Society Reviews, 2023, 52, 728-778.	18.7	28	
39	PCL-based hydrophobic chains grafted with two PEG-based hydrophilic branches: fluorescence and dynamic light scattering studies. Journal of Polymer Research, 2023, 30, .	1.2	2	

Aspergillus oryzae lipase-mediated in vitro enzymatic degradation of poly $(2,2\hat{a}\in 2-dimethyltrimethylene)$ Tj ETQq0 0.0 rgBT /Qverlock 10

41	Poly (trimethylene carbonate)/doxycycline hydrochloride films in the treatment of Achilles tendon defect in rats. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	0	
----	---	-----	---	--