Three-dimensional speckle strain echocardiography is a strain in the evaluation of left ventricular function

International Journal of Cardiology 176, 360-366 DOI: 10.1016/j.ijcard.2014.07.015

Citation Report

#	Article	IF	CITATIONS
1	Comparison of strain measurement from multimodality tissue tracking with strain-encoding MRI and harmonic ophase MRI in Pulmonary Hypertension. Journal of Cardiovascular Magnetic Resonance, 2014, 16, O38.	1.6	0
2	Letter by Zagatina et al. regarding the article, "Three-dimensional speckle strain echocardiography is more accurate and efficient than 2D strain in the evaluation of left ventricular functionâ€: International Journal of Cardiology, 2014, 177, 634.	0.8	0
3	Multimodality Imaging in Cardiooncology. Journal of Oncology, 2015, 2015, 1-9.	0.6	23
4	Alterations of left ventricular deformation and cardiac sympathetic derangement in patients with systolic heart failure: a 3D speckle tracking echocardiography and cardiac 123I-MIBG study. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 1601-1611.	3.3	7
5	Consistencies of 3D TTE global longitudinal strain of both ventricles between assessors were worse for 2D, but better for 3D ventricular EF. International Journal of Cardiology, 2015, 198, 140-151.	0.8	8
6	Comparison of strain measurement from multimodality tissue tracking with strain-encoding MRI and harmonic phase MRI in pulmonary hypertension. International Journal of Cardiology, 2015, 182, 342-348.	0.8	31
7	Principles of transthoracic echocardiographic evaluation. Nature Reviews Cardiology, 2015, 12, 426-440.	6.1	14
8	Evaluation of myocardial infarction size with three-dimensional speckle tracking echocardiography: a comparison with single photon emission computed tomography. International Journal of Cardiovascular Imaging, 2015, 31, 1571-1581.	0.7	10
9	Real-time three-dimensional speckle tracking echocardiography: technical aspects and clinical applications. Research Reports in Clinical Cardiology, 2016, Volume 7, 147-158.	0.2	3
10	Advanced Echocardiographic Techniques in Detection of Cardiotoxicity. Current Treatment Options in Cardiovascular Medicine, 2016, 18, 28.	0.4	3
11	Epicardial Adipose Tissue Volume and Left Ventricular Myocardial Function Using 3-Dimensional Speckle Tracking Echocardiography. Canadian Journal of Cardiology, 2016, 32, 1485-1492.	0.8	30
12	Two-dimensional and three-dimensional left ventricular deformation analysis: a study in competitive athletes. International Journal of Cardiovascular Imaging, 2016, 32, 1697-1705.	0.7	8
13	Feasibility of One-Beat Real-Time Full-Volume Three-Dimensional Echocardiography for Assessing Left Ventricular Volumes and Deformation Parameters. Journal of the American Society of Echocardiography, 2016, 29, 853-860.e2.	1.2	23
14	Sphingosine-1-Phosphate Receptor Agonist Fingolimod Increases Myocardial Salvage and Decreases Adverse Postinfarction Left Ventricular Remodeling in a Porcine Model of Ischemia/Reperfusion. Circulation, 2016, 133, 954-966.	1.6	155
15	A new method to estimate left ventricular circumferential midwall systolic function by standard echocardiography: Concordance between models and validation by speckle tracking. International Journal of Cardiology, 2016, 203, 947-958.	0.8	3
16	Left Ventricular Systolic Myocardial Deformation: AÂComparison of Two- and Three-Dimensional Echocardiography in Children. Journal of the American Society of Echocardiography, 2017, 30, 974-983.	1.2	12
17	Evaluation of Cardiovascular Toxicity Associated with Treatments Containing Proteasome Inhibitors in Multiple Myeloma Therapy. High Blood Pressure and Cardiovascular Prevention, 2018, 25, 209-218.	1.0	18
18	Autres techniques d'imagerie ultrasonore cardiovasculaire. , 2018, , 145-207.		0

#	Article	IF	Citations
19	Principles of Three-Dimensional Ultrasound. , 2019, , 43-54.e2.		0
20	Value of threeâ€dimensional speckleâ€tracking imaging in detecting left ventricular systolic function in patients with dilated cardiomyopathy. Echocardiography, 2019, 36, 1492-1495.	0.3	9
21	Novel Mechanisms in Heart Failure With Preserved, Midrange, and Reduced Ejection Fraction. Frontiers in Physiology, 2019, 10, 874.	1.3	20
22	Normal Ranges of Left Ventricular Strain by Three-Dimensional Speckle-Tracking Echocardiography in Adults: A Systematic Review and Meta-Analysis. Journal of the American Society of Echocardiography, 2019, 32, 1586-1597.e5.	1.2	41
23	Correlation and agreement between 2D and 3D speckleâ€ŧracking echocardiography for left ventricular volumetric, strain, and rotational parameters in healthy volunteers and in patients with mild mitral stenosis. Echocardiography, 2019, 36, 897-904.	0.3	2
24	Assessment of Permanent Selective His Bundle Pacing in Left Ventricular Synchronization Using 3-D Speckle Tracking Echocardiography. Ultrasound in Medicine and Biology, 2019, 45, 385-394.	0.7	6
25	Myocardial Deformation Pattern Differs between Ischemic and Non-ischemic Dilated Cardiomyopathy: The Diagnostic Value of Longitudinal Strains. Ultrasound in Medicine and Biology, 2020, 46, 233-243.	0.7	14
26	Normal Ranges of Left Ventricular Strain by Three-Dimensional Speckle-Tracking Echocardiography in Children: A Meta-Analysis. Journal of the American Society of Echocardiography, 2020, 33, 1407-1408.e1.	1.2	1
27	Carotid intima-media thickness and subclinical left heart dysfunction in the general population. Atherosclerosis, 2020, 305, 42-49.	0.4	14
28	A review of current trends in three-dimensional analysis of left ventricular myocardial strain. Cardiovascular Ultrasound, 2020, 18, 23.	0.5	29
29	Quantitative evaluation of subclinical left ventricular dysfunction in patients with type 2 diabetes mellitus by three-dimensional echocardiography. International Journal of Cardiovascular Imaging, 2020, 36, 1311-1319.	0.7	15
30	Left ventricular strain values using 3D speckle-tracking echocardiography in healthy adults aged 20 to 72Âyears. International Journal of Cardiovascular Imaging, 2021, 37, 1189-1201.	0.7	10
31	Assessment of Myocardial Fibrosis Using Two-Dimensional and Three-Dimensional Speckle Tracking Echocardiography in Dilated Cardiomyopathy With Advanced Heart Failure. Journal of Cardiac Failure, 2021, 27, 651-661.	0.7	18
32	Left ventricular longitudinal strain is a major determinant of CT-derived three-dimensional maximum principal strain: comparison with two-dimensional speckle tracking echocardiography. Heart and Vessels, 2022, 37, 31-39.	0.5	2
33	Incremental Value of Three-dimensional Speckle-tracking Echocardiography for Evaluating Left Ventricular Systolic Function in Patients with Coronary Slow Flow. Current Problems in Cardiology, 2022, 47, 100928.	1.1	7
34	Quantification of Myocardial Deformation in Patients with Takayasu Arteritis by Cardiovascular Magnetic Resonance Feature Tracking Imaging. Journal of Magnetic Resonance Imaging, 2021, , .	1.9	4
35	Telemonitoring and hemodynamic monitoring to reduce hospitalization rates in heart failure: a systematic review and meta-analysis of randomized controlled trials and real-world studies. Journal of Geriatric Cardiology, 2018, 15, 298-309.	0.2	18
36	Left Ventricular Systolic Dysfunction in Asymptomatic Marfan Syndrome Patients Is Related to the Severity of Gene Mutation: Insights from the Novel Three Dimensional Speckle Tracking Echocardiography. PLoS ONE, 2015, 10, e0124112.	1.1	16

CITATION REPORT

#	Article	IF	CITATIONS
37	Strain echocardiography and myocardial mechanics: From basics to clinical applications. Journal of Cardiovascular Echography, 2015, 25, 1.	0.1	31
39	Predictors of Impaired Left Ventricular Global Longitudinal Strain in Patients with Essential Hypertension and Preserved Ejection Fraction. Open Cardiovascular Medicine Journal, 2022, 16, .	0.6	0

CITATION REPORT