Assessing agricultural risks of climate change in the 21s model intercomparison

Proceedings of the National Academy of Sciences of the Unite 111, 3268-3273

DOI: 10.1073/pnas.1222463110

Citation Report

#	Article	IF	CITATIONS
1	Water risk as world warms. Nature, 2014, 505, 10-11.	13.7	71
2	Climate change and sectors of the surface water cycle In CMIP5 projections. Hydrology and Earth System Sciences, 2014, 18, 5317-5329.	1.9	6
3	Climate impact research: beyond patchwork. Earth System Dynamics, 2014, 5, 399-408.	2.7	29
4	Crop heat stress in the context of Earth System modeling. Environmental Research Letters, 2014, 9, 061002.	2.2	8
5	Getting caught with our plants down: the risks of a global crop yield slowdown from climate trends in the next two decades. Environmental Research Letters, 2014, 9, 074003.	2.2	82
6	Climate change effects on agriculture: Economic responses to biophysical shocks. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3274-3279.	3.3	568
7	Harmonization and translation of crop modeling data to ensure interoperability. Environmental Modelling and Software, 2014, 62, 495-508.	1.9	45
8	Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3239-3244.	3.3	795
9	Making the most of climate impacts ensembles. Nature Climate Change, 2014, 4, 77-80.	8.1	54
10	Uncertainties in Ecosystem Service Maps: A Comparison on the European Scale. PLoS ONE, 2014, 9, e109643.	1.1	149
11	New parsimonious simulation methods and tools to assess future food and environmental security of farm populations. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20120280.	1.8	51
12	Impacts of Climate Change on Food Availability: Agriculture. , 2014, , 681-688.		1
13	Climate change induced transformations of agricultural systems: insights from a global model. Environmental Research Letters, 2014, 9, 124018.	2.2	64
14	Carbon–Temperature–Water change analysis for peanut production under climate change: a prototype for the <scp>AgMIP</scp> Coordinated Climate rop Modeling Project (C3 <scp>MP</scp>). Global Change Biology, 2014, 20, 394-407.	4.2	48
15	Ecological genomics and process modeling of local adaptation to climate. Current Opinion in Plant Biology, 2014, 18, 66-72.	3.5	26
16	Evaluating the utility of dynamical downscaling in agricultural impacts projections. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8776-8781.	3.3	68
17	Can climate-smart agriculture reverse the recent slowing of rice yield growth in China?. Agriculture, Ecosystems and Environment, 2014, 196, 125-136.	2.5	44
18	Climate-smart agriculture global research agenda: scientific basis for action. Agriculture and Food Security, 2014, 3, .	1.6	165

#	Article	IF	CITATIONS
19	Hotspots of climate change impacts in subâ€6aharan Africa and implications for adaptation and development. Global Change Biology, 2014, 20, 2505-2517.	4.2	82
20	Europe's diminishing bread basket. Nature Climate Change, 2014, 4, 541-542.	8.1	4
21	Fertilizing hidden hunger. Nature Climate Change, 2014, 4, 540-541.	8.1	34
22	Multisectoral climate impact hotspots in a warming world. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3233-3238.	3.3	149
23	The elephant, the blind, and the intersectoral intercomparison of climate impacts: Fig. 1 Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3225-3227.	3.3	48
24	The parallel system for integrating impact models and sectors (pSIMS). Environmental Modelling and Software, 2014, 62, 509-516.	1.9	101
25	Food Security and Food Production Systems. , 0, , 485-534.		67
26	How climate change will affect water utilities. Journal - American Water Works Association, 2014, 106, 176-192.	0.2	7
27	Food security and sustainable resource management. Water Resources Research, 2015, 51, 4966-4985.	1.7	97
28	A physiological and biophysical model of coppice willow (<scp><i>S</i></scp> <i>alix</i> spp.) production yields for the contiguous <scp>USA</scp> in current and future climate scenarios. Plant, Cell and Environment, 2015, 38, 1850-1865.	2.8	30
29	Simulating crop phenology in the Community Land Model and its impact on energy and carbon fluxes. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 310-325.	1.3	40
30	Global biomass production potentials exceed expected future demand without the need for cropland expansion. Nature Communications, 2015, 6, 8946.	5.8	141
31	Simulated carbon emissions from land-use change are substantially enhanced by accounting for agricultural management. Environmental Research Letters, 2015, 10, 124008.	2.2	103
32	Implications of climate mitigation for future agricultural production. Environmental Research Letters, 2015, 10, 125004.	2.2	49
33	Climate Change and African Americans in the USA. Geography Compass, 2015, 9, 579-591.	1.5	17
34	ECONOMIC IMPLICATIONS OF CLIMATE CHANGE: HUMAN HEALTH IMPACTS THROUGH UNDERNOURISHMENT. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2015, 71, II_23-II_34.	0.1	O
35	Simulation of the phenological development of wheat and maize at the global scale. Global Ecology and Biogeography, 2015, 24, 1018-1029.	2.7	54
36	Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. Environmental Research Letters, 2015, 10, 085010.	2.2	216

#	ARTICLE	IF	Citations
37	Biophysical impacts of climateâ€smart agriculture in the <scp>M</scp> idwest <scp>U</scp> nited <scp>S</scp> tates. Plant, Cell and Environment, 2015, 38, 1913-1930.	2.8	37
38	Climate change impacts on US agriculture and forestry: benefits of global climate stabilization. Environmental Research Letters, 2015, 10, 095004.	2.2	35
39	Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture. Environmental Research Letters, 2015, 10, 094021.	2.2	84
40	Impacts of climate change on agricultural water management: a review. Wiley Interdisciplinary Reviews: Water, 2015, 2, 439-455.	2.8	41
41	The Impact of Parameterized Convection on the Simulation of Crop Processes. Journal of Applied Meteorology and Climatology, 2015, 54, 1283-1296.	0.6	15
42	On inclusion of water resource management in Earth system models – Part 2: Representation of water supply and allocation and opportunities for improved modeling. Hydrology and Earth System Sciences, 2015, 19, 63-90.	1.9	102
43	Mitigation of agricultural emissions in the tropics: comparing forest land-sparing options at the national level. Biogeosciences, 2015, 12, 4809-4825.	1.3	18
44	Modelling the response of yields and tissue C : N to changes in atmospheric CO ₂ and N management in the main wheat regions of western Europe. Biogeosciences, 2015, 12, 2489-2515.	1.3	47
45	Modelling the Economic Impacts of Climate Change on Global and European Agriculture. Review of Economic Structural Approaches. Economics, 2015, 9, .	0.2	9
46	Impacts of Climate Variability and Change on Rainfed Sorghum and Maize: Implications for Food Security Policy in Tanzania. Journal of Agricultural Science, 2015, 7, .	0.1	15
47	On inclusion of water resource management in Earth system models $\hat{a} \in \text{``Part 1: Problem definition and representation of water demand. Hydrology and Earth System Sciences, 2015, 19, 33-61.}$	1.9	147
48	Finding Ways to Improve Australia's Food Security Situation. Agriculture (Switzerland), 2015, 5, 286-312.	1.4	7
49	The Soil Degradation Paradox: Compromising Our Resources When We Need Them the Most. Sustainability, 2015, 7, 866-879.	1.6	64
50	Climate analogs for agricultural impact projection and adaptation—a reliability test. Frontiers in Environmental Science, 2015, 3, .	1.5	7
51	Soil carbon management in large-scale Earth system modelling: implications for crop yields and nitrogen leaching. Earth System Dynamics, 2015, 6, 745-768.	2.7	40
52	A multi-model analysis of change in potential yield of major crops in China under climate change. Earth System Dynamics, 2015, 6, 45-59.	2.7	41
53	A framework for the cross-sectoral integration of multi-model impact projections: land use decisions under climate impacts uncertainties. Earth System Dynamics, 2015, 6, 447-460.	2.7	38
54	US Maize Data Reveals Adaptation to Heat and Water Stress. SSRN Electronic Journal, 2015, , .	0.4	16

#	ARTICLE	IF	CITATIONS
55	Climate change impact and adaptation research requires integrated assessment and farming systems analysis: a case study in the Netherlands. Environmental Research Letters, 2015, 10, 045004.	2.2	65
56	Crop yield: challenges from a metabolic perspective. Current Opinion in Plant Biology, 2015, 25, 79-89.	3.5	69
57	Potential impact of future climate change on crop yield in northeastern China. Advances in Atmospheric Sciences, 2015, 32, 889-897.	1.9	23
58	How model and input uncertainty impact maize yield simulations in West Africa. Environmental Research Letters, 2015, 10, 024017.	2.2	37
59	The impact of climate extremes and irrigation on US crop yields. Environmental Research Letters, 2015, 10, 054013.	2.2	198
60	Extending the Shared Socioeconomic Pathways for sub-national impacts, adaptation, and vulnerability studies. Global Environmental Change, 2015, 33, 83-96.	3.6	91
61	The Global Gridded Crop Model Intercomparison: data and modeling protocols for Phase 1 (v1.0). Geoscientific Model Development, 2015, 8, 261-277.	1.3	190
62	Evaluating maize growth models "CERES-Maize―and "IXIM-Maize―under elevated temperature conditions. Journal of Crop Science and Biotechnology, 2015, 18, 265-272.	0.7	5
63	Comparison of regional climate scenario data by a spatial resolution for the impact assessment of the uncertainty associated with meteorological inputs data on crop yield simulations in Korea. Journal of Crop Science and Biotechnology, 2015, 18, 249-255.	0.7	7
64	Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Global Change Biology, 2015, 21, 1328-1341.	4.2	339
65	Development of mpi_EPIC model for global agroecosystem modeling. Computers and Electronics in Agriculture, 2015, 111, 48-54.	3.7	6
66	Crop wild relatives of pigeonpea [Cajanus cajan (L.) Millsp.]: Distributions, ex situ conservation status, and potential genetic resources for abiotic stress tolerance. Biological Conservation, 2015, 184, 259-270.	1.9	134
67	Exploring climate change impacts and adaptation options for maize production in the Central Rift Valley of Ethiopia using different climate change scenarios and crop models. Climatic Change, 2015, 129, 145-158.	1.7	102
68	Crop yield response to climate change varies with cropping intensity. Global Change Biology, 2015, 21, 1679-1688.	4.2	54
69	How limiting factors drive agricultural adaptation to climate change. Agriculture, Ecosystems and Environment, 2015, 200, 178-185.	2.5	158
70	Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nature Reviews Genetics, 2015, 16, 237-251.	7.7	796
71	Simulated impacts of climate change and agricultural land use change on surface water quality with and without adaptation management strategies. Agriculture, Ecosystems and Environment, 2015, 213, 47-60.	2.5	48
72	Biodiversity conservation: The key is reducing meat consumption. Science of the Total Environment, 2015, 536, 419-431.	3.9	300

#	Article	IF	CITATIONS
73	From field to atlas: Upscaling of location-specific yield gap estimates. Field Crops Research, 2015, 177, 98-108.	2.3	145
74	Emulating global climate change impacts on crop yields. Statistical Modelling, 2015, 15, 499-525.	0.5	27
75	How good is good enough? Data requirements for reliable crop yield simulations and yield-gap analysis. Field Crops Research, 2015, 177, 49-63.	2.3	253
76	Physiological requirements for wheat ideotypes in response to drought threat. Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	24
77	The role of international trade in managing food security risks from climate change. Food Security, 2015, 7, 275-290.	2.4	103
78	The challenges of sustainably feeding a growing planet. Food Security, 2015, 7, 185-198.	2.4	66
79	ROS-mediated abiotic stress-induced programmed cell death in plants. Frontiers in Plant Science, 2015, 6, 69.	1.7	571
80	Variations in the sensitivity of US maize yield to extreme temperatures by region and growth phase. Environmental Research Letters, 2015, 10, 034009.	2.2	81
81	Prediction of Maize Yield Response to Climate Change with Climate and Crop Model Uncertainties. Journal of Applied Meteorology and Climatology, 2015, 54, 785-794.	0.6	22
82	Land-Use and Carbon Cycle Responses to Moderate Climate Change: Implications for Land-Based Mitigation?. Environmental Science & Environmental Science	4.6	36
83	Greenhouse-gas payback times for crop-basedÂbiofuels. Nature Climate Change, 2015, 5, 604-610.	8.1	44
84	Global food security & Company and Social Change, 2015, 98, 223-233.	6.2	33
85	Sustainable intensification: overcoming land and water constraints on food production. Food Security, 2015, 7, 235-245.	2.4	69
86	Assessment of maize growth and yield using crop models under present and future climate in southwestern Ethiopia. Agricultural and Forest Meteorology, 2015, 214-215, 252-265.	1.9	132
87	Climate change impacts on European crop yields: Do we need to consider nitrogen limitation?. European Journal of Agronomy, 2015, 71, 123-134.	1.9	45
88	Emulating maize yields from global gridded crop models using statistical estimates. Agricultural and Forest Meteorology, 2015, 214-215, 134-147.	1.9	27
89	Diversity in Plant Breeding: A New Conceptual Framework. Trends in Plant Science, 2015, 20, 604-613.	4.3	163
90	Impact of climate change on staple food crop production in Nigeria. Climatic Change, 2015, 132, 321-336.	1.7	19

#	Article	IF	Citations
91	Climate and southern Africa's water–energy–food nexus. Nature Climate Change, 2015, 5, 837-846.	8.1	328
92	Modeling climate change impact on potato crop phenology, and risk of frost damage and heat stress in northern Europe. Agricultural and Forest Meteorology, 2015, 214-215, 281-292.	1.9	57
93	Sowing rules for estimating rainfed yield potential of sorghum and maize in Burkina Faso. Agricultural and Forest Meteorology, 2015, 214-215, 208-218.	1.9	34
94	State of the World 2015., 2015,,.		11
95	The Agricultural Model Intercomparison and Improvement Project: Phase I Activities by a Global Community of Science. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2015, , 3-24.	0.4	8
96	The AgMIP GRIDded Crop Modeling Initiative (AgGRID) and the Global Gridded Crop Model Intercomparison (GGCMI). ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2015, , 175-189.	0.4	3
97	Rising temperatures reduce global wheatÂproduction. Nature Climate Change, 2015, 5, 143-147.	8.1	1,544
98	Multimodel ensembles of wheat growth: many models are better than one. Global Change Biology, 2015, 21, 911-925.	4.2	387
99	Elucidating the impact of temperature variability and extremes on cereal croplands through remote sensing. Global Change Biology, 2015, 21, 1541-1551.	4.2	47
101	ORCHIDEE-CROP (v0), a new process-based agro-land surface model: model description and evaluation over Europe. Geoscientific Model Development, 2016, 9, 857-873.	1.3	51
102	Sensitivity of Maize Yield Potential to Regional Climate in the Southwestern U.S Transactions of the ASABE, 2016, 59, 1745-1757.	1.1	4
104	The Vulnerability, Impacts, Adaptation and Climate Services Advisory Board (VIACS AB v1.0) contribution to CMIP6. Geoscientific Model Development, 2016, 9, 3493-3515.	1.3	31
105	Roles of Genomics in Addressing Global Food Security. , 2016, , 259-270.		1
106	Regional Variations of Optimal Sowing Dates of Maize for the Southwestern U.S Transactions of the ASABE, 2016, 59, 1759-1769.	1.1	2
107	Climate, Water Management, and Land Use: Estimating Potential Potato and Corn Production in the U.S. Northeastern Seaboard Region. Transactions of the ASABE, 2016, 59, 1539-1553.	1.1	17
108	Differential climate impacts for policy-relevant limits to global warming: the case of 1.5†°C and 2†°C. Earth System Dynamics, 2016, 7, 327-351.	2.7	508
109	Drought Risk Assessment Based on Vulnerability Surfaces: A Case Study of Maize. Sustainability, 2016, 8, 813.	1.6	35
110	Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations. PLoS ONE, 2016, 11, e0151782.	1.1	78

#	ARTICLE	IF	CITATIONS
111	Comparative Transcriptome Analysis Reveals Heat-Responsive Genes in Chinese Cabbage (Brassica rapa) Tj ETQq	0 0 0 rgB1	「Overlock 1046
112	Plant Abiotic Stress Challenges from the Changing Environment. Frontiers in Plant Science, 2016, 7, 1123.	1.7	252
113	Agriculture in West Africa in the Twenty-First Century: Climate Change and Impacts Scenarios, and Potential for Adaptation. Frontiers in Plant Science, 2016, 7, 1262.	1.7	227
114	Rice Free-Air Carbon Dioxide Enrichment Studies to Improve Assessment of Climate Change Effects on Rice Agriculture. Advances in Agricultural Systems Modeling, 2016, , 45-68.	0.3	22
115	Testing Approaches and Components in Physiologically Based Crop Models for Sensitivity to Climatic Factors. Advances in Agricultural Systems Modeling, 0 , $1-31$.	0.3	1
116	Impact of Climate Change on the Food Chain. , 2016, , .		0
117	A network-based approach for semi-quantitative knowledge mining and its application to yield variability. Environmental Research Letters, 2016, 11, 123001.	2,2	13
118	Empirical validation of the InVEST water yield ecosystem service model at a national scale. Science of the Total Environment, 2016, 569-570, 1418-1426.	3.9	240
119	An overview of available crop growth and yield models for studies and assessments in agriculture. Journal of the Science of Food and Agriculture, 2016, 96, 709-714.	1.7	98
120	Uncertainty in future agro-climate projections in the United States and benefits of greenhouse gas mitigation. Environmental Research Letters, 2016, 11, 055001.	2.2	13
121	Integrated crop water management might sustainably halve the global food gap. Environmental Research Letters, 2016, 11, 025002.	2,2	182
122	Testing the responses of four wheat crop models to heat stress at anthesis and grain filling. Global Change Biology, 2016, 22, 1890-1903.	4.2	107
123	Effects of climate change on the yield of winter wheat in the eastern Mediterranean and Middle East. Climate Research, 2016, 69, 129-141.	0.4	20
124	Diet change and food loss reduction: What is their combined impact on global water use and scarcity?. Earth's Future, 2016, 4, 62-78.	2.4	69
125	Toward climate-smart agriculture in West Africa: a review of climate change impacts, adaptation strategies and policy developments for the livestock, fishery and crop production sectors. Agriculture and Food Security, 2016, 5, .	1.6	124
126	Crop yield changes induced by emissions of individual climateâ€eltering pollutants. Earth's Future, 2016, 4, 373-380.	2.4	19
127	Noahâ€MPâ€Crop: Introducing dynamic crop growth in the Noahâ€MP land surface model. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,953.	1.2	61
128	The Role of Climate Covariability on Crop Yields in the Conterminous United States. Scientific Reports, 2016, 6, 33160.	1.6	53

#	ARTICLE	IF	CITATIONS
129	Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans. Journal of Experimental Botany, 2017, 68, erw433.	2.4	118
130	Climate change impacts on farm production, landscape appearance, and the environment: Policy scenario results from an integrated field-farm-landscape model in Austria. Agricultural Systems, 2016, 145, 39-50.	3.2	31
131	Development and evaluation of new modelling solutions to simulate hazelnut (Corylus avellana L.) growth and development. Ecological Modelling, 2016, 329, 86-99.	1.2	19
132	Climate change adaptation and mitigation in smallholder crop–livestock systems in sub-Saharan Africa: a call for integrated impact assessments. Regional Environmental Change, 2016, 16, 2331-2343.	1.4	100
133	Can crop simulation models be used to predict local to regional maize yields and total production in the U.S. Corn Belt?. Field Crops Research, 2016, 192, 1-12.	2.3	67
134	Engineering solutions for food-energy-water systems: it is more than engineering. Journal of Environmental Studies and Sciences, 2016, 6, 172-182.	0.9	43
135	Global and regional health effects of future food production under climate change: a modelling study. Lancet, The, 2016, 387, 1937-1946.	6.3	318
136	Multi-wheat-model ensemble responses to interannual climate variability. Environmental Modelling and Software, 2016, 81, 86-101.	1.9	50
137	Regional disparities in the beneficial effects of rising CO2 concentrations on crop waterÂproductivity. Nature Climate Change, 2016, 6, 786-790.	8.1	190
138	The global-scale impacts of climate change: the QUEST-GSI project. Climatic Change, 2016, 134, 343-352.	1.7	7
139	Gaps in agricultural climate adaptation research. Nature Climate Change, 2016, 6, 433-435.	8.1	63
140	Performance of DSSAT-Nwheat across a wide range of current and future growing conditions. European Journal of Agronomy, 2016, 81, 27-36.	1.9	58
141	Global assessment of nitrogen losses and trade-offs with yields from major crop cultivations. Science of the Total Environment, 2016, 572, 526-537.	3.9	49
142	Calibrationâ€induced uncertainty of the EPIC model to estimate climate change impact on global maize yield. Journal of Advances in Modeling Earth Systems, 2016, 8, 1358-1375.	1.3	37
143	Toward large-scale crop production forecasts for global food security. IBM Journal of Research and Development, 2016, 60, 5:1-5:11.	3.2	5
144	A Review of Recent Advances in Research on Extreme Heat Events. Current Climate Change Reports, 2016, 2, 242-259.	2.8	284
145	A framework to use crop models for multi-objective constrained optimization of irrigation strategies. Environmental Modelling and Software, 2016, 86, 145-157.	1.9	19
146	Increased climate risk in Brazilian double cropping agriculture systems: Implications for land use in Northern Brazil. Agricultural and Forest Meteorology, 2016, 228-229, 286-298.	1.9	75

#	Article	IF	CITATIONS
147	Accounting for interannual variability in agricultural intensification: The potential of crop selection in Sub-Saharan Africa. Agricultural Systems, 2016, 148, 159-168.	3.2	10
148	Modelling impacts of climate change on arable crop diseases: progress, challenges and applications. Current Opinion in Plant Biology, 2016, 32, 101-109.	3.5	96
149	Adaptation of Potato (Solanum tuberosum) and Tomato (S. lycopersicum) to Climate Change. , 2016, , 81-86.		0
150	Simulating tropical forage growth and biomass accumulation: an overview of model development and application. Grass and Forage Science, 2016, 71, 54-65.	1.2	22
151	Drought Stress Tolerance in Plants: Insights from Metabolomics. , 2016, , 187-216.		18
152	Multi-factor, multi-state, multi-model scenarios: Exploring food and climate futures for Southeast Asia. Environmental Modelling and Software, 2016, 83, 255-270.	1.9	49
153	The Challenge of a $4\hat{A}^{\circ}\text{C}$ World by 2100. Hexagon Series on Human and Environmental Security and Peace, 2016, , 267-283.	0.2	12
154	Implications of climate change mitigation for sustainable development. Environmental Research Letters, 2016, 11, 104010.	2.2	40
155	Field warming experiments shed light on the wheat yield response to temperature in China. Nature Communications, 2016, 7, 13530.	5.8	73
156	Responding to Global Challenges in Food, Energy, Environment and Water: Risks and Options Assessment for Decisionâ€Making. Asia and the Pacific Policy Studies, 2016, 3, 275-299.	0.6	45
157	Sucrose Transporter <i>ZmSut1</i> Expression and Localization Uncover New Insights into Sucrose Phloem Loading. Plant Physiology, 2016, 172, 1876-1898.	2.3	81
158	Lessons from climate modeling on the design and use of ensembles for crop modeling. Climatic Change, 2016, 139, 551-564.	1.7	66
159	Similar estimates of temperature impacts on global wheat yield by three independent methods. Nature Climate Change, 2016, 6, 1130-1136.	8.1	352
160	Science and policy characteristics of the Paris Agreement temperature goal. Nature Climate Change, 2016, 6, 827-835.	8.1	536
161	Mind the gap – the case for medium level emission scenarios. Climatic Change, 2016, 138, 361-367.	1.7	5
162	Attaining food and environmental security in an era of globalization. Global Environmental Change, 2016, 41, 195-205.	3.6	28
163	Predicting distribution of major forest tree species to potential impacts of climate change in the central Himalayan region. Ecological Engineering, 2016, 97, 593-609.	1.6	73
164	Exploring the biophysical option space for feeding the world without deforestation. Nature Communications, 2016, 7, 11382.	5.8	221

#	Article	IF	CITATIONS
165	Adaptation Through Climate Smart Agriculture: Status and Determinants in Coastal Bangladesh. Climate Change Management, 2016, , 157-178.	0.6	3
166	Climate analogues suggest limited potential for intensification of production on current croplands under climate change. Nature Communications, 2016, 7, 12608.	5.8	80
167	The impact of high-end climate change on agricultural welfare. Science Advances, 2016, 2, e1501452.	4.7	118
168	The importance of climate change and nitrogen use efficiency for future nitrous oxide emissions from agriculture. Environmental Research Letters, 2016, 11, 094003.	2.2	51
169	IMPLICATION OF PARIS AGREEMENT IN THE CONTEXT OF LONG-TERM CLIMATE MITIGATION TARGET. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2016, 72, I_223-I_231.	0.1	3
170	Simulating countyâ€level crop yields in the <scp>C</scp> onterminous <scp>U</scp> nited <scp>S</scp> tates using the <scp>C</scp> ommunity <scp>L</scp> and <scp>M</scp> odel: <scp>T</scp> he effects of optimizing irrigation and fertilization. Journal of Advances in Modeling Earth Systems, 2016, 8, 1912-1931.	1.3	26
171	Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations. Nature Communications, 2016, 7, 11872.	5.8	179
172	Implication of Paris Agreement in the context of long-term climate mitigation goals. SpringerPlus, 2016, 5, 1620.	1.2	34
173	Economic implications of climate change impacts on human health through undernourishment. Climatic Change, 2016, 136, 189-202.	1.7	72
174	Dynamic linkages among energy consumption, air pollution, greenhouse gas emissions and agricultural production in Pakistan: sustainable agriculture key to policy success. Natural Hazards, 2016, 84, 367-381.	1.6	84
175	Vulnerabilities to agricultural production shocks: An extreme, plausible scenario for assessment of risk for the insurance sector. Climate Risk Management, 2016, 13, 1-9.	1.6	37
176	Key knowledge and data gaps in modelling the influence of CO2 concentration on the terrestrial carbon sink. Journal of Plant Physiology, 2016, 203, 3-15.	1.6	41
177	Drivers and patterns of land biosphere carbon balance reversal. Environmental Research Letters, 2016, 11, 044002.	2.2	38
178	Vulnerability of Indian mustard (Brassica juncea (L.) Czernj. Cosson) to climate variability and future adaptation strategies. Mitigation and Adaptation Strategies for Global Change, 2016, 21, 403-420.	1.0	6
179	Building confidence in projections of the responses of living marine resources to climate change. ICES Journal of Marine Science, 2016, 73, 1283-1296.	1.2	106
180	Drought hazard assessment in typical corn cultivated areas of China at present and potential climate change. Natural Hazards, 2016, 81, 1323-1331.	1.6	40
181	Spatial sampling of weather data for regional crop yield simulations. Agricultural and Forest Meteorology, 2016, 220, 101-115.	1.9	35
182	Impact of progressive global warming on the global-scale yield of maize and soybean. Climatic Change, 2016, 134, 417-428.	1.7	41

#	Article	IF	Citations
183	Calibration and validation of APSIM-Wheat and CERES-Wheat for spring wheat under rainfed conditions: Models evaluation and application. Computers and Electronics in Agriculture, 2016, 123, 384-401.	3.7	96
184	Varying applicability of four different satellite-derived soil moisture products to global gridded crop model evaluation. International Journal of Applied Earth Observation and Geoinformation, 2016, 48, 51-60.	1.4	16
185	The <i><scp>A</scp>rabidopsis</i> transcriptional regulator <scp>DPB</scp> 3â€1 enhances heat stress tolerance without growth retardation in rice. Plant Biotechnology Journal, 2016, 14, 1756-1767.	4.1	55
186	Development and Evaluation of High-Resolution Climate Simulations over the Mountainous Northeastern United States. Journal of Hydrometeorology, 2016, 17, 881-896.	0.7	15
187	Rapid aggregation of global gridded crop model outputs to facilitate cross-disciplinary analysis of climate change impacts in agriculture. Environmental Modelling and Software, 2016, 75, 193-201.	1.9	40
188	Key genes involved in desiccation tolerance and dormancy across life forms. Plant Science, 2016, 251, 162-168.	1.7	40
189	Assessing future drought impacts on yields based on historical irrigation reaction to drought for four major crops in Kansas. Science of the Total Environment, 2016, 550, 851-860.	3.9	20
190	A critique of climate damage modeling: Carbon fertilization, adaptation, and the limits of FUND. Energy Research and Social Science, 2016, 12, 62-67.	3.0	15
191	Global investigation of impacts of PET methods on simulating crop-water relations for maize. Agricultural and Forest Meteorology, 2016, 221, 164-175.	1.9	57
192	Cropping frequency and area response to climate variability can exceed yield response. Nature Climate Change, 2016, 6, 601-604.	8.1	115
193	Scenarios for Australian agricultural production and land use to 2050. Agricultural Systems, 2016, 142, 70-83.	3.2	47
194	Timing of rice maturity in China is affected more by transplanting date than by climate change. Agricultural and Forest Meteorology, 2016, 216, 215-220.	1.9	42
195	Global Change and the Challenges of Sustainably Feeding a Growing Planet., 2016,,.		17
196	What Is the Social Value of Second Generation Biofuels?. Applied Economic Perspectives and Policy, 2016, 38, 599-617.	3.1	1
197	Evaluating historical simulations of CMIP5 GCMs for key climatic variables in Zhejiang Province, China. Theoretical and Applied Climatology, 2017, 128, 207-222.	1.3	34
198	Simulating climate change impacts and potential adaptations on rice yields in the Sichuan Basin, China. Mitigation and Adaptation Strategies for Global Change, 2017, 22, 565-594.	1.0	20
199	Climate change impacts in Central Asia and their implications for development. Regional Environmental Change, 2017, 17, 1639-1650.	1.4	110
200	Multi-scale modelling to synergise Plant Systems Biology and Crop Science. Field Crops Research, 2017, 202, 77-83.	2.3	21

#	Article	IF	CITATIONS
201	Assessing uncertainty and complexity in regional-scale crop model simulations. European Journal of Agronomy, 2017, 88, 84-95.	1.9	39
202	Brief history of agricultural systems modeling. Agricultural Systems, 2017, 155, 240-254.	3.2	403
203	Assessing high-impact spots of climate change: spatial yield simulations with Decision Support System for Agrotechnology Transfer (DSSAT) model. Mitigation and Adaptation Strategies for Global Change, 2017, 22, 743-760.	1.0	17
204	Implications of climate model biases and downscaling on crop model simulated climate change impacts. European Journal of Agronomy, 2017, 88, 63-75.	1.9	22
205	Addressing future trade-offs between biodiversity and cropland expansion to improve food security. Regional Environmental Change, 2017, 17, 1429-1441.	1.4	74
206	Temperature trends and variability in the Greater Horn of Africa: interactions with precipitation. Climate Dynamics, 2017, 48, 477-498.	1.7	23
207	Crop model improvement reduces the uncertainty of the response to temperature of multi-model ensembles. Field Crops Research, 2017, 202, 5-20.	2.3	109
208	Climate change impacts in Sub-Saharan Africa: from physical changes to their social repercussions. Regional Environmental Change, 2017, 17, 1585-1600.	1.4	506
209	The impacts of key adverse weather events on the fieldâ€grown vegetable yield variability in the Czech Republic from 1961 to 2014. International Journal of Climatology, 2017, 37, 1648-1664.	1.5	18
210	Climatic influence on corn sowing date in the Midwestern United States. International Journal of Climatology, 2017, 37, 1595-1602.	1.5	17
211	The combined and separate impacts of climate extremes on the current and future <scp>US</scp> rainfed maize and soybean production under elevated CO ₂ . Global Change Biology, 2017, 23, 2687-2704.	4.2	134
212	Cyberinfrastructure for the collaborative development of U2U decision support tools. Climate Risk Management, 2017, 15, 90-108.	1.6	8
213	The Purdue Agro-climatic (PAC) dataset for the U.S. Corn Belt: Development and initial results. Climate Risk Management, 2017, 15, 61-72.	1.6	7
214	Development of a gridded climate data tool for the COordinated Regional climate Downscaling EXperiment data. Computers and Electronics in Agriculture, 2017, 133, 128-140.	3.7	5
215	Comparing estimates of climate change impacts from process-based and statistical crop models. Environmental Research Letters, 2017, 12, 015001.	2.2	212
216	Climate Change and Global Food Systems: Potential Impacts on Food Security and Undernutrition. Annual Review of Public Health, 2017, 38, 259-277.	7.6	591
217	Statistical emulators of maize, rice, soybean and wheat yields from global gridded crop models. Agricultural and Forest Meteorology, 2017, 236, 145-161.	1.9	52
218	Temporal properties of spatially aggregated meteorological time series. Agricultural and Forest Meteorology, 2017, 234-235, 247-257.	1.9	17

#	Article	IF	CITATIONS
219	Climate change and national crop wild relative conservation planning. Ambio, 2017, 46, 630-643.	2.8	19
220	Assessing the impact of changes in land-use intensity and climate on simulated trade-offs between crop yield and nitrogen leaching. Agriculture, Ecosystems and Environment, 2017, 239, 385-398.	2.5	13
221	Crop residue incorporation can mitigate negative climate change impacts on crop yield and improve water use efficiency in a semiarid environment. European Journal of Agronomy, 2017, 85, 51-68.	1.9	68
222	Determining climate effects on US total agricultural productivity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2285-E2292.	3.3	139
223	Impact of projected mid-21st century climate and soil extrapolation on simulated spring wheat grain yield in Southeastern Norway. Journal of Agricultural Science, 2017, 155, 361-377.	0.6	3
224	Do markets and trade help or hurt the global food system adapt to climate change?. Food Policy, 2017, 68, 154-159.	2.8	69
225	The nonstationary impact of local temperature changes and ENSO on extreme precipitation at the global scale. Climate Dynamics, 2017, 49, 4281-4292.	1.7	37
226	Grand Challenges in Understanding the Interplay of Climate and Land Changes. Earth Interactions, 2017, 21, 1-43.	0.7	24
227	Focus on agriculture and forestry benefits of reducing climate change impacts. Environmental Research Letters, 2017, 12, 060301.	2,2	10
228	A coupled hydrological-plant growth model for simulating the effect of elevated CO 2 on a temperate grassland. Agricultural and Forest Meteorology, 2017, 246, 42-50.	1.9	17
229	Reaction Mechanisms of the Electrochemical Conversion of Carbon Dioxide to Formic Acid on Tin Oxide Electrodes. ChemElectroChem, 2017, 4, 2130-2136.	1.7	76
230	Climate model uncertainty in impact assessments for agriculture: A multiâ€ensemble case study on maize in subâ€Saharan Africa. Earth's Future, 2017, 5, 337-353.	2.4	51
231	Representing water scarcity in future agricultural assessments. Anthropocene, 2017, 18, 15-26.	1.6	27
232	Climate change impacts on EU agriculture: A regionalized perspective taking into account market-driven adjustments. Agricultural Systems, 2017, 156, 52-66.	3.2	40
233	Ecosystem-based adaptation to climate change: concept, scalability and a role for conservation science. Perspectives in Ecology and Conservation, 2017, 15, 65-73.	1.0	100
234	Biospheric feedback effects in a synchronously coupled model of human and Earth systems. Nature Climate Change, 2017, 7, 496-500.	8.1	46
235	Contribution of Crop Models to Adaptation in Wheat. Trends in Plant Science, 2017, 22, 472-490.	4.3	201
236	Linking regional stakeholder scenarios and shared socioeconomic pathways: Quantified West African food and climate futures in a global context. Global Environmental Change, 2017, 45, 227-242.	3.6	92

#	ARTICLE	IF	CITATIONS
237	Inclusive development and agricultural adaptation to climate change. Current Opinion in Environmental Sustainability, 2017, 24, 78-83.	3.1	21
238	Simulation of climate change impacts on production and phenology of durum wheat in Mediterranean environments using CERES-Wheat model. Field Crops Research, 2017, 206, 43-53.	2.3	47
239	Climate change and crop choice in Zambia: A mathematical programming approach. Njas - Wageningen Journal of Life Sciences, 2017, 81, 19-31.	7.9	25
240	Plant growth promoting rhizobacteria are more effective under drought: a meta-analysis. Plant and Soil, 2017, 416, 309-323.	1.8	183
241	Taking climate, land use, and social economy into estimation of carbon budget in the Guanzhong-Tianshui Economic Region of China. Environmental Science and Pollution Research, 2017, 24, 10466-10480.	2.7	10
242	Global Warming Effects., 2017,, 289-299.		20
243	Social vulnerability to climate change: a review of concepts and evidence. Regional Environmental Change, 2017, 17, 1651-1662.	1.4	164
244	Evaluation of DRAINMOD-DSSAT simulated effects of controlled drainage on crop yield, water balance, and water quality for a corn-soybean cropping system in central lowa. Agricultural Water Management, 2017, 187, 57-68.	2.4	28
245	Global land-use allocation model linked to an integrated assessment model. Science of the Total Environment, 2017, 580, 787-796.	3.9	85
246	Two Membrane-Anchored Aspartic Proteases Contribute to Pollen and Ovule Development. Plant Physiology, 2017, 173, 219-239.	2.3	44
247	IPCC reasons for concern regarding climate change risks. Nature Climate Change, 2017, 7, 28-37.	8.1	266
248	Data requirement for effective calibration of process-based crop models. Agricultural and Forest Meteorology, 2017, 234-235, 136-148.	1.9	74
249	Plausible rice yield losses under future climate warming. Nature Plants, 2017, 3, 16202.	4.7	114
250	Climate changeâ€induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands. Global Change Biology, 2017, 23, 2743-2754.	4.2	121
251	Comparison of Three Methods for Vertical Extrapolation of Soil Moisture in Oklahoma. Vadose Zone Journal, 2017, 16, 1-19.	1.3	16
252	mRNA-Sequencing Analysis Reveals Transcriptional Changes in Root of Maize Seedlings Treated with Two Increasing Concentrations of a New Biostimulant. Journal of Agricultural and Food Chemistry, 2017, 65, 9956-9969.	2.4	27
253	A review of and perspectives on global change modeling for Northern Eurasia. Environmental Research Letters, 2017, 12, 083001.	2.2	17
254	Reducing greenhouse gas emissions in agriculture without compromising food security?. Environmental Research Letters, 2017, 12, 105004.	2.2	172

#	Article	IF	Citations
255	Quantifying the economic risks of climate change. Nature Climate Change, 2017, 7, 774-782.	8.1	192
256	Livestock production and the water challenge of future food supply: Implications of agricultural management and dietary choices. Global Environmental Change, 2017, 47, 121-132.	3.6	34
257	Quantifying the impacts of climatic trend and fluctuation on crop yields in northern China. Environmental Monitoring and Assessment, 2017, 189, 532.	1.3	10
258	Climate corridors for strategic adaptation planning. International Journal of Climate Change Strategies and Management, 2017, 9, 811-828.	1.5	1
259	Future soil moisture and temperature extremes imply expanding suitability for rainfed agriculture in temperate drylands. Scientific Reports, 2017, 7, 12923.	1.6	47
260	Abiotic Stresses in Agriculture: An Overview. , 2017, , 3-8.		24
261	Improving Crop Adaptations to Climate Change: Contextualizing the Strategy., 2017,, 277-298.		2
262	Responses of crop yield growth to global temperature and socioeconomic changes. Scientific Reports, 2017, 7, 7800.	1.6	146
263	OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science, 2017, 358, .	6.0	438
264	Brazilian sugarcane ethanol as an expandable green alternative to crude oil use. Nature Climate Change, 2017, 7, 788-792.	8.1	124
265	Smallholder Agriculture and Climate Change. Annual Review of Environment and Resources, 2017, 42, 347-375.	5.6	98
266	Simulating carbon capture by enhanced weathering with croplands: an overview of key processes highlighting areas of future model development. Biology Letters, 2017, 13, 20160868.	1.0	32
267	Use of GCM Wind Projections in Risk Assessment and Adaptation Planning and Design. , 2017, , .		1
268	Modelling the effects of post-heading heat stress on biomass growth of winter wheat. Agricultural and Forest Meteorology, 2017, 247, 476-490.	1.9	42
269	An AgMIP framework for improved agricultural representation in integrated assessment models. Environmental Research Letters, 2017, 12, 125003.	2.2	54
270	Implications of the Paris Agreement in the Context of Long-Term Climate Mitigation Goals. , 2017, , 11 -29.		1
271	Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nature Ecology and Evolution, 2017, 1, 1240-1249.	3.4	161
272	Representing agriculture in <scp>E</scp> arth <scp>S</scp> ystem <scp>M</scp> odels: Approaches and priorities for development. Journal of Advances in Modeling Earth Systems, 2017, 9, 2230-2265.	1.3	54

#	Article	IF	Citations
273	Integrating water supply constraints into irrigated agricultural simulations of California. Environmental Modelling and Software, 2017, 96, 335-346.	1.9	18
274	A Cost of Tractability? Estimating Climate Change Impacts Using a Single Crop Market Understates Impacts on Market Conditions and Variability. Applied Economic Perspectives and Policy, 2017, 39, 346-362.	3.1	7
275	Opportunities for knowledge co-production across the energy-food-water nexus: Making interdisciplinary approaches work for better climate decision making. Environmental Science and Policy, 2017, 75, 103-110.	2.4	96
276	Restoring low-input high-diversity grasslands as a potential global resource for biofuels. Science of the Total Environment, 2017, 609, 205-214.	3.9	8
277	Approaches to Assessing Climate Change Impacts on Agriculture: An Overview of the Debate. Review of Environmental Economics and Policy, 2017, 11, 247-257.	3.1	37
278	Assessing the food security outcomes of industrial crop expansion in smallholder settings: insights from cotton production in Northern Ghana and sugarcane production in Central Ethiopia. Sustainability Science, 2017, 12, 677-693.	2.5	19
279	Importance of variety choice: Adapting to climate change in organic and conventional farming systems in Germany. Outlook on Agriculture, 2017, 46, 178-184.	1.8	5
280	Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9326-9331.	3.3	1,708
281	Simulated vs. empirical weather responsiveness of crop yields: US evidence and implications for the agricultural impacts of climate change. Environmental Research Letters, 2017, 12, 075007.	2.2	31
282	Assessing inter-sectoral climate change risks: the role of ISIMIP. Environmental Research Letters, 2017, 12, 010301.	2.2	49
283	A Stochastic Method for Crop Models: Including Uncertainty in a Sugarcane Model. Agronomy Journal, 2017, 109, 483-495.	0.9	20
284	Local land–atmosphere feedbacks limit irrigation demand. Environmental Research Letters, 2017, 12, 054003.	2.2	12
285	Impact of global warming on mycotoxins. Current Opinion in Food Science, 2017, 18, 76-81.	4.1	74
286	Historical effects of CO2 and climate trends on global crop water demand. Nature Climate Change, 2017, 7, 901-905.	8.1	19
287	Greenhouse gas emission curves for advanced biofuel supply chains. Nature Climate Change, 2017, 7, 920-924.	8.1	57
288	Using climate model simulations to assess the current climate risk to maize production. Environmental Research Letters, 2017, 12, 054012.	2.2	51
289	New science of climate change impacts on agriculture implies higher social cost of carbon. Nature Communications, 2017, 8, 1607.	5.8	100
290	Anionic Cerium Oxide Nanoparticles Protect Plant Photosynthesis from Abiotic Stress by Scavenging Reactive Oxygen Species. ACS Nano, 2017, 11, 11283-11297.	7.3	307

#	Article	IF	Citations
291	Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica, 2017 , 213 , 1 .	0.6	154
292	Patterns of crop cover under future climates. Ambio, 2017, 46, 265-276.	2.8	13
293	Climate change perceptions and local adaptation strategies of hazard-prone rural households in Bangladesh. Climate Risk Management, 2017, 17, 52-63.	1.6	264
294	A multiple crop model ensemble for improving broad-scale yield prediction using Bayesian model averaging. Field Crops Research, 2017, 211, 114-124.	2.3	39
295	Agricultural research spending must increase in light of future uncertainties. Food Policy, 2017, 70, 71-83.	2.8	26
296	Hot spots of wheat yield decline with rising temperatures. Global Change Biology, 2017, 23, 2464-2472.	4.2	80
297	Prioritizing climate-smart agricultural land use options at a regional scale. Agricultural Systems, 2017, 151, 174-183.	3.2	45
298	Climate and management interaction cause diverse crop phenology trends. Agricultural and Forest Meteorology, 2017, 233, 55-70.	1.9	59
299	Design of an optimal promoter involved in the heatâ€induced transcriptional pathway in Arabidopsis, soybean, rice and maize. Plant Journal, 2017, 89, 671-680.	2.8	28
300	Quantification of Climate Change and Variability Impacts on Maize Production at Farm Level in the Wami River Sub-Basin, Tanzania., 2017, , 323-351.		2
301	Spatial and temporal uncertainty of crop yield aggregations. European Journal of Agronomy, 2017, 88, 10-21.	1.9	63
302	Management outweighs climate change on affecting length of rice growing period for early rice and single rice in China during 1991 \hat{a} \(\epsilon\) 2012. Agricultural and Forest Meteorology, 2017, 233, 1-11.	1.9	48
303	Bayesian multi-model projection of irrigation requirement and water use efficiency in three typical rice plantation region of China based on CMIP5. Agricultural and Forest Meteorology, 2017, 232, 89-105.	1.9	62
304	Climate variability and yield risk in South Asia's rice–wheat systems: emerging evidence from Pakistan. Paddy and Water Environment, 2017, 15, 249-261.	1.0	61
305	Incorporating climate change into ecosystem service assessments and decisions: a review. Global Change Biology, 2017, 23, 28-41.	4.2	174
306	Assessing climate adaptation options and uncertainties for cereal systems in West Africa. Agricultural and Forest Meteorology, 2017, 232, 291-305.	1.9	74
307	Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability. , 2017, , .		35
308	Managing clubroot disease (caused by <i>Plasmodiophora brassicae </i> Wor.) by exploiting the interactions between calcium cyanamide fertilizer and soil microorganisms. Journal of Agricultural Science, 2017, 155, 527-543.	0.6	26

#	ARTICLE	IF	CITATIONS
309	Verrucarin A and roridin E produced on rocket by Myrothecium roridum under different temperatures and CO2 levels. World Mycotoxin Journal, 2017, 10, 229-236.	0.8	6
310	Determinants of smallholder farmers' decision to adopt adaptation options to climate change and variability in the Muger Sub basin of the Upper Blue Nile basin of Ethiopia. Agriculture and Food Security, 2017, 6, .	1.6	78
311	Understanding the weather signal in national cropâ€yield variability. Earth's Future, 2017, 5, 605-616.	2.4	85
312	Probabilistic estimates of drought impacts on agricultural production. Geophysical Research Letters, 2017, 44, 7799-7807.	1.5	154
313	Causes of variation among rice models in yield response to CO2 examined with Free-Air CO2 Enrichment and growth chamber experiments. Scientific Reports, 2017, 7, 14858.	1.6	41
314	Integrating Plant Science and Crop Modeling: Assessment of the Impact of Climate Change on Soybean and Maize Production. Plant and Cell Physiology, 2017, 58, 1833-1847.	1.5	49
315	Quantifying the indirect impacts of climate on agriculture: an inter-method comparison. Environmental Research Letters, 2017, 12, 115004.	2.2	17
316	Assessing local and regional economic impacts of climatic extremes and feasibility of adaptation measures in Dutch arable farming systems. Agricultural Systems, 2017, 157, 216-229.	3.2	16
317	Half a degree additional warming, prognosis and projected impacts (HAPPI): background and experimental design. Geoscientific Model Development, 2017, 10, 571-583.	1.3	203
318	Responses of Agroecosystems to Climate Change: Specifics of Resilience in the Mid-Latitude Region. Sustainability, 2017, 9, 1361.	1.6	9
319	Do Temperature Thresholds Threaten American Farmland?. SSRN Electronic Journal, 2017, , .	0.4	0
320	Intraspecific Trait Variation and Coordination: Root and Leaf Economics Spectra in Coffee across Environmental Gradients. Frontiers in Plant Science, 2017, 8, 1196.	1.7	61
321	Stay-Green and Associated Vegetative Indices to Breed Maize Adapted to Heat and Combined Heat-Drought Stresses. Remote Sensing, 2017, 9, 235.	1.8	13
322	Evaluation of MODIS Land Surface Temperature Data to Estimate Near-Surface Air Temperature in Northeast China. Remote Sensing, 2017, 9, 410.	1.8	73
323	Estimation of the Virtual Water Content of Main Crops on the Korean Peninsula Using Multiple Regional Climate Models and Evapotranspiration Methods. Sustainability, 2017, 9, 1172.	1.6	15
324	Future climate change and plant macronutrient use efficiency. , 2017, , 357-379.		2
325	Climate Change and Agricultural Systems. , 2017, , 441-490.		6
326	Effect of Climate Change on Agricultural Crops. , 2017, , 23-46.		52

#	Article	IF	Citations
327	Impact of Climate Change Adaptation Strategies on Winter Wheat and Cropping System Performance across Precipitation Gradients in the Inland Pacific Northwest, USA. Frontiers in Environmental Science, 2017, 5, .	1.5	13
328	Responses of Winter Wheat Yields to Warming-Mediated Vernalization Variations Across Temperate Europe. Frontiers in Ecology and Evolution, 2017, 5, .	1.1	12
329	Assessing crop yield simulations driven by the NARCCAP regional climate models in the southeast United States. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2549-2558.	1.2	6
330	Drought Hazard Evaluation in Boro Paddy Cultivated Areas of Western Bangladesh at Current and Future Climate Change Conditions. Advances in Meteorology, 2017, 2017, 1-12.	0.6	69
331	The impacts of data constraints on the predictive performance of a general process-based crop model (PeakN-crop v1.0). Geoscientific Model Development, 2017, 10, 1679-1701.	1.3	6
332	Big Data and Climate Smart Agriculture - Review of Current Status and Implications for Agricultural Research and Innovation in India. SSRN Electronic Journal, 0, , .	0.4	4
333	Assessing the impacts of $1.5 \hat{a} \in \hat{A}^{\circ}C$ global warming $\hat{a} \in $	1.3	410
334	Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications. Geoscientific Model Development, 2017, 10, 1403-1422.	1.3	213
335	Genomeâ€Wide Association Study of Developing Leaves' Heat Tolerance during Vegetative Growth Stages in a Sorghum Association Panel. Plant Genome, 2017, 10, plantgenome2016.09.0091.	1.6	54
336	Ensemble yield simulations: Using heat-tolerant and later-maturing varieties to adapt to climate warming. PLoS ONE, 2017, 12, e0176766.	1.1	7
337	Integrated Assessment of Climate Change Impacts on Corn Yield in the U.S. Using a Crop Model. Transactions of the ASABE, 2017, 60, 2123-2136.	1.1	2
338	Effects of increased levels of atmospheric CO2 and high temperatures on rice growth and quality. PLoS ONE, 2017, 12, e0187724.	1.1	26
339	Northern Eurasia Future Initiative (NEFI): facing the challenges and pathways of global change in the twenty-first century. Progress in Earth and Planetary Science, 2017, 4, .	1.1	69
340	Geospatial delineation of South Korea for adjusted barley cultivation under changing climate. Journal of Crop Science and Biotechnology, 2017, 20, 417-427.	0.7	4
341	Reliability of Genotype-Specific Parameter Estimation for Crop Models: Insights from a Markov Chain Monte-Carlo Estimation Approach. Transactions of the ASABE, 2017, 60, 1699-1712.	1.1	10
343	Future supply and demand of net primary productionÂinÂtheÂSahel. Earth System Dynamics, 2017, 8, 1191-1221.	2.7	3
344	Estimated Effects of Future Atmospheric CO2 Concentrations on Protein Intake and the Risk of Protein Deficiency by Country and Region. Environmental Health Perspectives, 2017, 125, 087002.	2.8	119
346	Warming Temperatures Will Likely Induce Higher Premium Rates and Government Outlays for the US Crop Insurance Program. SSRN Electronic Journal, 2017, , .	0.4	2

#	Article	IF	CITATIONS
347	Bivariate return periods of temperature and precipitation explain aÂlarge fraction of European crop yields. Biogeosciences, 2017, 14, 3309-3320.	1.3	69
349	Barriers to the Adoption of Alley Cropping as a Climate-Smart Agriculture Practice: Lessons from Maize Cultivation among the Maya in Southern Belize. Forests, 2017, 8, 260.	0.9	10
350	Identification of the Most Sensitive Parameters of Winter Wheat on a Global Scale for Use in the EPIC Model. Agronomy Journal, 2017, 109, 58-70.	0.9	6
352	Modelling Pod Growth Rate of Bambara Groundnut (<i>Vigna subterranea</i> Verdc.) in Response to Photoperiod and Temperature. Crop Science, 2017, 57, 3145-3155.	0.8	0
353	Food security and climate change: the case of rainfed maize production in Mexico. Agricultural and Forest Meteorology, 2018, 253-254, 124-131.	1.9	52
354	Understanding the Changes in Global Crop Yields Through Changes in Climate and Technology. Earth's Future, 2018, 6, 410-427.	2.4	71
355	Genetic diversity of root system architecture in response to drought stress in grain legumes. Journal of Experimental Botany, 2018, 69, 3267-3277.	2.4	124
356	Vulnerability of forests in the Himalayan region to climate change impacts and anthropogenic disturbances: a systematic review. Regional Environmental Change, 2018, 18, 1783-1799.	1.4	44
357	Spatiotemporal patterns, relationships, and drivers of China's agricultural ecosystem services from 1980 to 2010: a multiscale analysis. Landscape Ecology, 2018, 33, 575-595.	1.9	18
358	Key functional soil types explain data aggregation effects on simulated yield, soil carbon, drainage and nitrogen leaching at a regional scale. Geoderma, 2018, 318, 167-181.	2.3	17
359	Climate response of rainfed versus irrigated farms: the bias of farm heterogeneity in irrigation. Climatic Change, 2018, 147, 225-234.	1.7	18
360	Climate change impacts on regional rice production in China. Climatic Change, 2018, 147, 523-537.	1.7	66
361	Impacts of rainfall extremes on wheat yield in semi-arid cropping systems in eastern Australia. Climatic Change, 2018, 147, 555-569.	1.7	63
362	Adaptation of global land use and management intensity to changes in climate and atmospheric carbon dioxide. Global Change Biology, 2018, 24, 2791-2809.	4.2	50
363	Climatic variability and thermal stress in Pakistan's rice and wheat systems: A stochastic frontier and quantile regression analysis of economic efficiency. Ecological Indicators, 2018, 89, 496-506.	2.6	44
364	Dynamic assessment of urban economy-environment-energy system using system dynamics model: A case study in Beijing. Environmental Research, 2018, 164, 70-84.	3.7	59
365	The Global Foodâ€Energyâ€Water Nexus. Reviews of Geophysics, 2018, 56, 456-531.	9.0	446
366	Coordinating AgMIP data and models across global and regional scales for 1.5°C and 2.0°C assessments. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20160455.	1.6	48

#	Article	IF	CITATIONS
367	Water resources conservation and nitrogen pollution reduction under global food trade and agricultural intensification. Science of the Total Environment, 2018, 633, 1591-1601.	3.9	33
368	Potential impact of future climate change on sugarcane under dryland conditions in Mexico. Journal of Agronomy and Crop Science, 2018, 204, 515-528.	1.7	20
369	Evaluation of CLM-Crop for maize growth simulation over Northeast China. Ecological Modelling, 2018, 377, 26-34.	1.2	7
370	Differences, or lack thereof, in wheat and maize yields under three low-warming scenarios. Environmental Research Letters, 2018, 13, 065001.	2.2	17
371	Crop modelling: towards locally relevant and climate-informed adaptation. Climatic Change, 2018, 147, 475-489.	1.7	36
372	SCOPE model applied for rapeseed in Spain. Science of the Total Environment, 2018, 627, 417-426.	3.9	2
373	Agriculturally Relevant Climate Extremes and Their Trends in the World's Major Growing Regions. Earth's Future, 2018, 6, 656-672.	2.4	72
374	An EPIC model-based wheat drought risk assessment using new climate scenarios in China. Climatic Change, 2018, 147, 539-553.	1.7	27
375	Multi-model projections of future climate and climate change impacts uncertainty assessment for cotton production in Pakistan. Agricultural and Forest Meteorology, 2018, 253-254, 94-113.	1.9	163
376	Harvested area gaps in China between 1981 and 2010: effects of climatic and land management factors. Environmental Research Letters, 2018, 13, 044006.	2.2	18
377	Comparing the performance of the DNDC, Holos, and VSMB models for predicting the water partitioning of various crops and sites across Canada. Canadian Journal of Soil Science, 2018, 98, 212-231.	0.5	11
378	Farming with crops and rocks to address global climate, food and soil security. Nature Plants, 2018, 4, 138-147.	4.7	226
379	Determinants of livelihood vulnerability in farming communities in two sites in the Asian Highlands. Water International, 2018, 43, 165-182.	0.4	57
380	Where are the drought tolerant crops? An assessment of more than two decades of plant biotechnology effort in crop improvement. Plant Science, 2018, 273, 110-119.	1.7	106
381	Responses of soybean to water stress and supplemental irrigation in upper Indo-Gangetic plain: Field experiment and modeling approach. Field Crops Research, 2018, 219, 76-86.	2.3	45
382	Toward a consistent modeling framework to assess multi-sectoral climate impacts. Nature Communications, 2018, 9, 660.	5.8	50
383	Breeding implications of drought stress under future climate for upland rice in Brazil. Global Change Biology, 2018, 24, 2035-2050.	4.2	42
384	Climate Sensitivity of Phosphorus Loadings to an Urban Stream. Journal of the American Water Resources Association, 2018, 54, 527-542.	1.0	1

#	Article	IF	CITATIONS
385	Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science, 2018, 359, .	6.0	397
386	Exploring SSP land-use dynamics using the IMAGE model: Regional and gridded scenarios of land-use change and land-based climate change mitigation. Global Environmental Change, 2018, 48, 119-135.	3.6	202
387	Past crops yield dynamics reconstruction from tree-ring chronologies in the forest-steppe zone based on low- and high-frequency components. International Journal of Biometeorology, 2018, 62, 861-871.	1.3	6
388	Quantifying the Limitation to World Cereal Production Due To Soil Phosphorus Status. Global Biogeochemical Cycles, 2018, 32, 143-157.	1.9	36
389	Improving maize growth processes in the community land model: Implementation and evaluation. Agricultural and Forest Meteorology, 2018, 250-251, 64-89.	1.9	71
390	From Pinot to Xinomavro in the world's future wine-growing regions. Nature Climate Change, 2018, 8, 29-37.	8.1	136
391	Impacts and Uncertainties of $\pm 2 {\hat A}^{\circ} {\rm C}$ of Climate Change and Soil Degradation on European Crop Calorie Supply. Earth's Future, 2018, 6, 373-395.	2.4	33
392	Exploitation of differential temperature-sensitivities of crops for improved resilience of tropical smallholder cropping systems to climate change: A case study with temperature responses of tomato and chilli. Agriculture, Ecosystems and Environment, 2018, 261, 103-114.	2.5	5
393	The relationship between justice and acceptance of energy transition costs in the UK. Applied Energy, 2018, 222, 451-459.	5.1	46
394	Incorporating ecosystem services into the design of future energy systems. Applied Energy, 2018, 222, 812-822.	5.1	22
395	Soil environment is a key driver of adaptation in <i>Medicago truncatula</i> : new insights from landscape genomics. New Phytologist, 2018, 219, 378-390.	3.5	29
396	BESS-Rice: A remote sensing derived and biophysical process-based rice productivity simulation model. Agricultural and Forest Meteorology, 2018, 256-257, 253-269.	1.9	41
397	Can we use crop modelling for identifying climate change adaptation options?. Agricultural and Forest Meteorology, 2018, 256-257, 46-52.	1.9	62
398	Evolution of rain and photoperiod limitations on the soybean growing season in Brazil: The rise (and) Tj ETQq $1\ 1$	0.784314	rgBT Over
399	Translating High-Throughput Phenotyping into Genetic Gain. Trends in Plant Science, 2018, 23, 451-466.	4.3	525
400	Impact assessment of climate change on rice yields using the ORYZA model in the Sichuan Basin, China. International Journal of Climatology, 2018, 38, 2922-2939.	1.5	16
401	CLMcrop yields and water requirements: avoided impacts by choosing RCP 4.5 over 8.5. Climatic Change, 2018, 146, 501-515.	1.7	50
402	Estimated impacts of emission reductions on wheat and maize crops. Climatic Change, 2018, 146, 533-545.	1.7	45

#	Article	IF	Citations
403	The Climate Change Conundrum and the Himalayan Forests: The Way Forward into the Future. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2018, 88, 837-847.	0.4	6
404	Emulating mean patterns and variability of temperature across and within scenarios in anthropogenic climate change experiments. Climatic Change, 2018, 146, 319-333.	1.7	23
405	Avoided economic impacts of climate change on agriculture: integrating a land surface model (CLM) with a global economic model (iPETS). Climatic Change, 2018, 146, 517-531.	1.7	36
406	Economic, policy, and social trends and challenges of introducing oilseed and pulse crops into dryland wheat cropping systems. Agriculture, Ecosystems and Environment, 2018, 253, 177-194.	2.5	39
407	How accurately do maize crop models simulate the interactions of atmospheric CO2 concentration levels with limited water supply on water use and yield?. European Journal of Agronomy, 2018, 100, 67-75.	1.9	68
408	Characterizing agricultural impacts of recent large-scale US droughts and changing technology and management. Agricultural Systems, 2018, 159, 275-281.	3.2	26
409	Implications of climate change for the sugarcane industry. Wiley Interdisciplinary Reviews: Climate Change, 2018, 9, e498.	3.6	20
410	Future land use and land cover in Southern Amazonia and resulting greenhouse gas emissions from agricultural soils. Regional Environmental Change, 2018, 18, 129-142.	1.4	17
411	Assessing uncertainties in crop and pasture ensemble model simulations of productivity and N ₂ O emissions. Global Change Biology, 2018, 24, e603-e616.	4.2	104
412	Extent of disaster courses delivery for the risk reduction in Rwanda. International Journal of Disaster Risk Reduction, 2018, 27, 127-132.	1.8	14
413	The dynamic mechanism of landscape structure change of arable landscape system in China. Agriculture, Ecosystems and Environment, 2018, 251, 26-36.	2.5	26
414	Function of the auxin-responsive gene TaSAUR75 under salt and drought stress. Crop Journal, 2018, 6, 181-190.	2.3	83
415	Considering land–sea interactions and tradeâ€offs for food and biodiversity. Global Change Biology, 2018, 24, 580-596.	4.2	39
416	Improving the use of crop models for risk assessment and climate change adaptation. Agricultural Systems, 2018, 159, 296-306.	3.2	122
417	Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change. Agricultural Systems, 2018, 159, 209-224.	3.2	47
418	Urban water security: Emerging discussion and remaining challenges. Sustainable Cities and Society, 2018, 41, 925-928.	5.1	54
419	Analysis of climate signals in the crop yield record of subâ€Saharan Africa. Global Change Biology, 2018, 24, 143-157.	4.2	80
420	Web-based access, aggregation, and visualization of future climate projections with emphasis on agricultural assessments. SoftwareX, 2018, 7, 15-22.	1.2	3

#	Article	IF	Citations
421	Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments. Global Change Biology, 2018, 24, 1291-1307.	4.2	149
423	Winter wheat water requirement and utilization efficiency under simulated climate change conditions: A Penman-Monteith model evaluation. Agricultural Water Management, 2018, 197, 100-109.	2.4	18
424	Adapting crop rotations to climate change in regional impact modelling assessments. Science of the Total Environment, 2018, 616-617, 785-795.	3.9	51
425	Modeling sensitivity of grain yield to elevated temperature in the DSSAT crop models for peanut, soybean, dry bean, chickpea, sorghum, and millet. European Journal of Agronomy, 2018, 100, 99-109.	1.9	47
426	Increasing drought and diminishing benefits of elevated carbon dioxide for soybean yields across the US Midwest. Global Change Biology, 2018, 24, e522-e533.	4.2	74
427	Strategies and Barriers to Adaptation of Hazard-Prone Rural Households in Bangladesh. Climate Change Management, 2018, , 11-24.	0.6	19
428	Decadal analysis of impact of future climate on wheat production in dry Mediterranean environment: A case of Jordan. Science of the Total Environment, 2018, 610-611, 219-233.	3.9	28
429	Can Egypt become self-sufficient in wheat?. Environmental Research Letters, 2018, 13, 094012.	2.2	76
430	The role of largeâ€"scale BECCS in the pursuit of the 1.5°C target: an Earth system model perspective. Environmental Research Letters, 2018, 13, 044010.	2.2	33
432	Looking Beyond Rice and Wheat: Climate Change Impacts on Food Systems and Food Security in India. , 2018, 4, .		3
434	Perceptions and local adaptation strategies to climate change of marine capture fishermen in Bengkulu Province, Indonesia. IOP Conference Series: Earth and Environmental Science, 0, 200, 012037.	0.2	7
435	Testing and Improving the WOFOST Model for Sunflower Simulation on Saline Soils of Inner Mongolia, China. Agronomy, 2018, 8, 172.	1.3	8
437	Utilizing Collocated Crop Growth Model Simulations to Train Agronomic Satellite Retrieval Algorithms. Remote Sensing, 2018, 10, 1968.	1.8	6
438	Intercomparison between Switch 2.0 and GE MAPS models for simulation of high-renewable power systems in Hawaii. Energy, Sustainability and Society, 2018, 8, .	1.7	3
439	Carbon Mass Change and Its Drivers in a Boreal Coniferous Forest in the Qilian Mountains, China from 1964 to 2013. Forests, 2018, 9, 57.	0.9	7
440	Linking Climate Change Adaptation and Mitigation: A Review with Evidence from the Land-Use Sectors. Land, 2018, 7, 158.	1.2	19
441	Can Faba Bean Physiological Responses Stem from Contrasting Traffic Management Regimes?. Agronomy, 2018, 8, 200.	1.3	6
442	Factors Leading Insect Pest Outbreaks and Preventive Pest Management: A Review of Recent Outbreaks of Forage Crop Pests in Japan. Japanese Journal of Applied Entomology and Zoology, 2018, 62, 171-187.	0.5	3

#	Article	IF	CITATIONS
443	Observational Characterization of the Synoptic and Mesoscale Circulations in Relation to Crop Dynamics: Belg 2017 in the Gamo Highlands, Ethiopia. Atmosphere, 2018, 9, 398.	1.0	3
444	Scale dependence and parameter sensitivity of the EPIC model in the agro-pastoral transitional zone of north China. Ecological Modelling, 2018, 390, 51-61.	1.2	3
445	Peculiarly pleasant weather for US maize. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11935-11940.	3.3	83
446	Achieving High Crop Yields with Low Nitrogen Emissions in Global Agricultural Input Intensification. Environmental Science & E	4.6	19
447	Reduction in nutritional quality and growing area suitability of common bean under climate change induced drought stress in Africa. Scientific Reports, 2018, 8, 16187.	1.6	67
448	The Phosphorus Transfer Continuum: A Framework for Exploring Effects of Climate Change. Agricultural and Environmental Letters, 2018, 3, 180036.	0.8	20
449	LPJmL4 – a dynamic global vegetation model with managed land – PartÂ1: Model description. Geoscientific Model Development, 2018, 11, 1343-1375.	1.3	140
450	Macroeconomic Impacts of Climate Change Driven by Changes in Crop Yields. Sustainability, 2018, 10, 3673.	1.6	27
451	Economic and biophysical impacts on agriculture under 1.5 ${\rm \hat{A}}^{\circ}{\rm C}$ and 2 ${\rm \hat{A}}^{\circ}{\rm C}$ warming. Environmental Research Letters, 2018, 13, 115006.	2.2	10
452	Is the future of agriculture perennial? Imperatives and opportunities to reinvent agriculture by shifting from annual monocultures to perennial polycultures. Global Sustainability, 2018, 1, .	1.6	135
453	Addressing the threat of climate change to agriculture requires improving crop resilience to short-term abiotic stress. Outlook on Agriculture, 2018, 47, 270-276.	1.8	14
454	Multiple non-climatic drivers of food insecurity reinforce climate change maladaptation trajectories among Peruvian Indigenous Shawi in the Amazon. PLoS ONE, 2018, 13, e0205714.	1.1	35
455	Climate change decreases suitable areas for rapeseed cultivation in Europe but provides new opportunities for white mustard as an alternative oilseed for biofuel production. PLoS ONE, 2018, 13, e0207124.	1.1	24
456	Multidimensional Framework for Achieving Sustainable and Resilient Food Systems in Nigeria. , 2018, , 1-23.		0
457	Estimating sowing and harvest dates based on the Asian summer monsoon. Earth System Dynamics, 2018, 9, 563-592.	2.7	22
458	Understanding and reproducing regional diversity of climate impacts on wheat yields: current approaches, challenges and data driven limitations. Environmental Research Letters, 2018, 13, 021001.	2.2	21
460	Climate Change, Agriculture, and Economic Development in Ethiopia. Sustainability, 2018, 10, 3464.	1.6	13
461	A dynamic agricultural prediction system for large-scale drought assessment on the Sunway TaihuLight supercomputer. Computers and Electronics in Agriculture, 2018, 154, 400-410.	3.7	7

#	Article	IF	Citations
462	Soil Organic Carbon and Nitrogen Feedbacks on Crop Yields under Climate Change. Agricultural and Environmental Letters, 2018, 3, 180026.	0.8	36
463	The agronomic performance of sand rice (Agriophyllum squarrosum), a potential semi-arid crop species. Genetic Resources and Crop Evolution, 2018, 65, 2293-2301.	0.8	9
464	Selection of Appropriate Spatial Resolution for the Meteorological Data for Regional Winter Wheat Potential Productivity Simulation in China Based on WheatGrow Model. Agronomy, 2018, 8, 198.	1.3	4
465	Options for keeping the food system within environmental limits. Nature, 2018, 562, 519-525.	13.7	1,709
466	Quantifying Humanâ€Mediated Carbon Cycle Feedbacks. Geophysical Research Letters, 2018, 45, 11,370.	1.5	7
467	A framework for priority-setting in climate smart agriculture research. Agricultural Systems, 2018, 167, 161-175.	3.2	95
468	Are agricultural researchers working on the right crops to enable food and nutrition security under future climates?. Global Environmental Change, 2018, 53, 182-194.	3.6	65
469	Identifying precipitation uncertainty in crop modelling using Bayesian total error analysis. European Journal of Agronomy, 2018, 101, 248-258.	1.9	1
470	$1.5 \hat{A}^{\circ}C$ Hotspots: Climate Hazards, Vulnerabilities, and Impacts. Annual Review of Environment and Resources, 2018, 43, 135-163.	5.6	32
472	Marine Systems, Food Security, and Future Earth. , 0, , 296-310.		0
473	Regional food production and land redistribution as adaptation to climate change in the U.S. Northeast Seaboard. Computers and Electronics in Agriculture, 2018, 154, 54-70.	3.7	8
474	Geo-ICDTs: Principles and Applications in Agriculture. Geotechnologies and the Environment, 2018, , 75-99.	0.3	3
475	Time series analysis of temperature and rainfall-based weather aggregation reveals significant correlations between climate turning points and potato (Solanum tuberosum L) yield trends in Japan. Agricultural and Forest Meteorology, 2018, 263, 147-155.	1.9	24
476	Resource and physiological constraints on global crop production enhancements from atmospheric particulate matter and nitrogen deposition. Biogeosciences, 2018, 15, 4301-4315.	1.3	6
477	Assessing the implications of a $1.5 \hat{A} \hat{A}^{\circ} \text{C}$ temperature limit for the Jamaican agriculture sector. Regional Environmental Change, 2018, 18, 2313-2327.	1.4	22
478	Large-scale bioenergy production: how to resolve sustainability trade-offs?. Environmental Research Letters, 2018, 13, 024011.	2.2	96
479	Inter- and intra-varietal variation in aerobic methane emissions from environmentally stressed pea plants. Botany, 2018, 96, 837-850.	0.5	2
480	Methods for Spatial Prediction of Crop Yield Potential. Agronomy Journal, 2018, 110, 2322-2330.	0.9	7

#	Article	IF	CITATIONS
481	Evaluation of crop yield simulations of an eco-hydrological model at different scales for Germany. Field Crops Research, 2018, 228, 48-59.	2.3	2
482	Benefits of Seasonal Climate Prediction and Satellite Data for Forecasting U.S. Maize Yield. Geophysical Research Letters, 2018, 45, 9662-9671.	1.5	70
483	Crop Classification in a Heterogeneous Arable Landscape Using Uncalibrated UAV Data. Remote Sensing, 2018, 10, 1282.	1.8	27
484	Climate Change Impacts on Yields and Soil Carbon in Row Crop Dryland Agriculture. Journal of Environmental Quality, 2018, 47, 684-694.	1.0	38
485	Changes in crop yields and their variability at different levels of global warming. Earth System Dynamics, 2018, 9, 479-496.	2.7	33
486	Exploring the biogeophysical limits of global food production under different climate change scenarios. Earth System Dynamics, 2018, 9, 393-412.	2.7	23
487	Decreased wheat grain yield stimulation by free air CO2 enrichment under N deficiency is strongly related to decreased radiation use efficiency enhancement. European Journal of Agronomy, 2018, 101, 38-48.	1.9	22
488	Increase in crop losses to insect pests in a warming climate. Science, 2018, 361, 916-919.	6.0	764
489	A Holistic View of Water Management Impacts on Future Droughts: A Global Multimodel Analysis. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5947-5972.	1.2	25
490	Determinants of crop diversification in rice-dominated Sri Lankan agricultural systems. Journal of Rural Studies, 2018, 61, 206-215.	2.1	18
491	Changes in climate extremes over West and Central Africa at 1.5 °C and 2 °C global warming. Environmental Research Letters, 2018, 13, 065020.	2.2	70
492	Northward shift of the agricultural climate zone under 21st-century global climate change. Scientific Reports, 2018, 8, 7904.	1.6	118
493	A global approach to estimate irrigated areas – a comparison between different data and statistics. Hydrology and Earth System Sciences, 2018, 22, 1119-1133.	1.9	117
494	LPJmL4 – a dynamic global vegetation model with managed land – PartÂ2: Model evaluation. Geoscientific Model Development, 2018, 11, 1377-1403.	1.3	57
495	The climate-smart village approach: framework of an integrative strategy for scaling up adaptation options in agriculture. Ecology and Society, 2018, 23, .	1.0	131
496	Comparing impacts of climate change and mitigation on global agriculture by 2050. Environmental Research Letters, 2018, 13, 064021.	2.2	93
497	A viable and cost-effective weather index insurance for rice in Indonesia. GENEVA Risk and Insurance Review, 2018, 43, 186-218.	0.4	5
498	Warming temperatures will likely induce higher premium rates and government outlays for the U.S. crop insurance program. Agricultural Economics (United Kingdom), 2018, 49, 635-647.	2.0	39

#	Article	IF	Citations
499	Shallow groundwater plays an important role in enhancing irrigation water productivity in an arid area: The perspective from a regional agricultural hydrology simulation. Agricultural Water Management, 2018, 208, 43-58.	2.4	31
500	A hybrid process based-empirical approach to identify the association between wheat productivity and climate in the North China Plain during the past 50 years. Environmental Modelling and Software, 2018, 108, 72-80.	1.9	2
501	Climate change impacts on the energy system: a review of trends and gaps. Climatic Change, 2018, 151, 79-93.	1.7	166
502	Genomic Selection Outperforms Marker Assisted Selection for Grain Yield and Physiological Traits in a Maize Doubled Haploid Population Across Water Treatments. Frontiers in Plant Science, 2018, 9, 366.	1.7	83
503	Multimodel ensembles improve predictions of crop–environment–management interactions. Global Change Biology, 2018, 24, 5072-5083.	4.2	111
504	Utilizing Process-Based Modeling to Assess the Impact of Climate Change on Crop Yields and Adaptation Options in the Niger River Basin, West Africa. Agronomy, 2018, 8, 11.	1.3	22
505	Closing the Gap between Climate Information Producers and Users: Assessment of Needs and Uptake in Senegal. Climate, 2018, 6, 13.	1.2	59
506	Keeping global warming within 1.5 °C reduces future risk of yield loss in the United States: A probabilistic modeling approach. Science of the Total Environment, 2018, 644, 52-59.	3.9	28
507	Spatially Explicit Assessment of Agricultural Water Equilibrium in the Korean Peninsula. Sustainability, 2018, 10, 201.	1.6	10
508	Spatio-Temporal Analysis of Meteorological Elements in the North China District of China during 1960–2015. Water (Switzerland), 2018, 10, 789.	1.2	20
509	Impacts of climate change and climate extremes on major crops productivity in China at a global warming of 1.5 and 2.0 °C. Earth System Dynamics, 2018, 9, 543-562.	2.7	79
510	Impacts of Climate Change on Agriculture and Food Security. , 2018, , 207-234.		5
511	Chlorophyll fluorescence analysis revealed essential roles of FtsH11 protease in regulation of the adaptive responses of photosynthetic systems to high temperature. BMC Plant Biology, 2018, 18, 11.	1.6	44
512	An introduction to the special issue on the Benefits of Reduced Anthropogenic Climate changE (BRACE). Climatic Change, 2018, 146, 277-285.	1.7	4
513	A Crop Wild Relative Inventory for Mexico. Crop Science, 2018, 58, 1292-1305.	0.8	20
514	Stability of Corn and Soybean Yield Ratios in Three Midwestern Environments. Agronomy Journal, 2018, 110, 311-318.	0.9	0
515	How Drought Affects Agricultural Insurance Policies: The Case of Italy. Journal of Sustainable Development, 2018, 11, 1.	0.1	19
516	Heat stress-reduced kernel weight in rice at anthesis is associated with impaired source-sink relationship and sugars allocation. Environmental and Experimental Botany, 2018, 155, 718-733.	2.0	65

#	Article	IF	CITATIONS
517	A developing food crisis and potential refugee movements. Nature Sustainability, 2018, 1, 380-382.	11.5	16
518	Transmission of climate risks across sectors and borders. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170301.	1.6	74
519	Yield risks in global maize markets: Historical evidence and projections in key regions of the world. Weather and Climate Extremes, 2018 , 19 , $42-48$.	1.6	9
520	Agricultural Land Use and the Global Carbon Cycle. , 2018, , 1-37.		4
521	Climate shifts within major agricultural seasons for $+1.5$ and $+2.0$ \hat{A}° C worlds: HAPPI projections and AgMIP modeling scenarios. Agricultural and Forest Meteorology, 2018, 259, 329-344.	1.9	39
522	Synthesis and Review: an inter-method comparison of climate change impacts on agriculture. Environmental Research Letters, 2018, 13, 070401.	2.2	25
523	The use of biogeochemical models to evaluate mitigation of greenhouse gas emissions from managed grasslands. Science of the Total Environment, 2018, 642, 292-306.	3.9	41
525	Involvement of Reactive Species of Oxygen and Nitrogen in Triggering Programmed Cell Death in Plants., 2018,, 257-278.		5
526	Projected climate and agronomic implications for corn production in the Northeastern United States. PLoS ONE, 2018, 13, e0198623.	1.1	33
527	Crop Phenomics for Abiotic Stress Tolerance in Crop Plants. , 2018, , 277-296.		21
528	Geographical patterns in climate and agricultural technology drive soybean productivity in Brazil. PLoS ONE, 2018, 13, e0191273.	1.1	21
529	Measuring Climate Adaptation: Methods and Evidence. Review of Environmental Economics and Policy, 2018, 12, 324-341.	3.1	29
530	Crop productivity changes in 1.5 °C and 2 °C worlds under climate sensitivity uncertainty. Environmental Research Letters, 2018, 13, 064007.	2.2	79
531	Global exposure and vulnerability to multi-sector development and climate change hotspots. Environmental Research Letters, 2018, 13, 055012.	2.2	162
532	RNAi Technology: The Role in Development of Abiotic Stress-Tolerant Crops. , 2018, , 117-133.		12
533	Weather effects and their long-term impact on the distribution of agricultural yields: evidence from Italy. European Review of Agricultural Economics, 2019, 46, 29-51.	1.5	38
534	Future projections of temperature changes in Ottawa, Canada through stepwise clustered downscaling of multiple GCMs under RCPs. Climate Dynamics, 2019, 52, 3455-3470.	1.7	25
535	Evaluation of the Uncertainty in Satellite-Based Crop State Variable Retrievals Due to Site and Growth Stage Specific Factors and Their Potential in Coupling with Crop Growth Models. Remote Sensing, 2019, 11, 1928.	1.8	7

#	Article	IF	CITATIONS
536	Rhizophagus irregularis MUCL 41833 Improves Phosphorus Uptake and Water Use Efficiency in Maize Plants During Recovery From Drought Stress. Frontiers in Plant Science, 2019, 10, 897.	1.7	21
537	Using crop modeling to evaluate the impacts of climate change on wheat in southeastern turkey. Environmental Science and Pollution Research, 2019, 26, 29397-29408.	2.7	25
538	Understanding the Spatial Distribution of Welfare Impacts of Global Warming on Agriculture and its Drivers. American Journal of Agricultural Economics, 2019, 101, 1455-1472.	2.4	24
539	Combining the effects of increased atmospheric carbon dioxide on protein, iron, and zinc availability and projected climate change on global diets: a modelling study. Lancet Planetary Health, The, 2019, 3, e307-e317.	5.1	107
540	Investigation of Future Land Use Change and Implications for Cropland Quality: The Case of China. Sustainability, 2019, 11, 3327.	1.6	7
541	Novel multimodel ensemble approach to evaluate the sole effect of elevated CO2 on winter wheat productivity. Scientific Reports, 2019, 9, 7813.	1.6	32
542	Mathematical modelling for sustainable aphid control in agriculture via intercropping. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20190136.	1.0	8
543	Role of market agents in mitigating the climate change effects on food economy. Natural Hazards, 2019, 99, 1215-1231.	1.6	6
544	The impact of agricultural landscape diversification on U.S. crop production. Agriculture, Ecosystems and Environment, 2019, 285, 106615.	2.5	35
545	An Integrated Global Food and Energy Security System Dynamics Model for Addressing Systemic Risk. Sustainability, 2019, 11, 3995.	1.6	10
546	Do agricultural activities induce carbon emissions? The BRICS experience. Environmental Science and Pollution Research, 2019, 26, 25218-25234.	2.7	161
547	Assessing Forest Ecosystems across the Vertical Edge of the Mid-Latitude Ecotone Using the BioGeoChemistry Management Model (BGC-MAN). Forests, 2019, 10, 523.	0.9	8
548	Evaluation of hydroclimatic variables for maize yield estimation using crop model and remotely sensed data assimilation. Stochastic Environmental Research and Risk Assessment, 2019, 33, 1283-1295.	1.9	11
549	A meta-analysis of crop response patterns to nitrogen limitation for improved model representation. PLoS ONE, 2019, 14, e0223508.	1.1	5
550	Biotic and Abiotic Constraints in Mungbean Productionâ€"Progress in Genetic Improvement. Frontiers in Plant Science, 2019, 10, 1340.	1.7	120
551	Achieving the Sustainable Development Goals Through Sustainable Food Systems. , 2019, , .		13
553	Optimizing Genetic Parameters of CSM-CERES Wheat and CSM-CERES Maize for Durum Wheat, Common Wheat, and Maize in Italy. Agronomy, 2019, 9, 665.	1.3	6
554	Observed trends in daily rainfall variability result in more severe climate change impacts to agriculture. Climatic Change, 2019, 157, 429-444.	1.7	25

#	Article	IF	Citations
555	Integrate Risk From Climate Change in China Under Global Warming of 1.5 and 2.0°C Earth's Future, 2019, 7, 1307-1322.	2.4	30
556	How climate scenarios alter future predictions of field-scale water and nitrogen dynamics and crop yields. Journal of Environmental Management, 2019, 252, 109623.	3.8	4
557	Parameterization-induced uncertainties and impacts of crop management harmonization in a global gridded crop model ensemble. PLoS ONE, 2019, 14, e0221862.	1.1	42
558	The Effect of Climate Change on Abiotic Plant Stress: A Review. , 0, , .		20
559	Integrated Solutions for the Water-Energy-Land Nexus: Are Global Models Rising to the Challenge?. Water (Switzerland), 2019, 11, 2223.	1.2	24
560	New Bidirectional Ammonia Flux Model in an Air Quality Model Coupled With an Agricultural Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 2934-2957.	1.3	31
561	Stochastically modeling the projected impacts of climate change on rainfed and irrigated US crop yields. Environmental Research Letters, 2019, 14, 074021.	2.2	22
562	Impacts of climate change on tomato, a notorious pest and its natural enemy: small scale agriculture at higher risk. Environmental Research Letters, 2019, 14, 084041.	2.2	23
563	Exploring Standardized Precipitation Index for predicting drought on rice paddies in Indonesia. IOP Conference Series: Earth and Environmental Science, 2019, 303, 012027.	0.2	5
564	Reducing climate model biases by exploring parameter space with large ensembles of climate model simulations and statistical emulation. Geoscientific Model Development, 2019, 12, 3017-3043.	1.3	11
565	Climate change impacts on banana yields around the world. Nature Climate Change, 2019, 9, 752-757.	8.1	60
568	Dependence of economic impacts of climate change on anthropogenically directed pathways. Nature Climate Change, 2019, 9, 737-741.	8.1	49
569	Climate change impacts on renewable energy generation. A review of quantitative projections. Renewable and Sustainable Energy Reviews, 2019, 116, 109415.	8.2	199
570	Prospects of using biomass of N2-fixing cyanobacteria as an organic fertilizer and soil conditioner. Algal Research, 2019, 43, 101652.	2.4	24
571	Combine observational data and modelling to quantify cultivar differences of soybean. European Journal of Agronomy, 2019, 111, 125940.	1.9	9
572	Atlas of Ecosystem Services. , 2019, , .		28
573	Potential effects of climate change on Brazil's land use policy for renewable energy from sugarcane. Resources, Conservation and Recycling, 2019, 144, 158-168.	5.3	9
574	Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants, 2019, 8, 34.	1.6	901

#	Article	IF	CITATIONS
576	Large scale extreme risk assessment using copulas: an application to drought events under climate change for Austria. Computational Management Science, 2019, 16, 651-669.	0.8	12
577	Increasing risks of multiple breadbasket failure under 1.5 and 2â€-°C global warming. Agricultural Systems, 2019, 175, 34-45.	3.2	64
578	Recent changes in county-level maize production in the United States: Spatial-temporal patterns, climatic drivers and the implications for crop modelling. Science of the Total Environment, 2019, 686, 819-827.	3.9	15
579	The need for bottom-up assessments of climate risks and adaptation in climate-sensitive regions. Nature Climate Change, 2019, 9, 503-511.	8.1	130
580	Climate Change Impacts on Winter Wheat Yield in Northern China. Advances in Meteorology, 2019, 2019, 1-12.	0.6	24
581	Global warming and rice production in Asia: Modeling, impact prediction and adaptation. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2019, 95, 211-245.	1.6	37
582	Finding the sweet spot: Shifting optimal climate for maple syrup production in North America. Forest Ecology and Management, 2019, 448, 187-197.	1.4	17
583	MAgPIE 4 – aÂmodular open-source framework for modeling global land systems. Geoscientific Model Development, 2019, 12, 1299-1317.	1.3	56
584	A crop yield change emulator for use in GCAM and similar models: Persephone v1.0. Geoscientific Model Development, 2019, 12, 1319-1350.	1.3	9
585	Fldgen v1.0: an emulator with internal variability and space–time correlation for Earth system models. Geoscientific Model Development, 2019, 12, 1477-1489.	1.3	17
586	Climate change impacts on Canadian yields of spring wheat, canola and maize for global warming levels of 1.5 ŰC, 2.0 ŰC, 2.5 ŰC and 3.0 ŰC. Environmental Research Letters, 2019, 14, 074005.	2.2	50
587	Impacts of climate change on self-sufficiency of rice in China: A CGE-model-based evidence with alternative regional feedback mechanisms. Journal of Cleaner Production, 2019, 230, 150-161.	4.6	16
588	Identification of Ideal Allele Combinations for the Adaptation of Spring Barley to Northern Latitudes. Frontiers in Plant Science, 2019, 10, 542.	1.7	10
589	The Global Gridded Crop Model Intercomparison phase 1 simulation dataset. Scientific Data, 2019, 6, 50.	2.4	57
590	Climatic variability and changing reproductive goals in Sub-Saharan Africa. Global Environmental Change, 2019, 57, 101912.	3.6	29
591	Computing the economic value of climate information for water stress management exemplified by crop production in Austria. Agricultural Water Management, 2019, 221, 430-448.	2.4	8
592	Climate change has likely already affected global food production. PLoS ONE, 2019, 14, e0217148.	1.1	470
593	ldentifying the relationships and drivers of agro-ecosystem services using a constraint line approach in the agro-pastoral transitional zone of China. Ecological Indicators, 2019, 106, 105439.	2.6	22

#	Article	IF	Citations
594	Flexibility and intensity of global water use. Nature Sustainability, 2019, 2, 515-523.	11.5	106
595	Unpacking the climatic drivers of US agricultural yields. Environmental Research Letters, 2019, 14, 064003.	2.2	120
596	Characteristics of human-climate feedbacks differ at different radiative forcing levels. Global and Planetary Change, 2019, 180, 126-135.	1.6	10
597	Does fertilization impact production risk and yield stability across an entire crop rotation? Insights from a long-term experiment. Field Crops Research, 2019, 238, 82-92.	2.3	17
598	Invited review: Intergovernmental Panel on Climate Change, agriculture, and foodâ€"A case of shifting cultivation and history. Global Change Biology, 2019, 25, 2518-2529.	4.2	59
599	Development of a 10-km resolution global soil profile dataset for crop modeling applications. Environmental Modelling and Software, 2019, 119, 70-83.	1.9	42
600	Applications of Molecular Markers to Develop Resistance Against Abiotic Stresses in Wheat. , 2019, , 393-420.		12
601	Improving remotely-sensed crop monitoring by NDVI-based crop phenology estimators for corn and soybeans in Iowa and Illinois, USA. Field Crops Research, 2019, 238, 113-128.	2.3	70
602	The global nexus of food–trade–water sustaining environmental flows by 2050. Nature Sustainability, 2019, 2, 499-507.	11.5	161
603	Climate shocks, food price stability and international trade: evidence from 76 maize markets in 27 net-importing countries. Environmental Research Letters, 2019, 14, 014007.	2.2	11
604	Sustainability assessment of agricultural rainwater harvesting: Evaluation of alternative crop types and irrigation practices. PLoS ONE, 2019, 14, e0216452.	1.1	15
605	Agro-Climatic Data by County: A Spatially and Temporally Consistent U.S. Dataset for Agricultural Yields, Weather and Soils. Data, 2019, 4, 66.	1.2	10
606	Assessing Potential Climate Change Impacts and Adaptive Measures on Rice Yields: The Case of Zhejiang Province in China. Sustainability, 2019, 11, 2372.	1.6	5
607	Predicting high-magnitude, low-frequency crop losses using machine learning: an application to cereal crops in Ethiopia. Climatic Change, 2019, 154, 211-227.	1.7	24
608	Climate Change, Human Health, and Social Stability: Addressing Interlinkages. Environmental Health Perspectives, 2019, 127, 45002.	2.8	70
609	Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming. Environment International, 2019, 128, 125-136.	4.8	202
610	Making the Paris agreement climate targets consistent with food security objectives. Global Food Security, 2019, 23, 93-103.	4.0	46
611	Comparison of the robustness of methods for estimating leaf development for crop growth models. J Agricultural Meteorology, 2019, 75, 76-83.	0.8	0

#	Article	IF	CITATIONS
612	The impact of climate change on fertility*. Environmental Research Letters, 2019, 14, 054007.	2.2	34
613	Climate Change Interactions with Agriculture, Forestry Sequestration, and Food Security. Environmental and Resource Economics, 2019, 74, 653-675.	1.5	27
614	The nitrogen nutrition potential of arable soils. Scientific Reports, 2019, 9, 5851.	1.6	25
615	Importance of considering technology growth in impact assessments of climate change on agriculture. Global Food Security, 2019, 23, 41-48.	4.0	52
616	A High-Yielding Rice Cultivar "Takanari―Shows No N Constraints on CO2 Fertilization. Frontiers in Plant Science, 2019, 10, 361.	1.7	31
617	Global advanced bioenergy potential under environmental protection policies and societal transformation measures. GCB Bioenergy, 2019, 11, 1041-1055.	2.5	39
618	A Novel Biostimulant, Belonging to Protein Hydrolysates, Mitigates Abiotic Stress Effects on Maize Seedlings Grown in Hydroponics. Agronomy, 2019, 9, 28.	1.3	56
619	Transgenic tomatoes for abiotic stress tolerance: status and way ahead. 3 Biotech, 2019, 9, 143.	1.1	56
620	Biophysical System Models Advance Agricultural Research and Technology: Some Examples and Further Research Needs. Advances in Agricultural Systems Modeling, 2019, , 1-32.	0.3	1
621	Climatic Change and Metabolome Fluxes. , 2019, , 179-237.		O
622	Adjusting climate model bias for agricultural impact assessment: How to cut the mustard. Climate Services, 2019, 13, 65-69.	1.0	22
623	Impact of Texture Information on Crop Classification with Machine Learning and UAV Images. Applied Sciences (Switzerland), 2019, 9, 643.	1.3	78
624	Analyzing the risk related to climate change attributes and their impact, a step towards climate-smart village (CSV): a geospatial approach to bring geoponics sustainability in India. Spatial Information Research, 2019, 27, 613-625.	1.3	10
625	UNESCO's Contribution to Face Global Water Challenges. Water (Switzerland), 2019, 11, 388.	1.2	45
626	The Future of Sustainable Development. , 2019, , 199-268.		0
627	The impact of climate change on barley yield in the Mediterranean basin. European Journal of Agronomy, 2019, 106, 1-11.	1.9	93
628	Coupling index of water consumption and soil fertility correlated with winter wheat production in North China Region. Ecological Indicators, 2019, 102, 154-165.	2.6	15
629	COSTS AND BENEFITS OF CLIMATE CHANGE IN SWITZERLAND. Climate Change Economics, 2019, 10, 1950005.	2.9	3

#	ARTICLE	IF	CITATIONS
630	Global crop output and irrigation water requirements under a changing climate. Heliyon, 2019, 5, e01266.	1.4	15
631	A review of global-local-global linkages in economic land-use/cover change models. Environmental Research Letters, 2019, 14, 053003.	2.2	40
632	Projected Climate Could Increase Water Yield and Cotton Yield but Decrease Winter Wheat and Sorghum Yield in an Agricultural Watershed in Oklahoma. Water (Switzerland), 2019, 11, 105.	1.2	4
633	African food insecurity in a changing climate: The roles of science and policy. Food and Energy Security, 2019, 8, e00160.	2.0	28
634	Crop Wild Relatives of Sunflower in North America. , 2019, , 453-483.		3
635	New frontiers in agriculture productivity: Optimised microbial inoculants and in situ microbiome engineering. Biotechnology Advances, 2019, 37, 107371.	6.0	189
636	Climate change impact on water- and nitrogen-use efficiencies and yields of maize and sorghum in the northern Benin dry savanna, West Africa. Field Crops Research, 2019, 235, 104-117.	2.3	54
637	Simulation Models as Tools for Crop Management. , 2019, , 433-452.		3
638	Simple, efficient and robust techniques for automatic multi-objective function parameterisation: Case studies of local and global optimisation using APSIM. Environmental Modelling and Software, 2019, 117, 109-133.	1.9	38
639	Ecosystem service change caused by climatological and nonâ€climatological drivers: a Swiss case study. Ecological Applications, 2019, 29, e01901.	1.8	31
640	Robust climate change research: a review on multi-model analysis. Environmental Research Letters, 2019, 14, 033001.	2.2	69
641	Drought and heat stress-related proteins: an update about their functional relevance in imparting stress tolerance in agricultural crops. Theoretical and Applied Genetics, 2019, 132, 1607-1638.	1.8	89
642	Uncertainty in Assessing Temperature Impact on U.S. Maize Yield Under Global Warming: The Role of Compounding Precipitation Effect. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6238-6246.	1.2	14
643	Sustainable Pathways for Meeting Future Food Demand. , 2019, , 14-20.		5
644	Climate change and geographic shifts in rice production in China. Environmental Research Communications, 2019, 1, 011008.	0.9	20
645	Toward building a transparent statistical model for improving crop yield prediction: Modeling rainfed corn in the U.S. Field Crops Research, 2019, 234, 55-65.	2.3	67
646	The influence of temperature on the toxicity of insecticides to Nilaparvata lugens (StåI). Pesticide Biochemistry and Physiology, 2019, 156, 80-86.	1.6	25
647	Earth Observations and Integrative Models in Support of Food and Water Security. Remote Sensing in Earth Systems Sciences, 2019, 2, 18-38.	1.1	11

#	Article	IF	CITATIONS
648	Climate Change, Agriculture and Food Security. , 2019, , 55-74.		40
649	Effect of Fertility Policy Changes on the Population Structure and Economy of China: From the Perspective of the Shared Socioeconomic Pathways. Earth's Future, 2019, 7, 250-265.	2.4	99
650	State-of-the-art global models underestimate impacts from climate extremes. Nature Communications, 2019, 10, 1005.	5. 8	168
651	Climate-associated rice yield change in the Northeast China Plain: A simulation analysis based on CMIP5 multi-model ensemble projection. Science of the Total Environment, 2019, 666, 126-138.	3.9	51
652	Sensitivity of Predicted Agro-Ecosystem Variables to Errors in Weather Input Data. Transactions of the ASABE, 2019, 62, 627-640.	1.1	2
654	Evaluation of Hydroclimatic Variability and Prospective Irrigation Strategies in the U.S. Corn Belt. Water (Switzerland), 2019, 11, 2447.	1.2	8
655	Modeling Experiments for Evaluating the Effects of Trees, Increasing Temperature, and Soil Texture on Carbon Stocks in Agroforestry Systems in Kerala, India. Forests, 2019, 10, 803.	0.9	6
656	Vertical Farming and Cultured Meat: Immature Technologies for Urgent Problems. One Earth, 2019, 1, 275-277.	3.6	18
657	Policy Perspective on the Role of Forest Sector Modeling. Journal of Forest Economics, 2019, 34, 187-204.	0.1	7
658	Maize Open-Pollinated Populations Physiological Improvement: Validating Tools for Drought Response Participatory Selection. Sustainability, 2019, 11, 6081.	1.6	3
659	The spatial-temporal patterns of heatwave hazard impacts on wheat in northern China under extreme climate scenarios. Geomatics, Natural Hazards and Risk, 2019, 10, 2346-2367.	2.0	14
660	Does climate change only affect food availability? What else matters?. Cogent Food and Agriculture, 2019, 5, 1707607.	0.6	36
661	Global Response Patterns of Major Rainfed Crops to Adaptation by Maintaining Current Growing Periods and Irrigation. Earth's Future, 2019, 7, 1464-1480.	2.4	38
662	A Crop Simulation Model for Tef (Eragrostis tef (Zucc.) Trotter). Agronomy, 2019, 9, 817.	1.3	3
663	Assessing Agricultural Livelihood Vulnerability to Climate Change in Coastal Bangladesh. International Journal of Environmental Research and Public Health, 2019, 16, 4552.	1.2	59
664	The Dynamics of Climate Change Adaptation in Sub-Saharan Africa: A Review of Climate-Smart Agriculture among Small-Scale Farmers. Climate, 2019, 7, 132.	1.2	68
665	An Integrated Agriculture, Atmosphere, and Hydrology Modeling System for Ecosystem Assessments. Journal of Advances in Modeling Earth Systems, 2019, 11, 4645-4668.	1.3	12
666	Escaping the perfect storm of simultaneous climate change impacts on agriculture and marine fisheries. Science Advances, 2019, 5, eaaw9976.	4.7	60

#	Article	IF	CITATIONS
667	Joint emulation of Earth System Model temperature-precipitation realizations with internal variability and space-time and cross-variable correlation: fldgen v2.0 software description. PLoS ONE, 2019, 14, e0223542.	1.1	4
668	Comparative study of GCMs, RCMs, downscaling and hydrological models: a review toward future climate change impact estimation. SN Applied Sciences, 2019, 1, 1.	1.5	42
669	The State of the Soil Organic Matter and Nutrients in the Long-Term Field Experiments with Application of Organic and Mineral Fertilizers in Different Soil-Climate Conditions in the View of Expecting Climate Change. , 0, , .		5
670	Distinct Metabolic Signals Underlie Clone by Environment Interplay in "Nebbiolo―Grapes Over Ripening. Frontiers in Plant Science, 2019, 10, 1575.	1.7	15
671	Leaf Morphological and Biochemical Responses of Three Potato (Solanum tuberosum L.) Cultivars to Drought Stress and Aphid (Myzus persicae Sulzer) Infestation. Insects, 2019, 10, 435.	1.0	20
672	Weather dataset choice introduces uncertainty to estimates of crop yield responses to climate variability and change. Environmental Research Letters, 2019, 14, 124089.	2.2	44
673	Climate Warming Trends in the U.S. Midwest Using Four Thermal Models. Agronomy Journal, 2019, 111, 3230-3243.	0.9	10
674	Warming accelerates mangrove expansion and surface elevation gain in a subtropical wetland. Journal of Ecology, 2019, 107, 79-90.	1.9	50
675	Research priorities and best practices for managing climate risk and climate change adaptation in Australian agriculture. Australasian Journal of Environmental Management, 2019, 26, 6-24.	0.6	10
676	Agricultural Crop Forecasting for Large Geographical Areas. Annual Review of Statistics and Its Application, 2019, 6, 173-196.	4.1	10
677	Savings and losses of global water resources in foodâ€related virtual water trade. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1320.	2.8	62
678	100 Years of Progress in Applied Meteorology. Part III: Additional Applications. Meteorological Monographs, 2019, 59, 24.1-24.35.	5.0	5
679	How much does climate change add to the challenge of feeding the planet this century?. Environmental Research Letters, 2019, 14, 043001.	2.2	37
680	Smallholders' uneven capacities to adapt to climate change amid Africa's  green revolution': Case study of Rwanda's crop intensification program. World Development, 2019, 116, 1-14.	2.6	50
681	Going Global to Local: Connecting Top-Down Accounting and Local Impacts, A Methodological Review of Spatially Explicit Input–Output Approaches. Environmental Science & Env	4.6	29
682	Effects of input data aggregation on simulated crop yields in temperate and Mediterranean climates. European Journal of Agronomy, 2019, 103, 32-46.	1.9	16
683	Potential Changes in Greenhouse Gas Emissions from Refrigerated Supply Chain Introduction in a Developing Food System. Environmental Science & Environmental Science & 2019, 53, 251-260.	4.6	24
684	Prioritization of global climate models using fuzzy analytic hierarchy process and reliability index. Theoretical and Applied Climatology, 2019, 137, 2381-2392.	1.3	20

#	Article	IF	CITATIONS
685	Modelling cropping periods of grain crops at the global scale. Global and Planetary Change, 2019, 174, 35-46.	1.6	35
686	Climate change impacts on rice productivity in the Mekong River Delta. Applied Geography, 2019, 102, 71-83.	1.7	78
687	Extreme stress threatened double rice production in Southern China during 1981–2010. Theoretical and Applied Climatology, 2019, 137, 1987-1996.	1.3	7
688	Global historical soybean and wheat yield loss estimates from ozone pollution considering water and temperature as modifying effects. Agricultural and Forest Meteorology, 2019, 265, 1-15.	1.9	55
689	Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Science of the Total Environment, 2019, 654, 811-821.	3.9	387
690	Agricultural investments and hunger in Africa modeling potential contributions to SDG2 – Zero Hunger. World Development, 2019, 116, 38-53.	2.6	83
691	Assessing human and environmental pressures of global land-use change 2000 ${\bf \hat{a}} \in (2010.6]$ Clobal Sustainability, 2019, 2, .	1.6	60
692	Proactive, Reactive, and Inactive Pathways for Scientists in a Changing World. Earth's Future, 2019, 7, 60-73.	2.4	21
693	Modelling predicts that soybean is poised to dominate crop production across <scp>A</scp> frica. Plant, Cell and Environment, 2019, 42, 373-385.	2.8	47
694	Recent trends of surface air temperatures over Kenya from 1971 to 2010. Meteorology and Atmospheric Physics, 2019, 131, 1401-1413.	0.9	32
695	Impacts of rising temperature, carbon dioxide concentration and sea level on wheat production in North Nile delta. Science of the Total Environment, 2019, 651, 3161-3173.	3.9	56
696	Using impact response surfaces to analyse the likelihood of impacts on crop yield under probabilistic climate change. Agricultural and Forest Meteorology, 2019, 264, 213-224.	1.9	19
697	Menadione sodium bisulphite (MSB): Beyond seed-soaking. Root pretreatment with MSB primes salt stress tolerance in tomato plants. Environmental and Experimental Botany, 2019, 157, 161-170.	2.0	23
698	Agricultural area losses and pollinator mismatch due to climate changes endanger passion fruit production in the Neotropics. Agricultural Systems, 2019, 169, 49-57.	3.2	14
699	Global wheat production with 1.5 and 2.0°C above preâ€industrial warming. Global Change Biology, 2019, 25, 1428-1444.	4.2	107
700	Economic Growth Effects of Alternative Climate Change Impact Channels in Economic Modeling. Environmental and Resource Economics, 2019, 73, 1357-1385.	1.5	22
701	Ecosystem productivity response to environmental forcing, prospect for improved rain-fed cropping productivity in lake Kyoga Basin. Applied Geography, 2019, 102, 1-11.	1.7	10
702	Climate change impact and adaptation for wheat protein. Global Change Biology, 2019, 25, 155-173.	4.2	312

#	Article	IF	CITATIONS
703	Explicit wheat production model adjusted for semi-arid environments. Field Crops Research, 2019, 231, 93-104.	2.3	18
704	Abiotic Stress Signaling in Rice Crop. , 2019, , 551-569.		18
705	Implications of crop model ensemble size and composition for estimates of adaptation effects and agreement of recommendations. Agricultural and Forest Meteorology, 2019, 264, 351-362.	1.9	35
706	Crop RS-Met: A biophysical evapotranspiration and root-zone soil water content model for crops based on proximal sensing and meteorological data. Agricultural Water Management, 2019, 211, 210-219.	2.4	17
707	Multimodel Ensembles., 2019,, 425-443.		0
708	Mapping future soil carbon change and its uncertainty in croplands using simple surrogates of a complex farming system model. Geoderma, 2019, 337, 311-321.	2.3	16
709	Higher contributions of uncertainty from global climate models than crop models in maizeâ€yield simulations under climate change. Meteorological Applications, 2019, 26, 74-82.	0.9	20
710	Big Data in Agriculture and Their Analyses. , 2019, , 233-237.		1
711	Genetic and genomic resources of sorghum to connect genotype with phenotype in contrasting environments. Plant Journal, 2019, 97, 19-39.	2.8	88
713	Spatio-temporal downscaling of gridded crop model yield estimates based on machine learning. Agricultural and Forest Meteorology, 2019, 264, 1-15.	1.9	96
714	From paleoclimate variables to prehistoric agriculture: Using a process-based agro-ecosystem model to simulate the impacts of Holocene climate change on potential agricultural productivity in Provence, France. Quaternary International, 2019, 501, 303-316.	0.7	14
715	Assessing the information in crop model and meteorological indicators to forecast crop yield over Europe. Agricultural Systems, 2019, 168, 191-202.	3.2	81
716	Assessing agricultural system vulnerability to floods: A hybrid approach using emergy and a landscape fragmentation index. Ecological Indicators, 2019, 105, 337-346.	2.6	23
717	The Sectoral and Regional Economic Consequences of Climate Change to 2060. Environmental and Resource Economics, 2019, 72, 309-363.	1.5	61
718	Assessing the economy–climate relationships for Brazilian agriculture. Empirical Economics, 2020, 59, 1161-1188.	1.5	4
719	The importance of slow canopy wilting in drought tolerance in soybean. Journal of Experimental Botany, 2020, 71, 642-652.	2.4	49
720	Risk experience and smallholder farmers' climate change adaptation decision. Climate and Development, 2020, 12, 385-393.	2.2	9
721	The impact of climate change on the Australian sugarcane industry. Journal of Cleaner Production, 2020, 246, 118974.	4.6	25

#	Article	IF	CITATIONS
722	Wideâ€ranging transcriptome remodelling mediated by alternative polyadenylation in response to abiotic stresses in <i>Sorghum</i> . Plant Journal, 2020, 102, 916-930.	2.8	24
723	Humans drive future water scarcity changes across all Shared Socioeconomic Pathways. Environmental Research Letters, 2020, 15, 014007.	2.2	50
724	Climate change impacts and adaptations for fine, coarse, and hybrid rice using CERES-Rice. Environmental Science and Pollution Research, 2020, 27, 9454-9464.	2.7	10
725	Impact of heat stress on potato (<i>Solanum tuberosum</i> L.): present scenario and future opportunities. Journal of Horticultural Science and Biotechnology, 2020, 95, 407-424.	0.9	28
726	Integrated assessment of climate change impacts on multiple ecosystem services in Western Switzerland. Science of the Total Environment, 2020, 708, 135212.	3.9	25
727	Different uncertainty distribution between high and low latitudes in modelling warming impacts on wheat. Nature Food, 2020, 1 , 63-69.	6.2	43
728	A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan. Environmental Monitoring and Assessment, 2020, 192, 48.	1.3	108
729	The effects of projected climate change and extreme climate on maize and rice in the Yangtze River Basin, China. Agricultural and Forest Meteorology, 2020, 282-283, 107867.	1.9	75
730	Changing risks of simultaneous global breadbasket failure. Nature Climate Change, 2020, 10, 54-57.	8.1	132
731	Protein-rich legume and pseudo-cereal crop suitability under present and future European climates. European Journal of Agronomy, 2020, 113, 125974.	1.9	25
732	Uncertainties in global crop modelling. Nature Food, 2020, 1, 19-20.	6.2	3
733	Impacts of climate change on livestock and possible adaptations: A case study of the United Kingdom. Agricultural Systems, 2020, 178, 102737.	3.2	50
734	Impact assessment of climate change on the major rice cultivar Ciherang in Indonesia. J Agricultural Meteorology, 2020, 76, 19-28.	0.8	13
735	Climate Change Impacts on Water and Agriculture Sectors in Southern Africa: Threats and Opportunities for Sustainable Development. Water (Switzerland), 2020, 12, 2673.	1.2	74
736	GDNDC: An integrated system to model water-nitrogen-crop processes for agricultural management at regional scales. Environmental Modelling and Software, 2020, 134, 104807.	1.9	5
738	Responses of plant biomass and yield component in rice, wheat, and maize to climatic warming: a meta-analysis. Planta, 2020, 252, 90.	1.6	14
739	Evaluation of the impact of heat on wheat dormancy, late maturity \hat{l}_{\pm} -amylase and grain size under controlled conditions in diverse germplasm. Scientific Reports, 2020, 10, 17800.	1.6	13
740	Intense Warming Will Significantly Increase Cropland Ammonia Volatilization Threatening Food Security and Ecosystem Health. One Earth, 2020, 3, 126-134.	3.6	26

#	Article	IF	Citations
741	Comparative transcriptome analysis reveals heat stress-responsive genes and their signalling pathways in lilies (Lilium longiflorum vs. Lilium distichum). PLoS ONE, 2020, 15, e0239605.	1.1	6
742	Index-based weather insurance for perennial crops: A case study on insurance supply and demand for cocoa farmers in Ghana. World Development Perspectives, 2020, 20, 100237.	0.8	8
743	Risk taking and sharing when risk exposure is interdependent. Journal of Economic Behavior and Organization, 2020, 176, 445-460.	1.0	2
744	Modelling rice yield with temperature optima of rice productivity derived from satellite NIRv in tropical monsoon area. Agricultural and Forest Meteorology, 2020, 294, 108135.	1.9	7
745	Global hunger and climate change adaptation through international trade. Nature Climate Change, 2020, 10, 829-835.	8.1	117
746	The <i>LATERAL ROOT DENSITY</i> gene regulates root growth during water stress in wheat. Plant Biotechnology Journal, 2020, 18, 1955-1968.	4.1	48
747	Sunflower Modelling: A Review., 2020,, 307-326.		0
749	Inherent trait differences explain wheat cultivar responses to climate factor interactions: New insights for more robust crop modelling. Global Change Biology, 2020, 26, 5965-5978.	4.2	7
750	Risk analysis of maize yield losses in mainland China at the county level. Scientific Reports, 2020, 10, 10684.	1.6	9
751	Assessment of Gridded CRU TS Data for Long-Term Climatic Water Balance Monitoring over the São Francisco Watershed, Brazil. Atmosphere, 2020, 11, 1207.	1.0	27
752	Verifiable soil organic carbon modelling to facilitate regional reporting of cropland carbon change: A test case in the Czech Republic. Journal of Environmental Management, 2020, 274, 111206.	3.8	6
7 53	Projecting Exposure to Extreme Climate Impact Events Across Six Event Categories and Three Spatial Scales. Earth's Future, 2020, 8, e2020EF001616.	2.4	69
754	Farmer's perception and adaptation strategies to changing climate in Kashmir Himalayas, India. Geo Journal, 2022, 87, 1743-1757.	1.7	7
755	A Coordinated Suite of Wild-Introgression Lines in Indica and Japonica Elite Backgrounds. Frontiers in Plant Science, 2020, 11, 564824.	1.7	4
756	Impact of cropland displacement on the potential crop production in China: a multi-scale analysis. Regional Environmental Change, 2020, 20, 1.	1.4	18
757	Effects of Trace Irrigation at Different Depths on Transcriptome Expression Pattern in Cotton (G.) Tj ETQq $1\ 1\ 0.7$	′843.]4 rgl	BT <u>{</u> Overlock
758	Simulation of Climate Change Impacts on Phenology and Production of Winter Wheat in Northwestern China Using CERES-Wheat Model. Atmosphere, 2020, 11, 681.	1.0	13
759	Ensembles of ecosystem service models can improve accuracy and indicate uncertainty. Science of the Total Environment, 2020, 747, 141006.	3.9	23

#	Article	IF	CITATIONS
760	A Bayesian framework to unravel food, groundwater, and climate linkages: A case study from Louisiana. PLoS ONE, 2020, 15, e0236757.	1.1	1
761	Impacts of 1.5â€Â°C and 2.0â€Â°C global warming above pre-industrial on potential winter wheat production of China. European Journal of Agronomy, 2020, 120, 126149.	1.9	39
762	Sensitivity of global major crop yields to climate variables: A non-parametric elasticity analysis. Science of the Total Environment, 2020, 748, 141431.	3.9	25
763	Future changes in the trading of virtual water. Nature Communications, 2020, 11, 3632.	5.8	54
764	Paddy, rice and food security in Malaysia: A review of climate change impacts. Cogent Social Sciences, 2020, 6, .	0.5	47
765	Shedding light on the evidence blind spots confounding the multiple objectives of SDG 2. Nature Plants, 2020, 6, 1203-1210.	4.7	12
766	The domestic and international implications of future climate for U.S. agriculture in GCAM. PLoS ONE, 2020, 15, e0237918.	1.1	8
767	Modelling the effects of post-heading heat stress on biomass partitioning, and grain number and weight of wheat. Journal of Experimental Botany, 2020, 71, 6015-6031.	2.4	15
769	Parameter Sensitivities of the Community Land Model at Two Alpine Sites in the Three-River Source Region. Journal of Meteorological Research, 2020, 34, 851-864.	0.9	7
770	Using insurance data to quantify the multidimensional impacts of warming temperatures on yield risk. Nature Communications, 2020, 11, 4542.	5.8	30
771	Mapping U.S. Food System Localization Potential: The Impact of Diet on Foodsheds. Environmental Science & Environmental Scienc	4.6	15
772	Framing the search for a theory of land use. Journal of Land Use Science, 2020, 15, 489-508.	1.0	39
773	Climate change, crops and commodity traders: subnational trade analysis highlights differentiated risk exposure. Climatic Change, 2020, 162, 175-192.	1.7	3
774	Impacts of rising temperatures and farm management practices on global yields of 18 crops. Nature Food, 2020, 1, 562-571.	6.2	70
775	The Molecular Priming of Defense Responses is Differently Regulated in Grapevine Genotypes Following Elicitor Application against Powdery Mildew. International Journal of Molecular Sciences, 2020, 21, 6776.	1.8	15
776	Assessing Heat Stress in Cattle Based on Analysis of Meteorological Factors. Russian Agricultural Sciences, 2020, 46, 390-394.	0.1	1
777	Economic effects of projected decrease in Brazilian agricultural productivity under climate change. Geo Journal, 2022, 87, 957-970.	1.7	1
778	Land suitability for energy crops under scenarios of climate change and landâ€use. GCB Bioenergy, 2020, 12, 648-665.	2.5	19

#	Article	IF	CITATIONS
779	Portable Raman leaf-clip sensor for rapid detection of plant stress. Scientific Reports, 2020, 10, 20206.	1.6	40
780	Narrowing uncertainties in the effects of elevated CO2 on crops. Nature Food, 2020, 1, 775-782.	6.2	67
781	Identifying Agricultural Frontiers for Modeling Global Cropland Expansion. One Earth, 2020, 3, 504-514.	3.6	29
782	Post-2020 biodiversity targets need to embrace climate change. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30882-30891.	3.3	160
783	Transcriptome and translatome changes in germinated pollen under heat stress uncover roles of transporter genes involved in pollen tube growth. Plant, Cell and Environment, 2021, 44, 2167-2184.	2.8	25
784	Near Real-Time Biophysical Rice (Oryza sativa L.) Yield Estimation to Support Crop Insurance Implementation in India. Agronomy, 2020, 10, 1674.	1.3	9
785	Using a Statistical Crop Model to Predict Maize Yield by the End-Of-Century for the Azuero Region in Panama. Atmosphere, 2020, 11, 1097.	1.0	2
786	United Kingdom's fruit and vegetable supply is increasingly dependent on imports from climate-vulnerable producing countries. Nature Food, 2020, 1, 705-712.	6.2	33
787	Potential for sustainable irrigation expansion in a 3 \hat{A}° C warmer climate. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29526-29534.	3.3	106
788	Water Erosion Reduction Using Different Soil Tillage Approaches for Maize (Zea mays L.) in the Czech Republic. Land, 2020, 9, 358.	1.2	14
789	Analyzing adaptation strategies for maize production under future climate change in Guanzhong Plain, China. Mitigation and Adaptation Strategies for Global Change, 2020, 25, 1523-1543.	1.0	28
790	Long-term analysis from a cropping system perspective: Yield stability, environmental adaptability, and production risk of winter barley. European Journal of Agronomy, 2020, 117, 126056.	1.9	26
791	Assessing Yield and Yield Stability of Hevea Clones in the Southern and Central Regions of Malaysia. Agronomy, 2020, 10, 643.	1.3	15
792	The GGCMI Phase 2 experiment: global gridded crop model simulations under uniform changes in CO ₂ , temperature, water, and nitrogen levels (protocol) Tj ETQq1 1	0.7 &\$ 314	rgBB/Overlo
793	The Role of Crop Production in the Forest Landscape Restoration Approach—Assessing the Potential Benefits of Meeting the Bonn Challenge. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	8
794	A consistent calibration across three wheat models to simulate wheat yield and phenology in China. Ecological Modelling, 2020, 430, 109132.	1.2	8
795	On the role of rainfall deficits and cropping choices in loss of agricultural yield in Marathwada, India. Environmental Research Letters, 2020, 15, 094029.	2.2	19
796	Management of abiotic stress and sustainability. , 2020, , 883-916.		1

#	Article	IF	Citations
797	Quantitative synthesis of temperature, CO2, rainfall, and adaptation effects on global crop yields. European Journal of Agronomy, 2020, 115, 126041.	1.9	41
798	Model approaches to estimate spatial distribution of bee species richness and soybean production in the Brazilian Cerrado during 2000 to 2015. Science of the Total Environment, 2020, 737, 139674.	3.9	5
799	The impact of climate change on Brazil's agriculture. Science of the Total Environment, 2020, 740, 139384.	3.9	67
800	Impacts of climate change on the optimum planting date of different maize cultivars in the central US Corn Belt. European Journal of Agronomy, 2020, 119, 126101.	1.9	53
801	Data Science in Agriculture. CSA News, 2020, 65, 42-46.	0.1	0
802	Economic efficiency of rainfed wheat farmers under changing climate: evidence from Pakistan. Environmental Science and Pollution Research, 2020, 27, 34453-34467.	2.7	27
803	Water modelling approaches and opportunities to simulate spatial water variations at crop field level. Agricultural Water Management, 2020, 240, 106254.	2.4	32
804	Practices for upscaling crop simulation models from field scale to large regions. Computers and Electronics in Agriculture, 2020, 175, 105554.	3.7	35
805	Integrated energy-water-land nexus planning to guide national policy: an example from Uruguay. Environmental Research Letters, 2020, 15, 094014.	2.2	24
806	A regional nuclear conflict would compromise global food security. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7071-7081.	3.3	63
807	Using a cross-scale simulation tool to assess future maize production under multiple climate change scenarios: An application to the Northeast Farming Region of China. Climate Services, 2020, 18, 100150.	1.0	5
808	Carbon and Phosphorus Allocation in Annual Plants: An Optimal Functioning Approach. Frontiers in Plant Science, 2020, 11, 149.	1.7	12
809	A multi-model analysis of teleconnected crop yield variability in a range of cropping systems. Earth System Dynamics, 2020, 11, 113-128.	2.7	21
810	Comparative assessment of environmental variables and machine learning algorithms for maize yield prediction in the US Midwest. Environmental Research Letters, 2020, 15, 064005.	2.2	96
812	Has Technology Increased Agricultural Yield Risk? Evidence from the Crop Insurance Biotech Endorsement. American Journal of Agricultural Economics, 2020, 102, 1578-1597.	2.4	13
813	Nanomaterial based gene delivery: a promising method for plant genome engineering. Journal of Materials Chemistry B, 2020, 8, 4165-4175.	2.9	64
814	Extreme and Systemic Risk Analysis. Integrated Disaster Risk Management, 2020, , .	0.5	7
815	Quantifying irrigation cooling benefits to maize yield in the US Midwest. Global Change Biology, 2020, 26, 3065-3078.	4.2	68

#	Article	IF	Citations
816	The research cost of adapting agriculture to climate change: A global analysis to 2050. Agricultural Economics (United Kingdom), 2020, 51, 207-220.	2.0	23
817	THE CRITICAL ROLE OF CONVERSION COST AND COMPARATIVE ADVANTAGE IN MODELING AGRICULTURAL LAND USE CHANGE. Climate Change Economics, 2020, 11, 2050004.	2.9	14
818	Evaluating the Contribution of Soybean Rust-Resistant Cultivars to Soybean Production and the Soybean Market in Brazil: A Supply and Demand Model Analysis. Sustainability, 2020, 12, 1422.	1.6	11
819	Assessment of the radiation effect of aerosols on maize production in China. Science of the Total Environment, 2020, 720, 137567.	3.9	17
820	Climate adaptation by crop migration. Nature Communications, 2020, 11, 1243.	5.8	153
821	Developing the role of legumes in West Africa under climate change. Current Opinion in Plant Biology, 2020, 56, 242-258.	3.5	21
822	Emergent constraint on crop yield response to warmer temperature from field experiments. Nature Sustainability, 2020, 3, 908-916.	11.5	96
823	How to Improve the Diffusion of Climate-Smart Agriculture: What the Literature Tells us. Sustainability, 2020, 12, 5168.	1.6	19
824	Modelling climate change impacts on maize yields under low nitrogen input conditions in subâ€Saharan Africa. Global Change Biology, 2020, 26, 5942-5964.	4.2	60
825	Large scale tropical deforestation drives extreme warming. Environmental Research Letters, 2020, 15, 084012.	2.2	51
826	Spatiotemporal rice yield variations and potential agro-adaptation strategies in Bangladesh: A biophysical modeling approach. Sustainable Production and Consumption, 2020, 24, 121-138.	5.7	10
827	Translation of Strigolactones from Plant Hormone to Agriculture: Achievements, Future Perspectives, and Challenges. Trends in Plant Science, 2020, 25, 1087-1106.	4.3	62
828	Quantifying the uncertainty introduced by internal climate variability in projections of Canadian crop production. Environmental Research Letters, 2020, 15, 074032.	2.2	17
829	Microbial Secondary Metabolites: Effectual Armors to Improve Stress Survivability in Crop Plants., 2020,, 47-70.		0
830	The scope of transformation and genome editing for quantitative trait improvements in rice. , 2020, , 23-43.		1
831	Water and agricultural policies in Iranian macroâ€level documents from the perspective of adaptation to climate change*. Irrigation and Drainage, 2020, 69, 1012-1021.	0.8	7
832	Larger Drought and Flood Hazards and Adverse Impacts on Population and Economic Productivity Under 2.0 than 1.5°C Warming. Earth's Future, 2020, 8, e2019EF001398.	2.4	25
833	Modeling Flood-Induced Stress in Soybeans. Frontiers in Plant Science, 2020, 11, 62.	1.7	35

#	Article	IF	CITATIONS
834	Vertical farming systems bring new considerations for pest and disease management. Annals of Applied Biology, 2020, 176, 226-232.	1.3	30
835	Landscape structure and climate drive population dynamics of an insect vector within intensely managed agroecosystems. Ecological Applications, 2020, 30, e02109.	1.8	13
836	Genomic Designing of Climate-Smart Cereal Crops. , 2020, , .		6
838	Predominant regional biophysical cooling from recent land cover changes in Europe. Nature Communications, 2020, 11 , 1066 .	5. 8	38
839	First process-based simulations of climate change impacts on global tea production indicate large effects in the World's major producer countries. Environmental Research Letters, 2020, 15, 034023.	2.2	15
840	Ensemble climate-impact modelling: extreme impacts from moderate meteorological conditions. Environmental Research Letters, 2020, 15, 034050.	2.2	47
841	Impacts of Climate Change and Different Crop Rotation Scenarios on Groundwater Nitrate Concentrations in a Sandy Aquifer. Sustainability, 2020, 12, 1153.	1.6	13
842	Extending a first-principles primary production model to predict wheat yields. Agricultural and Forest Meteorology, 2020, 287, 107932.	1.9	17
843	Metabolite/phytohormone–gene regulatory networks in soybean organs under dehydration conditions revealed by integration analysis. Plant Journal, 2020, 103, 197-211.	2.8	10
844	The environmental consequences of climate-driven agricultural frontiers. PLoS ONE, 2020, 15, e0228305.	1.1	58
845	Estimating photosynthetic traits from reflectance spectra: A synthesis of spectral indices, numerical inversion, and partial least square regression. Plant, Cell and Environment, 2020, 43, 1241-1258.	2.8	56
846	Charting out the future agricultural trade and its impact on water resources. Science of the Total Environment, 2020, 714, 136626.	3.9	16
847	A surrogate weighted mean ensemble method to reduce the uncertainty at a regional scale for the calculation of potential evapotranspiration. Scientific Reports, 2020, 10, 870.	1.6	13
848	Selection and functional identification of a synthetic partial ABA agonist, S7. Scientific Reports, 2020, 10, 4.	1.6	13
849	The response of glyphosate-resistant and glyphosate-susceptible biotypes of Echinochloa colona to carbon dioxide, soil moisture and glyphosate. Scientific Reports, 2020, 10, 329.	1.6	11
850	Elevated temperature and carbon dioxide alter resource allocation to growth, storage and defence in cassava (Manihot esculenta). Environmental and Experimental Botany, 2020, 173, 103997.	2.0	10
851	Statistical emulators of irrigated crop yields and irrigation water requirements. Agricultural and Forest Meteorology, 2020, 284, 107828.	1.9	4
852	Extreme heat effects on perennial crops and strategies for sustaining future production. Plant Science, 2020, 295, 110397.	1.7	36

#	Article	IF	CITATIONS
853	Genotypic variation in source and sink traits affects the response of photosynthesis and growth to elevated atmospheric CO ₂ . Plant, Cell and Environment, 2020, 43, 579-593.	2.8	32
854	Population, urbanization and economic scenarios over the Belt and Road region under the Shared Socioeconomic Pathways. Journal of Chinese Geography, 2020, 30, 68-84.	1.5	59
855	Impacts of 1.5 and 2.0°C global warming on rice production across China. Agricultural and Forest Meteorology, 2020, 284, 107900.	1.9	44
856	GLOBAL MARKET AND ECONOMIC WELFARE IMPLICATIONS OF CHANGES IN AGRICULTURAL YIELDS DUE TO CLIMATE CHANGE. Climate Change Economics, 2020, 11, 2050005.	2.9	12
857	A (mis)alignment of farmer experience and perceptions of climate change in the U.S. inland Pacific Northwest. Climatic Change, 2020, 162, 1011-1029.	1.7	16
858	Climate change impact and adaptation on wheat yield, water use and water use efficiency at North Nile Delta. Frontiers of Earth Science, 2020, 14, 522-536.	0.9	26
859	Assessing and managing design storm variability and projection uncertainty in a changing coastal environment. Journal of Environmental Management, 2020, 264, 110494.	3.8	4
860	Comparative analysis of plant growth risks insurance in the Eurasian Economic Union countries. BIO Web of Conferences, 2020, 17, 00003.	0.1	5
861	Climate smart agriculture and global food-crop production. PLoS ONE, 2020, 15, e0231764.	1.1	35
862	Analysis of Climate Extreme Indices in the MATOPIBA Region, Brazil. Pure and Applied Geophysics, 2020, 177, 4457-4478.	0.8	28
863	Impact of terminal heat stress on wheat yield in India and options for adaptation. Agricultural Systems, 2020, 181, 102826.	3.2	72
864	Climate variability in agriculture and crop water requirement: Spatial analysis of Italian provinces. Journal of Cleaner Production, 2020, 262, 121331.	4.6	11
865	Agriculture's Historic Twin-Challenge Toward Sustainable Water Use and Food Supply for All. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	30
866	Evaluating machine learning algorithms for predicting maize yield under conservation agriculture in Eastern and Southern Africa. SN Applied Sciences, 2020, 2, 1.	1.5	30
867	Impact of parameter uncertainty and water stress parameterization on wheat growth simulations using CERES-Wheat with GLUE. Agricultural Systems, 2020, 181, 102823.	3.2	11
868	Predicting spatial and temporal variability in crop yields: an inter-comparison of machine learning, regression and process-based models. Environmental Research Letters, 2020, 15, 044027.	2.2	79
869	Climate change–induced human conflicts and economic costs in Pakistani Punjab. Environmental Science and Pollution Research, 2020, 27, 24299-24311.	2.7	6
870	Reducing water footprints through healthy and reasonable changes in diet and imported products. Sustainable Production and Consumption, 2020, 23, 30-41.	5.7	21

#	Article	IF	CITATIONS
871	Towards a multiscale crop modelling framework for climate change adaptation assessment. Nature Plants, 2020, 6, 338-348.	4.7	181
872	Life-Course Monitoring of Endogenous Phytohormone Levels under Field Conditions Reveals Diversity of Physiological States among Barley Accessions. Plant and Cell Physiology, 2020, 61, 1438-1448.	1.5	4
873	Future trends of water resources and influences on agriculture in China. PLoS ONE, 2020, 15, e0231671.	1.1	10
874	Evaluation of the most appropriate spatial resolution of input data for assessing the impact of climate change on rice productivity in Japan. J Agricultural Meteorology, 2020, 76, 61-68.	0.8	7
875	Projected climate change impacts on mean and year-to-year variability of yield of key smallholder crops in Sub-Saharan Africa. Climate and Development, 2021, 13, 268-282.	2.2	45
876	Land degradation and climate change: Global impact on wheat yields. Land Degradation and Development, 2021, 32, 387-398.	1.8	22
877	Land cover and climate changes drive regionally heterogeneous increases in US insecticide use. Landscape Ecology, 2021, 36, 159-177.	1.9	10
878	Modelling global impacts of climate variability and trend on maize yield during 1980–2010. International Journal of Climatology, 2021, 41, E1583.	1.5	7
879	Shock interactions, coping strategy choices and household food security. Climate and Development, 2021, 13, 414-426.	2.2	31
880	Full Parameterisation Matters for the Best Performance of Crop Models: Inter-comparison of a Simple and a Detailed Maize Model. International Journal of Plant Production, 2021, 15, 61-78.	1.0	8
881	Current rice models underestimate yield losses from shortâ€ŧerm heat stresses. Global Change Biology, 2021, 27, 402-416.	4.2	24
882	Analysing and simulating spatial patterns of crop yield in Guizhou Province based on artificial neural networks. Progress in Physical Geography, 2021, 45, 33-52.	1.4	14
883	Uncertainty concepts for integrated modeling - Review and application for identifying uncertainties and uncertainty propagation pathways. Environmental Modelling and Software, 2021, 135, 104905.	1.9	16
884	Temperature and evaporative demand drive variation in stomatal and hydraulic traits across grape cultivars. Journal of Experimental Botany, 2021, 72, 1995-2009.	2.4	15
885	Decreasing wheat yield stability on the North China Plain: Relative contributions from climate change in mean and variability. International Journal of Climatology, 2021, 41, E2820.	1.5	11
886	Climate change: a natural streamliner towards entomophagy?. International Journal of Tropical Insect Science, 2021, 41, 2133-2147.	0.4	3
887	Climate change impacts on phenology and yield of hazelnut in Australia. Agricultural Systems, 2021, 186, 102982.	3.2	7
888	Rice drought risk assessment under climate change: Based on physical vulnerability a quantitative assessment method. Science of the Total Environment, 2021, 751, 141481.	3.9	33

#	Article	IF	Citations
890	Role of small RNA and RNAi technology toward improvement of abiotic stress tolerance in plants. , $2021, , 491-507.$		0
891	Enhancing Resilience for Food and Nutrition Security Within a Changing Climate., 2021, , 1-42.		0
892	Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature, 2021, 590, 438-444.	13.7	144
893	Assessing future cross-border climate impacts using shared socioeconomic pathways. Climate Risk Management, 2021, 32, 100311.	1.6	6
894	Uniting remote sensing, crop modelling and economics for agricultural risk management. Nature Reviews Earth & Environment, 2021, 2, 140-159.	12.2	88
895	Maize yield loss risk under droughts in observations and crop models in the United States. Environmental Research Letters, 2021, 16, 024016.	2.2	19
896	Africa Would Need to Import More Maize in the Future Even Under 1.5°C Warming Scenario. Earth's Future, 2021, 9, e2020EF001574.	2.4	6
897	Advances in Genomic Designing for Abiotic Stress Tolerance in Sorghum., 2021,, 193-221.		0
898	Blind spots in visions of a "blue economy―could undermine the ocean's contribution to eliminating hunger and malnutrition. One Earth, 2021, 4, 28-38.	3.6	63
899	Heterogenous Impacts of Climate on Agricultural Industries Farm Exit Patterns in the Murray-Darling Basin of Australia., 2021,, 1-24.		0
900	Conservation tillage mitigates drought-induced soybean yield losses in the US Corn Belt. Q Open, 2021, 1, .	0.7	7
901	Improving the representation of cropland sites in the Community Land Model (CLM) version 5.0. Geoscientific Model Development, 2021, 14, 573-601.	1.3	18
902	Integrated Remote Sensing and Crop Model Approach for Impact Assessment of Aerosols on Biomass Accumulation of Maize. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 7237-7245.	2.3	2
903	Forecasting China's Food Grain Demand 2021-2050 with Attention to Balanced Dietary and Fertility Policies. SSRN Electronic Journal, 0, , .	0.4	3
904	Irrigation, Technical Efficiency, and Farm Size: The Case of Brazil. Sustainability, 2021, 13, 1132.	1.6	10
905	Performance of dry and wet spells combined with remote sensing indicators for crop yield prediction in Senegal. Climate Risk Management, 2021, 33, 100331.	1.6	14
906	Research progress on nitrogen and phosphorus runoff loss models for rice paddy. Hupo Kexue/Journal of Lake Sciences, 2021, 33, 336-348.	0.3	0
907	From dimming to brightening during 1961 to 2014 in the maize growing season of China. Food and Energy Security, 2021, 10, 329-340.	2.0	6

#	Article	IF	Citations
908	Mechanistic insights of <scp>CRISPR</scp> /Casâ€mediated genome editing towards enhancing abiotic stress tolerance in plants. Physiologia Plantarum, 2021, 172, 1255-1268.	2.6	25
909	Parametric insurance and technology adoption in developing countries. GENEVA Risk and Insurance Review, 2022, 47, 7-44.	0.4	7
910	The projected water availability on paddy rice based on climate change scenario in Indonesia. IOP Conference Series: Earth and Environmental Science, 2021, 648, 012162.	0.2	2
911	Power sector investment implications of climate impacts on renewable resources in Latin America and the Caribbean. Nature Communications, 2021, 12, 1276.	5.8	30
912	Global irrigation contribution to wheat and maize yield. Nature Communications, 2021, 12, 1235.	5.8	61
913	Vulnerability of European wheat to extreme heat and drought around flowering under future climate. Environmental Research Letters, 2021, 16, 024052.	2.2	16
914	Climate change and extreme events on drainage systems: numerical simulation of soil water in corn crops in Illinois (USA). International Journal of Biometeorology, 2021, 65, 1001-1013.	1.3	6
915	Hybrid coffee cultivars may enhance agroecosystem resilience to climate change. AoB PLANTS, 2021, 13, plab010.	1.2	7
916	Exploring uncertainties in global crop yield projections in a large ensemble of crop models and CMIP5 and CMIP6 climate scenarios. Environmental Research Letters, 2021, 16, 034040.	2.2	53
917	Identifying meteorological drivers of extreme impacts: an application to simulated crop yields. Earth System Dynamics, 2021, 12, 151-172.	2.7	30
918	Climate change as a driver of food insecurity in the 2007 Lesotho-South Africa drought. Scientific Reports, 2021, 11, 3852.	1.6	40
919	Long-term global ground heat flux and continental heat storage from geothermal data. Climate of the Past, 2021, 17, 451-468.	1.3	17
920	Using the anomaly forcing Community Land Model (CLM 4.5) for crop yield projections. Geoscientific Model Development, 2021, 14, 1253-1265.	1.3	0
921	Impacts of Surface Ozone Pollution on Global Crop Yields: Comparing Different Ozone Exposure Metrics and Incorporating Co-effects of CO2. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	42
922	Modeling maize and soybean responses to climatic change and soil degradation in a region of South America. Agronomy Journal, 2021, 113, 1381-1393.	0.9	8
923	Plant Growth and Physiological Responses to Improved Irrigation and Fertilization Management for Young Peach Trees in the Southeastern United States. Hortscience: A Publication of the American Society for Hortcultural Science, 2021, 56, 336-346.	0.5	6
924	Impacts of climate change on the livestock food supply chain; a review of the evidence. Global Food Security, 2021, 28, 100488.	4.0	177
925	Breeding rice varieties provides an effective approach to improve productivity and yield sensitivity to climate resources. European Journal of Agronomy, 2021, 124, 126239.	1.9	12

#	Article	IF	CITATIONS
926	Application of a coupled model of photosynthesis, stomatal conductance and transpiration for rice leaves and canopy. Computers and Electronics in Agriculture, 2021, 182, 106047.	3.7	10
927	Canopy temperature and heat stress are increased by compound high air temperature and water stress and reduced by irrigation – a modeling analysis. Hydrology and Earth System Sciences, 2021, 25, 1411-1423.	1.9	29
928	Climate Change Effects on Aquaculture Production: Sustainability Implications, Mitigation, and Adaptations. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	119
929	Arable lands under the pressure of multiple land degradation processes. A global perspective. Environmental Research, 2021, 194, 110697.	3.7	165
930	Possibilities of using silicate rock powder: An overview. Geoscience Frontiers, 2022, 13, 101185.	4.3	29
931	Revamping Ecosystem Services through Agroecology—The Case of Cereals. Agriculture (Switzerland), 2021, 11, 204.	1.4	12
932	Heat stress on agricultural workers exacerbates crop impacts of climate change. Environmental Research Letters, 2021, 16, 044020.	2.2	58
933	Climate change risk to southern African wild food plants. Regional Environmental Change, 2021, 21, 1.	1.4	8
934	Assessing the vulnerability and risk of maize to drought in China based on the AquaCrop model. Agricultural Systems, 2021, 189, 103040.	3.2	44
935	Projections of spring wheat growth in Alaska: Opportunity and adaptations in a changing climate. Climate Services, 2021, 22, 100235.	1.0	2
936	Near-term impact of climate variability on yam rot incidence over a humid tropical region: projections in CORDEX-Africa scenarios. Renewable Agriculture and Food Systems, 2021, 36, 477-490.	0.8	0
937	Global cotton production under climate change – Implications for yield and water consumption. Hydrology and Earth System Sciences, 2021, 25, 2027-2044.	1.9	42
938	Identifying key processes and sectors in the interaction between climate and socio-economic systems: a review toward integrating Earth–human systems. Progress in Earth and Planetary Science, 2021, 8, .	1.1	11
939	Challenges and opportunities in precision irrigation decision-support systems for center pivots. Environmental Research Letters, 2021, 16, 053003.	2.2	31
941	Strong regional influence of climatic forcing datasets on global crop model ensembles. Agricultural and Forest Meteorology, 2021, 300, 108313.	1.9	17
942	Climate variability and adaptation among small holder banana farmers in mountain regions of Kenya. Geography, Environment, Sustainability, 2021, 14, 161-170.	0.6	3
943	Understanding climate services for enhancing resilient agricultural systems in Anglophone West Africa: The case of Ghana. Climate Services, 2021, 22, 100218.	1.0	14
944	Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. Algal Research, 2021, 54, 102200.	2.4	122

#	Article	IF	CITATIONS
945	Current Understanding of bHLH Transcription Factors in Plant Abiotic Stress Tolerance. International Journal of Molecular Sciences, 2021, 22, 4921.	1.8	97
946	Modeling impacts of climate change on crop yield and phosphorus loss in a subsurface drained field of Lake Erie region, Canada. Agricultural Systems, 2021, 190, 103110.	3.2	12
947	Response and Defence Mechanisms of Vegetable Crops against Drought, Heat and Salinity Stress. Agriculture (Switzerland), 2021, 11, 463.	1.4	104
948	Impact of climate change and crop management on cotton phenology based on statistical analysis in the main-cotton-planting areas of China. Journal of Cleaner Production, 2021, 298, 126750.	4.6	32
949	Climate impact and adaptation to heat and drought stress of regional and global wheat production. Environmental Research Letters, 2021, 16, 054070.	2.2	52
950	Projecting potential impact of COVID-19 on major cereal crops in Senegal and Burkina Faso using crop simulation models. Agricultural Systems, 2021, 190, 103107.	3.2	28
951	Addressing the long- and short-run effects of climate change on major food crops production in Turkey. Environmental Science and Pollution Research, 2021, 28, 51657-51673.	2.7	31
952	Elevated atmospheric CO 2 concentration triggers redistribution of nitrogen to promote tillering in rice. Plant-Environment Interactions, 2021, 2, 125-136.	0.7	3
953	First assessment of the earth heat inventory within CMIP5 historical simulations. Earth System Dynamics, 2021, 12, 581-600.	2.7	7
954	Earth system economics: a biophysical approach to the human component of the Earth system. Earth System Dynamics, 2021, 12, 671-687.	2.7	2
955	Using Satellite Data to Optimize Wheat Yield and Quality under Climate Change. Remote Sensing, 2021, 13, 2049.	1.8	15
956	Landscape complexity and US crop production. Nature Food, 2021, 2, 330-338.	6.2	32
957	Risk Analysis of Wheat Yield Losses at the County Level in Mainland China. Frontiers in Environmental Science, 2021, 9, .	1.5	4
958	Forecasting rice latitude adaptation through a daylength-sensing-based environment adaptation simulator. Nature Food, 2021, 2, 348-362.	6.2	16
959	The persistent threat of emerging plant disease pandemics to global food security. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	261
960	Decadal variability modulates trends in concurrent heat and drought over global croplands. Environmental Research Letters, 2021, 16, 055024.	2.2	30
961	Climate change risks pushing one-third of global food production outside the safe climatic space. One Earth, 2021, 4, 720-729.	3.6	45
962	Agricultural yield geographies in the United States. Environmental Research Letters, 2021, 16, 054051.	2.2	10

#	Article	IF	CITATIONS
963	Large potential for crop production adaptation depends on available future varieties. Global Change Biology, 2021, 27, 3870-3882.	4.2	62
964	Climate change impact assessment on worldwide rain fed soybean based on species distribution models. Tropical Ecology, 2021, 62, 612-625.	0.6	5
965	Evaluating Risk and Possible Adaptations to Climate Change Under a Socio-Ecological System Approach. Frontiers in Climate, 2021, 3, .	1.3	8
966	Deciphering the role of helicases and translocases: A multifunctional gene family safeguarding plants from diverse environmental adversities. Current Plant Biology, 2021, 26, 100204.	2.3	9
967	Impacts of climate change and increasing carbon dioxide levels on yield changes of major crops in suitable planting areas in China by the 2050s. Ecological Indicators, 2021, 125, 107588.	2.6	26
968	Climate change impacts on rice yield of a large-scale irrigation scheme in Malaysia. Agricultural Water Management, 2021, 252, 106908.	2.4	6
969	Slow-onset events: a review of the evidence from the IPCC Special Reports on Land, Oceans and Cryosphere. Current Opinion in Environmental Sustainability, 2021, 50, 109-120.	3.1	14
970	Impact of Climate Change on Rice Yield in Malaysia: A Panel Data Analysis. Agriculture (Switzerland), 2021, 11, 569.	1.4	36
971	Challenges in simulating economic effects of climate change on global agricultural markets. Climatic Change, 2021, 166, 1.	1.7	8
972	Development of an orchestration aid system for gridded crop growth simulations using Kubernetes. Computers and Electronics in Agriculture, 2021, 186, 106187.	3.7	3
973	Macro Analysis of Climate Change and Agricultural Production in Myanmar. , 0, , .		0
974	Warming Temperatures, Yield Risk and Crop Insurance Participation. European Review of Agricultural Economics, 2021, 48, 1109-1131.	1.5	18
975	Long-Term Cultivation of a Native Arthrospira platensis (Spirulina) Strain in Pozo Izquierdo (Gran) Tj ETQq0 0 0 rgE	BT /Overloo 1.3	ock 10 Tf 50 2 11
977	Agricultural Landscape Transformation Needed to Meet Water Quality Goals in the Yahara River Watershed of Southern Wisconsin. Ecosystems, 2022, 25, 507-525.	1.6	5
978	A MODIS-based scalable remote sensing method to estimate sowing and harvest dates of soybean crops in Mato Grosso, Brazil. Heliyon, 2021, 7, e07436.	1.4	11
979	The impact of climate change on the economic perspectives of crop farming in Pakistan: Using the ricardian model. Journal of Cleaner Production, 2021, 308, 127219.	4.6	9
980	Identifying regional drivers of future land-based biodiversity footprints. Global Environmental Change, 2021, 69, 102304.	3.6	10
981	Optimizing Sowing Date and Planting Density Can Mitigate the Impacts of Future Climate on Maize Yield: A Case Study in the Guanzhong Plain of China. Agronomy, 2021, 11, 1452.	1.3	14

#	Article	IF	CITATIONS
982	Integrated nitrogen management improves productivity and economic returns of wheat-maize cropping system. Journal of King Saud University - Science, 2021, 33, 101475.	1.6	18
983	Community seed network in an era of climate change: dynamics of maize diversity in Yucatán, Mexico. Agriculture and Human Values, 2022, 39, 339-356.	1.7	7
984	Effects of Elevated Atmospheric CO2 Concentration and Water Regime on Rice Yield, Water Use Efficiency, and Arsenic and Cadmium Accumulation in Grain. Agriculture (Switzerland), 2021, 11, 705.	1.4	4
985	Elevated CO ₂ Concentration Improves Heat-Tolerant Ability in Crops., 0, , .		5
986	Opportunities and limits of controlled-environment plant phenotyping for climate response traits. Theoretical and Applied Genetics, 2022, 135, 1-16.	1.8	28
987	Impact of climate change on global agricultural markets under different shared socioeconomic pathways. Agricultural Economics (United Kingdom), 2021, 52, 963-984.	2.0	9
988	Measuring the impact of climate change on agriculture in Vietnam: A panel Ricardian analysis. Agricultural Economics (United Kingdom), 2022, 53, 37-51.	2.0	19
989	Methodology to assess the changing risk of yield failure due to heat and drought stress under climate change. Environmental Research Letters, 2021, 16, 104033.	2.2	6
990	Analysis of the need for soil moisture, salinity and temperature sensing in agriculture: a case study in Poland. Scientific Reports, 2021, 11, 16660.	1.6	5
991	The Implications of Global Change for the Coâ€Evolution of Argentina's Integrated Energyâ€Waterâ€Land Systems. Earth's Future, 2021, 9, e2020EF001970.	2.4	15
992	A climate database with varying droughtâ€heat signatures for climate impact modelling. Geoscience Data Journal, 2022, 9, 154-166.	1.8	7
993	Assessment and prediction of seasonal land surface temperature change using multi-temporal Landsat images and their impacts on agricultural yields in Rajshahi, Bangladesh. Environmental Challenges, 2021, 4, 100147.	2.0	20
994	Multistage spatiotemporal variability of temperature extremes over South China from 1961 to 2018. Theoretical and Applied Climatology, 2021, 146, 243-256.	1.3	5
995	AquaCrop-OSPy: Bridging the gap between research and practice in crop-water modeling. Agricultural Water Management, 2021, 254, 106976.	2.4	24
996	Assessing the impacts of climatic and technological factors on rice production: Empirical evidence from Nepal. Technology in Society, 2021, 66, 101607.	4.8	29
997	Spatial-temporal evolution of agricultural ecological risks in China in recent 40 years. Environmental Science and Pollution Research, 2022, 29, 3686-3701.	2.7	12
998	Modelling the advancement of chilling tolerance breeding in Northeast China. Journal of Agronomy and Crop Science, 2021, 207, 984-994.	1.7	5
999	Assessment of Future Water Yield and Water Purification Services in Data Scarce Region of Northwest China. International Journal of Environmental Research and Public Health, 2021, 18, 8960.	1.2	7

#	ARTICLE	IF	CITATIONS
1000	Projections of thermal growing season indices over China under global warming of 1.5 \hat{A}° C and 2.0 \hat{A}° C. Science of the Total Environment, 2021, 781, 146774.	3.9	5
1001	Animal-Driven Nutrient Supply Declines Relative to Ecosystem Nutrient Demand Along a Pond Hydroperiod Gradient. Ecosystems, 2022, 25, 678-696.	1.6	4
1002	Ridge-furrow film mulching improves water and nitrogen use efficiencies under reduced irrigation and nitrogen applications in wheat field. Field Crops Research, 2021, 270, 108214.	2.3	29
1005	Empirical estimation of weather-driven yield shocks using biophysical characteristics for U.S. rainfed and irrigated maize, soybeans, and winter wheat. Environmental Research Letters, 2021, 16, 094007.	2.2	2
1006	Plant pathogen infection risk tracks global crop yields under climate change. Nature Climate Change, 2021, 11, 710-715.	8.1	177
1007	Grain development in wheat under combined heat and drought stress: Plant responses and management. Environmental and Experimental Botany, 2021, 188, 104517.	2.0	60
1008	Genetics of Germination and Seedling Traits under Drought Stress in a MAGIC Population of Maize. Plants, 2021, 10, 1786.	1.6	11
1009	Global agricultural responses to interannual climate and biophysical variability. Environmental Research Letters, 2021, 16, 104037.	2.2	4
1010	A generic risk assessment framework to evaluate historical and future climate-induced risk for rainfed corn and soybean yield in the U.S. Midwest. Weather and Climate Extremes, 2021, 33, 100369.	1.6	9
1011	Agricultural breadbaskets shift poleward given adaptive farmer behavior under climate change. Global Change Biology, 2022, 28, 167-181.	4.2	23
1012	Prospects for the natural distribution of crop wild-relatives with limited adaptability: The case of the wild pea Pisum fulvum. Plant Science, 2021, 310, 110957.	1.7	10
1013	Recent advances in engineering crop plants for resistance to insect pests. Egyptian Journal of Biological Pest Control, 2021, 31, .	0.8	5
1014	Modalities for Scaling up Implementation of Innovations and Best Practices for Resilient Agricultural Systems in Africa. , 0 , , .		0
1015	Reconciling regional nitrogen boundaries with global food security. Nature Food, 2021, 2, 700-711.	6.2	51
1016	Which forest-risk commodities imported to the UK have the highest overseas impacts? A rapid evidence synthesis. Emerald Open Research, 0, 3, 22.	0.0	3
1017	Quantifying international public finance for climate change adaptation in Africa. Climate Policy, 2021, 21, 1020-1036.	2.6	24
1018	Observed meteorological drought trends in Bangladesh identified with the Effective Drought Index (EDI). Agricultural Water Management, 2021, 255, 107001.	2.4	27
1019	Rapid delivery systems for future food security. Nature Biotechnology, 2021, 39, 1179-1181.	9.4	17

#	Article	IF	CITATIONS
1020	Economic effects of climate change on global agricultural production. Nature Conservation, 0, 44, 117-139.	0.0	26
1021	Future climate change significantly alters interannual wheat yield variability over half of harvested areas. Environmental Research Letters, 2021, 16, 094045.	2.2	33
1022	Increasing risks of crop failure and water scarcity in global breadbaskets by 2030. Environmental Research Letters, 2021, 16, 104013.	2.2	27
1023	Drought imprints on crops can reduce yield loss: Nature's insights for food security. Food and Energy Security, 2022, 11, e332.	2.0	8
1024	Regional Climate Change in Southeast Mexico-Yucatan Peninsula, Central America and the Caribbean. Applied Sciences (Switzerland), 2021, 11, 8284.	1.3	8
1025	Extreme lows of wheat production in Brazil. Environmental Research Letters, 2021, 16, 104025.	2.2	6
1026	Stronger temperature–moisture couplings exacerbate the impact of climate warming on global crop yields. Nature Food, 2021, 2, 683-691.	6.2	100
1027	Rhizosphere microbiome manipulation for sustainable crop production. Current Plant Biology, 2021, 27, 100210.	2.3	71
1028	Evaluation and projection of mean surface temperature using CMIP6 models over East Africa. Journal of African Earth Sciences, 2021, 181, 104226.	0.9	37
1029	A systems lens to evaluate the compound human health impacts of anthropogenic activities. One Earth, 2021, 4, 1233-1247.	3.6	0
1030	Susac's syndrome as an autoimmune complication of alemtuzumab-associated immune reconstitution. Journal of Neurology, 2022, 269, 1695-1697.	1.8	1
1031	The Impact of Global Warming on the Winter Wheat Production of China. Agronomy, 2021, 11, 1845.	1.3	7
1032	A meta-analysis of the possible impact of climate change on global cotton yield based on crop simulation approaches. Agricultural Systems, 2021, 193, 103221.	3.2	26
1033	Statistical Modeling of Spatial Extremes through Max-Stable Process Models: Application to Extreme Rainfall Events in South Africa. Journal of Hydrologic Engineering - ASCE, 2021, 26, .	0.8	6
1034	Quantification of resilience metrics as affected by conservation agriculture at a watershed scale. Agriculture, Ecosystems and Environment, 2021, 320, 107612.	2.5	10
1035	Relating agriculture, energy, and water decisions to farm incomes and climate projections using two freeware programs, FEWCalc and DSSAT. Agricultural Systems, 2021, 193, 103222.	3.2	4
1036	Integrated modelling of cost-effective policies to regulate Western Corn Rootworm under climate scenarios in Austria. Ecological Economics, 2021, 188, 107137.	2.9	2
1037	Data collection design for calibration of crop models using practical identifiability analysis. Computers and Electronics in Agriculture, 2021, 190, 106457.	3.7	3

#	Article	IF	CITATIONS
1038	Quantifying maize grain yield losses caused by climate change based on extensive field data across China. Resources, Conservation and Recycling, 2021, 174, 105811.	5. 3	37
1039	Novel multifunctional RbxWO3@Fe3O4 immobilized Janus membranes for desalination and synergic-photocatalytic water purification. Desalination, 2021, 517, 115256.	4.0	51
1040	The impact of water erosion on global maize and wheat productivity. Agriculture, Ecosystems and Environment, 2021, 322, 107655.	2.5	6
1041	Squash root microbiome transplants and metagenomic inspection for in situ arid adaptations. Science of the Total Environment, 2022, 805, 150136.	3.9	12
1042	Setting the scene: Nature-based solutions and water security. , 2021, , 3-18.		8
1043	Wheat., 2021,, 98-163.		13
1044	Gene and Metabolite Integration Analysis through Transcriptome and Metabolome Brings New Insight into Heat Stress Tolerance in Potato (Solanum tuberosum L.). Plants, 2021, 10, 103.	1.6	18
1045	Quantitative estimation of water status in fieldâ€grown wheat using beta mixed regression modelling based on fast chlorophyll fluorescence transients: A method for drought tolerance estimation. Journal of Agronomy and Crop Science, 2021, 207, 589-605.	1.7	10
1046	Ecological Intensification: Towards Food and Environmental Security in Sub-Saharan Africa. , 2021, , 597-625.		1
1047	Quantifying Uncertainty in the Modelling Process; Future Extreme Flood Event Projections Across the UK. Geosciences (Switzerland), 2021, 11, 33.	1.0	5
1049	Implementation of sequential cropping into JULESvn5.2 land-surface model. Geoscientific Model Development, 2021, 14, 437-471.	1.3	2
1050	Food and nutrition security under global trade: a relation-driven agent-based global trade model. Royal Society Open Science, 2021, 8, 201587.	1.1	12
1051	Modeling high-resolution climate change impacts on wheat and maize in Italy. Climate Risk Management, 2021, 33, 100339.	1.6	13
1052	Spatializing Crop Models for Sustainable Agriculture. , 2019, , 599-619.		6
1053	Challenges and Solutions for Enhancing Agriculture Value Chain Decision-Making. A Short Review. IFIP Advances in Information and Communication Technology, 2017, , 761-774.	0.5	11
1054	Genomic Designing for Climate Smart Sorghum. , 2020, , 171-219.		2
1055	Breeding Climate-Resilient Bananas. , 2020, , 91-115.		10
1056	Climate Resilient Cotton Production System: A Case Study in Pakistan. , 2020, , 447-484.		12

#	Article	IF	CITATIONS
1057	Dynamic Modeling. , 2020, , 111-150.		3
1058	Wheat Crop Modelling for Higher Production. , 2020, , 179-202.		9
1059	Inter-Organismal Signaling in the Rhizosphere. Rhizosphere Biology, 2021, , 255-293.	0.4	12
1060	Impact of Climate Change on Agriculture: Evidence and Predictions. Green Energy and Technology, 2020, , 17-32.	0.4	6
1061	Climate Change Interactions with Agriculture, Forestry Sequestration, and Food Security., 2019, 74, 653.		1
1062	Brassinosteroid application affects the growth and gravitropic response of maize by regulating gene expression in the roots, shoots and leaves. Plant Growth Regulation, 2020, 92, 117-130.	1.8	17
1063	Global resource consumption effects of borderless climate change: EU's indirect vulnerability. Environmental and Sustainability Indicators, 2020, 8, 100071.	1.7	6
1064	Quest for climate-proof farms. Nature, 2015, 523, 396-397.	13.7	11
1065	Crop biotechnology and the future of food. Nature Food, 2020, 1, 273-283.	6.2	71
1066	Economic shifts in agricultural production and trade due to climate change. Palgrave Communications, 2018, 4, .	4.7	48
1067	The Assessment of Impacts and Risks of Climate Change on Agriculture (AIRCCA) model: a tool for the rapid global risk assessment for crop yields at a spatially explicit scale. Spatial Economic Analysis, 2020, 15, 262-279.	0.8	7
1068	US major crops' uncertain climate change risks and greenhouse gas mitigation benefits. Environmental Research Letters, 2015, 10, 115002.	2.2	16
1069	Global food self-sufficiency in the 21st century under sustainable intensification of agriculture. Environmental Research Letters, 2020, 15, 095004.	2.2	100
1070	Future climate impacts on global agricultural yields over the 21st century. Environmental Research Letters, 2020, 15, 114010.	2.2	12
1071	Contrasting yield responses of winter and spring wheat to temperature rise in China. Environmental Research Letters, 2020, 15, 124038.	2.2	15
1072	Formalized model of agricultural insurance development strategy as an element of industry management digitalization. IOP Conference Series: Materials Science and Engineering, 0, 941, 012025.	0.3	8
1073	How food secure are the green, rocky and middle roads: food security effects in different world development paths. Environmental Research Communications, 2020, 2, 031002.	0.9	17
1078	Remotely sensed data to support insurance strategies in agriculture. , 2019, , .		6

#	Article	IF	CITATIONS
1079	Assessing the vulnerability of ecosystems to climate change based on climate exposure, vegetation stability and productivity. Forest Ecosystems, 2020, 7, .	1.3	22
1080	Modelling and predicting wetland rice production using support vector regression. Telkomnika (Telecommunication Computing Electronics and Control), 2019, 17, 819.	0.6	2
1081	Soil Water Holding Capacity Mitigates Downside Risk and Volatility in US Rainfed Maize: Time to Invest in Soil Organic Matter?. PLoS ONE, 2016, 11, e0160974.	1.1	105
1082	Numerical Study on the Stomatal Responses to Dry-Hot Wind Episodes and Its Effects on Land-Atmosphere Interactions. PLoS ONE, 2016, 11, e0162852.	1.1	11
1083	Food supply and bioenergy production within the global cropland planetary boundary. PLoS ONE, 2018, 13, e0194695.	1.1	38
1084	Integrating economic measures of adaptation effectiveness into climate change interventions: A case study of irrigation development in Mwea, Kenya. PLoS ONE, 2020, 15, e0243779.	1.1	7
1085	Conhecimento sobre mudanças climáticas implica em adaptação? Análise de agricultores do Nordeste brasileiro. Revista De Economia E Sociologia Rural, 2019, 57, 455-471.	0.2	9
1086	Agronomic practices and adaptive strategies of the farmers to climate change in central Pakhtunkhwa, Pakistan. Pure and Applied Biology, 2017, 6, .	0.1	1
1087	Landscape models to support sustainable intensification of agroecological systems. Burleigh Dodds Series in Agricultural Science, 2019, , 321-354.	0.1	1
1088	Individual Heat and Combined Heat Drought Stresses in Wheat: Variation in NDVI and Canopy Temperature. International Journal of Current Microbiology and Applied Sciences, 2018, 7, 2676-2684.	0.0	2
1089	On the Use of Agricultural System Models for Exploring Technological Innovations Across Scales in Africa: A Critical Review. SSRN Electronic Journal, 0, , .	0.4	5
1091	Detection of historical changes in pasture growth and attribution to climate change. Climate Research, 2014, 61, 203-214.	0.4	2
1092	Modelling Bambara groundnut yield in Southern Africa: towards a climate-resilient future. Climate Research, 2015, 65, 193-203.	0.4	9
1093	Adaptation of rice to climate change through a cultivar-based simulation: a possible cultivar shift in eastern Japan. Climate Research, 2015, 64, 275-290.	0.4	18
1094	Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces. Climate Research, 2015, 65, 87-105.	0.4	122
1095	Integrated modelling of protein crop production responses to climate change and agricultural policy scenarios in Austria. Climate Research, 2015, 65, 205-220.	0.4	15
1096	Water balance, drought stress and yields for rainfed field crop rotations under present and future conditions in the Czech Republic. Climate Research, 2015, 65, 175-192.	0.4	13
1097	Yield gap of winter wheat in Europe and sensitivity of potential yield to climate factors. Climate Research, 2016, 67, 179-190.	0.4	5

#	Article	IF	CITATIONS
1098	Effectiveness of drought indices in identifying impacts on major crops across the USA. Climate Research, 2018, 75, 221-240.	0.4	28
1099	Biophysical and economic implications for agriculture of $+1.5 {\hat {\sf A}}^\circ$ and $+2.0 {\hat {\sf A}}^\circ$ C global warming using AgMIP Coordinated Global and Regional Assessments. Climate Research, 2018, 76, 17-39.	0.4	49
1100	Tolerance of Combined Drought and Heat Stress Is Associated With Transpiration Maintenance and Water Soluble Carbohydrates in Wheat Grains. Frontiers in Plant Science, 2020, 11, 568693.	1.7	22
1101	Global Potato Yields Increase Under Climate Change With Adaptation and CO2 Fertilisation. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	30
1102	Assessment of drought disaster risk in Boro rice cultivated areas of northwestern Bangladesh. , 2020, 2, 19-29.		4
1104	Exploring the Potential Impacts of Climate Variability on Spring Wheat Yield with the APSIM Decision Support Tool. Agricultural Sciences, 2015, 06, 686-698.	0.2	5
1105	The Impact of Climate Change Induced Extreme Events on Agriculture and Food Security: A Review on Nigeria. Agricultural Sciences, 2019, 10, 487-498.	0.2	13
1110	Generating a rule-based global gridded tillage dataset. Earth System Science Data, 2019, 11, 823-843.	3.7	32
1111	The GGCMI PhaseÂ2 emulators: global gridded crop model responses to changes in CO ₂ , temperature, water, and nitrogen (version 1.0). Geoscientific Model Development, 2020, 13, 3995-4018.	1.3	19
1112	MIROC-INTEG-LAND version 1: a global biogeochemical land surface model with human water management, crop growth, and land-use change. Geoscientific Model Development, 2020, 13, 4713-4747.	1.3	14
1117	What role will climate change play in EU agricultural markets? An integrated assessment taking into account carbon fertilization effects. Spanish Journal of Agricultural Research, 2017, 15, e0115.	0.3	3
1118	Extreme Temperature Events and Rice Production in Bangladesh. Environment and Natural Resources Research, 2018, 8, 62.	0.1	3
1119	Climate Change Effects on Long-term World-crop Production: Incorporating a Crop Model into Long-term Yield Estimates. Japan Agricultural Research Quarterly, 2015, 49, 187-202.	0.1	6
1125	Climate change impacts on wheat yield: a multi-modeling case study of central Punjab, Pakistan. Climate Research, 2022, 87, 13-37.	0.4	5
1126	Disease Management., 2021,, 597-669.		1
1128	Projection of future drought and its impact on simulated crop yield over South Asia using ensemble machine learning approach. Science of the Total Environment, 2022, 807, 151029.	3.9	40
1129	Spatiotemporal patterns of winter wheat phenology and its climatic drivers based on an improved pDSSAT model. Science China Earth Sciences, 2021, 64, 2144-2160.	2.3	6
1130	Climate change impact uncertainty assessment and adaptations for sustainable maize production using multi-crop and climate models. Environmental Science and Pollution Research, 2022, 29, 18967-18988.	2.7	16

#	Article	IF	Citations
1131	Planning maize hybrids adaptation to future climate change by integrating crop modelling with machine learning. Environmental Research Letters, 2021, 16, 124043.	2.2	14
1132	Phenotyping of productivity and resilience in sweetpotato under water stress through UAVâ€based multispectral and thermal imagery in Mozambique. Journal of Agronomy and Crop Science, 2023, 209, 41-55.	1.7	4
1133	Sensitivity of soybean planting date to wet season onset in Mato Grosso, Brazil, and implications under climate change. Climatic Change, 2021, 168, 1.	1.7	6
1134	Supply chains for processed potato and tomato products in the United States will have enhanced resilience with planting adaptation strategies. Nature Food, 2021, 2, 862-872.	6.2	10
1135	Worldwide Maize and Soybean Yield Response to Environmental and Management Factors Over the 20th and 21st Centuries. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006304.	1.3	9
1136	Land use intensification increasingly drives the spatiotemporal patterns of the global human appropriation of net primary production in the last century. Global Change Biology, 2022, 28, 307-322.	4.2	33
1137	Integrating satellite-derived climatic and vegetation indices to predict smallholder maize yield using deep learning. Agricultural and Forest Meteorology, 2021, 311, 108666.	1.9	42
1142	Gains and Losses in Ecosystem Services: Trade-Off and Efficiency Perspectives. SSRN Electronic Journal, 0, , .	0.4	1
1144	Climate Change Impacts in Agriculture. , 2016, , 69-84.		0
1145	Food Insecurity and Global Warming: A Time-Sensitive Issue. California Agriculture, 2016, 21, .	0.0	0
1146	Food Security and Nutrition. , 2016, , 125-140.		1
1147	Spatial Modelling of Weather Variables for Plant Disease Applications in Mwea Region. Journal of Geoscience and Environment Protection, 2016, 04, 127-136.	0.2	4
1148	MACROECONOMIC IMPACT INDUCED BY CROP YIELD CHANGE ASSOCIATED WITH CLIMATE CHANGE. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2017, 73, I_397-I_405.	0.1	0
1149	Modeling Sustainable Nutrition Security., 2017,, 43-57.		0
1150	Climate Change: A Review of Its Nexus with Rice Sector and Food Security in Malaysia. International Journal of Academic Research in Business and Social Sciences, 2017, 7, .	0.0	0
1151	The global climate change effect on the Altai region's climate in the first half of XXI century. , 2017, , .		0
1152	Was passiert mit dem Wetter? – Grundlagen des Klimawandels. , 2018, , 3-38.		0
1153	Simulation Models as Tools for Crop Management. , 2018, , 1-20.		O

#	Article	IF	CITATIONS
1154	Foliar Application of Saudi Desert Plants Extract Improved Some Mungbean Agronomic Traits Under Drought Stress. Journal of King Abdulaziz University-Meteorology Environment and Arid Land Agriculture Sciences, 2019, 27, 21-29.	0.1	0
1155	POLYMORPHISM IN SUGAR BEET VARIETIES AND HYBRIDS IN CELL SELECTION FOR RESISTANCE TO ABIOTIC FACTORS. Journal of Microbiology, Biotechnology and Food Sciences, 2018, 7, 602-606.	0.4	2
1156	Introduction: Defining Nexus Shocks. , 2019, , 1-21.		0
1158	Climatic Suitability Mapping of Whole-Crop Rye Cultivation in the Republic of Korea. Journal of the Korean Society of Grassland and Forage Science, 2018, 38, 337-342.	0.1	0
1159	Selected Trade-Offs and Risks Associated with Land Use Transitions in Central Germany. , 2019, , 129-134.		0
1160	DEVELOPMENT AND EVALUATION OF EMULATORS FOR THE ASSESSMENT OF THE GLOBAL-SCALE ECONOMIC IMPACT OF CLIMATE CHANGE. Journal of Japan Society of Civil Engineers Ser G (Environmental) Tj ETQq1 1 0.784	-3 b4 1rgBT	/Overlock 10
1162	Drivers of Migration in theÂTrans-Mediterranean Region: The Likely Role of Climate Change and Resource Security in theÂGeopolitical Context., 2019,, 35-61.		0
1163	Impact Assessment of Climate Change on Rice Yield Using a Crop Growth Model and Activities Toward Adaptation: Targeting Three Provinces in Indonesia. , 2019, , 67-80.		2
1164	Building confidence in projections of future ocean capacity., 2019,, 69-76.		1
1166	An Adaptive Managed Retreat Approach to Address Shoreline Erosion at the Kennedy Space Center, Florida. Ecological Restoration, 2019, 37, 171-181.	0.5	2
1167	Multidimensional Framework for Achieving Sustainable and Resilient Food Systems in Nigeria. , 2020, , $1137-1159$.		0
1168	Projections and Hazards of Future Extreme Heat. , 0, , .		1
1170	Irrigation Water Use in the Danube Basin: Facts, Governance and Approach to Sustainability. Journal of Environmental Geography, 2019, 12, 1-12.	1.2	3
1172	Agrometeorologia digital: as bases biofÃsicas para a revolução digital no campo. TECCOGS Revista Digital De Tecnologias Cognitivas, 2020, , .	0.0	0
1175	Mudanças climáticas nos ecossistemas agrÃcolas e naturais: medidas de mitigação e adaptação. Agropecuária Catarinense, 2020, 33, 82-87.	0.1	0
1176	Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nature Food, 2021, 2, 873-885.	6.2	263
1177	Parametric Insurance and Technology Adoption in Developing Countries. SSRN Electronic Journal, 0, , .	0.4	0
1178	Szenarien und Modelle zur Gestaltung einer nachhaltigen Bioökonomie. , 2020, , 297-310.		0

#	Article	IF	CITATIONS
1180	Climate Change Pathways and Potential Future Risks to Nutrition and Infection., 2021, , 429-458.		2
1181	Revisiting economic burdens of malaria in the face of climate change: a conceptual analysis for Ethiopia. International Journal of Climate Change Strategies and Management, 2021, 13, 1-18.	1.5	2
1182	Grand challenges for the 21st century: what crop models can and can't (yet) do. Journal of Agricultural Science, 2020, 158, 794-805.	0.6	28
1183	Effects of elevated CO2 and temperature on soybean growth and gas exchange rates: A modified GLYCIM model. Agricultural and Forest Meteorology, 2022, 312, 108700.	1.9	9
1184	Local environment and individuals' beliefs: The dynamics shaping public support for sustainability policy in an agricultural landscape. Journal of Environmental Management, 2022, 301, 113776.	3.8	8
1185	Modeling the impact of climate warming on potato phenology. European Journal of Agronomy, 2022, 132, 126404.	1.9	19
1186	Climate change impact on major crop yield and water footprint under CMIP6 climate projections in repeated drought and flood areas in Thailand. Science of the Total Environment, 2022, 807, 150741.	3.9	77
1187	Climate risk to agriculture: A synthesis to define different types of critical moments. Climate Risk Management, 2021, 34, 100378.	1.6	11
1189	Global flood impacts on food consumption and risk of hunger through changes in crop yields Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2020, 76, I_89-I_95.	0.1	0
1191	Agricultural Production, Farm Management, and Greenhouse Gas (GHG) Emissions: Lessons and Policy Directions for Cameroon., 2020, , 103-116.		0
1192	EFFECT OF CLIMATIC VARIABLES ON AGRICULTURAL PRODUCTIVITY AND DISTRIBUTION IN PLATEAU STATE NIGERIA. Environment & Ecosystem Science, 2020, 4, 05-09.	0.3	1
1193	Climate-associated major food crops production change under multi-scenario in China. Science of the Total Environment, 2022, 811, 151393.	3.9	10
1194	Water storage and agricultural resilience to drought: historical evidence of the capacity and institutional limits in the United States. Environmental Research Letters, 2021, 16, 124020.	2.2	9
1195	Vulnerability Assessment of Maize Yield Affected by Precipitation Fluctuations: A Northeastern United States Case Study. Land, 2021, 10, 1190.	1.2	3
1197	Genetic Approaches to Enhance Multiple Stress Tolerance in Maize. Genes, 2021, 12, 1760.	1.0	15
1199	Impact of environmental changes and land management practices on wheat production in India. Earth System Dynamics, 2020, 11, 641-652.	2.7	9
1200	Spatialization of Crop Growth Simulation Model Using Remote Sensing., 2021, , 153-199.		1
1201	3. Measuring climate adaptation: methods and evidence. , 2020, , .		0

#	Article	IF	CITATIONS
1202	Assessing the effects of agricultural intensification on natural habitats and biodiversity in Southern Amazonia. PLoS ONE, 2020, 15, e0225914.	1.1	9
1203	Modification of the Light Environment Influences the Production of Horticultural Crops. Japan Agricultural Research Quarterly, 2020, 54, 285-291.	0.1	2
1204	Harnessing biodiversity and ecosystem services to safeguard multifunctional vineyard landscapes in a global change context. Advances in Ecological Research, 2021, 65, 305-335.	1.4	6
1205	Commentary: Evaluating Risk and Possible Adaptations to Climate Change Under a Socio-Ecological System Approach. Frontiers in Climate, 2021, 3, .	1.3	0
1206	The Possible Impacts of Different Global Warming Levels on Major Crops in Egypt. Atmosphere, 2021, 12, 1589.	1.0	5
1207	Analyzing the impacts of climate change on rice supply in West Nusa Tenggara, Indonesia. Heliyon, 2021, 7, e08515.	1.4	8
1208	Evaluating pollution damage function through carbon pricing, renewable energy demand, and cleaner technologies in China: blue versus green economy. Environmental Science and Pollution Research, 2022, 29, 24878-24893.	2.7	22
1209	Sustainable Water Flows in Era of Climate Change., 0, , .		0
1210	Reducing livestock snow disaster risk in the Qinghai–Tibetan Plateau due to warming and socioeconomic development. Science of the Total Environment, 2022, 813, 151869.	3.9	11
1211	Mapping integrated vulnerability of coastal agricultural livelihood to climate change in Bangladesh: Implications for spatial adaptation planning. Physics and Chemistry of the Earth, 2022, 125, 103080.	1.2	15
1212	Fertilizer-derived nitrogen use of two varieties of single-crop paddy rice: a free-air carbon dioxide enrichment study using polymer-coated 15N-labeled urea. Soil Science and Plant Nutrition, 0, , 1-12.	0.8	2
1213	Predicting Possible Distribution of Tea (Camellia sinensis L.) under Climate Change Scenarios Using MaxEnt Model in China. Agriculture (Switzerland), 2021, 11, 1122.	1.4	17
1214	Harmonizing climate-smart and sustainable agriculture. Nature Food, 2021, 2, 853-854.	6.2	6
1215	Combined Stress Conditions in Melon Induce Non-additive Effects in the Core miRNA Regulatory Network. Frontiers in Plant Science, 2021, 12, 769093.	1.7	3
1216	Heterogenous Impacts of Climate on Agricultural Industries Farm Exit Patterns in the Murray-Darling Basin of Australia., 2021,, 579-602.		0
1217	Microalgae and Cyanobacteria: How Exploiting These Microbial Resources Can Address the Underlying Challenges Related to Food Sources and Sustainable Agriculture: A Review. Journal of Plant Growth Regulation, 2023, 42, 1-20.	2.8	14
1218	Emerging trends in science and news of climate change threats to and adaptation of aquaculture. Aquaculture, 2022, 549, 737812.	1.7	26
1219	Short-term high nighttime temperatures pose an emerging risk to rice grain failure. Agricultural and Forest Meteorology, 2022, 314, 108779.	1.9	11

#	Article	IF	CITATIONS
1220	Bayesian Multi-modeling of Deep Neural Nets for Probabilistic Crop Yield Prediction. Agricultural and Forest Meteorology, 2022, 314, 108773.	1.9	35
1221	Exploring the potential role of environmental and multi-source satellite data in crop yield prediction across Northeast China. Science of the Total Environment, 2022, 815, 152880.	3.9	24
1222	Revue de littérature sur le changement climatique au MarocÂ: observations, projections et impacts. , 2019, , 1-33.		10
1223	Microbial impact on climate-smart agricultural practices. , 2022, , 203-236.		5
1225	Exogenous application of salicylic acid for regulation of sunflower growth under abiotic stress: a systematic review. Biologia (Poland), 2022, 77, 1685-1697.	0.8	6
1226	Hotspots of Yield Loss for Four Crops of the Belt and Road Terrestrial Countries under 1.5 \hat{A}° C Global Warming. Land, 2022, 11, 163.	1.2	1
1227	Drought, Low Nitrogen Stress, and Ultraviolet-B Radiation Effects on Growth, Development, and Physiology of Sweetpotato Cultivars during Early Season. Genes, 2022, 13, 156.	1.0	13
1228	Climate change in the temperature and precipitation at two contrasting sites of the Argentinean wheat region. Theoretical and Applied Climatology, 2022, 148, 237-254.	1.3	2
1229	Future Scenarios for Olive Tree and Grapevine Potential Yields in the World Heritage Côa Region, Portugal. Agronomy, 2022, 12, 350.	1.3	8
1230	Climate change impacts on the energy system: a model comparison. Environmental Research Letters, 2022, 17, 034036.	2.2	3
1231	How do farm size and perceptions matter for farmers' adaptation responses to climate change in a developing country? Evidence from Nepal. Economic Analysis and Policy, 2022, 74, 188-204.	3.2	14
1232	RNA- and miRNA-interference to enhance abiotic stress tolerance in plants. Journal of Plant Biochemistry and Biotechnology, 2022, 31, 689-704.	0.9	13
1233	Decomposing crop model uncertainty: A systematic review. Field Crops Research, 2022, 279, 108448.	2.3	29
1234	Myanmar local food systems in a changing climate: Insights from multiple stakeholders. Environmental and Sustainability Indicators, 2022, 14, 100170.	1.7	1
1235	Optimizing sowing window, cultivar choice, and plant density to boost maize yield under RCP8.5 climate scenario of CMIP5. International Journal of Biometeorology, 2022, 66, 971-985.	1.3	22
1236	Effect of drought on wheat production in Poland between 1961 and 2019. Crop Science, 2022, 62, 728-743.	0.8	10
1237	Modelling climate change impacts on maize. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , .	0.6	3
1238	Multivariate Biasâ€Correction of Highâ€Resolution Regional Climate Change Simulations for West Africa: Performance and Climate Change Implications. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	21

#	Article	IF	CITATIONS
1239	Plant and seed germination responses to global change, with a focus on CO2: A review. One Ecosystem, $0, 6, \ldots$	0.0	3
1240	Preserving life on Earth. , 2022, , 503-602.		0
1241	Climate Change and Global Rice Security. , 2022, , 13-26.		3
1243	Bee Diversity of Pakistan., 2022, , 487-519.		0
1244	Managing Climatic Risks in Agriculture. India Studies in Business and Economics, 2022, , 83-108.	0.2	6
1245	Climate Change Hastening Heatwaves: A Pakistan Scenario. , 2022, , 103-116.		3
1246	Toward sustainable food security. , 2022, , 289-324.		0
1248	Modeling tillage and manure application on soil phosphorous loss under climate change. Nutrient Cycling in Agroecosystems, 2022, 122, 219-239.	1.1	3
1249	Surface ozone impacts on major crop production in China from 2010 to 2017. Atmospheric Chemistry and Physics, 2022, 22, 2625-2638.	1.9	17
1250	Climate Change Adaptation Measures by Farm Households in Gedeo Zone, Ethiopia: An Application of Multivariate Analysis Approach. Environment, Development and Sustainability, 2023, 25, 3183-3209.	2.7	6
1251	The uncertainty of climate change impacts on China's agricultural economy based on an integrated assessment approach. Mitigation and Adaptation Strategies for Global Change, 2022, 27, 1.	1.0	9
1252	Global cropland could be almost halved: Assessment of land saving potentials under different strategies and implications for agricultural markets. PLoS ONE, 2022, 17, e0263063.	1.1	10
1253	Climate change in relation to agriculture: A review. Spanish Journal of Agricultural Research, 2022, 20, e03R01.	0.3	4
1254	Southeast Asia must narrow down the yield gap to continue to be a major rice bowl. Nature Food, 2022, 3, 217-226.	6.2	45
1255	Evaluation of global gridded crop models (GGCMs) for the simulation of major grain crop yields in China. Hydrology Research, 2022, 53, 353-369.	1.1	6
1256	Relocating croplands could drastically reduce the environmental impacts of global food production. Communications Earth & Environment, 2022, 3, .	2.6	39
1257	Quantifying synergies and trade-offs in the global water-land-food-climate nexus using a multi-model scenario approach. Environmental Research Letters, 2022, 17, 045004.	2.2	11
1258	Searching for Abiotic Tolerant and Biotic Stress Resistant Wild Lentils for Introgression Breeding Through Predictive Characterization. Frontiers in Plant Science, 2022, 13, 817849.	1.7	11

#	Article	IF	CITATIONS
1260	Climate-driven trends in agricultural water requirement: an ERA5-based assessment at daily scale over 50 years. Environmental Research Letters, 2022, 17, 044017.	2.2	6
1261	An Integrative Process-Based Model for Biomass and Yield Estimation of Hardneck Garlic (Allium) Tj ETQq1 1 0.784	314 rgBT 1.7	<i> </i> Qverlock
1262	The Future Extreme Temperature under RCP8.5 Reduces the Yields of Major Crops in Northern Peninsular of Southeast Asia. Scientific World Journal, The, 2022, 2022, 1-12.	0.8	5
1263	Adaptation Strategies to Climate Change and Impacts on Household Income and Food Security: Evidence from Sahelian Region of Niger. Sustainability, 2022, 14, 2847.	1.6	18
1264	Disentangling the separate and confounding effects of temperature and precipitation on global maize yield using machine learning, statistical and process crop models. Environmental Research Letters, 2022, 17, 044036.	2.2	5
1265	Climate change impacts and adaptation strategies for crops in West Africa: a systematic review. Environmental Research Letters, 2022, 17, 053001.	2.2	24
1266	Effects of climate change: Struggles of small-scale farmers. International Journal of Research Studies in Education, 2022, 11, .	0.1	0
1267	Performance of the SSM-iCrop model for predicting growth and nitrogen dynamics in winter wheat. European Journal of Agronomy, 2022, 135, 126487.	1.9	1
1268	Data-driven projections suggest large opportunities to improve Europe's soybean self-sufficiency under climate change. Nature Food, 2022, 3, 255-265.	6.2	26
1269	Are soybean models ready for climate change food impact assessments?. European Journal of Agronomy, 2022, 135, 126482.	1.9	25
1270	A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 2022, 29, 42539-42559.	2.7	356
1271	Climate change impacts on crop water productivity and net groundwater use under a double-cropping system with intensive irrigation in the Haihe River Basin, China. Agricultural Water Management, 2022, 266, 107560.	2.4	19
1272	Future shifts in the phenology of table grapes on Crete under a warming climate. Agricultural and Forest Meteorology, 2022, 318, 108915.	1.9	6
1273	The optimization of conservation agriculture practices requires attention to location-specific performance: Evidence from large scale gridded simulations across South Asia. Field Crops Research, 2022, 282, 108508.	2.3	8
1274	Simulation of Crop Yields Grown under Agro-Photovoltaic Panels: A Case Study in Chonnam Province, South Korea. Energies, 2021, 14, 8463.	1.6	7
1275	Combined Impact of Climate Change and Land Qualities on Winter Wheat Yield in Central Fore-Caucasus: The Long-Term Retrospective Study. Land, 2021, 10, 1339.	1.2	O
1276	Investigating the effect of climate change on food loss and food security in Bangladesh. SN Business & Economics, 2022, 2, 1.	0.6	14
1277	Simulation of Staple Crop Yields for Determination of Regional Impacts of Climate Change: A Case Study in Chonnam Province, Republic of Korea. Agronomy, 2021, 11, 2544.	1.3	1

#	Article	IF	CITATIONS
1278	Storylines of weather-induced crop failure events under climate change. Earth System Dynamics, 2021, 12, 1503-1527.	2.7	27
1279	Machine-learning methods to assess the effects of a non-linear damage spectrum taking into account soil moisture on winter wheat yields in Germany. Hydrology and Earth System Sciences, 2021, 25, 6523-6545.	1.9	12
1280	Rainfed crop yield response to climate change in Iran. Regional Environmental Change, 2022, 22, 1.	1.4	11
1281	Spatiotemporal patterns of future meteorological drought in the Yellow River Basin based on SPEI under RCP scenarios. International Journal of Climate Change Strategies and Management, 2022, 14, 39-53.	1.5	13
1282	Contribution of Japanese Scientists to Global Agricultural Science and Production in Wheat and Maize at CIMMYT. Japan Agricultural Research Quarterly, 2021, 55, 489-500.	0.1	0
1283	Sustainable Use of Groundwater May Dramatically Reduce Irrigated Production of Maize, Soybean, and Wheat. Earth's Future, 2022, 10, .	2.4	8
1284	Smallholder farmers' perceptions and knowledge on climate variability and perceived effects in vulnerable rural communities in the Offinso Municipality, Ghana. Environmental Development, 2021, , 100691.	1.8	7
1285	Contribution of climate models and APSIM phenological parameters to uncertainties in spring wheat simulations: Application of SUFIâ€⊋ algorithm in northeast Australia. Journal of Agronomy and Crop Science, 2022, 208, 225-242.	1.7	4
1286	Impacts of farmers' participation in social capital networks on climate change adaptation strategies adoption in Nigeria. Heliyon, 2021, 7, e08624.	1.4	25
1287	Tackling Climate Change with Machine Learning. ACM Computing Surveys, 2023, 55, 1-96.	16.1	195
1289	Projecting future nitrogen inputs: are we making the right assumptions?. Environmental Research Letters, 2022, 17, 054035.	2.2	9
1290	Compounding precipitation effect in modulating maize yield response to global warming. International Journal of Climatology, 0, , .	1.5	1
1314	Heterogeneous effects of climatic conditions on Andean bean landraces and cowpeas highlight alternatives for crop management and conservation. Scientific Reports, 2022, 12, 6586.	1.6	2
1317	Agricultural Market Competitiveness in the Context of Climate Change: A Systematic Review. Sustainability, 2022, 14, 3721.	1.6	7
1318	Climate Change Impacts on Crop Yield of Winter Wheat (Triticum aestivum) and Maize (Zea mays) and Soil Organic Carbon Stocks in Northern China. Agriculture (Switzerland), 2022, 12, 614.	1.4	7
1319	Perspectives of Wheat Hybrid Yield and Quality Under Limited Irrigation Supply and Sowing Windows. Gesunde Pflanzen, 0, , 1.	1.7	4
1320	VARIABILITY OF GRAIN YIELDS AND LEGUMINOUS CROPS IN KIROV REGION. Vestnik of Kazan State Agrarin University, 2022, 17, 27-31.	0.5	3
1321	Impact of Climate Change on Phenology of Two Heat-Resistant Wheat Varieties and Future Adaptations. Plants, 2022, 11, 1180.	1.6	2

#	Article	IF	CITATIONS
1322	Tù⁄4rkiye'de İklim DeÄŸiÅŸikliÄŸi ile Åžeker Pancarı Üretimi Arasındaki İliÅŸkinin İncelenmesi: Za Asimetrik Nedensellik Analizi. Gaziantep University Journal of Social Sciences, 2022, 21, 611-628.	amanla DeÄ	.ŸiÅŸen Simet
1323	Assessing effectiveness of agricultural adaptation strategies in context of crop loss: a case study of the Indian subcontinent. Regional Environmental Change, 2022, 22, .	1.4	2
1324	Climate change-induced reduction in agricultural land suitability of West-Africa's inland valley landscapes. Agricultural Systems, 2022, 200, 103429.	3.2	9
1325	Effects of climate change, crop planting structure, and agricultural management on runoff, sediment, nitrogen and phosphorus losses in the Hai-River Basin since the 1980s. Journal of Cleaner Production, 2022, 359, 132066.	4.6	8
1326	Genome-wide investigation of bHLH genes and expression analysis under salt and hormonal treatments in Andrographis paniculata. Industrial Crops and Products, 2022, 183, 114928.	2.5	12
1327	Same soil, different climate: Crop model intercomparison on translocated lysimeters. Vadose Zone Journal, 2022, 21, .	1.3	4
1329	Growth and yield estimation of banana through mathematical modelling: A systematic review. Journal of Agricultural Science, 0 , , 1 -58.	0.6	3
1331	Duodenal Metabolic Profile Changes in Heat-Stressed Broilers. Animals, 2022, 12, 1337.	1.0	4
1332	Smallholder farmers access to climate information and climate smart adaptation practices in the northern region of Ghana. Heliyon, 2022, 8, e09513.	1.4	9
1333	Changing occurrence of crop water surplus or deficit and the impact of irrigation: An analysis highlighting consequences for rice production in Bangladesh. Agricultural Water Management, 2022, 269, 107695.	2.4	4
1334	Batting for Rice: The Effect of Bat Exclusion on Rice. SSRN Electronic Journal, 0, , .	0.4	0
1335	Animal-Derived Hydrolyzed Protein and Its Biostimulant Effects. , 2022, , 107-140.		3
1336	Nitrogen Modulates the Effects of Heat, Drought, and Combined Stresses on Photosynthesis, Antioxidant Capacity, Cell Osmoregulation, and Grain Yield in Winter Wheat. Journal of Plant Growth Regulation, 2023, 42, 1681-1703.	2.8	17
1337	Assessing Socioeconomic Risks of Climate Change on Tenant Farmers in Pakistan. Frontiers in Psychology, 2022, 13, .	1.1	5
1338	Extreme Events and Production Shocks for Key Crops in Southern Africa Under Climate Change. Frontiers in Climate, 2022, 4, .	1.3	1
1339	How reliable are current crop models for simulating growth and seed yield of canola across global sites and under future climate change?. Climatic Change, 2022, 172, .	1.7	5
1340	Assessment of Sectoral Virtual Water Flows and Future Water Requirement in Agriculture Under SSP-RCP Scenarios: Reflections for Water Resources Management in Zhangye City. Frontiers in Ecology and Evolution, 0, 10, .	1.1	1
1341	Future land-use competition constrains natural climate solutions. Science of the Total Environment, 2022, 838, 156409.	3.9	11

#	Article	IF	CITATIONS
1342	Climate extremes and their impacts on agriculture across the Eastern Corn Belt Region of the U.S Weather and Climate Extremes, 2022, 37, 100467.	1.6	9
1343	Cabruca agroforestry systems reduce vulnerability of cacao plantations to climate change in southern Bahia. Agronomy for Sustainable Development, 2022, 42, .	2.2	7
1344	Probability of maize yield failure increases with drought occurrence but partially depends on local conditions in China. European Journal of Agronomy, 2022, 139, 126552.	1.9	3
1346	Processing tomato production is expected to decrease by 2050 due to the projected increase in temperature. Nature Food, 2022, 3, 437-444.	6.2	27
1347	Feature extraction and classification of climate change risks: a bibliometric analysis. Environmental Monitoring and Assessment, 2022, 194, .	1.3	4
1348	Soil quality both increases crop production and improves resilience to climate change. Nature Climate Change, 2022, 12, 574-580.	8.1	56
1349	Observational constraint of process crop models suggests higher risks for global maize yield under climate change. Environmental Research Letters, 2022, 17, 074023.	2.2	6
1350	Capturing crop adaptation to abiotic stress using image-based technologies. Open Biology, 2022, 12, .	1.5	18
1351	Advances in Integrated High-Throughput and Phenomics Application in Plants and Agriculture. , 2022, , 239-255.		1
1353	Use of a crop model and soil moisture sensors for estimating soil moisture and irrigation applications in a production soybean field. Irrigation Science, 2022, 40, 925-939.	1.3	3
1354	Uncovering the Research Gaps to Alleviate the Negative Impacts of Climate Change on Food Security: A Review. Frontiers in Plant Science, $0, 13, \ldots$	1.7	65
1355	Higher landscape diversity associated with improved crop production resilience in Kansas-USA. Environmental Research Letters, 2022, 17, 084011.	2.2	9
1356	Severe drought rather than cropping system determines litter decomposition in arable systems. Agriculture, Ecosystems and Environment, 2022, 338, 108078.	2.5	1
1357	Assessing the impact of climate change in the wheat–maize cropping system across the Huang–Huai–Hai Plain under future climate scenarios. Journal of Water and Climate Change, 0, , .	1.2	0
1358	Assessment and Prediction of Grain Production Considering Climate Change and Air Pollution in China. Sustainability, 2022, 14, 9088.	1.6	1
1359	Analysis of Change in Maize Plantation Distribution and Its Driving Factors in Heilongjiang Province, China. Remote Sensing, 2022, 14, 3590.	1.8	4
1360	Alternative modes of introgression-mediated selection shaped crop adaptation to novel climates. Genome Biology and Evolution, 0, , .	1.1	2
1361	The C4 protein of tomato yellow leaf curl Sardinia virus primes drought tolerance in tomato through morphological adjustments. Horticulture Research, 0, , .	2.9	3

#	Article	IF	CITATIONS
1365	Net irrigation requirement under different climate scenarios using AquaCrop over Europe. Hydrology and Earth System Sciences, 2022, 26, 3731-3752.	1.9	6
1366	Vulnerability Assessment of Wheat Yield Under Warming Climate in Northern India Using Multi-model Projections. International Journal of Plant Production, 2022, 16, 611-626.	1.0	6
1367	The future of CRISPR gene editing according to plant scientists. IScience, 2022, 25, 105012.	1.9	6
1368	Analysis of Maize Sowing Periods and Cycle Phases Using Sentinel 1&2 Data Synergy. Remote Sensing, 2022, 14, 3712.	1.8	3
1369	Agricultural Insurance, Climate Change, and Food Security: Evidence from Chinese Farmers. Sustainability, 2022, 14, 9493.	1.6	7
1370	What matters in adoption of small-scale rain water harvesting technologies at household level? Evidence from Charco-dam users in Nzega, Tanzania. Cogent Food and Agriculture, 2022, 8, .	0.6	3
1371	Uncertainty Analysis in Multiâ€Sector Systems: Considerations for Risk Analysis, Projection, and Planning for Complex Systems. Earth's Future, 2022, 10, .	2.4	16
1372	Earth System Model Overestimation of Cropland Temperatures Scales With Agricultural Intensity. Geophysical Research Letters, 2022, 49, .	1.5	2
1373	A Review on the Supply-Demand Relationship and Spatial Flows of Ecosystem Services. Journal of Resources and Ecology, 2022, 13, .	0.2	3
1374	Increased wheat price spikes and larger economic inequality with 2°C global warming. One Earth, 2022, 5, 907-916.	3.6	19
1375	Drivers of Future Physical Water Scarcity and Its Economic Impacts in Latin America and the Caribbean. Earth's Future, 2022, 10, .	2.4	7
1376	Decision analysis of agro-climate service scaling – A case study in Dien Bien District, Vietnam. Climate Services, 2022, 27, 100313.	1.0	2
1378	Development of Better Wheat Plants for Climate Change Conditions., 0, , .		1
1379	Evaluation of models for simulating soybean growth and climate sensitivity in the U.S. Mississippi Delta. European Journal of Agronomy, 2022, 140, 126610.	1.9	5
1380	Elevated temperature further inhibited cottonseed protein synthesis under severe drought, but promoted cottonseed protein synthesis under mild drought. Agricultural Water Management, 2022, 272, 107871.	2.4	1
1381	Future water security in the major basins of China under the $1.5~{\hat {\sf A}}^{\circ}{\sf C}$ and $2.0~{\hat {\sf A}}^{\circ}{\sf C}$ global warming scenarios. Science of the Total Environment, 2022, 849, 157928.	3.9	11
1382	Co-occurring elevated temperature and drought stresses during cotton fiber thickening stage inhibit fiber biomass accumulation and cellulose synthesis. Industrial Crops and Products, 2022, 187, 115348.	2.5	4
1383	Application of RNAi technology: a novel approach to navigate abiotic stresses. Molecular Biology Reports, 2022, 49, 10975-10993.	1.0	2

#	Article	IF	CITATIONS
1384	Anticipated cancer burden of low individual fruit and vegetable consumption under climate change: A modelling study in China. International Journal of Health Planning and Management, 2023, 38, 149-161.	0.7	1
1385	Incorporating dynamic crop growth processes and management practices into a terrestrial biosphere model for simulating crop production in the United States: Toward a unified modeling framework. Agricultural and Forest Meteorology, 2022, 325, 109144.	1.9	9
1386	Aggregation of soil and climate input data can underestimate simulated biomass loss and nitrate leaching under climate change. European Journal of Agronomy, 2022, 141, 126630.	1.9	2
1387	Evaluation of droplet deposition and efficiency of 28-homobrassinolide sprayed with unmanned aerial spraying system and electric air-pressure knapsack sprayer over wheat field. Computers and Electronics in Agriculture, 2022, 202, 107353.	3.7	4
1388	High emissions could increase the future risk of maize drought in China by 60–70 %. Science of the Total Environment, 2022, 852, 158474.	3.9	20
1389	Observed and CMIP6 simulated occurrence and intensity of compound agroclimatic extremes over maize harvested areas in China. Weather and Climate Extremes, 2022, 38, 100503.	1.6	4
1390	Understanding the Bearable Link between Ecology and Health Outcomes: The Criticality of Human Capital Development and Energy Use. SSRN Electronic Journal, 0, , .	0.4	0
1391	Climate Change and its Effects on Global Food Production. , 2022, , 509-526.		0
1392	MicroRNAs expression profiles in early responses to different levels of water deficit in Setaria viridis. Physiology and Molecular Biology of Plants, 2022, 28, 1607-1624.	1.4	0
1393	Agronomic Improvements, Not Climate, Underpin Recent Rice Yield Gains in Changing Environments. Agronomy, 2022, 12, 2071.	1.3	0
1394	Urban and peri-urban agriculture as a strategy for creating more sustainable and resilient urban food systems and facing socio-environmental emergencies. Agroecology and Sustainable Food Systems, 2023, 47, 47-71.	1.0	12
1396	Does Agroecosystem Management Mitigate Historic Climate Impacts on Dryland Winter Wheat Yields?. Agronomy Journal, 0, , .	0.9	1
1397	Comparative analysis of stress-induced calcium signals in the crop species barley and the model plant Arabidopsis thaliana. BMC Plant Biology, 2022, 22, .	1.6	5
1398	Nexus between environmental vulnerability and agricultural productivity in BRICS: what are the roles of renewable energy, environmental policy stringency, and technology? Environmental Science and Pollution Research, 2023, 30, 15756-15774.	2.7	17
1399	The rhizosphere bacterial community contributes to the nutritional competitive advantage of weedy rice over cultivated rice in paddy soil. BMC Microbiology, 2022, 22, .	1.3	5
1400	Climate change may outpace current wheat breeding yield improvements in North America. Nature Communications, 2022, 13 , .	5.8	17
1401	Machine Learning Crop Yield Models Based on Meteorological Features and Comparison with a Process-Based Model. , 2022, 1 , .		1
1402	Climatic conditions and household food security: Evidence from Tanzania. Food Policy, 2022, 112, 102362.	2.8	13

#	Article	IF	CITATIONS
1403	A Review of the Statistical Studies on the Impact of Climate Change on Crop Yields. Oyo Tokeigaku, 2021, 50, 55-74.	0.2	0
1404	The empirical analysis of climate change impacts and adaptation in agriculture. Handbook of Agricultural Economics, 2021, , 3981-4073.	0.9	12
1405	Crop Diversification Using Saline Resources: Step Towards Climate-Smart Agriculture and Reclamation of Marginal Lands., 2022,, 405-421.		2
1406	Transgenics and Crop Improvement. , 2022, , 131-347.		0
1407	Genomic Designing for Biotic Stress Resistance in Sugarcane. , 2022, , 337-439.		2
1408	Farmers' Preference and Willingness to Pay for Climate-Smart Rice Varieties in Uzo-Uwani Local Government Area of Enugu State, Nigeria. Ekologia, 2022, 41, 262-271.	0.2	1
1409	Inquiring the inter-relationships amongst grain-filling, grain-yield, and grain-quality of Japonica rice at high latitudes of China. Frontiers in Genetics, 0, 13, .	1.1	1
1410	Breeding targets for heat-tolerant rice varieties in Japan in a warming climate. Mitigation and Adaptation Strategies for Global Change, 2023, 28, .	1.0	2
1411	Coupling Process-Based Crop Model and Extreme Climate Indicators with Machine Learning Can Improve the Predictions and Reduce Uncertainties of Global Soybean Yields. Agriculture (Switzerland), 2022, 12, 1791.	1.4	6
1412	The impact of 1.5°C and 2.0°C global warming on global maize production and trade. Scientific Reports, 2022, 12, .	1.6	5
1413	Comparative changes in sugars and lipids show evidence of a critical node for regeneration in safflower seeds during aging. Frontiers in Plant Science, $0,13,.$	1.7	4
1414	On the Changing Cool Season Affecting Rice Growth and Yield in Taiwan. Agronomy, 2022, 12, 2625.	1.3	2
1415	Climate Change Affects the Utilization of Light and Heat Resources in Paddy Field on the Songnen Plain, China. Agriculture (Switzerland), 2022, 12, 1648.	1.4	6
1416	Impacts and economic costs of climate change on Mexican agriculture. Regional Environmental Change, 2022, 22, .	1.4	5
1417	Impacts of Climatic Variability on Agricultural Total Factor Productivity Growth in the Southern United States. Environments - MDPI, 2022, 9, 129.	1.5	0
1418	Profitability and agronomic potential of cotton (Gossypium hirsutum L.) under biochar-compost-based amendments in three agroecological zones of northern Benin. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	2
1419	Last Decade Assessment of the Impacts of Regional Climate Change on Crop Yield Variations in the Mediterranean Region. Agriculture (Switzerland), 2022, 12, 1787.	1.4	13
1420	Plant Metabolic Networks Under Stress: a Multi-species/Stress Condition Meta-analysis. Journal of Soil Science and Plant Nutrition, 2023, 23, 4-21.	1.7	6

#	Article	IF	CITATIONS
1421	Wheat trade tends to happen between countries with contrasting extreme weather stress and synchronous yield variation. Communications Earth & Environment, 2022, 3, .	2.6	6
1422	Machine learning-based cloud computing improved wheat yield simulation in arid regions. Computers and Electronics in Agriculture, 2022, 203, 107457.	3.7	8
1423	Energy potentials, negative emissions, and spatially explicit environmental impacts of perennial grasses on abandoned cropland in Europe. Environmental Impact Assessment Review, 2023, 98, 106942.	4.4	9
1424	Batting for rice: The effect of bat exclusion on rice in North-East India. Agriculture, Ecosystems and Environment, 2023, 341, 108196.	2.5	5
1425	Sink-source unbalance leads to abnormal partitioning of biomass and nitrogen in rice under extreme heat stress: An experimental and modeling study. European Journal of Agronomy, 2023, 142, 126678.	1.9	5
1426	Daytime warming during early grain filling offsets the CO ₂ fertilization effect in rice. Environmental Research Letters, 2022, 17, 114051.	2.2	6
1427	Numerical simulation of the surface flux of an alpine grassland in the source region of the Yellow River by the land surface model. Arabian Journal of Geosciences, 2022, 15, .	0.6	0
1428	Potential abiotic stress targets for modern genetic manipulation. Plant Cell, 2023, 35, 139-161.	3.1	14
1429	Novel Single-Nucleotide Variants for Morpho-Physiological Traits Involved in Enhancing Drought Stress Tolerance in Barley. Plants, 2022, 11 , 3072.	1.6	2
1430	Climate variation explains more than half of cotton yield variability in China. Industrial Crops and Products, 2022, 190, 115905.	2.5	6
1431	Global crop yields can be lifted by timely adaptation of growing periods to climate change. Nature Communications, $2022, 13, .$	5.8	54
1432	Strengthening the Resilience of Coastal Cities against Climate Change through Spatial Planning: Evidence from Greece. Current Urban Studies, 2022, 10, 639-654.	0.3	4
1433	County level calibration strategy to evaluate peanut irrigation water use under different climate change scenarios. European Journal of Agronomy, 2023, 143, 126693.	1.9	2
1434	Indicators of water use efficiency across diverse agroecosystems and spatiotemporal scales. Science of the Total Environment, 2023, 864, 160992.	3.9	14
1435	Whole-genome identification and expression analysis of basic leucine zipper genes under cadmium, drought and Orobanche cumana stresses in Helianthus annuus L. Industrial Crops and Products, 2023, 193, 116123.	2.5	3
1436	Assessment of Relationship between Climate Change, Drought, and Land Use and Land Cover Changes in a Semi-Mountainous Area of the Vietnamese Mekong Delta. Land, 2022, 11, 2175.	1.2	8
1437	Household's Agricultural Vulnerability to Climate Induced Disasters: A Case on South-West Coastal Bangladesh. Journal of Environmental Assessment Policy and Management, 2022, 24, .	4.3	1
1438	The Impact of Climate Change and Grain Planting Structure Change on Irrigation Water Requirement for Main Grain Crops in Mainland China. Land, 2022, 11, 2174.	1.2	4

#	Article	IF	CITATIONS
1439	Reductions in leaf area index, pod production, seed size, and harvest index drive yield loss to high temperatures in soybean. Journal of Experimental Botany, 2023, 74, 1629-1641.	2.4	8
1440	The regional economic impacts of climate change on family farming and large-scale agriculture in brazil: a computable general equilibrium approach. Climate Change Economics, 0, , .	2.9	0
1441	Rainfall and Agro Related Climate Extremes for Water Requirement in Paddy Grown Mahanadi Basin of India. Agricultural Research, 2023, 12, 20-31.	0.9	5
1442	Understanding the bearable link between ecology and health outcomes: the criticality of human capital development and energy use. Heliyon, 2022, 8, e12611.	1.4	64
1443	Insights into the effect of cyanobacterial inoculations on the microbial dynamics of an arable soil under simulated rain. Biology and Fertility of Soils, 2023, 59, 103-116.	2.3	1
1444	Comprehensive transcriptome analysis reveals heat-responsive genes in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis) using RNA sequencing. Frontiers in Plant Science, 0, 13, .	1.7	3
1446	Evaluation of global gridded crop models in simulating sugarcane yield in China. Atmospheric and Oceanic Science Letters, 2023, , 100329.	0.5	2
1447	Potential Impacts of Future Climate Changes on Crop Productivity of Cereals and Legumes in Tamil Nadu, India: A Mid-Century Time Slice Approach. Advances in Meteorology, 2023, 2023, 1-17.	0.6	1
1448	The Intervention of Multi-Omics Approaches for Developing Abiotic Stress Resistance in Cotton Crop Under Climate Change., 2023,, 37-82.		4
1449	Residual correlation and ensemble modelling to improve crop and grassland models. Environmental Modelling and Software, 2023, 161, 105625.	1.9	2
1450	Contrasting impacts of dry versus humid heat on US corn and soybean yields. Scientific Reports, 2023, 13, .	1.6	2
1452	Multiomics Approach for Crop Improvement Under Climate Change. , 2023, , 17-36.		0
1453	The effects of climate change and phenological variation on agricultural production and its risk pattern in the black soil area of northeast China. Journal of Chinese Geography, 2023, 33, 37-58.	1.5	7
1454	Ecological niche models of productive corn races under climate change scenarios in centralâ€eastern mexico. Agronomy Journal, 0, , .	0.9	0
1455	Potential for land and water management adaptations in Mediterranean croplands under climate change. Agricultural Systems, 2023, 205, 103586.	3.2	8
1456	Factors affecting crop production water footprint: A review and meta-analysis. Sustainable Production and Consumption, 2023, 36, 207-216.	5.7	9
1457	Intensifying Effects of Climate Change in Food Loss: A Threat to Food Security in Turkey. Sustainability, 2023, 15, 350.	1.6	7
1458	Forecasting of Winter Wheat Yield: A Mathematical Model and Field Experiments. Agriculture (Switzerland), 2023, 13, 41.	1.4	1

#	Article	IF	CITATIONS
1459	Quantitative Study on Agricultural Premium Rate and Its Distribution in China. Land, 2023, 12, 263.	1.2	0
1460	Characteristics and Impacts of Water–Thermal Variation on Grain Yield in the Henan Province, China, on Multiple Time Scales. Agronomy, 2023, 13, 429.	1.3	1
1461	Morphophysiological and Molecular Diversity in Mung Bean (Vigna radiata L.)., 2023, , 115-147.		1
1462	Tomato Yellow Leaf Curl Sardinia Virus Increases Drought Tolerance of Tomato. International Journal of Molecular Sciences, 2023, 24, 2893.	1.8	2
1463	Food security in a changing climate world. Review on Agriculture and Rural Development, 2022, 11, 32-38.	0.1	0
1464	Deciphering Macromolecular Interactions Involved in Abiotic Stress Signaling: A Review of Bioinformatics Analysis. Methods in Molecular Biology, 2023, , 257-294.	0.4	2
1465	Impact of Climate Change on the Food Chain. , 2023, , .		0
1466	Spatial Pattern of Cotton Yield Variability and Its Response to Climate Change in Cotton Belt of Pakistan. Chinese Geographical Science, 2023, 33, 351-362.	1.2	1
1467	Multitraits evaluation of a $\langle i \rangle$ Solanum pennellii $\langle i \rangle$ introgression tomato line challenged by combined abiotic stress. Plant Biology, 2023, 25, 518-528.	1.8	5
1468	Increased heat stress reduces future yields of three major crops in Pakistan's Punjab region despite intensification of irrigation Agricultural Water Management, 2023, 281, 108243.	2.4	6
1469	Grain-cropping suitability for evaluating the agricultural land use change in Brazil. Applied Geography, 2023, 154, 102937.	1.7	4
1470	Could conservation tillage increase the resistance to drought in Mediterranean faba bean crops?. Agriculture, Ecosystems and Environment, 2023, 349, 108449.	2.5	2
1471	Future climate change for major agricultural zones in China as projected by CORDEX-EA-II, CMIP5 and CMIP6 ensembles. Atmospheric Research, 2023, 288, 106731.	1.8	10
1472	Field-scale dynamics of planting dates in the US Corn Belt from 2000 to 2020. Remote Sensing of Environment, 2023, 291, 113551.	4.6	0
1473	Role of Indigenous and local knowledge in seasonal forecasts and climate adaptation: A case study of smallholder farmers in Chiredzi, Zimbabwe. Environmental Science and Policy, 2023, 145, 13-28.	2.4	5
1474	Cereal Crop Modeling for Food and Nutrition Security. , 2022, , 183-195.		2
1475	Optimality-based modelling of wheat sowing dates globally. Agricultural Systems, 2023, 206, 103608.	3.2	2
1476	A toy model of food production in a connected landscape. Frontiers in Applied Mathematics and Statistics, 0, 9, .	0.7	0

#	Article	IF	CITATIONS
1477	Possible factors determining global-scale patterns of crop yield sensitivity to drought. PLoS ONE, 2023, 18, e0281287.	1.1	6
1478	Agricultural diversification for crop yield stability: a smallholder adaptation strategy to climate variability in Ethiopia. Regional Environmental Change, 2023, 23, .	1.4	1
1479	Regional impacts of climate change on agricultural productivity: evidence on large-scale and family farming in Brazil. Revista De Economia E Sociologia Rural, 2024, 62, .	0.2	0
1480	Assessment of canopy temperature-based water stress indices for irrigated and rainfed soybeans under subhumid conditions. Agricultural Water Management, 2023, 279, 108214.	2.4	2
1481	Climate change adaptation methods at the household level: Evidence from the Oghan watershed, north of Iran. Environmental Science and Policy, 2023, 142, 42-49.	2.4	0
1482	Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates. Nature Communications, 2023, 14 , .	5.8	87
1483	Scenario analysis and relative importance indicators for combined impact of climate and land-use change on annual ecosystem services in the Karst mountainous region. Ecological Indicators, 2023, 147, 109991.	2.6	9
1484	Modelling adaptation and transformative adaptation in cropping systems: recent advances and future directions. Current Opinion in Environmental Sustainability, 2023, 61, 101265.	3.1	3
1485	A biomechanical model for the relation between bite force and mandibular opening angle in arthropods. Royal Society Open Science, 2023, 10, .	1.1	16
1486	A brief review of the coupled human-Earth system modeling: Current state and challenges. Infrastructure Asset Management, 2023, 10, 664-684.	1.2	2
1487	Marginal Damage of Methane Emissions: Ozone Impacts on Agriculture. Environmental and Resource Economics, 2023, 84, 1095-1126.	1.5	2
1488	Land Cover Changes from Intensive Climate Warming. , 2022, , 181-216.		0
1489	Projecting hydrologic change under land use and climate scenarios in an agricultural watershed using agent-based modeling. Frontiers in Water, 0, 5, .	1.0	1
1490	Impacts of water scarcity on agricultural production and electricity generation in the Middle East and North Africa. Frontiers in Environmental Science, 0, 11 , .	1.5	6
1491	How Far Will Climate Change Affect Future Food Security? An Inquiry into the Irrigated Rice System of Peninsular India. Agriculture (Switzerland), 2023, 13, 551.	1.4	1
1492	A framework to assess the dynamics of climate extremes on irrigation water requirement using machine learning techniques. Journal of Earth System Science, 2023, 132, .	0.6	0
1493	Increased probability of hot and dry weather extremes during the growing season threatens global crop yields. Scientific Reports, 2023, 13, .	1.6	10
1494	Dissecting Brazilian agriculture business cycles in high-dimensional and time-irregular span contexts. Empirical Economics, 0, , .	1.5	0

#	Article	IF	CITATIONS
1495	Plant RNA-binding proteins as key players in abiotic stress physiology. Journal of Experimental Biology and Agricultural Sciences, 2023, 11, 41-53.	0.1	0
1496	A Bibliometric Analysis and a Citation Mapping Process for the Role of Soil Recycled Organic Matter and Microbe Interaction due to Climate Change Using Scopus Database. AgriEngineering, 2023, 5, 581-610.	1.7	1
1497	Agriculture-related green house gas emissions and mitigation measures. Advances in Agronomy, 2023, , 257-376.	2.4	0
1498	Impacts of Climate Change on Japanese Sweet Potato Yield: Time Series Analysis of Process-Based-Model Building and Regional Differences. Studies in Regional Science, 2022, 52, 293-305.	0.1	0
1499	Model emulators for the assessment of regional impacts and risks of climate change: A case study of rainfed maize production in Mexico. Frontiers in Environmental Science, $0,11,1$	1.5	1
1500	Conferring of Drought and Heat Stress Tolerance in Wheat (Triticum aestivum L.) Genotypes and Their Response to Selenium Nanoparticles Application. Nanomaterials, 2023, 13, 998.	1.9	10
1501	Limited potential of irrigation to prevent potato yield losses in Germany under climate change. Agricultural Systems, 2023, 207, 103633.	3.2	5
1502	Grain Risk Analysis of Meteorological Disasters in Gansu Province Using Probability Statistics and Index Approaches. Sustainability, 2023, 15, 5266.	1.6	0
1503	Resistance Induction in Chickpea (Cicer arietinumÂL.) Against Salinity Stress Through Biochar as aÂSoil Amendment and Salicylic Acid-Induced Signaling. Gesunde Pflanzen, 0, , .	1.7	2
1504	Techniques to preprocess the climate projections—a review. Theoretical and Applied Climatology, 2023, 152, 521-533.	1.3	0
1505	Near-term climate change impacts on food crops productivity in East Africa. Theoretical and Applied Climatology, 2023, 152, 843-860.	1.3	4
1506	Genomics-driven breeding for local adaptation of durum wheat is enhanced by farmers' traditional knowledge. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	5
1507	Adaptation Strategies Strongly Reduce the Future Impacts of Climate Change on Simulated Crop Yields. Earth's Future, 2023, 11, .	2.4	7
1508	Impact of slope farmland use change on ecosystem services value in China, 2000–2020. Journal of Mountain Science, 2023, 20, 821-833.	0.8	2
1509	How agricultural technologies and climatic factors affect India's crop production? A roadmap towards sustainable agriculture. Sustainable Development, 2023, 31, 2908-2928.	6.9	8
1510	US farmers' adaptations to climate change: a systematic review of the adaptation-focused studies in the US agriculture context. , 0 , , .		2
1511	Assessing the economic implications of climate change impacts on the Paraguayan agricultural sector. Climate and Development, 2024, 16, 1-8.	2.2	0
1512	CO2 fertilization effect may balance climate change impacts on oil palm cultivation. Environmental Research Letters, 0, , .	2.2	1

#	Article	IF	CITATIONS
1513	Climate change unequally affects nitrogen use and losses in global croplands. Nature Food, 2023, 4, 294-304.	6.2	8
1514	Biochar Application for Improving the Yield and Quality of Crops Under Climate Change. Sustainable Agriculture Reviews, 2023, , 3-55.	0.6	0
1515	Contrasting area and yield responses to extreme climate contributes to climate-resilient rice production in Asia. Scientific Reports, $2023,13,\ldots$	1.6	1
1516	The Great Green Wall Initiatives and Opportunities for Integration of Dryland Agroforestry to Mitigate Desertification., 2023,, 175-206.		1
1517	Field management practices to produce nutritional and healthier main crops., 2023,, 137-173.		1
1518	Towards sustainability in the adoption of sustainable agricultural practices: Implications on household poverty, food and nutrition security., 2023, 2, 100054.		9
1519	The Ecological Significance to Maintain Rice Cropping Areas in the Rice Bowls of Kerala for Sustaining Food Security Under the Purview of Climate Change., 2023, , 159-173.		0
1531	Food Security Issues in Changing Climate. , 2023, , 89-104.		1
1550	Plant physiological and molecular responses triggered by humic based biostimulants - A way forward to sustainable agriculture. Plant and Soil, 2023, 492, 31-60.	1.8	3
1576	Impact of Climate Change on Biomass. , 2023, , 1-18.		0
1578	Germplasm Diversity and Breeding Approaches for Genetic Improvement of Mungbean., 2023,, 173-196.		0
1589	Climate change impacts on crop yields. Nature Reviews Earth & Environment, 2023, 4, 831-846.	12.2	9
1592	Climate Change and Nutrient Use Efficiency of Plants. , 2023, , 291-312.		1
1598	Crop Responses to Climate Change. , 2023, , 57-75.		0
1604	Impact of Heat Coupled with Drought Stress on Plants. , 2023, , 200-216.		0
1629	Assessing risk management trends in food security research. Environment, Development and Sustainability, 0, , .	2.7	0
1640	The impact of climate change on plant diseases and food security. , 2024, , 353-384.		0