Activation states of blood eosinophils in asthma

Clinical and Experimental Allergy 44, 482-498

DOI: 10.1111/cea.12292

Citation Report

#	Article	IF	CITATIONS
1	Platelets and allergic inflammation. Clinical and Experimental Allergy, 2014, 44, 901-913.	1.4	57
2	Increased activation of blood neutrophils after cigarette smoking in young individuals susceptible to COPD. Respiratory Research, 2014, 15, 121.	1.4	27
3	Differential activation of airway eosinophils induces <scp>IL</scp> â€13â€mediated allergic Th2 pulmonary responses in mice. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 1148-1159.	2.7	47
4	Role of platelets in allergic airway inflammation. Journal of Allergy and Clinical Immunology, 2015, 135, 1416-1423.	1.5	66
5	Natural Killer Cells Limit Cardiac Inflammation and Fibrosis by Halting Eosinophil Infiltration. American Journal of Pathology, 2015, 185, 847-861.	1.9	83
6	Eosinophilia in Pulmonary Disorders. Immunology and Allergy Clinics of North America, 2015, 35, 477-492.	0.7	17
7	Childhood asthma biomarkers: present knowledge and future steps. Paediatric Respiratory Reviews, 2015, 16, 205-212.	1.2	17
8	Similar activation state of neutrophils in sputum of asthma patients irrespective of sputum eosinophilia. Clinical and Experimental Immunology, 2015, 182, 204-212.	1.1	29
9	Reslizumab in the management of poorly controlled asthma: the data so far. Journal of Asthma and Allergy, 2016, Volume 9, 155-162.	1.5	13
10	Eosinophilic bioactivities in severe asthma. World Allergy Organization Journal, 2016, 9, 21.	1.6	66
11	Impaired P2X1 Receptor–Mediated Adhesion in Eosinophils from Asthmatic Patients. Journal of Immunology, 2016, 196, 4877-4884.	0.4	13
12	Current and future biomarkers in allergic asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2016, 71, 475-494.	2.7	96
13	Increased CD69 Expression on Peripheral Eosinophils from Patients with Food Protein-Induced Enterocolitis Syndrome. International Archives of Allergy and Immunology, 2016, 170, 201-205.	0.9	18
14	A novel microbe-based treatment that attenuates the inflammatory profile in a mouse model of allergic airway disease. Scientific Reports, 2016, 6, 35338.	1.6	11
15	Biomarkers of the involvement of mast cells, basophils and eosinophils in asthma and allergic diseases. World Allergy Organization Journal, 2016, 9, 7.	1.6	124
16	CD81 and CD48 show different expression on blood eosinophils in systemic sclerosis: new markers for disease and pulmonary inflammation?. Scandinavian Journal of Rheumatology, 2016, 45, 107-113.	0.6	10
17	The current and future role of biomarkers in type 2 cytokineâ€mediated asthma management. Clinical and Experimental Allergy, 2017, 47, 148-160.	1.4	66
18	<scp>IL</scp> â€5â€stimulated eosinophils adherent to periostin undergo stereotypic morphological changes and <scp>ADAM</scp> 8â€dependent migration. Clinical and Experimental Allergy, 2017, 47, 1263-1274.	1.4	23

#	ARTICLE	IF	Citations
19	Glucagonâ€like peptideâ€l receptor expression on human eosinophils and its regulation of eosinophil activation. Clinical and Experimental Allergy, 2017, 47, 331-338.	1.4	35
20	Diagnosing eosinophilic asthma using a multivariate prediction model based on blood granulocyte responsiveness. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 1202-1211.	2.7	21
22	Mepolizumab Attenuates Airway Eosinophil Numbers, but Not Their Functional Phenotype, in Asthma. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1385-1395.	2.5	103
23	Improved recovery of functionally active eosinophils and neutrophils using novel immunomagnetic technology. Journal of Immunological Methods, 2017, 449, 44-55.	0.6	29
24	The participation of oxidative stress in the pathogenesis of bronchial asthma. Biomedicine and Pharmacotherapy, 2017, 94, 100-108.	2.5	55
25	Sublingual house dust mite immunotherapy has no impact on decrease of circulating erythrocytes upon airway allergen challenge in allergic rhinitis. Scientific Reports, 2017, 7, 2555.	1.6	6
26	Suppression of Eosinophil Integrins Prevents Remodeling of Airway Smooth Muscle in Asthma. Frontiers in Physiology, 2016, 7, 680.	1.3	16
27	Eosinophil Activation Status in Separate Compartments and Association with Asthma. Frontiers in Medicine, 2017, 4, 75.	1.2	67
28	Neutrophil phenotypes in health and disease. European Journal of Clinical Investigation, 2018, 48, e12943.	1.7	84
29	Equine neutrophils and their role in ischemia reperfusion injury and lung inflammation. Cell and Tissue Research, 2018, 371, 639-648.	1.5	10
30	Proteomic and Phosphoproteomic Changes Induced by Prolonged Activation of Human Eosinophils with IL-3. Journal of Proteome Research, 2018, 17, 2102-2111.	1.8	11
31	Blood biomarkers in chronic airways diseases and their role in diagnosis and management. Expert Review of Respiratory Medicine, 2018, 12, 361-374.	1.0	10
32	Titanium dioxide nanoparticles induce human eosinophil adhesion onto endothelial EA.hy926 cells via activation of phosphoinositide 3-kinase/Akt cell signalling pathway. Immunobiology, 2018, 223, 162-170.	0.8	16
33	Role of Leptin/Osteopontin Axis in the Function of Eosinophils in Allergic Rhinitis with Obesity. Mediators of Inflammation, 2018, 2018, 1-10.	1.4	14
34	Role of Allergic Inflammatory Cells in Coronary Artery Disease. Circulation, 2018, 138, 1736-1748.	1.6	61
35	Reuse of public, genome-wide, murine eosinophil expression data for hypotheses development. Journal of Leukocyte Biology, 2018, 104, 185-193.	1.5	8
36	Control of cytokine-driven eosinophil migratory behavior by TGF-beta-induced protein (TGFBI) and periostin. PLoS ONE, 2018, 13, e0201320.	1.1	13
37	Bone marrow eosinophils in plasma cell disorders. Experimental Hematology, 2018, 66, 27-31.e5.	0.2	3

3

#	Article	IF	Citations
38	The Biology of Monocytes and Dendritic Cells: Contribution to HIV Pathogenesis. Viruses, 2018, 10, 65.	1.5	51
39	Systemic inflammatory markers in relation to lung function in NHANES. 2007–2010. Respiratory Medicine, 2018, 142, 94-100.	1.3	22
40	An increase in myeloid cells after severe injury is associated with normal fracture healing: a retrospective study of 62 patients with a femoral fracture. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 89, 585-590.	1.2	4
41	Severe bronchial asthma in children: a review of novel biomarkers used as predictors of the disease. Journal of Asthma and Allergy, 2018, Volume 11, 11-18.	1.5	16
42	Expression and significance of molecular profiles on eosinophils of children with food allergy. European Journal of Inflammation, 2019, 17, 205873921986860.	0.2	1
43	Expression of eosinophil \hat{l}^2 chain-signaling cytokines receptors, outer-membrane integrins, and type 2 inflammation biomarkers in severe non-allergic eosinophilic asthma. BMC Pulmonary Medicine, 2019, 19, 158.	0.8	16
44	Peripheral Blood Gene Expression Signatures of Eosinophilic Chronic Obstructive Pulmonary Disease. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 398-401.	1.4	5
45	Eosinophils and Respiratory Viruses. Viral Immunology, 2019, 32, 198-207.	0.6	72
46	Eosinophils in anti-neutrophil cytoplasmic antibody associated vasculitis. BMC Rheumatology, 2019, 3, 9.	0.6	13
47	The role of IL-36 \hat{I}^3 and its regulation in eosinophilic inflammation in allergic rhinitis. Cytokine, 2019, 117, 84-90.	1.4	22
48	Cell-Specific DNA Methylation Signatures in Asthma. Genes, 2019, 10, 932.	1.0	30
49	Polydatin protects against ovalbumin-induced bronchial asthma in rats; involvement of urocortin and surfactant-D expression. Immunopharmacology and Immunotoxicology, 2019, 41, 403-412.	1.1	8
50	Cigarette Smoke Extract Promotes TIM4 Expression in Murine Dendritic Cells Leading to Th2 Polarization through ERK-Dependent Pathways. International Archives of Allergy and Immunology, 2019, 178, 219-228.	0.9	10
51	Activation of Human Eosinophils with Nanoparticles: a New Area of Research. Inflammation, 2020, 43, 8-16.	1.7	5
52	Impact of highâ€altitude therapy on typeâ€2 immune responses in asthma patients. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 84-94.	2.7	28
53	Diffusion Mapping of Eosinophilâ€Activation State. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 253-258.	1.1	5
54	Differentiation and activation of eosinophils in the human bone marrow during experimental human endotoxemia. Journal of Leukocyte Biology, 2020, 108, 1665-1671.	1.5	26
55	Multiple Biological Aspects of Eosinophils in Host Defense, Eosinophil-Associated Diseases, Immunoregulation, and Homeostasis: Is Their Role Beneficial, Detrimental, Regulator, or Bystander?. Biological and Pharmaceutical Bulletin, 2020, 43, 20-30.	0.6	22

#	ARTICLE	IF	CITATIONS
56	The Cellular Functions of Eosinophils: Collegium Internationale Allergologicum (CIA) Update 2020. International Archives of Allergy and Immunology, 2020, 181, 11-23.	0.9	65
57	The Effects of Indoor Pollutants Exposure on Allergy and Lung Inflammation: An Activation State of Neutrophils and Eosinophils in Sputum. International Journal of Environmental Research and Public Health, 2020, 17, 5413.	1.2	10
58	Distinct functions of tissue-resident and circulating memory Th2 cells in allergic airway disease. Journal of Experimental Medicine, 2020, 217, .	4.2	72
59	Elevated Levels of Activated and Pathogenic Eosinophils Characterize Moderate-Severe House Dust Mite Allergic Rhinitis. Journal of Immunology Research, 2020, 2020, 1-14.	0.9	18
60	Eosinophils Control Liver Damage by Modulating Immune Responses Against Fasciola hepatica. Frontiers in Immunology, 2020, 11, 579801.	2.2	12
61	Influenza A virus directly modulates mouse eosinophil responses. Journal of Leukocyte Biology, 2020, 108, 151-168.	1.5	23
62	Phosphodiesterase 4 inhibitors attenuate virusâ€induced activation of eosinophils from asthmatics without affecting virus binding. Pharmacology Research and Perspectives, 2020, 8, e00557.	1.1	1
63	Benralizumab: an updated treatment of eosinophilic asthma. Expert Review of Respiratory Medicine, 2020, 14, 435-444.	1.0	11
64	Increased CD69 expression on activated eosinophils in eosinophilic chronic rhinosinusitis correlates with clinical findings. Allergology International, 2020, 69, 232-238.	1.4	28
65	Role of FcÎ ³ Rl in Antigen-Dependent Eosinophil Activation in Patients With Allergic Rhinitis. American Journal of Rhinology and Allergy, 2021, 35, 86-97.	1.0	4
66	Eosinophil-associated microinflammation in the gastroduodenal tract contributes to gastric hypersensitivity in a rat model of early-life adversity. American Journal of Physiology - Renal Physiology, 2021, 320, G206-G216.	1.6	5
67	The multiple functions and subpopulations of eosinophils in tissues under steady-state and pathological conditions. Allergology International, 2021, 70, 9-18.	1.4	39
68	Specific Ag-guiding nano-vaccines attenuate neutrophil-dominant allergic asthma. Molecular Immunology, 2021, 129, 103-111.	1.0	3
69	Blood eosinophil count as predictor of asthma exacerbation. A metaâ€analysis. Pediatric Allergy and Immunology, 2021, 32, 465-478.	1.1	25
70	Neuromedin U: potential roles in immunity and inflammation. Immunology, 2021, 162, 17-29.	2.0	27
71	Risk Factors Predicting Severe Asthma Exacerbations in Adult Asthmatics: A Real-World Clinical Evidence. Allergy, Asthma and Immunology Research, 2021, 13, 420.	1,1	9
72	Clinical Differences between Early- and Late-Onset Asthma: A Population-Based Cross-Sectional Study. Canadian Respiratory Journal, 2021, 2021, 1-8.	0.8	5
73	Eosinophil Responses at the Airway Epithelial Barrier during the Early Phase of Influenza a Virus Infection in C57BL/6 Mice. Cells, 2021, 10, 509.	1.8	14

#	ARTICLE	IF	Citations
74	Targeting eosinophils in respiratory diseases: Biological axis, emerging therapeutics and treatment modalities. Life Sciences, 2021, 267, 118973.	2.0	16
75	Eosinophil: A central player in modulating pathological complexity in asthma. Allergologia Et Immunopathologia, 2021, 49, 191-207.	1.0	7
76	Eosinophils and COVID-19: diagnosis, prognosis, and vaccination strategies. Seminars in Immunopathology, 2021, 43, 383-392.	2.8	36
77	Platelet association with leukocytes in active eosinophilic esophagitis. PLoS ONE, 2021, 16, e0250521.	1.1	3
78	Basophils Orchestrating Eosinophils' Chemotaxis and Function in Allergic Inflammation. Cells, 2021, 10, 895.	1.8	23
79	The clinical significance of spondin 2 eccentric expression in peripheral blood mononuclear cells in bronchial asthma. Journal of Clinical Laboratory Analysis, 2021, 35, e23764.	0.9	6
80	Gastric eosinophils are detrimental for Helicobacter pylori vaccine efficacy. Vaccine, 2021, 39, 3590-3601.	1.7	2
81	Oleoylethanolamide induces eosinophilic airway inflammation in bronchial asthma. Experimental and Molecular Medicine, 2021, 53, 1036-1045.	3.2	7
82	$\hat{l}\pm4\hat{l}^21$ and $\hat{l}\pm M\hat{l}^22$ Integrin Expression and Pro-Proliferative Properties of Eosinophil Subtypes in Asthma. Journal of Personalized Medicine, 2021, 11, 829.	1.1	1
83	Immunity and Breast Cancer: Focus on Eosinophils. Biomedicines, 2021, 9, 1087.	1.4	15
84	Differential effects of short- and long-term treatment with mepolizumab on eosinophil kinetics in blood and sputum in eosinophilic asthma. IScience, 2021, 24, 102913.	1.9	11
85	The Cycling of Intracellular Calcium Released in Response to Fluid Shear Stress Is Critical for Migration-Associated Actin Reorganization in Eosinophils. Cells, 2021, 10, 157.	1.8	6
86	Siglec-8 antibody reduces eosinophils and mast cells in a transgenic mouse model of eosinophilic gastroenteritis. JCI Insight, 2019, 4, .	2.3	86
87	A pathophysiological role of PDE3 in allergic airway inflammation. JCI Insight, 2018, 3, .	2.3	33
88	Eosinophil Count Is a Common Factor for Complex Metabolic and Pulmonary Traits and Diseases: The LifeLines Cohort Study. PLoS ONE, 2016, 11, e0168480.	1.1	28
89	Essential mechanisms of differential activation of eosinophils by IL-3 compared to GM-CSF and IL-5. Critical Reviews in Immunology, 2017, 36, 429-444.	1.0	51
90	Activation of IL5R and CRTH2 on Human Eosinophils Elicit a Similar Molecular Response and Reveal a Synergistic Effect. European Journal of Molecular and Clinical Medicine, 2018, 5, 1-11.	0.5	1
91	Siglec-8 Signals Through a Non-Canonical Pathway to Cause Human Eosinophil Death In Vitro. Frontiers in Immunology, 2021, 12, 737988.	2.2	13

#	Article	IF	CITATIONS
92	Alteration of lung tissues proteins in birch pollen induced asthma mice before and after SCIT. PLoS ONE, 2021, 16, e0258051.	1.1	3
93	Oral cavity response to air pollutant exposure and association with pulmonary inflammation and symptoms in asthmatic children. Environmental Research, 2022, 206, 112275.	3.7	10
94	Mechanisms, diagnosis and management of eosinophilic asthma. Journal of Lung, Pulmonary & Respiratory Research, 2020, 7, 28-37.	0.3	1
96	Effective Management of Severe Asthma with Biologic Medications in Adult Patients: A Literature Review and International Expert Opinion. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 422-432.	2.0	28
97	Peripheral blood eosinophils priming and in vitro VEGF stimulation in asthmatics. Postepy Dermatologii I Alergologii, 2021, 38, 850-854.	0.4	2
98	Not all the same: Subtypes of mouse intestinal eosinophils in health and disease models. Journal of Leukocyte Biology, 2022, , .	1.5	0
99	The emerging roles of eosinophils: Implications for the targeted treatment of eosinophilic-associated inflammatory conditions. Current Research in Immunology, 2022, 3, 42-53.	1.2	38
100	Emerging Roles of Platelets in Allergic Asthma. Frontiers in Immunology, 2022, 13, 846055.	2.2	6
101	Asthmatic Eosinophils Alter the Gene Expression of Extracellular Matrix Proteins in Airway Smooth Muscle Cells and Pulmonary Fibroblasts. International Journal of Molecular Sciences, 2022, 23, 4086.	1.8	8
102	Transcriptional Profiling of Mouse Eosinophils Identifies Distinct Gene Signatures Following Cellular Activation. Frontiers in Immunology, 2021, 12, 802839.	2.2	19
105	High proportion of inflammatory CD62L ^{low} eosinophils in blood and nasal polyps of severe asthma patients. Clinical and Experimental Allergy, 2023, 53, 78-87.	1.4	10
106	Blood Eosinophils Are Associated with Efficacy of Targeted Therapy in Patients with Advanced Melanoma. Cancers, 2022, 14, 2294.	1.7	3
107	Development and validation of a noninvasive prediction model for identifying eosinophilic asthma. Respiratory Medicine, 2022, , 106935.	1.3	0
108	The deciphering of the immune cells and marker signature in COVIDâ€19 pathogenesis: An update. Journal of Medical Virology, 2022, 94, 5128-5148.	2.5	12
110	<scp>BCL6</scp> deletion in <scp>CD4</scp> T cells does not affect Th2 effector mediated immunity in the skin. Immunology and Cell Biology, 2022, 100, 791-804.	1.0	5
112	Identification of Two Eosinophil Subsets in Induced Sputum from Patients with Allergic Asthma According to CD15 and CD66b Expression. International Journal of Environmental Research and Public Health, 2022, 19, 13400.	1.2	7
114	The role of innate lymphoid cells in the heart and cardiac inflammation. Journal of Immunology, 2018, 200, 42.22-42.22.	0.4	1
115	Clinical Implications of Longitudinal Blood Eosinophil Counts in Patients With Severe Asthma. Journal of Allergy and Clinical Immunology: in Practice, 2023, 11, 1805-1813.	2.0	2

Article IF Citations