[4+2] and [4+3] catalytic cycloadditions of allenes

Chemical Society Reviews 43, 2904-2915

DOI: 10.1039/c4cs00024b

Citation Report

#	Article	IF	CITATIONS
1	Computational Approaches to Homogeneous Gold Catalysis. Topics in Current Chemistry, 2014, 357, 213-283.	4.0	28
2	AlCl ₃ -Promoted Selective Michael Addition with Allenoate and Methyleneindolinone: Synthesis of Spirocyclic Oxindole by Using Allenoate as a Four-Carbon Component Building Block. Journal of Organic Chemistry, 2014, 79, 11161-11169.	3.2	23
3	Taming Gold(I)–Counterion Interplay in the Deâ€aromatization of Indoles with Allenamides. Chemistry - A European Journal, 2014, 20, 9875-9878.	3.3	85
4	Gold(I)-Catalyzed Polycyclization of Linear Dienediynes to Seven-Membered Ring-Containing Polycycles via Tandem Cyclopropanation/Cope Rearrangement/C–H Activation. Organic Letters, 2014, 16, 5898-5901.	4.6	53
5	Tandem Michael addition/imine isomerization/intramolecular [3+2] cycloaddition for the regiospecific synthesis of cyclohepta[b]pyrroles. Chemical Communications, 2014, 50, 11039.	4.1	9
6	Hypervalent Iodine Mediated Oxidative Amination of Allenes. Organic Letters, 2014, 16, 4750-4753.	4.6	24
7	The Au(I) Catalyzed Activation of Allenamides and Their Subsequent Transformation into Chromanes: A Method for the Regiocontrolled Addition to the \hat{I}_{\pm} - and \hat{I}_{\pm} -Positions of the Allene Unit. Organic Letters, 2014, 16, 4606-4609.	4.6	26
8	Goldâ€Catalyzed Intermolecular Synthesis of Alkylidenecyclopropanes through Catalytic Allene Activation. Chemistry - A European Journal, 2014, 20, 10636-10639.	3.3	39
9	All in One - Complete Issue: ChemInform 26/2014. ChemInform, 2014, 45, no-no.	0.0	0
12	Alkeneâ€Directed <i>N</i> à€Attack Chemoselectivity in the Goldâ€Catalyzed [2+2+1]â€Annulations of 1,6â€Engwith <i>N</i> à€Hydroxyanilines. Angewandte Chemie - International Edition, 2015, 54, 14924-14928.	ynes 13.8	33
13	Homogeneous Gold Catalysis. Topics in Current Chemistry, 2015, , .	4.0	26
14	Reaction of \hat{l}^2 -enaminones and acetylene dicarboxylates: synthesis of substituted 1,2-dihydropyridinones. Organic and Biomolecular Chemistry, 2015, 13, 3011-3023.	2.8	18
15	Methyltrioxorhenium-catalyzed highly selective dihydroxylation of 1,2-allenylic diphenyl phosphine oxides. Chemical Communications, 2015, 51, 7439-7442.	4.1	16
16	Regioselective annulation of nitrosopyridine with alkynes: straightforward synthesis of N-oxide-imidazopyridines. Chemical Communications, 2015, 51, 6119-6122.	4.1	23
17	Gold($\langle scp \rangle i \langle scp \rangle$)-catalyzed [2 + 2 + 2] cycloaddition of allenamides, alkenes and aldehydes: a straightforward approach to tetrahydropyrans. Chemical Science, 2015, 6, 2903-2908.	7.4	61
18	Gold-catalyzed formal [4Ï€ + 2Ï€]-cycloadditions of propiolate derivatives with unactivated nitriles. Chemical Science, 2015, 6, 5964-5968.	7.4	38
19	Enantioselective gold-catalyzed intermolecular $[2+2] < i > versus < /i > [4+2]$ -cycloadditions of 3-styrylindoles with $< i > N < /i >$ -allenamides: observation of interesting substituent effects. Chemical Science, 2015, 6, 5564-5570.	7.4	106
20	Copper-catalyzed C–C bond-forming transformation of CO ₂ to alcohol oxidation level: selective synthesis of homoallylic alcohols from allenes, CO ₂ , and hydrosilanes. Chemical Communications, 2015, 51, 13020-13023.	4.1	63

#	Article	IF	CITATIONS
21	Gold-catalyzed formal $[4\ddot{i}\in+2\ddot{i}\in]$ -cycloadditions of tert-butyl propiolates with aldehydes and ketones to form 4H-1,3-dioxine derivatives. Chemical Communications, 2015, 51, 13004-13007.	4.1	23
23	Cu-catalyzed oxidative Povarov reactions between N-alkyl N-methylanilines and saturated oxa- and thiacycles. Chemical Communications, 2015, 51, 6625-6628.	4.1	58
24	Divergence in the Reactivity between Amine- and Phosphine-Catalyzed Cycloaddition Reactions of Allenoates with Enynals: One-Pot Gold-Catalyzed Synthesis of Trisubstituted Benzofurans from the [3 + 2] Cycloadduct via 1,2-Alkyl Migration and Dehydrogenation. Journal of Organic Chemistry, 2015, 80, 4084-4096.	3.2	60
25	(4+1) vs (4+2): Catalytic Intramolecular Coupling between Cyclobutanones and Trisubstituted Allenes via C–C Activation. Journal of the American Chemical Society, 2015, 137, 13715-13721.	13.7	122
26	Diverse synthesis of pyrano[2,3-b]indol and dihydropyrano[2,3-b]indol via tunable Lewis bases catalyzed domino reactions. Tetrahedron, 2015, 71, 7706-7716.	1.9	27
27	Spontaneous resolution upon crystallization of allenyl-bis-phosphine oxides. Chemical Communications, 2015, 51, 7168-7171.	4.1	22
28	A simple one-pot preparation of N-allenyl amides, ureas, carbamates and sulfonamides using a DMSO/tBuOK protocol. Tetrahedron Letters, 2015, 56, 350-352.	1.4	19
29	Recent applications of chiral allenes in axial-to-central chirality transfer reactions. Tetrahedron, 2015, 71, 7-18.	1.9	102
30	Quinidineâ€Catalysed Enantioselective Synthesis of 6―and 4â€Trifluoromethylâ€Substituted Dihydropyrans. European Journal of Organic Chemistry, 2016, 2016, 3619-3624.	2.4	20
31	Recent Advances in Goldâ€Catalyzed N―and Oâ€Functionalizations of Alkynes with Nitrones, Nitroand Nitroxy Species. Advanced Synthesis and Catalysis, 2016, 358, 1348-1367.	4.3	242
32	Rhodiumâ€Catalyzed [5+2] Cycloaddition of 3â€Acyloxyâ€1,4â€enyne with Alkene or Allene. Advanced Synthesis and Catalysis, 2016, 358, 2007-2011.	4.3	16
33	Nâ€Allenyl Amides and Oâ€Allenyl Ethers in Enantioselective Catalysis. European Journal of Organic Chemistry, 2016, 2016, 3135-3142.	2.4	46
34	Iron-Catalyzed Dehydrogenative [4 + 2] Cycloaddition of Tertiary Anilines and Enamides for the Synthesis of Tetrahydroquinolines with Amido-Substituted Quaternary Carbon Centers. ACS Catalysis, 2016, 6, 3473-3477.	11.2	56
35	(1 <i>H</i> -Tetrazol-5-yl)-Allenes: Building Blocks for Tetrazolyl Heterocycles. Journal of Organic Chemistry, 2016, 81, 9028-9036.	3.2	17
36	Chirality transfer in metal-catalysed intermolecular addition reactions involving allenes. Organic Chemistry Frontiers, 2016, 3, 1186-1204.	4.5	81
37	Suzuki coupling for preparation of allenes – ligand effects and chirality transfer. Organic Chemistry Frontiers, 2016, 3, 1705-1710.	4.5	27
38	Palladium(II)â€Catalyzed Regio―and Stereoselective Hydroarylation of Diphenylphosphorylallenes with Arylboronic Acids in the Presence of Sodium Hydroxide and Oxygen. Advanced Synthesis and Catalysis, 2016, 358, 2849-2854.	4.3	14
39	Regiodivergent Intermolecular [3+2] Cycloadditions of Vinyl Aziridines and Allenes: Stereospecific Synthesis of Chiral Pyrrolidines. Angewandte Chemie, 2016, 128, 11002-11006.	2.0	12

3

#	Article	IF	CITATIONS
40	Regiodivergent Intermolecular [3+2] Cycloadditions of Vinyl Aziridines and Allenes: Stereospecific Synthesis of Chiral Pyrrolidines. Angewandte Chemie - International Edition, 2016, 55, 10844-10848.	13.8	58
41	Synthesis of Tricyclic Isoquinoline Derivatives <i>via</i> Palladium―Catalyzed Tandem Reactions of 2,7â€Alkadiynylic Carbonates with 2,3â€Allenyl Sulfamides. Advanced Synthesis and Catalysis, 2016, 358, 2791-2805.	4.3	8
42	Nickelâ€Catalyzed Chemo―and Enantioselective Coupling between Cyclobutanones and Allenes: Rapid Synthesis of [3.2.2] Bicycles. Angewandte Chemie, 2016, 128, 15315-15319.	2.0	21
43	Organocatalyzed [4+2] Annulation of Allâ€Carbon Tetrasubstituted Alkenes with Allenoates: Synthesis of Highly Functionalized 2 <i>H</i> â€and 4 <i>H</i> â€Pyran Derivatives ChemistrySelect, 2016, 1, 5414-5420.	1.5	10
44	Nickelâ€Catalyzed Chemo―and Enantioselective Coupling between Cyclobutanones and Allenes: Rapid Synthesis of [3.2.2] Bicycles. Angewandte Chemie - International Edition, 2016, 55, 15091-15095.	13.8	54
45	Gold-catalyzed [4+3] and [4+4]-annulation reactions of t-butyl propiolate derivatives with epoxides and oxetanes for the construction of 1,4-dioxepane and 1,5-dioxocane cores. Chemical Communications, 2016, 52, 7482-7485.	4.1	28
46	Enantioselective gold-catalyzed intermolecular $[2 + 2]$ -cycloadditions of 3-styrylindoles with N-allenyl oxazolidinone. Organic Chemistry Frontiers, 2016, 3, 759-763.	4.5	70
47	Pseudoxylallemycins A–F, Cyclic Tetrapeptides with Rare Allenyl Modifications Isolated from <i>Pseudoxylaria</i> sp. X802: A Competitor of Fungus-Growing Termite Cultivars. Organic Letters, 2016, 18, 3338-3341.	4.6	50
48	Gold-catalyzed intermolecular formal (3+2) cycloaddition of stabilized vinyldiazo derivatives and electronically unbiased allenes. Chemical Communications, 2016, 52, 9398-9401.	4.1	34
49	Sulfonamide-directed gold-catalyzed [2+2+2]-cycloadditions of nitriles with two discrete ynamides to construct 2,4-diaminopyridine cores. Chemical Communications, 2016, 52, 3187-3190.	4.1	57
51	Palladium Tandem Catalysis in the Atropodiastereoselective Synthesis of Indenes Bearing Central and Axial Chirality. ACS Catalysis, 2016, 6, 1559-1564.	11.2	16
52	Base catalysed intermolecular cyclisation of N-protected o-amino benzaldehyde/acetophenone with phosphorus/sulphur based allenes: facile synthesis of substituted quinolines. Organic and Biomolecular Chemistry, 2016, 14, 3591-3602.	2.8	13
53	Gold(I)-Catalyzed Inter- and Intramolecular Additions of Carbonyl Compounds to Allenenes. Organic Letters, 2016, 18, 1410-1413.	4.6	19
54	Origins of unique gold-catalysed chemo- and site-selective C–H functionalization of phenols with diazo compounds. Chemical Science, 2016, 7, 1988-1995.	7.4	118
55	Goldâ€Catalyzed 1,4â€Carbooxygenation of 3â€Enâ€1â€ynamides with Allylic and Propargylic Alcohols <i>via</i> Nonâ€Claisen Pathways. Advanced Synthesis and Catalysis, 2017, 359, 590-596.	4.3	19
56	Enantioselective [2 + 2] cycloaddition of N-allenamides with cyclic N-sulfonylketimines: access to polysubstituted azetidines bearing quaternary stereocenters. Chemical Science, 2017, 8, 2811-2815.	7.4	43
57	Rapid Asymmetric Synthesis of Disubstituted Allenes by Coupling of Flowâ€Generated Diazo Compounds and Propargylated Amines. Angewandte Chemie, 2017, 129, 1890-1894.	2.0	11
58	Rapid Asymmetric Synthesis of Disubstituted Allenes by Coupling of Flowâ€Generated Diazo Compounds and Propargylated Amines. Angewandte Chemie - International Edition, 2017, 56, 1864-1868.	13.8	75

#	Article	IF	CITATIONS
59	Pd/Cu cooperative catalysis: an efficient synthesis of (3-isoindazolyl)allenes via cross-coupling of 2-alkynyl azobenzenes and terminal alkynes. Chemical Communications, 2017, 53, 2606-2609.	4.1	34
60	Gold-Catalyzed Regiodivergent [2 + 2 + 2]-Cycloadditions of Allenes with Triazines. Organic Letters, 2017, 19, 524-527.	4.6	71
61	Diazo Esters as Dienophiles in Intramolecular $(4 + 2)$ Cycloadditions: Computational Explorations of Mechanism. Journal of the American Chemical Society, 2017, 139, 2766-2770.	13.7	46
62	Metal-free visible-light-promoted intermolecular [2+2]-cycloaddition of 3-ylideneoxindoles. Tetrahedron, 2017, 73, 1854-1860.	1.9	22
63	Cobalt(III)-Catalyzed Hydroarylation of Allenes via C–H Activation. ACS Catalysis, 2017, 7, 2511-2515.	11.2	107
64	Gold(I)â€Catalyzed Enantioselective Synthesis of Tetrahydrocarbazoles through Dearomative [4+2] Cycloadditions of 3/2â€Substituted 2/3â€Vinylindoles. Advanced Synthesis and Catalysis, 2017, 359, 1912-1918.	4.3	29
65	Synthesis of Quinoline Derivatives via Cu-Catalyzed Cascade Annulation of Heterocumulenes, Alkynes, and Diaryliodonium Salts. Organic Letters, 2017, 19, 2694-2697.	4.6	27
66	The reactions of 1,1-diarylallenes with N-acyliminium cations generated from hydroxylactams. Tetrahedron, 2017, 73, 3949-3958.	1.9	2
67	Synthesis of Imidazopyridinium-Fused Metallacycloallene via One-Pot Reaction of Î- ² -Alkynol-Coordinated Osmacycle with 2-Aminopyridine. Organometallics, 2017, 36, 4184-4190.	2.3	6
68	Unified Approach to Substituted Allenoates via Pd-Catalyzed Î ² -Hydride Elimination of (E)-Enol Triflates. Organic Letters, 2017, 19, 5446-5449.	4.6	10
69	Theoretical Studies of Allene Synthesis through Cadmium Iodideâ€Mediated Allenylation of Terminal Alkynes. Asian Journal of Organic Chemistry, 2017, 6, 1778-1782.	2.7	8
70	Total Syntheses of the Reported Structures of Curcusones I and J through Tandem Gold Catalysis. Angewandte Chemie - International Edition, 2017, 56, 11624-11627.	13.8	58
71	Total Syntheses of the Reported Structures of Curcusones I and J through Tandem Gold Catalysis. Angewandte Chemie, 2017, 129, 11782-11785.	2.0	10
72	Gold-catalyzed [2+2+2+2]-annulation of 1,3,5-hexahydro-1,3,5-triazines with alkoxyallenes. Chemical Communications, 2017, 53, 12770-12773.	4.1	34
73	Gold catalysis-facilitated rapid synthesis of the daphnane/tigliane tricyclic core. Tetrahedron, 2017, 73, 4172-4177.	1.9	31
74	Enantioselective Synthesis of <i>trans</i> â€Vicinal Diamines <i>via</i> Rhodiumâ€Catalyzed [2+2] Cycloaddition of Allenamides. Advanced Synthesis and Catalysis, 2018, 360, 1790-1794.	4.3	21
75	NHC-Catalyzed Hetero-Diels–Alder Reaction of Allenoate with Chalcone: Synthesis of Polysubstituted Pyranyl Carboxylate. Journal of Organic Chemistry, 2018, 83, 3361-3366.	3.2	26
76	Gold-catalyzed N,O-functionalization of 1,4-diyn-3-ols with <i>N</i> -hydroxyanilines to form highly functionalized pyrrole derivatives. Chemical Communications, 2018, 54, 2114-2117.	4.1	35

#	Article	IF	Citations
78	Intermolecular $[2+2]$ Cycloaddition/Isomerization of Allenyl Imides and Unactivated Imines for the Synthesis of 1-Azadienes Catalyzed by a Ni(ClO ₄) ₂ \hat{A} -6H ₂ O Lewis Acid. ACS Catalysis, 2018, 8, 5193-5199.	11,2	24
79	Syntheses of Highly Functionalized Spirocyclohexenes by Formal [4+2] Annulation of Arylidene Azlactones with Allenoates. Asian Journal of Organic Chemistry, 2018, 7, 1620-1625.	2.7	6
80	Template-stereocontrolled $[2+2]$ photoreactions directed by surface recognition on hydrophilic functionalized carbon materials. CrystEngComm, 2018, 20, 2932-2939.	2.6	5
81	A Direct Synthesis of Trisubstituted Allenes from Propargyl Alcohols via Oxaphosphetane Intermediates. Bulletin of the Chemical Society of Japan, 2018, 91, 337-342.	3.2	3
82	Intramolecular cycloaddition/rearrangement cascade from gold(<scp>iii</scp>)-catalysed reactions of propargyl aryldiazoesters with cinnamyl imines. Chemical Communications, 2018, 54, 12828-12831.	4.1	7
83	PPh ₃ AuTFA Catalyzed in the Dearomatization of 2-Naphthols with Allenamides. Organic Letters, 2018, 20, 7380-7383.	4.6	37
84	Synthesis of Functionalized Chromene and Chroman Derivatives via Cesium Carbonate Promoted Formal [4 + 2] Annulation of 2′-Hydroxychalcones with Allenoates. Journal of Organic Chemistry, 2018, 83, 15372-15379.	3.2	27
85	Catalytic Enantioselective Synthesis of Guvacine Derivatives through [4 + 2] Annulations of Imines with α-Methylallenoates. Organic Letters, 2018, 20, 6089-6093.	4.6	28
86	Palladium-Catalyzed C–S Bond Cleavage with Allenoates: Synthesis of Tetrasubstituted 2-Alkenylfuran Derivatives. Organic Letters, 2018, 20, 6007-6011.	4.6	24
87	Interruption of Formal Schmidt Rearrangement/Hosomi–Sakurai Reaction of Vinyl Azides with Allyl/Propargylsilanes. Organic Letters, 2018, 20, 7113-7116.	4.6	9
88	BrÃ,nsted Acid Tuned, Lewis Base Promoted [4 + 2] Annulation Reactions of Allenoates with Electronâ€Deficient Olefins. European Journal of Organic Chemistry, 2018, 2018, 4917-4925.	2.4	27
89	Gold-catalyzed [5+2] cycloaddition of quinolinium zwitterions and allenamides as an efficient route to fused 1,4-diazepines. Chemical Communications, 2018, 54, 6911-6914.	4.1	34
90	Rhodium-catalyzed highly diastereoselective intramolecular $[4+2]$ cycloaddition of 1,3-disubstituted allene-1,3-dienes. Organic Chemistry Frontiers, 2018, 5, 2680-2684.	4.5	13
91	Tri(<i>o</i> -tolyl)phosphine for highly efficient Suzuki coupling of propargylic carbonates with boronic acids. Chemical Communications, 2018, 54, 10451-10454.	4.1	24
92	Gold(I)-Catalyzed Intramolecular Diels–Alder Reaction: Evolution of Trappable Intermediates via Asynchronous Transition States. Journal of Organic Chemistry, 2018, 83, 11167-11177.	3.2	19
93	Recent Developments in Transition Metalâ€Catalyzed Dearomative Cyclizations of Indoles as Dipolarophiles for the Construction of Indolines. Advanced Synthesis and Catalysis, 2019, 361, 405-425.	4.3	145
94	Regioselective [2+2+2] Cycloaddition Reaction Using Alleneâ€ynes with Simple Allenes under Nickel Catalysis. Advanced Synthesis and Catalysis, 2019, 361, 4882-4887.	4.3	9
95	Negishi Coupling for Highly Selective Syntheses of Allenes via Ligand Effect and Mechanistic Study via SAESIâ€MS/MS. Chinese Journal of Chemistry, 2019, 37, 1003-1008.	4.9	12

#	Article	IF	CITATIONS
96	A formal $[4 + 2]$ cycloaddition of sulfur-containing alkylidene heterocycles with allenic compounds. Organic Chemistry Frontiers, 2019, 6, 3259-3263.	4.5	15
97	A Rh-Catalyzed Cycloisomerization/Diels–Alder Cascade Reaction of 1,5-Bisallenes for the Synthesis of Polycyclic Heterocycles. Organic Letters, 2019, 21, 6608-6613.	4.6	18
98	Synthesis of 1,4,5,6-tetrahydropyridazines and pyridazines $\langle i \rangle$ via $\langle i \rangle$ transition-metal-free (4 + 2) cycloaddition of alkoxyallenes with 1,2-diaza-1,3-dienes. RSC Advances, 2019, 9, 21507-21512.	3.6	14
99	Copper-Catalyzed [4+2]-Cycloadditions of Isoxazoles with 2-Alkynylbenzaldehydes To Access Distinct α-Carbonylnaphthalene Derivatives: C(3,4)- versus C(4,5)-Regioselectivity at Isoxazoles. ACS Catalysis, 2019, 9, 7328-7334.	11.2	20
100	Palladium atalyzed Desulfitative Cross oupling Reaction of Sodium Sulfinates with Propargylic Carbonates. Advanced Synthesis and Catalysis, 2019, 361, 4656-4660.	4.3	7
101	Direct Access to Allenylphosphine Oxides via a Metal Free Coupling of Propargylic Substrates with P(O)H Compounds. Organic Letters, 2019, 21, 9438-9441.	4.6	12
102	Metal free synthesis of 1â€azaspiro[4.4]nonaneâ€3â€one system via reactions of nitrones with 1,1â€disubstituted allenes. Journal of Heterocyclic Chemistry, 2019, 56, 3236-3243.	2.6	7
103	Construction of Allâ€Carbon Chiral Quaternary Centers through Cu ^I â€Catalyzed Enantioselective Reductive Hydroxymethylation of 1,1â€Disubstituted Allenes with CO ₂ . Chemistry - A European Journal, 2019, 25, 13874-13878.	3.3	43
104	Highly Enantioselective Synthesis Using Prolinol as a Chiral Auxiliary: Silver-Mediated Synthesis of Axially Chiral Vinylallenes and Subsequent (Hetero)-Diels–Alder Reactions. Organic Letters, 2019, 21, 7717-7721.	4.6	18
105	Enantioselective Allylation Using Allene, a Petroleum Cracking Byproduct. Journal of the American Chemical Society, 2019, 141, 2251-2256.	13.7	95
106	Direct construction of carbazoles from 2-methyl-indole-3-carbaldehydes and enals. Green Chemistry, 2019, 21, 968-972.	9.0	23
107	Pd/PCâ€Phosâ€Catalyzed Enantioselective Intermolecular Denitrogenative Cyclization of Benzotriazoles with Allenes and Nâ€Allenamides. Angewandte Chemie, 2019, 131, 11566-11570.	2.0	18
108	Rhodium(I)-Catalyzed Enantioselective Hydroacylation of Racemic Allenals via Dynamic Kinetic Resolution. Organic Letters, 2019, 21, 4120-4123.	4.6	13
109	Pd/PCâ€Phosâ€Catalyzed Enantioselective Intermolecular Denitrogenative Cyclization of Benzotriazoles with Allenes and Nâ€Allenamides. Angewandte Chemie - International Edition, 2019, 58, 11444-11448.	13.8	75
110	Phosphane-Catalyzed [3+2] Annulation of Allenoates with 3-Nitro-2H -chromenes: Synthesis of Tetrahydrocyclopenta[c]chromenes. European Journal of Organic Chemistry, 2019, 2019, 5441-5451.	2.4	15
111	Gold($\langle scp \rangle i \langle scp \rangle$)-catalyzed enantioselective synthesis of polycyclic indoline skeletons and enantiomerically enriched \hat{l}^2 -substituted tryptamine-allenes by kinetic resolution. Chemical Communications, 2019, 55, 4210-4213.	4.1	14
112	One Stone for Three Birdsâ€Rhodiumâ€Catalyzed Highly Diastereoselective Intramolecular [4+2] Cycloaddition of Optically Active Alleneâ€1,3â€dienes. Chinese Journal of Chemistry, 2019, 37, 486-496.	4.9	11
113	Allenation of Terminal Alkynes with Aldehydes and Ketones. Accounts of Chemical Research, 2019, 52, 1301-1312.	15.6	200

#	Article	IF	CITATIONS
114	Chiral catalysts derived from biomass: design, synthesis and applications in asymmetric catalysis. Vietnam Journal of Chemistry, 2019, 57, 670-680.	0.8	0
115	Divergent gold-catalysed reactions of cyclopropenylmethyl sulfonamides with tethered heteroaromatics. Chemical Communications, 2019, 55, 13971-13974.	4.1	17
116	Phosphine-catalyzed $(3+2)/(2+3)$ sequential annulation involving a triple nucleophilic addition reaction of \hat{I}^3 -vinyl allenoates. Chemical Communications, 2019, 55, 14011-14014.	4.1	19
117	Developments in Cp*Co ^{III} atalyzed Câ^'H Bond Functionalizations. Asian Journal of Organic Chemistry, 2019, 8, 430-455.	2.7	45
118	Direct catalytic asymmetric method for the synthesis of tetrahydropyranopyrazoles through allene zwitterion chemistry. Tetrahedron Letters, 2019, 60, 703-706.	1.4	9
119	A Catalytic Strategy for α,ï‰â€Functionalization: NHCâ€Mediated Fragmentation/Umpolung Cascades to Access Hydroxytrifluoromethyl Ynones and Allenones. ChemCatChem, 2019, 11, 3750-3755.	3.7	2
120	Photoâ€Organocatalytic Enantioselective Radical Cascade Enabled by Singleâ€Electron Transfer Activation of Allenes. Advanced Synthesis and Catalysis, 2020, 362, 302-307.	4.3	24
121	Phosphine-Catalyzed $(3 + 2)/(3 + 2)$ Sequential Annulation of \hat{I}^3 -Vinyl Allenoates: Access to Fused Carbocycles. Organic Letters, 2020, 22, 433-437.	4.6	29
122	Facile Synthesis of Polysubstituted Indolizines via Oneâ€Pot Reaction of 1â€Acetylaryl 2â€Formylpyrroles and Enals. Chemistry - an Asian Journal, 2020, 15, 352-355.	3.3	8
123	Photochemical Doyle–Kirmse Reaction: A Route to Allenes. Organic Letters, 2020, 22, 1018-1021.	4.6	52
124	Catalytic enantioselective alleneâ \in "anhydride approach to \hat{l}^2,\hat{l}^3 -unsaturated enones bearing an \hat{l}_{\pm} -all-carbon-quarternary center. Chemical Science, 2020, 11, 9115-9121.	7.4	21
125	Recent Advances in the Cycloaddition Reactions of 2â€Benzylideneâ€1â€benzofuranâ€3â€ones, and Their Sulfur, Nitrogen and Methylene Analogues. Chemistry - an Asian Journal, 2020, 15, 2838-2853.	3.3	34
126	Transitionâ€Metal atalyzed Cycloaddition Reactions to Access Sevenâ€Membered Rings. Chemistry - A European Journal, 2020, 26, 15354-15377.	3.3	51
127	Highly Chemoselective Esterification from <i>O</i> ÀeAminoallylation of Carboxylic Acids: Metal―and Reagentâ€Free Hydrocarboxylation of Allenamides. Chemistry - A European Journal, 2020, 26, 13826-13831.	3.3	10
128	Density Functional Theory Study of the Metal-Catalyzed Cycloaddition of Indolyl-Allenes: Possible Reaction Pathways, Stereoselectivity, and Regioselectivity. Organometallics, 2020, 39, 1782-1789.	2.3	7
129	Pd-Catalyzed (3 + 2) Heterocycloadditions between Alkylidenecyclopropanes and Carbonyls: Straightforward Assembly of Highly Substituted Tetrahydrofurans. ACS Catalysis, 2020, 10, 7710-7718.	11.2	15
130	Advances in [4+3]â€Annulation/Cycloaddition Reactions Leading to Homo―and Heterocycles with Sevenâ€Membered Rings. Chemistry - an Asian Journal, 2020, 15, 2380-2402.	3.3	33
131	Synthesis and Functionalization of Allenes by Direct Pd atalyzed Organolithium Cross oupling. Angewandte Chemie, 2020, 132, 7897-7903.	2.0	4

#	Article	IF	CITATIONS
132	Synthesis and Functionalization of Allenes by Direct Pd atalyzed Organolithium Cross oupling. Angewandte Chemie - International Edition, 2020, 59, 7823-7829.	13.8	23
133	Enantioselective [4+2] Annulation to the Concise Synthesis of Chiral Dihydrocarbazoles. IScience, 2020, 23, 100840.	4.1	16
134	Lewis Base-Switched $[3+3]$ and $[4+2]$ Annulation Reactions of \hat{l} -Acetoxy Allenoates with Cyclic $\langle i \rangle N \langle i \rangle$ -Sulfonyl Imines: Divergent Synthesis of Functionalized \hat{l} ±-Pyridyl Acetates and Teraryl Scaffolds. Journal of Organic Chemistry, 2020, 85, 4130-4144.	3.2	27
135	Pd-Catalyzed Enantioselective Syntheses of Trisubstituted Allenes via Coupling of Propargylic Benzoates with Organoboronic Acids. Journal of the American Chemical Society, 2020, 142, 9763-9771.	13.7	81
136	Cycloadditions of 1-iminylphosphirane complexes with allenes. Chinese Chemical Letters, 2021, 32, 449-452.	9.0	4
137	Assembly of Complex 1,4 ycloheptadienes by (4+3) Cycloaddition of Rhodium(II) and Gold(I) Nonâ€Acceptor Carbenes. Angewandte Chemie - International Edition, 2021, 60, 1916-1922.	13.8	16
138	Asymmetric sequential annulation/aldol process of 4-isothiocyanato pyrazolones and allenones: access to novel spiro[pyrrole–pyrazolones] and spiro[thiopyranopyrrole–pyrazolones]. Chemical Communications, 2021, 57, 363-366.	4.1	22
139	Assembly of Complex 1,4 ycloheptadienes by (4+3) Cycloaddition of Rhodium(II) and Gold(I) Nonâ€Acceptor Carbenes. Angewandte Chemie, 2021, 133, 1944-1950.	2.0	1
140	Asymmetric catalytic [4+3] cycloaddition of <i>ortho</i> -quinone methides with oxiranes. Chemical Communications, 2021, 57, 3018-3021.	4.1	23
141	Contrasting Carboannulation Involving \hat{I} -Acetoxy Allenoate as a Four-Carbon Synthon Using DABCO and DMAP: Access to Spiro-carbocyclic and $\langle i \rangle m \langle i \rangle$ -Teraryl Scaffolds. Organic Letters, 2021, 23, 1123-1129.	4.6	26
142	Hetero-Diels–Alder reactions of 2H-phospholes with allenes: synthesis and functionalization of 6-methylene-1-phosphanorbornenes. Organic Chemistry Frontiers, 2021, 8, 3740-3745.	4.5	10
143	Pd-catalyzed sp–sp3 cross-coupling of benzyl bromides using lithium acetylides. Chemical Communications, 2021, 57, 7529-7532.	4.1	6
144	Rh-Catalyzed cyclization of 2,3-allenoic acids in the presence of 2,3-allenols. Chemical Communications, 2021, 57, 10411-10414.	4.1	6
145	Photoredox/nickel dual-catalyzed regioselective alkylation of propargylic carbonates for trisubstituted allenes. Chemical Communications, 2021, 57, 9390-9393.	4.1	9
146	A palladium-catalyzed approach to allenic aromatic ethers and first total synthesis of terricollene A. Chemical Science, 2021, 12, 9347-9351.	7.4	5
147	Ruthenium-Catalyzed Cycloadditions to Form Five-, Six-, and Seven-Membered Rings. Chemical Reviews, 2021, 121, 4045-4083.	47.7	42
148	Divergent Gold Catalysis: Unlocking Molecular Diversity through Catalyst Control. Chemical Reviews, 2021, 121, 8478-8558.	47.7	176
149	Computational Study on Mechanisms and Origins of Selectivities in Rh(I)-Catalyzed Cycloisomerizations of 1,6-Allenynes with Tethered Unsaturated Carbon–Carbon Bonds. ACS Catalysis, 2021, 11, 4770-4783.	11.2	7

#	Article	IF	CITATIONS
150	Access to Alleneâ€Containing Molecules via Enantioselective Reactions of Azolium Cumulenolate Intermediates. Angewandte Chemie - International Edition, 2021, 60, 14817-14823.	13.8	16
151	Access to Alleneâ€Containing Molecules via Enantioselective Reactions of Azolium Cumulenolate Intermediates. Angewandte Chemie, 2021, 133, 14943-14949.	2.0	5
152	On the mechanism of homogeneous Pt-catalysis: A theoretical view. Coordination Chemistry Reviews, 2021, 437, 213863.	18.8	17
153	Divergent Reactivity of Î'- and β′-Acetoxy Allenoates with 2-Sulfonamidoindoles via Phosphine Catalysis: Entry to Dihydro-α-carboline, α-Carboline, and Spiro-cyclopentene Motifs. Journal of Organic Chemistry, 2021, 86, 11583-11598.	3.2	26
154	Rare-Earth-Catalyzed Selective 1,4-Hydrosilylation of Branched 1,3-Enynes Giving Tetrasubstituted Silylallenes. Journal of the American Chemical Society, 2021, 143, 12913-12918.	13.7	30
155	Zinc Iodide Catalyzed Synthesis of Trisubstituted Allenes from Terminal Alkynes and Ketones. ACS Omega, 2021, 6, 23329-23346.	3.5	7
156	Cobalt/Organophotoredox Dual-Catalysis-Enabled Cascade Cyclization of 1,6-Diynyl Esters via Formal 1,8-Acyloxy Migration. ACS Catalysis, 2021, 11, 11716-11722.	11.2	13
157	Iron-Catalyzed Contrasteric Functionalization of Allenic C(sp ²)–H Bonds: Synthesis of α-Aminoalkyl 1,1-Disubstituted Allenes. Journal of the American Chemical Society, 2021, 143, 14998-15004.	13.7	20
158	Room Temperature Allenation of Terminal Alkynes with Aldehydes. Angewandte Chemie - International Edition, 2021, 60, 25708-25713.	13.8	10
159	Room Temperature Allenation of Terminal Alkynes with Aldehydes. Angewandte Chemie, 0, , .	2.0	2
160	An update on the progress of cycloaddition reactions of 3-methyleneindolinones in the past decade: versatile approaches to spirooxindoles. Organic and Biomolecular Chemistry, 2021, 19, 7768-7791.	2.8	30
161	An Allene Approach to Tetrahydrofuranâ€Fused Bicyclo[2.2.2]octâ€2â€enes. Advanced Synthesis and Catalysis, 2018, 360, 1019-1025.	4.3	4
162	Recent Advances in the Synthesis and Reactivity of Vinylallenes. Current Organic Chemistry, 2020, 23, 3004-3026.	1.6	6
163	Synthesis of Multisubstituted Allenes via Nickel-Catalyzed Cross-Electrophile Coupling. ACS Catalysis, 2021, 11, 13355-13362.	11.2	24
165	A Rh(I)â€Catalyzed Cascade Cyclization of 1,5â€Bisallenes and Alkynes for the Formation of cisâ€3,4â€Arylvinyl Pyrrolidines and Cyclopentanes. Advanced Synthesis and Catalysis, 0, , .	4.3	3
166	A combined experimental and computational study of NHC-catalyzed allylation of allenoate with MBH esters: new regiospecific and stereoselective access to 1,5-enyne. Organic Chemistry Frontiers, 0, , .	4.5	8
167	Selective 1,4-arylsulfonation of 1,3-enynes <i>via</i> photoredox/nickel dual catalysis. Organic Chemistry Frontiers, 2022, 9, 788-794.	4.5	14
168	Asymmetric [4 + 2] cycloaddition synthesis of $4 < i > H < / i >$ -chromene derivatives facilitated by group-assisted-purification (GAP) chemistry. RSC Advances, 2021, 11, 39790-39796.	3.6	4

#	Article	IF	CITATIONS
169	Pyridine vs DABCO vs TBAB in Annulations of δ-Acetoxy Allenoates with Thioamides Leading to Dihydrothiophene, Thiopyran, and Thiazole Scaffolds. Journal of Organic Chemistry, 2022, 87, 1285-1301.	3.2	9
170	Synthesis of polyallenoates through copper-mediated cross-coupling of dialkynes and bis-α-diazoesters. Chemical Communications, 2022, 58, 3909-3912.	4.1	5
171	Dearomative $[4+3]$ cycloaddition of furans with vinyl- $\langle i \rangle N \langle i \rangle$ -triftosylhydrazones by silver catalysis: stereoselective access to oxa-bridged seven-membered bicycles. Organic Chemistry Frontiers, 2022, 9, 2444-2452.	4.5	14
172	Cooperative Palladium/Brønsted Acid Catalysis toward the Highly Enantioselective Allenylation of β-Keto Esters. Organic Letters, 2022, 24, 1496-1501.	4.6	16
173	Oneâ€Pot Synthesis of 2,3,6â€Trisubstituted Pyridines by Phosphineâ€Catalyzed Annulation of γâ€Vinyl Allenoates with Enamino Esters Followed by DDQâ€Promoted Oxidative Aromatization. Advanced Synthesis and Catalysis, 2022, 364, 1879-1883.	4.3	7
174	Gold-catalyzed cycloadditions of allenes <i>via</i> metal carbenes. Organic and Biomolecular Chemistry, 2022, 20, 5035-5044.	2.8	9
175	Silver-catalyzed [4 + 3] cycloaddition of 1,3-dienes with alkenyl- $\langle i \rangle N \langle i \rangle$ -triftosylhydrazones: a practical approach to 1,4-cycloheptadienes. Organic Chemistry Frontiers, 2022, 9, 4426-4434.	4. 5	5
176	Catalytic Asymmetric Axially Chiral Allenyl C–P Bond Formation. Journal of the American Chemical Society, 2022, 144, 12619-12626.	13.7	28
177	Palladium-catalysed construction of butafulvenes. Nature Chemistry, 2022, 14, 1185-1192.	13.6	20
178	Sequential Baseâ€Promoted Formal [4+2] Allenoate Based Cycloaddition: Synthesis of Functionalized Acridines. European Journal of Organic Chemistry, 2022, 2022, .	2.4	1
179	Rhodiumâ€Catalyzed Dynamic Kinetic [4+2] Cycloaddition of Alleneâ€1,3â€Dienes. Angewandte Chemie, 2022, 134, .	2.0	1
180	Rhodiumâ€Catalyzed Dynamic Kinetic [4+2] Cycloaddition of Alleneâ€1,3â€Dienes. Angewandte Chemie - International Edition, 2022, 61, .	13.8	4
181	Silver-Catalyzed Vinylcarbene Insertion into C–C Bonds of 1,3-Diketones with Vinyl- <i>N</i> -triftosylhydrazones. Organic Letters, 2022, 24, 8136-8141.	4.6	3
182	Photo-induced nickel-mediated cross-electrophile coupling for alkylated allenes <i>via</i> electron donor–acceptor complexes. Organic Chemistry Frontiers, 2023, 10, 298-303.	4.5	3
183	Lewisâ∈Base Dependent (3+3) Annulations of Acetoxy Allenoates with Iminoindolines: ⟨i⟩α⟨/i⟩â€Carboline Scaffolds with Varied Substituents. Advanced Synthesis and Catalysis, 2022, 364, 4316-4332.	4.3	7
184	Nickel-Catalyzed Asymmetric Propargylation for the Synthesis of Axially Chiral 1,3-Disubstituted Allenes. Journal of the American Chemical Society, 2022, 144, 21022-21029.	13.7	14
185	Functionalized Chromans from <i>ortho</i> -Quinone Methides and Arylallenes. Journal of Organic Chemistry, 2022, 87, 15863-15887.	3.2	3
186	Palladium-catalyzed decarboxylative cyclization of \hat{l} ±-acyloxyketones having an allene moiety in the tether. New Journal of Chemistry, 0 , , .	2.8	1

#	Article	IF	CITATIONS
187	Palladium-catalyzed cascade cyclization of allenamide with 2-iodoanilines to access functionalized indoloquinolines. Organic and Biomolecular Chemistry, 2023, 21, 279-283.	2.8	4
188	Organocatalytic synthesis of axially chiral tetrasubstituted allenes. Organic and Biomolecular Chemistry, 2023, 21, 252-272.	2.8	7
189	Stereoselective Threeâ€Component Construction of Conjugated 1,3â€Dienes <i>via </i> Palladiumâ€Catalyzed Alkene/Allene/Carbenoid Insertion Cascade. Advanced Synthesis and Catalysis, 0, , .	4.3	2
190	Metallaâ€Claisen Rearrangement in Goldâ€Catalyzed [4 + 2] Reaction: A New Elementary Reaction Suggested for Future Reaction Design. Angewandte Chemie - International Edition, 0, , .	13.8	2
191	Unveiling the Chemistry and Synthetic Potential of Catalytic Cycloaddition Reaction of Allenes: A Review. Molecules, 2023, 28, 704.	3.8	4
192	Metallaâ€Claisen Rearrangement in Goldâ€Catalyzed [4 + 2] Reaction: A New Elementary Reaction Suggested for Future Reaction Design. Angewandte Chemie, 0, , .	2.0	0
193	Progress in organocatalytic asymmetric (4+3) cycloadditions for the enantioselective construction of seven-membered rings. Science China Chemistry, 2023, 66, 966-992.	8.2	33
194	Palladium-catalyzed allylic allenylation of homoallyl alcohols with propargylic carbonates. Organic Chemistry Frontiers, 2023, 10, 2033-2038.	4.5	3
196	Synthesis of Multisubstituted Allenes by Palladium-Catalyzed Carboetherification of \hat{l}^2 , \hat{l}^3 -Unsaturated Ketoximes with Propargylic Acetates. Organic Letters, 2023, 25, 4682-4687.	4.6	4
197	DBU-Catalyzed Ring Expansion or Ene-amine Formation Involving Î-Acetoxy Allenoates and <i>N</i> -Sulfonyl Hydrazides. Organic Letters, 2023, 25, 3713-3717.	4.6	5
198	Strategies and Methods for the Synthesis of 2â€Pyrazolines: Recent Developments (2012–2022). Advanced Synthesis and Catalysis, 2023, 365, 1934-1969.	4.3	4
199	(3 + 3) Annulation of acetoxy allenoates with enolisable carbonyl substrates leading to fused pyrans. Organic and Biomolecular Chemistry, 2023, 21, 5021-5032.	2.8	2
200	A Pd-catalyzed highly selective three-component protocol for trisubstituted allenes. Chemical Science, 2023, 14, 7709-7715.	7.4	1
201	Regio―and Stereoselective, Intramolecular [2+2] Cycloaddition of Allenes, Promoted by Visible Light Photocatalysis. Advanced Synthesis and Catalysis, 2023, 365, 2516-2523.	4.3	3
202	Palladium-catalyzed ring-closing reaction of enynols with aminals via methylene transfer and C–N bond activation. , 2023, 7, 100042.		2
203	Organometallic Allene $[(i\frac{1}{4}a\in\mathbb{C})(Fe(CO)\cdot sub>4)\cdot sub>2]$: Bridging Carbon Showing Transformation from Classical Electronaesharing Bonding to Double $ifa\in\mathbb{D}$ onor and Double $i\in\mathbb{A}$ cceptor Ligation. ChemPhysChem, 2023, 24, .	2.1	0
204	Pd(II)-Catalyzed [5 + 2] Cyclization of $\langle i \rangle N \langle i \rangle$ -Triflyl Aryl Indoles and $\hat{i}_{\pm}, \hat{i}^{3}$ -Substituted Allenoates: A Route to Indole-Fused Benzodiazepines. Organic Letters, 2023, 25, 6246-6250.	4.6	0
205	Î'-Acetoxy Allenoate as a <i>5C</i> -Synthon in Domino-Annulation with Sulfamidate Imines: Ready Access to Coumarins. Journal of Organic Chemistry, 2023, 88, 12432-12444.	3.2	3

#	Article	IF	Citations
206	Recent Advances in Visibleâ€Lightâ€Driven Câ^'S Bond Formation. Advanced Synthesis and Catalysis, 2023, 365, 3413-3431.	4.3	5
207	Fluorine-Activated and -Directed Allene Cycloadditions with Nitrile Oxides and Imine Oxides: Synthesis of Ring-Fluorinated Isoxazole Derivatives. Organic Letters, 2023, 25, 7258-7262.	4.6	1
208	Nickel-catalyzed hydrobivinylation of enones with 1,3-dienes. Cell Reports Physical Science, 2023, 4, 101602.	5.6	0
209	Chiral Isochalcogenourea atalysed Enantioselective (4+2) Cycloadditions of Allenoates. Angewandte Chemie - International Edition, 2024, 63, .	13.8	1
210	Recent advances in $(4 + 3)$ cycloaddition of allenes. Green Synthesis and Catalysis, 2023, , .	6.8	0
211	Mechanistic Insights on the Enantioselective (4+3) Cycloaddition Between Oxyallylcations and Furans Catalyzed by BINOLâ€Based Phosphoramides. Advanced Synthesis and Catalysis, 2024, 366, 916-924.	4.3	0
212	Chiral Isochalcogenourea atalysed Enantioselective (4+2) Cycloadditions of Allenoates. Angewandte Chemie, 0, , .	2.0	0
213	Electroreductive Carboxylation of Propargylic Acetates with CO ₂ : Access to Tetrasubstituted 2,3-Allenoates. Organic Letters, 0, , .	4.6	0
214	Tertiaryâ€Amine Controlled (3+3) or (4+2) Annulations of β′â€Acetoxy Allenoates with <i>N</i> â€Sulfonyl Ketimines: An Entry to <i>m</i> â€Teraryl and Fused Dihydropyridines. Advanced Synthesis and Catalysis, 2024, 366, 1165-1175.	4.3	0