Tissue-Specific Inactivation of Type 2 Deiodinase Revea Oxidation by Thyroid Hormone in the Mouse

Diabetes 63, 1594-1604 DOI: 10.2337/db13-1768

Citation Report

#	Article	IF	CITATIONS
1	Thyroid Hormone Action: Astrocyteââ,¬â€œNeuron Communication. Frontiers in Endocrinology, 2014, 5, 82.	1.5	76
2	Adipose tissues and thyroid hormones. Frontiers in Physiology, 2014, 5, 479.	1.3	113
3	Minireview: Deciphering Direct and Indirect Influence of Thyroid Hormone With Mouse Genetics. Molecular Endocrinology, 2014, 28, 429-441.	3.7	13
4	Enzymatic intracrine regulation of white adipose tissue. Hormone Molecular Biology and Clinical Investigation, 2014, 19, 39-55.	0.3	7
5	Thyroid Hormones and their Thermogenic Properties. Journal of Restorative Medicine, 2015, 4, 93-99.	0.7	0
7	60 YEARS OF NEUROENDOCRINOLOGY: TRH, the first hypophysiotropic releasing hormone isolated: control of the pituitary–thyroid axis. Journal of Endocrinology, 2015, 226, T85-T100.	1.2	99
8	Perinatal deiodinase 2 expression in hepatocytes defines epigenetic susceptibility to liver steatosis and obesity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14018-14023.	3.3	34
9	The Selective Loss of the Type 2 Iodothyronine Deiodinase in Mouse Thyrotrophs Increases Basal TSH but Blunts the Thyrotropin Response to Hypothyroidism. Endocrinology, 2015, 156, 745-754.	1.4	30
10	Scope and limitations of iodothyronine deiodinases in hypothyroidism. Nature Reviews Endocrinology, 2015, 11, 642-652.	4.3	117
11	Coupling between Nutrient Availability and Thyroid Hormone Activation. Journal of Biological Chemistry, 2015, 290, 30551-30561.	1.6	34
12	Thyroid Hormone Signaling in Male Mouse Skeletal Muscle Is Largely Independent of D2 in Myocytes. Endocrinology, 2015, 156, 3842-3852.	1.4	21
13	Thyroid Hormone at Near Physiologic Concentrations Acutely Increases Oxygen Consumption and Extracellular Acidification in LH86 Hepatoma Cells. Endocrinology, 2015, 156, 4325-4335.	1.4	3
14	Methylation differences and expression profiles of the caprine DIO3 gene. Genetics and Molecular Research, 2016, 15, .	0.3	1
15	Hypothalamusâ€Pituitaryâ€Thyroid Axis. , 2016, 6, 1387-1428.		263
16	Thyroid hormone activation by typeÂ2 deiodinase mediates exerciseâ€induced peroxisome proliferatorâ€activated receptorâ€Î³ coactivatorâ€Iα expression in skeletal muscle. Journal of Physiology, 2016, 594, 5255-5269.	1.3	37
17	Type 2 Deiodinase Disruption in Astrocytes Results in Anxiety-Depressive-Like Behavior in Male Mice. Endocrinology, 2016, 157, 3682-3695.	1.4	51
18	The classic pathways of thyroid hormone metabolism. Molecular and Cellular Endocrinology, 2017, 458, 29-38.	1.6	122
19	Early Developmental Disruption of Type 2 Deiodinase Pathway in Mouse Skeletal Muscle Does Not Impair Muscle Function. Thyroid, 2017, 27, 577-586.	2.4	11

#	Article	IF	CITATIONS
20	Thyroid Hormones and Brain Development. , 2017, , 159-184.		2
21	Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers. Nature Communications, 2018, 9, 1623.	5.8	203
22	Effects of thyroid hormones on thermogenesis and energy partitioning. Journal of Molecular Endocrinology, 2018, 60, R157-R170.	1.1	54
23	Emerging roles of endoplasmic reticulum-resident selenoproteins in the regulation of cellular stress responses and the implications for metabolic disease. Biochemical Journal, 2018, 475, 1037-1057.	1.7	62
24	Metabolic Effects of the Intracellular Regulation of Thyroid Hormone: Old Players, New Concepts. Frontiers in Endocrinology, 2018, 9, 474.	1.5	84
25	Regulation of T3 Availability in the Developing Brain: The Mouse Genetics Contribution. Frontiers in Endocrinology, 2018, 9, 265.	1.5	22
26	Metabolic Syndrome in Thyroid Disease. Frontiers of Hormone Research, 2018, 49, 48-66.	1.0	16
27	The Deiodinase Trio and Thyroid Hormone Signaling. Methods in Molecular Biology, 2018, 1801, 67-83.	0.4	53
28	Paradigms of Dynamic Control of Thyroid Hormone Signaling. Endocrine Reviews, 2019, 40, 1000-1047.	8.9	162
29	MYMD-1, a Novel Immunometabolic Regulator, Ameliorates Autoimmune Thyroiditis via Suppression of Th1 Responses and TNF-α Release. Journal of Immunology, 2019, 202, 1350-1362.	0.4	12
30	Astrocytes in neuroendocrine systems: An overview. Journal of Neuroendocrinology, 2019, 31, e12726.	1.2	23
31	Parabrachial Interleukin-6 Reduces Body Weight and Food Intake and Increases Thermogenesis to Regulate Energy Metabolism. Cell Reports, 2019, 26, 3011-3026.e5.	2.9	41
32	Genomic, Transcriptomic, and Epigenomic Features Differentiate Genes That Are Relevant for Muscular Polyunsaturated Fatty Acids in the Common Carp. Frontiers in Genetics, 2019, 10, 217.	1.1	20
33	Tolerance to Selenoprotein Loss Differs between Human and Mouse. Molecular Biology and Evolution, 2020, 37, 341-354.	3.5	34
34	Mechanisms of insulin resistance related to white, beige, and brown adipocytes. Molecular Metabolism, 2020, 34, 27-42.	3.0	129
35	lodine Deficiency Increases Fat Contribution to Energy Expenditure in Male Mice. Endocrinology, 2020, 161, .	1.4	5
36	Thermogenesis in Adipose Tissue Activated by Thyroid Hormone. International Journal of Molecular Sciences, 2020, 21, 3020.	1.8	62
37	Deiodinases and the Metabolic Code for Thyroid Hormone Action. Endocrinology, 2021, 162, .	1.4	34

CITATION REPORT

IF ARTICLE CITATIONS # Central vs. Peripheral Action of Thyroid Hormone in Adaptive Thermogenesis: A Burning Topic. Cells, 38 1.8 13 2021, 10, 1327. Tissue-Specific Regulation of Thyroid Status by Selenodeiodinases., 2016, , 487-498. Mouse Models that Target Individual Selenoproteins., 2016, , 567-578. 40 4 Deiodinases and the Three Types of Thyroid Hormone Deiodination Reactions. Endocrinology and Metabolism, 2021, 36, 952-964. Adipose Tissue and Skeletal Muscle Expression of Genes Associated with Thyroid Hormone Action in 42 2.4 2 Obesity and Insulin Resistance. Thyroid, 2022, 32, 206-214. Thyroid Hormone Signaling in Muscle Development, Repair and Metabolism. Journal of Endocrinology, Diabetes & Obesity, 2014, 2, 1046. Selenium status and type 2 diabetes risk. Archives of Biochemistry and Biophysics, 2022, 730, 109400. 47 1.4 9 Brown adipocytes local response to thyroid hormone is required for adaptive thermogenesis in adult 2.8 male mice. ELife, 0, 11, . Does housing temperature influence glucose regulation and muscle-fat crosstalk in mice?. Biochimie, 49 1.3 2 2023, 210, 35-39. Maternal intermittent fasting deteriorates offspring metabolism via suppression of hepatic 0.2 <scp>mTORC1</scp> signaling. FASEB Journal, 2023, 37, . Understanding the Roles of Selenium on Thyroid Hormone-Induced Thermogenesis in Adipose Tissue. 51 1.9 0 Biological Trace Element Research, 0, , .

CITATION REPORT

4