Adsorption and desorption of arsenic to aquifer sedime Nam Du, Vietnam

Geochimica Et Cosmochimica Acta 142, 587-600 DOI: 10.1016/j.gca.2014.07.014

Citation Report

#	Article	IF	CITATIONS
2	Association of Arsenic and Phosphorus with Iron Nanoparticles between Streams and Aquifers: Implications for Arsenic Mobility. Environmental Science & Technology, 2015, 49, 14101-14109.	10.0	33
3	A model for the evolution in water chemistry of an arsenic contaminated aquifer over the last 6000 years, Red River floodplain, Vietnam. Geochimica Et Cosmochimica Acta, 2016, 195, 277-292.	3.9	75
4	Arsenic mobilization in an oxidizing alkaline groundwater: Experimental studies, comparison and optimization of geochemical modeling parameters. Applied Geochemistry, 2016, 72, 97-112.	3.0	2
5	Immobilization of As(V) in <i>Rhizopus oryzae</i> Investigated by Batch and XAFS Techniques. ACS Omega, 2016, 1, 899-906.	3.5	10
6	Contrasting distributions of groundwater arsenic and uranium in the western Hetao basin, Inner Mongolia: Implication for origins and fate controls. Science of the Total Environment, 2016, 541, 1172-1190.	8.0	91
7	Numerical Modeling of Arsenic Mobility during Reductive Iron-Mineral Transformations. Environmental Science & Technology, 2016, 50, 2459-2467.	10.0	62
8	Reactive Transport Modeling of Arsenic Mobilization in Groundwater of the Red River Floodplain, Vietnam. Procedia Earth and Planetary Science, 2017, 17, 85-87.	0.6	6
9	Do Fe-oxides Control the Adsorption of Arsenic in Aquifers of the Red River Floodplain, Vietnam?. Procedia Earth and Planetary Science, 2017, 17, 300-303.	0.6	1
10	Arsenic Migration and Transformation in Aquifer Sediments under Successive Redox Oscillations. Procedia Earth and Planetary Science, 2017, 17, 384-387.	0.6	3
11	Arsenic behavior in different biogeochemical zonations approximately along the groundwater flow path in Datong Basin, northern China. Science of the Total Environment, 2017, 584-585, 458-468.	8.0	12
12	Processes governing arsenic retardation on <scp>P</scp> leistocene sediments: Adsorption experiments and modelâ€based analysis. Water Resources Research, 2017, 53, 4344-4360.	4.2	42
13	Fate of Arsenic during Red River Water Infiltration into Aquifers beneath Hanoi, Vietnam. Environmental Science & Technology, 2017, 51, 838-845.	10.0	54
14	Multiscale Characterization and Quantification of Arsenic Mobilization and Attenuation During Injection of Treated Coal Seam Gas Coproduced Water into Deep Aquifers. Water Resources Research, 2017, 53, 10779-10801.	4.2	22
15	Soluble components of sediments and their relation with dissolved arsenic in aquifers from the Hetao Basin, Inner Mongolia. Journal of Soils and Sediments, 2017, 17, 2899-2911.	3.0	11
16	Effects of Fe-S-As coupled redox processes on arsenic mobilization in shallow aquifers of Datong Basin, northern China. Environmental Pollution, 2018, 237, 28-38.	7.5	33
17	The evaluation of arsenic contamination potential, speciation and hydrogeochemical behaviour in aquifers of Punjab, Pakistan. Chemosphere, 2018, 199, 737-746.	8.2	119
18	Arsenic in Holocene aquifers of the Red River floodplain, Vietnam: Effects of sediment-water interactions, sediment burial age and groundwater residence time. Geochimica Et Cosmochimica Acta, 2018, 225, 192-209.	3.9	53
19	Iron-based subsurface arsenic removal technologies by aeration: A review of the current state and future prospects. Water Research, 2018, 133, 110-122.	11.3	120

#	Article	IF	CITATIONS
20	Redox buffering and de-coupling of arsenic and iron in reducing aquifers across the Red River Delta, Vietnam, and conceptual model of de-coupling processes. Environmental Science and Pollution Research, 2018, 25, 15954-15961.	5.3	16
21	Vertical variability of arsenic concentrations under the control of iron-sulfur-arsenic interactions in reducing aquifer systems. Journal of Hydrology, 2018, 561, 200-210.	5.4	29
22	Insights into arsenic retention dynamics of Pleistocene aquifer sediments by in situ sorption experiments. Water Research, 2018, 129, 123-132.	11.3	18
23	Stabilization of arsenic and lead by magnesium oxide (MgO) in different seawater concentrations. Environmental Pollution, 2018, 233, 952-959.	7.5	15
24	Spatial Variability of Groundwater Arsenic Concentration as Controlled by Hydrogeology: Conceptual Analysis Using 2â€Ð Reactive Transport Modeling. Water Resources Research, 2018, 54, 10254-10269.	4.2	21
25	Regulation of phosphorus bioavailability by iron nanoparticles in a monomictic lake. Scientific Reports, 2018, 8, 17736.	3.3	21
26	Biogeochemical phosphorus cycling in groundwater ecosystems – Insights from South and Southeast Asian floodplain and delta aquifers. Science of the Total Environment, 2018, 644, 1357-1370.	8.0	31
27	Arsenite adsorption controlled by the iron oxide content of Holocene Red River aquifer sediment. Geochimica Et Cosmochimica Acta, 2018, 239, 61-73.	3.9	22
28	Ferrihydrite interaction with silicate and competing oxyanions: Geometry and Hydrogen bonding of surface species. Geochimica Et Cosmochimica Acta, 2018, 238, 453-476.	3.9	69
29	Effects of irrigation-induced water table fluctuation on arsenic mobilization in the unsaturated zone of the Datong Basin, northern China. Journal of Hydrology, 2018, 564, 256-265.	5.4	17
30	Quantifying Transport of Arsenic in Both Natural Soils and Relatively Homogeneous Porous Media using Stochastic Models. Soil Science Society of America Journal, 2018, 82, 1057-1070.	2.2	6
31	High arsenic groundwater in the Guide basin, northwestern China: Distribution and genesis mechanisms. Science of the Total Environment, 2018, 640-641, 194-206.	8.0	67
32	Biogeochemical and reactive transport modeling of arsenic in groundwaters from the Mississippi River delta plain: An analog for the As-affected aquifers of South and Southeast Asia. Geochimica Et Cosmochimica Acta, 2019, 264, 245-272.	3.9	26
33	Arsenic mobilization in the piedmont area of the Hetao basin: an insight from a reactive transport model. E3S Web of Conferences, 2019, 98, 05008.	0.5	0
34	Distribution of As and As(V) adsorption potential onto topsoil in the Datong Basin, northern China. E3S Web of Conferences, 2019, 98, 09004.	0.5	0
35	Contrasting sorption behaviours affecting groundwater arsenic concentration in Kandal Province, Cambodia. Geoscience Frontiers, 2019, 10, 1701-1713.	8.4	21
36	Dual in-aquifer and near surface processes drive arsenic mobilization in Cambodian groundwaters. Science of the Total Environment, 2019, 659, 699-714.	8.0	25
37	Factors governing the solid phase distribution of Cr, Cu and As in contaminated soil after 40â€ ⁻ years of ageing. Science of the Total Environment, 2019, 652, 744-754.	8.0	23

CITATION REPORT

#	Article	IF	CITATIONS
38	Sedimentogenesis and hydrobiogeochemistry of high arsenic Late Pleistocene-Holocene aquifer systems. Earth-Science Reviews, 2019, 189, 79-98.	9.1	91
39	Evidence for the formation of bog iron ore in soils of the Podravina region, NE Croatia: Geochemical and mineralogical study. Quaternary International, 2020, 536, 13-29.	1.5	4
40	Experiment-based geochemical modeling of Arsenic(V) and Arsenic(III) adsorption onto aquifer sediments from an inland basin. Journal of Hydrology, 2020, 588, 125094.	5.4	18
41	Arsenic immobilization by in-situ iron coating for managed aquifer rehabilitation. Water Research, 2020, 181, 115859.	11.3	10
42	Origin of Groundwater Arsenic in a Rural Pleistocene Aquifer in Bangladesh Depressurized by Distal Municipal Pumping. Water Resources Research, 2020, 56, e2020WR027178.	4.2	31
43	Similar retardation of arsenic in gray Holocene and orange Pleistocene sediments: Evidence from field-based column experiments in Bangladesh. Water Research, 2020, 183, 116081.	11.3	9
44	Mechanisms of groundwater arsenic variations induced by extraction in the western Hetao Basin, Inner Mongolia, China. Journal of Hydrology, 2020, 583, 124599.	5.4	33
45	Quantifying Geochemical Processes of Arsenic Mobility in Groundwater From an Inland Basin Using a Reactive Transport Model. Water Resources Research, 2020, 56, e2019WR025492.	4.2	33
46	Distribution and Geochemical Controls of Arsenic and Uranium in Groundwater-Derived Drinking Water in Bihar, India. International Journal of Environmental Research and Public Health, 2020, 17, 2500.	2.6	36
47	Model-based interpretation of hydrogeochemistry and arsenic mobility in a low-enthalpy hydrothermal system. Journal of Geochemical Exploration, 2020, 214, 106534.	3.2	4
48	Arsenic releasing mechanisms during clayey sediments compaction: An experiment study. Journal of Hydrology, 2021, 597, 125743.	5.4	8
49	Modelling heavy metals contamination in groundwater of Southern Punjab, Pakistan. International Journal of Environmental Science and Technology, 2021, 18, 2221-2236.	3.5	4
50	Impact process of the aquitard to regional arsenic accumulation of the underlying aquifer in Central Yangtze River Basin. Environmental Geochemistry and Health, 2021, 43, 1091-1107.	3.4	4
51	Unraveling influences of nitrogen cycling on arsenic enrichment in groundwater from the Hetao Basin using geochemical and multi-isotopic approaches. Journal of Hydrology, 2021, 595, 125981.	5.4	47
52	Mineralogical controls on arsenite adsorption onto soils: Batch experiments and model-based quantification. Science of the Total Environment, 2021, 767, 144920.	8.0	6
53	Phosphate immobilisation dynamics and interaction with arsenic sorption at redox transition zones in floodplain aquifers: Insights from the Red River Delta, Vietnam. Journal of Hazardous Materials, 2021, 411, 125128.	12.4	21
54	Arsenic mobilization affected by extracellular polymeric substances (EPS) of the dissimilatory iron reducing bacteria isolated from high arsenic groundwater. Science of the Total Environment, 2020, 735, 139501.	8.0	35
55	Spatial variation in dissolved phosphorus and interactions with arsenic in response to changing redox conditions in floodplain aquifers of the Hetao Basin, Inner Mongolia. Water Research, 2022, 209, 117930.	11.3	18

#	Article	IF	CITATIONS
56	Groundwater arsenic content related to the sedimentology and stratigraphy of the Red River delta, Vietnam. Science of the Total Environment, 2022, 814, 152641.	8.0	9
57	The mechanism of iodine enrichment in groundwater from the North China Plain: insight from two inland and coastal aquifer sediment boreholes. Environmental Science and Pollution Research, 2022, 29, 49007-49028.	5.3	1
58	Effects of thiolation and methylation on arsenic sorption to geothermal sediments. Science of the Total Environment, 2022, 827, 154016.	8.0	5
59	Effects of geochemical and hydrodynamic transiency on desorption and transport of As in heterogeneous systems. Science of the Total Environment, 2022, 835, 155381.	8.0	0
60	Abundant Fe(III) Oxideâ€Bound Arsenic and Depleted Mn Oxides Facilitate Arsenic Enrichment in Groundwater From a Sandâ€Gravel Confined Aquifer. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	4
61	Mechanisms of iodine enrichment in the pore-water of fluvial/lacustrine aquifer systems: Insight from stable carbon isotopes and batch experiments. Journal of Hydrology, 2022, 613, 128334.	5.4	6
62	Adsorption and desorption characteristics of arsenic in calcareous soils as a function of time; equilibrium and thermodynamic study. Environmental Science and Pollution Research, 0, , .	5.3	1
63	Controls of Geochemical and Hydrogeochemical Factors on Arsenic Mobility in the Hetao Basin, China. Ground Water, 2023, 61, 44-55.	1.3	4
64	Contrasting behaviors of groundwater arsenic and fluoride in the lower reaches of the Yellow River basin, China: Geochemical and modeling evidences. Science of the Total Environment, 2022, 851, 158134.	8.0	12
65	The influence mechanism of hydrogeochemical environment and sulfur and nitrogen cycle on arsenic enrichment in groundwater: A case study of Hasuhai basin, China. Science of the Total Environment, 2023, 858, 160013.	8.0	4
66	Impact of Pressure on Arsenic Released from Pore Water in Clayey Sediment. Toxics, 2022, 10, 738.	3.7	0
67	Fluvial Deposition and Land Use Change Control Selenium Occurrence in Mollisols of Cold Region Agroecosystems. Environmental Science & Technology, 2023, 57, 751-760.	10.0	3
69	Loss of Selenium from Mollisol Paddy Wetlands of Cold Regions: Insights from Flow-through Reactor Experiments and Process-Based Modeling. Environmental Science & Technology, 2023, 57, 6228-6237.	10.0	3
70	Sources and enrichment processes of groundwater arsenite and arsenate in fissured bedrock aquifers in the Xunhua-Hualong basin, China. Applied Geochemistry, 2023, 155, 105708.	3.0	0
71	Release of arsenic during riverbank filtration under anoxic conditions linked to grain size of riverbed sediments. Science of the Total Environment, 2023, 900, 165858.	8.0	1
72	Adsorption-desorption characteristics of typical heavy metal pollutants in submerged zone sediments: a case study of the Jialu section in Zhengzhou, China. Environmental Science and Pollution Research, 2023, 30, 96055-96074.	5.3	2
73	Role of marine algal blooms in the release of arsenic at the sediment-seawater interface: Evidence from microcosm experiments. Water Research, 2023, 244, 120508.	11.3	0
74	Understanding spatial heterogeneity of groundwater arsenic concentrations at a field scale: Taking the Datong Basin as an example to explore the significance of hydrogeological factors. Journal of Environmental Management, 2024, 352, 120112.	7.8	0