Genetic Convergence in the Adaptation of Dogs and Hu Environment of the Tibetan Plateau

Genome Biology and Evolution 6, 2122-2128 DOI: 10.1093/gbe/evu162

Citation Report

#	Article	IF	CITATIONS
1	Sightings <i>edited by Erik Swenson and Peter Bätsch</i> . High Altitude Medicine and Biology, 2014, 15, 430-433.	0.9	0
2	Advances and limits of using population genetics to understand local adaptation. Trends in Ecology and Evolution, 2014, 29, 673-680.	8.7	329
3	Genetic adaptations of the plateau zokor in high-elevation burrows. Scientific Reports, 2015, 5, 17262.	3.3	48
4	Archaic inheritance: supporting high-altitude life in Tibet. Journal of Applied Physiology, 2015, 119, 1129-1134.	2.5	31
5	DoGSD: the dog and wolf genome SNP database. Nucleic Acids Research, 2015, 43, D777-D783.	14.5	76
6	A Positive Correlation between Elevated Altitude and Frequency of Mutant Alleles at the EPAS1 and HBB Loci in Chinese Indigenous Dogs. Journal of Genetics and Genomics, 2015, 42, 173-177.	3.9	9
7	Comparative transcriptomic analysis revealed adaptation mechanism of Phrynocephalus erythrurus, the highest altitude Lizard living in the Qinghai-Tibet Plateau. BMC Evolutionary Biology, 2015, 15, 101.	3.2	50
8	Evidence for Adaptation to the Tibetan Plateau Inferred from Tibetan Loach Transcriptomes. Genome Biology and Evolution, 2015, 7, 2970-2982.	2.5	70
9	Altitude Adaptation: A Glimpse Through Various Lenses. High Altitude Medicine and Biology, 2015, 16, 125-137.	0.9	121
10	Genome-wide analysis reveals signatures of selection for important traits in domestic sheep from different ecoregions. BMC Genomics, 2016, 17, 863.	2.8	67
11	Genomic analysis of snub-nosed monkeys (Rhinopithecus) identifies genes and processes related to high-altitude adaptation. Nature Genetics, 2016, 48, 947-952.	21.4	109
12	Genomewide scan for adaptive differentiation along altitudinal gradient in the Andrew's toad <i>Bufo andrewsi</i> . Molecular Ecology, 2016, 25, 3884-3900.	3.9	38
13	Time Domains of the Hypoxic Ventilatory Response and Their Molecular Basis. , 2016, 6, 1345-1385.		97
14	Whole-genome resequencing of Xishuangbanna fighting chicken to identify signatures of selection. Genetics Selection Evolution, 2016, 48, 62.	3.0	36
15	Genomic analysis identified a potential novel molecular mechanism for high-altitude adaptation in sheep at the Himalayas. Scientific Reports, 2016, 6, 29963.	3.3	36
16	Genomic Analysis Reveals Hypoxia Adaptation in the Tibetan Mastiff by Introgression of the Grey Wolf from the Tibetan Plateau. Molecular Biology and Evolution, 2017, 34, msw274.	8.9	75
17	Genetic signals of high-altitude adaptation in amphibians: a comparative transcriptome analysis. BMC Genetics, 2016, 17, 134.	2.7	21
18	Identifying molecular signatures of hypoxia adaptation from sex chromosomes: A case for Tibetan Mastiff based on analyses of X chromosome. Scientific Reports, 2016, 6, 35004.	3.3	12

#	Article	IF	CITATIONS
19	Positive Darwinian selection within interferon regulatory factor genes of Gymnocypris przewalskii (Cyprinidae) on the Tibetan Plateau. Fish and Shellfish Immunology, 2016, 50, 34-42.	3.6	8
20	Exome sequencing reveals genetic differentiation due to high-altitude adaptation in the Tibetan cashmere goat (Capra hircus). BMC Genomics, 2016, 17, 122.	2.8	87
21	Population transcriptomes reveal synergistic responses of <scp>DNA</scp> polymorphism and <scp>RNA</scp> expression to extreme environments on the Qinghai–Tibetan Plateau in a predatory bird. Molecular Ecology, 2017, 26, 2993-3010.	3.9	39
22	Comprehensive transcriptomic analysis of Tibetan Schizothoracinae fish Gymnocypris przewalskii reveals how it adapts to a high altitude aquatic life. BMC Evolutionary Biology, 2017, 17, 74.	3.2	47
23	Genetic signatures of high-altitude adaptation in Tibetans. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4189-4194.	7.1	181
24	High-altitude adaptation in humans: from genomics to integrative physiology. Journal of Molecular Medicine, 2017, 95, 1269-1282.	3.9	76
25	Demographic history, selection and functional diversity of the canine genome. Nature Reviews Genetics, 2017, 18, 705-720.	16.3	125
26	Dissecting evolution and disease using comparative vertebrate genomics. Nature Reviews Genetics, 2017, 18, 624-636.	16.3	46
27	The companion dog as a unique translational model for aging. Seminars in Cell and Developmental Biology, 2017, 70, 141-153.	5.0	42
28	Comparative transcriptomic analysis of Tibetan Gynaephora to explore the genetic basis of insect adaptation to divergent altitude environments. Scientific Reports, 2017, 7, 16972.	3.3	15
29	Genomic signature of highland adaptation in fish: a case study in Tibetan Schizothoracinae species. BMC Genomics, 2017, 18, 948.	2.8	26
30	Hypoxia Inducible Factor (HIF) transcription factor family expansion, diversification, divergence and selection in eukaryotes. PLoS ONE, 2017, 12, e0179545.	2.5	75
31	Evidence of high-altitude adaptation in the glyptosternoid fish, Creteuchiloglanis macropterus from the Nujiang River obtained through transcriptome analysis. BMC Evolutionary Biology, 2017, 17, 229.	3.2	33
32	Migration-Selection Balance Drives Genetic Differentiation in Genes Associated with High-Altitude Function in the Speckled Teal (Anas flavirostris) in the Andes. Genome Biology and Evolution, 2018, 10, 14-32.	2.5	18
34	Whole-Genome Sequencing of African Dogs Provides Insights into Adaptations against Tropical Parasites. Molecular Biology and Evolution, 2018, 35, 287-298.	8.9	41
36	Sequence Characterization of DSG3 Gene to Know Its Role in High-Altitude Hypoxia Adaptation in the Chinese Cashmere Goat. Frontiers in Genetics, 2018, 9, 553.	2.3	10
37	Whole-genome sequencing reveals selection signatures associated with important traits in six goat breeds. Scientific Reports, 2018, 8, 10405.	3.3	93
38	Structural variation during dog domestication: insights from gray wolf and dhole genomes. National Science Review, 2019, 6, 110-122.	9.5	30

CITATION REPORT

#	Article	IF	CITATIONS
39	EPAS1 Gain-of-Function Mutation Contributes to High-Altitude Adaptation in Tibetan Horses. Molecular Biology and Evolution, 2019, 36, 2591-2603.	8.9	80
40	Parallel Molecular Evolution in Pathways, Genes, and Sites in High-Elevation Hummingbirds Revealed by Comparative Transcriptomics. Genome Biology and Evolution, 2019, 11, 1573-1585.	2.5	49
41	Comparative analysis of peripheral blood reveals transcriptomic adaptations to extreme environments on the Qinghai-Tibetan Plateau in the gray wolf (Canis lupus chanco). Organisms Diversity and Evolution, 2019, 19, 543-556.	1.6	5
42	Divergent Fine-Scale Recombination Landscapes between a Freshwater and Marine Population of Threespine Stickleback Fish. Genome Biology and Evolution, 2019, 11, 1552-1572.	2.5	44
43	Dog10K: an international sequencing effort to advance studies of canine domestication, phenotypes and health. National Science Review, 2019, 6, 810-824.	9.5	65
44	Chromosomeâ€level genome assembly of <i>Triplophysa tibetana</i> , a fish adapted to the harsh highâ€altitude environment of the Tibetan Plateau. Molecular Ecology Resources, 2019, 19, 1027-1036.	4.8	39
45	Identification of Candidate Genes for the Plateau Adaptation of a Tibetan Amphipod, Gammarus lacustris, Through Integration of Genome and Transcriptome Sequencing. Frontiers in Genetics, 2019, 10, 53.	2.3	14
46	Comparative genome analyses reveal the unique genetic composition and selection signals underlying the phenotypic characteristics of three Chinese domestic goat breeds. Genetics Selection Evolution, 2019, 51, 70.	3.0	26
47	Genetic Diversity and Signatures of Selection in 15 Chinese Indigenous Dog Breeds Revealed by Genome-Wide SNPs. Frontiers in Genetics, 2019, 10, 1174.	2.3	12
48	The Genome Landscape of Tibetan Sheep Reveals Adaptive Introgression from Argali and the History of Early Human Settlements on the Qinghai–Tibetan Plateau. Molecular Biology and Evolution, 2019, 36, 283-303.	8.9	84
49	Whole-Genome Sequencing of Three Native Cattle Breeds Originating From the Northernmost Cattle Farming Regions. Frontiers in Genetics, 2018, 9, 728.	2.3	57
50	Convergent evolution on the hypoxia-inducible factor (HIF) pathway genes EGLN1 and EPAS1 in high-altitude ducks. Heredity, 2019, 122, 819-832.	2.6	52
51	Convergent genomic signatures of high-altitude adaptation among domestic mammals. National Science Review, 2020, 7, 952-963.	9.5	52
52	Accelerated evolution and positive selection of rhodopsin in Tibetan loaches living in high altitude. International Journal of Biological Macromolecules, 2020, 165, 2598-2606.	7.5	3
53	Molecular characterization of the ACSS2 gene involved inÂadaptation to hypoxia in high-altitude cattle breeds. Animal Biology, 2020, 71, 49-66.	1.0	1
54	Cross-Species Insights Into Genomic Adaptations to Hypoxia. Frontiers in Genetics, 2020, 11, 743.	2.3	48
55	Comparative microRNA Transcriptomes in Domestic Goats Reveal Acclimatization to High Altitude. Frontiers in Genetics, 2020, 11, 809.	2.3	12
56	Goat Genomic Resources: The Search for Genes Associated with Its Economic Traits. International Journal of Genomics, 2020, 2020, 1-13.	1.6	20

#	Article	IF	CITATIONS
57	The Domestication Makeup: Evolution, Survival, and Challenges. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	29
58	Selection signatures for highâ€altitude adaptation in ruminants. Animal Genetics, 2020, 51, 157-165.	1.7	34
59	The Genomics and Genetics of Oxygen Homeostasis. Annual Review of Genomics and Human Genetics, 2020, 21, 183-204.	6.2	71
60	Genomes reveal selective sweeps in kiang and donkey for high-altitude adaptation. Zoological Research, 2021, 42, 450-460.	2.1	9
61	Population Genomics of High-Altitude Adaptation. Evolutionary Studies, 2021, , 67-100.	0.1	0
62	<i>>FGF5</i> and <i>EPAS1</i> gene polymorphisms are associated with highâ€altitude adaptation in Nepalese goat breeds. Animal Science Journal, 2021, 92, e13640.	1.4	4
63	Genome and population evolution and environmental adaptation of <i>Glyptosternon maculatum</i> on the Qinghai-Tibet Plateau. Zoological Research, 2021, 42, 502-513.	2.1	7
64	Genome-wide comparative analyses reveal selection signatures underlying adaptation and production in Tibetan and Poll Dorset sheep. Scientific Reports, 2021, 11, 2466.	3.3	15
65	Pervasive Genomic Signatures of Local Adaptation to Altitude Across Highland Specialist Andean Hummingbird Populations. Journal of Heredity, 2021, 112, 229-240.	2.4	10
66	Adaptive introgression of the beta-globin cluster in two Andean waterfowl. Heredity, 2021, 127, 107-123.	2.6	2
67	Using seasonal genomic changes to understand historical adaptation to new environments: Parallel selection on stickleback in highlyâ€variable estuaries. Molecular Ecology, 2021, 30, 2054-2064.	3.9	20
68	Application of a novel haplotype-based scan for local adaptation to study high-altitude adaptation in rhesus macaques. Evolution Letters, 2021, 5, 408-421.	3.3	35
69	Introgressive Hybridization and Hypoxia Adaptation in High-Altitude Vertebrates. Frontiers in Genetics, 2021, 12, 696484.	2.3	3
70	Whole-Genome Sequencing Reveals Lactase Persistence Adaptation in European Dogs. Molecular Biology and Evolution, 2021, 38, 4884-4890.	8.9	7
71	Genomic analysis of field pennycress (Thlaspi arvense) provides insights into mechanisms of adaptation to high elevation. BMC Biology, 2021, 19, 143.	3.8	23
72	Hb adaptation to hypoxia in high-altitude fishes: Fresh evidence from schizothoracinae fishes in the Qinghai-Tibetan Plateau. International Journal of Biological Macromolecules, 2021, 185, 471-484.	7.5	8
73	Recent progress in research on the gut microbiota and highland adaptation on the Qinghaiâ€Tibet Plateau. Journal of Evolutionary Biology, 2021, 34, 1514-1530.	1.7	20
74	<i>Aconiti lateralis Radix Praeparata</i> inhibits Alzheimer's disease by regulating the complex regulation network with the core of <i>GRIN1</i> and <i>MAPK1</i> . Pharmaceutical Biology, 2021, 59, 309-318.	2.9	6

CITATION REPORT

#	Article	IF	Citations
77	A non-synonymous SNP with the allele frequency correlated with the altitude may contribute to the hypoxia adaptation of Tibetan chicken. PLoS ONE, 2017, 12, e0172211.	2.5	10
78	Deciphering the puzzles of dog domestication. Zoological Research, 2020, 41, 97-104.	2.1	13
79	Evidence of Echolocation in the Common Shrew from Molecular Convergence with Other Echolocating Mammals. Zoological Studies, 2020, 59, e4.	0.3	3
80	Genome methylation and regulatory functions for hypoxic adaptation in Tibetan chicken embryos. PeerJ, 2017, 5, e3891.	2.0	17
85	Longâ€distance migration is a major factor driving local adaptation at continental scale in Coho salmon. Molecular Ecology, 2023, 32, 542-559.	3.9	14
86	Comparing wolves and dogs: current status and implications for human â€~self-domestication'. Trends in Cognitive Sciences, 2022, 26, 337-349.	7.8	37
87	Comparative genomic analysis of high-altitude adaptation for Mongolia Mastiff, Tibetan Mastiff, and Canis Lupus. Genomics, 2022, , 110359.	2.9	0
128	A highland-adaptation mutation of the Epas1 protein increases its stability and disrupts the circadian clock in the plateau pika. Cell Reports, 2022, 39, 110816.	6.4	8
129	Evolutionary Conservation Genomics Reveals Recent Speciation and Local Adaptation in Threatened Takins. Molecular Biology and Evolution, 2022, 39, .	8.9	7
130	Whole-Genome Analysis Deciphers Population Structure and Genetic Introgression Among Bovine Species. Frontiers in Genetics, 0, 13, .	2.3	0
131	Chromosome-level Genome Assembly of the High-altitude Leopard (<i>Panthera pardus</i>) Sheds Light on Its Environmental Adaptation. Genome Biology and Evolution, 0, , .	2.5	1
132	Time Domains of Hypoxia Responses and -Omics Insights. Frontiers in Physiology, 0, 13, .	2.8	10
134	The Socio-Ecology of Free-Ranging Dogs. Fascinating Life Sciences, 2022, , 83-110.	0.9	2
135	Gene essentiality and variability: What is the link? A within―and betweenâ€species perspective. BioEssays, 0, , 2200132.	2.5	1
137	Genomic differentiation with isolation by distance along a latitudinal gradient in the spottedâ€leg treefrog <i>Polypedates megacephalus</i> . Integrative Zoology, 2023, 18, 569-580.	2.6	0
138	Convergent Genomic Signatures of High-Altitude Adaptation among Six Independently Evolved Mammals. Animals, 2022, 12, 3572.	2.3	1
139	Comparative Analysis of Metabolites between Different Altitude Schizothorax nukiangensis (Cyprinidae, Schizothoracine) on the Qinghai-Tibet Plateau in Nujiang River. Water (Switzerland), 2023, 15, 284.	2.7	1
140	North African fox genomes show signatures of repeated introgression and adaptation to life in deserts. Nature Ecology and Evolution, 2023, 7, 1267-1286.	7.8	8

CITATION REPORT

		CITATION RE	EPORT	
#	Article		IF	Citations
141	Being a Dog: A Review of the Domestication Process. Genes, 2023, 14, 992.		2.4	2
143	Genetic and cultural adaptations underlie the establishment of dairy pastoralism in the Plateau. BMC Biology, 2023, 21, .	Tibetan	3.8	1
144	Deletion of prolyl hydroxylase domain-containing enzyme 3 (phd3) in zebrafish facilita tolerance. Journal of Biological Chemistry, 2023, 299, 105420.	tes hypoxia	3.4	1
145	Convergent evolution of the environmental adaptability of highâ€elevation population bugs. Journal of Biogeography, 2024, 51, 356-367.	s of waistâ€shaped	3.0	Ο
146	Hypoxia Inducible Factor pathway proteins in high-altitude mammals. Trends in Bioche 2023, , .	mical Sciences,	7.5	0