Mechanotransduction and extracellular matrix homeos

Nature Reviews Molecular Cell Biology 15, 802-812

DOI: 10.1038/nrm3896

Citation Report

#	Article	IF	CITATIONS
1	Extracellular matrix assembly: a multiscale deconstruction. Nature Reviews Molecular Cell Biology, 2014, 15, 771-785.	16.1	1,061
2	Stretching the boundaries of extracellular matrix research. Nature Reviews Molecular Cell Biology, 2014, 15, 761-763.	16.1	91
3	The effect of acute and long-term physical activity on extracellular matrix and serglycin in human skeletal muscle. Physiological Reports, 2015, 3, e12473.	0.7	49
4	Hybrid Microgels with Thermoâ€Tunable Elasticity for Controllable Cell Confinement. Advanced Healthcare Materials, 2015, 4, 1841-1848.	3.9	32
5	Convergent Science Physical Oncology. Convergent Science Physical Oncology, 2015, 1, 010201.	2.6	0
6	Airway and Extracellular Matrix Mechanics in COPD. Frontiers in Physiology, 2015, 6, 346.	1.3	53
7	Molecular Mechanoneurobiology: An Emerging Angle to Explore Neural Synaptic Functions. BioMed Research International, 2015, 2015, 1-13.	0.9	10
8	Multiscale mechanobiology: computational models for integrating molecules to multicellular systems. Integrative Biology (United Kingdom), 2015, 7, 1093-1108.	0.6	33
9	Hepatocyte fate upon TGF- \hat{l}^2 challenge is determined by the matrix environment. Differentiation, 2015, 89, 105-116.	1.0	10
10	Severe Extracellular Matrix Abnormalities and Chondrodysplasia in Mice Lacking Collagen Prolyl 4-Hydroxylase Isoenzyme II in Combination with a Reduced Amount of Isoenzyme I. Journal of Biological Chemistry, 2015, 290, 16964-16978.	1.6	43
11	Non-muscle myosin II in disease: mechanisms and therapeutic opportunities. DMM Disease Models and Mechanisms, 2015, 8, 1495-515.	1.2	107
12	Lamins at the crossroads of mechanosignaling. Genes and Development, 2015, 29, 225-237.	2.7	202
13	Tendon injury: from biology to tendon repair. Nature Reviews Rheumatology, 2015, 11, 223-233.	3.5	335
14	The absence of the embryo in the pseudopregnant uterus alters the deposition of some ECM molecules during decidualization in mice. Connective Tissue Research, 2015, 56, 253-263.	1.1	4
15	The central role of muscle stem cells in regenerative failure with aging. Nature Medicine, 2015, 21, 854-862.	15.2	340
16	Mechanotransduction in neutrophil activation and deactivation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 3105-3116.	1.9	44
17	Molecular control of stress transmission in the microtubule cytoskeleton. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 3015-3024.	1.9	21
18	Cell-stiffness-induced mechanosignaling – a key driver of leukocyte transendothelial migration. Journal of Cell Science, 2015, 128, 2221-2230.	1.2	92

#	Article	IF	CITATIONS
19	Inelastic mechanics: A unifying principle in biomechanics. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 3025-3037.	1.9	24
20	Age-Associated Increase in Skin Fibroblast–Derived Prostaglandin E 2 Contributes to Reduced Collagen Levels in Elderly Human Skin. Journal of Investigative Dermatology, 2015, 135, 2181-2188.	0.3	51
21	Nuclear F-actin Formation and Reorganization upon Cell Spreading. Journal of Biological Chemistry, 2015, 290, 11209-11216.	1.6	204
22	Creation and implantation of acellular rat renal ECM-based scaffolds. Organogenesis, 2015, 11, 58-74.	0.4	40
23	In vivo quantitative analysis of Talin turnover in response to force. Molecular Biology of the Cell, 2015, 26, 4149-4162.	0.9	21
24	Genetic analysis of the contribution of LTBP-3 to thoracic aneurysm in Marfan syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14012-14017.	3 . 3	47
25	Endosomal integrin signals for survival. Nature Cell Biology, 2015, 17, 1373-1375.	4.6	7
26	Connections between cadherin-catenin proteins, spindle misorientation, and cancer. Tissue Barriers, 2015, 3, e1045684.	1.6	6
27	Cell shapes and patterns as quantitative indicators of tissue stress in the plant epidermis. Soft Matter, 2015, 11, 7270-7275.	1.2	20
28	Microgravity influences circadian clock oscillation in human keratinocytes. FEBS Open Bio, 2015, 5, 717-723.	1.0	18
29	Geometric guidance of integrin mediated traction stress during stem cell differentiation. Biomaterials, 2015, 69, 174-183.	5.7	65
30	Cancer cell migration in 3D tissue: Negotiating space by proteolysis and nuclear deformability. Cell Adhesion and Migration, 2015, 9, 357-366.	1.1	69
31	Endogenous signalling control of cell adhesion by using aptamer functionalized biocompatible hydrogel. Chemical Science, 2015, 6, 6762-6768.	3.7	29
32	Mechanosensitive activation of CFTR by increased cell volume and hydrostatic pressure but not shear stress. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2942-2951.	1.4	18
33	The extracellular matrix and transforming growth factor- \hat{l}^21 : Tale of a strained relationship. Matrix Biology, 2015, 47, 54-65.	1.5	453
34	Filopodia in cell adhesion, 3D migration and cancer cell invasion. Current Opinion in Cell Biology, 2015, 36, 23-31.	2.6	419
35	Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions. Nature Communications, 2015, 6, 8720.	5.8	374
36	Patterning Biomaterials for the Spatiotemporal Delivery of Bioactive Molecules. Frontiers in Bioengineering and Biotechnology, 2016, 4, 45.	2.0	16

#	ARTICLE	IF	CITATIONS
37	Temporal Modulation of Stem Cell Activity Using Magnetoactive Hydrogels. Advanced Healthcare Materials, 2016, 5, 2536-2544.	3.9	73
38	Local dynamic mechanical analysis for heterogeneous soft matter using ferrule-top indentation. Soft Matter, 2016, 12, 3066-3073.	1.2	45
39	YAP and ERK mediated mechanical strainâ€induced cell cycle progression through RhoA and cytoskeletal dynamics in rat growth plate chondrocytes. Journal of Orthopaedic Research, 2016, 34, 1121-1129.	1.2	23
40	<i>Gtf2ird1</i> -Dependent <i>Mohawk</i> Expression Regulates Mechanosensing Properties of the Tendon. Molecular and Cellular Biology, 2016, 36, 1297-1309.	1.1	42
41	Netrinâ€1 Regulates Fibrocyte Accumulation in the Decellularized Fibrotic Sclerodermatous Lung Microenvironment and in Bleomycinâ€Induced Pulmonary Fibrosis. Arthritis and Rheumatology, 2016, 68, 1251-1261.	2.9	51
42	Regulatory Roles of Fluctuation-Driven Mechanotransduction in Cell Function. Physiology, 2016, 31, 346-358.	1.6	21
43	Coupling cellular phenotype and mechanics to understand extracellular matrix formation and homeostasis in osteoarthritis * *financial support through BMBF project OVERLOAD-PrevOp, grant number 01EC1408H is acknowledged IFAC-PapersOnLine, 2016, 49, 38-43.	0.5	5
44	Thermodynamically constrained averaging theory for cancer growth modelling * *Horizon 2020 MSCA grant agreement No 642295 www.melplex.eu. IFAC-PapersOnLine, 2016, 49, 289-294.	0.5	1
45	Static and dynamic stress heterogeneity in a multiscale model of the asthmatic airway wall. Journal of Applied Physiology, 2016, 121, 233-247.	1,2	11
46	Lung Fibroblasts, Aging, and Idiopathic Pulmonary Fibrosis. Annals of the American Thoracic Society, 2016, 13, S417-S421.	1.5	148
47	Homeostatic maintenance via degradation and repair of elastic fibers under tension. Scientific Reports, 2016, 6, 27474.	1.6	10
48	A homogenized constrained mixture (and mechanical analog) model for growth and remodeling of soft tissue. Biomechanics and Modeling in Mechanobiology, 2016, 15, 1389-1403.	1.4	103
49	EPAC1 promotes adaptive responses in human arterial endothelial cells subjected to low levels of laminar fluid shear stress: Implications in flow-related endothelial dysfunction. Cellular Signalling, 2016, 28, 606-619.	1.7	8
50	Loss of elastic fiber integrity compromises common carotid artery function: Implications for vascular aging. Artery Research, 2016, 14, 41.	0.3	28
51	Overview and Translational Impact of Space Cell Biology Research. , 2016, , 3-37.		0
52	Methodologies in creating skin substitutes. Cellular and Molecular Life Sciences, 2016, 73, 3453-3472.	2.4	88
53	Gradual conversion of cellular stress patterns into pre-stressed matrix architecture during <i>in vitro</i> tissue growth. Journal of the Royal Society Interface, 2016, 13, 20160136.	1.5	37
54	Current Understanding of the Pathways Involved in Adult Stem and Progenitor Cell Migration for Tissue Homeostasis and Repair. Stem Cell Reviews and Reports, 2016, 12, 421-437.	5.6	27

#	Article	IF	Citations
55	Independent Control of Topography for 3D Patterning of the ECM Microenvironment. Advanced Materials, 2016, 28, 132-137.	11.1	83
56	Cell–matrix interaction during strain-dependent remodelling of simulated collagen networks. Interface Focus, 2016, 6, 20150069.	1.5	19
57	Mechanical signals regulate and activate SNAIL1 protein to control the fibrogenic response of CAFs. Journal of Cell Science, 2016, 129, 1989-2002.	1.2	57
58	Mechanics of Microenvironment as Instructive Cues Guiding Stem Cell Behavior. Current Stem Cell Reports, 2016, 2, 62-72.	0.7	10
59	Capturing extracellular matrix properties inÂvitro: Microengineering materials to decipher cell and tissue level processes. Experimental Biology and Medicine, 2016, 241, 930-938.	1.1	25
60	Single cell rigidity sensing: A complex relationship between focal adhesion dynamics and large-scale actin cytoskeleton remodeling. Cell Adhesion and Migration, 2016, 10, 554-567.	1.1	47
61	Talin tension sensor reveals novel features of focal adhesion force transmission and mechanosensitivity. Journal of Cell Biology, 2016, 213, 371-383.	2.3	205
62	The third dimension: new developments in cell culture models for colorectal research. Cellular and Molecular Life Sciences, 2016, 73, 3971-3989.	2.4	40
63	<i>InÂvitro</i> selection technologies to enhance biomaterial functionality. Experimental Biology and Medicine, 2016, 241, 962-971.	1.1	5
64	Molecular Mechanisms of Stress-Responsive Changes in Collagen and Elastin Networks in Skin. Skin Pharmacology and Physiology, 2016, 29, 190-203.	1.1	4,815
65	Effect of Changing the Joint Kinematics of Knees With a Ruptured Anterior Cruciate Ligament on the Molecular Biological Responses and Spontaneous Healing in a Rat Model. American Journal of Sports Medicine, 2016, 44, 2900-2910.	1.9	25
66	An Efficient, Recyclable, and Stable Immobilized Biocatalyst Based on Bioinspired Microcapsules-in-Hydrogel Scaffolds. ACS Applied Materials & Samp; Interfaces, 2016, 8, 25152-25161.	4.0	19
67	New evidence of a dynamic fascial maintenance and self-repair process. Journal of Bodywork and Movement Therapies, 2016, 20, 701-703.	0.5	4
68	Measuring cellular traction forces on non-planar substrates. Interface Focus, 2016, 6, 20160024.	1.5	19
69	TGFÎ ² and FGF promote tendon progenitor fate and act downstream of muscle contraction to regulate tendon differentiation during chick limb development. Development (Cambridge), 2016, 143, 3839-3851.	1.2	106
70	Elastic, silk-cardiac extracellular matrix hydrogels exhibit time-dependent stiffening that modulates cardiac fibroblast response. Journal of Biomedical Materials Research - Part A, 2016, 104, 3058-3072.	2.1	48
71	YAP and TAZ in epithelial stem cells: A sensor for cell polarity, mechanical forces and tissue damage. BioEssays, 2016, 38, 644-653.	1,2	81
72	Extracellular Matrix Regulation of Stem Cell Behavior. Current Stem Cell Reports, 2016, 2, 197-206.	0.7	166

#	Article	IF	Citations
73	Cell sheet mechanics: How geometrical constraints induce the detachment of cell sheets from concave surfaces. Acta Biomaterialia, 2016, 45, 85-97.	4.1	38
74	Small Artery Elastin Distribution and Architecture—Focus on Three Dimensional Organization. Microcirculation, 2016, 23, 614-620.	1.0	14
75	How cells respond to environmental cues – insights from bio-functionalized substrates. Journal of Cell Science, 2017, 130, 51-61.	1.2	93
76	Reduction of fibroblast size/mechanical force downâ€regulates <scp>TGF</scp> â€Î² type <scp>II</scp> receptor: implications for human skin aging. Aging Cell, 2016, 15, 67-76.	3.0	84
77	Approximating bone ECM: Crosslinking directs individual and coupled osteoblast/osteoclast behavior. Biomaterials, 2016, 103, 22-32.	5.7	28
78	Geometric control and modeling of genome reprogramming. Bioarchitecture, 2016, 6, 76-84.	1.5	15
79	Filamin A regulates the organization and remodeling of the pericellular collagen matrix. FASEB Journal, 2016, 30, 3613-3627.	0.2	17
80	Internal strain drives spontaneous periodic buckling in collagen and regulates remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8436-8441.	3.3	46
82	Linearized texture of three-dimensional extracellular matrix is mandatory for bladder cancer cell invasion. Scientific Reports, 2016, 6, 36128.	1.6	19
83	The 2016 John J. Abel Award Lecture: Targeting the Mechanical Microenvironment in Cancer. Molecular Pharmacology, 2016, 90, 744-754.	1.0	14
84	Confocal reference free traction force microscopy. Nature Communications, 2016, 7, 12814.	5.8	109
85	Heterogeneous force network in 3D cellularized collagen networks. Physical Biology, 2016, 13, 066001.	0.8	49
86	RhoA determines lineage fate of mesenchymal stem cells by modulating CTGF–VEGF complex in extracellular matrix. Nature Communications, 2016, 7, 11455.	5.8	61
87	Actomyosin-dependent dynamic spatial patterns of cytoskeletal components drive mesoscale podosome organization. Nature Communications, 2016, 7, 13127.	5.8	57
88	Influence of micro-scale substrate curvature on subcellular behaviors of vascular cells., 2016,,.		2
89	Regulation of Epithelial-to-Mesenchymal Transition Using Biomimetic Fibrous Scaffolds. ACS Applied Materials & Samp; Interfaces, 2016, 8, 17915-17926.	4.0	21
90	Chemokine Signaling Enhances CD36 Responsiveness toward Oxidized Low-Density Lipoproteins and Accelerates Foam Cell Formation. Cell Reports, 2016, 14, 2859-2871.	2.9	26
91	α-Actinin links extracellular matrix rigidity-sensing contractile units with periodic cell-edge retractions. Molecular Biology of the Cell, 2016, 27, 3471-3479.	0.9	68

#	Article	IF	CITATIONS
92	Extracellular matrix components supporting human islet function in alginateâ€based immunoprotective microcapsules for treatment of diabetes. Journal of Biomedical Materials Research - Part A, 2016, 104, 1788-1796.	2.1	106
93	Structural ECM components in the premetastatic and metastatic niche. American Journal of Physiology - Cell Physiology, 2016, 310, C955-C967.	2.1	92
94	Contribution of collagen adhesion receptors to tissue fibrosis. Cell and Tissue Research, 2016, 365, 521-538.	1.5	55
95	Integrin-mediated regulation of epidermal wound functions. Cell and Tissue Research, 2016, 365, 467-482.	1.5	59
96	The interplay of extracellular matrix and microbiome in urothelial bladder cancer. Nature Reviews Urology, 2016, 13, 77-90.	1.9	89
97	A computational analysis of cell-mediated compaction and collagen remodeling in tissue-engineered heart valves. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 58, 173-187.	1.5	55
98	Regulation of invadopodia by mechanical signaling. Experimental Cell Research, 2016, 343, 89-95.	1.2	61
99	Titin-Based Nanoparticle Tension Sensors Map High-Magnitude Integrin Forces within Focal Adhesions. Nano Letters, 2016, 16, 341-348.	4.5	79
100	Integrin signalling regulates YAP/TAZ to control skin homeostasis. Development (Cambridge), 2016, 143, 1674-87.	1.2	228
101	Excessive Adventitial Remodeling Leads to Early Aortic Maladaptation in Angiotensin-Induced Hypertension. Hypertension, 2016, 67, 890-896.	1.3	93
102	Mechanotransduction through substrates engineering and microfluidic devices. Current Opinion in Chemical Engineering, 2016, 11, 67-76.	3.8	13
103	Central Artery Stiffness in Hypertension and Aging. Circulation Research, 2016, 118, 379-381.	2.0	137
104	Modeling cell shape and dynamics on micropatterns. Cell Adhesion and Migration, 2016, 10, 516-528.	1.1	43
105	Molecular insights into the premature aging disease progeria. Histochemistry and Cell Biology, 2016, 145, 401-417.	0.8	94
106	Directing immunomodulation using biomaterials for endogenous regeneration. Journal of Materials Chemistry B, 2016, 4, 569-584.	2.9	44
107	Chronic inflammation imposes aberrant cell fate in regenerating epithelia through mechanotransduction. Nature Cell Biology, 2016, 18, 168-180.	4.6	127
108	Understanding Mechanobiology: Physical Therapists as a Force in Mechanotherapy and Musculoskeletal Regenerative Rehabilitation. Physical Therapy, 2016, 96, 560-569.	1.1	72
109	Activation of integrin $\hat{l}\pm 5$ mediated by flow requires its translocation to membrane lipid rafts in vascular endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 769-774.	3.3	85

#	Article	IF	CITATIONS
110	Material Cues as Potent Regulators of Epigenetics and Stem Cell Function. Cell Stem Cell, 2016, 18, 39-52.	5.2	222
111	Mechanobiology of cell migration in the context of dynamic two-way cell–matrix interactions. Journal of Biomechanics, 2016, 49, 1355-1368.	0.9	42
112	Age-dependent changes of stress and strain in the human heart valve and their relation with collagen remodeling. Acta Biomaterialia, 2016, 29, 161-169.	4.1	47
113	Towards comprehensive cardiac repair and regeneration after myocardial infarction: Aspects to consider and proteins to deliver. Biomaterials, 2016, 82, 94-112.	5.7	64
114	Problems in biology with many scales of length: Cell–cell adhesion and cell jamming in collective cellular migration. Experimental Cell Research, 2016, 343, 54-59.	1.2	32
115	The many ways adherent cells respond to applied stretch. Journal of Biomechanics, 2016, 49, 1347-1354.	0.9	29
116	Hutchinson–Gilford progeria syndrome as a model for vascular aging. Biogerontology, 2016, 17, 129-145.	2.0	27
117	For whom the cells pull: Hydrogel and micropost devices for measuring traction forces. Methods, 2016, 94, 51-64.	1.9	61
118	Pushing, pulling, and squeezing our way to understanding mechanotransduction. Methods, 2016, 94, 4-12.	1.9	27
119	The extracellular matrix: Tools and insights for the "omics―era. Matrix Biology, 2016, 49, 10-24.	1.5	793
120	Advancing biomaterials of human origin for tissue engineering. Progress in Polymer Science, 2016, 53, 86-168.	11.8	817
121	The role of integrins in glaucoma. Experimental Eye Research, 2017, 158, 124-136.	1.2	50
122	Growth and remodeling of load-bearing biological soft tissues. Meccanica, 2017, 52, 645-664.	1.2	119
123	<scp>YAP</scp> is essential for 3D organogenesis withstanding gravity. Development Growth and Differentiation, 2017, 59, 52-58.	0.6	6
124	Aetiology and management of hereditary aortopathy. Nature Reviews Cardiology, 2017, 14, 197-208.	6.1	75
125	Vascular remodeling: A redox-modulated mechanism of vessel caliber regulation. Free Radical Biology and Medicine, 2017, 109, 11-21.	1.3	34
126	Gold nanoparticles for regulation of cell function and behavior. Nano Today, 2017, 13, 40-60.	6.2	86
127	Marrow-inspired matrix cues rapidly affect early fate decisions of hematopoietic stem and progenitor cells. Science Advances, 2017, 3, e1600455.	4.7	111

#	Article	IF	CITATIONS
128	Photopatterned Hydrogels to Investigate the Endothelial Cell Response to Matrix Stiffness Heterogeneity. ACS Biomaterials Science and Engineering, 2017, 3, 3007-3016.	2.6	41
129	Cellular mechano-environment regulates the mammary circadian clock. Nature Communications, 2017, 8, 14287.	5.8	81
130	Telocytes: Connective tissue repair and communication cells. Journal of Bodywork and Movement Therapies, 2017, 21, 231-233.	0.5	19
131	Cellular strain avoidance is mediated by a functional actin cap; observations in an LMNA-deficient cell model. Journal of Cell Science, 2017, 130, 779-790.	1.2	9
132	Force-Induced H ₂ S by PDLSCs Modifies Osteoclastic Activity during Tooth Movement. Journal of Dental Research, 2017, 96, 694-702.	2.5	47
133	Secreted CLIC3 drives cancer progression through its glutathione-dependent oxidoreductase activity. Nature Communications, 2017, 8, 14206.	5.8	81
134	Agrin as a Mechanotransduction Signal Regulating YAP through the Hippo Pathway. Cell Reports, 2017, 18, 2464-2479.	2.9	175
135	The coupled bio-chemo-electro-mechanical behavior of glucose exposed arterial elastin. Journal Physics D: Applied Physics, 2017, 50, 133001.	1.3	2
136	Fundamentals of protein and cell interactions in biomaterials. Biomedicine and Pharmacotherapy, 2017, 88, 956-970.	2.5	54
137	Mechanical compression induces VEGFA overexpression in breast cancer via DNMT3A-dependent miR-9 downregulation. Cell Death and Disease, 2017, 8, e2646-e2646.	2.7	56
138	Mapping cell behavior across a wide range of vertical silicon nanocolumn densities. Nanoscale, 2017, 9, 5517-5527.	2.8	39
139	Biotechnology and Production of Anti-Cancer Compounds. , 2017, , .		8
140	Imaging and modeling of acute pressure-induced changes of collagen and elastin microarchitectures in pig and human resistance arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H164-H178.	1.5	13
141	Biomechanical modeling the adaptation of soft biological tissue. Current Opinion in Biomedical Engineering, 2017, 1, 71-77.	1.8	14
142	Importance of endogenous extracellular matrix in biomechanical properties of human skin model. Biofabrication, 2017, 9, 025017.	3.7	17
143	A Bioreactor to Identify the Driving Mechanical Stimuli of Tissue Growth and Remodeling. Tissue Engineering - Part C: Methods, 2017, 23, 377-387.	1.1	14
144	Tenascin-C expression and its associated pathway in BMSCs following co-culture with mechanically stretched ligament fibroblasts. Molecular Medicine Reports, 2017, 15, 2465-2472.	1.1	5
145	Mechanical properties of films and three-dimensional scaffolds made of fibroin and gelatin. Biophysics (Russian Federation), 2017, 62, 17-23.	0.2	7

#	Article	IF	CITATIONS
146	Cell geometry dictates TNFα-induced genome response. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3882-E3891.	3.3	41
147	MSCs on an acellular dermal matrix (ADM) sourced from neonatal mouse skin regulate collagen reconstruction of granulation tissue during adult cutaneous wound healing. RSC Advances, 2017, 7, 22998-23010.	1.7	6
148	The association of <i>LAMB1</i> polymorphism and expression changes with the risk of coal workers' pneumoconiosis. Environmental Toxicology, 2017, 32, 2182-2190.	2.1	4
149	Hic-5 remodeling of the stromal matrix promotes breast tumor progression. Oncogene, 2017, 36, 2693-2703.	2.6	42
150	Atomic Force Microscopy in Characterizing Cell Mechanics for Biomedical Applications: A Review. IEEE Transactions on Nanobioscience, 2017, 16, 523-540.	2.2	88
151	Extracellular matrix characterization in plaques from carotid endarterectomy by a proteomics approach. Talanta, 2017, 174, 341-346.	2.9	4
152	Orientation and repositioning of chromosomes correlate with cell geometry–dependent gene expression. Molecular Biology of the Cell, 2017, 28, 1997-2009.	0.9	94
153	Steroid Hormones Are Key Modulators of Tissue Mechanical Function via Regulation of Collagen and Elastic Fibers. Endocrinology, 2017, 158, 950-962.	1.4	63
154	Talking over the extracellular matrix: How do cells communicate mechanically?. Seminars in Cell and Developmental Biology, 2017, 71, 99-105.	2.3	64
155	Biophysical Regulation of Cell Behaviorâ€"Cross Talk between Substrate Stiffness and Nanotopography. Engineering, 2017, 3, 36-54.	3.2	193
156	Cellular orientation is guided by strain gradients. Integrative Biology (United Kingdom), 2017, 9, 607-618.	0.6	27
157	Interfacing 3D magnetic twisting cytometry with confocal fluorescence microscopy to image force responses in living cells. Nature Protocols, 2017, 12, 1437-1450.	5.5	42
158	Extracorporeal shockwave: mechanisms of action and physiological aspects for cellulite, body shaping, and localized fatâ€"Systematic review. Journal of Cosmetic and Laser Therapy, 2017, 19, 314-319.	0.3	21
159	Autologous islet transplantation. Current Opinion in Organ Transplantation, 2017, 22, 364-371.	0.8	12
160	Review of cellular mechanotransduction. Journal Physics D: Applied Physics, 2017, 50, 233002.	1.3	104
161	Collagen Gels with Different Fibrillar Microarchitectures Elicit Different Cellular Responses. ACS Applied Materials & Different Cellular Responses. ACS Applied Materials & Different Fibrillar Microarchitectures Elicit Different Cellular Responses. ACS Applied Materials & Different Fibrillar Microarchitectures Elicit Different Cellular Responses. ACS Applied Materials & Different Fibrillar Microarchitectures Elicit Different Cellular Responses. ACS Applied Materials & Different Fibrillar Microarchitectures Elicit Different Cellular Responses. ACS Applied Materials & Different Fibrillar Microarchitectures Elicit Different Cellular Responses. ACS Applied Materials & Different Fibrillar Microarchitectures Elicit Different Cellular Responses. ACS Applied Materials & Different Fibrillar Microarchitectures Elicit Different Cellular Responses.	4.0	120
162	Multiscale force sensing in development. Nature Cell Biology, 2017, 19, 581-588.	4.6	185
163	Influencing Mechanism of Ocean Acidification on Byssus Performance in the Pearl Oyster <i>Pinctada fucata</i> . Environmental Science & Environmental S	4.6	33

#	ARTICLE	IF	CITATIONS
164	Rapid and Short-term Extracellular Matrix-mediated In Vitro Culturing of Tumor and Nontumor Human Primary Prostate Cells From Fresh Radical Prostatectomy Tissue. Urology, 2017, 105, 91-100.	0.5	4
165	Stiffness of Protease Sensitive and Cell Adhesive PEG Hydrogels Promotes Neovascularization In Vivo. Annals of Biomedical Engineering, 2017, 45, 1387-1398.	1.3	35
166	Paxillin genes and actomyosin contractility regulate myotome morphogenesis in zebrafish. Developmental Biology, 2017, 425, 70-84.	0.9	6
167	Dissection of mechanoresponse elements in promoter sites of the mechanoresponsive CYR61 gene. Experimental Cell Research, 2017, 354, 103-111.	1.2	7
168	Highâ€Throughput Screening of Vascular Endotheliumâ€Destructive or Protective Microenvironments: Cooperative Actions of Extracellular Matrix Composition, Stiffness, and Structure. Advanced Healthcare Materials, 2017, 6, 1601426.	3.9	20
169	Engineering a Cell Home for Stem Cell Homing and Accommodation. Advanced Biology, 2017, 1, e1700004.	3.0	31
170	New advances in probing cell–extracellular matrix interactions. Integrative Biology (United) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 502
171	Structural and Functional Differences Between Porcine Aorta and Vena Cava. Journal of Biomechanical Engineering, 2017, 139, .	0.6	16
172	AMPK negatively regulates tensin-dependent integrin activity. Journal of Cell Biology, 2017, 216, 1107-1121.	2.3	87
173	Injectable Polypeptide Hydrogel as Biomimetic Scaffolds with Tunable Bioactivity and Controllable Cell Adhesion. Biomacromolecules, 2017, 18, 1411-1418.	2.6	57
174	Comprehensive study on cellular morphologies, proliferation, motility, and epithelial–mesenchymal transition of breast cancer cells incubated on electrospun polymeric fiber substrates. Journal of Materials Chemistry B, 2017, 5, 2588-2600.	2.9	22
175	Tissue mechanics regulate brain development, homeostasis and disease. Journal of Cell Science, 2017, 130, 71-82.	1.2	243
176	Force Triggers YAP Nuclear Entry by Regulating Transport across Nuclear Pores. Cell, 2017, 171, 1397-1410.e14.	13.5	927
177	Primary angle closure glaucoma (PACG) susceptibility gene PLEKHA7 encodes a novel Rac1/Cdc42 GAP that modulates cell migration and blood-aqueous barrier function. Human Molecular Genetics, 2017, 26, 4011-4027.	1.4	21
178	A pivotal role for a conserved bulky residue at the $\hat{l}\pm 1$ -helix of the $\hat{l}\pm 1$ integrin domain in ligand binding. Journal of Biological Chemistry, 2017, 292, 20756-20768.	1.6	11
179	Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chemical Reviews, 2017, 117, 12764-12850.	23.0	582
180	Single-cell study of the extracellular matrix effect on cell growth by <i>in situ</i> imaging of gene expression. Chemical Science, 2017, 8, 8019-8024.	3.7	19
181	Multiscale Simulation of Stochastic Reaction-Diffusion Networks. , 2017, , 55-79.		1

#	Article	IF	Citations
182	Getting Nervous: An Evolutionary Overhaul for Communication. Annual Review of Genetics, 2017, 51, 455-476.	3.2	44
183	Mechanobiology of YAP and TAZ in physiology and disease. Nature Reviews Molecular Cell Biology, 2017, 18, 758-770.	16.1	879
184	Vascular Smooth Muscle Cells and Arterial Stiffening: Relevance in Development, Aging, and Disease. Physiological Reviews, 2017, 97, 1555-1617.	13.1	466
185	Inverse poroelasticity as a fundamental mechanism in biomechanics and mechanobiology. Nature Communications, 2017, 8, 1002.	5.8	69
186	Tissue Force Programs Cell Fate and Tumor Aggression. Cancer Discovery, 2017, 7, 1224-1237.	7.7	181
187	Regulation of genome organization and gene expression by nuclear mechanotransduction. Nature Reviews Molecular Cell Biology, 2017, 18, 717-727.	16.1	301
188	Skeletal stiffening in an amphibious fish out of water is a response to increased body weight. Journal of Experimental Biology, 2017, 220, 3621-3631.	0.8	25
189	Epidermal growth factor as a mechanosensitizer in human bone marrow stromal cells. Stem Cell Research, 2017, 24, 69-76.	0.3	18
190	Chromosome Intermingling: Mechanical Hotspots for Genome Regulation. Trends in Cell Biology, 2017, 27, 810-819.	3.6	36
191	Scaffoldâ€Free Liverâ€Onâ€Aâ€Chip with Multiscale Organotypic Cultures. Advanced Materials, 2017, 29, 1701545.	11.1	57
192	Recent advances in studying single bacteria and biofilm mechanics. Advances in Colloid and Interface Science, 2017, 247, 573-588.	7.0	42
193	Lmna knockout mouse embryonic fibroblasts are less contractile than their wild-type counterparts. Integrative Biology (United Kingdom), 2017, 9, 709-721.	0.6	9
194	Transverse tubule remodelling: a cellular pathology driven by both sides of the plasmalemma?. Biophysical Reviews, 2017, 9, 919-929.	1.5	15
195	Integrinâ€Mediated Interactions Control Macrophage Polarization in 3D Hydrogels. Advanced Healthcare Materials, 2017, 6, 1700289.	3.9	169
196	Extracellular Matrix Induction of Intracellular Reactive Oxygen Species. Antioxidants and Redox Signaling, 2017, 27, 774-784.	2.5	24
197	Integrin \hat{I}^21 activation by micro-scale curvature promotes pro-angiogenic secretion of human mesenchymal stem cells. Journal of Materials Chemistry B, 2017, 5, 7415-7425.	2.9	13
198	Reversible control of cell membrane receptor function using DNA nano-spring multivalent ligands. Chemical Science, 2017, 8, 7098-7105.	3.7	62
199	Mechanoresponsive stem cells to target cancer metastases through biophysical cues. Science Translational Medicine, 2017, 9, .	5.8	74

#	Article	IF	CITATIONS
200	Biomimetic nanofibers can construct effective tissue-engineered intervertebral discs for therapeutic implantation. Nanoscale, 2017, 9, 13095-13103.	2.8	45
201	Changes in dermatological characteristics of skin caused by electroluminescent infrared heating lamp in healthy Korean men. Toxicology and Environmental Health Sciences, 2017, 9, 141-151.	1.1	1
202	Reply. Journal of the American College of Cardiology, 2017, 70, 2838-2839.	1.2	0
203	Designer biomaterials for mechanobiology. Nature Materials, 2017, 16, 1164-1168.	13.3	144
204	Could the Interplay Between Macrophages and Fibroblasts Drive Extracellular Matrix Dynamics in End-Stage Heart Failure?. Journal of the American College of Cardiology, 2017, 70, 2837-2838.	1.2	1
205	Differential cell-matrix mechanoadaptations and inflammation drive regional propensities to aortic fibrosis, aneurysm or dissection in hypertension. Journal of the Royal Society Interface, 2017, 14, 20170327.	1.5	95
206	The role of osmolarity adjusting agents in the regulation of encapsulated cell behavior to provide a safer and more predictable delivery of therapeutics. Drug Delivery, 2017, 24, 1654-1666.	2.5	13
207	Measurement of cell traction force with a thin film PDMS cantilever. Biomedical Microdevices, 2017, 19, 97.	1.4	5
208	Fibronectin-bound $\hat{i}\pm5\hat{i}^21$ integrins sense load and signal to reinforce adhesion in less than a second. Nature Materials, 2017, 16, 1262-1270.	13.3	109
209	Dynamic interplay between tumour, stroma and immune system can drive or prevent tumour progression. Convergent Science Physical Oncology, 2017, 3, 034002.	2.6	114
210	The Movement movement. Journal of Bodywork and Movement Therapies, 2017, 21, 725-730.	0.5	0
211	Substrate rigidity-dependent positive feedback regulation between YAP and ROCK2. Cell Adhesion and Migration, 2018, 12, 00-00.	1.1	12
212	The extracellular matrix of the gastrointestinal tract: a regenerative medicine platform. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 540-552.	8.2	61
213	Nondestructive mechanical characterization of developing biological tissues using inflation testing. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 74, 438-447.	1.5	7
214	The instructive extracellular matrix of the lung: basic composition and alterations in chronic lung disease. European Respiratory Journal, 2017, 50, 1601805.	3.1	341
215	Connecting Protein Conformation and Dynamics with Ligand–Receptor Binding Using Three-Color Förster Resonance Energy Transfer Tracking. Journal of the American Chemical Society, 2017, 139, 9937-9948.	6.6	14
216	Interstitial fluid flow-induced growth potential and hyaluronan synthesis of fibroblasts in a fibroblast-populated stretched collagen gel culture. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2261-2273.	1.1	8
217	Histologic Evaluation of Biopsy Specimens Obtained After Rotator Cuff Repair Augmented With a Highly Porous Collagen Implant. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2017, 33, 278-283.	1.3	41

#	Article	IF	CITATIONS
218	Mechanical deformation of posterior thoracolumbar fascia after myofascial release in healthy men: A study of dynamic ultrasound imaging. Musculoskeletal Science and Practice, 2017, 27, 124-130.	0.6	12
219	Mechanically Defined Microgels by Droplet Microfluidics. Macromolecular Chemistry and Physics, 2017, 218, 1600418.	1.1	31
220	Current Status and Future of Skin Substitutes for Chronic Wound Healing. Journal of Cutaneous Medicine and Surgery, 2017, 21, 23-30.	0.6	58
221	Mechanical properties of basement membrane in health and disease. Matrix Biology, 2017, 57-58, 366-373.	1.5	71
222	Cellular adaptation to biomechanical stress across length scales in tissue homeostasis and disease. Seminars in Cell and Developmental Biology, 2017, 67, 141-152.	2.3	43
223	Computational simulation of static/cyclic cell stimulations to investigate mechanical modulation of an individual mesenchymal stem cell using confocal microscopy. Materials Science and Engineering C, 2017, 70, 494-504.	3.8	10
224	The emerging role of ECM crosslinking in T cell mobility as a hallmark of immunosenescence in humans. Ageing Research Reviews, 2017, 35, 322-335.	5.0	45
225	An iPSC-derived vascular model of Marfan syndrome identifies key mediators of smooth muscle cell death. Nature Genetics, 2017, 49, 97-109.	9.4	149
226	Machine Learning for Nuclear Mechano-Morphometric Biomarkers in Cancer Diagnosis. Scientific Reports, 2017, 7, 17946.	1.6	41
227	Direct cryopreservation of adherent cells on an elastic nanofiber sheet featuring a low glass-transition temperature. RSC Advances, 2017, 7, 51264-51271.	1.7	28
228	An Attempt to Predict the Preferential Cellular Orientation in Any Complex Mechanical Environment. Bioengineering, 2017, 4, 16.	1.6	2
229	Vascular Mechanobiology: Towards Control of In Situ Regeneration. Cells, 2017, 6, 19.	1.8	42
230	Growth Description for Vessel Wall Adaptation: A Thick-Walled Mixture Model of Abdominal Aortic Aneurysm Evolution. Materials, 2017, 10, 994.	1.3	37
231	4.9 Integrin-Activated Reactions to Metallic Implant Surfaces â~†., 2017, , 130-151.		0
232	Turnout in Classical Dance: Is It Possible to Enhance the External Rotation of the Lower Limb by a Myofascial Manipulation? A Pilot Study. Journal of Dance Medicine and Science, 2017, 21, 168-178.	0.2	1
233	TGF-Î ² 1 Pretreatment Improves the Function of Mesenchymal Stem Cells in the Wound Bed. Frontiers in Cell and Developmental Biology, 2017, 5, 28.	1.8	35
234	How to Train a Cell–Cutting-Edge Molecular Tools. Frontiers in Chemistry, 2017, 5, 12.	1.8	8
235	Biophysical Tools to Study Cellular Mechanotransduction. Bioengineering, 2017, 4, 12.	1.6	34

#	ARTICLE	IF	CITATIONS
236	Extracellular Matrix in Plants and Animals: Hooks and Locks for Viruses. Frontiers in Microbiology, 2017, 8, 1760.	1.5	44
237	Influence of Mechanical Stimuli on Schwann Cell Biology. Frontiers in Cellular Neuroscience, 2017, 11, 347.	1.8	64
238	Implications of Schwann Cells Biomechanics and Mechanosensitivity for Peripheral Nervous System Physiology and Pathophysiology. Frontiers in Molecular Neuroscience, 2017, 10, 345.	1.4	20
239	Mechanical Stimulation of Cells Through Scaffold Design for Tissue Engineering. , 2017, , .		3
240	Cellular Morphology-Mediated Proliferation and Drug Sensitivity of Breast Cancer Cells. Journal of Functional Biomaterials, 2017, 8, 18.	1.8	20
241	From East to West and Return: A Western Interpretation of Acupuncture. Alternative & Integrative Medicine, 2017, 06, .	0.1	0
242	Corneal Cross-Linking with Riboflavin and UV-A in the Mouse Cornea in Vivo: Morphological, Biochemical, and Physiological Analysis. Translational Vision Science and Technology, 2017, 6, 7.	1.1	10
243	Extracellular Matrix Biology Applied to the Kidney. , 2017, , 829-841.		1
244	Hyperelastic Models for Contractile Tissues. , 2017, , 31-58.		0
245	Emerging views of the nucleus as a cellular mechanosensor. Nature Cell Biology, 2018, 20, 373-381.	4.6	415
246	Shaping Cell Fate: Influence of Topographical Substratum Properties on Embryonic Stem Cells. Tissue Engineering - Part B: Reviews, 2018, 24, 255-266.	2.5	20
247	The key role of proinflammatory cytokines, matrix proteins, RANKL/OPG and Wnt/ \hat{l}^2 -catenin in bone healing of hip arthroplasty patients. Bone, 2018, 107, 66-77.	1.4	30
248	Extracellular matrix remodeling in 3D: implications in tissue homeostasis and disease progression. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1503.	3.3	35
249	Mechanical signaling through the discoidin domain receptor 1 plays a central role in tissue fibrosis. Cell Adhesion and Migration, 2018, 12, 1-15.	1.1	27
250	Smooth muscle cell and arterial aging: basic and clinical aspects. Cardiovascular Research, 2018, 114, 513-528.	1.8	153
251	Control of Mechanotransduction by Molecular Clutch Dynamics. Trends in Cell Biology, 2018, 28, 356-367.	3.6	218
252	Rheological Properties of Biological Structures, Scaffolds and Their Biomedical Applications. , 2018, , 119-140.		1
253	Quantifying effects of cyclic stretch on cell–collagen substrate adhesiveness of vascular endothelial cells. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2018, 232, 531-541.	1.0	7

#	Article	IF	CITATIONS
254	Mechanosensitivity of Jagged–Notch signaling can induce a switch-type behavior in vascular homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3682-E3691.	3.3	51
255	Dissecting single-cell molecular spatiotemporal mobility and clustering at focal adhesions in polarised cells by fluorescence fluctuation spectroscopy methods. Methods, 2018, 140-141, 85-96.	1.9	14
256	Molecular and tissue alterations of collagens in fibrosis. Matrix Biology, 2018, 68-69, 122-149.	1.5	108
257	The Mechanical Contribution of Vimentin to Cellular Stress Generation. Journal of Biomechanical Engineering, 2018, 140, .	0.6	7
258	Circuit Design Features of a Stable Two-Cell System. Cell, 2018, 172, 744-757.e17.	13.5	276
259	Characterizing viscoelastic properties of breast cancer tissue in a mouse model using indentation. Journal of Biomechanics, 2018, 69, 81-89.	0.9	27
260	Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces. Biophysical Journal, 2018, 114, 450-461.	0.2	108
261	Nanopillar force measurements reveal actin-cap-mediated YAP mechanotransduction. Nature Cell Biology, 2018, 20, 262-271.	4.6	160
262	Computation of forces from deformed visco-elastic biological tissues. Inverse Problems, 2018, 34, 044001.	1.0	1
263	Comparison of growth kinetics between static and dynamic cultures of human induced pluripotent stem cells. Journal of Bioscience and Bioengineering, 2018, 125, 736-740.	1.1	13
264	BH3 mimetics as anti-fibrotic therapy: Unleashing the mitochondrial pathway of apoptosis in myofibroblasts. Matrix Biology, 2018, 68-69, 94-105.	1.5	30
265	Integrin diversity brings specificity in mechanotransduction. Biology of the Cell, 2018, 110, 49-64.	0.7	91
266	Structure and physico-mechanical properties of low temperature plasma treated electrospun nanofibrous scaffolds examined with atomic force microscopy. Micron, 2018, 107, 79-84.	1.1	27
267	Photoresponsive Hydrogels with Photoswitchable Mechanical Properties Allow Time-Resolved Analysis of Cellular Responses to Matrix Stiffening. ACS Applied Materials & Samp; Interfaces, 2018, 10, 7765-7776.	4.0	93
268	Unraveling the Mechanobiology of Extracellular Matrix. Annual Review of Physiology, 2018, 80, 353-387.	5.6	158
269	Role of membrane-tension gated Ca flux in cell mechanosensation. Journal of Cell Science, 2018, 131, .	1.2	36
270	Understanding Pulmonary Stress-Strain Relationships in Severe ARDS and Its Implications for Designing a Safer Approach to Setting the Ventilator. Respiratory Care, 2018, 63, 219-226.	0.8	26
271	Prevalence of Calcification in Human Femoropopliteal Arteries and its Association with Demographics, Risk Factors, and Arterial Stiffness. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, e48-e57.	1.1	47

#	Article	IF	Citations
272	Matrix Stiffness: the Conductor of Organ Fibrosis. Current Rheumatology Reports, 2018, 20, 2.	2.1	127
273	Eigenstrain as a mechanical set-point of cells. Biomechanics and Modeling in Mechanobiology, 2018, 17, 951-959.	1.4	9
274	Growth and remodeling play opposing roles during postnatal human heart valve development. Scientific Reports, 2018, 8, 1235.	1.6	18
275	Hierarchical Design of Tissue Regenerative Constructs. Advanced Healthcare Materials, 2018, 7, e1701067.	3.9	68
276	Matrix biomechanics and dynamics in pulmonary fibrosis. Matrix Biology, 2018, 73, 64-76.	1.5	65
277	The "Stressful―Life of Cell Adhesion Molecules: On the Mechanosensitivity of Integrin Adhesome. Journal of Biomechanical Engineering, 2018, 140, .	0.6	9
278	Engineered Tissue Folding by Mechanical Compaction of the Mesenchyme. Developmental Cell, 2018, 44, 165-178.e6.	3.1	145
279	Mechanical Evaluation of Tracheal Grafts on Different Scales. Artificial Organs, 2018, 42, 476-483.	1.0	7
280	Reshaping the Tumor Stroma for Treatment of Pancreatic Cancer. Gastroenterology, 2018, 154, 820-838.	0.6	173
281	Engineering Biocompatible Scaffolds through the Design of Elastinâ€Based Short Peptides. ChemPlusChem, 2018, 83, 47-52.	1.3	8
282	The ADAM17 Metalloproteinase Maintains Arterial Elasticity. Thrombosis and Haemostasis, 2018, 118, 210-213.	1.8	4
283	Exploiting Advanced Hydrogel Technologies to Address Key Challenges in Regenerative Medicine. Advanced Healthcare Materials, 2018, 7, e1700939.	3.9	105
284	Targeting extracellular matrix stiffness to attenuate disease: From molecular mechanisms to clinical trials. Science Translational Medicine, $2018, 10, \ldots$	5.8	390
285	Methacholine induces extracellular matrix production by human airway smooth muscle cells through \hat{l}^2 -catenin signaling. Respiratory Physiology and Neurobiology, 2018, 254, 55-63.	0.7	0
286	Opportunities and Challenges of Whole-Cell and -Tissue Simulations of the Outer Retina in Health and Disease. Annual Review of Biomedical Data Science, 2018, 1, 131-152.	2.8	4
287	Novel Proteomic Assay of Breast Implants Reveals Proteins With Significant Binding Differences: Implications for Surface Coating and Biocompatibility. Aesthetic Surgery Journal, 2018, 38, 962-969.	0.9	12
288	Gene expression profiling of human hepatocytes grown on differing substrate stiffness. Biotechnology Letters, 2018, 40, 809-818.	1.1	15
289	Shear Stress-Enhanced Internalization of Cell Membrane Proteins Indicated by a Hairpin-Type DNA Probe. Analytical Chemistry, 2018, 90, 5540-5545.	3.2	35

#	Article	IF	CITATIONS
290	Engineering the Cell Microenvironment Using Novel Photoresponsive Hydrogels. ACS Applied Materials & Samp; Interfaces, 2018, 10, 12374-12389.	4.0	48
291	Realizations of highly heterogeneous collagen networks via stochastic reconstruction for micromechanical analysis of tumor cell invasion. Physical Review E, 2018, 97, 033311.	0.8	23
292	Injectable hyaluronic acid based microrods provide local micromechanical and biochemical cues to attenuate cardiac fibrosis after myocardial infarction. Biomaterials, 2018, 169, 11-21.	5.7	54
293	Significance of whole-genome duplications on the emergence of evolutionary novelties. Briefings in Functional Genomics, 2018, 17, 329-338.	1.3	59
294	Nuclear Mechanopathology and Cancer Diagnosis. Trends in Cancer, 2018, 4, 320-331.	3.8	106
295	Macroporous click-elastin-like hydrogels for tissue engineering applications. Materials Science and Engineering C, 2018, 88, 140-147.	3.8	30
296	Mechanical forces in skin disorders. Journal of Dermatological Science, 2018, 90, 232-240.	1.0	78
297	Quantitative proteomic characterization of the lung extracellular matrix in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Journal of Proteomics, 2018, 189, 23-33.	1.2	61
298	Next generation organoids for biomedical research and applications. Biotechnology Advances, 2018, 36, 132-149.	6.0	91
299	Recent Development of Cell Analysis on Microfludics. Integrated Analytical Systems, 2018, , 43-93.	0.4	1
300	Minimal mechanical load and tissue culture conditions preserve native cell phenotype and morphology in tendon—a novel ex vivo mouse explant model. Journal of Orthopaedic Research, 2018, 36, 1383-1390.	1.2	28
301	Mechanobiological model of arterial growth and remodeling. Biomechanics and Modeling in Mechanobiology, 2018, 17, 87-101.	1.4	27
302	Detection and characterization of molecular-level collagen damage in overstretched cerebral arteries. Acta Biomaterialia, 2018, 67, 307-318.	4.1	33
303	Routine clinical anti-platelet agents have limited efficacy in modulating hypershear-mediated platelet activation associated with mechanical circulatory support. Thrombosis Research, 2018, 163, 162-171.	0.8	15
304	Fascial well-being: Mechanotransduction in manual and movement therapies. Journal of Bodywork and Movement Therapies, 2018, 22, 235-236.	0.5	9
305	Contact guidance diversity in rotationally aligned collagen matrices. Acta Biomaterialia, 2018, 66, 248-257.	4.1	37
306	Lung tissue gene-expression signature for the ageing lung in COPD. Thorax, 2018, 73, 609-617.	2.7	36
307	Matricellular proteins and survival in patients with pancreatic cancer: A systematic review. Pancreatology, 2018, 18, 122-132.	0.5	8

#	Article	IF	CITATIONS
308	Multipotent Mesenchymal Stromal Cells and Extracellular Matrix: Regulation under Hypoxia. Human Physiology, 2018, 44, 696-705.	0.1	5
309	Vinculin and the mechanical response of adherent fibroblasts to matrix deformation. Scientific Reports, 2018, 8, 17967.	1.6	14
310	Initial scaffold thickness affects the emergence of a geometrical and mechanical equilibrium in engineered cardiovascular tissues. Journal of the Royal Society Interface, 2018, 15, 20180359.	1.5	8
311	Control by cell size. Nature Materials, 2018, 17, 1055-1056.	13.3	4
312	YAP/TAZ mechano-transduction as the underlying mechanism of neuronal differentiation induced by reduced graphene oxide. Nanomedicine, 2018, 13, 3091-3106.	1.7	15
313	Photoresponsive Hydrogels with Photoswitchable Stiffness: Emerging Platforms to Study Temporal Aspects of Mesenchymal Stem Cell Responses to Extracellular Stiffness Regulation. Advances in Experimental Medicine and Biology, 2018, 1144, 53-69.	0.8	6
314	Atomic Force Microscopy in Molecular and Cell Biology. , 2018, , .		6
315	Intramembrane ionic protein–lipid interaction regulates integrin structure and function. PLoS Biology, 2018, 16, e2006525.	2.6	11
316	In Situ Measuring Mechanical Properties of Normal and Disease Cells., 2018,, 161-178.		1
317	Differential lateral and basal tension drive folding of Drosophila wing discs through two distinct mechanisms. Nature Communications, 2018, 9, 4620.	5.8	103
318	Myh10 deficiency leads to defective extracellular matrix remodeling and pulmonary disease. Nature Communications, 2018, 9, 4600.	5.8	27
319	AIF1L regulates actomyosin contractility and filopodial extensions in human podocytes. PLoS ONE, 2018, 13, e0200487.	1.1	15
320	A Multi-well Format Polyacrylamide-based Assay for Studying the Effect of Extracellular Matrix Stiffness on the Bacterial Infection of Adherent Cells. Journal of Visualized Experiments, 2018, , .	0.2	8
321	Planar compression of extracellular substrates induces S phase arrest via ATM-independent CHK2 activation. Biochemical and Biophysical Research Communications, 2018, 506, 983-989.	1.0	3
322	Manipulating cell fate: dynamic control of cell behaviors on functional platforms. Chemical Society Reviews, 2018, 47, 8639-8684.	18.7	115
323	The emergence of solid stress as a potent biomechanical marker of tumour progression. Emerging Topics in Life Sciences, 2018, 2, 739-749.	1.1	4
324	The Emerging Role of Mechanics in Synapse Formation and Plasticity. Frontiers in Cellular Neuroscience, 2018, 12, 483.	1.8	49
325	Tendon Remodeling in Response to Resistance Training, Anabolic Androgenic Steroids and Aging. Cells, 2018, 7, 251.	1.8	20

#	Article	IF	CITATIONS
326	Interaction Between Hypertension and Arterial Stiffness. Hypertension, 2018, 72, 796-805.	1.3	189
327	Rapping about Mechanotransduction. Developmental Cell, 2018, 46, 678-679.	3.1	4
328	Directing fibroblast self-assembly to fabricate highly-aligned, collagen-rich matrices. Acta Biomaterialia, 2018, 81, 70-79.	4.1	20
329	Local Tension on Talin in Focal Adhesions Correlates with F-Actin Alignment at the NanometerÂScale. Biophysical Journal, 2018, 115, 1569-1579.	0.2	28
330	Solo, a RhoA-targeting guanine nucleotide exchange factor, is critical for hemidesmosome formation and acinar development in epithelial cells. PLoS ONE, 2018, 13, e0195124.	1.1	15
331	Non-catalytic signaling by pseudokinase ILK for regulating cell adhesion. Nature Communications, 2018, 9, 4465.	5.8	47
332	Molecular, Cellular, and Tissue Engineering of the Vascular System. Advances in Experimental Medicine and Biology, $2018, , .$	0.8	6
333	Mechanobiology and Vascular Remodeling: From Membrane to Nucleus. Advances in Experimental Medicine and Biology, 2018, 1097, 69-82.	0.8	31
334	Mechanostress resistance involving formin homology proteins: G- and F-actin homeostasis-driven filament nucleation and helical polymerization-mediated actin polymer stabilization. Biochemical and Biophysical Research Communications, 2018, 506, 323-329.	1.0	9
335	Regional Heterogeneity in the Regulation of Vasoconstriction in Arteries and Its Role in Vascular Mechanics. Advances in Experimental Medicine and Biology, 2018, 1097, 105-128.	0.8	9
336	Combustion-derived particles inhibit in vitro human lung fibroblast-mediated matrix remodeling. Journal of Nanobiotechnology, 2018, 16, 82.	4.2	9
337	Cyclic Stiffness Modulation of Cellâ€Laden Protein–Polymer Hydrogels in Response to Userâ€Specified Stimuli Including Light. Advanced Biology, 2018, 2, 1800240.	3.0	80
338	Live imaging of cell membrane-localized MT1-MMP activity on a microfluidic chip. Chemical Communications, 2018, 54, 11435-11438.	2.2	10
339	Living Matter: Mesoscopic Active Materials. Advanced Materials, 2018, 30, e1707028.	11.1	46
340	Stiffening by Osmotic Swelling Constraint in Cartilageâ€Like Cell Culture Scaffolds. Macromolecular Bioscience, 2018, 18, e1800247.	2.1	10
341	Combinatorial Screening of Nanoclay-Reinforced Hydrogels: A Glimpse of the "Holy Grail―in Orthopedic Stem Cell Therapy?. ACS Applied Materials & Interfaces, 2018, 10, 34924-34941.	4.0	54
342	The Extracellular Matrix and Pancreatic Cancer: A Complex Relationship. Cancers, 2018, 10, 316.	1.7	208
343	Extracellular matrix constitution and function for tissue regeneration and repair., 2018,, 29-72.		8

#	Article	IF	CITATIONS
344	Diabetes can change the viscoelastic properties of lymphocytes. Progress in Biomaterials, 2018, 7, 219-224.	1.8	O
345	Extracellular matrix-based materials for regenerative medicine. Nature Reviews Materials, 2018, 3, 159-173.	23.3	572
346	Mechanisms of directed evolution of morphological structures and the problems of morphogenesis. BioSystems, 2018, 168, 26-44.	0.9	10
347	Tissue Engineered Skin Substitutes. Advances in Experimental Medicine and Biology, 2018, 1107, 143-188.	0.8	69
348	Extracellular fluid viscosity enhances liver cancer cell mechanosensing and migration. Biomaterials, 2018, 177, 113-124.	5.7	65
349	Compromised mechanical homeostasis in arterial aging and associated cardiovascular consequences. Biomechanics and Modeling in Mechanobiology, 2018, 17, 1281-1295.	1.4	47
350	A biomimetic microfluidic model to study signalling between endothelial and vascular smooth muscle cells under hemodynamic conditions. Lab on A Chip, 2018, 18, 1607-1620.	3.1	88
351	The role of matricellular proteins and tissue stiffness in breast cancer: a systematic review. Future Oncology, 2018, 14, 1601-1627.	1.1	12
352	3D Spatiotemporal Mechanical Microenvironment: A Hydrogelâ€Based Platform for Guiding Stem Cell Fate. Advanced Materials, 2018, 30, e1705911.	11.1	162
353	Stem Cell Differentiation is Regulated by Extracellular Matrix Mechanics. Physiology, 2018, 33, 16-25.	1.6	191
354	The Hippo-YAP Pathway Regulates 3D Organ Formation and Homeostasis. Cancers, 2018, 10, 122.	1.7	10
355	Modeling Tissue Polarity in Context. Journal of Molecular Biology, 2018, 430, 3613-3628.	2.0	16
356	YAP/TAZ upstream signals and downstream responses. Nature Cell Biology, 2018, 20, 888-899.	4.6	647
357	Proinflammatory Arterial Stiffness Syndrome: A Signature of Large Arterial Aging. Journal of Vascular Research, 2018, 55, 210-223.	0.6	34
358	TGF-Î ² Sustains Tumor Progression through Biochemical and Mechanical Signal Transduction. Cancers, 2018, 10, 199.	1.7	32
359	Cellular and Nuclear Forces: An Overview. Methods in Molecular Biology, 2018, 1805, 1-29.	0.4	6
360	Behavioral remodeling of normal and cancerous epithelial cell lines with differing invasion potential induced by substrate elastic modulus. Cell Adhesion and Migration, 2018, 12, 1-17.	1.1	19
361	Ultrasound Promoted Stepâ€Growth Polymerization and Polymer Crosslinking Via Copper Catalyzed Azide–Alkyne "Click―Reaction. Angewandte Chemie, 2018, 130, 11378-11382.	1.6	11

#	ARTICLE	IF	CITATIONS
362	Ultrasound Promoted Stepâ€Growth Polymerization and Polymer Crosslinking Via Copper Catalyzed Azide–Alkyne "Click―Reaction. Angewandte Chemie - International Edition, 2018, 57, 11208-11212.	7.2	54
363	Microenvironment-Cell Nucleus Relationship in the Context of Oxidative Stress. Frontiers in Cell and Developmental Biology, 2018, 6, 23.	1.8	27
364	Antibodies and methods for immunohistochemistry of extracellular matrix proteins. Matrix Biology, 2018, 71-72, 10-27.	1.5	25
365	Physical Microenvironment-Based Inducible Scaffold for Stem Cell Differentiation and Tendon Regeneration. Tissue Engineering - Part B: Reviews, 2018, 24, 443-453.	2.5	20
366	A model for cellular mechanotransduction and contractility at finite strain. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2018, 98, 1754-1770.	0.9	3
367	Mechanobiology of skin diseases and wound healing. , 2018, , 415-448.		6
368	Requirement for and polarized localization of integrin proteins during <i>Drosophila</i> wound closure. Molecular Biology of the Cell, 2018, 29, 2137-2147.	0.9	11
369	The homeostatic ensemble for cells. Biomechanics and Modeling in Mechanobiology, 2018, 17, 1631-1662.	1.4	27
370	How can mindfulness-led breathing of qigong/Tai Chi work on qi and the meridian network?. Advances in Integrative Medicine, 2018, 5, 122-127.	0.4	2
371	Microfluidic auto-alignment of protein patterns for dissecting multi-receptor crosstalk in platelets. Lab on A Chip, 2018, 18, 2966-2974.	3.1	6
372	Engineering Platforms for T Cell Modulation. International Review of Cell and Molecular Biology, 2018, 341, 277-362.	1.6	8
373	RAP2 mediates mechanoresponses of the Hippo pathway. Nature, 2018, 560, 655-660.	13.7	266
374	A Versatile Hybrid Agent-Based, Particle and Partial Differential Equations Method to Analyze Vascular Adaptation. Lecture Notes in Computer Science, 2018, , 856-868.	1.0	1
375	Genetics of Progeria and Aging. , 2018, , 673-687.		0
376	hMENA isoforms impact NSCLC patient outcome through fibronectin/ \hat{l}^21 integrin axis. Oncogene, 2018, 37, 5605-5617.	2.6	17
377	Molecular Tension Probes to Investigate the Mechanopharmacology of Single Cells: A Step toward Personalized Mechanomedicine. Advanced Healthcare Materials, 2018, 7, e1800069.	3.9	17
378	Modeling mechano-driven and immuno-mediated aortic maladaptation in hypertension. Biomechanics and Modeling in Mechanobiology, 2018, 17, 1497-1511.	1.4	42
379	Multimode ultrasound viscoelastography for three-dimensional interrogation of microscale mechanical properties in heterogeneous biomaterials. Biomaterials, 2018, 178, 11-22.	5.7	29

#	Article	IF	CITATIONS
381	An immortalised mesenchymal stem cell line maintains mechano-responsive behaviour and can be used as a reporter of substrate stiffness. Scientific Reports, 2018, 8, 8981.	1.6	31
382	Mechanochemistry in cancer cell metastasis. Chinese Chemical Letters, 2019, 30, 7-14.	4.8	12
383	Too Stiff, Too Late .Â.Â. Timing Is Everything in Antiangiogenic Treatment of Liver Fibrosis. Hepatology, 2019, 69, 449-451.	3.6	6
384	The Foreign Body Response Demystified. ACS Biomaterials Science and Engineering, 2019, 5, 19-44.	2.6	113
385	Physical properties of the photodamaged human skin dermis: Rougher collagen surface and stiffer/harder mechanical properties. Experimental Dermatology, 2019, 28, 914-921.	1.4	10
386	Mechanical Determinants of Tissue Development. , 2019, , 391-404.		0
387	A versatile hybrid agent-based, particle and partial differential equations method to analyze vascular adaptation. Biomechanics and Modeling in Mechanobiology, 2019, 18, 29-44.	1.4	13
388	Nanomechanical mapping helps explain differences in outcomes of eye microsurgery: A comparative study of macular pathologies. PLoS ONE, 2019, 14, e0220571.	1.1	16
389	Cell phenotypic plasticity requires autophagic flux driven by YAP/TAZ mechanotransduction. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17848-17857.	3.3	98
390	Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2020, 12, e1462.	6.6	262
391	Targeting Mechanics-Induced Fibroblast Activation through CD44-RhoA-YAP Pathway Ameliorates Crystalline Silica-Induced Silicosis. Theranostics, 2019, 9, 4993-5008.	4.6	65
392	Tissue Regeneration from Mechanical Stretching of Cell–Cell Adhesion. Tissue Engineering - Part C: Methods, 2019, 25, 631-640.	1.1	20
393	Growth and remodelling of living tissues: perspectives, challenges and opportunities. Journal of the Royal Society Interface, 2019, 16, 20190233.	1.5	142
395	Relationship of growth differentiation factor-15 with aortic stiffness in essential hypertension. Future Science OA, 2019, 5, FSO406.	0.9	7
396	Filamin A mediates isotropic distribution of applied force across the actin network. Journal of Cell Biology, 2019, 218, 2481-2491.	2.3	31
397	Effectiveness of the Electromagnetic Shock Wave Therapy in the Treatment of Cellulite. Dermatology Research and Practice, 2019, 2019, 1-6.	0.3	10
398	Translocating a High-Affinity Designer TIMP-1 to the Cell Membrane for Total Renal Carcinoma Inhibition: Putting the Prion Protein to Good Use. Molecular and Cellular Biology, 2019, 39, .	1.1	4
399	Innovative Tools for Mechanobiology: Unraveling Outside-In and Inside-Out Mechanotransduction. Frontiers in Bioengineering and Biotechnology, 2019, 7, 162.	2.0	124

#	Article	IF	CITATIONS
400	Primary Human Fibroblasts in Culture Switch to a Myofibroblast-Like Phenotype Independently of TGF Beta. Cells, 2019, 8, 721.	1.8	41
401	Smooth Muscle Cell Phenotypic Diversity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1715-1723.	1.1	166
402	Extracellular matrix type modulates mechanotransduction of stem cells. Acta Biomaterialia, 2019, 96, 310-320.	4.1	80
403	High-frequency microrheology in 3D reveals mismatch between cytoskeletal and extracellular matrix mechanics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14448-14455.	3.3	48
404	Subtle Regulation of Scaffold Stiffness for the Optimized Control of Cell Behavior. ACS Applied Bio Materials, 2019, 2, 3108-3119.	2.3	25
405	Smooth muscle regional contribution to vaginal wall function. Interface Focus, 2019, 9, 20190025.	1.5	32
406	Designing Microenvironments for Optimal Outcomes in Tissue Engineering and Regenerative Medicine: From Biopolymers to Culturing Conditions., 2019,, 119-119.		1
407	High-phosphate induced vascular calcification is reduced by iron citrate through inhibition of extracellular matrix osteo-chondrogenic shift in VSMCs. International Journal of Cardiology, 2019, 297, 94-103.	0.8	23
408	Alaskan Berry Extracts Promote Dermal Wound Repair Through Modulation of Bioenergetics and Integrin Signaling. Frontiers in Pharmacology, 2019, 10, 1058.	1.6	27
409	Emerging technologies in mechanotransduction research. Current Opinion in Chemical Biology, 2019, 53, 125-130.	2.8	19
410	A relaxed growth modeling framework for controlling growth-induced residual stresses. Clinical Biomechanics, 2019, 70, 270-277.	0.5	3
411	Control of cellular responses to mechanical cues through YAP/TAZ regulation. Journal of Biological Chemistry, 2019, 294, 17693-17706.	1.6	206
412	Tumour Initiation: a Discussion on Evidence for a "Load-Trigger―Mechanism. Cell Biochemistry and Biophysics, 2019, 77, 293-308.	0.9	14
413	Mechanical strain promotes skin fibrosis through LRG-1 induction mediated by ELK1 and ERK signalling. Communications Biology, 2019, 2, 359.	2.0	37
414	Piezo Ion Channels in Cardiovascular Mechanobiology. Trends in Pharmacological Sciences, 2019, 40, 956-970.	4.0	114
415	Sphingosine 1-Phosphate (S1P)/ S1P Receptor Signaling and Mechanotransduction: Implications for Intrinsic Tissue Repair/Regeneration. International Journal of Molecular Sciences, 2019, 20, 5545.	1.8	32
416	Prostaglandin E2 Induces Skin Aging via E-Prostanoid 1 in Normal Human Dermal Fibroblasts. International Journal of Molecular Sciences, 2019, 20, 5555.	1.8	13
417	Insight into Mechanobiology: How Stem Cells Feel Mechanical Forces and Orchestrate Biological Functions. International Journal of Molecular Sciences, 2019, 20, 5337.	1.8	81

#	Article	IF	CITATIONS
418	Vimentin regulates Notch signaling strength and arterial remodeling in response to hemodynamic stress. Scientific Reports, 2019, 9, 12415.	1.6	62
419	The Role of the Optical Stretcher Is Crucial in the Investigation of Cell Mechanics Regulating Cell Adhesion and Motility. Frontiers in Cell and Developmental Biology, 2019, 7, 184.	1.8	36
420	Biomechanical studies on biomaterial degradation and co-cultured cells: mechanisms, potential applications, challenges and prospects. Journal of Materials Chemistry B, 2019, 7, 7439-7459.	2.9	33
421	Mechanical characterization of electrospun polyesteretherurethane (PEEU) meshes by atomic force microscopy. Clinical Hemorheology and Microcirculation, 2019, 73, 229-236.	0.9	4
422	Varying solvent type modulates collagen coating and stem cell mechanotransduction on hydrogel substrates. APL Bioengineering, 2019, 3, 036108.	3.3	9
423	Mechanisms of 3D cell migration. Nature Reviews Molecular Cell Biology, 2019, 20, 738-752.	16.1	539
424	<p>Reverse of microtubule-directed chemotherapeutic drugs resistance induced by cancer-associated fibroblasts in breast cancer</p> . OncoTargets and Therapy, 2019, Volume 12, 7963-7973.	1.0	7
425	Dynamic bonds and their roles in mechanosensing. Current Opinion in Chemical Biology, 2019, 53, 88-97.	2.8	31
426	Rise and fall of elastic fibers from development to aging. Consequences on arterial structure-function and therapeutical perspectives. Matrix Biology, 2019, 84, 41-56.	1.5	32
427	A PINCH-1–Smurf1 signaling axis mediates mechano-regulation of BMPR2 and stem cell differentiation. Journal of Cell Biology, 2019, 218, 3773-3794.	2.3	11
428	Impaired function of tendon-derived stem cells in experimental diabetes mellitus rat tendons: implications for cellular mechanism of diabetic tendon disorder. Stem Cell Research and Therapy, 2019, 10, 27.	2.4	19
429	Dynamic freedom: substrate stress relaxation stimulates cell responses. Biomaterials Science, 2019, 7, 836-842.	2.6	49
430	Mechanically robust cationic cellulose nanofibril 3D scaffolds with tuneable biomimetic porosity for cell culture. Journal of Materials Chemistry B, 2019, 7, 53-64.	2.9	22
431	Development and use of biomaterials as wound healing therapies. Burns and Trauma, 2019, 7, 2.	2.3	105
432	Mechanical regulation of gene expression in cardiac myocytes and fibroblasts. Nature Reviews Cardiology, 2019, 16, 361-378.	6.1	134
433	Quantitative phase imaging reveals matrix stiffness-dependent growth and migration of cancer cells. Scientific Reports, 2019, 9, 248.	1.6	44
434	Role of the Extracellular Matrix in Stem Cell Maintenance. Current Stem Cell Reports, 2019, 5, 1-10.	0.7	16
435	Selective stiffening of fibrin hydrogels with micron resolution via photocrosslinking. Acta Biomaterialia, 2019, 87, 88-96.	4.1	22

#	Article	IF	Citations
437	Molecular Organization of Integrin-Based Adhesion Complexes in Mouse Embryonic Stem Cells. ACS Biomaterials Science and Engineering, 2019, 5, 3828-3842.	2.6	21
438	Combined atomic force microscopy (AFM) and traction force microscopy (TFM) reveals a correlation between viscoelastic material properties and contractile prestress of living cells. Soft Matter, 2019, 15, 1721-1729.	1.2	61
439	Large-Area Biomolecule Nanopatterns on Diblock Copolymer Surfaces for Cell Adhesion Studies. Nanomaterials, 2019, 9, 579.	1.9	6
440	Fiber Density Modulates Cell Spreading in 3D Interstitial Matrix Mimetics. ACS Biomaterials Science and Engineering, 2019, 5, 2965-2975.	2.6	64
441	Probing Single-Cell Mechanical Allostasis Using Ultrasound Tweezers. Cellular and Molecular Bioengineering, 2019, 12, 415-427.	1.0	10
442	The role of scaffolds in tissue engineering. , 2019, , 23-49.		10
443	Three-dimensionally Patterned Scaffolds Modulate the Biointerface at the Nanoscale. Nano Letters, 2019, 19, 5118-5123.	4.5	28
444	Driving Cells with Lightâ€Controlled Topographies. Advanced Science, 2019, 6, 1801826.	5.6	21
445	A perfusion bioreactor-based 3D model of the subarachnoid space based on a meningeal tissue construct. Fluids and Barriers of the CNS, 2019, 16, 17.	2.4	8
446	An in vitro investigation into the effects of 10ÂHz cyclic loading on tenocyte metabolism. Scandinavian Journal of Medicine and Science in Sports, 2019, 29, 1511-1520.	1.3	6
447	Elevated BMP and Mechanical Signaling Through YAP1/RhoA Poises FOP Mesenchymal Progenitors for Osteogenesis. Journal of Bone and Mineral Research, 2019, 34, 1894-1909.	3.1	29
448	Mechanical stresses associated with flattening of human femoropopliteal artery specimens during planar biaxial testing and their effects on the calculated physiologic stress–stretch state. Biomechanics and Modeling in Mechanobiology, 2019, 18, 1591-1605.	1.4	17
449	Mechanobiology of Cancer Stem Cells and Their Niche. Cancer Microenvironment, 2019, 12, 17-27.	3.1	32
450	Composite Lipid Bilayers from Cell Membrane Extracts and Artificial Mixes as a Cell Culture Platform. Langmuir, 2019, 35, 8076-8084.	1.6	9
451	De novo lung biofabrication: clinical need, construction methods, and design strategy. Translational Research, 2019, 211, 1-18.	2.2	6
452	Design Principles for Pluripotent Stem Cell-Derived Organoid Engineering. Stem Cells International, 2019, 2019, 1-17.	1.2	25
453	Gradient-enhanced continuum models of healing in damaged soft tissues. Biomechanics and Modeling in Mechanobiology, 2019, 18, 1443-1460.	1.4	14
454	Arterial Stiffness: Different Metrics, Different Meanings. Journal of Biomechanical Engineering, 2019, 141, .	0.6	33

#	Article	IF	Citations
455	Tissue Engineering: Understanding the Role of Biomaterials and Biophysical Forces on Cell Functionality Through Computational and Structural Biotechnology Analytical Methods. Computational and Structural Biotechnology Journal, 2019, 17, 591-598.	1.9	54
456	Cardiac Remodeling: The Course Toward Heart Failure – I. General Concepts. , 2019, , 215-245.		1
457	Surface Immobilized Eâ€Cadherin Mimetic Peptide Regulates the Adhesion and Clustering of Epithelial Cells. Advanced Healthcare Materials, 2019, 8, e1801384.	3.9	16
458	An integrin $\hat{l}\pm IIb\hat{l}^23$ intermediate affinity state mediates biomechanical platelet aggregation. Nature Materials, 2019, 18, 760-769.	13.3	94
459	A New Player in Tissue Mechanics: MicroRNA Control of Mechanical Homeostasis. Developmental Cell, 2019, 48, 596-598.	3.1	3
460	From mechanical resilience to active material properties in biopolymer networks. Nature Reviews Physics, 2019, 1, 249-263.	11.9	111
461	Physics of growing biological tissues: the complex cross-talk between cell activity, growth and resistance. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180070.	1.6	16
462	Chirality Controls Mesenchymal Stem Cell Lineage Diversification through Mechanoresponses. Advanced Materials, 2019, 31, e1900582.	11.1	73
463	The consequences of ageing, progeroid syndromes and cellular senescence on mechanotransduction and the nucleus. Experimental Cell Research, 2019, 378, 98-103.	1.2	17
464	Regulating Mechanotransduction in Three Dimensions using Subâ€Cellular Scale, Crosslinkable Fibers of Controlled Diameter, Stiffness, and Alignment. Advanced Functional Materials, 2019, 29, 1808967.	7.8	23
465	Concise Review: Reduction of Adverse Cardiac Scarring Facilitates Pluripotent Stem Cell-Based Therapy for Myocardial Infarction. Stem Cells, 2019, 37, 844-854.	1.4	16
466	Mechanical regulation of myofibroblast phenoconversion and collagen contraction. Experimental Cell Research, 2019, 379, 119-128.	1.2	118
467	The biophysics and mechanics of blood from a materials perspective. Nature Reviews Materials, 2019, 4, 294-311.	23.3	61
468	MMP12 Deletion Preferentially Attenuates Axial Stiffening of Aging Arteries. Journal of Biomechanical Engineering, 2019, 141, .	0.6	15
469	Kinetics of surface growth with coupled diffusion and the emergence of a universal growth path. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20180465.	1.0	15
470	Mechanosensing and Mechanoregulation of Endothelial Cell Functions. , 2019, 9, 873-904.		115
471	Cell membrane engineering with synthetic materials: Applications in cell spheroids, cellular glues and microtissue formation. Acta Biomaterialia, 2019, 90, 21-36.	4.1	34
472	Bioengineering adult human heart tissue: How close are we?. APL Bioengineering, 2019, 3, 010901.	3.3	43

#	Article	IF	Citations
473	Engineering an Artificial Tâ€Cell Stimulating Matrix for Immunotherapy. Advanced Materials, 2019, 31, e1807359.	11.1	74
474	Rehabilitation and nutrition protocols for optimising return to play from traditional ACL reconstruction in elite rugby union players: A case study. Journal of Sports Sciences, 2019, 37, 1794-1803.	1.0	10
475	T-Cell Mechanobiology: Force Sensation, Potentiation, and Translation. Frontiers in Physics, 2019, 7, .	1.0	44
476	The TRPV4-TAZ Mechanotransduction Signaling Axis in Matrix Stiffness- and TGFÎ ² 1-Induced Epithelial-Mesenchymal Transition. Cellular and Molecular Bioengineering, 2019, 12, 139-152.	1.0	27
477	Keratinâ€binding ability of the Nâ€ŧerminal Solo domain of Solo is critical for its function in cellular mechanotransduction. Genes To Cells, 2019, 24, 390-402.	0.5	14
478	TNF-Stimulated Gene-6 Is a Key Regulator in Switching Stemness and Biological Properties of Mesenchymal Stem Cells. Stem Cells, 2019, 37, 973-987.	1.4	36
479	On the spatiotemporal regulation of cell tensional state. Experimental Cell Research, 2019, 378, 113-117.	1.2	9
480	Mechanical influences on cardiovascular differentiation and disease modeling. Experimental Cell Research, 2019, 377, 103-108.	1.2	4
481	Biochemical Ligand Density Regulates Yes-Associated Protein Translocation in Stem Cells through Cytoskeletal Tension and Integrins. ACS Applied Materials & English & 2019, 11, 8849-8857.	4.0	38
482	Transcriptional regulation of Hepatic Stellate Cell activation in NASH. Scientific Reports, 2019, 9, 2324.	1.6	65
483	ROCK isoforms differentially modulate cancer cell motility by mechanosensing the substrate stiffness. Acta Biomaterialia, 2019, 88, 86-101.	4.1	86
484	Biophysical properties of cells for cancer diagnosis. Journal of Biomechanics, 2019, 86, 1-7.	0.9	15
485	Layer-by-layer assembly as a robust method to construct extracellular matrix mimic surfaces to modulate cell behavior. Progress in Polymer Science, 2019, 92, 1-34.	11.8	54
486	A preliminary study of the local biomechanical environment of liver tumors in vivo. Medical Physics, 2019, 46, 1728-1739.	1.6	4
487	Inflammation in thoracic aortic aneurysms. Herz, 2019, 44, 138-146.	0.4	15
488	MicroRNA-dependent regulation of biomechanical genes establishes tissue stiffness homeostasis. Nature Cell Biology, 2019, 21, 348-358.	4.6	44
489	On the compressibility and poroelasticity of human and murine skin. Biomechanics and Modeling in Mechanobiology, 2019, 18, 1079-1093.	1.4	40
490	Microscale Interrogation of 3D Tissue Mechanics. Frontiers in Bioengineering and Biotechnology, 2019, 7, 412.	2.0	15

#	Article	IF	CITATIONS
491	Directing Multiphenotypic Differentiation of Rat Bone Marrow Mesenchymal Stem Cells under Mechanical Gradient Field. , 2019, , .		0
492	The Role of Vascular Smooth Muscle Cells in Arterial Remodeling: Focus on Calcification-Related Processes. International Journal of Molecular Sciences, 2019, 20, 5694.	1.8	166
493	Translocation of TRPV4-PI3K \hat{I}^3 complexes to the plasma membrane drives myofibroblast transdifferentiation. Science Signaling, 2019, 12, .	1.6	21
494	Mechanical contribution of vascular smooth muscle cells in the tunica media of artery. Nanotechnology Reviews, 2019, 8, 50-60.	2.6	20
495	Integrating machine learning and multiscale modelingâ€"perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. Npj Digital Medicine, 2019, 2, 115.	5.7	319
496	Regional biomechanical imaging of liver cancer cells. Journal of Cancer, 2019, 10, 4481-4487.	1.2	10
497	Homeostasis disrupted by strain mechanosensing. Nature Biomedical Engineering, 2019, 3, 951-952.	11.6	2
498	Collagenase Clostridium Histolyticum for the Treatment of Edematous Fibrosclerotic Panniculopathy (Cellulite): A Randomized Trial. Dermatologic Surgery, 2019, 45, 1047-1056.	0.4	32
499	Biomimetic Micropatterned Adhesive Surfaces To Mechanobiologically Regulate Placental Trophoblast Fusion. ACS Applied Materials & Interfaces, 2019, 11, 47810-47821.	4.0	11
500	Sustainable Nanostructural Materials for Tissue Engineering. , 2019, , 75-100.		0
501	Single-cell connectomic analysis of adult mammalian lungs. Science Advances, 2019, 5, eaaw3851.	4.7	156
502	Matrix stiffness mediates stemness characteristics via activating the Yesâ€associated protein in colorectal cancer cells. Journal of Cellular Biochemistry, 2019, 120, 2213-2225.	1.2	40
503	A model for positive feedback control of the transformation of fibroblasts to myofibroblasts. Progress in Biophysics and Molecular Biology, 2019, 144, 30-40.	1.4	19
504	2D Gelatin Methacrylate Hydrogels with Tunable Stiffness for Investigating Cell Behaviors. ACS Applied Bio Materials, 2019, 2, 570-576.	2.3	15
505	Tamoxifen mechanically deactivates hepatic stellate cells via the G protein-coupled estrogen receptor. Oncogene, 2019, 38, 2910-2922.	2.6	43
507	Elevated Wall Tension Leads to Reduced miRâ€133a in the Thoracic Aorta by Exosome Release. Journal of the American Heart Association, 2019, 8, e010332.	1.6	15
508	Studying YAP-Mediated 3D Morphogenesis Using Fish Embryos and Human Spheroids. Methods in Molecular Biology, 2019, 1893, 167-181.	0.4	1
509	The Hippo Pathway: Biology and Pathophysiology. Annual Review of Biochemistry, 2019, 88, 577-604.	5.0	708

#	Article	IF	CITATIONS
510	Mechanobiological stability of biological soft tissues. Journal of the Mechanics and Physics of Solids, 2019, 125, 298-325.	2.3	27
511	Contributions of Glycosaminoglycans to Collagen Fiber Recruitment in Constitutive Modeling of Arterial Mechanics. Journal of Biomechanics, 2019, 82, 211-219.	0.9	15
512	Rigidity controls human desmoplastic matrix anisotropy to enable pancreatic cancer cell spread via extracellular signal-regulated kinase 2. Matrix Biology, 2019, 81, 50-69.	1.5	43
513	Anisotropic stiffness and tensional homeostasis induce a natural anisotropy of volumetric growth and remodeling in soft biological tissues. Biomechanics and Modeling in Mechanobiology, 2019, 18, 327-345.	1.4	31
514	Unforgettable force – crosstalk and memory of mechanosensitive structures. Biological Chemistry, 2019, 400, 687-698.	1.2	17
515	In Situ Investigation of Interrelationships Between Morphology and Biomechanics of Endothelial and Clial Cells and their Nuclei. Advanced Science, 2019, 6, 1801638.	5.6	18
516	Tissue-informed engineering strategies for modeling human pulmonary diseases. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L303-L320.	1.3	24
517	Synthetic Extracellular Matrices with Nonlinear Elasticity Regulate Cellular Organization. Biomacromolecules, 2019, 20, 826-834.	2.6	71
518	Importance of the circadian clock in tendon development. Current Topics in Developmental Biology, 2019, 133, 309-342.	1.0	16
519	Design and applications of man-made biomimetic fibrillar hydrogels. Nature Reviews Materials, 2019, 4, 99-115.	23.3	253
520	Targeting a Designer TIMP-1 to the Cell Surface for Effective MT1-MMP Inhibition: A Potential Role for the Prion Protein in Renal Carcinoma Therapy. Molecules, 2019, 24, 255.	1.7	14
521	The Development and Application of Key Technologies and Tools. , 2019, , 265-278.		0
522	Fibronectin on the Surface of Extracellular Vesicles Mediates Fibroblast Invasion. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 279-288.	1.4	68
523	Emerging Applications of Nanotechnology for Controlling Cellâ€Surface Receptor Clustering. Angewandte Chemie, 2019, 131, 4840-4849.	1.6	26
524	Emerging Applications of Nanotechnology for Controlling Cellâ€Surface Receptor Clustering. Angewandte Chemie - International Edition, 2019, 58, 4790-4799.	7.2	103
525	Arterial Stiffness in Early Phases of Prehypertension. Updates in Hypertension and Cardiovascular Protection, 2019, , 101-126.	0.1	2
526	Generation of Organs Based on Decellularized Extracellular Matrix Scaffolds. , 2019, , 57-72.		3
527	Constitutive interpretation of arterial stiffness in clinical studies: a methodological review. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H693-H709.	1.5	28

#	Article	IF	CITATIONS
528	Engineering hydrogel viscoelasticity. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 89, 162-167.	1.5	70
529	Simulated ablation for detection of cells impacting paracrine signalling in histology analysis. Mathematical Medicine and Biology, 2019, 36, 93-112.	0.8	3
530	TSG-6: A multifunctional protein with anti-inflammatory and tissue-protective properties. Matrix Biology, 2019, 78-79, 60-83.	1.5	194
531	Integrated lung tissue mechanics one piece at a time: Computational modeling across the scales of biology. Clinical Biomechanics, 2019, 66, 20-31.	0.5	11
532	Fibrosis: Shared Lessons From the Lens and Cornea. Anatomical Record, 2020, 303, 1689-1702.	0.8	15
533	Elastic fibers and biomechanics of the aorta: Insights from mouse studies. Matrix Biology, 2020, 85-86, 160-172.	1.5	57
534	An orthotropic electro-viscoelastic model for the heart with stress-assisted diffusion. Biomechanics and Modeling in Mechanobiology, 2020, 19, 633-659.	1.4	17
535	The regional-dependent biaxial behavior of young and aged mouse skin: A detailed histomechanical characterization, residual strain analysis, and constitutive model. Acta Biomaterialia, 2020, 101, 403-413.	4.1	50
536	Qualitative analysis of contribution of intracellular skeletal changes to cellular elasticity. Cellular and Molecular Life Sciences, 2020, 77, 1345-1355.	2.4	9
537	Quantifying molecular tension—classifications, interpretations and limitations of force sensors. Physical Biology, 2020, 17, 011001.	0.8	22
538	External Volume Expansion Adjusted Adipose Stem Cell by Shifting the Ratio of Fibronectin to Laminin. Tissue Engineering - Part A, 2020, 26, 66-77.	1.6	13
539	Mimicking the Brain Extracellular Matrix <i>in Vitro</i> : A Review of Current Methodologies and Challenges. Israel Journal of Chemistry, 2020, 60, 1141-1151.	1.0	35
540	Biomechanics and Mechanobiology of Extracellular Matrix Remodeling. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2020, , 1-20.	0.7	0
541	Mechanical Forces in the Skin: Roles in Tissue Architecture, Stability, and Function. Journal of Investigative Dermatology, 2020, 140, 284-290.	0.3	67
542	Cellular and Extracellular Homeostasis in Fluctuating Mechanical Environments. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2020, , 83-121.	0.7	3
543	Comparative study of variations in mechanical stress and strain of human blood vessels: mechanical reference for vascular cell mechano-biology. Biomechanics and Modeling in Mechanobiology, 2020, 19, 519-531.	1.4	5
544	Statics and Dynamics of Soft Wetting. Annual Review of Fluid Mechanics, 2020, 52, 285-308.	10.8	140
545	Impaired vascular smooth muscle cell force-generating capacity and phenotypic deregulation in Marfan Syndrome mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165587.	1.8	25

#	Article	IF	CITATIONS
546	Intra- and intercellular transport of substances: Models and mechanisms. Progress in Biophysics and Molecular Biology, 2020, 150, 184-202.	1.4	9
547	The Effect of Downsizing on the Normal Tricuspid Annulus. Annals of Biomedical Engineering, 2020, 48, 655-668.	1.3	7
548	Bioengineering Considerations for a Nurturing Way to Enhance Scalable Expansion of Human Pluripotent Stem Cells. Biotechnology Journal, 2020, 15, e1900314.	1.8	9
549	Modeling the life cycle of the human brain. Current Opinion in Biomedical Engineering, 2020, 15, 16-25.	1.8	13
550	Magnetic biomaterials and nano-instructive tools as mediators of tendon mechanotransduction. Nanoscale Advances, 2020, 2, 140-148.	2.2	25
551	Targeting Rho-associated coiled-coil forming protein kinase (ROCK) in cardiovascular fibrosis and stiffening. Expert Opinion on Therapeutic Targets, 2020, 24, 47-62.	1.5	25
552	Materials for blood brain barrier modeling in vitro. Materials Science and Engineering Reports, 2020, 140, 100522.	14.8	51
553	Engineering and Functionalization of Gelatin Biomaterials: From Cell Culture to Medical Applications. Tissue Engineering - Part B: Reviews, 2020, 26, 164-180.	2.5	319
554	Mechanical and structural changes in human thoracic aortas with age. Acta Biomaterialia, 2020, 103, 172-188.	4.1	55
555	Role of Stiffness versus Wettability in Regulating Cell Behaviors on Polymeric Surfaces. ACS Biomaterials Science and Engineering, 2020, 6, 912-922.	2.6	17
556	Enhanced Molecular Tension Sensor Based on Bioluminescence Resonance Energy Transfer (BRET). ACS Sensors, 2020, 5, 34-39.	4.0	29
557	The TRPV4-AKT axis promotes oral squamous cell carcinoma cell proliferation via CaMKII activation. Laboratory Investigation, 2020, 100, 311-323.	1.7	37
558	Shear force sensing of epithelial Na ⁺ channel (ENaC) relies on <i>N</i> -glycosylated asparagines in the palm and knuckle domains of αENaC. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 717-726.	3.3	49
559	Enhancing Neurogenesis of Neural Stem Cells Using Homogeneous Nanohole Pattern-Modified Conductive Platform. International Journal of Molecular Sciences, 2020, 21, 191.	1.8	15
560	<i>In Vivo</i> Relationship between the Nano-Biomechanical Properties of Streptococcal Polysaccharide Capsules and Virulence Phenotype. ACS Nano, 2020, 14, 1070-1083.	7.3	7
561	Contractile myosin rings and cofilin-mediated actin disassembly orchestrate ECM nanotopography sensing. Biomaterials, 2020, 232, 119683.	5.7	15
562	Next-Generation Biomaterials for Culture and Manipulation of Stem Cells. Cold Spring Harbor Perspectives in Biology, 2020, 12, a035691.	2.3	10
563	Pancreas whole organ engineering. , 2020, , 527-536.		1

#	Article	IF	CITATIONS
564	Heterogeneity Profoundly Alters Emergent Stress Fields in Constrained Multicellular Systems. Biophysical Journal, 2020, 118, 15-25.	0.2	8
565	The architecture and spatial organization of the living human body as revealed by intratissular endoscopy – An osteopathic perspective. Journal of Bodywork and Movement Therapies, 2020, 24, 138-146.	0.5	7
566	The shift in macrophages polarisation after tendon injury: A systematic review. Journal of Orthopaedic Translation, 2020, 21, 24-34.	1.9	32
567	The role of extracellular matrix in biomechanics and its impact on bioengineering of cells and 3D tissues. Matrix Biology, 2020, 85-86, 1-14.	1.5	115
568	A new load-controlled testing method for viscoelastic characterisation through stress-rate measurements. Materialia, 2020, 9, 100552.	1,3	17
569	Pluripotent stem cell biology and engineering. , 2020, , 1-31.		O
570	Palm readings: Manicaria saccifera palm fibers are biocompatible textiles with low immunogenicity. Materials Science and Engineering C, 2020, 108 , 110484 .	3.8	12
571	The Matrisome during Aging and Longevity: A Systems-Level Approach toward Defining Matreotypes Promoting Healthy Aging. Gerontology, 2020, 66, 266-274.	1.4	68
572	Development of an <i>In Vitro</i> Human Thyroid Microtissue Model for Chemical Screening. Toxicological Sciences, 2020, 174, 63-78.	1.4	19
573	Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nature Reviews Rheumatology, 2020, 16, 11-31.	3.5	320
574	The Biological Response to Ventricular Unloading. , 2020, , 91-107.		0
575	Fluid flow-induced activation of subcellular AMPK and its interaction with FAK and Src. Archives of Biochemistry and Biophysics, 2020, 679, 108208.	1.4	14
576	Polyphenols and AGEs/RAGE axis. Trends and challenges. Food Research International, 2020, 129, 108843.	2.9	50
577	Leveling Up Hydrogels: Hybrid Systems in Tissue Engineering. Trends in Biotechnology, 2020, 38, 292-315.	4.9	74
578	Engineering Biomaterials and Approaches for Mechanical Stretching of Cells in Three Dimensions. Frontiers in Bioengineering and Biotechnology, 2020, 8, 589590.	2.0	21
579	How Much Physical Guidance is Needed to Orient Growing Axons in 3D Hydrogels?. Advanced Healthcare Materials, 2020, 9, e2000886.	3.9	14
580	Anxiety and depression: A matter of stiffness?. Medical Hypotheses, 2020, 145, 110344.	0.8	0
581	A Complex and Evolutive Character: Two Face Aspects of ECM in Tumor Progression. Frontiers in Oncology, 2020, 10, 1620.	1.3	26

#	Article	IF	CITATIONS
582	Insights Into the Pathophysiology of Cellulite: A Review. Dermatologic Surgery, 2020, 46, S77-S85.	0.4	42
583	Equid Herpesvirus-1 Exploits the Extracellular Matrix of Mononuclear Cells to Ensure Transport to Target Cells. IScience, 2020, 23, 101615.	1.9	4
584	Progress in the mechanical modulation of cell functions in tissue engineering. Biomaterials Science, 2020, 8, 7033-7081.	2.6	36
585	Caveolin1 Tyrosine-14 Phosphorylation: Role in Cellular Responsiveness to Mechanical Cues. Journal of Membrane Biology, 2020, 253, 509-534.	1.0	15
586	The GEF Trio controls endothelial cell size and arterial remodeling downstream of Vegf signaling in both zebrafish and cell models. Nature Communications, 2020, 11, 5319.	5.8	30
587	Boolean model of anchorage dependence and contact inhibition points to coordinated inhibition but semi-independent induction of proliferation and migration. Computational and Structural Biotechnology Journal, 2020, 18, 2145-2165.	1.9	15
588	Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nature Communications, 2020, $11,5120$.	5.8	1,004
589	Unraveling the mechanobiology of immune cells. Current Opinion in Biotechnology, 2020, 66, 236-245.	3.3	55
590	Mechano-modulatory synthetic niches for liver organoid derivation. Nature Communications, 2020, 11, 3416.	5.8	112
591	Fibronectin fibers are highly tensed in healthy organs in contrast to tumors and virus-infected lymph nodes. Matrix Biology Plus, 2020, 8, 100046.	1.9	19
592	Generation of Scalable Hepatic Micro-Tissues as a Platform for Toxicological Studies. Tissue Engineering and Regenerative Medicine, 2020, 17, 459-475.	1.6	9
593	Extreme Diversity of the Human Vascular Mesenchymal Cell Landscape. Journal of the American Heart Association, 2020, 9, e017094.	1.6	17
594	Selfâ€Strengthening Adhesive Force Promotes Cell Mechanotransduction. Advanced Materials, 2020, 32, e2006986.	11.1	41
595	The interplay of membrane cholesterol and substrate on vascular smooth muscle biomechanics. Current Topics in Membranes, 2020, 86, 279-299.	0.5	3
596	Dental pulp stem cells response on the nanotopography of scaffold to regenerate dentin-pulp complex tissue. Regenerative Therapy, 2020, 15, 243-250.	1.4	14
597	A Complete and Versatile Protocol: Decoration of Cell-Derived Matrices with Mass-Encoded Peptides for Multiplexed Protease Activity Detection. ACS Biomaterials Science and Engineering, 2020, 6, 6598-6617.	2.6	2
598	ADAMTS18 Deficiency Leads to Pulmonary Hypoplasia and Bronchial Microfibril Accumulation. IScience, 2020, 23, 101472.	1.9	13
599	Perlecan Facilitates Neuronal Nitric Oxide Synthase Delocalization in Denervation-Induced Muscle Atrophy. Cells, 2020, 9, 2524.	1.8	4

#	Article	IF	CITATIONS
600	YAP-mediated mechanotransduction tunes the macrophage inflammatory response. Science Advances, 2020, $6, .$	4.7	127
601	The Hypothesis of Biotensegrity and D. D. Palmer's Hypothesis on Tone: A Discussion of Their Alignment. Journal of Chiropractic Humanities, 2020, 27, 82-87.	1.4	1
602	Dopamine D1 receptor stimulates cathepsin K-dependent degradation and resorption of collagen I in lung fibroblasts. Journal of Cell Science, 2020, 133 , .	1.2	12
603	Getting the big picture of cell-matrix interactions: High-throughput biomaterial platforms and systems-level measurements. Current Opinion in Solid State and Materials Science, 2020, 24, 100871.	5.6	2
604	Stretchable Electrode Based on Au@Pt Nanotube Networks for Real-Time Monitoring of ROS Signaling in Endothelial Mechanotransduction. Analytical Chemistry, 2020, 92, 15639-15646.	3.2	29
605	Tricuspid Valve Annuloplasty Alters Leaflet Mechanics. Annals of Biomedical Engineering, 2020, 48, 2911-2923.	1.3	3
606	Periostin and matrix stiffness combine to regulate myofibroblast differentiation and fibronectin synthesis during palatal healing. Matrix Biology, 2020, 94, 31-56.	1.5	24
607	Compact and tunable stretch bioreactor advancing tissue engineering implementation. Application to engineered cardiac constructs. Medical Engineering and Physics, 2020, 84, 1-9.	0.8	15
608	\hat{l}^21 integrin, ILK and mTOR regulate collagen synthesis in mechanically loaded tendon cells. Scientific Reports, 2020, 10, 12644.	1.6	37
609	Microbial Biofilms: Human T-cell Leukemia Virus Type 1 First in Line for Viral Biofilm but Far Behind Bacterial Biofilms. Frontiers in Microbiology, 2020, 11, 2041.	1.5	15
610	Smart diagnostics devices through artificial intelligence and mechanobiological approaches. 3 Biotech, 2020, 10, 351.	1.1	5
611	Corneal Stiffness and Collagen Cross-Linking Proteins in Glaucoma: Potential for Novel Therapeutic Strategy. Journal of Ocular Pharmacology and Therapeutics, 2020, 36, 582-594.	0.6	14
612	Deciphering, Designing, and Realizing Selfâ€Folding Biomimetic Microstructures Using a Massâ€Spring Model and Inkjetâ€Printed, Selfâ€Folding Hydrogels. Advanced Functional Materials, 2020, 30, 2003959.	7.8	4
613	An overview of extrusion-based bioprinting with a focus on induced shear stress and its effect on cell viability. Bioprinting, 2020, 20, e00093.	2.9	109
614	Distinct fibroblast subsets regulate lacteal integrity through YAP/TAZ-induced VEGF-C in intestinal villi. Nature Communications, 2020, 11, 4102.	5.8	36
615	Identification of Putative Non-Substrate-Based XT-I Inhibitors by Natural Product Library Screening. Biomolecules, 2020, 10, 1467.	1.8	8
616	The Effect of Matrix Stiffness on Human Hepatocyte Migration and Function—An In Vitro Research. Polymers, 2020, 12, 1903.	2.0	15
617	Mesenchymal Stromal Cell-Produced Components of Extracellular Matrix Potentiate Multipotent Stem Cell Response to Differentiation Stimuli. Frontiers in Cell and Developmental Biology, 2020, 8, 555378.	1.8	49

#	Article	IF	CITATIONS
618	Inconsistency in Graft Outcome of Bilayered Bioresorbable Supramolecular Arterial Scaffolds in Rats. Tissue Engineering - Part A, 2020, 27, 894-904.	1.6	11
619	Human Retinal Microvasculatureâ€onâ€aâ€Chip for Drug Discovery. Advanced Healthcare Materials, 2020, 9, e2001531.	3.9	27
620	Dissecting the Effect of a 3D Microscaffold on the Transcriptome of Neural Stem Cells with Computational Approaches: A Focus on Mechanotransduction. International Journal of Molecular Sciences, 2020, 21, 6775.	1.8	7
621	Periostin, tenascin, osteopontin isoforms in long- and non-long survival patients with pancreatic cancer: a pilot study. Molecular Biology Reports, 2020, 47, 8235-8241.	1.0	2
622	Cell signaling model for arterial mechanobiology. PLoS Computational Biology, 2020, 16, e1008161.	1.5	39
623	Universal Statistical Laws for the Velocities of Collective Migrating Cells. Advanced Biology, 2020, 4, e2000065.	3.0	13
624	Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature, 2020, 584, 535-546.	13.7	1,045
625	Extracellular matrix stiffness determines DNA repair efficiency and cellular sensitivity to genotoxic agents. Science Advances, 2020, 6, .	4.7	44
626	Developmental bioengineering: recapitulating development for repair. Molecular Systems Design and Engineering, 2020, 5, 1168-1180.	1.7	2
627	Anisotropic Protein Organofibers Encoded With Extraordinary Mechanical Behavior for Cellular Mechanobiology Applications. Angewandte Chemie, 2020, 132, 21665-21671.	1.6	8
628	Spatiotemporal regulation of dynamic cell microenvironment signals based on an azobenzene photoswitch. Journal of Materials Chemistry B, 2020, 8, 9212-9226.	2.9	8
629	Mechanical and molecular parameters that influence the tendon differentiation potential of C3H10T1/2 cells in 2D- and 3D-culture systems. Biology Open, 2020, 9, .	0.6	9
630	Anisotropic Protein Organofibers Encoded With Extraordinary Mechanical Behavior for Cellular Mechanobiology Applications. Angewandte Chemie - International Edition, 2020, 59, 21481-21487.	7.2	39
631	Mechanical and Physical Regulation of Fibroblast–Myofibroblast Transition: From Cellular Mechanoresponse to Tissue Pathology. Frontiers in Bioengineering and Biotechnology, 2020, 8, 609653.	2.0	107
632	Molecular Regulators of Cellular Mechanoadaptation at Cell–Material Interfaces. Frontiers in Bioengineering and Biotechnology, 2020, 8, 608569.	2.0	12
633	Paxillin family of focal adhesion adaptor proteins and regulation of cancer cell invasion. International Review of Cell and Molecular Biology, 2020, 355, 1-52.	1.6	28
634	TRPV4 integrates matrix mechanosensing with Ca ²⁺ signaling to regulate extracellular matrix remodeling. FEBS Journal, 2021, 288, 5867-5887.	2.2	26
635	Dermal fibroblasts and triple-negative mammary epithelial cancer cells differentially stiffen their local matrix. APL Bioengineering, 2020, 4, 046105.	3.3	8

#	Article	IF	Citations
636	Engineering Biomaterials to Guide Heart Cells for Matured Cardiac Tissue. Coatings, 2020, 10, 925.	1.2	17
637	Application of FRET Biosensors in Mechanobiology and Mechanopharmacological Screening. Frontiers in Bioengineering and Biotechnology, 2020, 8, 595497.	2.0	50
638	Polymer Hydrogels to Guide Organotypic and Organoid Cultures. Advanced Functional Materials, 2020, 30, 2000097.	7.8	61
639	Aqueous surface gels as low friction interfaces to mitigate implant-associated inflammation. Journal of Materials Chemistry B, 2020, 8, 6782-6791.	2.9	8
640	Cytoskeletal Disruption after Electroporation and Its Significance to Pulsed Electric Field Therapies. Cancers, 2020, 12, 1132.	1.7	46
641	Simvastatin ameliorates altered mechanotransduction in uterine leiomyoma cells. American Journal of Obstetrics and Gynecology, 2020, 223, 733.e1-733.e14.	0.7	32
642	Biodegradable Polymers as the Pivotal Player in the Design of Tissue Engineering Scaffolds. Advanced Healthcare Materials, 2020, 9, e1901358.	3.9	137
643	Synergistic Effect of Cell-Derived Extracellular Matrices and Topography on Osteogenesis of Mesenchymal Stem Cells. ACS Applied Materials & Samp; Interfaces, 2020, 12, 25591-25603.	4.0	41
644	An Active Biomechanical Model of Cell Adhesion Actuated by Intracellular Tensioning-Taxis. Biophysical Journal, 2020, 118, 2656-2669.	0.2	5
645	Reduction of Liver Metastasis Stiffness Improves Response to Bevacizumab in Metastatic Colorectal Cancer. Cancer Cell, 2020, 37, 800-817.e7.	7.7	179
646	Mechano-therapeutics: Targeting Mechanical Signaling in Fibrosis and Tumor Stroma., 2020, 212, 107575.		69
647	Remodeling of aligned fibrous extracellular matrix by encapsulated cells under mechanical stretching. Acta Biomaterialia, 2020, 112, 202-212.	4.1	12
648	Three-dimensional traction microscopy accounting for cell-induced matrix degradation. Computer Methods in Applied Mechanics and Engineering, 2020, 364, 112935.	3.4	11
649	Pressure-induced constriction of the middle cerebral artery is abolished in TrpC6 knockout mice. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H42-H50.	1.5	14
650	Ligand Diffusion Enables Forceâ€Independent Cell Adhesion via Activating α5β1 Integrin and Initiating Rac and RhoA Signaling. Advanced Materials, 2020, 32, e2002566.	11.1	50
651	Alterations in corneal biomechanics underlie early stages of autoimmune-mediated dry eye disease. Journal of Autoimmunity, 2020, 114, 102500.	3.0	13
652	Leading the invasion: The role of Cathepsin S in the tumour microenvironment. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118781.	1.9	20
653	Aortic remodeling is modest and sex-independent in mice when hypertension is superimposed on aging. Journal of Hypertension, 2020, 38, 1312-1321.	0.3	21

#	Article	IF	CITATIONS
654	The <i>Ex Vivo</i> Skin Model as an Alternative Tool for the Efficacy and Safety Evaluation of Topical Products. ATLA Alternatives To Laboratory Animals, 2020, 48, 10-22.	0.7	38
655	Fast, rate-independent, finite element implementation of a 3D constrained mixture model of soft tissue growth and remodeling. Computer Methods in Applied Mechanics and Engineering, 2020, 368, 113156.	3.4	17
656	A new longitudinal variation in the structure of collagen fibrils and its relationship to locations of mechanical damage susceptibility. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103849.	1.5	5
657	Excessive Production of Transforming Growth Factor \hat{I}^21 Causes Mural Cell Depletion From Cerebral Small Vessels. Frontiers in Aging Neuroscience, 2020, 12, 151.	1.7	13
658	<p>An AFM-Based Nanomechanical Study of Ovarian Tissues with Pathological Conditions</p> . International Journal of Nanomedicine, 2020, Volume 15, 4333-4350.	3.3	19
659	Talin dissociates from RIAM and associates to vinculin sequentially in response to the actomyosin force. Nature Communications, 2020, 11, 3116.	5.8	27
660	Mechanical Properties Determination of DMPC, DPPC, DSPC, and HSPC Solid-Ordered Bilayers. Langmuir, 2020, 36, 3826-3835.	1.6	32
661	Revealing hidden information in osteoblast's mechanotransduction through analysis of time patterns of critical events. BMC Bioinformatics, 2020, 21, 114.	1.2	4
662	The G Protein-Coupled Estrogen Receptor (GPER) Expression Correlates with Pro-Metastatic Pathways in ER-Negative Breast Cancer: A Bioinformatics Analysis. Cells, 2020, 9, 622.	1.8	28
663	The emerging roles of eosinophils in mucosal homeostasis. Mucosal Immunology, 2020, 13, 574-583.	2.7	58
664	Sub―and Supramolecular Xâ€Ray Characterization of Engineered Tissues from Equine Tendon, Bovine Dermis, and Fish Skin Typeâ€l Collagen. Macromolecular Bioscience, 2020, 20, e2000017.	2.1	34
665	The novel role of Hippo-YAP/TAZ in immunity at the mammalian maternal-fetal interface: Opportunities, challenges. Biomedicine and Pharmacotherapy, 2020, 126, 110061.	2.5	7
666	Identification of Telocytes in the Pancreas of Turtles—A role in Cellular Communication. International Journal of Molecular Sciences, 2020, 21, 2057.	1.8	13
667	The Potential Impact and Timeline of Engineering on Congenital Interventions. Pediatric Cardiology, 2020, 41, 522-538.	0.6	1
668	Three-dimensional numerical simulation of soft-tissue wound healing using constrained-mixture anisotropic hyperelasticity and gradient-enhanced damage mechanics. Journal of the Royal Society Interface, 2020, 17, 20190708.	1.5	18
669	Bioreactors in tissue engineering: mimicking the microenvironment. , 2020, , 709-752.		10
670	Mechanical load-induced H2S production by periodontal ligament stem cells activates M1 macrophages to promote bone remodeling and tooth movement via STAT1. Stem Cell Research and Therapy, 2020, 11, 112.	2.4	41
671	Molecular Dissection of the Campylobacter jejuni CadF and FlpA Virulence Proteins in Binding to Host Cell Fibronectin. Microorganisms, 2020, 8, 389.	1.6	22

#	Article	IF	CITATIONS
672	Fibrosis and cancer: A strained relationship. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1873, 188356.	3.3	327
673	Laser capture microdissection coupled mass spectrometry (LCM-MS) for spatially resolved analysis of formalin-fixed and stained human lung tissues. Clinical Proteomics, 2020, 17, 24.	1.1	37
674	Impact of Attrition, Intercellular Shear in Dry Eye Disease: When Cells are Challenged and Neurons are Triggered. International Journal of Molecular Sciences, 2020, 21, 4333.	1.8	24
675	The Overview of Porous, Bioactive Scaffolds as Instructive Biomaterials for Tissue Regeneration and Their Clinical Translation. Pharmaceutics, 2020, 12, 602.	2.0	81
676	Mechanics of actin filaments in cancer onset and progress. International Review of Cell and Molecular Biology, 2020, 355, 205-243.	1.6	8
677	Remote triggering of TGF- \hat{l}^2 /Smad2/3 signaling in human adipose stem cells laden on magnetic scaffolds synergistically promotes tenogenic commitment. Acta Biomaterialia, 2020, 113, 488-500.	4.1	12
678	Biological responses to physicochemical properties of biomaterial surface. Chemical Society Reviews, 2020, 49, 5178-5224.	18.7	183
679	Integrating mental imagery and fascial tissue: A conceptualization for research into movement and cognition. Complementary Therapies in Clinical Practice, 2020, 40, 101193.	0.7	6
680	Decellularized skeletal muscles display neurotrophic effects in threeâ€dimensional organotypic cultures. Stem Cells Translational Medicine, 2020, 9, 1233-1243.	1.6	16
681	Natural Architectures for Tissue Engineering and Regenerative Medicine. Journal of Functional Biomaterials, 2020, 11, 47.	1.8	10
682	Drebrin is induced during myofibroblast differentiation and enhances the production of fibrosis-related genes. Biochemical and Biophysical Research Communications, 2020, 529, 224-230.	1.0	3
683	Softening of the chronic hemi-section spinal cord injury scar parallels dysregulation of cellular and extracellular matrix content. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103953.	1.5	6
684	Enhanced regeneration of osteochondral defects by using an aggrecanase-1 responsively degradable and N-cadherin mimetic peptide-conjugated hydrogel loaded with BMSCs. Biomaterials Science, 2020, 8, 2212-2226.	2.6	15
685	Reprogramming normal cells into tumour precursors requires ECM stiffness and oncogene-mediated changes of cell mechanical properties. Nature Materials, 2020, 19, 797-806.	13.3	140
686	Surface Roughness Gradients Reveal Topography‧pecific Mechanosensitive Responses in Human Mesenchymal Stem Cells. Small, 2020, 16, e1905422.	5.2	134
687	xm ns:mm ="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"> <mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="bold-italic">î±</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="bold-italic">v</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi< td=""><td>1.0</td><td>4</td></mml:mi<></mml:mrow></mml:msub></mml:mrow>	1.0	4
688	mathyariant="bold-italic" x/2 s/mmkmix s/mmkmrowx smmkmrowx smmkmrowx s/mmkmrowx s/mmkmr	o.9	nl:mrow>
689	The Extracellular Matrix: An Accomplice in Gastric Cancer Development and Progression. Cells, 2020, 9, 394.	1.8	60

#	Article	IF	CITATIONS
690	Engineering Gels with Time-Evolving Viscoelasticity. Materials, 2020, 13, 438.	1.3	17
691	Computational systems mechanobiology of growth and remodeling: Integration of tissue mechanics and cell regulatory network dynamics. Current Opinion in Biomedical Engineering, 2020, 15, 75-80.	1.8	15
692	Advanced Biomaterials and Processing Methods for Liver Regeneration: Stateâ€ofâ€theâ€Art and Future Trends. Advanced Healthcare Materials, 2020, 9, e1901435.	3.9	36
693	Biomedical applications of electrical stimulation. Cellular and Molecular Life Sciences, 2020, 77, 2681-2699.	2.4	75
694	A Hybrid Model of Cartilage Regeneration Capturing the Interactions Between Cellular Dynamics and Porosity. Bulletin of Mathematical Biology, 2020, 82, 18.	0.9	3
695	Early-Onset Osteoarthritis originates at the chondrocyte level in Hip Dysplasia. Scientific Reports, 2020, 10, 627.	1.6	20
696	Engineering Biomaterials with Micro/Nanotechnologies for Cell Reprogramming. ACS Nano, 2020, 14, 1296-1318.	7.3	39
697	Cancer Metastasis: The Role of the Extracellular Matrix and the Heparan Sulfate Proteoglycan Perlecan. Frontiers in Oncology, 2019, 9, 1482.	1.3	99
698	Fibroblast rejuvenation by mechanical reprogramming and redifferentiation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10131-10141.	3.3	54
699	Frontiers in Orthopaedic Biomechanics. , 2020, , .		4
700	Biomimicry of microbial polysaccharide hydrogels for tissue engineering and regenerative medicine – A review. Carbohydrate Polymers, 2020, 241, 116345.	5.1	99
701	Atomic Force Microscopy in Mechanoimmunology Analysis: A New Perspective for Cancer Immunotherapy. Biotechnology Journal, 2020, 15, e1900559.	1.8	7
702	Cancer mechanobiology: interaction of biomaterials with cancer cells., 2020,, 445-470.		2
703	Functionalized Enzyme-Responsive Biomaterials to Model Tissue Stiffening in vitro. Frontiers in Bioengineering and Biotechnology, 2020, 8, 208.	2.0	15
704	Altered mechanics of vaginal smooth muscle cells due to the lysyl oxidase-like1 knockout. Acta Biomaterialia, 2020, 110, 175-187.	4.1	8
705	Matrix mechanotransduction mediated by thrombospondin-1/integrin/YAP in the vascular remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9896-9905.	3.3	90
706	Architecture of tendon and ligament and their adaptation to pathological conditions., 2020,, 115-147.		7
707	Tendonâ€derived extracellular matrix induces mesenchymal stem cell tenogenesis via an integrin/transforming growth factorâ€Î² crosstalkâ€mediated mechanism. FASEB Journal, 2020, 34, 8172-8186.	0.2	36

#	ARTICLE	IF	CITATIONS
708	A Feed-Forward Mechanosignaling Loop Confers Resistance to Therapies Targeting the MAPK Pathway in BRAF-Mutant Melanoma. Cancer Research, 2020, 80, 1927-1941.	0.4	46
709	Wound healing and fibrosis: a contrasting role for periostin in skin and the oral mucosa. American Journal of Physiology - Cell Physiology, 2020, 318, C1065-C1077.	2.1	51
710	<p>HIF-1α, TWIST-1 and ITGB-1, associated with Tumor Stiffness, as Novel Predictive Markers for the Pathological Response to Neoadjuvant Chemotherapy in Breast Cancer</p> . Cancer Management and Research, 2020, Volume 12, 2209-2222.	0.9	17
711	Cyto-friendly polymerization at cell surfaces modulates cell fate by clustering cell-surface receptors. Chemical Science, 2020, 11, 4221-4225.	3.7	18
712	Characteristics of nonâ€eulprit plaques in acute coronary syndrome patients with calcified plaque at the culprit lesion. Catheterization and Cardiovascular Interventions, 2021, 97, E298-E305.	0.7	2
713	Stretchable Electrochemical Sensors for Cell and Tissue Detection. Angewandte Chemie - International Edition, 2021, 60, 2757-2767.	7.2	66
714	Stretchable Electrochemical Sensors for Cell and Tissue Detection. Angewandte Chemie, 2021, 133, 2789-2799.	1.6	12
715	Mechanical, structural, and physiologic differences in human elastic and muscular arteries of different ages: Comparison of the descending thoracic aorta to the superficial femoral artery. Acta Biomaterialia, 2021, 119, 268-283.	4.1	29
716	Understanding the cellular responses based on low-density electrospun fiber networks. Materials Science and Engineering C, 2021, 119, 111470.	3.8	17
717	Commentary: Genetics and surgical planning in heritable aortic diseaseâ€"moving from "when to operate―to "how to operate― Journal of Thoracic and Cardiovascular Surgery, 2021, 161, e358-e359.	0.4	0
718	The geometry of incompatibility in growing soft tissues: Theory and numerical characterization. Journal of the Mechanics and Physics of Solids, 2021, 146, 104177.	2.3	13
719	Cartilage oligomeric matrix protein fine-tunes disturbed flow-induced endothelial activation and atherogenesis. Matrix Biology, 2021, 95, 32-51.	1.5	14
720	Mechanical Regulation of Apoptosis in the Cardiovascular System. Annals of Biomedical Engineering, 2021, 49, 75-97.	1.3	23
721	Crosstalk between mechanotransduction and metabolism. Nature Reviews Molecular Cell Biology, 2021, 22, 22-38.	16.1	193
722	Mechanisms of Vascular Remodeling in Hypertension. American Journal of Hypertension, 2021, 34, 432-441.	1.0	54
723	Effects of External Stimulators on Engineered Skeletal Muscle Tissue Maturation. Advanced Materials Interfaces, 2021, 8, 2001167.	1.9	40
724	Biomaterials Regulate Mechanosensors YAP/TAZ in Stem Cell Growth and Differentiation. Tissue Engineering and Regenerative Medicine, 2021, 18, 199-215.	1.6	22
725	The Integrin Interactome. Methods in Molecular Biology, 2021, , .	0.4	0

#	ARTICLE	IF	CITATIONS
726	Comparison of morphometric, structural, mechanical, and physiologic characteristics of human superficial femoral and popliteal arteries. Acta Biomaterialia, 2021, 121, 431-443.	4.1	13
727	Matrix stiffness epigenetically regulates the oncogenic activation of the Yes-associated protein in gastric cancer. Nature Biomedical Engineering, 2021, 5, 114-123.	11.6	65
728	Mapping the Endothelial Cell <i>S</i> -Sulfhydrome Highlights the Crucial Role of Integrin Sulfhydration in Vascular Function. Circulation, 2021, 143, 935-948.	1.6	70
729	Developmental origins of mechanical homeostasis in the aorta. Developmental Dynamics, 2021, 250, 629-639.	0.8	28
730	Biomimetic algal polysaccharide coated 3D nanofibrous scaffolds promote skin extracellular matrix formation. Materials Science and Engineering C, 2021, 119, 111580.	3.8	13
731	Energy expenditure during cell spreading influences the cellular response to matrix stiffness. Biomaterials, 2021, 267, 120494.	5 . 7	38
732	Atomic force microscopy for revealing micro/nanoscale mechanics in tumor metastasis: from single cells to microenvironmental cues. Acta Pharmacologica Sinica, 2021, 42, 323-339.	2.8	43
733	Additively Manufactured Tantalum Implants for Repairing Bone Defects: A Systematic Review. Tissue Engineering - Part B: Reviews, 2021, 27, 166-180.	2.5	30
734	Tunable Protein Hydrogels: Present State and Emerging Development. Advances in Biochemical Engineering/Biotechnology, 2021, 178, 63-97.	0.6	4
735	Advances in Engineering Human Tissue Models. Frontiers in Bioengineering and Biotechnology, 2020, 8, 620962.	2.0	72
736	Carbon Nanomaterials for Neuronal Tissue Engineering. RSC Nanoscience and Nanotechnology, 2021, , 184-222.	0.2	0
737	Graphene oxide nanofilm and chicken embryo extract decrease the invasiveness of HepG2 liver cancer cells. Cancer Nanotechnology, 2021, 12, .	1.9	8
738	From Transcript to Tissue: Multiscale Modeling from Cell Signaling to Matrix Remodeling. Annals of Biomedical Engineering, 2021, 49, 1701-1715.	1.3	26
739	Altered Vascular Extracellular Matrix in the Pathogenesis of Atherosclerosis. Journal of Cardiovascular Translational Research, 2021, 14, 647-660.	1.1	24
740	Mechanotransduction, nanotechnology, and nanomedicine. Journal of Biomedical Research, 2021, 35, 284.	0.7	7
741	Biomechanical Regulation of Stem Cell Fate. Current Stem Cell Reports, 2021, 7, 30-38.	0.7	0
742	Blood pressure variability â€" regular and irregular waves. Arterial Hypertension (Russian Federation), 2021, 26, 612-619.	0.1	0
743	Exploitation of Vascular Mechanobiology for Therapy Innovations. Cardiac and Vascular Biology, 2021, , 333-352.	0.2	0

#	Article	IF	Citations
744	Harnessing Extracellular Matrix Biology for Tumor Drug Delivery. Journal of Personalized Medicine, 2021, 11, 88.	1.1	16
745	Decrease in membrane fluidity and traction force induced by silica-coated magnetic nanoparticles. Journal of Nanobiotechnology, 2021, 19, 21.	4.2	21
746	The cyclic AMP signaling pathway in the rodent main olfactory system. Cell and Tissue Research, 2021, 383, 429-443.	1.5	16
747	Mechanobiology of Arterial Hypertension. Cardiac and Vascular Biology, 2021, , 277-298.	0.2	0
748	The Effect of Immunosuppressive Drugs on MMPs Activity in The Walls of Blood Vessels - A Systematic Review. International Journal of Medical Sciences, 2021, 18, 1502-1509.	1.1	4
749	Gnas Inactivation Alters Subcutaneous Tissues in Progression to Heterotopic Ossification. Frontiers in Genetics, 2021, 12, 633206.	1.1	2
750	Overcoming Therapeutic Challenges for Pancreatic Ductal with xCT Inhibitors. Advances in Experimental Medicine and Biology, 2021, 1301, 7-24.	0.8	1
751	Tailoring Cellular Function: The Contribution of the Nucleus in Mechanotransduction. Frontiers in Bioengineering and Biotechnology, 2020, 8, 596746.	2.0	16
753	Nanoindentation and Mechanical Properties of Materials at Submicro- and Nanoscale Levels: Recent Results and Achievements. Physics of the Solid State, 2021, 63, 1-41.	0.2	26
7 54	Estimation of three-dimensional chromatin morphology for nuclear classification and characterisation. Scientific Reports, $2021, 11, 3364$.	1.6	4
755	Harmine alleviates atherogenesis by inhibiting disturbed flowâ€mediated endothelial activation via protein tyrosine phosphatase PTPN14 and YAP. British Journal of Pharmacology, 2021, 178, 1524-1540.	2.7	9
757	3D Cell Culture for the Study of Microenvironment-Mediated Mechanostimuli to the Cell Nucleus: An Important Step for Cancer Research. Frontiers in Molecular Biosciences, 2021, 8, 628386.	1.6	8
758	Mechanobiological Principles Influence the Immune Response in Regeneration: Implications for Bone Healing. Frontiers in Bioengineering and Biotechnology, 2021, 9, 614508.	2.0	13
760	Osteoclastic effects of mBMMSCs under compressive pressure during orthodontic tooth movement. Stem Cell Research and Therapy, 2021, 12, 148.	2.4	14
761	Silencing Heat Shock Protein 47 (HSP47) in Fibrogenic Precision-Cut Lung Slices: A Surprising Lack of Effects on Fibrogenesis?. Frontiers in Medicine, 2021, 8, 607962.	1.2	8
762	Microrheology reveals simultaneous cell-mediated matrix stiffening and fluidization that underlie breast cancer invasion. Science Advances, 2021, 7, .	4.7	21
763	Advanced <i>In Vitro</i> Modeling to Study the Paradox of Mechanically Induced Cardiac Fibrosis. Tissue Engineering - Part C: Methods, 2021, 27, 100-114.	1.1	9
764	Engineering the MSC Secretome: A Hydrogel Focused Approach. Advanced Healthcare Materials, 2021, 10, e2001948.	3.9	65

#	Article	IF	Citations
765	Fibrous scaffold with a tunable nonlinear elasticity. Polymer Testing, 2021, 94, 107045.	2.3	6
766	Challenges and Possibilities of Cell-Based Tissue-Engineered Vascular Grafts. Cyborg and Bionic Systems, 2021, 2021, .	3.7	22
767	Early events in endothelial flow sensing. Cytoskeleton, 2021, 78, 217-231.	1.0	30
768	Scaffold-free cell-based tissue engineering therapies: advances, shortfalls and forecast. Npj Regenerative Medicine, 2021, 6, 18.	2.5	72
769	Nanofibrillar Hydrogel Recapitulates Changes Occurring in the Fibrotic Extracellular Matrix. Biomacromolecules, 2021, 22, 2352-2362.	2.6	17
770	Kindlin3 regulates biophysical properties and mechanics of membrane to cortex attachment. Cellular and Molecular Life Sciences, 2021, 78, 4003-4018.	2.4	5
771	Involvement of actin cytoskeletal modifications in the inhibition of triple-negative breast cancer growth and metastasis by nimbolide. Molecular Therapy - Oncolytics, 2021, 20, 596-606.	2.0	10
772	Arterial stiffness and cardiac dysfunction in Hutchinson–Gilford Progeria Syndrome corrected by inhibition of lysyl oxidase. Life Science Alliance, 2021, 4, e202000997.	1.3	20
773	Modifications of Plasma Membrane Organization in Cancer Cells for Targeted Therapy. Molecules, 2021, 26, 1850.	1.7	19
774	Viscoelastic Cell Microenvironment: Hydrogelâ€Based Strategy for Recapitulating Dynamic ECM Mechanics. Advanced Functional Materials, 2021, 31, 2100848.	7.8	80
775	The focal mechanical properties of normal and diseased porcine aortic valve tissue measured by a novel microindentation device. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 115, 104245.	1.5	0
776	Bioactive potential of natural biomaterials: identification, retention and assessment of biological properties. Signal Transduction and Targeted Therapy, 2021, 6, 122.	7.1	100
777	Diretrizes Brasileiras de Hipertensão Arterial – 2020. Arquivos Brasileiros De Cardiologia, 2021, 116, 516-658.	0.3	340
778	Mechanical homeostasis in tissue equivalents: a review. Biomechanics and Modeling in Mechanobiology, 2021, 20, 833-850.	1.4	36
779	Extracellular matrix in multicellular aggregates acts as a pressure sensor controlling cell proliferation and motility. ELife, $2021,10,10$	2.8	35
780	Gene therapy strategies for idiopathic pulmonary fibrosis: recent advances, current challenges, and future directions. Molecular Therapy - Methods and Clinical Development, 2021, 20, 483-496.	1.8	21
781	Focus on time: dynamic imaging reveals stretch-dependent cell relaxation and nuclear deformation. Biophysical Journal, 2021, 120, 764-772.	0.2	2
782	Computational model of damage-induced growth in soft biological tissues considering the mechanobiology of healing. Biomechanics and Modeling in Mechanobiology, 2021, 20, 1297-1315.	1.4	12

#	Article	IF	CITATIONS
783	Pre-complexation of talin and vinculin without tension is required for efficient nascent adhesion maturation. ELife, $2021,10,10$	2.8	36
784	Post-Adipose-Derived Stem Cells (ADSC) Stimulated by Collagen Type V (Col V) Mitigate the Progression of Osteoarthritic Rabbit Articular Cartilage. Frontiers in Cell and Developmental Biology, 2021, 9, 606890.	1.8	8
785	Mechanical Properties of Soft Biological Membranes for Organ-on-a-Chip Assessed by Bulge Test and AFM. ACS Biomaterials Science and Engineering, 2021, 7, 2990-2997.	2.6	32
786	Advances in biofabrication techniques for collagen-based 3D in vitro culture models for breast cancer research. Materials Science and Engineering C, 2021, 122, 111944.	3.8	29
787	Piezo1 Channels Contribute to the Regulation of Human Atrial Fibroblast Mechanical Properties and Matrix Stiffness Sensing. Cells, 2021, 10, 663.	1.8	43
788	Manipulation of Stem Cells Fates: The Master and Multifaceted Roles of Biophysical Cues of Biomaterials. Advanced Functional Materials, 2021, 31, 2010626.	7.8	62
789	A Review of Single-Cell Adhesion Force Kinetics and Applications. Cells, 2021, 10, 577.	1.8	33
790	EPB41L5 controls podocyte extracellular matrix assembly by adhesome-dependent force transmission. Cell Reports, 2021, 34, 108883.	2.9	19
791	Postnatal structural development of mammalian Basilar Membrane provides anatomical basis for the maturation of tonotopic maps and frequency tuning. Scientific Reports, 2021, 11, 7581.	1.6	4
793	Realizing tissue integration with supramolecular hydrogels. Acta Biomaterialia, 2021, 124, 1-14.	4.1	29
794	Extracellular Matrix: Emerging Roles and Potential Therapeutic Targets for Breast Cancer. Frontiers in Oncology, 2021, 11, 650453.	1.3	22
795	Mechanotransduction of Strain Regulates an Invasive Phenotype in Newly Transformed Epithelial Cells. Frontiers in Physics, 2021, 9, .	1.0	6
796	Endogenous Stimuliâ€Activatable Nanomedicine for Immune Theranostics for Cancer. Advanced Functional Materials, 2021, 31, 2100386.	7.8	36
797	Membrane receptor-mediated mechano-transduction maintains cell integrity during pollen tube growth within the pistil. Developmental Cell, 2021, 56, 1030-1042.e6.	3.1	46
798	Monitoring mechanical stimulation for optimal tendon tissue engineering: A mechanical and biological multiscale study. Journal of Biomedical Materials Research - Part A, 2021, 109, 1881-1892.	2.1	5
799	Cell-induced confinement effects in soft tissue mechanics. Journal of Applied Physics, 2021, 129, .	1.1	15
800	Mechanically tuned vascular graft demonstrates rapid endothelialization and integration into the porcine iliac artery wall. Acta Biomaterialia, 2021, 125, 126-137.	4.1	12
801	Immediate effects of myofascial release on neuromechanical characteristics in female and male patients with low back pain and healthy controls as assessed by tensiomyography. A controlled matched-pair study. Clinical Biomechanics, 2021, 84, 105351.	0.5	7

#	Article	IF	CITATIONS
802	Differential cellular responses to adhesive interactions with galectin-8- and fibronectin-coated substrates. Journal of Cell Science, 2021, 134, .	1.2	16
803	Tenascin-C-mediated suppression of extracellular matrix adhesion force promotes entheseal new bone formation through activation of Hippo signalling in ankylosing spondylitis. Annals of the Rheumatic Diseases, 2021, 80, 891-902.	0.5	24
805	Shining a light on extracellular matrix dynamics in vivo. Seminars in Cell and Developmental Biology, 2021, 120, 85-93.	2.3	5
806	Controlling Structure with Injectable Biomaterials to Better Mimic Tissue Heterogeneity and Anisotropy. Advanced Healthcare Materials, 2021, 10, e2002221.	3.9	26
807	Treponema denticola-Induced RASA4 Upregulation Mediates Cytoskeletal Dysfunction and MMP-2 Activity in Periodontal Fibroblasts. Frontiers in Cellular and Infection Microbiology, 2021, 11, 671968.	1.8	7
809	Can mechanical forces attune heterotypic cell-cell communications?. Journal of Biomechanics, 2021, 121, 110409.	0.9	0
810	Estrogen Modulates Epithelial Breast Cancer Cell Mechanics and Cell-to-Cell Contacts. Materials, 2021, 14, 2897.	1.3	7
811	Global Sensitivity Analysis of a Homogenized Constrained Mixture Model of Arterial Growth and Remodeling. Journal of Elasticity, 2021, 145, 191-221.	0.9	9
812	Xenogeneic dentin matrix as a scaffold for biomineralization and induced odontogenesis. Biomedical Materials (Bristol), 2021, 16, 045020.	1.7	11
813	ITGA2, LAMB3, and LAMC2 may be the potential therapeutic targets in pancreatic ductal adenocarcinoma: an integrated bioinformatics analysis. Scientific Reports, 2021, 11, 10563.	1.6	31
814	Aspects of the Tumor Microenvironment Involved in Immune Resistance and Drug Resistance. Frontiers in Immunology, 2021, 12, 656364.	2.2	175
815	From the Matrix to the Nucleus and Back: Mechanobiology in the Light of Health, Pathologies, and Regeneration of Oral Periodontal Tissues. Biomolecules, 2021, 11, 824.	1.8	11
816	Accounting for Material Changes in Decellularized Tissue with Underutilized Methodologies. BioMed Research International, 2021, 2021, 1-15.	0.9	9
817	Stiffening of the extracellular matrix is a sufficient condition for airway hyperreactivity. Journal of Applied Physiology, 2021, 130, 1635-1645.	1.2	13
818	Targeting the extracellular matrix for immunomodulation: applications in drug delivery and cell therapies. Drug Delivery and Translational Research, 2021, 11, 2394-2413.	3.0	9
819	Extracellular Matrix Remodeling in Stem Cell Culture: A Potential Target for Regulating Stem Cell Function. Tissue Engineering - Part B: Reviews, 2022, 28, 542-554.	2.5	5
820	Airway-On-A-Chip: Designs and Applications for Lung Repair and Disease. Cells, 2021, 10, 1602.	1.8	25
822	Mechanical stimulation induces rapid fibroblast proliferation and accelerates the early maturation of human skin substitutes. Biomaterials, 2021, 273, 120779.	5.7	39

#	Article	IF	CITATIONS
823	Mechanotransduction assays for neural regeneration strategies: A focus on glial cells. APL Bioengineering, 2021, 5, 021505.	3.3	16
824	Human mammary epithelial cells in a mature, stratified epithelial layer flatten and stiffen compared to single and confluent cells. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129891.	1.1	5
825	Mechano-chemo-biological Computational Models for Arteries in Health, Disease and Healing: From Tissue Remodelling to Drug-eluting Devices. Current Pharmaceutical Design, 2021, 27, 1904-1917.	0.9	3
826	Fibroblasts and macrophages: Collaborators in tissue homeostasis. Immunological Reviews, 2021, 302, 86-103.	2.8	29
827	Evolving structure-function relations during aortic maturation and aging revealed by multiphoton microscopy. Mechanisms of Ageing and Development, 2021, 196, 111471.	2.2	22
828	Pyruvate kinase M2 mediates fibroblast proliferation to promote tubular epithelial cell survival in acute kidney injury. FASEB Journal, 2021, 35, e21706.	0.2	13
829	Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment. ELife, 2021, 10, .	2.8	127
830	A computational framework for modeling cell–matrix interactions in soft biological tissues. Biomechanics and Modeling in Mechanobiology, 2021, 20, 1851-1870.	1.4	23
831	Pulmonary Stretch and Lung Mechanotransduction: Implications for Progression in the Fibrotic Lung. International Journal of Molecular Sciences, 2021, 22, 6443.	1.8	28
832	Lab-on-a-chip based mechanical actuators and sensors for single-cell and organoid culture studies. Journal of Applied Physics, 2021, 129, 210905.	1.1	7
833	Optoregulated force application to cellular receptors using molecular motors. Nature Communications, 2021, 12, 3580.	5.8	19
834	Whole Exome Sequencing of 23 Multigeneration Idiopathic Scoliosis Families Reveals Enrichments in Cytoskeletal Variants, Suggests Highly Polygenic Disease. Genes, 2021, 12, 922.	1.0	9
835	The critical role of collagen VI in lung development and chronic lung disease. Matrix Biology Plus, 2021, 10, 100058.	1.9	23
836	The role of physical cues in the development of stem cell-derived organoids. European Biophysics Journal, 2022, 51, 105-117.	1.2	20
837	Statistical Learning from Single-Molecule Experiments: Support Vector Machines and Expectation–Maximization Approaches to Understanding Protein Unfolding Data. Journal of Physical Chemistry B, 2021, 125, 5794-5808.	1.2	1
838	The Combined Influence of Viscoelastic and Adhesive Cues on Fibroblast Spreading and Focal Adhesion Organization. Cellular and Molecular Bioengineering, 2021, 14, 427-440.	1.0	21
839	Biomechanical cues as master regulators of hematopoietic stem cell fate. Cellular and Molecular Life Sciences, 2021, 78, 5881-5902.	2.4	18
840	Biomechanical consequences of compromised elastic fiber integrity and matrix cross-linking on abdominal aortic aneurysmal enlargement. Acta Biomaterialia, 2021, 134, 422-434.	4.1	21

#	Article	IF	CITATIONS
841	Characterization of the Striatal Extracellular Matrix in a Mouse Model of Parkinson's Disease. Antioxidants, 2021, 10, 1095.	2.2	3
843	Emerging role of Piezo ion channels in cardiovascular development. Developmental Dynamics, 2022, 251, 276-286.	0.8	14
844	What do cells regulate in soft tissues on short time scales?. Acta Biomaterialia, 2021, 134, 348-356.	4.1	5
846	A role for estrogen in skin ageing and dermal biomechanics. Mechanisms of Ageing and Development, 2021, 197, 111513.	2.2	19
847	Towards an understanding of the mechanoreciprocity process in adipocytes and its perturbation with aging. Mechanisms of Ageing and Development, 2021, 197, 111522.	2.2	9
848	New insights into the Hippo/YAP pathway in idiopathic pulmonary fibrosis. Pharmacological Research, 2021, 169, 105635.	3.1	18
849	Signaling pathways associated with structural changes in varicose veins: a case–control study. Phlebology, 2022, 37, 33-41.	0.6	3
850	Fibro-Adipogenic Progenitors: Versatile keepers of skeletal muscle homeostasis, beyond the response to myotrauma. Seminars in Cell and Developmental Biology, 2021, 119, 23-31.	2.3	3
851	Three-Dimensional Printability of an ECM-Based Gelatin Methacryloyl (GelMA) Biomaterial for Potential Neuroregeneration. ACS Omega, 2021, 6, 21368-21383.	1.6	17
852	The Extracellular Matrix in Skin Inflammation and Infection. Frontiers in Cell and Developmental Biology, 2021, 9, 682414.	1.8	84
853	Consequences of Extracellular Matrix Remodeling in Headway and Metastasis of Cancer along with Novel Immunotherapies: A Great Promise for Future Endeavor. Anti-Cancer Agents in Medicinal Chemistry, 2022, 22, 1257-1271.	0.9	5
854	Vascular Mechanobiology: Homeostasis, Adaptation, and Disease. Annual Review of Biomedical Engineering, 2021, 23, 1-27.	5.7	75
855	Fast photocurable thiol-ene elastomers with tunable biodegradability, mechanical and surface properties enhance myoblast differentiation and contractile function. Bioactive Materials, 2021, 6, 2120-2133.	8.6	11
856	Mechano-induced cell metabolism promotes microtubule glutamylation to force metastasis. Cell Metabolism, 2021, 33, 1342-1357.e10.	7.2	66
857	Effect of extracorporeal shock waves on inflammation and angiogenesis of integumentary tissue in obese individuals: stimulating repair and regeneration. Lasers in Medical Science, 2022, 37, 1289-1297.	1.0	10
858	The impact of biomechanics on corneal endothelium tissue engineering. Experimental Eye Research, 2021, 209, 108690.	1.2	5
859	Engineered Extracellular Matrices with Integrated Wireless Microactuators to Study Mechanobiology. Advanced Materials, 2021, 33, e2102641.	11.1	19
860	Unraveling the Local Relation Between Tissue Composition and Human Brain Mechanics Through Machine Learning. Frontiers in Bioengineering and Biotechnology, 2021, 9, 704738.	2.0	19

#	Article	IF	CITATIONS
861	How Do Mechanics Guide Fibroblast Activity? Complex Disruptions during Emphysema Shape Cellular Responses and Limit Research. Bioengineering, 2021, 8, 110.	1.6	6
862	Soft overcomes the hard: Flexible materials adapt to cell adhesion to promote cell mechanotransduction. Bioactive Materials, 2022, 10, 397-404.	8.6	41
863	Using blinking optical tweezers to study cell rheology during initial cell-particle contact. Biophysical Journal, 2021, 120, 3527-3537.	0.2	8
864	Modeling of the Human Bone Environment: Mechanical Stimuli Guide Mesenchymal Stem Cell–Extracellular Matrix Interactions. Materials, 2021, 14, 4431.	1.3	15
865	Mechanisms of sodiumâ€mediated injury in cardiovascular disease: old play, new scripts. FEBS Journal, 2022, 289, 7260-7273.	2.2	7
866	Multiscale numerical analyses of arterial tissue with embedded elements in the finite strain regime. Computer Methods in Applied Mechanics and Engineering, 2021, 381, 113844.	3.4	19
867	Biomechanical Strain Promotes the Differentiation of Murine Oogonial Stem Cells. Stem Cells and Development, 2021, 30, 749-757.	1.1	5
868	Integrated computational and experimental pipeline for quantifying local cell–matrix interactions. Scientific Reports, 2021, 11, 16465.	1.6	2
869	A Review of Biomechanics Analysis of the Umbilical–Placenta System With Regards to Diseases. Frontiers in Physiology, 2021, 12, 587635.	1.3	6
870	Cell-matrix reciprocity in 3D culture models with nonlinear elasticity. Bioactive Materials, 2022, 9, 316-331.	8.6	36
871	The mechanics of fibrillar collagen extracellular matrix. Cell Reports Physical Science, 2021, 2, 100515.	2.8	54
872	Modeling stem cell nucleus mechanics using confocal microscopy. Biomechanics and Modeling in Mechanobiology, 2021, 20, 2361-2372.	1.4	1
873	Characterizing and Engineering Biomimetic Materials for Viscoelastic Mechanotransduction Studies. Tissue Engineering - Part B: Reviews, 2022, 28, 912-925.	2.5	19
874	The Role of Rho GTPases During Fibroblast Spreading, Migration, and Myofibroblast Differentiation in 3D Synthetic Fibrous Matrices. Cellular and Molecular Bioengineering, 2021, 14, 381-396.	1.0	6
875	Threeâ€dimensional printing of <scp>cellâ€laden</scp> microporous constructs using blended bioinks. Journal of Biomedical Materials Research - Part A, 2022, 110, 535-546.	2.1	10
876	Dynamic Crosstalk between Vascular Smooth Muscle Cells and the Aged Extracellular Matrix. International Journal of Molecular Sciences, 2021, 22, 10175.	1.8	14
877	Engineering hydrogels with homogeneous mechanical properties for controlling stem cell lineage specification. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	28
878	Multi-cellular aggregates, a model for living matter. Physics Reports, 2021, 927, 1-29.	10.3	14

#	Article	IF	CITATIONS
879	Matrix stiffness mechanosensing modulates the expression and distribution of transcription factors in Schwann cells. Bioengineering and Translational Medicine, 2022, 7, e10257.	3.9	18
880	Lamb1a regulates atrial growth by limiting second heart field addition during zebrafish heart development. Development (Cambridge), 2021, 148, .	1.2	5
881	A Direct Comparison of Node and Element-Based Finite Element Modeling Approaches to Study Tissue Growth. Journal of Biomechanical Engineering, 2022, 144, .	0.6	0
882	Microfluidic model of monocyte extravasation reveals the role of hemodynamics and subendothelial matrix mechanics in regulating endothelial integrity. Biomicrofluidics, 2021, 15, 054102.	1.2	10
883	Dissecting the Inorganic Nanoparticle-Driven Interferences on Adhesome Dynamics. Journal of Nanotheranostics, 2021, 2, 174-195.	1.7	1
884	Lung Ablation with Irreversible Electroporation Promotes Immune Cell Infiltration by Sparing Extracellular Matrix Proteins and Vasculature: Implications for Immunotherapy. Bioelectricity, 2021, 3, 204-214.	0.6	9
885	Brick Strex: a robust device built of LEGO bricks for mechanical manipulation of cells. Scientific Reports, 2021, 11, 18520.	1.6	6
886	Alveolus Lung-on-a-Chip Platform: A Proposal. Chemosensors, 2021, 9, 248.	1.8	6
887	Tissue-specific parameters for the design of ECM-mimetic biomaterials. Acta Biomaterialia, 2021, 132, 83-102.	4.1	33
888	The Multiple Faces of Integrin–ECM Interactions in Inflammatory Bowel Disease. International Journal of Molecular Sciences, 2021, 22, 10439.	1.8	4
889	Sensitive detection of cell-derived force and collagen matrix tension in microtissues undergoing large-scale densification. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	3
890	Polymer-ceramic fiber nanocomposite coatings on titanium metal implant devices for diseased bone tissue regeneration. Journal of Science: Advanced Materials and Devices, 2021, 6, 399-406.	1.5	6
891	Fibroageing: An ageing pathological feature driven by dysregulated extracellular matrix-cell mechanobiology. Ageing Research Reviews, 2021, 70, 101393.	5.0	42
892	Effects of Extracellular Osteoanabolic Agents on the Endogenous Response of Osteoblastic Cells. Cells, 2021, 10, 2383.	1.8	6
893	Tethering Cells via Enzymatic Oxidative Crosslinking Enables Mechanotransduction in Nonâ€Cellâ€Adhesive Materials. Advanced Materials, 2021, 33, e2102660.	11.1	10
894	Neural cell injury pathology due to high-rate mechanical loading. Brain Multiphysics, 2021, 2, 100034.	0.8	21
895	Oxidized/deamidated-ceruloplasmin dysregulates choroid plexus epithelial cells functionality and barrier properties via RGD-recognizing integrin binding. Neurobiology of Disease, 2021, 158, 105474.	2.1	2
896	Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioactive Materials, 2021, 6, 4110-4140.	8.6	191

#	Article	IF	CITATIONS
897	Substrate stiffness modulates endothelial cell function via the YAP-Dll4-Notch1 pathway. Experimental Cell Research, 2021, 408, 112835.	1.2	9
898	Circ_0022382 ameliorated intervertebral disc degeneration by regulating TGF-Î ² 3 expression through sponge adsorption of miR-4726-5p. Bone, 2022, 154, 116185.	1.4	11
899	The Extracellular Matrix-Cell Interaction in ILD. , 2022, , 126-134.		2
900	Click-functionalized hydrogel design for mechanobiology investigations. Molecular Systems Design and Engineering, 2021, 6, 670-707.	1.7	15
901	Mechanomics Biomarker for Cancer Cells Unidentifiable through Morphology and Elastic Modulus. Nano Letters, 2021, 21, 1538-1545.	4.5	19
902	Why Stress Matters: An Introduction. Methods in Molecular Biology, 2021, 2299, 159-169.	0.4	3
903	Spatiotemporal Control Over Multicellular Migration Using Green Light Reversible Cell–Cell Interactions. Advanced Biology, 2021, 5, e2000199.	1.4	7
904	Induced pluripotent stem cell-derived cardiomyocytes. , 2021, , 191-226.		0
905	Constrained Mixture Models of Soft Tissue Growth and Remodeling – Twenty Years After. Journal of Elasticity, 2021, 145, 49-75.	0.9	38
906	Force balancing ACT-IN the tumor microenvironment: Cytoskeletal modifications in cancer and stromal cells to promote malignancy. International Review of Cell and Molecular Biology, 2021, 360, 1-31.	1.6	2
907	Assessing the Resident Progenitor Cell Population and the Vascularity of the Adult Human Meniscus. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2021, 37, 252-265.	1.3	26
908	Controllable Cell Deformation Using Acoustic Streaming for Membrane Permeability Modulation. Advanced Science, 2021, 8, 2002489.	5.6	37
909	Molecular stretching modulates mechanosensing pathways. Protein Science, 2017, 26, 1337-1351.	3.1	55
911	Objective quantification of burn scar stiffness using shear-wave elastography: Initial evidence of validity. Burns, 2020, 46, 1787-1798.	1.1	7
912	Computational modeling for cardiovascular tissue engineering: the importance of including cell behavior in growth and remodeling algorithms. Current Opinion in Biomedical Engineering, 2020, 15, 1-9.	1.8	18
913	Extracellular matrix-derived peptides in tissue remodeling and fibrosis. Matrix Biology, 2020, 91-92, 176-187.	1.5	56
914	Le remodelage cardiaque aprÃ"s un infarctus : nouvelles données sur la prévention et le traitement. Bulletin De L'Academie Nationale De Medecine, 2015, 199, 1383-1394.	0.0	1
915	Mechanical regulation of glycolysis via cytoskeleton architecture. Nature, 2020, 578, 621-626.	13.7	327

#	Article	IF	CITATIONS
916	Conformationally active integrin endocytosis and traffic: why, where, when and how?. Biochemical Society Transactions, 2020, 48, 83-93.	1.6	30
917	The molecular mechanism of mechanotransduction in vascular homeostasis and disease. Clinical Science, 2020, 134, 2399-2418.	1.8	60
918	Phantom material testing indicates that the mechanical properties, geometrical dimensions, and tensional state of tendons affect oscillation-based measurements. Physiological Measurement, 2020, 41, 095010.	1.2	2
919	A simplified yet enhanced and versatile microfluidic platform for cyclic cell stretching on an elastic polymer. Biofabrication, 2020, 12, 045032.	3.7	20
920	Sexual dimorphism in the nociceptive effects of hyaluronan. Pain, 2021, 162, 1116-1125.	2.0	10
921	Analysis of mechanotransduction dynamics during combined mechanical stimulation and modulation of the extracellular-regulated kinase cascade uncovers hidden information within the signalling noise. Interface Focus, 2021, 11, 20190136.	1.5	6
931	Computer-Controlled Biaxial Bioreactor for Investigating Cell-Mediated Homeostasis in Tissue Equivalents. Journal of Biomechanical Engineering, 2020, 142 , .	0.6	14
932	$\hat{l}^2 1$ Integrin regulates adult lung alveolar epithelial cell inflammation. JCI Insight, 2020, 5, .	2.3	39
933	Silencing SMOC2 ameliorates kidney fibrosis by inhibiting fibroblast to myofibroblast transformation. JCI Insight, 2017, 2, .	2.3	48
934	c-Abl regulates YAPY357 phosphorylation to activate endothelial atherogenic responses to disturbed flow. Journal of Clinical Investigation, 2019, 129, 1167-1179.	3.9	92
935	DLL4 promotes continuous adult intestinal lacteal regeneration and dietary fat transport. Journal of Clinical Investigation, 2015, 125, 4572-4586.	3.9	145
936	Matricellular protein CCN3 mitigates abdominal aortic aneurysm. Journal of Clinical Investigation, 2016, 126, 1282-1299.	3.9	44
937	Endothelial fluid shear stress sensing in vascular health and disease. Journal of Clinical Investigation, 2016, 126, 821-828.	3.9	405
938	Mechanosensing and fibrosis. Journal of Clinical Investigation, 2018, 128, 74-84.	3.9	203
939	Notch in mechanotransduction $\hat{a} \in \text{``from molecular mechanosensitivity to tissue mechanostasis.}$ Journal of Cell Science, 2020, 133, .	1.2	37
940	Three-dimensional imaging of cell and extracellular matrix elasticity using quantitative micro-elastography. Biomedical Optics Express, 2020, 11, 867.	1.5	30
941	Numerical knockouts–In silico assessment of factors predisposing to thoracic aortic aneurysms. PLoS Computational Biology, 2020, 16, e1008273.	1.5	19
942	Rationalisation and Validation of an Acrylamide-Free Procedure in Three-Dimensional Histological Imaging. PLoS ONE, 2016, 11, e0158628.	1.1	32

#	Article	IF	CITATIONS
943	Histological, immunohistochemical and transcriptomic characterization of human tracheoesophageal fistulas. PLoS ONE, 2020, 15, e0242167.	1.1	10
944	Myocardin-related transcription factor A (MRTF-A) activity-dependent cell adhesion is correlated to focal adhesion kinase (FAK) activity. Oncotarget, 2016, 7, 72113-72130.	0.8	24
945	Rho-kinase (ROCK) Inhibitors - A Neuroprotective Therapeutic Paradigm with a Focus on Ocular Utility. Current Medicinal Chemistry, 2020, 27, 2222-2256.	1.2	17
946	Relative Stiffness Measurements of Cell-embedded Hydrogels by Shear Rheology in vitro. Bio-protocol, 2017, 7, e2101.	0.2	11
947	Relative Stiffness Measurements of Tumour Tissues by Shear Rheology. Bio-protocol, 2017, 7, e2265.	0.2	18
948	Mechanical Tissue Compression and Whole-mount Imaging at Single Cell Resolution for Developing Murine Epididymal Tubules. Bio-protocol, 2020, 10, e3694.	0.2	3
949	Inhibition of apoptosis exacerbates fatigue-damage tendon injuries in an in vivo rat model. , 2018, 36, 44-56.		9
950	Modelos tridimensionais de cultura de células: aproximando o in vitro do in vivo. Vigilância Sanitária Em Debate: Sociedade, Ciência & Tecnologia, 2018, 6, 72.	0.3	3
951	Identification of potential hub genes associated with the pathogenesis and prognosis of pancreatic duct adenocarcinoma using bioinformatics metaâ€'analysis of multiâ€'platform datasets. Oncology Letters, 2019, 18, 6741-6751.	0.8	9
952	Piezo1/2 mediate mechanotransduction essential for bone formation through concerted activation of NFAT-YAP1-ß-catenin. ELife, 2020, 9, .	2.8	161
953	Heterogeneity of proteome dynamics between connective tissue phases of adult tendon. ELife, 2020, 9, .	2.8	24
954	Molecular mechanism for direct actin force-sensing by α-catenin. ELife, 2020, 9, .	2.8	62
955	Lysyl hydroxylase 1 (LH1) deficiency promotes angiotensin II (Ang II)-induced dissecting abdominal aortic aneurysm. Theranostics, 2021, 11, 9587-9604.	4.6	13
956	Mechanical forces and metabolic changes cooperate to drive cellular memory and endothelial phenotypes. Current Topics in Membranes, 2021, 87, 199-253.	0.5	9
957	Effects of Endurance Exercise on Basement Membrane in the Soleus Muscle of Aged Rats. Acta Histochemica Et Cytochemica, 2021, 54, 167-175.	0.8	6
958	Plasticizer and catalyst co-functionalized PEDOT:PSS enables stretchable electrochemical sensing of living cells. Chemical Science, 2021, 12, 14432-14440.	3.7	17
959	Decellularized Matrix Bioscaffolds. Pancreas, 2021, 50, 942-951.	0.5	3
960	Mechano-regulated cell–cell signaling in the context of cardiovascular tissue engineering. Biomechanics and Modeling in Mechanobiology, 2022, 21, 5-54.	1.4	6

#	Article	IF	CITATIONS
961	The PDAC Extracellular Matrix: A Review of the ECM Protein Composition, Tumor Cell Interaction, and Therapeutic Strategies. Frontiers in Oncology, 2021, 11, 751311.	1.3	48
962	TGFÎ ² Signaling in the Pancreatic Tumor Microenvironment. Cancers, 2021, 13, 5086.	1.7	27
963	Identification Osteogenic Signaling Pathways Following Mechanical Stimulation: A Systematic Review. Current Stem Cell Research and Therapy, 2022, 17, 772-792.	0.6	4
964	Structural determinants of the integrin transmembrane domain required for bidirectional signal transmission across the cell membrane. Journal of Biological Chemistry, 2021, 297, 101318.	1.6	5
965	Piezo1 mediates endothelial atherogenic inflammatory responses via regulation of YAP/TAZ activation. Human Cell, 2022, 35, 51-62.	1.2	24
967	Fibrillar Collagen: A Review of the Mechanical Modeling of Strain-Mediated Enzymatic Turnover. Applied Mechanics Reviews, 2021, 73, .	4.5	16
968	Noninvasive manipulation of cell adhesion for cell harvesting with piezoelectric composite film. Applied Materials Today, 2021, 25, 101218.	2.3	10
969	Integrins and Reorganization of Osteoclast Cytoskeleton under Orthodontic Force. British Journal of Medicine and Medical Research, 2015, 9, 1-8.	0.2	0
970	Report of Scientific Promotion Committee 2015. Japanese Journal of Thrombosis and Hemostasis, 2015, 26, 669-672.	0.1	0
971	A Multiscale Haemorheological Computer-Based Model of Atherosclerosis: An In-Depth Investigation of Erythrocytes-Driven Flow Characteristics in Atheroma Development. Journal of Biomedical Engineering and Medical Devices, 2016, 01, .	0.1	0
972	The Progression of Hypertensive Heart Disease to Left Ventricular Hypertrophy and Heart Failure. , 2016, , 59-74.		0
974	A Multiscale Haemorheological Computer-Based Model of Chronic Inflammation: An In-Depth Investigation of Erythrocytes-Driven Flow Characteristics in Atheroma Development. , 2017, , 283-320.		4
983	Future Directions for IPF Research. Respiratory Medicine, 2019, , 455-467.	0.1	0
984	Evaluation of Cell Doubling Time in C6 and Y79 Cell Lines Based on Seeding Density. SBV Journal of Basic Clinical and Applied Health Science, 2020, 2, 146-149.	0.2	1
985	Micro-tweezers and Force Microscopy Techniques for Single-Cell Mechanobiological Analysis. , 2019, , 1-22.		0
988	Cell-Matrix Interactions in Cardiac Development and Disease. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2020, , 311-342.	0.7	1
998	The physiology of manual therapy. , 2020, , 121-127.		0
999	Structural Elements of the Biomechanical System of Soft Tissue. Cureus, 2020, 12, e7895.	0.2	0

#	ARTICLE	IF	CITATIONS
1003	The 3D Genome: From Structure to Function. International Journal of Molecular Sciences, 2021, 22, 11585.	1.8	12
1004	Hylozoic by Design: Converging Material and Biological Complexities for Cellâ€Driven Living Materials with 4D Behaviors. Advanced Functional Materials, 2022, 32, 2108057.	7.8	9
1005	Micro-tweezers and Force Microscopy Techniques for Single-Cell Mechanobiological Analysis. , 2022, , $1011-1032$.		0
1006	Bidirectional Mechanical Response Between Cells and Their Microenvironment. Frontiers in Physics, 2021, 9, .	1.0	11
1007	Stretching the Function of Innate Immune Cells. Frontiers in Immunology, 2021, 12, 767319.	2.2	31
1008	Extracellular matrix-inspired surface coatings functionalized with dexamethasone-loaded liposomes to induce osteo- and chondrogenic differentiation of multipotent stem cells. Materials Science and Engineering C, 2021, 131, 112516.	3.8	8
1010	Improving the colonization and functions of Wharton's Jelly-derived mesenchymal stem cells by a synergetic combination of porous polyurethane scaffold with an albumin-derived hydrogel. Biomedical Materials (Bristol), 2021, 16, 015005.	1.7	4
1011	Non-muscle myosin II isoforms orchestrate substrate stiffness sensing to promote cancer cell contractility and migration. Cancer Letters, 2022, 524, 245-258.	3.2	16
1013	Rehabilitation of Gymnasts., 2020, , 233-290.		0
1014	DAMP-Promoted Efferent Innate Immune Responses in Human Diseases: Fibrosis., 2020,, 211-257.		O
1015	BH3 Mimetic Drugs for Anti-fibrotic Therapy. RSC Drug Discovery Series, 2020, , 235-258.	0.2	0
1017	Focal Adhesion Proteins Regulate Cell–Matrix and Cell–Cell Adhesion and Act as Force Sensors. Biological and Medical Physics Series, 2020, , 95-140.	0.3	O
1020	A transparent low intensity pulsed ultrasound (LIPUS) chip for high-throughput cell stimulation. Lab on A Chip, 2021, 21, 4734-4742.	3.1	7
1022	Engineered Magnetic Nanocomposites to Modulate Cellular Function. Small, 2022, 18, e2104079.	5.2	16
1023	The effect of mechanical force in genitourinary malignancies. Expert Review of Anticancer Therapy, 2022, 22, 53-64.	1.1	1
1024	Agrin-Matrix Metalloproteinase-12 axis confers a mechanically competent microenvironment in skin wound healing. Nature Communications, 2021, 12, 6349.	5.8	21
1025	Magnetic nanocomposite hydrogel with tunable stiffness for probing cellular responses to matrix stiffening. Acta Biomaterialia, 2022, 138, 112-123.	4.1	18
1026	Smooth muscle tone alters arterial stiffness. Journal of Hypertension, 2021, Publish Ahead of Print, .	0.3	10

#	Article	IF	CITATIONS
1030	Single-Protein Tracking to Study Protein Interactions During Integrin-Based Migration. Methods in Molecular Biology, 2021, 2217, 85-113.	0.4	1
1031	Histamine Induced Production of Chemokine CXCL8 Through H1R/PLC and NF-κB Signaling Pathways in Nasal Fibroblasts. Journal of Rhinology, 2020, 27, 95-101.	0.1	2
1033	Collagen type V a2 (COL5A2) is decreased in steroid-induced necrosis of the femoral head. American Journal of Translational Research (discontinued), 2018 , 10 , $2469-2479$.	0.0	7
1034	Biological basis of bone strength: anatomy, physiology and measurement. Journal of Musculoskeletal Neuronal Interactions, 2020, 20, 347-371.	0.1	15
1035	Tumor-Associated Extracellular Matrix: How to Be a Potential Aide to Anti-tumor Immunotherapy?. Frontiers in Cell and Developmental Biology, 2021, 9, 739161.	1.8	34
1036	Collagen XII Regulates Corneal Stromal Structure by Modulating Transforming Growth Factor- \hat{l}^2 Activity. American Journal of Pathology, 2022, 192, 308-319.	1.9	10
1037	Alleviation of Osteoarthritis-Induced Pain and Motor Deficits in Rats by a Novel Device for the Intramuscular Insertion of Cog Polydioxanone Filament. Applied Sciences (Switzerland), 2021, 11, 10534.	1.3	1
1038	CXCL12/CXCR4 Mediates Orthodontic Root Resorption via Regulating the M1/M2 Ratio. Journal of Dental Research, 2022, 101, 569-579.	2.5	9
1039	The Emerging Role of Decellularized Plant-Based Scaffolds as a New Biomaterial. International Journal of Molecular Sciences, 2021, 22, 12347.	1.8	25
1040	Anti-Malignant Effect of Tensile Loading to Adherens Junctions in Cutaneous Squamous Cell Carcinoma Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 728383.	1.8	1
1041	Biological tissues as mechanical metamaterials. Physics Today, 2021, 74, 30-35.	0.3	4
1042	Biomechanical model of cells probing the myosin-ll-independent mechanosensing mechanism. Physical Review E, 2021, 104, 064403.	0.8	0
1043	Tendon Extracellular Matrix Assembly, Maintenance and Dysregulation Throughout Life. Advances in Experimental Medicine and Biology, 2021, 1348, 45-103.	0.8	17
1044	Integrins, cadherins and channels in cartilage mechanotransduction: perspectives for future regeneration strategies. Expert Reviews in Molecular Medicine, 2021, 23, e14.	1.6	23
1045	Optical Coherence Elastography Applications. , 2021, , 9-1-9-34.		2
1046	Mechanotransduction in fibrosis: Mechanisms and treatment targets. Current Topics in Membranes, 2021, 87, 279-314.	0.5	2
1047	Identification of Hub Genes of Keloid Fibroblasts by Coexpression Network Analysis and Degree Algorithm. Journal of Healthcare Engineering, 2022, 2022, 1-10.	1.1	0
1048	Comment on "Tensional homeostasis at different length scales―by D. Stamenović and M. L. Smith, <i>Soft Matter</i> , 2021, 17 , 10274–10285, DOI: 10.1039/D0SM01911A. Soft Matter, 2022, 18, 675-	6 79 .	0

#	Article	IF	CITATIONS
1049	Risky interpretations across the length scales: continuum vs. discrete models for soft tissue mechanobiology. Biomechanics and Modeling in Mechanobiology, 2022, 21, 433-454.	1.4	16
1050	Culturing Human Pluripotent Stem Cells on Micropatterned Silicon Surfaces. Methods in Molecular Biology, 2021, , 1.	0.4	0
1051	ECM-integrin signalling instructs cellular position sensing to pattern the early mouse embryo. Development (Cambridge), 2022, 149 , .	1.2	6
1052	Colon stroma mediates an inflammation-driven fibroblastic response controlling matrix remodeling and healing. PLoS Biology, 2022, 20, e3001532.	2.6	41
1053	A review on bioelectrical effects of cellular organelles by high voltage nanosecond pulsed electric fields. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 068701.	0.2	2
1054	From organ-on-chip to body-on-chip: The next generation of microfluidics platforms for in vitro drug efficacy and toxicity testing. Progress in Molecular Biology and Translational Science, 2022, 187, 41-91.	0.9	7
1055	Modeling maintenance and repair: The matrix loaded. , 2022, , 229-255.		0
1057	Microfluidic systems toward blood hemostasis monitoring and thrombosis diagnosis: From design principles to micro/nano fabrication technologies. View, 2022, 3, .	2.7	12
1058	Cell maturation: Hallmarks, triggers, and manipulation. Cell, 2022, 185, 235-249.	13.5	42
1059	Towards an integrative understanding of cancer mechanobiology: calcium, YAP, and microRNA under biophysical forces. Soft Matter, 2022, 18, 1112-1148.	1.2	11
1060	Arterial Stiffness Probed by Dynamic Ultrasound Elastography Characterizes Waveform of Blood Pressure. IEEE Transactions on Medical Imaging, 2022, 41, 1510-1519.	5.4	3
1061	Fibroblast-mediated uncaging of cancer cells and dynamic evolution of the physical microenvironment. Scientific Reports, 2022, 12, 791.	1.6	9
1062	Nucleic Acid-Based Cell Surface Engineering Strategies and Their Applications. ACS Applied Bio Materials, 2022, 5, 1901-1915.	2.3	11
1063	Extracellular matrix background material: Building blocks, general structure, mechanics, relation to cells, and evolutionary aspects., 2022,, 9-27.		0
1064	Mechanical disruption of E-cadherin complexes with epidermal growth factor receptor actuates growth factor–dependent signaling. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	23
1065	Lysyl oxidase like 2 is increased in asthma and contributes to asthmatic airway remodelling. European Respiratory Journal, 2022, 60, 2004361.	3.1	10
1066	Extracellular matrix guidance of autophagy: a mechanism regulating cancer growth. Open Biology, 2022, 12, 210304.	1.5	15
1067	Editorial: Membrane and Cytoskeleton Mechanics. Frontiers in Physics, 2022, 9, .	1.0	0

#	Article	IF	Citations
1068	CCN2 participates in overload-induced skeletal muscle hypertrophy. Matrix Biology, 2022, 106, 1-11.	1.5	3
1069	Dynamic and reconfigurable materials from reversible network interactions. Nature Reviews Materials, 2022, 7, 541-556.	23.3	105
1070	Multiscale mechanobiology: Coupling models of adhesion kinetics and nonlinear tissue mechanics. Biophysical Journal, 2022, 121, 525-539.	0.2	15
1071	RNA N6-methyladenosine modulates endothelial atherogenic responses to disturbed flow in mice. ELife, 2022, 11 , .	2.8	12
1072	Studying Activated Fibroblast Phenotypes and Fibrosisâ€Linked Mechanosensing Using 3D Biomimetic Models. Macromolecular Bioscience, 2022, 22, e2100450.	2.1	4
1073	The role of cell–matrix interactions in connective tissue mechanics. Physical Biology, 2022, 19, 021001.	0.8	8
1074	Ultrasoundâ€Induced Mechanical Compaction in Acoustically Responsive Scaffolds Promotes Spatiotemporally Modulated Signaling in Triple Negative Breast Cancer. Advanced Healthcare Materials, 2022, 11, e2101672.	3.9	4
1075	miR9 inhibits 6-mer HA-induced cytokine production and apoptosis in human chondrocytes by reducing NF-kB activation. Archives of Biochemistry and Biophysics, 2022, 718, 109139.	1.4	4
1076	Multiscale Strain Transfer in Cartilage. Frontiers in Cell and Developmental Biology, 2022, 10, 795522.	1.8	2
1077	Understanding Pulmonary Autograft Remodeling After the Ross Procedure: Stick to the Facts. Frontiers in Cardiovascular Medicine, 2022, 9, 829120.	1.1	6
1078	DDR1 associates with TRPV4 in cellâ€matrix adhesions to enable calciumâ€regulated myosin activity and collagen compaction. Journal of Cellular Physiology, 2022, 237, 2451-2468.	2.0	6
1079	ST6Gal-l–mediated sialylation of the epidermal growth factor receptor modulates cell mechanics and enhances invasion. Journal of Biological Chemistry, 2022, 298, 101726.	1.6	17
1081	In Vitro Cellular Strain Models of Tendon Biology and Tenogenic Differentiation. Frontiers in Bioengineering and Biotechnology, 2022, 10, 826748.	2.0	4
1082	Scaffold Geometry-Imposed Anisotropic Mechanical Loading Guides the Evolution of the Mechanical State of Engineered Cardiovascular Tissues in vitro. Frontiers in Bioengineering and Biotechnology, 2022, 10, 796452.	2.0	4
1083	Metalloproteinase inhibition reduces AML growth, prevents stem cell loss, and improves chemotherapy effectiveness. Blood Advances, 2022, 6, 3126-3141.	2.5	12
1084	Substrate rigidity dictates colorectal tumorigenic cell stemness and metastasis via CRAD-dependent mechanotransduction. Cell Reports, 2022, 38, 110390.	2.9	13
1085	Extracellular mechanotransduction. Journal of General Physiology, 2022, 154, .	0.9	4
1086	ECM Mechanoregulation in Malignant Pleural Mesothelioma. Frontiers in Bioengineering and Biotechnology, 2022, 10, 797900.	2.0	5

#	Article	IF	CITATIONS
1087	Mitochondrial fission links ECM mechanotransduction to metabolic redox homeostasis and metastatic chemotherapy resistance. Nature Cell Biology, 2022, 24, 168-180.	4.6	68
1088	Multi-Omics Investigations Revealed Underlying Molecular Mechanisms Associated With Tumor Stiffness and Identified Sunitinib as a Potential Therapy for Reducing Stiffness in Pituitary Adenomas. Frontiers in Cell and Developmental Biology, 2022, 10, 820562.	1.8	1
1089	Beneficial impacts of neuromuscular electrical stimulation on muscle structure and function in the zebrafish model of Duchenne muscular dystrophy. ELife, 2022, 11, .	2.8	6
1090	Focusing on Mechanoregulation Axis in Fibrosis: Sensing, Transduction and Effecting. Frontiers in Molecular Biosciences, 2022, 9, 804680.	1.6	7
1091	ELK3 Controls Gastric Cancer Cell Migration and Invasion by Regulating ECM Remodeling-Related Genes. International Journal of Molecular Sciences, 2022, 23, 3709.	1.8	14
1092	Talinâ€'1 interaction network in cellular mechanotransduction (Review). International Journal of Molecular Medicine, 2022, 49, .	1.8	12
1093	Principles for the design of multicellular engineered living systems. APL Bioengineering, 2022, 6, 010903.	3.3	17
1094	Temperature evolution following joint loading promotes chondrogenesis by synergistic cues via calcium signaling. ELife, 2022, 11 , .	2.8	13
1095	Reciprocity of Cell Mechanics with Extracellular Stimuli: Emerging Opportunities for Translational Medicine. Small, 2022, 18, e2107305.	5.2	6
1096	Ligand Mobility-Mediated Cell Adhesion and Spreading. ACS Applied Materials & Samp; Interfaces, 2022, 14, 12976-12983.	4.0	12
1097	Matrix stiffness regulates lipid nanoparticle-mRNA delivery in cell-laden hydrogels. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 42, 102550.	1.7	5
1098	Colorectal liver metastasis: molecular mechanism and interventional therapy. Signal Transduction and Targeted Therapy, 2022, 7, 70.	7.1	88
1099	Bioinks Enriched with ECM Components Obtained by Supercritical Extraction. Biomolecules, 2022, 12, 394.	1.8	5
1100	Microenvironmental stiffness mediates cytoskeleton re-organization in chondrocytes through laminin-FAK mechanotransduction. International Journal of Oral Science, 2022, 14, 15.	3.6	37
1101	A mathematical model for cell-induced gel contraction incorporating osmotic effects. Journal of Mathematical Biology, 2022, 84, 31.	0.8	0
1104	Pirfenidone Has Anti-fibrotic Effects in a Tissue-Engineered Model of Human Cardiac Fibrosis. Frontiers in Cardiovascular Medicine, 2022, 9, 854314.	1.1	16
1105	MicroRNAs in Mechanical Homeostasis. Cold Spring Harbor Perspectives in Medicine, 2022, , a041220.	2.9	5
1106	Cell adhesion presence during adolescence controls the architecture of projection-defined prefrontal cortical neurons and reward-related action strategies later in life. Developmental Cognitive Neuroscience, 2022, 54, 101097.	1.9	1

#	Article	IF	CITATIONS
1107	Not just a number: what cells feel depends on how they grab it. Biophysical Journal, 2022, , .	0.2	0
1108	Lung fibrosis is a novel therapeutic target to suppress lung metastasis of osteosarcoma. International Journal of Cancer, 2022, 151, 739-751.	2.3	4
1109	Hyaluronic acid-based biphasic scaffold with layer-specific induction capacity for osteochondral defect regeneration. Materials and Design, 2022, 216, 110550.	3.3	12
1110	Hydrogel cultures reveal Transient Receptor Potential Vanilloid 4 regulation of myofibroblast activation and proliferation in valvular interstitial cells. FASEB Journal, 2022, 36, e22306.	0.2	6
1111	Tuning Polymer Hydrophilicity to Regulate Gel Mechanics and Encapsulated Cell Morphology. Advanced Healthcare Materials, 2022, 11, e2200011.	3.9	14
1112	Large-Scale Cortex-Core Structure Formation in Brain Organoids. Frontiers in Physics, 2022, 10, .	1.0	2
1113	Multi-omic rejuvenation of human cells by maturation phase transient reprogramming. ELife, 2022, 11, .	2.8	75
1114	Delivering Mechanical Stimulation to Cells: State of the Art in Materials and Devices Design. Advanced Materials, 2022, 34, e2110267.	11.1	15
1115	Magneto-mechanical system to reproduce and quantify complex strain patterns in biological materials. Applied Materials Today, 2022, 27, 101437.	2.3	18
1118	Three-Dimensional Porous Scaffolds Derived from Bovine Cancellous Bone Matrix Promote Osteoinduction, Osteoconduction, and Osteogenesis. Polymers, 2021, 13, 4390.	2.0	2
1119	Animal models and methods to study arterial stiffness. , 2022, , 137-151.		0
1120	Static and Dynamic Biomaterial Engineering for Cell Modulation. Nanomaterials, 2022, 12, 1377.	1.9	10
1122	Mechanotransduction-induced glycolysis epigenetically regulates a CXCL1-dominant angiocrine signaling program in liver sinusoidal endothelial cells inÂvitro and inÂvivo. Journal of Hepatology, 2022, 77, 723-734.	1.8	24
1123	Spatial and Temporal Modulation of Cell Instructive Cues in a Filamentous Supramolecular Biomaterial. ACS Applied Materials & Samp; Interfaces, 2022, 14, 17042-17054.	4.0	11
1135	Soft Electrodes for Electrochemical and Electrophysiological Monitoring of Beating Cardiomyocytes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
1136	Construction of tissue-engineered human corneal endothelium for corneal endothelial regeneration using a crosslinked amniotic membrane scaffold. Acta Biomaterialia, 2022, 147, 185-197.	4.1	16
1137	DNA-Based Daisy Chain Rotaxane Nanocomposite Hydrogels as Dual-Programmable Dynamic Scaffolds for Stem Cell Adhesion. ACS Applied Materials & Samp; Interfaces, 2022, 14, 20739-20748.	4.0	5
1138	Hypoxiaâ€induced bloodâ€brain barrier dysfunction is prevented by pericyteâ€conditioned media via attenuated actomyosin contractility and claudinâ€5 stabilization. FASEB Journal, 2022, 36, e22331.	0.2	5

#	Article	IF	CITATIONS
1139	Soft Electrodes for Electrochemical and Electrophysiological Monitoring of Beating Cardiomyocytes. Angewandte Chemie, 2022, 134, .	1.6	0
1140	Stiffness-responsive feedback autoregulation of DDR1 expression is mediated by a DDR1-YAP/TAZ axis. Matrix Biology, 2022, 110, 129-140.	1.5	11
1141	Multiscale simulations suggest a protective role of neo-adventitia in abdominal aortic aneurysms. Acta Biomaterialia, 2022, 146, 248-258.	4.1	5
1142	Pathobiology of Airway Remodeling in Asthma: The Emerging Role of Integrins. Journal of Asthma and Allergy, 2022, Volume 15, 595-610.	1.5	25
1143	Enhancing CRISPR/Cas gene editing through modulating cellular mechanical properties for cancer therapy. Nature Nanotechnology, 2022, 17, 777-787.	15.6	80
1144	Mechanosignaling in vertebrate development. Developmental Biology, 2022, 488, 54-67.	0.9	12
1145	Biochemical Aspects of Scaffolds for Cartilage Tissue Engineering; from Basic Science to Regenerative Medicine Archives of Bone and Joint Surgery, 2022, 10, 229-244.	0.1	5
1146	Advancing Tissue Decellularized Hydrogels for Engineering Human Organoids. Advanced Functional Materials, 2022, 32, .	7.8	21
1148	Inflammation Modulates Intercellular Adhesion and Mechanotransduction in Human Epidermis via ROCK2. SSRN Electronic Journal, 0, , .	0.4	0
1149	Humanoid robots to mechanically stress human cells grown in soft bioreactors. , 2022, 1, .		8
1150	Collagen and elastic fiber remodeling in the pregnant mouse myometrium. Biology of Reproduction, 2022, 107, 741-751.	1.2	3
1152	Signaling Downstream of Focal Adhesions Regulates Stiffness-Dependent Differences in the TGF- \hat{l}^2 1-Mediated Myofibroblast Differentiation of Corneal Keratocytes. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	9
1154	Biomechanics of human trabecular meshwork in healthy and glaucoma eyes via dynamic Schlemm's canal pressurization. Computer Methods and Programs in Biomedicine, 2022, 221, 106921.	2.6	14
1157	Multicellular Aligned Bands Disrupt Global Collective Cell Behavior. SSRN Electronic Journal, 0, , .	0.4	0
1159	In Vitro Tissue Reconstruction Using Decellularized Pericardium Cultured with Cells for Ligament Regeneration. Polymers, 2022, 14, 2351.	2.0	2
1160	Solid fraction determines stiffness and viscosity in decellularized pancreatic tissues., 2022,, 212999.		3
1161	Mechanotransduction in Skin Inflammation. Cells, 2022, 11, 2026.	1.8	10
1162	The overall process of metastasis: From initiation to a new tumor. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188750.	3.3	8

#	Article	IF	CITATIONS
1163	Enablers and drivers of vascular remodeling. , 2022, , 277-285.		0
1165	Integrins in the Immunity of Insects: A Review. Frontiers in Immunology, 0, 13, .	2.2	6
1166	The Extracellular Matrix Stiffening: A Trigger of Prostate Cancer Progression and Castration Resistance?. Cancers, 2022, 14, 2887.	1.7	13
1167	Mechanical Properties of the Extracellular Environment of Human Brain Cells Drive the Effectiveness of Drugs in Fighting Central Nervous System Cancers. Brain Sciences, 2022, 12, 927.	1.1	1
1168	Vascular Endothelial Growth Factor Receptor-1 Modulates Hypoxia-Mediated Endothelial Senescence and Cellular Membrane Stiffness via YAP-1 Pathways. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2
1169	Cell mediated remodeling of stiffness matched collagen and fibrin scaffolds. Scientific Reports, 2022, 12, .	1.6	5
1170	Mechanical checkpoint regulates monocyte differentiation in fibrotic niches. Nature Materials, 2022, 21, 939-950.	13.3	22
1171	Lightâ€tunable optical cell manipulation via photoactive azobenzeneâ€containing thin film bioâ€substrate. Nano Select, 0, , .	1.9	1
1172	Myocyte Culture with Decellularized Skeletal Muscle Sheet with Observable Interaction with the Extracellular Matrix. Bioengineering, 2022, 9, 309.	1.6	1
1173	Cellular forceâ€sensing through actin filaments. FEBS Journal, 2023, 290, 2576-2589.	2.2	8
1174	Combining Unique Planar Biaxial Testing with Fullâ€Field Thickness and Displacement Measurement for Spatial Characterization of Soft Tissues. Current Protocols, 2022, 2, .	1.3	7
1176	Craniofacial sutures: Signaling centres integrating mechanosensation, cell signaling, and cell differentiation. European Journal of Cell Biology, 2022, 101, 151258.	1.6	4
1178	A glitch in the matrix: the pivotal role for extracellular matrix remodeling during muscle hypertrophy. American Journal of Physiology - Cell Physiology, 2022, 323, C763-C771.	2.1	22
1179	Tethering of cellulose synthase to microtubules dampens mechano-induced cytoskeletal organization in Arabidopsis pavement cells. Nature Plants, 2022, 8, 1064-1073.	4.7	19
1180	The Extracellular Matrix: A Key Accomplice of Cancer Stem Cell Migration, Metastasis Formation, and Drug Resistance in PDAC. Cancers, 2022, 14, 3998.	1.7	20
1181	Microenvironmental sensing by fibroblasts controls macrophage population size. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	28
1182	Hepatogenic differentiation of adipose-derived mesenchymal stem cells directed by topographical cues: a proof of concept study. Proceedings of the Indian National Science Academy, 0, , .	0.5	0
1183	Constructing growth evolution laws of arteries via reinforcement learning. Journal of the Mechanics and Physics of Solids, 2022, 168, 105044.	2.3	4

#	Article	IF	CITATIONS
1184	Unified multiscale theory of cellular mechanical adaptations to substrate stiffness. Biophysical Journal, 2022, 121, 3474-3485.	0.2	6
1185	Effects of Ocular Hypertension on Cytoskeleton and Stiffness of Trabecular Meshwork Cells in Rats. Applied Sciences (Switzerland), 2022, 12, 7862.	1.3	1
1186	Stem Cells and the Microenvironment: Reciprocity with Asymmetry in Regenerative Medicine. Acta Biotheoretica, 2022, 70, .	0.7	3
1188	The multifaceted mechanisms of malignant glioblastoma progression and clinical implications. Cancer and Metastasis Reviews, 2022, 41, 871-898.	2.7	8
1189	Gq Signaling in Autophagy Control: Between Chemical and Mechanical Cues. Antioxidants, 2022, 11, 1599.	2.2	0
1190	Preliminary Findings on the Potential Use of Magnetic Resonance Elastography to Diagnose Lacunar Infarction. Neuropsychiatric Disease and Treatment, 0, Volume 18, 1583-1591.	1.0	0
1191	Aberrant chromatin reorganization in cells from diseased fibrous connective tissue in response to altered chemomechanical cues. Nature Biomedical Engineering, 2023, 7, 177-191.	11.6	23
1192	The role of matrix stiffness in cancer stromal cell fate and targeting therapeutic strategies. Acta Biomaterialia, 2022, 150, 34-47.	4.1	11
1193	On modeling the multiscale mechanobiology of soft tissues: Challenges and progress. Biophysics Reviews, 2022, 3, .	1.0	3
1194	Mechanoimmunology: Are inflammatory epigenetic states of macrophages tuned by biophysical factors?. APL Bioengineering, 2022, 6, .	3.3	4
1195	Piezo1 Response to Shear Stress Is Controlled by the Components of the Extracellular Matrix. ACS Applied Materials & Diterfaces, 2022, 14, 40559-40568.	4.0	18
1196	Extracellular matrix–natural killerÂcell interactome: an uncharted territory in health and disease. Current Opinion in Immunology, 2022, 78, 102246.	2.4	1
1197	Extracellular matrix stiffness regulates degradation of MST2 via SCF \hat{I}^2 TrCP. Biochimica Et Biophysica Acta - General Subjects, 2022, 1866, 130238.	1.1	5
1198	Brownian ratchet force sensor at the contacting point between F-actin barbed end and lamellipodium tip plasma membrane., 2023,, 295-306.		1
1199	Chip-Based Assay of Adhesion of Plasmodium falciparum-Infected Erythrocytes to Cells Under Flow. Methods in Molecular Biology, 2022, , 545-556.	0.4	0
1200	Three dimensional lung models - Three dimensional extracellular matrix models. , 2022, , 109-131.		1
1201	Real and Simulated Microgravity: Focus on Mammalian Extracellular Matrix. Life, 2022, 12, 1343.	1.1	4
1203	Targeting cell-matrix interface mechanobiology by integrating AFM with fluorescence microscopy. Progress in Biophysics and Molecular Biology, 2022, 176, 67-81.	1.4	8

#	Article	IF	CITATIONS
1204	Extracellular matrix regulates force transduction at VE-cadherin junctions. Molecular Biology of the Cell, $2022, 33, \ldots$	0.9	5
1205	Muscle fibro-adipogenic progenitors from a single-cell perspective: Focus on their "virtual― secretome. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	5
1206	The role of cellular traction forces in deciphering nuclear mechanics. Biomaterials Research, 2022, 26, .	3.2	6
1207	Synthetic Extracellular Matrices for 3D Culture of Schwann Cells, Hepatocytes, and HUVECs. Bioengineering, 2022, 9, 453.	1.6	4
1208	Pneumatic piston hydrostatic bioreactor for cartilage tissue engineering. Instrumentation Science and Technology, 2023, 51, 273-289.	0.9	1
1209	Engineering physical microenvironments to study innate immune cell biophysics. APL Bioengineering, 2022, 6, 031504.	3.3	1
1210	Chiral Hydrogel Accelerates Reâ€Epithelization in Chronic Wounds via Mechanoregulation. Advanced Healthcare Materials, 2022, 11, .	3.9	20
1211	Collagen Niches Affect Direct Transcriptional Conversion Towards Human Nucleus Pulposus Cells via Actomyosin Contractility. Advanced Healthcare Materials, 0, , 2201824.	3.9	0
1212	Deteriorated Vascular Homeostasis in Hypertension: Experimental Evidence from Aorta, Brain, and Pancreatic Vasculature. Journal of Personalized Medicine, 2022, 12, 1602.	1.1	2
1213	Mechanotransduction through adhesion molecules: Emerging roles in regulating the stem cell niche. Frontiers in Cell and Developmental Biology, 0, 10 , .	1.8	2
1214	Engineering Strategies to Move from Understanding to Steering Renal Tubulogenesis. Tissue Engineering - Part B: Reviews, 2023, 29, 203-216.	2.5	2
1215	The extracellular matrix alteration, implication in modulation of drug resistance mechanism: friends or foes?. Journal of Experimental and Clinical Cancer Research, 2022, 41, .	3.5	31
1218	Hybrid discrete-continuum multiscale model of tissue growth and remodeling. Acta Biomaterialia, 2023, 163, 7-24.	4.1	6
1219	In-situ mineralized homogeneous collagen-based scaffolds for potential guided bone regeneration. Biofabrication, 2022, 14, 045016.	3.7	15
1220	Mechanotransduction in the pathogenesis of non-alcoholic fatty liver disease. Journal of Hepatology, 2022, 77, 1642-1656.	1.8	13
1221	Zyxin and actin structure confer anisotropic YAP mechanotransduction. Acta Biomaterialia, 2022, 152, 313-320.	4.1	5
1222	Organization, dynamics and mechanoregulation of integrin-mediated cell–ECM adhesions. Nature Reviews Molecular Cell Biology, 2023, 24, 142-161.	16.1	91
1223	Microfibrillar-associated protein 2 is a prognostic marker that correlates with the immune microenvironment in glioma. Frontiers in Genetics, 0, 13, .	1.1	1

#	Article	IF	CITATIONS
1224	Targeting Tumor Physical Microenvironment for Improved Radiotherapy. Small Methods, 2022, 6, .	4.6	5
1225	Modulation of the extracellular matrix by Streptococcus gallolyticus subsp. gallolyticus and importance in cell proliferation. PLoS Pathogens, 2022, 18, e1010894.	2.1	3
1226	Targeting GPCRs to treat cardiac fibrosis. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	3
1227	Evaluating polymeric biomaterials to improve next generation wound dressing design. Biomaterials Research, 2022, 26, .	3.2	20
1228	Caveolin-1-deficient fibroblasts promote migration, invasion, and stemness via activating the TGF-β/Smad signaling pathway in breast cancer cells. Acta Biochimica Et Biophysica Sinica, 2022, 54, 1587-1598.	0.9	2
1229	Multicellular aligned bands disrupt global collective cell behavior. Acta Biomaterialia, 2023, 163, 117-130.	4.1	4
1230	Novel cryo-tomography workflow reveals nanometer-scale responses of epithelial cells to matrix stiffness and dimensionality. Molecular Biology of the Cell, 0 , , .	0.9	1
1231	Crosstalk between Extracellular Matrix Stiffness and ROS Drives Endometrial Repair via the HIF-1α/YAP Axis during Menstruation. Cells, 2022, 11, 3162.	1.8	2
1232	Regulatory mechanisms of mechanotransduction in genome instability. Genome Instability & Disease, 0,	0.5	0
1233	Stretchable Electrochemical Sensors: From Electrode Fabrication to Cell Mechanotransduction Monitoring ^{â€} . Chinese Journal of Chemistry, 2023, 41, 443-457.	2.6	4
1234	Substrate stiffness engineered to replicate disease conditions influence senescence and fibrotic responses in primary lung fibroblasts. Frontiers in Pharmacology, $0,13,.$	1.6	7
1235	Stress Relaxationâ€Induced Colon Tumor Multicellular Spheroid Culture Based on Biomimetic Hydrogel for Nanoenzyme Ferroptosis Sensitization Evaluation. Advanced Healthcare Materials, 2023, 12, .	3.9	8
1236	Development and characterisation of 3D collagen-gelatin based scaffolds for breast cancer research. , 2022, 142, 213157.		3
1237	Hybrid material based on hyaluronan hydrogels and poly(l-lactide-co-1,3-trimethylene carbonate) scaffolds toward a cell-instructive microenvironment with long-term in vivo degradability. Materials Today Bio, 2022, 17, 100483.	2.6	4
1238	Lipid nanoparticle-assisted miR29a delivery based on core-shell nanofibers improves tendon healing by cross-regulation of the immune response and matrix remodeling. Biomaterials, 2022, 291, 121888.	5.7	6
1239	Extracellular-matrix mechanics regulate cellular metabolism: A ninja warrior behind mechano-chemo signaling crosstalk. Reviews in Endocrine and Metabolic Disorders, 2023, 24, 207-220.	2.6	8
1240	Hydrogel platform capable of molecularly resolved pulling on cells for mechanotransduction. Materials Today Bio, 2022, 17, 100476.	2.6	1
1241	Clinical applications of 3D normal and breast cancer organoids: A review of concepts and methods. Experimental Biology and Medicine, 2022, 247, 2176-2183.	1.1	10

#	Article	IF	CITATIONS
1244	Analysis of Nanomedicine Efficacy for Osteoarthritis. Advanced NanoBiomed Research, 2022, 2, .	1.7	1
1245	A model for mechanosensitive cell migration in dynamically morphing soft tissues. Extreme Mechanics Letters, 2022, , 101926.	2.0	O
1246	Tension-Based Optical Coherence Elastography: Mapping the Micro-Scale Strain Tensor Resulting From Tensile Loading. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-14.	1.9	0
1247	HPMA copolymer-collagen hybridizing peptide conjugates targeted to breast tumor extracellular matrix. Journal of Controlled Release, 2023, 353, 278-288.	4.8	3
1248	Formation of low-density electrospun fibrous network integrated mesenchymal stem cell sheet. Journal of Materials Chemistry B, 2023, 11, 389-402.	2.9	1
1249	Characterisation of collagen type I matrices for pathophysiologically relevant spatial cancer cell cultures. Biophysical Chemistry, 2023, 293, 106944.	1.5	2
1250	Control of hydrostatic pressure and osmotic stress in 3D cell culture for mechanobiological studies., 2023, 145, 213241.		3
1251	Mechanical strain modulates extracellular matrix degradation and byproducts in an isoform-specific manner. Biochimica Et Biophysica Acta - General Subjects, 2023, 1867, 130286.	1.1	3
1252	Fibroblasts secrete fibronectin under lamellipodia in a microtubule- and myosin II–dependent fashion. Journal of Cell Biology, 2023, 222, .	2.3	2
1253	Abdominal Aortic Wall Cross-coupled Stiffness Could Potentially Contribute to Aortic Length Remodeling. Artery Research, 2022, 28, 113-127.	0.3	O
1254	Feedback-controlled hydrogels with homeostatic oscillations and dissipative signal transduction. Nature Nanotechnology, 2022, 17, 1303-1310.	15.6	26
1255	The role of microfibrillarâ€associated protein 2 in cancer. Frontiers in Oncology, 0, 12, .	1.3	0
1257	The importance of intermediate filaments in the shape maintenance of myoblast model tissues. ELife, 0, 11, .	2.8	5
1258	Extracellular matrix and synapse formation. Bioscience Reports, 2023, 43, .	1.1	8
1259	The multiscale characterization and constitutive modeling of healthy and type 2 diabetes mellitus Sprague Dawley rat skin. Acta Biomaterialia, 2023, 158, 324-346.	4.1	4
1260	Plastic surgery of skin melanoma as a factor of better survival of patients. Meditsinskiy Sovet, 2022, , 120-128.	0.1	O
1261	Bioengineering Liver Organoids for Diseases Modelling and Transplantation. Bioengineering, 2022, 9, 796.	1.6	3
1263	ACL microtrauma: healing through nutrition, modified sports training, and increased recovery time. Journal of Experimental Orthopaedics, 2022, 9, .	0.8	3

#	Article	IF	CITATIONS
1264	Nanoenabled Trainable Systems: From Biointerfaces to Biomimetics. ACS Nano, 2022, 16, 19651-19664.	7.3	5
1266	The Stiffnessâ€Sensitive Transcriptome of Human Tendon Stromal Cells. Advanced Healthcare Materials, 2023, 12, .	3.9	3
1267	Constructing 3D In Vitro Models of Heterocellular Solid Tumors and Stromal Tissues Using Extrusion-Based Bioprinting. ACS Biomaterials Science and Engineering, 2023, 9, 542-561.	2.6	6
1268	The Impact of the Cellular Environment and Aging on Modeling Alzheimer's Disease in 3D Cell Culture Models. Advanced Science, 2023, 10, .	5. 6	9
1269	Analysis of Lipid Contents in Human Trabecular Meshwork Cells by Multiple Reaction Monitoring (MRM) Profiling Lipidomics. Methods in Molecular Biology, 2023, , 291-298.	0.4	2
1270	Receptor-binding domain of SARS-CoV-2 is a functional $\hat{l}\pm\nu$ -integrin agonist. Journal of Biological Chemistry, 2023, 299, 102922.	1.6	11
1271	Microtubule Assists Actomyosin to Regulate Cell Nuclear Mechanics and Chromatin Accessibility. Research, 2023, 6, .	2.8	14
1272	Nanotopography and Microconfinement Impact on Primary Hippocampal Astrocyte Morphology, Cytoskeleton and Spontaneous Calcium Wave Signalling. Cells, 2023, 12, 293.	1.8	2
1273	Dynamic Magneto-Softening of 3D Hydrogel Reverses Malignant Transformation of Cancer Cells and Enhances Drug Efficacy. ACS Nano, 2023, 17, 2851-2867.	7.3	16
1274	The Potential Role of Integrin Signaling in Memory and Cognitive Impairment. Biomolecules, 2023, 13, 108.	1.8	2
1275	Differential remodelling in small and large murine airways revealed by novel whole lung airway analysis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 0, , .	1.3	0
1276	Cell size and actin architecture determine force generation in optogenetically activated cells. Biophysical Journal, 2023, 122, 684-696.	0.2	6
1277	Zyxin regulates embryonic stem cell fate by modulating mechanical and biochemical signaling interface. Communications Biology, 2023, 6, .	2.0	5
1278	Stereo Coverage and Overall Stiffness of Biomaterial Arrays Underly Parts of Topography Effects on Cell Adhesion. ACS Applied Materials & Samp; Interfaces, 2023, 15, 6142-6155.	4.0	17
1279	Secreted protease ADAMTS18 in development and disease. Gene, 2023, 858, 147169.	1.0	6
1280	Increased Proteoglycanases in Pulmonary Valves after Birth Correlate with Extracellular Matrix Maturation and Valve Sculpting. Journal of Cardiovascular Development and Disease, 2023, 10, 27.	0.8	1
1281	Biological and Mechanical Factors and Epigenetic Regulation Involved in Tendon Healing. Stem Cells International, 2023, 2023, 1-14.	1.2	4
1282	Modulating Myofibroblastic Differentiation of Fibroblasts through Actin-MRTF Signaling Axis by Micropatterned Surfaces for Suppressed Implant-Induced Fibrosis. Research, 2023, 6, .	2.8	1

#	Article	IF	Citations
1283	Age-Related Changes in Extracellular Matrix. Biochemistry (Moscow), 2022, 87, 1535-1551.	0.7	3
1284	Biomechanics of Skeletal Muscle and Tendon. , 2020, , 37-73.		O
1285	Extracellular Vesicles as Regulators of the Extracellular Matrix. Bioengineering, 2023, 10, 136.	1.6	14
1286	PIEZO1-Related Physiological and Pathological Processes in CNS: Focus on the Gliomas. Cancers, 2023, 15, 883.	1.7	O
1287	Adipose and Bone Marrow Derived-Mesenchymal Stromal Cells Express Similar Tenogenic Expression Levels when Subjected to Mechanical Uniaxial Stretching In Vitro. Stem Cells International, 2023, 2023, 1-13.	1,2	0
1288	Substrate stiffness controls proinflammatory responses in human gingival fibroblasts. Scientific Reports, 2023, 13, .	1.6	6
1289	Static and Dynamic: Evolving Biomaterial Mechanical Properties to Control Cellular Mechanotransduction. Advanced Science, 2023, 10, .	5.6	23
1290	Cell response to mechanical microenvironment cues via Rho signaling: From mechanobiology to mechanomedicine. Acta Biomaterialia, 2023, 159, 1-20.	4.1	16
1291	Recent advances in label-free imaging of cell–matrix adhesions. Chemical Communications, 2023, 59, 2341-2351.	2.2	3
1292	Melanocortin therapies to resolve fibroblast-mediated diseases. Frontiers in Immunology, 0, 13 , .	2.2	1
1293	Macrophage-derived GPNMB trapped by fibrotic extracellular matrix promotes pulmonary fibrosis. Communications Biology, 2023, 6, .	2.0	5
1294	Physical Sciences in Cancer: Recent Advances and Insights at the Interface. Current Cancer Research, 2023, , 301-328.	0.2	0
1295	Prediction and Demonstration of Retinoic Acid Receptor Agonist Ch55 as an Antifibrotic Agent in the Dermis. Journal of Investigative Dermatology, 2023, 143, 1724-1734.e15.	0.3	2
1296	p53 and Myofibroblast Apoptosis in Organ Fibrosis. International Journal of Molecular Sciences, 2023, 24, 6737.	1.8	1
1297	Angiogenesis driven extracellular matrix remodeling of 3D bioprinted vascular networks. Bioprinting, 2023, 30, e00258.	2.9	1
1298	TenÂYears of Extracellular Matrix Proteomics: Accomplishments, Challenges, and Future Perspectives. Molecular and Cellular Proteomics, 2023, 22, 100528.	2.5	22
1299	Effect of roflumilast on airway remodeling in asthmatic mice exposed to or not exposed to cigarette smoke: Comparison with the effect of dexamethasone. Pulmonary Pharmacology and Therapeutics, 2023, 79, 102198.	1.1	0
1300	Different Decellularization Methods in Bovine Lung Tissue Reveals Distinct Biochemical Composition, Stiffness, and Viscoelasticity in Reconstituted Hydrogels. ACS Applied Bio Materials, 2023, 6, 793-805.	2.3	7

#	Article	IF	CITATIONS
1301	The Actin Network Interfacing Diverse Integrin-Mediated Adhesions. Biomolecules, 2023, 13, 294.	1.8	3
1303	VGLL3 is a mechanosensitive protein that promotes cardiac fibrosis through liquid–liquid phase separation. Nature Communications, 2023, 14, .	5.8	10
1304	Altered Mesenchymal Stem Cells Mechanotransduction from Oxidized Collagen: Morphological and Biophysical Observations. International Journal of Molecular Sciences, 2023, 24, 3635.	1.8	0
1305	Nanocomposite Hydrogels as Functional Extracellular Matrices. Gels, 2023, 9, 153.	2.1	3
1306	Inflammation modulates intercellular adhesion and mechanotransduction in human epidermis via ROCK2. IScience, 2023, 26, 106195.	1.9	0
1307	A multi-target protective effect of Danggui-Shaoyao-San on the vascular endothelium of atherosclerotic mice. BMC Complementary Medicine and Therapies, 2023, 23, .	1.2	2
1308	Effects of Elasticity on Cell Proliferation in a Tissue-Engineering Scaffold Pore. Bulletin of Mathematical Biology, 2023, 85, .	0.9	1
1310	Hydrogel mechanics regulate fibroblast DNA methylation and chromatin condensation. Biomaterials Science, 2023, 11, 2886-2897.	2.6	3
1311	Tissueâ€mimetic culture enhances mesenchymal stem cell secretome capacity to improve regenerative activity of keratinocytes and fibroblasts in vitro. Wound Repair and Regeneration, 2023, 31, 367-383.	1.5	4
1312	Biophysical cues of in vitro biomaterials-based artificial extracellular matrix guide cancer cell plasticity. Materials Today Bio, 2023, 19, 100607.	2.6	9
1313	Mechano-biological and bio-mechanical pathways in cutaneous wound healing. PLoS Computational Biology, 2023, 19, e1010902.	1.5	7
1314	Matrix Metalloproteinase-1 Expression in Fibroblasts Accelerates Dermal Aging and Promotes Papilloma Development in Mouse Skin. Journal of Investigative Dermatology, 2023, 143, 1700-1707.e1.	0.3	7
1315	Extracellular vesicle–matrix interactions. Nature Reviews Materials, 2023, 8, 390-402.	23.3	10
1316	Omics-based approaches to guide the design of biomaterials. Materials Today, 2023, 64, 98-120.	8.3	5
1318	Caveolae Mechanotransduction at the Interface between Cytoskeleton and Extracellular Matrix. Cells, 2023, 12, 942.	1.8	10
1319	Extracellular Matrix Dynamics as an Emerging yet Understudied Hallmark of Aging and Longevity. , 2023, 14, 670.		8
1321	A multiscale framework for defining homeostasis in distal vascular trees: applications to the pulmonary circulation. Biomechanics and Modeling in Mechanobiology, 2023, 22, 971-986.	1.4	5
1322	The Impact of Experimental Conditions on Cell Mechanics as Measured with Nanoindentation. Nanomaterials, 2023, 13, 1190.	1.9	5

#	Article	IF	CITATIONS
1323	Highlighting In Vitro the Role of Brain-like Endothelial Cells on the Maturation and Metabolism of Brain Pericytes by SWATH Proteomics. Cells, 2023, 12, 1010.	1.8	0
1324	The evolving field of regenerative aesthetics. Journal of Cosmetic Dermatology, 2023, 22, 1-7.	0.8	4
1326	The Extracellular Matrix: Its Composition, Function, Remodeling, and Role in Tumorigenesis. Biomimetics, 2023, 8, 146.	1.5	8
1327	Key aspects for conception and construction of co-culture models of tumor-stroma interactions. Frontiers in Bioengineering and Biotechnology, 0, 11 , .	2.0	2
1328	Engineering Cell–ECM–Material Interactions for Musculoskeletal Regeneration. Bioengineering, 2023, 10, 453.	1.6	1
1329	Mechanobiological considerations in colorectal stapling: Implications for technology development. Surgery Open Science, 2023, 13, 54-65.	0.5	1
1330	Vascular Biology of Arterial Aneurysms. Annals of Vascular Surgery, 2023, 94, 378-389.	0.4	1
1331	The effects of mechanical force on fibroblast behavior in cutaneous injury. Frontiers in Surgery, 0, 10,	0.6	4
1346	Mechanical properties of women pelvic soft tissues. , 2023, , 139-167.		0
1348	Mechanisms of endothelial flow sensing. , 2023, 2, 517-529.		5
1350	Update on Hyaluronan in Development. Biology of Extracellular Matrix, 2023, , 15-33.	0.3	0
1378	Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	16
1460	Dynamic models for investigating structure/function of biomaterials., 2024,, 335-376.		0
1465	Extracellular matrix and endotypes. , 2024, , 455-458.		0
1474	Unraveling the Power of Extracellular Matrix to Rescue the Effect of Aging. , 2024, , .		0
1482	Methods to Study the Role of Mechanical Signals in the Induction of Cancer Stem Cells. Methods in Molecular Biology, 2024, , 177-189.	0.4	0