Glucose transporter 1-mediated glucose uptake is limitide leukemia anabolic metabolism and resistance to apopte

Cell Death and Disease 5, e1470-e1470 DOI: 10.1038/cddis.2014.431

Citation Report

#	Article	IF	CITATIONS
1	Does aberrant membrane transport contribute to poor outcome in adult acute myeloid leukemia?. Frontiers in Pharmacology, 2015, 6, 134.	1.6	10
2	Dihydroartemisinin Inhibits Glucose Uptake and Cooperates with Glycolysis Inhibitor to Induce Apoptosis in Non-Small Cell Lung Carcinoma Cells. PLoS ONE, 2015, 10, e0120426.	1.1	52
3	Glucose transport machinery reconstituted in cell models. Chemical Communications, 2015, 51, 2316-2319.	2.2	32
4	Novel Therapeutic Targets of Tumor Metabolism. Cancer Journal (Sudbury, Mass), 2015, 21, 62-69.	1.0	36
5	TRAF3 deficiency promotes metabolic reprogramming in B cells. Scientific Reports, 2016, 6, 35349.	1.6	41
6	Attacking the supply wagons to starve cancer cells to death. FEBS Letters, 2016, 590, 885-907.	1.3	66
7	AMPK Is Essential to Balance Glycolysis and Mitochondrial Metabolism to Control T-ALL Cell Stress and Survival. Cell Metabolism, 2016, 23, 649-662.	7.2	195
8	The PI3K pathway in B cell metabolism. Critical Reviews in Biochemistry and Molecular Biology, 2016, 51, 359-378.	2.3	106
9	Eviction from the sanctuary: Development of targeted therapy against cell adhesion molecules in acute lymphoblastic leukemia. Seminars in Oncology, 2017, 44, 101-112.	0.8	15
10	Leptin and its receptor in glucose metabolism of T‑cell lymphoma. Oncology Letters, 2018, 16, 5838-5846.	0.8	7
11	Altered Metabolism of Leukemic Cells: New Therapeutic Opportunity. International Review of Cell and Molecular Biology, 2018, 336, 93-147.	1.6	8
12	Metabolic dependencies and vulnerabilities in leukemia. Genes and Development, 2019, 33, 1460-1474.	2.7	63
13	Targeting Metabolic Reprogramming in Acute Myeloid Leukemia. Cells, 2019, 8, 967.	1.8	43
14	Myeloid <i>Slc2a1</i> -Deficient Murine Model Revealed Macrophage Activation and Metabolic Phenotype Are Fueled by GLUT1. Journal of Immunology, 2019, 202, 1265-1286.	0.4	104
15	Non-proteolytic ubiquitination of Hexokinase 2 by HectH9 controls tumor metabolism and cancer stem cell expansion. Nature Communications, 2019, 10, 2625.	5.8	82
16	Tumorigenesis and Metabolism Disorder. , 2019, , 209-250.		0
17	The Metabolic Profiles in Hematological Malignancies. Indian Journal of Hematology and Blood Transfusion, 2019, 35, 625-634.	0.3	3
18	Metabolic gatekeepers to safeguard against autoimmunity and oncogenic B cell transformation. Nature Reviews Immunology, 2019, 19, 337-348.	10.6	37

	CITATION	CITATION REPORT	
# 19	ARTICLE TO901317 inhibits the development of hepatocellular carcinoma by LXRα/Glut1 decreasing glycometabolism. American Journal of Physiology - Renal Physiology. 2019. 316. G598-G607	IF 1.6	CITATIONS
20	Targeting mTOR in Acute Lymphoblastic Leukemia. Cells, 2019, 8, 190.	1.8	44
21	Mechanisms by Which Obesity Impacts Survival from Acute Lymphoblastic Leukemia. Journal of the National Cancer Institute Monographs, 2019, 2019, 152-156.	0.9	22
22	Selenium nanoparticles reduce glucose metabolism and promote apoptosis of glioma cells through reactive oxygen species-dependent manner. NeuroReport, 2020, 31, 226-234.	0.6	16
23	Is There a Causal Relationship between Childhood Obesity and Acute Lymphoblastic Leukemia? A Review. Cancers, 2020, 12, 3082.	1.7	13
24	Oncogenic Mechanisms and Therapeutic Targeting of Metabolism in Leukemia and Lymphoma. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a035477.	2.9	2
25	mTOR Regulation of Metabolism in Hematologic Malignancies. Cells, 2020, 9, 404.	1.8	10
26	Metabolic Gatekeepers of Pathological B Cell Activation. Annual Review of Pathology: Mechanisms of Disease, 2021, 16, 323-349.	9.6	10
27	PON2 subverts metabolic gatekeeper functions in B cells to promote leukemogenesis. Proceedings of the United States of America, 2021, 118, .	3.3	10
28	Reactive Oxygen Species and Metabolic Re-Wiring in Acute Leukemias. , 0, , .		0
29	Metabolic determinants of B-cell selection. Biochemical Society Transactions, 2021, 49, 1467-1478.	1.6	0
30	Supply and demand: Cellular nutrient uptake and exchange in cancer. Molecular Cell, 2021, 81, 3731-3748.	4.5	18
31	Proteome alterations associated with transformation of multiple myeloma to secondary plasma cell leukemia. Oncotarget, 2017, 8, 19427-19442.	0.8	11
32	The hypoxia signalling pathway in haematological malignancies. Oncotarget, 2017, 8, 36832-36844.	0.8	37
33	Glucose transporter isoform 1 expression enhances metastasis of malignant melanoma cells. Oncotarget, 2015, 6, 32748-32760.	0.8	81
34	Nicotinamide Inhibits Glycolysis of HL-60 Cells by Modulating Sirtuin 1 (SIRT1)/Peroxisome Proliferator-Activated Receptor Î ³ Coactivator 1α (PGC-1α)/Hypoxia-Inducible Factor-2α (HIF2α) Signaling Pathway. Medical Science Monitor, 2020, 26, e920810.	0.5	0
35	Inhibition of glucose-transporter 1 (GLUT-1) expression reversed Warburg effect in gastric cancer cell MKN45. International Journal of Clinical and Experimental Medicine, 2015, 8, 2423-8.	1.3	21
37	The Importance of Cellular Metabolic Pathways in Pathogenesis and Selective Treatments of Hematological Malignancies. Frontiers in Oncology, 2021, 11, 767026.	1.3	26

CITATION REPORT

#	Article	IF	CITATIONS
38	Glucose transporters as markers of diagnosis and prognosis in cancer diseases. Oncology Reviews, 2022, 16, 561.	0.8	13
39	GLUT1 Immunohistochemistry Is a Highly Sensitive and Relatively Specific Marker for Erythroid Lineage in Benign and Malignant Hematopoietic Tissues. American Journal of Clinical Pathology, 2022, 158, 228-234.	0.4	1
40	Metabolic Reprogramming and Cell Adhesion in Acute Leukemia Adaptation to the CNS Niche. Frontiers in Cell and Developmental Biology, 2021, 9, 767510.	1.8	4
41	PON2 blockade overcomes dexamethasone resistance in acute lymphoblastic leukemia. Hematology, 2022, 27, 32-42.	0.7	6
42	Pitavastatin Is Anti-Leukemic in a Bone Marrow Microenvironment Model of B-Lineage Acute Lymphoblastic Leukemia. Cancers, 2022, 14, 2681.	1.7	1
43	SIRT1 regulated hexokinase-2 promoting glycolysis is involved in hydroquinone-enhanced malignant progression in human lymphoblastoid TK6 cells. Ecotoxicology and Environmental Safety, 2022, 241, 113757.	2.9	5
44	Deciphering Metabolic Adaptability of Leukemic Stem Cells. Frontiers in Oncology, 0, 12, .	1.3	2
45	Single-Cell Metabolomics in Hematopoiesis and Hematological Malignancies. Frontiers in Oncology, 0, 12, .	1.3	4
46	Regulation of immune cell metabolism in health and disease: Special focus on T and B cell subsets. Cell Biology International, 2022, 46, 1729-1746.	1.4	7
47	Alterations in cellular metabolisms after TKI therapy for Philadelphia chromosome-positive leukemia in children: A review. Frontiers in Oncology, 0, 12, .	1.3	1
48	TRAF3: A novel regulator of mitochondrial physiology and metabolic pathways in B lymphocytes. Frontiers in Oncology, 0, 13, .	1.3	2
49	The opportunities and challenges for nutritional intervention in childhood cancers. Frontiers in Nutrition, 0, 10, .	1.6	2
51	Enhanced chemotherapeutic efficacy of docetaxel in human lung cancer cell line via GLUT1 inhibitor. Journal of Biochemical and Molecular Toxicology, 0, , .	1.4	0
57	Obesity and Leukemia: Biological Mechanisms, Perspectives, and Challenges. Current Obesity Reports, 0, , .	3.5	1
-0			

58 B-Cell Metabolism. , 2024, , 487-515.