Jack of all trades: versatile catechol crosslinking mechan

Chemical Society Reviews 43, 8271-8298 DOI: 10.1039/c4cs00185k

Citation Report

#	Article	IF	Citations
2	Polydopamine as a Catalyst for Thiol Coupling. ChemCatChem, 2015, 7, 3822-3825.	1.8	22
4	Development of a catheter functionalized by a polydopamine peptide coating with antimicrobial and antibiofilm properties. Acta Biomaterialia, 2015, 15, 127-138.	4.1	168
5	Stable Bioactive Enzyme-Containing Multilayer Films Based on Covalent Cross-Linking from Mussel-Inspired Adhesives. Langmuir, 2015, 31, 12447-12454.	1.6	15
6	Water-soluble dopamine-based polymers for photoacoustic imaging. Chemical Communications, 2015, 51, 6084-6087.	2.2	51
7	The effect of molecular composition and crosslinking on adhesion of a bio-inspired adhesive. Polymer Chemistry, 2015, 6, 3121-3130.	1.9	58
8	Surface-Confined Amorphous Films from Metal-Coordinated Simple Phenolic Ligands. Chemistry of Materials, 2015, 27, 5825-5832.	3.2	177
9	Catechol-bearing block copolymer micelles: Structural characterization and antioxidant activity. Polymer, 2015, 66, 1-7.	1.8	16
10	Dithiol-based modification of poly(dopamine): enabling protein resistance via short-chain ethylene oxide oligomers. Chemical Communications, 2015, 51, 6591-6594.	2.2	19
11	Polydopamine Coatings in Confined Nanopore Space: Toward Improved Retention and Release of Hydrophilic Cargo. Journal of Physical Chemistry C, 2015, 119, 24512-24521.	1.5	111
12	Heterogeneous Oxidation of Catechol. Journal of Physical Chemistry A, 2015, 119, 10349-10359.	1.1	78
13	A facile and versatile approach for controlling electroosmotic flow in capillary electrophoresis via mussel inspired polydopamine/polyethyleneimine co-deposition. Journal of Chromatography A, 2015, 1416, 94-102.	1.8	44
14	Recent developments in poly(dopamine)-based coatings for biomedical applications. Nanomedicine, 2015, 10, 2725-2742.	1.7	101
15	Enzymatically Degradable Polyester-Based Adhesives. ACS Biomaterials Science and Engineering, 2015, 1, 971-977.	2.6	28
16	Bio-inspired adhesive catechol-conjugated chitosan for biomedical applications: A mini review. Acta Biomaterialia, 2015, 27, 101-115.	4.1	332
17	Universal polymer coatings and their representative biomedical applications. Materials Horizons, 2015, 2, 567-577.	6.4	200
18	Reaction Pathways in Catechol/Primary Amine Mixtures: A Window on Crosslinking Chemistry. PLoS ONE, 2016, 11, e0166490.	1.1	73
19	Polycatechol Nanoparticle MRI Contrast Agents. Small, 2016, 12, 668-677.	5.2	64
20	Simple but Strong: A Mussel-Inspired Hot Curing Adhesive Based on Polyvinyl Alcohol Backbone. Macromolecular Rapid Communications, 2016, 37, 545-550.	2.0	48

ATION RED

#	Article	IF	CITATIONS
21	Musselâ€Inspired Materials: Selfâ€Healing through Coordination Chemistry. Chemistry - A European Journal, 2016, 22, 844-857.	1.7	257
22	Investigations of Mussel Adhesive Proteins as Flash Rust Inhibitors. Journal of the Electrochemical Society, 2016, 163, C553-C562.	1.3	4
23	Biomimetic anchors applied to the host-guest antifouling functionalization of titanium substrates. Journal of Colloid and Interface Science, 2016, 475, 8-16.	5.0	13
24	Synthesis and Characterization of Aminopropyltriethoxysilane-Polydopamine Coatings. Langmuir, 2016, 32, 4370-4381.	1.6	76
25	Preparation of Thin Melanin-Type Films by Surface-Controlled Oxidation. Langmuir, 2016, 32, 4103-4112.	1.6	30
26	Development of tyrosinase-aided crosslinking procedure for stabilizing protein nanoparticles. Food Hydrocolloids, 2016, 60, 324-334.	5.6	20
27	Investigation of Dopamine Analogues: Synthesis, Mechanistic Understanding, and Structure–Property Relationship. Langmuir, 2016, 32, 9873-9882.	1.6	51
28	Surface- and Redox-Active Multifunctional Polyphenol-Derived Poly(ionic liquid)s: Controlled Synthesis and Characterization. Macromolecules, 2016, 49, 7676-7691.	2.2	42
29	Evolved alkaline fungal laccase secreted by Saccharomyces cerevisiae as useful tool for the synthesis of C–N heteropolymeric dye. Journal of Molecular Catalysis B: Enzymatic, 2016, 134, 323-330.	1.8	24
30	Deposition Kinetics of Bioinspired Phenolic Coatings on Titanium Surfaces. Langmuir, 2016, 32, 8050-8060.	1.6	76
31	A Bioorthogonal Approach for the Preparation of a Titaniumâ€Binding Insulinâ€like Growthâ€Factorâ€1 Derivative by Using Tyrosinase. Angewandte Chemie - International Edition, 2016, 55, 11447-11451.	7.2	26
32	Green routes towards industrial textile dyeing: A laccase based approach. Journal of Molecular Catalysis B: Enzymatic, 2016, 134, 274-279.	1.8	37
33	Tyrosine Metabolism for Insect Cuticle Pigmentation and Sclerotization. , 2016, , 165-220.		20
34	pH Responsive and Oxidation Resistant Wet Adhesive based on Reversible Catechol–Boronate Complexation. Chemistry of Materials, 2016, 28, 5432-5439.	3.2	157
35	Biological Adhesives. , 2016, , .		23
36	A Bioorthogonal Approach for the Preparation of a Titaniumâ€Binding Insulinâ€like Growthâ€Factorâ€l Derivative by Using Tyrosinase. Angewandte Chemie, 2016, 128, 11619-11623. 	1.6	2
37	Barnacle biology before, during and after settlement and metamorphosis: a study of the interface. Journal of Experimental Biology, 2017, 220, 194-207.	0.8	39
38	Nanoscale Polydopamine (PDA) Meets ï€â€"ï€ Interactions: An Interface-Directed Coassembly Approach for Mesoporous Nanoparticles. Langmuir, 2016, 32, 12119-12128.	1.6	160

#	Article	IF	CITATIONS
39	Biomolecular interaction, catecholase like activity and alkane oxidation in ionic liquids of a phenylcarbohydrazone-based monocopper(II) complex. Inorganica Chimica Acta, 2016, 450, 426-436.	1.2	28
40	Pore Structures in the Biomineralized Byssus of <i>Anomia simplex</i> . Key Engineering Materials, 2016, 672, 71-79.	0.4	1
41	Silica-assisted incorporation of polydopamine into the framework of porous nanocarriers by a facile one-pot synthesis. Journal of Materials Chemistry B, 2016, 4, 2435-2443.	2.9	51
42	A clear coat from a water soluble precursor: a bioinspired paint concept. Journal of Materials Chemistry A, 2016, 4, 6868-6877.	5.2	14
43	Robust mussel-inspired coatings for controlled zinc ion release. Journal of Materials Chemistry B, 2017, 5, 1742-1752.	2.9	8
44	Synergistic effect between redox additive electrolyte and PANI-rGO nanocomposite electrode for high energy and high power supercapacitor. Electrochimica Acta, 2017, 228, 290-298.	2.6	85
45	Catechol-modified hyaluronic acid: in situ-forming hydrogels by auto-oxidation of catechol or photo-oxidation using visible light. Polymer Bulletin, 2017, 74, 4069-4085.	1.7	23
46	Metal-Chelation-Assisted Deposition of Polydopamine on Human Hair: A Ready-to-Use Eumelanin-Based Hair Dyeing Methodology. ACS Biomaterials Science and Engineering, 2017, 3, 628-636.	2.6	63
47	Multifunctional Enzymatically Generated Hydrogels for Chronic Wound Application. Biomacromolecules, 2017, 18, 1544-1555.	2.6	58
48	Amperometric sensing of catechol using a glassy carbon electrode modified with ferrocene covalently immobilized on graphene oxide. Mikrochimica Acta, 2017, 184, 2925-2932.	2.5	35
49	Ultra-selective detection of Fe ²⁺ ion by redox mechanism based on fluorescent polymerized dopamine derivatives. RSC Advances, 2017, 7, 30582-30587.	1.7	45
50	A mussel-inspired poly(γ-glutamic acid) tissue adhesive with high wet strength for wound closure. Journal of Materials Chemistry B, 2017, 5, 5668-5678.	2.9	92
51	Unraveling complex molecular transformations of <i>N</i> â€Î²â€alanyldopamine that account for brown coloration of insect cuticle. Rapid Communications in Mass Spectrometry, 2017, 31, 1363-1373.	0.7	16
52	Mussel-Inspired Polyglycerol Coatings with Controlled Wettability: From Superhydrophilic to Superhydrophobic Surface Coatings. Langmuir, 2017, 33, 9508-9520.	1.6	28
53	Supramolecular surface functionalization via catechols for the improvement of cell–material interactions. Biomaterials Science, 2017, 5, 1541-1548.	2.6	18
54	Siderophores and mussel foot proteins: the role of catechol, cations, and metal coordination in surface adhesion. Journal of Biological Inorganic Chemistry, 2017, 22, 739-749.	1.1	35
55	Zinc binding with l-dopa peptides. Inorganica Chimica Acta, 2017, 461, 120-126.	1.2	8
56	Photoresponsive hierarchical ZnO-PDMS surfaces with azobenzene-polydopamine coated nanoparticles for reversible wettability tuning. Vacuum, 2017, 146, 386-395.	1.6	15

#	Article	IF	CITATIONS
57	Methoxy group substitution on catechol ring of dopamine facilitates its polymerization and formation of surface coatings. Polymer, 2017, 116, 5-15.	1.8	15
58	Relating Silica Scaling in Reverse Osmosis to Membrane Surface Properties. Environmental Science & Technology, 2017, 51, 4396-4406.	4.6	136
59	Single-Phase Photo-Cross-Linkable Bioinspired Adhesive for Precise Control of Adhesion Strength. ACS Applied Materials & Interfaces, 2017, 9, 1830-1839.	4.0	28
60	Comprehensive Insights into the Multi-Antioxidative Mechanisms of Melanin Nanoparticles and Their Application To Protect Brain from Injury in Ischemic Stroke. Journal of the American Chemical Society, 2017, 139, 856-862.	6.6	404
61	Contribution of the Polarity of Mussel-Inspired Adhesives in the Realization of Strong Underwater Bonding. ACS Biomaterials Science and Engineering, 2017, 3, 3133-3140.	2.6	46
62	Norepinephrine modified thin film composite membranes for forward osmosis. Desalination, 2017, 423, 157-164.	4.0	16
63	Complex coacervates based on recombinant mussel adhesive proteins: their characterization and applications. Soft Matter, 2017, 13, 7704-7716.	1.2	59
64	Poly(N-isopropylacrylamide) modified polydopamine as a temperature-responsive surface for cultivation and harvest of mesenchymal stem cells. Biomaterials Science, 2017, 5, 2310-2318.	2.6	16
65	Designing catecholâ€end functionalized poly(DMAmâ€ <i>co</i> â€NIPAM) by RAFT with tunable LCSTs. Journal of Polymer Science Part A, 2017, 55, 4062-4070.	2.5	6
66	Rapid shape memory and pH-modulated spontaneous actuation of dopamine containing hydrogels. Chinese Journal of Polymer Science (English Edition), 2017, 35, 1297-1306.	2.0	19
67	Bio-derived polymers for coating applications: comparing poly(limonene carbonate) and poly(cyclohexadiene carbonate). Polymer Chemistry, 2017, 8, 6099-6105.	1.9	76
68	Scarless Wound Closure by a Mussel-Inspired Poly(amidoamine) Tissue Adhesive with Tunable Degradability. ACS Omega, 2017, 2, 6053-6062.	1.6	19
69	Catechol- and ketone-containing multifunctional bottlebrush polymers for oxime ligation and hydrogel formation. Polymer Chemistry, 2017, 8, 4707-4715.	1.9	21
70	Immunosensor Employing Stable, Solid 1-Amino-2-naphthyl Phosphate and Ammonia-Borane toward Ultrasensitive and Simple Point-of-Care Testing. ACS Sensors, 2017, 2, 1240-1246.	4.0	25
71	A one step method for the functional and property modification of DOPA based nanocoatings. Nanoscale, 2017, 9, 12409-12415.	2.8	19
72	Surface Functionalization of Metal–Organic Framework Crystals with Catechol Coatings for Enhanced Moisture Tolerance. ACS Applied Materials & Interfaces, 2017, 9, 44641-44648.	4.0	33
73	Mussel-Inspired Universal Bioconjugation of Polydiacetylene Liposome for Droplet-Array Biosensors. ACS Applied Materials & Interfaces, 2017, 9, 42210-42216.	4.0	40
74	Covalent Capture of Aligned Self-Assembling Nanofibers. Journal of the American Chemical Society, 2017, 139, 8044-8050.	6.6	46

#	Article	IF	CITATIONS
75	Perspectives on Mussel-Inspired Wet Adhesion. Journal of the American Chemical Society, 2017, 139, 10166-10171.	6.6	309
76	Formation of Microgels by Utilizing the Reactivity of Catechols with Radicals. Macromolecules, 2017, 50, 5285-5292.	2.2	28
77	Polydopamine and eumelanin molecular structures investigated with ab initio calculations. Chemical Science, 2017, 8, 1631-1641.	3.7	162
78	Catechol, a major component of smoke, influences primary root growth and root hair elongation through reactive oxygen speciesâ€mediated redox signaling. New Phytologist, 2017, 213, 1755-1770.	3.5	26
79	Improvement of Interfacial Adhesion by Bio-Inspired Catechol-Functionalized Soy Protein with Versatile Reactivity: Preparation of Fully Utilizable Soy-Based Film. Polymers, 2017, 9, 95.	2.0	16
80	A Disposable Amperometric Sensor Based on High-Performance PEDOT:PSS/Ionic Liquid Nanocomposite Thin Film-Modified Screen-Printed Electrode for the Analysis of Catechol in Natural Water Samples. Sensors, 2017, 17, 1716.	2.1	21
81	Polydopamine Surface Chemistry: A Decade of Discovery. ACS Applied Materials & Interfaces, 2018, 10, 7523-7540.	4.0	1,232
82	Poly[3,4â€dihydroxybenzhydrazide]: A Polydopamine Analogue?. Macromolecular Chemistry and Physics, 2018, 219, 1700564.	1.1	7
83	Design Strategies of Metal Complexes Based on Chelating Polymer Ligands and Their Application in Nanomaterials Science. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 1305-1393.	1.9	28
84	Metal Complexes with Polymer Chelating Ligands. Springer Series in Materials Science, 2018, , 199-366.	0.4	6
85	Reverse osmosis membranes with guanidine and amine enriched surface for biofouling and organic fouling control. Desalination, 2018, 430, 74-85.	4.0	65
86	Synthesis of functional catechols as monomers of mussel-inspired biomimetic polymers. Green Chemistry, 2018, 20, 912-920.	4.6	25
87	Bioinspired Underwater Adhesives by Using the Supramolecular Toolbox. Advanced Materials, 2018, 30, e1704640.	11.1	447
88	Robust Coatings via Catechol–Amine Codeposition: Mechanism, Kinetics, and Application. ACS Applied Materials & Interfaces, 2018, 10, 5902-5908.	4.0	110
89	Catechol oxidation: considerations in the design of wet adhesive materials. Biomaterials Science, 2018, 6, 332-339.	2.6	72
90	Musselâ€Inspired Polymerâ€Based Universal Spray Coating for Surface Modification: Fast Fabrication of Antibacterial and Superhydrophobic Surface Coatings. Advanced Materials Interfaces, 2018, 5, 1701254.	1.9	99
91	Bio-inspired redox-cycling antimicrobial film for sustained generation of reactive oxygen species. Biomaterials, 2018, 162, 109-122.	5.7	72
92	Selective sensing of lysosomal iron(III) via three-component fluorescence-based strategy in living cells. Sensors and Actuators B: Chemical, 2018, 260, 460-464.	4.0	24

#	Article	IF	CITATIONS
93	Gallol-containing homopolymers and block copolymers: ROMP synthesis and gelation properties by metal-coordination and oxidation. Polymer, 2018, 143, 212-227.	1.8	23
94	Recent advances in the synthesis of catechol-derived (bio)polymers for applications in energy storage and environment. Progress in Polymer Science, 2018, 82, 34-91.	11.8	159
95	Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH. Scientific Reports, 2018, 8, 3530.	1.6	13
96	Optimized polydopamine coating and DNA conjugation onto gold nanorods for single nanoparticle bioaffinity measurements. Analyst, The, 2018, 143, 1635-1643.	1.7	13
97	Vapor-gap membranes for highly selective osmotically driven desalination. Journal of Membrane Science, 2018, 555, 407-417.	4.1	31
98	Multiple crosslinking bionanocomposites reinforced with musselâ€inspired poly(dopamine) surface modified nanoclay: Construction, properties, and characterization. Polymer Composites, 2018, 39, E90.	2.3	3
99	Suppression of the release of arsenic from arsenopyrite by carrier-microencapsulation using Ti-catechol complex. Journal of Hazardous Materials, 2018, 344, 322-332.	6.5	65
100	Establishing contact between cell-laden hydrogels and metallic implants with a biomimetic adhesive for cell therapy supported implants. Biomedical Materials (Bristol), 2018, 13, 015015.	1.7	9
101	A facile approach towards amino-coated ferroferric oxide nanoparticles for environmental pollutant removal. Journal of Colloid and Interface Science, 2018, 513, 647-657.	5.0	25
102	Mussel-Inspired Self-Healing Double-Cross-Linked Hydrogels by Controlled Combination of Metal Coordination and Covalent Cross-Linking. Biomacromolecules, 2018, 19, 1402-1409.	2.6	95
103	A Simple Strategy to Achieve Musselâ€inspired Highly Effective Antibacterial Coating. Macromolecular Materials and Engineering, 2018, 303, 1700430.	1.7	7
104	Quantification of the catalytic performance of C1-cellulose-specific lytic polysaccharide monooxygenases. Applied Microbiology and Biotechnology, 2018, 102, 1281-1295.	1.7	51
105	Biocompatible and bioadhesive low molecular weight polymers containing long-arm catechol-functionalized methacrylate. European Polymer Journal, 2018, 98, 47-55.	2.6	16
106	Polydopamine Based Colloidal Materials: Synthesis and Applications. Chemical Record, 2018, 18, 410-432.	2.9	67
107	Effect of Ionic Functional Groups on the Oxidation State and Interfacial Binding Property of Catechol-Based Adhesive. Biomacromolecules, 2018, 19, 1416-1424.	2.6	35
108	Enzymatic synthesis of a thiolated chitosan-based wound dressing crosslinked with chicoric acid. Journal of Materials Chemistry B, 2018, 6, 7943-7953.	2.9	27
109	New NH-substituted 1,4-naphtho- and 1,4-benzo- quinones: Synthesis, characterization and potential antiproliferative effect against MDA-MB-231 cells. Phosphorus, Sulfur and Silicon and the Related Elements, 2018, 193, 831-839.	0.8	2
110	Hydrophobic Antioxidant Polymers for Corrosion Protection of an Aluminum Alloy. ACS Sustainable Chemistry and Engineering, 2018, 6, 14302-14313.	3.2	25

#	Article	IF	CITATIONS
111	Direct Observation of the Interplay of Catechol Binding and Polymer Hydrophobicity in a Mussel-Inspired Elastomeric Adhesive. ACS Central Science, 2018, 4, 1420-1429.	5.3	69
112	Facile synthesis of ultrasmall polydopamine-polyethylene glycol nanoparticles for cellular delivery. Biointerphases, 2018, 13, 06D407.	0.6	17
113	Injectable, redox-polymerized carboxymethylcellulose hydrogels promote nucleus pulposus-like extracellular matrix elaboration by human MSCs in a cell density-dependent manner. Journal of Biomaterials Applications, 2018, 33, 576-589.	1.2	14
114	Surface Functionalization and Patterning by Multifunctional Resorcinarenes. ACS Applied Materials & Interfaces, 2018, 10, 39268-39278.	4.0	14
115	Natural polyphenols as versatile platforms for material engineering and surface functionalization. Progress in Polymer Science, 2018, 87, 165-196.	11.8	225
116	The multifaceted nature of catechol chemistry: bioinspired pH-initiated hyaluronic acid hydrogels with tunable cohesive and adhesive properties. Journal of Materials Chemistry B, 2018, 6, 6234-6244.	2.9	37
117	Surface Functionalization of Metal-Organic Frameworks for Improved Moisture Resistance. Journal of Visualized Experiments, 2018, , .	0.2	2
118	Hybrid Mesoporous–Microporous Nanocarriers for Overcoming Multidrug Resistance by Sequential Drug Delivery. Molecular Pharmaceutics, 2018, 15, 2503-2512.	2.3	46
119	Effects of pH and Oxidants on the First Steps of Polydopamine Formation: A Thermodynamic Approach. Journal of Physical Chemistry B, 2018, 122, 6314-6327.	1.2	146
120	Universal Coatings Based on Zwitterionic–Dopamine Copolymer Microgels. ACS Applied Materials & Interfaces, 2018, 10, 20869-20875.	4.0	49
121	Free-standing polydopamine films generated in the presence of different metallic ions: the comparison of reaction process and film properties. RSC Advances, 2018, 8, 18347-18354.	1.7	24
122	Mussel-Inspired Electro-Cross-Linking of Enzymes for the Development of Biosensors. ACS Applied Materials & Interfaces, 2018, 10, 18574-18584.	4.0	25
123	Bio-inert interfaces via biomimetic anchoring of a zwitterionic copolymer on versatile substrates. Journal of Colloid and Interface Science, 2018, 529, 77-89.	5.0	20
124	Biomimetic Chemistry at Interfaces. Interface Science and Technology, 2018, 21, 367-404.	1.6	3
125	Room-temperature surface-assisted reactivity of a melanin precursor: silver metal–organic coordination <i>versus</i> covalent dimerization on gold. Nanoscale, 2018, 10, 16721-16729.	2.8	23
126	Direct current electrodeposition of Co-ITO nanoflakes modified steel electrode for highly selective non enzymatic detection of catechol. Journal of Alloys and Compounds, 2018, 767, 622-631.	2.8	7
127	Transparent, Adhesive, and Conductive Hydrogel for Soft Bioelectronics Based on Light-Transmitting Polydopamine-Doped Polypyrrole Nanofibrils. Chemistry of Materials, 2018, 30, 5561-5572.	3.2	331
128	Shear stress regulated uptake of liposome-decorated microgels coated with a poly(dopamine) shell. Colloids and Surfaces B: Biointerfaces, 2018, 171, 427-436.	2.5	8

#	Article	IF	CITATIONS
129	Catechol End-Functionalized Polylactide by Organocatalyzed Ring-Opening Polymerization. Polymers, 2018, 10, 155.	2.0	14
130	Functional Polymeric Materials Inspired by Geckos, Mussels, and Spider Silk. Macromolecular Chemistry and Physics, 2018, 219, 1800051.	1.1	5
131	Biological conversion of aromatic monolignol compounds by a Pseudomonas isolate from sediments of the Baltic Sea. AMB Express, 2018, 8, 32.	1.4	23
132	Simultaneous suppression of acid mine drainage formation and arsenic release by Carrier-microencapsulation using aluminum-catecholate complexes. Chemosphere, 2018, 205, 414-425.	4.2	72
133	Synthesis, Electrochemistry, DFT Calculations, Antimicrobial Properties and Xâ€ray Crystal Structures of Some NH―and/or S―Substitutedâ€1,4â€quinones. ChemistrySelect, 2018, 3, 8615-8623.	0.7	8
134	Functional consequences of piceatannol binding to glyceraldehyde-3-phosphate dehydrogenase. PLoS ONE, 2018, 13, e0190656.	1.1	13
135	Mussel-inspired construction of thermo-responsive double-hydrophilic diblock copolymers-decorated reduced graphene oxide as effective catalyst supports for highly dispersed superfine Pd nanoparticles. Nanoscale, 2018, 10, 12487-12496.	2.8	26
136	Facile and Selective Determination of Dipeptides Using 3-Methylcatechol as a Novel Fluorogenic Reagent. International Journal of Peptide Research and Therapeutics, 2019, 25, 583-589.	0.9	0
137	Precision synthesis of 3-substituted urushiol analogues and the realization of their urushiol-like performance. RSC Advances, 2019, 9, 24904-24914.	1.7	2
138	Bioadhesive functional hydrogels: Controlled release of catechol species with antioxidant and antiinflammatory behavior. Materials Science and Engineering C, 2019, 105, 110040.	3.8	55
139	Bioinspired Design Provides High‣trength Benzoxazine Structural Adhesives. Angewandte Chemie, 2019, 131, 12399-12407.	1.6	20
140	Selfâ€Healable Materials for Underwater Applications. Advanced Materials Technologies, 2019, 4, 1900081.	3.0	38
141	Self curing and voltage activated catechol adhesives. Chemical Communications, 2019, 55, 10076-10079.	2.2	19
142	Coordination bonding-based polydopamine-modified mesoporous silica for sustained avermectin release. Materials Science and Engineering C, 2019, 105, 110073.	3.8	51
143	Surface-modified nanocrystalline cellulose from oil palm empty fruit bunch for effective binding of curcumin. International Journal of Biological Macromolecules, 2019, 138, 1064-1071.	3.6	40
144	Conductive, Tough, Transparent, and Self-Healing Hydrogels Based on Catechol–Metal Ion Dual Self-Catalysis. Chemistry of Materials, 2019, 31, 5625-5632.	3.2	214
145	Valorization of aqueous waste streams from thermochemical biorefineries. Green Chemistry, 2019, 21, 4217-4230.	4.6	31
146	An Unprecedented Cyclization Mechanism in the Biosynthesis of Carbazole Alkaloids in <i>Streptomyces</i> . Angewandte Chemie - International Edition, 2019, 58, 13349-13353.	7.2	17

#	Article	IF	CITATIONS
147	An Unprecedented Cyclization Mechanism in the Biosynthesis of Carbazole Alkaloids in Streptomyces. Angewandte Chemie, 2019, 131, 13483-13487.	1.6	2
148	Electrodeposition from Tannic acid-polyamine blends at pH = 5.0 is due to aggregate deposition and oxidation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 578, 123530.	2.3	4
149	Fabrication of Hybrid Hydrogels from Silk Fibroin and Tannic Acid with Enhanced Gelation and Antibacterial Activities. ACS Biomaterials Science and Engineering, 2019, 5, 4601-4611.	2.6	106
150	Bioinspired Design Provides High‣trength Benzoxazine Structural Adhesives. Angewandte Chemie - International Edition, 2019, 58, 12271-12279.	7.2	79
151	Bioinspired Functional Catechol Derivatives through Simple Thiol Conjugate Addition. Chemistry - A European Journal, 2019, 25, 12367-12379.	1.7	22
152	Tannic Acid-A Universal Immobilization and Fixation Agent for Nanocarbon Materials: A Novel Strategy for Aqueous Fabrication of Functional Nanocarbon Coating onto Silicon-Based Substances. ACS Sustainable Chemistry and Engineering, 2019, 7, 18534-18541.	3.2	6
153	Amorphous calcium phosphate in the pupal cuticle of Bactrocera dorsalis Hendel (Diptera:) Tj ETQq0 0 0 rgBT /O Insect Physiology, 2019, 119, 103964.	verlock 10 0.9) Tf 50 507 T 4
154	Conducting Polymers Doped with Bifunctional Copolymers for Improved Organic Batteries. ACS Applied Energy Materials, 2019, 2, 7781-7790.	2.5	15
155	Transferrin oated Nanodiamond–Drug Conjugates for Milliwatt Photothermal Applications. Advanced Therapeutics, 2019, 2, 1900067.	1.6	12
156	An Anisotropic Hydrogel Based on Mussel-Inspired Conductive Ferrofluid Composed of Electromagnetic Nanohybrids. Nano Letters, 2019, 19, 8343-8356.	4.5	107
157	Tailoring Synthetic Melanin Nanoparticles for Enhanced Photothermal Therapy. ACS Applied Materials & Interfaces, 2019, 11, 42671-42679.	4.0	105
158	Mussel-Inspired Multivalent Linear Polyglycerol Coatings Outperform Monovalent Polyethylene Glycol Coatings in Antifouling Surface Properties. ACS Applied Bio Materials, 2019, 2, 5749-5759.	2.3	17
159	Catechol-Functionalized Chitosan: Optimized Preparation Method and Its Interaction with Mucin. Langmuir, 2019, 35, 16013-16023.	1.6	32
160	Using A Spin-Coater to Capture Adhesive Species during Polydopamine Thin-Film Fabrication. Langmuir, 2019, 35, 12722-12730.	1.6	5
161	Construction of Bio/Nanointerfaces: Stable Gold Nanoparticle Bioconjugates in Complex Systems. ACS Applied Materials & Interfaces, 2019, 11, 40817-40825.	4.0	13
162	Mussel-inspired dopamine oligomer intercalated tough and resilient gelatin methacryloyl (GelMA) hydrogels for cartilage regeneration. Journal of Materials Chemistry B, 2019, 7, 1716-1725.	2.9	105
163	Multiple Weak H-Bonds Lead to Highly Sensitive, Stretchable, Self-Adhesive, and Self-Healing Ionic Sensors. ACS Applied Materials & Interfaces, 2019, 11, 7755-7763.	4.0	264
164	Mechanistic insights into the electrochemical oxidation of dopamine by cyclic voltammetry. Journal of Electroanalytical Chemistry, 2019, 836, 94-101.	1.9	72

#	ARTICLE	IF	CITATIONS
165	Rigidification of a macrocyclic tris-catecholate scaffold leads to electronic localisation of its mixed valent redox product. Chemical Communications, 2019, 55, 2281-2284.	2.2	4
166	Selfâ€Healing Polymeric Hydrogel Formed by Metal–Ligand Coordination Assembly: Design, Fabrication, and Biomedical Applications. Macromolecular Rapid Communications, 2019, 40, e1800837.	2.0	183
167	Algae–mussel-inspired hydrogel composite glue for underwater bonding. Materials Horizons, 2019, 6, 285-293.	6.4	102
168	Enzymatic assembly of adhesive molecular networks with sequence-dependent mechanical properties inspired by mussel foot proteins. Polymer Chemistry, 2019, 10, 823-826.	1.9	7
169	Hydrogen bonding-based strongly adhesive coacervate hydrogels synthesized using poly(<i>N</i> -vinylpyrrolidone) and tannic acid. Soft Matter, 2019, 15, 785-791.	1.2	132
170	Catechol thioethers with physiologically active fragments: Electrochemistry, antioxidant and cryoprotective activities. Bioorganic Chemistry, 2019, 89, 103003.	2.0	23
171	The Chemistry of Bioinspired Catechol(amine)-Based Coatings. ACS Biomaterials Science and Engineering, 2019, 5, 2708-2724.	2.6	72
172	Chemistry of Polydopamine – Scope, Variation, and Limitation. European Journal of Organic Chemistry, 2019, 2019, 4976-4994.	1.2	172
173	An efficient one-pot synthesis of polyphenolic amino acids and evaluation of their radical-scavenging activity. Bioorganic Chemistry, 2019, 89, 102983.	2.0	4
174	Cyanobacterial Siderophores—Physiology, Structure, Biosynthesis, and Applications. Marine Drugs, 2019, 17, 281.	2.2	55
175	Modular Assembly of Biomaterials Using Polyphenols as Building Blocks. ACS Biomaterials Science and Engineering, 2019, 5, 5578-5596.	2.6	105
176	Boron nitride nanosheet embedded bio-inspired wet adhesives with switchable adhesion and oxidation resistance. Journal of Materials Chemistry A, 2019, 7, 12266-12275.	5.2	32
177	Theoretical Investigation of the Structural, Spectroscopic, Electronic, and Pharmacological Properties of 4-Nerolidylcathecol, an Important Bioactive Molecule. Journal of Chemistry, 2019, 2019, 1-14.	0.9	15
178	Expanding the DOPA Universe with Genetically Encoded, Musselâ€Inspired Bioadhesives for Material Sciences and Medicine. ChemBioChem, 2019, 20, 2163-2190.	1.3	28
179	Self-assembly of 5,6-dihydroxyindole-2-carboxylic acid: polymorphism of a eumelanin building block on Au(111). Nanoscale, 2019, 11, 5422-5428.	2.8	9
180	Iron-polyphenol complexes cause blackening upon grinding Hermetia illucens (black soldier fly) larvae. Scientific Reports, 2019, 9, 2967.	1.6	32
181	A mussel-inspired carboxymethyl cellulose hydrogel with enhanced adhesiveness through enzymatic crosslinking. Colloids and Surfaces B: Biointerfaces, 2019, 179, 462-469.	2.5	74
182	Gallate-induced nanoparticle uptake by tumor cells: Structure-activity relationships. Colloids and Surfaces B: Biointerfaces, 2019, 179, 28-36.	2.5	7

#	Article	IF	CITATIONS
183	A serotonin-modified hyaluronic acid hydrogel for multifunctional hemostatic adhesives inspired by a platelet coagulation mediator. Materials Horizons, 2019, 6, 1169-1178.	6.4	83
184	Increasing spontaneous wet adhesion of DOPA with gelation characterized by EPR spectroscopy. Materials Chemistry and Physics, 2019, 228, 124-130.	2.0	4
185	Bioinspired Metal–Polyphenol Materials: Self-Healing and Beyond. Biomimetics, 2019, 4, 30.	1.5	43
186	Enzyme-Lignin Nanocapsules Are Sustainable Catalysts and Vehicles for the Preparation of Unique Polyvalent Bioinks. Biomacromolecules, 2019, 20, 1975-1988.	2.6	29
187	Polydopamine oated silk yarn for improving the light fastness of natural dyes. Coloration Technology, 2019, 135, 143-151.	0.7	17
188	Polydopamine: surface coating, molecular imprinting, and electrochemistry—successful applications and future perspectives in (bio)analysis. Analytical and Bioanalytical Chemistry, 2019, 411, 4327-4338.	1.9	71
189	Anti-biofouling activity of Ranaspumin-2 bio-surfactant immobilized on catechol-functional PMMA thin layers prepared by atmospheric plasma deposition. Colloids and Surfaces B: Biointerfaces, 2019, 178, 120-128.	2.5	14
190	Phenolic Building Blocks for the Assembly of Functional Materials. Angewandte Chemie - International Edition, 2019, 58, 1904-1927.	7.2	302
191	Phenolische Bausteine für die Assemblierung von Funktionsmaterialien. Angewandte Chemie, 2019, 131, 1920-1945.	1.6	34
192	Renal Epithelial Monolayer Formation on Monomeric and Polymeric Catechol Functionalized Supramolecular Biomaterials. Macromolecular Bioscience, 2019, 19, e1800300.	2.1	7
193	Unimolecular Variant of the Fluorescence Turn-On Oxidative Coupling of Catecholamines with Resorcinols. ACS Omega, 2019, 4, 1541-1548.	1.6	12
194	Oxidant-induced plant phenol surface chemistry for multifunctional coatings: Mechanism and potential applications. Journal of Membrane Science, 2019, 570-571, 176-183.	4.1	56
195	Reactivity of wine polyphenols under oxidation conditions: Hemisynthesis of adducts between grape catechins or oak ellagitannins and odoriferous thiols. Tetrahedron, 2019, 75, 551-560.	1.0	10
196	Die chemischen Grundlagen der Adhäon von Catechol. Angewandte Chemie, 2019, 131, 706-725.	1.6	25
197	The Chemistry behind Catecholâ€Based Adhesion. Angewandte Chemie - International Edition, 2019, 58, 696-714.	7.2	509
198	Matrix-assisted pulsed laser evaporation of β-glucosidase from a dopa/quinone target. Enzyme and Microbial Technology, 2020, 132, 109414.	1.6	13
199	A Novel Double rosslinkingâ€Doubleâ€Network Design for Injectable Hydrogels with Enhanced Tissue Adhesion and Antibacterial Capability for Wound Treatment. Advanced Functional Materials, 2020, 30, 1904156.	7.8	256
200	Facile preparation of porous manganese oxide foams, sponges, and merged spherical networks, using Polydopamine/Dextran for catalytic oxidation of cyclohexane. Microporous and Mesoporous Materials, 2020, 295, 109740.	2.2	2

#	Article	IF	Citations
201	Electronic spectroscopic characterization of the formation of iron(III) metal complexes: The 8-HydroxyQuinoline as ligand case study. Journal of Inorganic Biochemistry, 2020, 203, 110864.	1.5	11
202	Porous chitosan adhesives with L-DOPA for enhanced photochemical tissue bonding. Acta Biomaterialia, 2020, 101, 314-326.	4.1	25
203	Bioinspired surface activators for wet/dry environments through greener epoxy-catechol amine chemistry. Applied Surface Science, 2020, 505, 144414.	3.1	14
204	Nanomechanics of Anionâ~ï€ Interaction in Aqueous Solution. Journal of the American Chemical Society, 2020, 142, 1710-1714.	6.6	67
205	Photo-switching and -cyclisation of hydrogen bonded liquid crystals based on resveratrol. Chemical Communications, 2020, 56, 1105-1108.	2.2	12
206	Polydopamine – its Prolific Use as Catalyst and Support Material. ChemCatChem, 2020, 12, 2649-2689.	1.8	40
207	Monitoring the photoinduced surface catalytic coupling reaction and environmental exhaust fumes with an Ag/PDA/CuO modified 3D glass microfiber platform. Journal of Industrial and Engineering Chemistry, 2020, 82, 424-432.	2.9	13
208	Highly efficient thermal oxidation and cross-linking reaction of catechol functionalized polyacrylonitrile copolymer composites for halogen-free flame retardant. Composites Part B: Engineering, 2020, 184, 107687.	5.9	25
209	Rationally designed magnetic poly(catechol-hexanediamine) particles for bacteria removal and on-demand biofilm eradication. Colloids and Surfaces B: Biointerfaces, 2020, 186, 110728.	2.5	13
210	Laser-induced graphitization of polydopamine leads to enhanced mechanical performance while preserving multifunctionality. Nature Communications, 2020, 11, 4848.	5.8	38
211	Highly efficient halogen-free flame retardants of thermally-oxidized polyacrylonitrile copolymers containing bio-derived caffeic acid derivatives. Polymer Chemistry, 2020, 11, 6658-6669.	1.9	11
212	Design and Synthesis of Bio-Inspired Polyurethane Films with High Performance. Polymers, 2020, 12, 2727.	2.0	5
213	Recent Advances in Mussel-Inspired Synthetic Polymers as Marine Antifouling Coatings. Coatings, 2020, 10, 653.	1.2	18
214	pH-Triggered Adhesiveness and Cohesiveness of Chondroitin Sulfate-Catechol Biopolymer for Biomedical Applications. Frontiers in Bioengineering and Biotechnology, 2020, 8, 712.	2.0	17
215	Balanced adhesion and cohesion of chitosan matrices by conjugation and oxidation of catechol for high-performance surgical adhesives. Carbohydrate Polymers, 2020, 248, 116760.	5.1	27
216	High-sensitivity detection of dopamine by biomimetic nanofluidic diodes derivatized with poly(3-aminobenzylamine). Nanoscale, 2020, 12, 18390-18399.	2.8	20
217	Linear Coordination Polymer Synthesis from Bis atechol Functionalized RAFT Polymers. Macromolecular Rapid Communications, 2020, 41, e2000366.	2.0	4
218	Design and development of trivalent Fe ion-induced novel urushi organogels. Polymer, 2020, 205, 122835.	1.8	10

#	Article	IF	CITATIONS
219	A novel injectable starch-based tissue adhesive for hemostasis. Journal of Materials Chemistry B, 2020, 8, 8282-8293.	2.9	44
220	New Mussel Inspired Polydopamine-Like Silica-Based Material for Dye Adsorption. Nanomaterials, 2020, 10, 1416.	1.9	6
221	Liquid Bandage Harvests Robust Adhesive, Hemostatic, and Antibacterial Performances as a Firstâ€Aid Tissue Adhesive. Advanced Functional Materials, 2020, 30, 2001820.	7.8	118
222	Polydopamine-assisted strategies for preparation of fire-safe polymeric materials: A review. European Polymer Journal, 2020, 138, 109973.	2.6	30
223	Engineering of a Core–Shell Nanoplatform to Overcome Multidrug Resistance via ATP Deprivation. Advanced Healthcare Materials, 2020, 9, e2000432.	3.9	20
224	Polymeric Hydrogel Systems as Emerging Biomaterial Platforms to Enable Hemostasis and Wound Healing. Advanced Healthcare Materials, 2020, 9, e2000905.	3.9	194
225	Stimuli-responsive degrafting of polymer brushes via addressable catecholato-metal attachments. Polymer Chemistry, 2020, 11, 5572-5577.	1.9	9
226	Chemically Modified Biopolymers for the Formation of Biomedical Hydrogels. Chemical Reviews, 2021, 121, 10908-10949.	23.0	216
227	Mussel-inspired hydrogels: from design principles to promising applications. Chemical Society Reviews, 2020, 49, 3605-3637.	18.7	346
228	Comparison between Catechol- and Thiol-Based Adhesion Using Elastin-like Polypeptides. ACS Applied Bio Materials, 2020, 3, 3894-3905.	2.3	9
229	Custom-made sulfonated poly (vinylidene fluoride-co-hexafluoropropylene) nanocomposite membranes for vanadium redox flow battery applications. Polymer Testing, 2020, 90, 106685.	2.3	11
230	Magnetically responsive peptide coacervates for dual hyperthermia and chemotherapy treatments of liver cancer. Acta Biomaterialia, 2020, 110, 221-230.	4.1	42
231	Compartmentalized processing of catechols during mussel byssus fabrication determines the destiny of DOPA. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7613-7621.	3.3	42
232	Polydopamine and Its Derivative Surface Chemistry in Material Science: A Focused Review for Studies at KAIST. Advanced Materials, 2020, 32, e1907505.	11.1	202
233	Adjustable synthesis of polydopamine nanospheres and their nucleation and growth. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125196.	2.3	35
234	Toward Artificial Musselâ€Glue Proteins: Differentiating Sequence Modules for Adhesion and Switchable Cohesion. Angewandte Chemie, 2020, 132, 18653-18657.	1.6	6
235	Detection of Ferric Ions and Catecholamine Neurotransmitters via Highly Fluorescent Heteroatom Co-Doped Carbon Dots. Sensors, 2020, 20, 3470.	2.1	18
236	Toward Artificial Musselâ€Glue Proteins: Differentiating Sequence Modules for Adhesion and Switchable Cohesion. Angewandte Chemie - International Edition, 2020, 59, 18495-18499.	7.2	29

#	Article	IF	CITATIONS
237	Mussel inspired self-healing materials: Coordination chemistry of polyphenols. Advances in Inorganic Chemistry, 2020, 76, 229-258.	0.4	5
238	Durable multifunctional superhydrophobic sponge for oil/water separation and adsorption of volatile organic compounds. Research on Chemical Intermediates, 2020, 46, 4297-4309.	1.3	15
239	Iron Magnetic Nanoparticle-Induced ROS Generation from Catechol-Containing Microgel for Environmental and Biomedical Applications. ACS Applied Materials & Interfaces, 2020, 12, 21210-21220.	4.0	33
240	Developing a Silk Fibroin Composite Film to Scavenge and Probe H2O2 Associated with UV-Excitable Blue Fluorescence. Sensors, 2020, 20, 366.	2.1	1
241	Tuning Functional Behavior of Humic Acids through Interactions with Stöber Silica Nanoparticles. Polymers, 2020, 12, 982.	2.0	19
242	Effect of molecular weight and polymer composition on gallol-functionalized underwater adhesive. Journal of Materials Chemistry B, 2020, 8, 6798-6801.	2.9	24
243	Tripeptide-dopamine fluorescent hybrids: a coassembly-inspired antioxidative strategy. Chemical Communications, 2020, 56, 6301-6304.	2.2	8
244	Smoothened agonist sterosome immobilized hybrid scaffold for bone regeneration. Science Advances, 2020, 6, eaaz7822.	4.7	35
245	Synthesis of 1-Substituted 5,5,8,8-Tetramethyl5,6,7,8-tetrahydronaphthalene-2,3-diols and 5,5,8,8-Tetramethyl-5,6,7,8-tetrahydronaphthalene-2,3-dione. Russian Journal of Organic Chemistry, 2020, 56, 534-537.	0.3	4
246	Polydopamine-dyed eri silk yarn for the improvement of wash and light fastness properties. Journal of the Textile Institute, 2021, 112, 553-560.	1.0	3
247	Boronate affinity imprinted Janus nanosheets for macroscopic assemblies: From amphiphilic surfactants to porous sorbents for catechol adsorption. Separation and Purification Technology, 2021, 256, 117837.	3.9	3
248	Michael addition of amines to sterically crowded ortho-benzoquinone completed with unprecedented 1,2-shift of a tert-butyl group. Tetrahedron, 2021, 79, 131841.	1.0	2
249	Polyphenolâ€Induced Adhesive Liquid Metal Inks for Substrateâ€Independent Direct Pen Writing. Advanced Functional Materials, 2021, 31, 2007336.	7.8	84
250	Surface modification of Shewanella oneidensis MR-1 with polypyrrole-dopamine coating for improvement of power generation in microbial fuel cells. Journal of Power Sources, 2021, 483, 229220.	4.0	29
251	Stabilization of a 12-ï€ electrons diamino-benzoquinonediimine tautomer. Chemical Communications, 2021, 57, 548-551.	2.2	4
252	Total Synthesis of (<i>S</i>)-Cularine via Nucleophilic Substitution on a Catechol. Organic Letters, 2021, 23, 236-241.	2.4	12
253	Tissue and interspecies comparison of catechol- <i>O</i> -methyltransferase mediated catalysis of 6- <i>O</i> -methylation of esculetin to scopoletin and its inhibition by entacapone and tolcapone. Xenobiotica, 2021, 51, 268-278.	0.5	2
254	Molecularly Smooth and Conformal Nanocoating by Amine-Mediated Redox Modulation of Catechol. Chemistry of Materials, 2021, 33, 952-965.	3.2	9

#	Article	IF	CITATIONS
255	"Cooking―hierarchically porous carbons with phenolic molecules and zinc salts. Materials Chemistry Frontiers, 2021, 5, 3927-3935.	3.2	3
256	Strategic Advances in Spatiotemporal Control of Bioinspired Phenolic Chemistries in Materials Science. Advanced Functional Materials, 2021, 31, 2008821.	7.8	39
257	Changing polymer catechol content to generate adhesives for high <i>versus</i> low energy surfaces. Soft Matter, 2021, 17, 1999-2009.	1.2	11
258	Biomaterial screening of protein coatings and peptide additives: towards a simple synthetic mimic of a complex natural coating for a bio-artificial kidney. Biomaterials Science, 2021, 9, 2209-2220.	2.6	8
259	An unexpected role of an extra phenolic hydroxyl on the chemical reactivity and bioactivity of catechol or gallol modified hyaluronic acid hydrogels. Polymer Chemistry, 2021, 12, 2987-2991.	1.9	12
260	Fast-Curing Mussel-Inspired Adhesive Derived from Vegetable Oil. ACS Applied Bio Materials, 2021, 4, 1360-1368.	2.3	16
261	Rapid and efficient removal of Cr(<scp>vi</scp>) by a core–shell magnetic mesoporous polydopamine nanocomposite: roles of the mesoporous structure and redox-active functional groups. Journal of Materials Chemistry A, 2021, 9, 13306-13319.	5.2	61
262	Graphitic Carbon Nitride-polymer Hybrids: A Win–Win Combination with Advanced Properties for Different Applications. RSC Nanoscience and Nanotechnology, 2021, , 174-220.	0.2	0
263	A catechol-chitosan-based adhesive and injectable hydrogel resistant to oxidation and compatible with cell therapy. Journal of Materials Chemistry B, 2021, 9, 8406-8416.	2.9	10
264	Complex coacervation and metal–ligand bonding as synergistic design elements for aqueous viscoelastic materials. Soft Matter, 2021, 17, 3294-3305.	1.2	6
265	Biomimetic polydopamine catalyst with redox activity for oxygen-promoted H ₂ production <i>via</i> aqueous formaldehyde reforming. Sustainable Energy and Fuels, 2021, 5, 4575-4579.	2.5	2
266	Advances in multifunctional chitosan-based self-healing hydrogels for biomedical applications. Journal of Materials Chemistry B, 2021, 9, 7955-7971.	2.9	70
267	Fabrication of an injectable hydrogel with inherent photothermal effects from tannic acid for synergistic photothermal-chemotherapy. Journal of Materials Chemistry B, 2021, 9, 6084-6091.	2.9	13
268	Transition-metal coordinate bonds for bioinspired macromolecules with tunable mechanical properties. Nature Reviews Materials, 2021, 6, 421-436.	23.3	148
269	Oxidation Chemistry of Catechol Utilized in Designing Stimuli-Responsive Adhesives and Antipathogenic Biomaterials. ACS Omega, 2021, 6, 5113-5118.	1.6	33
270	Liquid Metal-Triggered Assembly of Phenolic Nanocoatings with Antioxidant and Antibacterial Properties. ACS Applied Nano Materials, 2021, 4, 2987-2998.	2.4	26
271	A mussel-inspired film for adhesion to wet buccal tissue and efficient buccal drug delivery. Nature Communications, 2021, 12, 1689.	5.8	114
272	A Strategy Based on the Enzyme-Catalyzed Polymerization Reaction of Asp-Phe-Tyr Tripeptide for Cancer Immunotherapy. Journal of the American Chemical Society, 2021, 143, 5127-5140.	6.6	39

~			<u> </u>	
C	ΙΤΑΤΙ	ON	REPC	DRT

#	Article	IF	CITATIONS
273	Coagulopathy-independent, bioinspired hemostatic materials: A full research story from preclinical models to a human clinical trial. Science Advances, 2021, 7, .	4.7	80
274	Effectiveness of cell adhesive additives in different supramolecular polymers. Journal of Polymer Science, 2021, 59, 1253-1266.	2.0	1
275	Surface Functionalization of Ti ₃ C ₂ T <i>_x</i> MXene Nanosheets with Catechols: Implication for Colloidal Processing. Langmuir, 2021, 37, 5447-5456.	1.6	17
276	Freeze–Thawing-Induced Macroporous Catechol Hydrogels with Shape Recovery and Sponge-like Properties. ACS Biomaterials Science and Engineering, 2021, 7, 4318-4329.	2.6	17
277	The application of novel mussel-inspired compounds in dentistry. Dental Materials, 2021, 37, 655-671.	1.6	8
278	The Effect of Oxidized Dopamine on the Structure and Molecular Chaperone Function of the Small Heat-Shock Proteins, αB-Crystallin and Hsp27. International Journal of Molecular Sciences, 2021, 22, 3700.	1.8	7
279	Recent advances in wet adhesives: Adhesion mechanism, design principle and applications. Progress in Polymer Science, 2021, 116, 101388.	11.8	251
280	Dopamine-modified pectin for a Streptomyces cyaneus laccase induced microbeads formation, immobilization, and textile dyes decolorization. Environmental Technology and Innovation, 2021, 22, 101399.	3.0	10
281	Exploiting Supramolecular Dynamics in Metal–Phenolic Networks to Generate Metal–Oxide and Metal–Carbon Networks. Angewandte Chemie - International Edition, 2021, 60, 14586-14594.	7.2	35
282	Exploiting Supramolecular Dynamics in Metal–Phenolic Networks to Generate Metal–Oxide and Metal–Carbon Networks. Angewandte Chemie, 2021, 133, 14707-14715.	1.6	5
283	Directed Evolution of an Improved Aminoacylâ€ŧRNA Synthetase for Incorporation of Lâ€3,4â€Ðihydroxyphenylalanine (Lâ€ÐOPA). Angewandte Chemie - International Edition, 2021, 60, 14811-1481	6. ^{7.2}	14
284	Directed Evolution of an Improved Aminoacylâ€ŧRNA Synthetase for Incorporation of Lâ€3,4â€Dihydroxyphenylalanine (Lâ€DOPA). Angewandte Chemie, 2021, 133, 14937-14942.	1.6	6
285	Influence of the NaIO4 Concentration on the Gelation and the Adhesive Strength of Pyrocatechol/Pyrogallol Containing Gelatin Hydrogels. Frontiers in Materials, 2021, 8, .	1.2	3
286	Recent Advances in Metalâ€Phenolic Networks for Cancer Theranostics. Small, 2021, 17, e2100314.	5.2	66
287	Substrateâ€Independent Design of Liquidâ€Infused Slippery Surfaces via Musselâ€Inspired Chemistry. Advanced Materials Interfaces, 2021, 8, 2100156.	1.9	8
288	Preventing post-surgical cardiac adhesions with a catechol-functionalized oxime hydrogel. Nature Communications, 2021, 12, 3764.	5.8	37
289	Design Challenges in Polymeric Scaffolds for Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2021, 9, 617141.	2.0	82
290	Identification of pyrogallol as a warhead in design of covalent inhibitors for the SARS-CoV-2 3CL protease. Nature Communications, 2021, 12, 3623.	5.8	111

#	Article	IF	CITATIONS
291	Enhanced Protocatechuic Acid Production From Glucose Using Pseudomonas putida 3-Dehydroshikimate Dehydratase Expressed in a Phenylalanine-Overproducing Mutant of Escherichia coli. Frontiers in Bioengineering and Biotechnology, 2021, 9, 695704.	2.0	11
292	From Folding to Assembly: Functional Supramolecular Architectures of Peptides Comprised of Nonâ€Canonical Amino Acids. Macromolecular Bioscience, 2021, 21, e2100090.	2.1	19
293	Single Chain Hydration and Dynamics of Mussel-Inspired Soybean-Based Adhesive. Jom, 2021, 73, 2460-2470.	0.9	2
294	Anisotropic hair keratinâ€dopamine composite scaffolds exhibit strainâ€stiffening properties. Journal of Biomedical Materials Research - Part A, 2022, 110, 92-104.	2.1	4
295	Synthesis, characterization and catecholase biomimetic activity of novel cobalt(II), copper(II), and iron(II) complexes bearing phenylene-bis-benzimidazole ligand. Polyhedron, 2021, 203, 115232.	1.0	10
296	Synergistic Anti-inflammatory Coating "Zipped Up―on Polypropylene Hernia Mesh. ACS Applied Materials & Interfaces, 2021, 13, 35456-35468.	4.0	14
297	Cytocompatibility of a <scp>musselâ€inspired</scp> poly(lactic acid)â€based adhesive. Journal of Biomedical Materials Research - Part A, 2022, 110, 43-51.	2.1	4
298	Dualâ€Responsive Material Based on Catecholâ€Modified Selfâ€Immolative Poly(Disulfide) Backbones. Angewandte Chemie, 2021, 133, 21713-21719.	1.6	4
299	Synthesis of Catechol Derived Rosamine Dyes and Their Reactivity toward Biogenic Amines. Molecules, 2021, 26, 5082.	1.7	4
300	A tough polysaccharide-based cell-laden double-network hydrogel promotes articular cartilage tissue regeneration in rabbits. Chemical Engineering Journal, 2021, 418, 129277.	6.6	39
301	Nanostructured Ceria: Biomolecular Templates and (Bio)applications. Nanomaterials, 2021, 11, 2259.	1.9	22
302	Dualâ€Responsive Material Based on Catecholâ€Modified Selfâ€Immolative Poly(Disulfide) Backbones. Angewandte Chemie - International Edition, 2021, 60, 21543-21549.	7.2	27
303	Antibacterial Gel Coatings Inspired by the Cryptic Function of a Mussel Byssal Peptide. Advanced Materials, 2021, 33, e2103677.	11.1	46
304	In vitro evaluation of the anti-proteolytic and cross-linking effect of mussel-inspired monomer on the demineralized dentin matrix. Journal of Dentistry, 2021, 111, 103720.	1.7	6
305	Dopamine-Modified Alginate Hydrogel with Effectiveness and Safety for Preoperative Localization of Lung Nodules. ACS Biomaterials Science and Engineering, 2021, 7, 4637-4644.	2.6	5
306	Phenol–Hyaluronic Acid Conjugates: Correlation of Oxidative Crosslinking Pathway and Adhesiveness. Polymers, 2021, 13, 3130.	2.0	9
307	High-flame retarding properties of polyacrylonitrile copolymer nanocomposites with synergistic effect of elemental sulfur-doped reduced graphene oxide and bio-derived catechol units. Composites Part A: Applied Science and Manufacturing, 2021, 148, 106477.	3.8	10
308	The Crossâ€Linking Mechanism and Applications of Catechol–Metal Polymer Materials. Advanced Materials Interfaces, 2021, 8, 2100239.	1.9	18

ARTICLE IF CITATIONS Nanofiltration membrane combining environmental-friendly polycarboxylic interlayer prepared from 309 4.0 22 catechol for enhanced desalination performance. Desalination, 2021, 512, 115118. Wetting behavior and stability of surfaceâ€modified polyurethane materials. Plasma Processes and 1.6 Polymers, 2021, 18, e2100126. New hybrid organicâ€inorganic multifunctional catalysts based on polydopamineâ€ike chemistry. Asian 311 2 1.3 Journal of Organic Chemistry, 0, , . Emerging bioadhesives: from traditional bioactive and bioinert to a new biomimetic protein-based approach. Advances in Colloid and Interface Science, 2021, 296, 102521. Photothermal-promoted multi-functional dual network polysaccharide hydrogel adhesive for 313 5.1 69 infected and susceptible wound healing. Carbohydrate Polymers, 2021, 273, 118557. Catechol-based all-wood hydrogels with anisotropic, tough, and flexible properties for highly sensitive pressure sensing. Chemical Engineering Journal, 2022, 427, 131896. 6.6 Ultrafast gelation of multifunctional hydrogel/composite based on self-catalytic Fe3+/Tannic 315 5.0 37 acid-cellulose nanofibers. Journal of Colloid and Interface Science, 2022, 606, 1457-1468. Novel biodegradable low- $\langle i \rangle$ ^î $\langle i \rangle$ dielectric nanomaterials from natural polyphenols. RSC Advances, 1.7 2021, 11, 16698-16705. 317 Polymeric Tissue Adhesives. Chemical Reviews, 2021, 121, 11336-11384. 23.0 306 Nanoparticleâ€Assembled Vacuolated Coacervates Control Macromolecule Spatiotemporal Distribution 11.1 to Provide a Stable Segregated Cell Microenvironment. Advanced Materials, 2021, 33, 2007209. Utilizing Frémy's Salt to Increase the Mechanical Rigidity of Supramolecular Peptide-Based Gel 319 2.0 9 Networks. Frontiers in Bioengineering and Biotechnology, 2020, 8, 594258. Bioinspired dopamine and zwitterionic polymers for non-fouling surface engineering. Chemical 18.7 120 Society Reviews, 2021, 50, 11668-11683. Interfacial Phenomena in Marine and Freshwater Mussel Adhesion., 2016, , 129-151. 321 6 A hybrid sponge with guanidine and phytic acid enriched surface for integration of antibiofouling and uranium uptake from seawater. Applied Surface Science, 2020, 525, 146611. 3.1 Anisotropic emulsion constructed boronate affinity imprinted Janus nanosheets for stir bar sorptive 323 6.6 9 extraction of cis-diol-containing catechol. Chemical Engineering Journal, 2020, 395, 124995. Adhesion Behavior of Catechol-Incorporated Silicone Elastomer on Metal Surface. ACS Applied 324 Polymer Materials, 2020, 2, 2444-2451. Sclerotization-Inspired Aminoquinone Cross-Linking of Thermally Insulating and Moisture-Resilient 325 3.211 Biobased Foams. ACS Sustainable Chemistry and Engineering, 2020, 8, 17408-17416. Chitin is a functional component of the larval adhesive of barnacles. Communications Biology, 2020, 3, 31.

#	Article	IF	CITATIONS
327	Urease. 2-Oxoglutarate-Dependent Oxygenases, 2017, , 60-97.	0.8	27
328	Structure-properties relationship for energy storage redox polymers: a review. Journal of Polymer Engineering, 2020, 40, 373-393.	0.6	1
329	Synthesis of Some Mono-, Bis- NH-substituted-1,4-Benzoquinones. Journal of the Turkish Chemical Society, Section A: Chemistry, 2018, 5, 963-970.	0.4	2
330	Spectroscopic characterization of thiol adducts formed in the reaction of 4-methylcatechol with DPPH in the presence of N-acetylcysteine. European Journal of Chemistry, 2018, 9, 386-393.	0.3	4
331	Catechol―and Phenol ontaining Thio‧chiff Bases: Synthesis, Electrochemical Properties and Biological Evaluation. ChemistrySelect, 2021, 6, 10609-10618.	0.7	9
332	Strength, Carbonation Resistance, and Chloride-Ion Penetrability of Cement Mortars Containing Catechol-Functionalized Chitosan Polymer. Materials, 2021, 14, 6395.	1.3	12
333	Aptamerâ€conjugated mesoporous polydopamine for docetaxel targeted delivery and synergistic photothermal therapy of prostate cancer. Cell Proliferation, 2021, 54, e13130.	2.4	19
334	Effect of metal ions with reducing properties on hydrogels containing catechol groups. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631, 127657.	2.3	12
336	Development of bioactive catechol functionalized nanoparticles applicable for 3D bioprinting. Materials Science and Engineering C, 2021, 131, 112515.	3.8	10
338	Anisotropic, strong, self-adhesive and strain-sensitive hydrogels enabled by magnetically-oriented cellulose/polydopamine nanocomposites. Carbohydrate Polymers, 2022, 276, 118783.	5.1	19
340	Metal-polyphenol Complexes as Versatile Building Blocks for Functional Biomaterials. Biotechnology and Bioprocess Engineering, 2021, 26, 689-707.	1.4	12
341	Catechol Moiety Integrated Triâ€Aryl Type AlEgen for Visual and Quantitative Boronic Acid Detection. Chemistry - A European Journal, 2022, 28, e202103351.	1.7	3
342	An access to 1H-cyclopenta[b]pyridine-4,5-diones via condensation of 6-nitro-1,2-o-quinone with arylamines and acetone. Tetrahedron, 2022, 103, 132575.	1.0	3
343	Tyrosinaseâ€mediated hydrogel crosslinking for tissue engineering. Journal of Applied Polymer Science, 2022, 139, 51887.	1.3	23
344	Polymer Adhesion: Seeking New Solutions for an Old Problem. Macromolecules, 2021, 54, 10617-10644.	2.2	59
345	Surface-Initiated, Catechol-Containing Polymer Films for Effective Chelation of Aluminum Ions. Langmuir, 2021, 37, 13617-13626.	1.6	1
346	Some aspects of additives effects on retention in supercritical fluid chromatography studied by linear free energy relationships method. Journal of Chromatography A, 2022, 1665, 462820.	1.8	9
347	Suppression mechanism of model humic constituents on laccase-enabled 17β-estradiol oxidation and oligomerization. Chemosphere, 2022, 290, 133356.	4.2	4

#	Article	IF	CITATIONS
348	Effect of Cross-Linkers on Mussel- and Elastin-Inspired Adhesives on Physiological Substrates. ACS Applied Bio Materials, 2022, 5, 630-641.	2.3	6
349	Broadening the Chemical Space of Mussel-Inspired Polymerization: The Roll-out of a TCC-Polymer Platform with Thiol–Catechol Connectivities. Macromolecules, 2022, 55, 989-1002.	2.2	7
350	Fabrication of Functional Polycatechol Nanoparticles. ACS Macro Letters, 2022, 11, 251-256.	2.3	31
351	A Universal Strategy for Growing a Tenacious Hydrogel Coating from a Sticky Initiation Layer. Advanced Materials, 2022, 34, e2108889.	11.1	45
352	Bio-inspired antibacterial coatings on urinary stents for encrustation prevention. Journal of Materials Chemistry B, 2022, 10, 2584-2596.	2.9	17
353	Heteromolecular pigmentations of plant-derived catechol and their application on textiles. Journal of Cleaner Production, 2022, 332, 130010.	4.6	5
354	Nanohybrid biosensor based on mussel-inspired electro-cross-linking of tannic acid capped gold nanoparticles and enzymes. Materials Advances, 2022, 3, 2222-2233.	2.6	9
355	Oneâ€Pot Preparation of Polysaccharideâ€Based Antibacterial Hydrogel for Skin Wound Repair. Macromolecular Materials and Engineering, 2022, 307, .	1.7	5
356	Polyphenol-based hydrogels: Pyramid evolution from crosslinked structures to biomedical applications and the reverse design. Bioactive Materials, 2022, 17, 49-70.	8.6	64
357	Copolymerization Kinetics of Dopamine Methacrylamide during PNIPAM Microgel Synthesis for Increased Adhesive Properties. Langmuir, 2022, 38, 5275-5285.	1.6	7
358	Charge-Controllable Mussel-Inspired Magnetic Nanocomposites for Selective Dye Adsorption and Separation. SSRN Electronic Journal, 0, , .	0.4	0
359	Environmentally friendly catechol-based synthesis of dibenzosultams. New Journal of Chemistry, 2022, 46, 5593-5605.	1.4	1
360	Multivalent non-covalent interactions lead to strongest polymer adhesion. Nanoscale, 2022, 14, 3768-3776.	2.8	12
361	Coordination Geometry in Metallo-Supramolecular Polymer Networks. SSRN Electronic Journal, O, , .	0.4	1
362	Tannic acid: a crosslinker leading to versatile functional polymeric networks: a review. RSC Advances, 2022, 12, 7689-7711.	1.7	115
363	Advances in the Synthesis and Applications of Mussel-Inspired Polymers. Polymer Reviews, 2023, 63, 1-39.	5.3	17
364	Musselâ€inspired chitosanâ€based hydrogel sensor with <scp>pH</scp> â€responsive and adjustable adhesion, toughness and selfâ€healing capability. Polymers for Advanced Technologies, 2022, 33, 1867-1880.	1.6	11
365	Optimization of the Elasticity and Adhesion of Catechol- or Dopamine-Loaded Gelatin Gels under Oxidative Conditions. Gels, 2022, 8, 210.	2.1	5

#	Article	IF	CITATIONS
366	Disentangling the Puzzling Regiochemistry of Thiol Addition to <i>o</i> -Quinones. Journal of Organic Chemistry, 2022, 87, 4580-4589.	1.7	11
367	Adaptive injectable carboxymethyl cellulose/poly (γ-glutamic acid) hydrogels promote wound healing. , 2022, 136, 212753.		6
368	From Sticky to Slippery: Self-Functionalizing Lubricants for <i>In Situ</i> Fabrication of Liquid-Infused Surfaces. ACS Applied Materials & amp; Interfaces, 2022, 14, 16735-16745.	4.0	4
369	Thiol-Rich fp-6 Controls the Tautomer Equilibrium of Oxidized Dopa in Interfacial Mussel Foot Proteins. Langmuir, 2022, 38, 3446-3452.	1.6	3
370	A mussel-induced approach to secondary functional cross-linking 3-aminopropytriethoxysilane to modify the graphene oxide membrane for wastewater purification. Chinese Chemical Letters, 2023, 34, 107322.	4.8	12
371	Spontaneous Gelation of Adhesive Catechol Modified Hyaluronic Acid and Chitosan. Polymers, 2022, 14, 1209.	2.0	3
372	Cellâ€Mediated Biointerfacial Phenolic Assembly for Probiotic Nano Encapsulation. Advanced Functional Materials, 2022, 32, .	7.8	34
373	Complexes of Alkaline and Ammonium Cations with Dopamine and Eumelanin Precursors: Dissecting the Role of Noncovalent Cationâ~ï€ and Cation–Lone Pair (σ-Type) Interactions. Journal of Physical Chemistry A, 2022, 126, 2330-2341.	1.1	1
374	Development of Universal and Clickable Film by Mimicking Melanogenesis: Onâ€Demand Oxidation of Tyrosineâ€Based Azido Derivative by Tyrosinase. Macromolecular Rapid Communications, 2022, , 2200089.	2.0	2
375	Synthesis, structure, and properties of catechol functionalized tripodal chelate and its radical complex of strontium. Inorganic Chemistry Communication, 2022, 139, 109280.	1.8	1
376	Multifunctional chitosan/silver/tannic acid cryogels for hemostasis and wound healing. International Journal of Biological Macromolecules, 2022, 208, 760-771.	3.6	15
377	Charge-controllable mussel-inspired magnetic nanocomposites for selective dye adsorption and separation. Chemosphere, 2022, 300, 134404.	4.2	9
378	Novel Digital Light Processing Printing Strategy Using a Collagen-Based Bioink with Prospective Cross-Linker Procyanidins. Biomacromolecules, 2022, 23, 240-252.	2.6	19
379	Multifunctional Singleâ€Component Polypeptide Hydrogels: The Gelation Mechanism, Superior Biocompatibility, High Performance Hemostasis, and Scarless Wound Healing. Advanced Healthcare Materials, 2022, 11, e2101809.	3.9	19
380	Synthesis of Catechol Thioethers through Gallic Acid/Fe ₂ (SO ₄) ₃ Catalyzed Aerobic Oxidative Coupling of Thiols and Catechol Derivatives. ChemistrySelect, 2021, 6, 13781-13785.	0.7	0
381	Controllable Synthesis of Polyphenol Spheres via Amine-Catalyzed Polymerization-Induced Self-Assembly. Biomacromolecules, 2022, 23, 140-149.	2.6	8
382	Fundamental Insights into Free-Radical Polymerization in the Presence of Catechols and Catechol-Functionalized Monomers. Macromolecules, 2022, 55, 49-64.	2.2	4
384	Polydopamine stabilizes silver nanoparticles as a SERS substrate for efficient detection of myocardial infarction. Nanoscale, 2022, 14, 6212-6219.	2.8	22

#	Article	IF	CITATIONS
385	Development of a versatile, uniform, and stable initiator layer by the functionalization of a polydopamine/polyethyleneimine film. Bulletin of the Korean Chemical Society, 2022, 43, 788-791.	1.0	5
386	Wearable Tissue Adhesive Ternary Hydrogel of <i>N</i> -(2-Hydroxyl) Propyl-3-trimethyl Ammonium Chitosan, Tannic Acid, and Polyacrylamide. Industrial & Engineering Chemistry Research, 2022, 61, 5502-5513.	1.8	10
390	Systematic Approach to Mimic Phenolic Natural Polymers for Biofabrication. Polymers, 2022, 14, 1282.	2.0	6
391	Self-Forming Double-Crosslinked Hydrogels by the Marriage of Catechols and Enzyme Mimetic Polymers. Chemical Communications, 2022, , .	2.2	1
392	Performance of Biofouling Mitigating Feed Spacer by Surface Modification Using Quorum Sensing Inhibitor. SSRN Electronic Journal, 0, , .	0.4	0
393	Wet-adhesive materials of oral and maxillofacial region: From design to application. Chinese Chemical Letters, 2023, 34, 107461.	4.8	5
394	Effect of Bio-Inspired Polymer Types on Engineering Characteristics of Cement Composites. Polymers, 2022, 14, 1808.	2.0	3
395	In-situ thickness control of centimetre-scale 2D-Like polydopamine films with large scalability. Materials Today Chemistry, 2022, 24, 100935.	1.7	9
396	Green, robust self-cleaning superhydrophilic coating and on-demand oil–water separation. Applied Surface Science, 2022, 595, 153472.	3.1	25
397	Synthesis and Antioxidant Activity of New Catechol Thioethers with the Methylene Linker. Molecules, 2022, 27, 3169.	1.7	10
398	Synthesis of Heterocycles <i>via</i> Aerobic Ni-Catalyzed Imidoylation of Aromatic 1,2-Bis-nucleophiles with Isocyanides. ACS Catalysis, 2022, 12, 6857-6873.	5.5	5
399	Optimization of Nanohybrid Biosensors Based on Electro-Crosslinked Tannic Acid Capped Nanoparticles/Enzyme. Molecules, 2022, 27, 3309.	1.7	4
400	Cascade Reaction of "Mn ²⁺ atechol―Triggered by H ₂ O ₂ to Integrate Firm Tumor Vessel Embolization and Hypoxic Response Relief. Advanced Healthcare Materials, 2022, 11, .	3.9	3
401	Low-temperature liquid platinum catalyst. Nature Chemistry, 2022, 14, 935-941.	6.6	61
402	Polydopamine films: Electrochemical growth and sensing applications. European Polymer Journal, 2022, 174, 111346.	2.6	26
403	Performance of biofouling mitigating feed spacer by surface modification using quorum sensing inhibitor. Desalination, 2022, 538, 115904.	4.0	5
404	Bio-Inspired Surface Modification of Magnetite Nanoparticles with Dopamine Conjugates. Nanomaterials, 2022, 12, 2230.	1.9	7
405	Transformation of L-DOPA and Dopamine on the Surface of Gold Nanoparticles: An NMR and Computational Study. Inorganic Chemistry, 2022, 61, 10781-10791.	1.9	1

#	Article	IF	CITATIONS
406	Novel nano-encapsulated probiotic agents: Encapsulate materials, delivery, and encapsulation systems. Journal of Controlled Release, 2022, 349, 184-205.	4.8	52
407	Unraveling the Role of Polydopamines in Resistive Switching in Al/Polydopamine/Al Structure for Organic Resistive Random-Access Memory. Polymers, 2022, 14, 2995.	2.0	2
408	Catecholâ€Functionalized Carbon Nanotubes as Support for Pd Nanoparticles: a Recyclable System for the Heck Reaction. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
409	pHâ€Universal Catecholâ€Amine Chemistry for Versatile Hyaluronic Acid Bioadhesives. Small, 2022, 18, .	5.2	20
410	Functional lightweight polystyrene@polydopamine nanoparticle for high-performance ELISA. Talanta, 2023, 252, 123871.	2.9	4
411	Reactive oxygen species-generating hydrogel platform for enhanced antibacterial therapy. NPG Asia Materials, 2022, 14, .	3.8	17
412	Dual-electric layer nanofiltration membranes based on polyphenol/PEI interlayer for highly efficient Mg2+/Li+ separation. Journal of Membrane Science, 2022, 660, 120860.	4.1	26
413	Coordination geometry in metallo-supramolecular polymer networks. Coordination Chemistry Reviews, 2022, 471, 214733.	9.5	19
414	Antifouling Surface Coating on Various Substrates by Inducing Tyrosinase-Mediated Oxidation of a Tyrosine-Conjugated Sulfobetaine Derivative. Biomacromolecules, 2022, 23, 4349-4356.	2.6	3
415	Current material engineering strategies to prevent catheter encrustation in urinary tracts. Materials Today Bio, 2022, 16, 100413.	2.6	6
416	Colorimetric detection of 2-tert-butyl-1,4-benzoquinone in edible oils based on a chromogenic reaction with commercial chemicals. Food Chemistry, 2023, 400, 134037.	4.2	4
417	Oxidative control over the morphology of Cu ₃ (HHTP) ₂ , a 2D conductive metal–organic framework. Chemical Science, 2022, 13, 10472-10478.	3.7	10
418	Assembly of surface-independent polyphenol/liquid gallium composite nanocoatings. Nanoscale, 2022, 14, 14760-14769.	2.8	8
419	Study of the electrochemical betanidin oxidation path using computational methods. Physical Chemistry Chemical Physics, 2022, 24, 19269-19278.	1.3	1
420	Role of the Cysteine in R3 Tau Peptide in Copper Binding and Reactivity. International Journal of Molecular Sciences, 2022, 23, 10726.	1.8	2
421	Enhanced Carboxymethylcellulose Sponge for Hemostasis and Wound Repair. Frontiers in Materials, 0, 9, .	1.2	4
422	Interfacial Oxidative Oligomerization of Catechol. ACS Omega, 2022, 7, 36009-36016.	1.6	5
423	The effects of process parameters on polydopamine coatings employed in tissue engineering applications. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	13

#	ARTICLE	IF	CITATIONS
424	Catechol-functionalized sulfobetaine polymer for uniform zwitterionization via pH transition approach. Colloids and Surfaces B: Biointerfaces, 2022, 220, 112879.	2.5	2
425	Mussel-inspired polymeric coatings with the antifouling efficacy controlled by topologies. Journal of Materials Chemistry B, 2022, 10, 9295-9304.	2.9	7
426	Bio-macromolecular design roadmap towards tough bioadhesives. Chemical Society Reviews, 2022, 51, 9127-9173.	18.7	31
427	Gelation and the Self-Healing Behavior of the Chitosan–Catechol Hydrogel. Polymers, 2022, 14, 4614.	2.0	3
428	Efficient Wet Adhesion through Musselâ€Inspired Protoâ€Coacervates. Advanced Materials Interfaces, 2023, 10, .	1.9	5
429	Synthesis of Hybrid Polyphenol/Hydroxyapatite Nanomaterials with Anti-Radical Properties. Nanomaterials, 2022, 12, 3588.	1.9	4
430	Mixed Cu–Fe Sulfides Derived from Polydopamine-Coated Prussian Blue Analogue as a Lithium-Ion Battery Electrode. ACS Omega, 2022, 7, 38674-38685.	1.6	4
431	Monofunctional Heme-Catalases. Antioxidants, 2022, 11, 2173.	2.2	7
432	Emerging materials for hemostasis. Coordination Chemistry Reviews, 2023, 475, 214823.	9.5	31
433	Hydrophobic Melanin via Post-Synthetic Modification for Controlled Self-Assembly. ACS Nano, 2022, 16, 19087-19095.	7.3	6
434	Crosslinking Mechanisms of Phenol, Catechol, and Gallol for Synthetic Polyphenols: A Comparative Review. Applied Sciences (Switzerland), 2022, 12, 11626.	1.3	6
435	Immediately activating hemostatic cellulose sealants for uncontrolled hemorrhage. Applied Materials Today, 2022, 29, 101688.	2.3	1
436	Temperature affects the kinetics but not the products of the reaction between 4-methylbenzoquinone and lysine. Food Research International, 2023, 163, 112187.	2.9	4
437	A new heteropentacyclic system <i>via</i> coupling sterically crowded <i>o</i> -benzoquinone with <i>o</i> -phenylenediamines. Organic and Biomolecular Chemistry, 2023, 21, 621-631.	1.5	1
438	Covalently triggered self-assembly of peptide-based nanodrugs for cancer theranostics. IScience, 2023, 26, 105789.	1.9	6
439	"Turn-on―fluorescence sensor for organic amines fabricated <i>via</i> sustainable processing. Materials Chemistry Frontiers, 2022, 7, 153-159.	3.2	5
440	Mussel-inspired chemistry in producing mechanically robust and bioactive hydrogels as skin dressings. Materials Today Chemistry, 2023, 27, 101272.	1.7	3
441	Solvent effects on catechol's binding affinity: investigating the role of the intra-molecular hydrogen bond through a multi-level computational approach. Physical Chemistry Chemical Physics, 2023, 25, 2523-2536.	1.3	1

#	Article	IF	CITATIONS
442	Low-Swelling Adhesive Hydrogel with Rapid Hemostasis and Potent Anti-Inflammatory Capability for Full-Thickness Oral Mucosal Defect Repair. ACS Applied Materials & Interfaces, 2022, 14, 53575-53592.	4.0	22
443	Bio-inspired conductive adhesive based on calcium-free alginate hydrogels for bioelectronic interfaces. Biomedical Materials (Bristol), 2023, 18, 015020.	1.7	2
444	Mussel-Inspired Lego Approach for Controlling the Wettability of Surfaces with Colorless Coatings. Biomimetics, 2023, 8, 3.	1.5	3
445	Degradable Bioadhesives Based on Star PEG–PLA Hydrogels for Soft Tissue Applications. Biomacromolecules, 2023, 24, 4430-4443.	2.6	3
446	Mussel-inspired adhesive hydrogels for local immunomodulation. Materials Chemistry Frontiers, 2023, 7, 846-872.	3.2	7
447	The solvent acidity effect on the gelation behavior on the Fe3+-urushi organogels. Reactive and Functional Polymers, 2023, 183, 105510.	2.0	3
448	Hyaluronic acid-based multifunctional carriers for applications in regenerative medicine: A review. International Journal of Biological Macromolecules, 2023, 231, 123307.	3.6	11
449	Novel pH-sensitive catechol dyes synthesised by a three component one-pot reaction. Frontiers in Chemistry, 0, 10, .	1.8	1
450	Mussel-Based Biomimetic Strategies in Musculoskeletal Disorder Treatment: From Synthesis Principles to Diverse Applications. International Journal of Nanomedicine, 0, Volume 18, 455-472.	3.3	3
451	Di-Phenols Functionalized Chitosan as Selective Adsorbents for Extraction of Germanium. Minerals, Metals and Materials Series, 2023, , 141-152.	0.3	1
452	Glutathioneâ€Induced In Situ Michael Addition between Nanoparticles for Pyroptosis and Immunotherapy. Angewandte Chemie - International Edition, 2023, 62, .	7.2	14
453	Sequential self-assembly and self-coacervation actuate water-triggered robust bonding: From universal underwater adhesion to on-demand detachable bioadhesion. Chemical Engineering Journal, 2023, 463, 142436.	6.6	1
454	New insights in polydopamine formation via surface adsorption. Nature Communications, 2023, 14, .	5.8	39
455	Mussel Inspired In Situ Preparation of Antibacterial Silver Nanoparticles by DOPAâ€Containing Silk Fibroin. Macromolecular Bioscience, 2023, 23, .	2.1	0
456	Modular Synthesis and Patterning of High-Stiffness Networks by Postpolymerization Functionalization with Iron–Catechol Complexes. Macromolecules, 2023, 56, 2268-2276.	2.2	4
457	Design of Innovative Biocompatible Cellulose Nanostructures for the Delivery and Sustained Release of Curcumin. Pharmaceutics, 2023, 15, 981.	2.0	6
458	Glutathioneâ€Induced In Situ Michael Addition between Nanoparticles for Pyroptosis and Immunotherapy. Angewandte Chemie, 2023, 135, .	1.6	1
459	Bioglues Based on an Elastin-Like Recombinamer: Effect of Tannic Acid as an Additive on Tissue Adhesion and Cytocompatibility. International Journal of Molecular Sciences, 2023, 24, 6776.	1.8	3

#	Article	IF	CITATIONS
460	A novel route for anoxygenic polymerization of dopamine via purple photosynthetic bacteria metabolism. MRS Advances, 2023, 8, 423-428.	0.5	2
489	Antifouling polymers for nanomedicine and surfaces: recent advances. Nanoscale, 2023, 15, 15472-15512.	2.8	0
508	Animal Product-derived Flame Retardants. , 2023, , 72-111.		0
523	Nature-inspired safe and efficient hair dyes: beyond the traditional hair dyes. Green Chemistry, 2024, 26, 3125-3138.	4.6	0