Yellow/orange emissive heavy-metal complexes as pho organic light-emitting devices

Chemical Society Reviews 43, 6439-6469 DOI: 10.1039/c4cs00110a

Citation Report

#	Article	IF	CITATIONS
1	Very High Efficiency Orangeâ€Red Lightâ€Emitting Devices with Low Rollâ€Off at High Luminance Based on an Ideal Host–Guest System Consisting of Two Novel Phosphorescent Iridium Complexes with Bipolar Transport. Advanced Functional Materials, 2014, 24, 7420-7426.	7.8	100
2	Bifunctional organic materials for OLEDs based on Tröger's base: Subtle structural changes and significant differences in electroluminescence. Organic Electronics, 2014, 15, 3766-3772.	1.4	22
4	Solution-Processed Phosphorescent Organic Light-Emitting Diodes with Ultralow Driving Voltage and Very High Power Efficiency. Scientific Reports, 2015, 5, 12487.	1.6	122
5	Pdâ€Catalyzed Functionalization of the Thenoyltrifluoroacetone Coligands by Aromatic Dyes in Bis(cyclometallated) Ir ^{III} Complexes: From Phosphorescence to Fluorescence?Â- European Journal of Inorganic Chemistry, 2015, 2015, 2956-2964.	1.0	11
6	Design, Synthesis, and Applications of Highly Phosphorescent Cyclometalated Platinum Complexes. Asian Journal of Organic Chemistry, 2015, 4, 1210-1245.	1.3	129
7	Yellow Organic Lightâ€Emitting Diodes from Heteroleptic Iridium(III) Complexes with Avobenzone Ligands as Dopants. European Journal of Inorganic Chemistry, 2015, 2015, 5571-5576.	1.0	1
8	Simple structured hybrid WOLEDs based on incomplete energy transfer mechanism: from blue exciplex to orange dopant. Scientific Reports, 2015, 5, 10234.	1.6	62
9	High efficient OLEDs based on novel Re(I) complexes with phenanthroimidazole derivatives. Optical Materials, 2015, 47, 173-179.	1.7	13
10	High-Performance Hybrid White Organic Light-Emitting Diodes Utilizing a Mixed Interlayer as the Universal Carrier Switch. Chinese Physics Letters, 2015, 32, 107805.	1.3	1
11	Highly efficient, little efficiency roll-off orange-red electrophosphorescent devices based on a bipolar iridium complex. Journal of Materials Chemistry C, 2015, 3, 1452-1456.	2.7	19
12	Luminescent Pt(<scp>ii</scp>) complexes bearing dual isoquinolinyl pyrazolates: fundamentals and applications. Dalton Transactions, 2015, 44, 8552-8563.	1.6	44
13	Enhancing the electroluminescence performances of novel platinum(ii) polymetallayne-based phosphorescent polymers through employing functionalized IrIII phosphorescent units and facilitating triplet energy transfer. RSC Advances, 2015, 5, 12100-12110.	1.7	11
14	Approaches for fabricating high efficiency organic light emitting diodes. Journal of Materials Chemistry C, 2015, 3, 2974-3002.	2.7	524
15	Recent Advances in Solutionâ€Processable Dendrimers for Highly Efficient Phosphorescent Organic Lightâ€Emitting Diodes (PHOLEDs). Asian Journal of Organic Chemistry, 2015, 4, 394-429.	1.3	105
16	Formylated chloro-bridged iridium(<scp>iii</scp>) dimers as OLED materials: opening up new possibilities. Dalton Transactions, 2015, 44, 8419-8432.	1.6	39
17	New deep-red heteroleptic iridium complex with 3-hexylthiophene for solution-processed organic light-emitting diodes emitting saturated red and high CRI white colors. Organic Electronics, 2015, 21, 1-8.	1.4	46
18	Functionalization of phosphorescent emitters and their host materials by main-group elements for phosphorescent organic light-emitting devices. Chemical Society Reviews, 2015, 44, 8484-8575.	18.7	752
19	Cost-effective synthesis of α-carboline/pyridine hybrid bipolar host materials with improved electron-transport ability for efficient blue phosphorescent OLEDs. RSC Advances, 2015, 5, 65481-65486.	1.7	12

#	Article	IF	CITATIONS
20	<i>>o</i> -Carboranyl–Phosphine as a New Class of Strong-Field Ancillary Ligand in Cyclometalated Iridium(III) Complexes: Toward Blue Phosphorescence. Organometallics, 2015, 34, 3455-3458.	1.1	38
21	A versatile thermally activated delayed fluorescence emitter for both highly efficient doped and non-doped organic light emitting devices. Chemical Communications, 2015, 51, 13662-13665.	2.2	297
22	Iridium Cyclometalates with Tethered <i>o</i> -Carboranes: Impact of Restricted Rotation of <i>o</i> -Carborane on Phosphorescence Efficiency. Journal of the American Chemical Society, 2015, 137, 8018-8021.	6.6	103
23	Benzobisoxazole-based electron transporting materials with high T _g and ambipolar property: high efficiency deep-red phosphorescent OLEDs. Journal of Materials Chemistry C, 2015, 3, 7589-7596.	2.7	25
24	Strongly Phosphorescent Transition-Metal Complexes with N-Heterocyclic Carbene Ligands as Cellular Probes. Structure and Bonding, 2015, , 181-203.	1.0	5
25	Progress in small-molecule luminescent materials for organic light-emitting diodes. Science China Chemistry, 2015, 58, 907-915.	4.2	98
26	Novel 1,8-naphthalimide derivatives for standard-red organic light-emitting device applications. Journal of Materials Chemistry C, 2015, 3, 5259-5267.	2.7	29
27	Phosphorescent Cationic Au ₄ Ag ₂ Alkynyl Cluster Complexes for Efficient Solutionâ€Processed Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2015, 25, 3033-3042.	7.8	63
28	Tunable emission in lanthanide coordination polymer gels based on a rationally designed blue emissive gelator. Chemical Communications, 2015, 51, 9876-9879.	2.2	102
29	Design and Synthesis of Pyrimidine-Based Iridium(III) Complexes with Horizontal Orientation for Orange and White Phosphorescent OLEDs. ACS Applied Materials & Interfaces, 2015, 7, 11007-11014.	4.0	83
30	Color tunable and near white-light emission of two solvent-induced 2D lead(<scp>ii</scp>) coordination networks based on a rigid ligand 1-tetrazole-4-imidazole-benzene. Dalton Transactions, 2015, 44, 10089-10096.	1.6	31
31	Highly-efficient hybrid white organic light-emitting diodes based on a high radiative exciton ratio deep-blue emitter with improved concentration of phosphorescent dopant. RSC Advances, 2015, 5, 32298-32306.	1.7	33
32	High efficiency and stable-yellow phosphorescence from OLEDs with a novel fluorinated heteroleptic iridium complex. Optical Materials, 2015, 49, 286-291.	1.7	8
33	Efficient binary white light-emitting polymers grafted with iridium complexes as side groups. RSC Advances, 2015, 5, 89888-89894.	1.7	6
34	Highly efficient yellow phosphorescent organic light-emitting diodes with novel phosphine oxide-based bipolar host materials. Journal of Materials Chemistry C, 2015, 3, 11540-11547.	2.7	14
35	Efficient saturated red electrophosphorescence by using solution-processed 1-phenylisoquinoline-based iridium phosphors with peripheral functional encapsulation. Organic Electronics, 2015, 26, 400-407.	1.4	20
36	Synthesis and photoelectric properties of a solution-processable yellow-emitting iridium(<scp>iii</scp>) complex. New Journal of Chemistry, 2015, 39, 8908-8914.	1.4	7
37	Impact of a Carboxyl Group on a Cyclometalated Ligand: Hydrogen-Bond- and Coordination-Driven Self-Assembly of a Luminescent Platinum(II) Complex. Inorganic Chemistry, 2015, 54, 8878-8880.	1.9	31

	CITATION R	CITATION REPORT	
#	Article	IF	Citations
38	Novel phosphorescent iridium(iii) complexes containing 2-thienyl quinazoline ligands: synthesis, photophysical properties and theoretical calculations. RSC Advances, 2015, 5, 97841-97848.	1.7	12
39	Luminescent metallomesogens based on platinum complex containing triphenylene unit. Tetrahedron, 2015, 71, 463-469.	1.0	27
40	Near-Infrared Polymer Light-Emitting Diodes with High Efficiency and Low Efficiency Roll-off by Using Solution-Processed Iridium(III) Phosphors. Chemistry of Materials, 2015, 27, 96-104.	3.2	122
41	Carboranes as a Tool to Tune Phosphorescence. Chemistry - A European Journal, 2016, 22, 1888-1898.	1.7	143
42	Optimizing Optoelectronic Properties of Pyrimidineâ€Based TADF Emitters by Changing the Substituent for Organic Lightâ€Emitting Diodes with External Quantum Efficiency Close to 25 % and Slow Efficiency Rollâ€Off. Chemistry - A European Journal, 2016, 22, 10860-10866.	1.7	111
43	Triarylborylâ€Functionalized Oxadiazole as a Host Material with Electron Transporting Property for Green <scp>PhOLEDs</scp> . Bulletin of the Korean Chemical Society, 2016, 37, 864-870.	1.0	2
44	Bisâ€Tridentate Ir(III) Complexes with Nearly Unitary RGB Phosphorescence and Organic Lightâ€Emitting Diodes with External Quantum Efficiency Exceeding 31%. Advanced Materials, 2016, 28, 2795-2800.	11.1	247
45	Tailoring Optoelectronic Properties of Phenanthrolineâ€Based Thermally Activated Delayed Fluorescence Emitters through Isomer Engineering. Advanced Optical Materials, 2016, 4, 1558-1566.	3.6	53
46	Up to 100% Formation Ratio of Doublet Exciton in Deep-Red Organic Light-Emitting Diodes Based on Neutral I€-Radical. ACS Applied Materials & Interfaces, 2016, 8, 35472-35478.	4.0	93
47	Monitoring of Energy Conservation and Losses in Molecular Junctions through Characterization of Light Emission. Advanced Electronic Materials, 2016, 2, 1600351.	2.6	19
48	A facile color-tuning strategy for constructing a library of Ir(<scp>iii</scp>) complexes with fine-tuned phosphorescence from bluish green to red using a synergetic substituent effect of –OCH ₃ and –CN at only the C-ring of C^N ligand. Journal of Materials Chemistry C, 2016, 4, 4269-4277.	2.7	36
49	Complexes of Ir(III) and Pt(II) with cyclometallated 2-phenylbenzothiazole and chelating diethyldithiocarbamate and O-ethyldithiocarbonate ions: Structures and optical and electrochemical properties. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2016, 42, 178-186.	0.3	5
50	Optical and electrochemical characteristics of ethylenediamine complexes of Pt(II) and Ir(III) with metalated 2-phenyl- and 2-naphthylbenzothiazole. Optics and Spectroscopy (English Translation of) Tj ETQq0 0	0 r gB 7 /0\	verløck 10 Tf 5
51	High-brightness solution-processed phosphorescent OLEDs with pyrimidine-based iridium(<scp>iii</scp>) complexes. RSC Advances, 2016, 6, 34970-34976.	1.7	18
52	Novel bipolar fluorescent polymers bearing N ⁺ î€P–O ^{â^'} resonance structures for fluorescent–phosphorescent (F–P) hybrid white polymer light-emitting diodes (WPLEDs). RSC Advances, 2016, 6, 38424-38429.	1.7	3
53	High-performance doping-free hybrid white organic light-emitting diodes: The exploitation of ultrathin emitting nanolayers (<1 nm). Nano Energy, 2016, 26, 26-36.	8.2	88
54	Bifunctional Heterocyclic Spiro Derivatives for Organic Optoelectronic Devices. ACS Applied Materials & amp; Interfaces, 2016, 8, 24782-24792.	4.0	32
55	Ruthenium Tetrazole Based Electroluminescent Device: Key Role of Counter Ions for Light Emission Properties. Journal of Physical Chemistry C, 2016, 120, 24965-24972.	1.5	16

#	Article	IF	CITATIONS
56	Activation of B H bonds in Ir(I) complexes supported by phosphine with carba-closo-dodecaborate and o-carborane ligand substituents: A DFT investigation. Journal of Organometallic Chemistry, 2016, 819, 242-247.	0.8	3
57	Solution-processed organic light-emitting diodes based on yellow-emitting cationic iridium(III) complexes bearing cyclometalated carbene ligands. Dyes and Pigments, 2016, 134, 465-471.	2.0	16
58	Highly Efficient Organic Lightâ€Emitting Diodes with Low Efficiency Rollâ€Off Based on Iridium Complexes Containing Pinene Sterically Hindered Spacer. Advanced Optical Materials, 2016, 4, 1726-1731.	3.6	34
59	Substituent Effects on the Fluorescence Properties of <i>ortho</i> â€CarborÂanes: Unusual Emission Behaviour in <i>C</i> â€{2′â€Pyridyl)â€ <i>ortho</i> â€carboranes. European Journal of Inorganic Chemistry, 2016, 2016, 403-412.	1.0	46
60	Metal Complexes with Azolateâ€Functionalized Multidentate Ligands: Tactical Designs and Optoelectronic Applications. Chemistry - A European Journal, 2016, 22, 17892-17908.	1.7	64
61	Aggregation-induced intersystem crossing: a novel strategy for efficient molecular phosphorescence. Nanoscale, 2016, 8, 17422-17426.	2.8	151
62	Tuning the Phosphorescence and Solid State Luminescence of Triarylborane-Functionalized Acetylacetonato Platinum Complexes. Inorganic Chemistry, 2016, 55, 12220-12229.	1.9	59
63	Tuning Emission of AIE-Active Organometallic Ir(III) Complexes by Simple Modulation of Strength of Donor/Acceptor on Ancillary Ligands. Organometallics, 2016, 35, 3996-4001.	1.1	46
64	Pyrimidine-Based Mononuclear and Dinuclear Iridium(III) Complexes for High Performance Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2016, 8, 33874-33887.	4.0	53
65	Electrochemically deposited interlayer between PEDOT:PSS and phosphorescent emitting layer for multilayer solution-processed phosphorescent OLEDs. Journal of Materials Chemistry C, 2016, 4, 9509-9515.	2.7	20
66	Phosphorescent PtAu ₂ Complexes with Differently Positioned Carbazole–Acetylide Ligands for Solution-Processed Organic Light-Emitting Diodes with External Quantum Efficiencies of over 20%. ACS Applied Materials & Interfaces, 2016, 8, 20251-20257.	4.0	47
67	Achieving Optimal Self-Adaptivity for Dynamic Tuning of Organic Semiconductors through Resonance Engineering. Journal of the American Chemical Society, 2016, 138, 9655-9662.	6.6	71
68	Highly efficient orange phosphorescent organic light-emitting diodes based on an iridium(<scp>iii</scp>) complex with diethyldithiocarbamate (S^S) as the ancillary ligand. RSC Advances, 2016, 6, 64003-64008.	1.7	22
69	Aggregation-induced emission (AIE) active iridium complexes toward highly efficient single-layer non-doped electroluminescent devices. Journal of Materials Chemistry C, 2016, 4, 10464-10470.	2.7	27
70	Self-Host Blue-Emitting Iridium Dendrimer Containing Bipolar Dendrons for Nondoped Electrophosphorescent Devices with Superior High-Brightness Performance. ACS Applied Materials & Interfaces, 2016, 8, 29600-29607.	4.0	46
71	A curious interplay in the films of N-heterocyclic carbene PtII complexes upon deposition of alkali metals. Scientific Reports, 2016, 6, 25548.	1.6	5
72	Asymmetric <i>tris</i> -Heteroleptic Iridium ^{III} Complexes Containing a 9-Phenyl-9-phosphafluorene Oxide Moiety with Enhanced Charge Carrier Injection/Transporting Properties for Highly Efficient Solution-Processed Organic Light-Emitting Diodes. Chemistry of Materials, 2016, 28, 8556-8569.	3.2	58
73	New phosphorescent platinum(<scp>ii</scp>) complexes: lamellar mesophase and mechanochromism. New Journal of Chemistry, 2016, 40, 10371-10377.	1.4	21

#	Article	IF	CITATIONS
74	Evolution of 2, 3′-bipyridine class of cyclometalating ligands as efficient phosphorescent iridium(III) emitters for applications in organic light emitting diodes. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2016, 29, 29-47.	5.6	41
75	lridium Cyclometalated Complexes in Host–Guest Chemistry: A Strategy for Maximizing Quantum Yield in Aqueous Media. Inorganic Chemistry, 2016, 55, 6759-6769.	1.9	29
76	Non-doped luminescent material based organic light-emitting devices displaying high brightness under very low driving voltage. Journal of Materials Chemistry C, 2016, 4, 7013-7019.	2.7	26
77	Solution-processed OLEDs based on phosphorescent PtAu ₂ complexes with phenothiazine-functionalized acetylides. Journal of Materials Chemistry C, 2016, 4, 6096-6103.	2.7	39
78	Cyclometalated gold(<scp>iii</scp>) trioxadiborrin complexes: studies of the bonding and excited states. Dalton Transactions, 2016, 45, 3820-3830.	1.6	10
79	Substituent position engineering of diphenylquinoline-based Ir(<scp>iii</scp>) complexes for efficient orange and white PhOLEDs with high color stability/low efficiency roll-off using a solution-processed emission layer. Journal of Materials Chemistry C, 2016, 4, 113-120.	2.7	24
80	Photoluminescence of a New Material: Cyclometalated C ^{â^§} C* Thiazole-2-ylidene Platinum(II) Complexes. Organometallics, 2016, 35, 959-971.	1.1	34
81	Deep-red iridium(<scp>iii</scp>) complexes cyclometalated by phenanthridine derivatives for highly efficient solution-processed organic light-emitting diodes. Journal of Materials Chemistry C, 2016, 4, 3492-3498.	2.7	51
82	A Highly Selective Chemosensor for Cyanide Derived from a Formyl-Functionalized Phosphorescent Iridium(III) Complex. Inorganic Chemistry, 2016, 55, 3448-3461.	1.9	48
83	The substituent effect of 2-R-o-carborane on the photophysical properties of iridium(<scp>iii</scp>) cyclometalates. Dalton Transactions, 2016, 45, 5667-5675.	1.6	34
84	From Mononuclear to Dinuclear Iridium(III) Complex: Effective Tuning of the Optoelectronic Characteristics for Organic Light-Emitting Diodes. Inorganic Chemistry, 2016, 55, 1720-1727.	1.9	127
85	Transition Metal-Based Photofunctional Materials: Recent Advances and Potential Applications. Structure and Bonding, 2016, , 201-289.	1.0	1
86	High-efficiency solution-processed OLEDs based on cationic Ag ₆ Cu heteroheptanuclear cluster complexes with aromatic acetylides. Journal of Materials Chemistry C, 2016, 4, 1787-1794.	2.7	46
87	Redox cycling of iridium(III) complexes gives versatile materials for photonics applications. Polyhedron, 2016, 106, 51-57.	1.0	4
88	Recent advances of neutral rhenium(I) tricarbonyl complexes for application in organic light-emitting diodes. Synthetic Metals, 2016, 212, 131-141.	2.1	66
89	A sandwich-type zinc complex from a rhodamine dye based ligand: a potential fluorescent chemosensor for acetate in human blood plasma and a molecular logic gate with INHIBIT function. New Journal of Chemistry, 2016, 40, 1269-1277.	1.4	20
90	Emissive bis-tridentate Ir(III) metal complexes: Tactics, photophysics and applications. Coordination Chemistry Reviews, 2017, 346, 91-100.	9.5	130
91	Luminescent Tungsten(VI) Complexes: Photophysics and Applicability to Organic Lightâ€Emitting Diodes and Photocatalysis. Angewandte Chemie, 2017, 129, 139-143.	1.6	13

	CITATION	I REPORT	
#	Article	IF	Citations
92	Novel bluish green benzimidazole-based iridium(<scp>iii</scp>) complexes for highly efficient phosphorescent organic light-emitting diodes. New Journal of Chemistry, 2017, 41, 1973-1979.	1.4	21
93	Potassium salts of para-aromatic dicarboxylates as the highly efficient organic anodes for low-cost K-ion batteries. Nano Energy, 2017, 33, 350-355.	8.2	209
94	Single-component Eu ³⁺ –Tb ³⁺ –Gd ³⁺ -grafted polymer with ultra-high color rendering index white-light emission. RSC Advances, 2017, 7, 6762-6771.	1.7	21
95	Synthesis, Structures, and Optoelectronic Properties of Pyrene-Fused Thioxanthenes. Organic Letters, 2017, 19, 1382-1385.	2.4	16
96	Novel columnar metallomesogens based on cationic platinum(<scp>ii</scp>) complexes without long peripheral chains. RSC Advances, 2017, 7, 11389-11393.	1.7	12
97	Excimers from stable and persistent supramolecular radical-pairs in red/NIR-emitting organic nanoparticles and polymeric films. Physical Chemistry Chemical Physics, 2017, 19, 9313-9319.	1.3	42
98	Impact of the number of o-carboranyl ligands on the photophysical and electroluminescent properties of iridium(<scp>iii</scp>) cyclometalates. Journal of Materials Chemistry C, 2017, 5, 3024-3034.	2.7	17
99	High-efficiency organic light-emitting diodes of phosphorescent PtAg ₂ heterotrinuclear acetylide complexes supported by triphosphine. Journal of Materials Chemistry C, 2017, 5, 3072-3078.	2.7	30
100	Doping-free white organic light-emitting diodes without blue molecular emitter: An unexplored approach to achieve high performance via exciplex emission. Applied Physics Letters, 2017, 110, .	1.5	39
101	An Unprecedented Family of Luminescent Iridium(III) Complexes Bearing a Six-Membered Chelated Tridentate C^N^C Ligand. Inorganic Chemistry, 2017, 56, 5182-5188.	1.9	18
102	Preparation of Phosphorescent Osmium(IV) Complexes with N,N′,C- and C,N,C′-Pincer Ligands. Organometallics, 2017, 36, 1848-1859.	1.1	34
103	High efficiency green phosphorescent OLEDs using double-host materials. Dyes and Pigments, 2017, 143, 196-202.	2.0	15
104	Synthesis, structural characterization and photoluminescent properties of 2D multilayer Cu + coordination polymers via C Hâ‹ ï€ and ï€â‹ ï€ interactions. Journal of Molecular Structure, 2017, 1143, 431-437.	1.8	7
105	Progress on benzimidazole-based iridium(III) complexes for application in phosphorescent OLEDs. Organic Electronics, 2017, 41, 56-72.	1.4	49
106	Luminescent Tungsten(VI) Complexes: Photophysics and Applicability to Organic Lightâ€Emitting Diodes and Photocatalysis. Angewandte Chemie - International Edition, 2017, 56, 133-137.	7.2	49
107	Achieving NIR emission for tetradentate platinum (II) salophen complexes by attaching dual donor-accepter frameworks in the heads of salophen. Dyes and Pigments, 2017, 138, 100-106.	2.0	19
108	Polymer Gating White Flexible Fieldâ€Induced Lighting Device. Advanced Materials Technologies, 2017, 2, 1700017.	3.0	8
109	Regulating Charge and Exciton Distribution in High-Performance Hybrid White Organic Light-Emitting Diodes with n-Type Interlayer Switch. Nano-Micro Letters, 2017, 9, 37.	14.4	37

#	Article	IF	CITATIONS
110	Highly efficient electroluminescent Pt ^{II} ppy-type complexes with monodentate ligands. Chemical Communications, 2017, 53, 7581-7584.	2.2	31
111	Investigation of a sterically hindered Pt(II) complex to avoid aggregation-induced quenching: Applications in deep red electroluminescent and electrical switching devices. Synthetic Metals, 2017, 227, 106-116.	2.1	12
112	Achieving yellow emission by varying the donor/acceptor units in rod-shaped fluorenyl-alkynyl based Ï€-conjugated oligomers and their binuclear gold(<scp>i</scp>) alkynyl complexes. Dalton Transactions, 2017, 46, 5918-5929.	1.6	23
113	Rational Design and Characterization of Heteroleptic Phosphorescent Complexes for Highly Efficient Deep-Red Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 2017, 9, 11749-11758.	4.0	57
114	Phosphorescent Neutral Iridium (III) Complexes for Organic Light-Emitting Diodes. Topics in Current Chemistry, 2017, 375, 39.	3.0	45
115	Highly efficient thienylquinoline-based phosphorescent iridium(III) complexes for red and white organic light-emitting diodes. Organic Electronics, 2017, 45, 293-301.	1.4	47
116	Luminescent Iridium(III) Complexes Supported by a Tetradentate Trianionic Ligand Scaffold with Mixed O, N, and C Donor Atoms: Synthesis, Structures, Photophysical Properties, and Material Applications. Organometallics, 2017, 36, 1331-1344.	1.1	18
117	Near-infrared emission from binuclear platinum (II) complexes containing pyrenylpyridine and pyridylthiolate units: Synthesis, photo-physical and electroluminescent properties. Dyes and Pigments, 2017, 138, 162-168.	2.0	40
118	Rational design and synthesis of cationic Ir(III) complexes with triazolate cyclometalated and ancillary ligands for multi-color tuning. Dyes and Pigments, 2017, 139, 524-532.	2.0	21
119	Photoluminescence and electroluminescence of iridium(iii) complexes with 2′,6′-bis(trifluoromethyl)-2,4′-bipyridine and 1,3,4-oxadiazole/1,3,4-thiadiazole derivative ligands. Dalton Transactions, 2017, 46, 845-853.	1.6	24
120	Photoluminescence and electroluminescence of cationic PtAu ₂ heterotrinuclear complexes with aromatic acetylides. Dalton Transactions, 2017, 46, 865-874.	1.6	28
121	Exploitation of redox-active 1,4-dicyanobenzene and 9,10-dicyanoanthracene as the organic electrode materials in rechargeable lithium battery. Electrochemistry Communications, 2017, 75, 29-32.	2.3	47
122	Pyridine linked fluorene hybrid bipolar host for blue, green, and orange phosphorescent organic light-emitting diodes toward solution processing. Journal of Materials Chemistry C, 2017, 5, 11937-11946.	2.7	15
123	Synthesis of biscyclometalated iridium(III) acetylacetonate complexes via a 15Âmin bridge-splitting reaction, their characterisations and photophysical properties. Journal of Organometallic Chemistry, 2017, 851, 184-188.	0.8	4
124	Highly Efficient Red and White Organic Light-Emitting Diodes with External Quantum Efficiency beyond 20% by Employing Pyridylimidazole-Based Metallophosphors. ACS Applied Materials & Interfaces, 2017, 9, 37873-37882.	4.0	65
125	Synthesis, Structures, and Properties of Luminescent (C ^{â^§} N ^{â^§} C)gold(III) Alkyl Complexes: Correlation between Photoemission Energies and C–H Acidity. Organometallics, 2017, 36, 3304-3312.	1.1	28
126	Facile cyclometallation of a mesitylsilylene: synthesis and preliminary catalytic activity of iridium(<scp>iii</scp>) and iridium(<scp>v</scp>) iridasilacyclopentenes. Chemical Communications, 2017, 53, 10275-10278.	2.2	38
127	Doping-free tandem white organic light-emitting diodes. Science Bulletin, 2017, 62, 1193-1200.	4.3	37

#	Article	IF	CITATIONS
128	Solution-processed small-molecular white organic light-emitting diodes based on a thermally activated delayed fluorescence dendrimer. Journal of Materials Chemistry C, 2017, 5, 10001-10006.	2.7	49
129	Efficient and Practical Synthesis of Electron Transport Material and Its Key Intermediate. Organic Process Research and Development, 2017, 21, 1675-1681.	1.3	6
130	Color-tunable to direct white-light and application for white polymer light-emitting diode (WPLED) of organo-Eu3+- and organo-Tb3+-doping polymer. Journal of Luminescence, 2017, 192, 1089-1095.	1.5	11
131	Alkenyl-Assisted C ³ –C Bond Activation of Acetylacetonate Coordinated to Iridium. Organometallics, 2017, 36, 4344-4347.	1.1	3
132	Novel phosphorescent neutral iridium(III) complex with the steric hindrance for highly efficient red organic light-emitting diodes. Tetrahedron Letters, 2017, 58, 3598-3601.	0.7	9
133	Highly twisted organic molecules with ortho linkage as the efficient bipolar hosts for sky-blue thermally activated delayed fluorescence emitter in OLEDs. Organic Electronics, 2017, 50, 153-160.	1.4	12
134	Phosphorescent Iridium(<scp>III</scp>) Cyclometalates Supported by 2â€(1,2â€Ðihydronaphthalenâ€4â€yl)pyridine Ligand. Bulletin of the Korean Chemical Society, 2017, 38, 544-54	9. ^{1.0}	0
135	Highly efficient blue phosphorescent iridium(<scp>iii</scp>) complexes with various ancillary ligands for partially solution-processed organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 9306-9314.	2.7	68
136	Iridium(<scp>iii</scp>) complexes bearing oxadiazol-substituted amide ligands: color tuning and application in highly efficient phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 9146-9156.	2.7	31
137	Tetradentate Pt(II) 3,6-substitued salophen complexes: Synthesis and tuning emission from deep-red to near infrared by appending donor-acceptor framework. Organic Electronics, 2017, 50, 317-324.	1.4	21
138	<i>Para</i> -Conjugated Dicarboxylates with Extended Aromatic Skeletons as the Highly Advanced Organic Anodes for K-Ion Battery. ACS Applied Materials & Interfaces, 2017, 9, 27414-27420.	4.0	77
139	Novel iridium(<scp>iii</scp>) complexes bearing dimesitylboron groups with nearly 100% phosphorescent quantum yields for highly efficient organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 7871-7883.	2.7	49
140	Rational design and characterization of novel phosphorescent rhenium(<scp>i</scp>) complexes for extremely high-efficiency organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 7629-7636.	2.7	18
141	Structures and optical and electrochemical properties of the Pt(II) and Pd(II) complexes with cyclometallated 2-phenylbenzothiazole and 1,4,7-trithiocyclononane. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2017, 43, 297-303.	0.3	0
142	A Yellow-Emitting Homoleptic Iridium(III) Complex Constructed from a Multifunctional Spiro Ligand for Highly Efficient Phosphorescent Organic Light-Emitting Diodes. Inorganic Chemistry, 2017, 56, 8397-8407.	1.9	23
143	Cyclometallierte Au ^{III} â€Komplexe: Synthese, Reaktivitäund physikalischâ€chemische Eigenschaften. Angewandte Chemie, 2017, 129, 2024-2046.	1.6	52
144	Cyclometalated Gold(III) Complexes: Synthesis, Reactivity, and Physicochemical Properties. Angewandte Chemie - International Edition, 2017, 56, 1994-2015.	7.2	157
145	50 Years of Structure and Bonding $\hat{a} \in$ "The Anniversary Volume. Structure and Bonding, 2017, , .	1.0	2

#	Article	IF	CITATIONS
146	New rhenium(I) complex with thiadiazole-annelated 1,10-phenanthroline for highly efficient phosphorescent OLEDs. Dyes and Pigments, 2017, 137, 569-575.	2.0	25
147	Luminescent Gold(III) Thiolates: Supramolecular Interactions Trigger and Control Switchable Photoemissions from Bimolecular Excited States. Chemistry - A European Journal, 2017, 23, 105-113.	1.7	43
148	Homoleptic thiazole-based Ir ^{III} phosphorescent complexes for achieving both high EL efficiencies and an optimized trade-off among the key parameters of solution-processed WOLEDs. Journal of Materials Chemistry C, 2017, 5, 208-219.	2.7	21
149	Achieving High-Performance Solution-Processed Orange OLEDs with the Phosphorescent Cyclometalated Trinuclear Pt(II) Complex. ACS Applied Materials & Interfaces, 2018, 10, 10227-10235.	4.0	55
150	Diarylboronâ€Based Asymmetric Redâ€Emitting Ir(III) Complex for Solutionâ€Processed Phosphorescent Organic Lightâ€Emitting Diode with External Quantum Efficiency above 28%. Advanced Science, 2018, 5, 1701067.	5.6	76
151	Synthesis and characterization of highly efficient solution-processable orange Ir(III) complexes for phosphorescent OLED applications. Organic Electronics, 2018, 57, 178-185.	1.4	12
152	A Methodological Study on Tuning the Thermally Activated Delayed Fluorescent Performance by Molecular Constitution in Acridine–Benzophenone Derivatives. Chemistry - an Asian Journal, 2018, 13, 1187-1191.	1.7	12
153	Sky-blue phosphorescent organic light-emitting diode with superior performance based on novel chlorine functionalized iridium(III) complex. Tetrahedron Letters, 2018, 59, 2095-2098.	0.7	5
154	Emissive lead(II) benzenedicarboxylate metal-organic frameworks. Journal of Chemical Sciences, 2018, 130, 1.	0.7	2
155	Efficient solution-processed blue and white OLEDs based on a high-triplet bipolar host and a blue TADF emitter. Organic Electronics, 2018, 58, 276-282.	1.4	53
156	Solution-processable high-efficiency bis(trifluoromethyl)phenyl functionalized phosphorescent neutral iridium(III) complex for greenish yellow electroluminescence. Tetrahedron Letters, 2018, 59, 1748-1751.	0.7	9
157	Conjugated Microporous Polytetra(2â€Thienyl)ethylene as High Performance Anode Material for Lithium―and Sodiumâ€Ion Batteries. Macromolecular Chemistry and Physics, 2018, 219, 1700524.	1.1	39
158	Synthesis, characterization and photophysical properties of homoleptic platinum(II) complexes with 2,2′-biimidazole-based ligands. Transition Metal Chemistry, 2018, 43, 231-241.	0.7	0
159	Luminescent Dinuclear Copper(I) Complexes as Potential Thermally Activated Delayed Fluorescence (TADF) Emitters: A Theoretical Study. Journal of Physical Chemistry A, 2018, 122, 1413-1421.	1.1	34
160	Cyclometalated Platinum Complexes with Aggregation-Induced Phosphorescence Emission Behavior and Highly Efficient Electroluminescent Ability. Chemistry of Materials, 2018, 30, 929-946.	3.2	64
161	Efficient solution-processed yellow/orange phosphorescent OLEDs based on heteroleptic Ir(â¢) complexes with 2-(9,9-diethylfluorene-2-yl)pyridine main ligand and various ancillary ligands. Organic Electronics, 2018, 54, 197-203.	1.4	20
162	Highly efficient chlorine functionalized blue iridium(iii) phosphors for blue and white phosphorescent organic light-emitting diodes with the external quantum efficiency exceeding 20%. Journal of Materials Chemistry C, 2018, 6, 6656-6665.	2.7	32
163	Preparation of Phosphorescent Iridium(III) Complexes with a Dianionic C,C,C,C-Tetradentate Ligand. Inorganic Chemistry, 2018, 57, 3720-3730.	1.9	25

#	Article	IF	CITATIONS
164	Efficient non-doped fluorescent OLEDs with nearly 6% external quantum efficiency and deep-blue emission approaching the blue standard enabled by quaterphenyl-based emitters. Journal of Materials Chemistry C, 2018, 6, 4479-4484.	2.7	20
165	Solution processible yellow-emitting iridium complexes based on furo[3,2-c]pyridine ligand. Organic Electronics, 2018, 53, 191-197.	1.4	5
166	Modelling the luminescence of iridium cyclometalated complexes encapsulated in cucurbituril. Analyst, The, 2018, 143, 519-527.	1.7	4
167	Achieving Nearly 30% External Quantum Efficiency for Orange–Red Organic Light Emitting Diodes by Employing Thermally Activated Delayed Fluorescence Emitters Composed of 1,8â€Naphthalimideâ€Acridine Hybrids. Advanced Materials, 2018, 30, 1704961.	11.1	488
168	Benzothiazoleâ€Based Cycloplatinated Chromophores: Synthetic, Optical, and Biological Studies. Chemistry - A European Journal, 2018, 24, 2440-2456.	1.7	33
169	Carbazole/phenylpyridine hybrid compound as dual role of efficient host and ligand of iridium complex: Well matching of host-dopant for solution-processed green phosphorescent OLEDs. Dyes and Pigments, 2018, 150, 130-138.	2.0	14
170	Cyclometallation of a germylene ligand by concerted metalation–deprotonation of a methyl group. Dalton Transactions, 2018, 47, 15835-15844.	1.6	13
171	A Cu-NHC based phosphorescent binuclear iridium(iii)/copper(i) complex with an unpredictable near-linear two-coordination mode. Dalton Transactions, 2018, 47, 17299-17303.	1.6	9
172	Smart Design on the Cyclometalated Ligands of Iridium(III) Complexes for Facile Tuning of Phosphorescence Color Spanning from Deepâ€Blue to Nearâ€Infrared. Advanced Optical Materials, 2018, 6, 1800824.	3.6	42
173	Porous Organic Polymer from Aggregation-Induced Emission Macrocycle for White-Light Emission. Macromolecules, 2018, 51, 7863-7871.	2.2	24
174	Photoluminescence and electroluminescence of four orange-red and red organic iridium(III) complexes. Journal of Organometallic Chemistry, 2018, 876, 35-42.	0.8	5
176	A Zinc(II) Benzamidinate <i>N</i> â€Oxide Complex as an Aggregationâ€Induced Emission Material: toward Solutionâ€Processable White Organic Lightâ€Emitting Devices. European Journal of Inorganic Chemistry, 2018, 2018, 4322-4330.	1.0	9
177	Tetradentate Cyclometalated Platinum(II) Complexes for Efficient and Stable Organic Light-Emitting Diodes. , 0, , .		4
178	Efficient near-infrared (NIR) polymer light-emitting diodes (PLEDs) based on heteroleptic iridium(<scp>iii</scp>) complexes with post-modification effects of intramolecular hydrogen bonding or BF ₂ -chelation. Journal of Materials Chemistry C, 2018, 6, 10589-10596.	2.7	46
179	Tetranuclear Iridium Complex with a Self-Host Feature for High-Efficiency Nondoped Phosphorescent Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 32365-32372.	4.0	13
180	Near-White Light Emission from Lead(II) Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 11341-11348.	1.9	42
181	Metalated Ir(III) Complexes Based on the Luminescent Diimine Ligands: Synthesis and Photophysical Study. Inorganic Chemistry, 2018, 57, 6853-6864.	1.9	16
183	High-Efficiency and High-Luminance Three-Color White Organic Light-Emitting Diodes with Low Efficiency Roll-Off. ECS Journal of Solid State Science and Technology, 2018, 7, R99-R103.	0.9	9

#	Article	IF	CITATIONS
184	Using an organic acid as a universal anode for highly efficient Li-ion, Na-ion and K-ion batteries. Organic Electronics, 2018, 62, 536-541.	1.4	71
185	An overview of phosphorescent metallomesogens based on platinum and iridium. Journal of Materials Chemistry C, 2018, 6, 9848-9860.	2.7	50
186	Using phosphorescent PtAu ₃ clusters for superior solution-processable organic light emitting diodes with very small efficiency roll-off. Journal of Materials Chemistry C, 2018, 6, 8966-8976.	2.7	24
187	Emergence of White Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence. Applied Sciences (Switzerland), 2018, 8, 299.	1.3	34
188	Theoretical study on the vibrationally resolved spectra and quantum yield of blue phosphorescent iridium(III) complexes with 2-(4-fluoro-3-(trifluoromethyl)-phenyl)pyridine as the cyclometalated ligand. Organic Electronics, 2018, 61, 125-133.	1.4	9
189	Molecular Engineering of Phenylbenzimidazole-Based Orange Ir(III) Phosphors toward High-Performance White OLEDs. Inorganic Chemistry, 2018, 57, 6029-6037.	1.9	12
190	Asymmetric tris-heteroleptic iridium(<scp>iii</scp>) complexes containing three different 2-phenylpyridine-type ligands: a new strategy for improving the electroluminescence ability of phosphorescent emitters. Journal of Materials Chemistry C, 2018, 6, 9453-9464.	2.7	23
191	Recent Advances of Exciplex-Based White Organic Light-Emitting Diodes. Applied Sciences (Switzerland), 2018, 8, 1449.	1.3	37
192	Iridium-Catalyzed Oxidative Heteroarylation of Arenes and Alkenes: Overcoming the Restriction to Specific Substrates. ACS Catalysis, 2018, 8, 8709-8714.	5.5	59
193	Early-Time Excited-State Relaxation Dynamics of Iridium Compounds: Distinct Roles of Electron and Hole Transfer. Journal of Physical Chemistry A, 2018, 122, 5518-5532.	1.1	25
194	Deep blue phosphorescent iridium(III) cyclometalates with o -carboranes. Journal of Organometallic Chemistry, 2018, 870, 1-7.	0.8	2
195	Organometallic Fluorophores of d 8 Metals (Pd, Pt, Au). Advances in Organometallic Chemistry, 2018, 69, 73-134.	0.5	14
196	Iridium(<scp>iii</scp>) phosphors with rigid fused-heterocyclic chelating architectures for efficient deep-red/near-infrared emissions in polymer light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 10961-10971.	2.7	42
197	Simple fluorene oxadiazole-based Ir(<scp>iii</scp>) complexes with AIPE properties: synthesis, explosive detection and electroluminescence studies. Dalton Transactions, 2019, 48, 13305-13314.	1.6	14
198	A small-molecule organic cathode with fast charge–discharge capability for K-ion batteries. Journal of Materials Chemistry A, 2019, 7, 20127-20131.	5.2	51
199	Poly(N-vinylcarbazole) (PVK) as a high-potential organic polymer cathode for dual-intercalation Na-ion batteries. Organic Electronics, 2019, 75, 105386.	1.4	23
200	Single-component gold(<scp>i</scp>)-containing highly white-emissive crystals based on a polymorph doping strategy. Materials Chemistry Frontiers, 2019, 3, 1866-1871.	3.2	12
201	Device Engineering for All-Inorganic Perovskite Light-Emitting Diodes. Nanomaterials, 2019, 9, 1007.	1.9	31

#	Article	IF	CITATIONS
202	Synthesis, structure and density functional theory calculations of a novel photoluminescent trisarylborane–bismuth(III) complex. Luminescence, 2019, 34, 731-738.	1.5	1
203	Phosphorescent Molecules That Resist Concentration Quenching in the Solution State: Concentration-Driven Emission Enhancement of Vaulted <i>trans</i> -Bis[2-(iminomethyl)imidazolato]platinum(II) Complexes. Inorganic Chemistry, 2019, 58, 9076-9084.	1.9	9
204	Highly Efficient Deep-Red Organic Light-Emitting Devices Based on Asymmetric Iridium(III) Complexes with the Thianthrene 5,5,10,10-Tetraoxide Moiety. ACS Applied Materials & amp; Interfaces, 2019, 11, 26152-26164.	4.0	52
205	Unipolar Injection and Bipolar Transport in Electroluminescent Ru-Centered Molecular Electronic Junctions. Journal of Physical Chemistry C, 2019, 123, 29162-29172.	1.5	10
206	Skyâ€Blue Triplet Emitters with Cyclometalated Imidazopyrazineâ€Based NHC‣igands and Aromatic Bulky Acetylacetonates. Chemistry - A European Journal, 2019, 25, 14495-14499.	1.7	25
207	Metal-Assisted Delayed Fluorescent Pd(II) Complexes and Phosphorescent Pt(II) Complex Based on [1,2,4]Triazolo[4,3- <i>a</i>]pyridine-Containing Ligands: Synthesis, Characterization, Electrochemistry, Photophysical Studies, and Application. Inorganic Chemistry, 2019, 58, 14349-14360.	1.9	35
208	Photofunctions of iridium(iii) complexes in vesicles: long-lived excited states and visible-light sensitization for hydrogen evolution in aqueous solution. Dalton Transactions, 2019, 48, 14914-14925.	1.6	18
209	Aggregation-induced emission triggered by the radiative-transition-switch of a cyclometallated Pt(<scp>ii</scp>) complex. Journal of Materials Chemistry C, 2019, 7, 12552-12559.	2.7	30
210	High performance solution-processed organic yellow light-emitting devices and fluoride ion sensors based on a versatile phosphorescent Ir(<scp>iii</scp>) complex. Materials Chemistry Frontiers, 2019, 3, 376-384.	3.2	17
211	PtAu ₃ cluster complexes with narrow-band emissions for solution-processed organic light emitting diodes. Journal of Materials Chemistry C, 2019, 7, 2604-2614.	2.7	36
212	A cyclometalating organic ligand with an Iridium center toward dramatically improved photovoltaic performance in organic solar cells. Chemical Communications, 2019, 55, 2640-2643.	2.2	31
213	Highly emissive fluorene and thiophene based π-conjugated A-alt-B copolymers: Synthesis, characterization and electroluminescence properties. Journal of Luminescence, 2019, 208, 509-518.	1.5	8
214	Green and yellow pyridazine-based phosphorescent Iridium(III) complexes for high-efficiency and low-cost organic light-emitting diodes. Dyes and Pigments, 2019, 164, 206-212.	2.0	20
215	Potassium perylene-tetracarboxylate with two-electron redox behaviors as a highly stable organic anode for K-ion batteries. Chemical Communications, 2019, 55, 1801-1804.	2.2	84
216	Thiphenylmethane based structural fragments as building blocks towards solution-processable heteroleptic iridium(<scp>iii</scp>) complexes for OLED use. New Journal of Chemistry, 2019, 43, 37-47.	1.4	8
217	Tuning the emissive characteristics of TADF emitters by fusing heterocycles with acridine as donors: highly efficient orange to red organic light-emitting diodes with EQE over 20%. Journal of Materials Chemistry C, 2019, 7, 9087-9094.	2.7	31
218	Prediction of emission wavelengths of phosphorescent NHC based emitters for OLEDs. Tetrahedron, 2019, 75, 130431.	1.0	3
219	Mesityl(amidinato)tetrylenes as ligands in iridium(<scp>i</scp>) and iridium(<scp>iii</scp>) complexes: silicon <i>versus</i> germanium and simple l² ¹ -coordination <i>versus</i> cyclometallation. Dalton Transactions, 2019, 48, 10996-11003.	1.6	14

#	Article	IF	CITATIONS
220	A yellow organic emitter with novel D-A3 architecture and hidden delayed fluorescence for highly efficient monochromatic OLEDs. Organic Electronics, 2019, 73, 102-108.	1.4	1
221	Fluorenone-based thermally activated delayed fluorescence materials for orange-red emission. Organic Electronics, 2019, 73, 240-246.	1.4	13
222	Synthesis and optical study of ortho, meta and para methoxy substituted 2, 4–diphenyl quinoline. AIP Conference Proceedings, 2019, , .	0.3	0
223	Towards high performance solution-processed orange organic light-emitting devices: precisely-adjusting properties of lr(<scp>iii</scp>) complexes by reasonably engineering the asymmetric configuration with second functionalized cyclometalating ligands. Journal of Materials Chemistry C. 2019. 7, 8836-8846	2.7	20
224	Triplet exciton diffusion in metalorganic phosphorescent host-guest systems from first principles. Physical Review B, 2019, 99, .	1.1	17
225	Incorporating a tercarbazole donor in a spiro-type host material for efficient RGB phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 6714-6720.	2.7	36
226	A series of red iridium(<scp>iii</scp>) complexes using flexible dithiocarbamate derivatives as ancillary ligands for highly efficient phosphorescent OLEDs. Materials Chemistry Frontiers, 2019, 3, 860-866.	3.2	16
227	Evolution of white organic light-emitting devices: from academic research to lighting and display applications. Materials Chemistry Frontiers, 2019, 3, 970-1031.	3.2	67
228	Novel Ir(III) complexes ligated with 2-(2,6-difluoropyridin-3-yl)benzo[d]thiazole for highly efficient OLEDs with mild efficiency roll-off. Dyes and Pigments, 2019, 166, 254-259.	2.0	7
229	Low-Lying Excited States of hqxcH and Zn–hqxc Complex: Toward Understanding Intramolecular Proton Transfer Emission. Inorganic Chemistry, 2019, 58, 4686-4698.	1.9	10
230	Rational design of quinoxaline-based bipolar host materials for highly efficient red phosphorescent organic light-emitting diodes. RSC Advances, 2019, 9, 10789-10795.	1.7	12
231	Recent Advances in the Optimization of Organic Lightâ€Emitting Diodes with Metalâ€Containing Nanomaterials. Chemical Record, 2019, 19, 1753-1767.	2.9	6
232	Emergence of Flexible White Organic Light-Emitting Diodes. Polymers, 2019, 11, 384.	2.0	42
233	A sky-blue thermally activated delayed fluorescence emitter based on multimodified carbazole donor for efficient organic light-emitting diodes. Organic Electronics, 2019, 68, 113-120.	1.4	20
234	Luminescence switching property of cycloplatinated(II) complexes bearing 2-phenylpyridine derivatives and the application for data security storage. Dyes and Pigments, 2019, 165, 231-238.	2.0	26
235	Metal complex based delayed fluorescence materials. Organic Electronics, 2019, 69, 135-152.	1.4	65
236	Fabrication of blue organic light-emitting diodes from novel uranium complexes: synthesis, characterization, and electroluminescence studies of uranium anthracene-9-carboxylate complexes. Dalton Transactions, 2019, 48, 3695-3703.	1.6	7
237	Enhancing Phosphorescence through Rigidifying the Conformation to Achieve High-Efficiency OLEDs by Modified PEDOT. ACS Applied Materials & amp; Interfaces, 2019, 11, 45853-45861.	4.0	24

#	Article	IF	CITATIONS
238	Novel phosphorescent triptycene-based Ir(<scp>iii</scp>) complexes for organic light-emitting diodes. Dalton Transactions, 2019, 48, 16289-16297.	1.6	11
239	Strategic tuning of excited-state properties of electroluminescent materials with enhanced hot exciton mixing. RSC Advances, 2019, 9, 33693-33709.	1.7	5
240	Recent developments in benzothiazole-based iridium(â¢) complexes for application in OLEDs as electrophosphorescent emitters. Organic Electronics, 2019, 66, 126-135.	1.4	55
241	Probing the Effects of the Number and Positions of â``OCH3and â``CN Substituents on Color Tuning of Ir(III) Complex Derivatives through a Joint Computational and Experimental Study. ChemPhysChem, 2019, 20, 470-481.	1.0	4
242	Recent Developments in Tandem White Organic Light-Emitting Diodes. Molecules, 2019, 24, 151.	1.7	22
243	Highâ€Performance Organic Electroluminescence: Design from Organic Lightâ€Emitting Materials to Devices. Chemical Record, 2019, 19, 1531-1561.	2.9	79
244	Deep-blue thermally activated delayed fluorescence materials with high glass transition temperature. Journal of Luminescence, 2019, 206, 146-153.	1.5	9
245	Effects of Varying the Benzannulation Site and π Conjugation of the Cyclometalating Ligand on the Photophysics and Reverse Saturable Absorption of Monocationic Iridium(III) Complexes. Inorganic Chemistry, 2019, 58, 476-488.	1.9	32
246	Dopingâ€Free White Organic Lightâ€Emitting Diodes. Chemical Record, 2019, 19, 1596-1610.	2.9	11
247	A theoretical investigation on the thermally activated delayed fluorescence characteristics of the isomers of DTCBPy. Journal of Molecular Graphics and Modelling, 2019, 86, 125-131.	1.3	5
248	Luminescent oligonuclear metal complexes and the use in organic light-emitting diodes. Coordination Chemistry Reviews, 2019, 378, 121-133.	9.5	84
249	Efficient yellow OLEDs based on bis-tridentate iridium(III) complexes with two Câ^§Nâ^§N-coordinating ligands. Inorganica Chimica Acta, 2020, 499, 119168.	1.2	6
250	Dinuclear Ir(III) complex based on different flanking and bridging cyclometalated ligands: An impressive molecular framework for developing high performance phosphorescent emitters. Chemical Engineering Journal, 2020, 391, 123505.	6.6	17
251	Synthesis of 1,4-benzoquinone dimer as a high-capacity (501 mA h gâ^`1) and high-energy-density (>1000 Wh kgâ^`1) organic cathode for organic Li-Ion full batteries. Journal of Power Sources, 2020, 448, 227456.	4.0	29
252	Manipulating charge carrier transporting of disubstituted phenylbenzoimidazole-based host materials for efficient full-color PhOLEDs. Organic Electronics, 2020, 77, 105513.	1.4	3
253	Tetrafluorinated phenylpyridine based heteroleptic iridium(<scp>iii</scp>) complexes for efficient sky blue phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 2551-2557.	2.7	13
254	Saturated red iridium(<scp>iii</scp>) complexes containing a unique four-membered Ir–S–C–N backbone: mild synthesis and application in OLEDs. Journal of Materials Chemistry C, 2020, 8, 1391-1397.	2.7	10
255	Unsymmetric 2-phenylpyridine (ppy)-type cyclometalated lr(<scp>iii</scp>) complexes bearing both 5,9-dioxa-13 <i>b</i> boranaphtho[3,2,1- <i>de</i>]anthracene and phenylsulfonyl groups for tuning optoelectronic properties and electroluminescence abilities. Inorganic Chemistry Frontiers, 2020, 7, 1651-1666.	3.0	9

#	Article	IF	CITATIONS
256	Tetradentate Platinum(II) Complexes for Highly Efficient Phosphorescent Emitters and Sky Blue OLEDs. Chemistry of Materials, 2020, 32, 537-548.	3.2	61
257	Cyclometalated Iridium (III) complexes: Recent advances in phosphorescence bioimaging and sensing applications. Applied Organometallic Chemistry, 2020, 34, e5413.	1.7	34
258	Efficient near-infrared (NIR) polymer light-emitting diode (PLED) based on the binuclear [(C^N)2Ir-(bis-N^O)-Ir(C^N)2] complex with aggregation-induced phosphorescent enhancement (AIPE) character. Journal of Luminescence, 2020, 218, 116847.	1.5	17
259	Intermolecular channel expansion induced by cation-ï€ interactions to enhance lithium storage in a crosslinked ï€-conjugated organic anode. Journal of Power Sources, 2020, 449, 227551.	4.0	21
260	Human-eyes-friendly white electroluminescence from solution-processable hybrid OLEDs exploiting new iridium (III) complex containing benzoimidazophenanthridine ligand. Dyes and Pigments, 2020, 174, 108068.	2.0	5
261	New yellow/orange-emitting heteroleptic iridium(III) complexes with 5,7-difluoro-2-phenylbenzothiazole ligand. Journal of Chemical Research, 2020, 44, 67-71.	0.6	0
262	Efficient and exclusively NIR-emitting (λem = 780Ânm) [Ir(C^N)2(O^O)]-heteroleptic complexes with β-diketonate- or pyrazolonate-typed O^O-chelate ancillary. Journal of Luminescence, 2020, 220, 116983.	1.5	3
263	Visual self-assembly and stimuli-responsive materials based on recent phosphorescent platinum(<scp>ii</scp>) complexes. Molecular Systems Design and Engineering, 2020, 5, 1578-1605.	1.7	12
264	Photoluminescent properties and molecular structures of dinuclear gold(i) complexes with bridged diphosphine ligands: near-unity phosphorescence from 3XMMCT/3MC. Dalton Transactions, 2020, 49, 15204-15212.	1.6	3
265	Synthesis of polyanionic anthraquinones as new insoluble organic cathodes for organic Na-ion batteries. International Journal of Hydrogen Energy, 2020, 45, 24573-24581.	3.8	15
266	Yellowish-orange and red emitting quinoline-based iridium(III) complexes: Synthesis, thermal, optical and electrochemical properties and OLED application. Synthetic Metals, 2020, 268, 116504.	2.1	15
267	Phosphorescent Tetradentate Platinum(II) Complexes Containing Fused 6/5/5 or 6/5/6 Metallocycles. Inorganic Chemistry, 2020, 59, 18109-18121.	1.9	12
268	Investigation of photophysical, electrochemical and electroluminescent properties of Iridium(III)bis[2-phenylbenzo[d]thiazolato-N,C2′]-quinolin-8-olate for white organic light-emitting diodes application. Journal of Materials Science: Materials in Electronics, 2020, 31, 15707-15717.	1.1	3
269	Integrating Timeâ€Resolved Imaging Information by Single‣uminophore Dual Thermally Activated Delayed Fluorescence. Angewandte Chemie, 2020, 132, 17166-17173.	1.6	17
270	Integrating Timeâ€Resolved Imaging Information by Single‣uminophore Dual Thermally Activated Delayed Fluorescence. Angewandte Chemie - International Edition, 2020, 59, 17018-17025.	7.2	58
271	Asymmetric-donor (D ₂ D ₂ ′)–acceptor (A) conjugates for simultaneously accessing intrinsic blue-RTP and blue-TADF. Materials Advances, 2020, 1, 1858-1865.	2.6	14
272	Thermo-responsive light-emitting metal complexes and related materials. Inorganic Chemistry Frontiers, 2020, 7, 3258-3281.	3.0	32
273	Methoxy-substituted bis-tridentate iridium(<scp>iii</scp>) phosphors and fabrication of blue organic light emitting diodes. Journal of Materials Chemistry C, 2020, 8, 13590-13602.	2.7	14

#	Article	IF	CITATIONS
274	High-Performance and Stable Warm White OLEDs Based on Orange Iridium(III) Phosphors Modified with Simple Alkyl Groups. Organometallics, 2020, 39, 3384-3393.	1.1	8
275	Naphthalene Benzimidazole Based Neutral Ir(III) Emitters for Deep Red Organic Light-Emitting Diodes. Inorganic Chemistry, 2020, 59, 12461-12470.	1.9	16
276	High stability and luminance efficiency thieno[2,3- <i>d</i>]pyridazine-based iridium complexes and their applications in high-performance yellow OLEDs. Dalton Transactions, 2020, 49, 13797-13804.	1.6	14
277	Resonance hosts for high efficiency solution-processed blue and white electrophosphorescent devices. Science China Chemistry, 2020, 63, 1645-1651.	4.2	12
278	Luminescent Metal–Organic Frameworks for White LEDs. Advanced Optical Materials, 2021, 9, 2001817.	3.6	71
279	Effect of the triptycene scaffold on the photophysical, electrochemical and electroluminescence properties of the iridium(iii) complex. New Journal of Chemistry, 2020, 44, 8587-8594.	1.4	0
280	A new class of iridium(III) complexes based on fluorine substituted 2,3′-bipyridine and pyridyltetrazolate derivatives: Synthesis, crystal structures, photoluminescent and electroluminescent properties. Dyes and Pigments, 2020, 180, 108514.	2.0	9
281	New yellow-emitting iridium(III) complexes containing 2-phenyl-2H-indazole-based ligands for high efficient OLEDs with EQE over 25%. Inorganica Chimica Acta, 2020, 509, 119704.	1.2	8
282	Optimized trade-off between electroluminescent stability and efficiency in solution-processed WOLEDs adopting functional iridium(III) complexes with 9-phenyl-9-phosphafluorene oxide (PhFIPO) moiety. Organic Electronics, 2020, 84, 105797.	1.4	7
283	Strategically Formulating Aggregationâ€Induced Emissionâ€Active Phosphorescent Emitters by Restricting the Coordination Skeletal Deformation of Pt(II) Complexes Containing Two Independent Monodentate Ligands. Advanced Optical Materials, 2020, 8, 2000079.	3.6	26
284	Bile acid-terpyridine conjugates: Steroidal skeleton controlled AIE effect and metal-tunable fluorescence and supramolecular assembly properties. Tetrahedron, 2020, 76, 131283.	1.0	3
285	Boosting Efficiency of Nearâ€Infrared Emitting Iridium(III) Phosphors by Administrating Their ï€â€"ï€ Conjugation Effect of Core–Shell Structure in Solutionâ€Processed OLEDs. Advanced Optical Materials, 2020, 8, 2000154.	3.6	62
286	Versatile Pt(II) Pyrazolate Complexes: Emission Tuning via Interplay of Chelate Designs and Stacking Assemblies. ACS Applied Materials & Interfaces, 2020, 12, 16679-16690.	4.0	22
287	Thiophenes, benzannulated forms, and analogs. , 2020, , 47-238.		0
288	Iridium(iii) complex-containing non-conjugated polymers for non-volatile memory induced by switchable through-space charge transfer. Journal of Materials Chemistry C, 2020, 8, 5449-5455.	2.7	6
289	lridium(<scp>iii</scp>) complexes with the dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]phosphole oxide group and their high optical power limiting performances. Dalton Transactions, 2020, 49, 4967-4976.	1.6	9
290	Effect of an assistant dopant on the vibrational satellites of a phosphorescent emitter: Application to solution–processed single–layer white organic light–emitting diodes. Organic Electronics, 2020, 84, 105786.	1.4	5
291	Fluoro-benzenesulfonyl-functionalized 2-phenylthiazole-type iridium(<scp>iii</scp>) complexes for efficient solution-processed organic light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 10390-10400.	2.7	7

	Сітатіо	CITATION REPORT		
#	Article	IF	CITATIONS	
292	Emergence of Impurity-Doped Nanocrystal Light-Emitting Diodes. Nanomaterials, 2020, 10, 1226.	1.9	10	
293	Novel Insoluble Organic Cathodes for Advanced Organic K″on Batteries. Advanced Functional Materials, 2020, 30, 2000675.	7.8	110	
294	Dualâ€Guest Functionalized Zeolitic Imidazolate Frameworkâ€8 for 3D Printing White Lightâ€Emitting Composites. Advanced Optical Materials, 2020, 8, 1901912.	3.6	30	
295	Versatile Phosphole Derivatives with Photovoltaic, Light-Emitting, and Resistive Memory Properties. ACS Applied Energy Materials, 2020, 3, 3059-3070.	2.5	14	
296	Polyoxometalate-based room-temperature phosphorescent materials induced by anion–π interactions. Dalton Transactions, 2020, 49, 3408-3412.	1.6	23	
297	Highly Efficient Phosphorescent Tetradentate Platinum(II) Complexes Containing Fused 6/5/6 Metallocycles. Inorganic Chemistry, 2020, 59, 3718-3729.	1.9	27	
298	An Efficient Probe of Cyclometallated Phosphorescent Iridium Complex for Selective Detection of Cyanide. ACS Omega, 2020, 5, 4636-4645.	1.6	23	
299	Interaction of the Large Host Q[10] with Metal Polypyridyl Complexes: Binding Modes and Effects on Luminescence. Inorganic Chemistry, 2020, 59, 3942-3953.	1.9	10	
300	Rational Design of Efficient Organometallic Ir(III) Complexes for High-Performance, Flexible, Monochromatic, and White Light-Emitting Electrochemical Cells. ACS Applied Materials & Interfaces, 2020, 12, 4649-4658.	4.0	27	
301	Reactivity of Amidinatosilylenes and Amidinatogermylenes with [PtMe ₂ (Î- ⁴ -cod)]: <i>cis</i> -versus <i>trans</i> -[PtMe ₂ L ₂] Complexes and Cyclometalation Reactions. Organometallics 2020 39 2026-2036	1.1	9	
302	Recent progress in phosphorescent Ir(III) complexes for nondoped organic light-emitting diodes. Coordination Chemistry Reviews, 2020, 413, 213283.	9.5	71	
303	Isomerism, aggregation-induced emission and mechanochromism of isocyanide cycloplatinated(<scp>ii</scp>) complexes. Journal of Materials Chemistry C, 2020, 8, 7221-7233.	2.7	52	
304	Iridium Complexes Embedding Rigid D-A-Type Coordinated Cores: Facile Synthesis and High-Efficiency Near-Infrared Emission in Solution-Processed Polymer Light-Emitting Diodes. Journal of Organometallic Chemistry, 2021, 931, 121615.	0.8	6	
305	An overview of liquid crystalline mesophase transition and photophysical properties of "f block,―"d block,―and (SCO) spin-crossover metallomesogens in the optoelectronics. Journal of Molecular Liquids, 2021, 321, 114793.	2.3	5	
306	Efficient all-solution-processing deep-red polymer light-emitting diodes (PLEDs) based on [Ir(dpqx)2(N^O)]-heteroleptic complexes with asymmetric N^O-ancillary π-donors. Journal of Luminescence, 2021, 232, 117843.	1.5	1	
307	Universal polymeric hosts adopting cardo-type backbone prepared by palladium-free catalyst with precisely controlled triplet energy levels and their application for highly efficient solution-processed phosphorescent organic light-emitting devices. Chemical Engineering Journal, 2021, 406, 126717	6.6	5	
308	Highly efficient solution-processed pure yellow OLEDs based on dinuclear Pt(<scp>ii</scp>) complexes. Materials Chemistry Frontiers, 2021, 5, 5698-5705.	3.2	9	
309	Suppressing dimer formation by increasing conformational freedom in multi-carbazole thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2021, 9, 189-198.	2.7	25	

#	Article	IF	CITATIONS
310	Effect of π···π Interactions of Donor Rings on Persistent Room-Temperature Phosphorescence in D ₄ –A Conjugates and Data Security Application. ACS Omega, 2021, 6, 3858-3865.	1.6	13
311	A Plastic Scintillator Based on an Efficient Thermally Activated Delayed Fluorescence Emitter 9â€(4â€(4,6â€diphenylâ€1,3,5â€triazinâ€2â€yl)â€2â€methylphenyl)â€3,6â€dioctylâ€9 H â€carbazole for Pulse Measurement. Advanced Optical Materials, 2021, 9, 2001975.	Shape Dis	crit2ination
312	lr ^{III} (C^N) ₂ (P-donor ligand)Cl-type complexes bearing functional groups and showing aggregation-induced phosphorescence emission (AIPE) behavior for highly efficient OLEDs. Journal of Materials Chemistry C, 2021, 9, 12330-12341.	2.7	4
313	Alkyl-Substituted Carbazole/Pyridine Hybrid Host Materials for Efficient Solution-Processable Blue- and Green-Emitting Phosphorescent OLEDs. Electronic Materials Letters, 2021, 17, 148-156.	1.0	2
314	Solution-Processed OLEDs Based on Thermally Activated Delayed Fluorescence Copper(I) Complexes with Intraligand Charge-Transfer Excited State. Molecules, 2021, 26, 1125.	1.7	11
315	<i>N</i> -Heterocyclic Carbene-Based Tetradentate Pd(II) Complexes for Deep-Blue Phosphorescent Materials. Organometallics, 2021, 40, 472-481.	1.1	10
316	Tunable Lightâ€Emission Properties of Solutionâ€Processable Nâ€Heterocyclic Carbene Cyclometalated Gold(III) Complexes for Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2021, 27, 7265-7274.	1.7	10
317	All-Solution-Processed Multilayered White Polymer Light-Emitting Diodes (WPLEDs) Based on Cross-Linked [Ir(4-vb-PBI) ₂ (acac)]. ACS Applied Materials & Interfaces, 2021, 13, 11096-11107.	4.0	4
318	Rational Tuning of Bis-Tridentate Ir(III) Phosphors to Deep-Blue with High Efficiency and Sub-microsecond Lifetime. ACS Applied Materials & Interfaces, 2021, 13, 15437-15447.	4.0	34
319	Conformational torsion, intramolecular hydrogen bonding and solvent effects in intersystem crossing of singlet-triplet excited states for heavy-atom-free organic long persistent luminescence. Journal of Molecular Liquids, 2021, 326, 115291.	2.3	5
320	Diverse emission properties of transition metal complexes beyond exclusive single phosphorescence and their wide applications. Coordination Chemistry Reviews, 2021, 433, 213755.	9.5	64
321	Cyclometallated 2â€Phenylpyrimidine Derived Platinum Complexes: Synthesis and Photophysical Properties. European Journal of Inorganic Chemistry, 2021, 2021, 1592-1600.	1.0	6
322	Photoâ€Induced Arylation of Carbazoles With Aryldiazonium Salts. Asian Journal of Organic Chemistry, 2021, 10, 1428-1431.	1.3	7
323	Open for Bismuth: Main Group Metal-to-Ligand Charge Transfer. Inorganic Chemistry, 2021, 60, 10137-10146.	1.9	20
324	Molecular Design of Luminescent Gold(III) Emitters as Thermally Evaporable and Solution-Processable Organic Light-Emitting Device (OLED) Materials. Chemical Reviews, 2021, 121, 7249-7279.	23.0	100
325	Functional Materials Based on Cyclometalated Platinum(II) β-Diketonate Complexes: A Review of Structure–Property Relationships and Applications. Materials, 2021, 14, 4236.	1.3	17
326	New trifluoromethyl modified iridium(III) complex for high-efficiency sky-blue phosphorescent organic light-emitting diode. Tetrahedron Letters, 2021, 75, 153181.	0.7	5
327	Three neutral cyclometalated iridophosphors with steric hindrance for efficient yellow electroluminescence. Tetrahedron Letters, 2021, 78, 153247.	0.7	2

#	Article	IF	CITATIONS
328	Cyclometallation of Heavier Tetrylenes: Reported Complexes and Applications in Catalysis. European Journal of Inorganic Chemistry, 2021, 2021, 3315-3326.	1.0	8
329	Administration of the D-A structure and steric hindrance effect to construct efficient red emitters for high-performance OLEDs with low efficiency roll-off. Dyes and Pigments, 2021, 192, 109398.	2.0	5
330	Tetradentate Platinum(II) and Palladium(II) Complexes Containing Fused 6/6/6 or 6/6/5 Metallocycles with Azacarbazolylcarbazole-Based Ligands. Inorganic Chemistry, 2021, 60, 12972-12983.	1.9	17
331	Recent Advances in Synthesis of Molecular Heteroleptic Osmium and Iridium Phosphorescent Emitters. European Journal of Inorganic Chemistry, 2021, 2021, 4731-4761.	1.0	23
332	Vacuum–Sublimable Ionic Yellow Phosphorescent Iridium(III) Complexes with Broad Emission for White Electroluminescence. Advanced Photonics Research, 2021, 2, 2100115.	1.7	6
333	Chlorinated yellow phosphorescent cyclometalated neutral iridophosphors featuring broad emission bandwidths for white electroluminescence. Materials Today Energy, 2021, 21, 100773.	2.5	15
334	A red-orange carbazole-based iridium(III) complex: Synthesis, thermal, optical and electrochemical properties and OLED application. Journal of Organometallic Chemistry, 2021, 951, 122004.	0.8	7
335	An effective strategy to obtain near-infrared emission from shoulder to shoulder-type binuclear platinum(<scp>ii</scp>) complexes based on fused pyrene core bridged isoquinoline ligands. Journal of Materials Chemistry C, 2021, 9, 2282-2290.	2.7	8
336	Highly phosphorescent platinum(<scp>ii</scp>) complexes supported by (2-(1 <i>H</i> -benzimidazole)-phenyl)diphosphine oxide ancillary ligands. Journal of Materials Chemistry C, 2021, 9, 9627-9636.	2.7	7
337	Stimuli-responsive cyclometalated platinum complex bearing bent molecular geometry for highly efficient solution-processable OLEDs. Chinese Chemical Letters, 2021, 32, 493-496.	4.8	27
338	High-efficiency solution-processed light-emitting diode based on a phosphorescent Ag ₃ Cu ₅ cluster complex. Journal of Materials Chemistry C, 2021, 9, 5528-5534.	2.7	14
339	Toward High Performance Thiopheneâ€Containing Conjugated Microporous Polymer Anodes for Lithiumâ€Ion Batteries through Structure Design. Advanced Functional Materials, 2018, 28, 1705432.	7.8	162
340	Highâ€Colorâ€Rendering and Highâ€Efficiency White Organic Lightâ€Emitting Devices Based on Doubleâ€Doped Organic Single Crystals. Advanced Functional Materials, 2019, 29, 1807606.	7.8	42
341	Homoleptic Tris-Cyclometalated Iridium Complexes with Substituted <i>o</i> -Carboranes: Green Phosphorescent Emitters for Highly Efficient Solution-Processed Organic Light-Emitting Diodes. Inorganic Chemistry, 2016, 55, 909-917.	1.9	63
342	Synthesis of Insulated Heteroaromatic Platinum–Acetylide Complexes with Color-Tunable Phosphorescence in Solution and Solid States. Journal of Organic Chemistry, 2020, 85, 3082-3091.	1.7	8
343	Heteroleptic Ir(<scp>iii</scp>) complexes with varied π-conjugated diimine ligands: synthesis, tunable triplet states and nonlinear absorption properties. Dalton Transactions, 2020, 49, 7945-7951.	1.6	8
344	Enhancement of tandem organic light-emitting diode performance by inserting an ultra-thin Ag layer in charge generation layer. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 017302.	0.2	9
345	White organic light emitting devices based on ultrathin emitting layer and bipolar hybrid interlayer. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 017202.	0.2	3

#	Article	IF	CITATIONS
346	Schiff Bases and Their Complexes in Organic Light Emitting Diode Application. Journal of Electronic Materials, 2021, 50, 6708-6723.	1.0	20
347	Photochromic and Room Temperature Phosphorescent Donor–Acceptor Hybrid Crystals Regulated by Core-Substituted Naphthalenediimides. Inorganic Chemistry, 2021, 60, 16233-16240.	1.9	19
348	Efficient Stereoselective Synthesis and Optical Properties of Heteroleptic Squareâ€Planar Platinum(II) Complexes with Bidentate Iminopyrrolyl Ligands. European Journal of Inorganic Chemistry, 2020, 2020, 3959-3966.	1.0	5
349	Efficiently red emitting cycloplatinated(II) complexes supported by N^O and N^P benzimidazole ancillary ligands. Journal of Organometallic Chemistry, 2022, 960, 122237.	0.8	3
350	Organometallic Complexes for Optoelectronic Applications. , 2022, , .		0
351	A systematic review on 1,8-naphthalimide derivatives as emissive materials in organic light-emitting diodes. Journal of Materials Science, 2022, 57, 105-139.	1.7	28
352	Orange, red, and near-infrared thermally activated delayed fluorescent emitters. , 2022, , 193-234.		0
353	Tuning the Excited State of Tetradentate Pd(II) and Pt(II) Complexes through Benzannulated N â€Heteroaromatic Ring and Central Metal. Chinese Journal of Chemistry, 2022, 40, 223-234.	2.6	8
354	Phosphorescent Ir(<scp>iii</scp>) complexes derived from purine nucleobases. Dalton Transactions, 2022, 51, 5138-5150.	1.6	7
355	Exciplex-Forming Systems of Physically Mixed and Covalently Bonded Benzoyl-1 <i>H</i> -1,2,3-Triazole and Carbazole Moieties for Solution-Processed White OLEDs. Journal of Organic Chemistry, 2022, 87, 4040-4050.	1.7	13
356	Enhanced Light Extraction from Organic Light-Emitting Diodes with Micro-Nano Hybrid Structure. Nanomaterials, 2022, 12, 1266.	1.9	10
357	Exciton Up-Conversion by Well-Distributed Carbon Quantum Dots in Luminescent Materials for an Efficient Organic Light-Emitting Diode. Nanomaterials, 2022, 12, 1174.	1.9	1
358	π-Extension of heterocycles <i>via</i> a Pd-catalyzed heterocyclic aryne annulation: π-extended donors for TADF emitters. Chemical Science, 2022, 13, 5884-5892.	3.7	7
359	Iridium(<scp>iii</scp>) complexes incorporating thieno[2,3- <i>d</i>]pyrimidine units for efficient orange-to-yellow electroluminescence with low efficiency roll-off. Journal of Materials Chemistry C, 2022, 10, 8650-8656.	2.7	6
360	Highly emissive supramolecular gold(<scp>i</scp>)–BTD materials. Dalton Transactions, 2022, 51, 8340-8349.	1.6	6
361	Praseodymium-Containing Polyfluorene: Synthesis, Photoluminescence, and Electroluminescence. Journal of Electronic Materials, 0, , 1.	1.0	1
362	Efficient Blue Electrophosphorescence and Hyperphosphorescence Generated by Bis-tridentate Iridium(III) Complexes. Inorganic Chemistry, 2022, 61, 8898-8908.	1.9	18
363	Improving strategies for the molecular structure of organic anode/cathode materials in potassiumâ€ion batteries. EcoMat, 2022, 4,	6.8	9

#	Article	IF	CITATIONS
364	Regioselective Syntheses of Imidazo[4,5- <i>b</i>]pyrazin-2-ylidene-Based Chelates and Blue Emissive Iridium(III) Phosphors for Solution-Processed OLEDs. Inorganic Chemistry, 2022, 61, 8797-8805.	1.9	22
365	Blue Phosphorescence and Hyperluminescence Generated from Imidazo[4,5â€b]pyridinâ€2â€ylideneâ€Based Iridium(III) Phosphors. Advanced Science, 2022, 9, .	5.6	28
366	From 498 to 1300Ânm: The exceptional large emission shift of a cycloplatinated(II) complex caused by molecular aggregation. Dyes and Pigments, 2022, 205, 110567.	2.0	3
367	Fused 6/5/6 Metallocycle-Based Tetradentate Pt(II) Emitters for Efficient Green Phosphorescent OLEDs. Inorganic Chemistry, 2022, 61, 11218-11231.	1.9	8
368	AIE-active Pt(II) complexes based on a three-ligand molecular framework for high performance solution-processed OLEDs. Chemical Engineering Journal, 2022, 449, 137457.	6.6	5
369	All-Solution Processed Single-Layer WOLEDs Using [Pt(salicylidenes)] as Guests in a PFO Matrix. Nanomaterials, 2022, 12, 2497.	1.9	2
370	Aptamer recognition-promoted specific intercalation of iridium complexes in G-quadruplex DNA for label-free and enzyme-free phosphorescence analysis of kanamycin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 284, 121758.	2.0	4
371	Rational design of orange-red iridium(<scp>iii</scp>) complexes by an isomer engineering strategy for improved performance of white organic light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 14202-14210.	2.7	1
372	Luminescent transition-metal complexes and their applications in electroluminescence. , 2022, , .		0
373	Novel Blue-Phosphorescent Platinum(II) Ternary Complexes with β-Diketonate with Fluorinated Phenylimidazole for Organic Light-Emitting Diodes. Canadian Journal of Chemistry, 0, , .	0.6	3
374	Influence of Sulfur Atoms on TADF Properties from Through‧pace Charge Transfer Excited States. Chemistry - A European Journal, 2022, 28, .	1.7	7
375	Gold(<scp>i</scp>) complexes bearing a PNP-type pincer ligand: photophysical properties and catalytic investigations. Dalton Transactions, 2022, 51, 17162-17169.	1.6	4
376	Multifunctional behavior of a carbazole derivative: Red phosphorescent emission, aggregation-induced long-life exciton and light-emitting diode application. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 290, 122208.	2.0	0
377	New Phthalic Anhydrideâ€Based Roomâ€Temperature Phosphorescence Emitter with Lifetime Longer Than One Second. Advanced Optical Materials, 2023, 11, .	3.6	3
378	Acetylides for the Preparation of Phosphorescent Iridium(III) Complexes: Iridaoxazoles and Their Transformation into Hydroxycarbenes and <i>N,C(sp³),C(sp²),O</i> Tetradentate Ligands. Inorganic Chemistry, 2022, 61, 19597-19611.	1.9	6
379	Cationic Iridium(III) Complexes with Benzothiophene-Quinoline Ligands for Deep-Red Light-Emitting Electrochemical Cells. Inorganic Chemistry, 2023, 62, 43-55.	1.9	3
380	Modulating Narrow-Band Phosphorescence of Pt ₂ Au ₄ Cluster Complexes by Differently Positioned Bis(acetylide)-Naphthalene Linkers. ACS Applied Electronic Materials, 2023, 5, 994-1001.	2.0	3
381	Phosphorescent organic light-emitting devices: Iridium based emitter materials – An overview. Coordination Chemistry Reviews, 2023, 483, 215100.	9.5	13

	Стато	tation Report	
#	Article	IF	CITATIONS
382	A silane-based host material with improved electron transport properties for phosphorescent OLEDs with high efficiency and low efficiency roll-off. Science China Materials, 2023, 66, 1997-2003.	3.5	3
383	Triplet Homoleptic Iridium(III) Complex as a Potential Donor Material for Organic Solar Cells. Inorganic Chemistry, 2023, 62, 5920-5930.	1.9	4