Red and near infrared persistent luminescence nano-prapplications

RSC Advances 4, 58674-58698

DOI: 10.1039/c4ra08847f

Citation Report

#	Article	IF	CITATIONS
1	Persistent Phosphors. Fundamental Theories of Physics, 2015, , 1-108.	0.1	29
2	Phosphorescence properties and energy transfer of red long-lasting phosphorescent (LLP) material β-Zn3(PO4)2:Mn2+,Pr3+. Journal of Rare Earths, 2015, 33, 1056-1063.	2.5	15
3	Near-Infrared Luminescence and Color Tunable Chromophores Based on Cr ³⁺ -Doped Mullite-Type Bi ₂ (Ga,Al) ₄ O ₉ Solid Solutions. Inorganic Chemistry, 2015, 54, 1876-1882.	1.9	45
4	Optical nanoparticles: synthesis and biomedical application. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2015, 6, 023002.	0.7	11
5	Effect of the Li ⁺ ion on the multimodal emission of a lanthanide doped phosphor. RSC Advances, 2015, 5, 26321-26327.	1.7	25
6	Enhanced Red Upconversion Emission, Magnetoluminescent Behavior, and Bioimaging Application of NaSc _{0.75} Er _{0.02} Yb _{0.18} Gd _{0.05} F ₄ @AuNPs Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2015, 7, 15339-15350.	4.0	69
7	Synthesis, Crystal Structure, and Enhanced Luminescence of Garnetâ€Type Ca ₃ Ga ₂ Ge ₃ O ₁₂ :Cr ³⁺ by Codoping Bi ³⁺ . Journal of the American Ceramic Society, 2015, 98, 1870-1876.	1.9	86
8	Persistent luminescence in nanophosphors for long term <i>in-vivo</i> bio-imaging. Proceedings of SPIE, 2015, , .	0.8	1
9	Y ₃ Al _{5â^²} <i>_x</i> Ga <i>_x</i> O ₁₂ :Cr ^{3+A novel red persistent phosphor with high brightness. Applied Physics Express, 2015, 8, 042602.}	p}:i	64
10	Nonâ€Aqueous Sol–Gel Synthesis of Ultra Small Persistent Luminescence Nanoparticles for Nearâ€Infrared In Vivo Imaging. Chemistry - A European Journal, 2015, 21, 7350-7354.	1.7	66
11	Persistent luminescent sub-10 nm Cr doped ZnGa ₂ O ₄ nanoparticles by a biphasic synthesis route. Chemical Communications, 2015, 51, 7372-7375.	2.2	83
12	Near-infrared multi-wavelengths long persistent luminescence of Nd3+ ion through persistent energy transfer in Ce3+, Cr3+ co-doped Y3Al2Ga3O12 for the first and second bio-imaging windows. Applied Physics Letters, 2015, 107, .	1.5	87
13	Design of deep-red persistent phosphors of Gd_3Al_5-xGa_xO_12:Cr^3+ transparent ceramics sensitized by Eu^3+ as an electron trap using conduction band engineering. Optical Materials Express, 2015, 5, 963.	1.6	45
14	Spectroscopic properties of MgAl2â^'xO4:xCr3+ nanoparticles prepared by a high-temperature calcination method. Physica B: Condensed Matter, 2015, 478, 17-21.	1.3	6
15	Luminescence properties of a novel reddish orange long-lasting phosphorescence phosphor Zn ₂ P ₂ O ₇ :Sm ³⁺ ,Li ⁺ . RSC Advances, 2015, 5, 82704-82710.	1.7	25
16	Chemically engineered persistent luminescence nanoprobes for bioimaging. Theranostics, 2016, 6, 2488-2523.	4.6	165
17	Red long lasting phosphorescence of Eu3+ doped BiOCl semiconducting polycrystals. Journal of Rare Earths, 2016, 34, 1188-1192.	2.5	14
18	Controlled synthesis, bioimaging and toxicity assessments in strong red emitting Mn ²⁺ doped NaYF ₄ :Yb ³⁺ /Ho ³⁺ nanophosphors. RSC Advances, 2016, 6, 53698-53704.	1.7	31

#	ARTICLE	IF	CITATIONS
19	Modulation of thulium upconversion in potassium tetraphosphate (KLaP ₄ O ₁₂) nanocrystals by co-doping with Yb ³⁺ ions. Journal of Materials Chemistry C, 2016, 4, 2513-2517.	2.7	8
20	Inorganic nanoparticles for optical bioimaging. Advances in Optics and Photonics, 2016, 8, 1.	12.1	175
21	Nano-graphene oxide-mediated InÂvivo fluorescence imaging and bimodal photodynamic and photothermal destruction of tumors. Biomaterials, 2016, 95, 1-10.	5.7	182
22	Tuning the structural, optical, photoluminescence and dielectric properties of Eu2+-activated mixed strontium aluminate phosphors with different rare earth co-activators. Journal of Materials Science: Materials in Electronics, 2016, 27, 9034-9043.	1.1	22
23	Persistent Luminescence Nanomaterials for Biomedical Applications: A Quick Grasp of the Trend. , 2016, , 333-362.		2
24	1-D "Platinum Wire―Stacking Structure Built of Platinum(II) Diimine Bis(σ-acetylide) Units with Luminescence in the NIR Region. Inorganic Chemistry, 2016, 55, 10208-10217.	1.9	41
25	Photoluminescent nanoplatforms in biomedical applications. Advances in Physics: X, 2016, 1, 194-225.	1.5	18
26	Metal-based quantum dots: synthesis, surface modification, transport and fate in aquatic environments and toxicity to microorganisms. RSC Advances, 2016, 6, 78595-78610.	1.7	101
27	Persistent Luminescent Materials. , 2016, , 167-214.		1
28	Synthesis of GdAlO ₃ :Mn ⁴⁺ ,Ge ⁴⁺ @Au Coreâ€"Shell Nanoprobes with Plasmon-Enhanced Near-Infrared Persistent Luminescence for in Vivo Trimodality Bioimaging. ACS Applied Materials & Interfaces, 2016, 8, 29939-29949.	4.0	65
29	Interaction of Cr ³⁺ with valence and conduction bands in the long persistent phosphor ZnGa ₂ O ₄ :Cr ³⁺ , studied by ENDOR spectroscopy. Journal of Physics Condensed Matter, 2016, 28, 385501.	0.7	5
30	Near-infrared long persistent luminescence of Er ³⁺ in garnet for the third bio-imaging window. Journal of Materials Chemistry C, 2016, 4, 11096-11103.	2.7	87
31	Photoluminescence and afterglow of deep red emitting SrSc ₂ O ₄ :Eu ²⁺ . RSC Advances, 2016, 6, 8483-8488.	1.7	18
32	Enhanced visible and near infrared emissions via Ce ³⁺ to Ln ³⁺ energy transfer in Ln ³⁺ -doped CeF ₃ nanocrystals (Ln = Nd and Sm). Dalton Transactions, 2016, 45, 78-84.	1.6	33
33	Physico-chemical characterizations of Cr doped persistent luminescence nanoparticles. Proceedings of SPIE, 2016, , .	0.8	2
34	Mesoporous nanoparticles Gd ₂ O ₄ :Cr ³⁺ , as multifunctional probes for bioimaging. Journal of Materials Chemistry B, 2016, 4, 1842-1852.	Bi< 2 up>3-	⊬ <b s5p>
35	Temperature induced upconversion behaviour of Ho3+-Yb3+ codoped yttrium oxide films prepared by pulsed laser deposition. Journal of Alloys and Compounds, 2016, 672, 190-196.	2.8	20
36	Penetrating Peptide-Bioconjugated Persistent Nanophosphors for Long-Term Tracking of Adipose-Derived Stem Cells with Superior Signal-to-Noise Ratio. Analytical Chemistry, 2016, 88, 4114-4121.	3.2	78

#	Article	IF	CITATIONS
37	Down shifting and quantum cutting from Eu ³⁺ , Yb ³⁺ co-doped Ca ₁₂ Al ₁₄ O ₃₃ phosphor: a dual mode emitting material. RSC Advances, 2016, 6, 9049-9056.	1.7	35
38	Long term in vivo imaging with Cr3+ doped spinel nanoparticles exhibiting persistent luminescence. Journal of Luminescence, 2016, 170, 879-887.	1.5	120
39	Lanthanide light for biology and medical diagnosis. Journal of Luminescence, 2016, 170, 866-878.	1.5	249
40	Medical Applications of Nanomaterials. NATO Science for Peace and Security Series B: Physics and Biophysics, 2017, , 369-386.	0.2	2
41	Optical properties and mechanisms in Cr3+, Bi3+-codoped oxide-based spinel nanoparticles. , 2017, , .		0
42	Lanthanide-Activated Phosphors Based on 4f-5d Optical Transitions: Theoretical and Experimental Aspects. Chemical Reviews, 2017, 117, 4488-4527.	23.0	702
43	Controllable synthesis and luminescent properties of rare earth doped Gd2(MoO4)3 nanoplates. Journal of Colloid and Interface Science, 2017, 504, 134-139.	5.0	9
44	Toward tunable and bright deepâ€red persistent luminescence of Cr ³⁺ in garnets. Journal of the American Ceramic Society, 2017, 100, 4033-4044.	1.9	70
45	Down-conversion from Er 3+ -Yb 3+ codoped CaMoO 4 phosphor: A spectral conversion to improve solar cell efficiency. Ceramics International, 2017, 43, 8879-8885.	2.3	41
46	Ligand sensitized strong luminescence from Eu ³⁺ -doped LiYF ₄ nanocrystals: a photon down-shifting strategy to increase solar-to-current conversion efficiency. Dalton Transactions, 2017, 46, 9646-9653.	1.6	12
47	Investigation of thermoluminescence and electron-vibrational interaction parameters in SrAl 2 O 4 :Eu 2+, Dy 3+ phosphors. Journal of Luminescence, 2017, 187, 492-498.	1.5	33
48	Novel flux-assisted synthesis for enhanced afterglow properties of (Ca,Zn)TiO 3 :Pr 3+ phosphor. Journal of Alloys and Compounds, 2017, 698, 930-937.	2.8	17
49	Probing the local structure of the near-infrared emitting persistent phosphor LiGa ₅ O ₈ :Cr ³⁺ . Journal of Materials Chemistry C, 2017, 5, 10861-10868.	2.7	65
50	Persistent Luminescence Nanophosphor Involved Near-Infrared Optical Bioimaging for Investigation of Foodborne Probiotics Biodistribution in Vivo: A Proof-of-Concept Study. Journal of Agricultural and Food Chemistry, 2017, 65, 8229-8240.	2.4	25
51	A Pr ³⁺ doping strategy for simultaneously optimizing the size and near infrared persistent luminescence of ZGGO:Cr ³⁺ nanoparticles for potential bio-imaging. Physical Chemistry Chemical Physics, 2017, 19, 24513-24521.	1.3	32
52	Site Occupancy and Nearâ€Infrared Luminescence in Ca ₃ Ga ₂ Ge ₃ O ₁₂ : Cr ³⁺ Persistent Phosphor. Advanced Optical Materials, 2017, 5, 1700227.	3.6	131
53	Cr ³⁺ /Er ³⁺ co-doped LaAlO ₃ perovskite phosphor: a near-infrared persistent luminescence probe covering the first and third biological windows. Journal of Materials Chemistry B, 2017, 5, 6385-6393.	2.9	65
54	Research progress of Mn doped phosphors. RSC Advances, 2017, 7, 38318-38334.	1.7	110

#	Article	IF	CITATIONS
55	Near-infrared quantum-cutting and long-persistent phosphor Ca3Ga2Ge3O12: Pr3+, Yb3+ for application in inÂvivo bioimaging and dye-sensitized solar cells. Journal of Alloys and Compounds, 2017, 726, 230-239.	2.8	61
56	Rare earth based nanostructured materials: synthesis, functionalization, properties and bioimaging and biosensing applications. Nanophotonics, 2017, 6, 881-921.	2.9	137
57	One-Dimensional Luminous Nanorods Featuring Tunable Persistent Luminescence for Autofluorescence-Free Biosensing. ACS Nano, 2017, 11, 8185-8191.	7.3	132
58	Persistent luminescence induced by near infra-red photostimulation in chromium-doped zinc gallate for inÂvivo optical imaging. Optical Materials, 2017, 63, 51-58.	1.7	41
59	LaAlO3:Mn4+ as Near-Infrared Emitting Persistent Luminescence Phosphor for Medical Imaging: A Charge Compensation Study. Materials, 2017, 10, 1422.	1.3	61
60	Erythrocyte membrane bioinspired near-infrared persistent luminescence nanocarriers for inÂvivo long-circulating bioimaging and drug delivery. Biomaterials, 2018, 165, 39-47.	5.7	85
61	Toward Rechargeable Persistent Luminescence for the First and Third Biological Windows via Persistent Energy Transfer and Electron Trap Redistribution. Inorganic Chemistry, 2018, 57, 5194-5203.	1.9	100
62	Engineering Persistent Luminescence Nanoparticles for Biological Applications: From Biosensing/Bioimaging to Theranostics. Accounts of Chemical Research, 2018, 51, 1131-1143.	7.6	279
63	Host sensitized intense infrared emissions from Ln ³⁺ doped GdVO ₄ nanocrystals: ranging from 950 nm to 2000 nm. Journal of Materials Chemistry C, 2018, 6, 4878-4886.	2.7	20
64	Design and Control of the Luminescence of Cr ³⁺ -Doped Phosphors in the Near-Infrared I Region by Fitting the Crystal Field. Crystal Growth and Design, 2018, 18, 3178-3186.	1.4	69
65	Optical fiber tips for biological applications: From light confinement, biosensing to bioparticles manipulation. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1209-1246.	1.1	39
66	Long-Lived Emissive Probes for Time-Resolved Photoluminescence Bioimaging and Biosensing. Chemical Reviews, 2018, 118, 1770-1839.	23.0	644
67	Effect of citric acid on material properties of ZnGa2O4:Cr3+ nanopowder prepared by sol–gel method. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	26
68	Enhanced near infrared persistent luminescence of Zn ₂ 6a _{6e_{0.75}0₈:Cr_{0.02}_{3+ nanoparticles by partial substitution of Ge⁴⁺ by Sn⁴⁺. RSC Advances, 2018, 8, 10954-10963.}}	1.7	15
69	Local, Temperature-Dependent Trapping and Detrapping in the LiGa ₅ O ₈ :Cr Infrared Emitting Persistent Phosphor. ECS Journal of Solid State Science and Technology, 2018, 7, R3171-R3175.	0.9	31
70	Erlotinib conjugated gold nanocluster enveloped magnetic iron oxide nanoparticles–A targeted probe for imaging pancreatic cancer cells. Sensors and Actuators B: Chemical, 2018, 257, 1035-1043.	4.0	29
71	EDTA etching: a simple way for regulating the traps, size and aqueous-dispersibility of Cr ³⁺ -doped zinc gallate. Chemical Science, 2018, 9, 8923-8929.	3.7	22
72	1.2 \hat{l} 4m persistent luminescence of Ho ³⁺ in LaAlO ₃ and LaGaO ₃ perovskites. Journal of Materials Chemistry C, 2018, 6, 11374-11383.	2.7	29

#	ARTICLE	IF	Citations
73	Influence of annealing temperature on material properties of red emitting ZnGa2O4: Cr3+ nanostructures. Journal of Sol-Gel Science and Technology, 2018, 88, 454-464.	1.1	18
74	Investigations of crystal structures and the electronic structure changes of Sr3MgSi2O8-Sr3MgSi2O8â^îſ systems by first-principles calculation. Chemical Physics Letters, 2018, 712, 54-59.	1.2	4
75	Recent Advances in Bioimaging for Cancer Research. , 0, , .		5
76	Tunable trap depth for persistent luminescence by cationic substitution in Pr $3+$:K $1\hat{a}^{\circ}$ ' x Na x NbO 3 perovskites. Journal of the American Ceramic Society, 2018, 102, 2629.	1.9	18
77	LaAlO3:Cr3+, Sm3+: Nano-perovskite with persistent luminescence for in vivo optical imaging. Journal of Luminescence, 2018, 202, 83-88.	1.5	45
78	Positive effect of codoping Yb3+ on the super-long persistent luminescence of Cr3+-doped zinc aluminum germanate. Ceramics International, 2018, 44, 17377-17382.	2.3	19
79	Three-dimensional printing of hybrid organic/inorganic composites with long persistence luminescence. Optical Materials Express, 2018, 8, 2823.	1.6	11
80	Fabrication of an activatable hybrid persistent luminescence nanoprobe for background-free bioimaging-guided investigation of food-borne aflatoxin <i>in vivo</i> . RSC Advances, 2018, 8, 28414-28420.	1.7	7
81	Germanium substitution endowing Cr3+-doped zinc aluminate phosphors with bright and super-long near-infrared persistent luminescence. Acta Materialia, 2018, 155, 214-221.	3.8	62
82	An investigation of down-conversion luminescence properties of rare earth doped CaMoO4 phosphors for solar cell application. AIP Conference Proceedings, 2018, , .	0.3	0
83	Construction of molecularly imprinted nanoplatforms with persistent luminescence for the in vitro specific adsorption and in vivo targeted regulation of food-borne biotoxins. New Journal of Chemistry, 2019, 43, 15097-15104.	1.4	3
84	Quenching effect of In co-doping on the photoluminescence of ZnGa2â^'xlnxO4: Cr3+ phosphors. Materials Research Express, 2019, 6, 115081.	0.8	2
85	Lithium Substitution Endowing Cr ³⁺ -Doped Gallium Germanate Phosphors with Super-Broad-Band and Long Persistent Near-Infrared Luminescence. ACS Applied Electronic Materials, 2019, 1, 2551-2559.	2.0	17
86	NIR persistent luminescence phosphor Zn _{1.3} Ga _{1.4} Sn _{0.3} O ₄ :Yb ³⁺ ,Er ³⁺ ,with 980 nm laser excitation. Journal of Materials Chemistry C, 2019, 7, 11903-11910.	Cr< ฐเ ฦp>3+	- <b 32p>
87	Broadband near-infrared persistent luminescence of Ba[Mg ₂ Al ₂ N ₄] with Eu ²⁺ and Tm ³⁺ after red light charging. Journal of Materials Chemistry C, 2019, 7, 1705-1712.	2.7	34
88	A new path to design near-infrared persistent luminescence materials using Yb3+-doped rare earth oxysulfides. Scripta Materialia, 2019, 164, 57-61.	2.6	9
89	Optical studies of Y3(Al,Ga)5O12:Ce3+,Cr3+,Nd3+ nano-phosphors obtained by the Pechini method. Journal of Rare Earths, 2019, 37, 1132-1136.	2.5	16
90	Enhanced near-infrared luminescence in zinc aluminate bestowed by fuel-blended combustion approach. Journal of Alloys and Compounds, 2019, 797, 148-158.	2.8	24

#	ARTICLE	IF	CITATIONS
91	Influences of Si doping on afterglow properties of Zn2Ga2.98Ge0.75-Si O8:Cr3+0.02 nanoparicles for potential bioimaging. Journal of Luminescence, 2019, 213, 197-203.	1.5	10
92	A stochastic analysis based on a one-dimensional random walk model of the persistent phosphorescence of Mn2+ ions doped in zinc magnesium phosphate. Dalton Transactions, 2019, 48, 6746-6756.	1.6	2
93	Recent progress in engineering near-infrared persistent luminescence nanoprobes for time-resolved biosensing/bioimaging. Nano Research, 2019, 12, 1279-1292.	5.8	116
94	Near-infrared-emitting persistent luminescent nanoparticles modified with gold nanorods as multifunctional probes for detection of arsenic(III). Mikrochimica Acta, 2019, 186, 197.	2.5	23
95	Rare earth ion– and transition metal ion–doped inorganic luminescent nanocrystals: from fundamentals to biodetection. Materials Today Nano, 2019, 5, 100031.	2.3	48
96	New viewpoint about the persistent luminescence mechanism of Mn2+/Eu3+ co-doped Zn2GeO4. International Journal of Modern Physics B, 2019, 33, 1950389.	1.0	4
97	Double perovskite Cs ₂ AgInCl ₆ :Cr ³⁺ : broadband and near-infrared luminescent materials. Inorganic Chemistry Frontiers, 2019, 6, 3621-3628.	3.0	209
98	Imaging and therapeutic applications of persistent luminescence nanomaterials. Advanced Drug Delivery Reviews, 2019, 138, 193-210.	6.6	220
99	Synthesis, characterization, fluorescence imaging, and cytotoxicity studies of a uracilâ€based azo derivative and its metal complexes. Journal of the Chinese Chemical Society, 2019, 66, 21-30.	0.8	7
100	Design and control luminescence of Li2ZnGe3O8:Cr3+ in NIR І region by cationic regulation. Optik, 2019, 180, 713-723.	1.4	8
101	Sr2MgWO6:Cr3+ phosphors with effective near-infrared fluorescence and long-lasting phosphorescence. Journal of Alloys and Compounds, 2019, 781, 473-478.	2.8	42
102	Persistent luminescence instead of phosphorescence: History, mechanism, and perspective. Journal of Luminescence, 2019, 205, 581-620.	1.5	425
103	Novel Cr3+-doped double-perovskite Ca2MNbO6 (MÂ= Ga, Al) phosphor: Synthesis, crystal structure, photoluminescence and thermoluminescence properties. Journal of Alloys and Compounds, 2020, 815, 152656.	2.8	36
104	Degradation of ZnGa ₂ O ₄ :Cr ³⁺ luminescent nanoparticles in lysosomal-like medium. Nanoscale, 2020, 12, 1967-1974.	2.8	23
105	Enhanced near-infrared persistent luminescence in MgGa2O4:Cr3+ through codoping. Journal of Luminescence, 2020, 220, 117035.	1.5	31
106	Luminescence and color properties of Ho3+ co-activated Sr4Al14O25: Eu2+, Dy3+ phosphors. Journal of Luminescence, 2020, 220, 116980.	1.5	3
107	On the effects of milling and thermal regeneration on the luminescence properties of Eu2+ and Dy3+ doped strontium aluminate phosphors. Journal of Luminescence, 2020, 219, 116917.	1.5	29
108	Activatable Offâ€on Nearâ€Infrared QCy7â€based Fluorogenic Probes for Bioimaging. Chemistry - an Asian Journal, 2020, 15, 3983-3994.	1.7	11

#	Article	IF	CITATIONS
109	Cr ³⁺ -Free near-infrared persistent luminescence material LiGaO ₂ :Fe ³⁺ : optical properties, afterglow mechanism and potential bioimaging. Journal of Materials Chemistry C, 2020, 8, 14100-14108.	2.7	40
110	Synthesis and Biomedical Applications of Lanthanides-Doped Persistent Luminescence Phosphors With NIR Emissions. Frontiers in Chemistry, 2020, 8, 608578.	1.8	14
111	Near-infrared persistent phosphors: Synthesis, design, and applications. Chemical Engineering Journal, 2020, 399, 125688.	6.6	88
112	Microwave-assisted synthesis followed by a reduction step: making persistent phosphors with a large storage capacity. Dalton Transactions, 2020, 49, 4518-4527.	1.6	15
113	Near-infrared-persistent luminescence/bioluminescence imaging tracking of transplanted mesenchymal stem cells in pulmonary fibrosis. Biomaterials Science, 2020, 8, 3095-3105.	2.6	11
114	Near Infrared-Emitting Nanoparticles for Biomedical Applications. , 2020, , .		20
115	Effect of annealing treatment on the persistent luminescence of Y3Al2Ga3O12:Ce3+,Cr3+,Pr3+ ceramics. Optical Materials, 2020, 105, 109888.	1.7	16
116	Fabrication of strongly near-infrared absorbing vesicles by stabilizing chromogenic radicals in biomimetic membranes. Dyes and Pigments, 2021, 187, 109076.	2.0	0
117	Effect of annealing temperature on persistent luminescence of Y3Al2Ga3O12:Cr3+ co-doped with Ce3+ and Pr3+. Optical Materials, 2021, 111, 110522.	1.7	15
118	Particle size-related limitations of persistent phosphors based on the doped Y3Al2Ga3O12 system. Scientific Reports, 2021, 11, 141.	1.6	28
120	Recent Progress of Nearâ€Infrared Persistent Phosphors in Bioâ€related and Emerging Applications. Chemistry - an Asian Journal, 2021, 16, 1041-1048.	1.7	12
121	Extending the luminescence properties of zinc gallogermanate via co-doping with cost-effective metals ions (Cr3+/Mg2+, Cr3+/Ca2+, and Cr3+/Sr2+). Journal of Materials Science: Materials in Electronics, 2021, 32, 9929-9937.	1.1	3
122	The influence of doped Cr ions on the luminescence properties of infrared long persistent phosphor ZnAl2O4 with the substitution of Ge ions. Journal of Luminescence, 2021, 233, 117941.	1.5	6
123	Influence of co-doping germanium ions on the long persistent near-infrared luminescence of ZnAl2O4:Cr3+. Optical Materials, 2021, 119, 111390.	1.7	3
124	How to Design and Analyze Persistent Phosphors?. Bulletin of the Chemical Society of Japan, 2021, 94, 2807-2821.	2.0	13
125	Photoluminescence and thermal sensing properties of Er3+ doped silicate based phosphors for multifunctional optoelectronic device applications. Ceramics International, 2021, 47, 27694-27701.	2.3	12
126	Nano-engineered tools in the diagnosis, therapeutics, prevention, and mitigation of SARS-CoV-2. Journal of Controlled Release, 2021, 338, 813-836.	4.8	30
127	SrAl2O4: Eu2+, Dy3+ persistent luminescent materials functionalized with the Eu3+(TTA)-complex by microwave-assisted method. Journal of Alloys and Compounds, 2021, 882, 160608.	2.8	13

#	ARTICLE	IF	CITATIONS
128	Defect engineering in lanthanide doped luminescent materials. Coordination Chemistry Reviews, 2021, 448, 214178.	9.5	26
129	NIR-Persistent Luminescence Nanoparticles for Bioimaging, Principle and Perspectives., 2020, , 163-197.		10
130	pH-(Low)-Insertion Peptide-Assisted Detection and Diagnosis of Cancer Using Zinc Gallate-Based Persistent Luminescence Nanoparticles. ACS Applied Bio Materials, 2021, 4, 742-751.	2.3	5
131	$1.5\hat{l}$ m persistent luminescence of Er3+ in Gd3Al5-xGaxO12 (GAGG) garnets via persistent energy transfer. , 2019, , .		2
132	Enhanced persistent luminescence of MgGa2O4:Cr3+ near-infrared phosphors by codoping Nb5+. Journal of Materials Science: Materials in Electronics, 2022, 33, 5325-5334.	1.1	4
133	Biocompatible Probes Based on Rare-Earth Doped Strontium Aluminates with Long-Lasting Phosphorescent Properties for In Vitro Optical IMAGING. International Journal of Molecular Sciences, 2022, 23, 3410.	1.8	10
134	Nanotechnology Applications in Biomedical Systems. Current Nanomaterials, 2022, 7, 167-180.	0.2	7
135	Effect of dopant concentration on the optical characteristics of Cr3+:ZnGa2O4 transparent ceramics exhibiting persistent luminescence. Optical Materials, 2022, 125, 112127.	1.7	6
136	Urea Glass Route as a Way to Optimize YAGG:Ce ³⁺ ,Cr ³⁺ ,Pr ³⁺ Nanocrystals for Persistent Luminescence Applications. Langmuir, 2022, 38, 11539-11549.	1.6	4
137	Effect of trivalent rare earth doping in cadmium silicates hosts: A theoretical study. Physica Scripta, 0, , .	1.2	1
138	Zn2SiO4: Mn2+, Yb3+ long afterglow materials prepared employing Zn-based coordination polymer as precursor: Properties, Mechanism and Application. Journal of Luminescence, 2023, 255, 119601.	1.5	2
139	Size Control and Improved Aqueous Colloidal Stability of Surface-Functionalized ZnGa ₂ O ₄ :Cr ³⁺ Bright Persistent Luminescent Nanoparticles. Langmuir, 2023, 39, 1495-1506.	1.6	3
140	Recent Progress in Inorganic Afterglow Materials: Mechanisms, Persistent Luminescent Properties, Modulating Methods, and Bioimaging Applications. Advanced Optical Materials, 2023, 11, .	3.6	27
141	Optical properties of red-emitting long afterglow phosphor Mg2Si1-xGexO4: Mn2+/Mn4+. Optical Materials, 2023, 137, 113500.	1.7	4