Human Mesenchymal Stem Cell Microvesicles for Treat Endotoxin-Induced Acute Lung Injury in Mice

Stem Cells

32, 116-125

DOI: 10.1002/stem.1504

Citation Report

#	Article	IF	CITATIONS
1	Exosomes/miRNAs as mediating cell-based therapy of stroke. Frontiers in Cellular Neuroscience, 2014, 8, 377.	1.8	250
2	Intranasal versus Intraperitoneal Delivery of Human Umbilical Cord Tissue–Derived Cultured Mesenchymal Stromal Cells in a Murine Model of Neonatal Lung Injury. American Journal of Pathology, 2014, 184, 3344-3358.	1.9	53
3	Potential Application of Extracellular Vesicles of Human Adipose Tissue-Derived Mesenchymal Stem Cells in Alzheimer's Disease Therapeutics. Methods in Molecular Biology, 2014, 1212, 171-181.	0.4	47
4	A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. Journal of Translational Medicine, 2014, 12, 260.	1.8	454
5	Mesenchymal Stem Cell Trials for Pulmonary Diseases. Journal of Cellular Biochemistry, 2014, 115, 1023-1032.	1.2	73
6	Endogenous and Exogenous Cell-Based Pathways for Recovery from Acute Respiratory Distress Syndrome. Clinics in Chest Medicine, 2014, 35, 797-809.	0.8	7
7	Mesenchymal stem cells: mechanisms of potential therapeutic benefit in ARDS and sepsis. Lancet Respiratory Medicine,the, 2014, 2, 1016-1026.	5.2	222
8	miRNA Expression in Mesenchymal Stem Cells. Current Pathobiology Reports, 2014, 2, 101-107.	1.6	6
9	Aging Mesenchymal Stem Cells Fail to Protect Because of Impaired Migration and Antiinflammatory Response. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 787-798.	2.5	166
10	Cell-based Therapy for Acute Organ Injury. Anesthesiology, 2014, 121, 1099-1121.	1.3	127
11	Human liver stem cells and derived extracellular vesicles improve recovery in a murine model of acute kidney injury. Stem Cell Research and Therapy, 2014, 5, 124.	2.4	86
12	Bone marrow derived mesenchymal stem cells improve acute lung injury induced by sepsis in rats. Intensive Care Medicine Experimental, 2015, 3, .	0.9	O
13	Endothelial cells suppress monocyte activation through secretion of extracellular vesicles containing antiinflammatory microRNAs. Blood, 2015, 125, 3202-3212.	0.6	205
14	Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. Journal of Extracellular Vesicles, 2015, 4, 30087.	5.5	1,020
15	Mesenchymal stromal cells for treatment of the acute respiratory distress syndrome: The beginning of the story. Journal of the Intensive Care Society, 2015, 16, 320-329.	1.1	4
16	Microvesicles Derived From Human Mesenchymal Stem Cells Restore Alveolar Fluid Clearance in Human Lungs Rejected for Transplantation. American Journal of Transplantation, 2015, 15, 2404-2412.	2.6	132
17	Bone Marrow-Derived Mesenchymal Stem Cells and Their Conditioned Medium Attenuate Fibrosis in an Irreversible Model of Unilateral Ureteral Obstruction. Cell Transplantation, 2015, 24, 2657-2666.	1.2	37
18	Human Induced Pluripotent Stem Cell-Derived Microvesicles Transmit RNAs and Proteins to Recipient Mature Heart Cells Modulating Cell Fate and Behavior. Stem Cells, 2015, 33, 2748-2761.	1.4	85

#	ARTICLE	IF	Citations
19	Stem Cells and Regenerative Medicine: Myth or Reality of the 21th Century. Stem Cells International, 2015, 2015, 1-19.	1.2	127
20	Stem Cells and Their Mediators ââ,¬â€œ Next Generation Therapy for Bronchopulmonary Dysplasia. Frontiers in Medicine, 2015, 2, 50.	1.2	25
21	Reactive Oxygen Species in Mesenchymal Stem Cell Aging: Implication to Lung Diseases. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-11.	1.9	54
22	The Role of Microvesicles Derived from Mesenchymal Stem Cells in Lung Diseases. BioMed Research International, 2015, 2015, 1-6.	0.9	44
23	Emerging therapies for the prevention of acute respiratory distress syndrome. Therapeutic Advances in Respiratory Disease, 2015, 9, 173-187.	1.0	26
24	Therapeutic Effects of Human Mesenchymal Stem Cell–derived Microvesicles in Severe Pneumonia in Mice. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 324-336.	2.5	392
25	Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies. BMC Medicine, 2015, 13, 186.	2.3	109
26	Influenza lung injury: mechanisms and therapeutic opportunities. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L1041-L1046.	1.3	26
27	LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. Journal of Translational Medicine, 2015, 13, 308.	1.8	469
28	Systemic Administration of Human Bone Marrow-Derived Mesenchymal Stromal Cell Extracellular Vesicles Ameliorates <i>Aspergillus</i> Hyphal Extract-Induced Allergic Airway Inflammation in Immunocompetent Mice. Stem Cells Translational Medicine, 2015, 4, 1302-1316.	1.6	191
29	Molecular signatures of mesenchymal stem cell-derived extracellular vesicle-mediated tissue repair. Stem Cell Research and Therapy, 2015, 6, 212.	2.4	89
30	New Advances in Understanding Stem Cell Fate and Function. Stem Cells, 2015, 33, 313-315.	1.4	3
31	CXCR4 Receptor Overexpression in Mesenchymal Stem Cells Facilitates Treatment of Acute Lung Injury in Rats. Journal of Biological Chemistry, 2015, 290, 1994-2006.	1.6	119
32	Pathologic Mechanical Stress and Endotoxin Exposure Increases Lung Endothelial Microparticle Shedding. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 193-204.	1.4	68
34	Human Mesenchymal Stem (Stromal) Cells Promote the Resolution of Acute Lung Injury in Part through Lipoxin A4. Journal of Immunology, 2015, 195, 875-881.	0.4	132
35	Mesenchymal stem cells for therapeutic applications in pulmonary medicine. British Medical Bulletin, 2015, 115, 45-56.	2.7	31
36	Mesenchymal Stem Cell Exosomes Induce Proliferation and Migration of Normal and Chronic Wound Fibroblasts, and Enhance Angiogenesis In Vitro. Stem Cells and Development, 2015, 24, 1635-1647.	1.1	523
37	Conditioned media from adipose stromal cells limit lipopolysaccharide-induced lung injury, endothelial hyperpermeability and apoptosis. Journal of Translational Medicine, 2015, 13, 67.	1.8	24

#	ARTICLE	IF	Citations
38	The Immunomodulatory and Therapeutic Effects of Mesenchymal Stromal Cells for Acute Lung Injury and Sepsis. Journal of Cellular Physiology, 2015, 230, 2606-2617.	2.0	81
39	Mesenchymal Stem Cell-derived Extracellular Vesicles: Toward Cell-free Therapeutic Applications. Molecular Therapy, 2015, 23, 812-823.	3.7	877
40	Role of extracellular RNA-carrying vesicles in cell differentiation and reprogramming. Stem Cell Research and Therapy, 2015, 6, 153.	2.4	164
41	Stem cell-derived exosomes: roles in stromal remodeling, tumor progression, and cancer immunotherapy. Chinese Journal of Cancer, 2015, 34, 541-53.	4.9	87
42	Extracellular vesicles in lung microenvironment and pathogenesis. Trends in Molecular Medicine, 2015, 21, 533-542.	3.5	149
43	In Vivo Effects of Mesenchymal Stromal Cells in Two Patients With Severe Acute Respiratory Distress Syndrome. Stem Cells Translational Medicine, 2015, 4, 1199-1213.	1.6	131
44	Exosomes and Their Therapeutic Potentials of Stem Cells. Stem Cells International, 2016, 2016, 1-11.	1.2	155
45	Exosomes and Exosomal miRNA in Respiratory Diseases. Mediators of Inflammation, 2016, 2016, 1-11.	1.4	106
46	Mesenchymal Stem Cells as a Prospective Therapy for the Diabetic Foot. Stem Cells International, 2016, 2016, 1-18.	1.2	30
47	Mesenchymal Stem Cell-Derived Microvesicles Support Ex Vivo Expansion of Cord Blood-Derived CD34 ⁺ Cells. Stem Cells International, 2016, 2016, 1-13.	1.2	40
48	Extracellular Vesicles: Evolving Factors in Stem Cell Biology. Stem Cells International, 2016, 2016, 1-17.	1.2	179
49	Regenerative Perspective in Modern Dentistry. Dentistry Journal, 2016, 4, 10.	0.9	1
50	Focus on Extracellular Vesicles: Development of Extracellular Vesicle-Based Therapeutic Systems. International Journal of Molecular Sciences, 2016, 17, 172.	1.8	113
51	Focus on Extracellular Vesicles: Therapeutic Potential of Stem Cell-Derived Extracellular Vesicles. International Journal of Molecular Sciences, 2016, 17, 174.	1.8	72
52	Intratracheal Administration of Mesenchymal Stem Cells Modulates Tachykinin System, Suppresses Airway Remodeling and Reduces Airway Hyperresponsiveness in an Animal Model. PLoS ONE, 2016, 11, e0158746.	1.1	36
53	Recent insights: mesenchymal stromal/stem cell therapy for acute respiratory distress syndrome. F1000Research, 2016, 5, 1532.	0.8	22
60	Microvesicles from brain-extractâ€"treated mesenchymal stem cells improve neurological functions in a rat model of ischemic stroke. Scientific Reports, 2016, 6, 33038.	1.6	84
61	Mesenchymal stromal cells with enhanced therapeutic properties. Immunotherapy, 2016, 8, 1405-1416.	1.0	30

#	ARTICLE	IF	Citations
62	Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions. Scientific Reports, 2016, 6, 24120.	1.6	262
63	Paracrine Mechanisms of Mesenchymal Stem Cells in Tissue Repair. Methods in Molecular Biology, 2016, 1416, 123-146.	0.4	318
64	CD11b+ and Sca-1+ Cells Exert the Main Beneficial Effects of Systemically Administered Bone Marrow-Derived Mononuclear Cells in a Murine Model of Mixed Th2/Th17 Allergic Airway Inflammation. Stem Cells Translational Medicine, 2016, 5, 488-499.	1.6	27
65	Mustard vesicant-induced lung injury: Advances in therapy. Toxicology and Applied Pharmacology, 2016, 305, 1-11.	1.3	34
66	Exosome Derived From Human Umbilical Cord Mesenchymal Stem Cell Mediates MiR-181c Attenuating Burn-induced Excessive Inflammation. EBioMedicine, 2016, 8, 72-82.	2.7	327
67	Human amniotic fluid stem cells labeled with up-conversion nanoparticles for imaging-monitored repairing of acute lung injury. Biomaterials, 2016, 100, 91-100.	5 . 7	36
68	Extracellular vesicles derived from mesenchymal stromal cells: a therapeutic option in respiratory diseases?. Stem Cell Research and Therapy, 2016, 7, 53.	2.4	98
69	Extracellular vesicle microRNAs mediate skeletal muscle myogenesis and disease. Biomedical Reports, 2016, 5, 296-300.	0.9	38
70	Mesenchymal Stromal Cell-Based Therapies for Chronic Lung Disease of Prematurity. American Journal of Perinatology, 2016, 33, 1043-1049.	0.6	7
71	Extracellular Vesicles and Vascular Injury: New Insights for Radiation Exposure. Radiation Research, 2016, 186, 203-218.	0.7	36
72	Extracellular Vesicles Released from Human Umbilical Cord-Derived Mesenchymal Stromal Cells Prevent Life-Threatening Acute Graft-Versus-Host Disease in a Mouse Model of Allogeneic Hematopoietic Stem Cell Transplantation. Stem Cells and Development, 2016, 25, 1874-1883.	1.1	123
73	Prospects and progress in cell therapy for acute respiratory distress syndrome. Expert Opinion on Biological Therapy, 2016, 16, 1353-1360.	1.4	30
75	Concise Review: The Bystander Effect: Mesenchymal Stem Cell-Mediated Lung Repair. Stem Cells, 2016, 34, 1437-1444.	1.4	49
76	Mitochondrial Transfer via Tunneling Nanotubes is an Important Mechanism by Which Mesenchymal Stem Cells Enhance Macrophage Phagocytosis in the In Vitro and In Vivo Models of ARDS. Stem Cells, 2016, 34, 2210-2223.	1.4	401
77	Mesenchymal stem/stromal cellâ€derived extracellular vesicles as a new approach in stem cell therapy. ISBT Science Series, 2016, 11, 228-234.	1.1	10
78	Advances in Stem Cell and Cell-Based Gene Therapy Approaches for Experimental Acute Lung Injury: A Review of Preclinical Studies. Human Gene Therapy, 2016, 27, 802-812.	1.4	18
79	Microvesicles as Vehicles for Tissue Regeneration: Changing of the Guards. Current Pathobiology Reports, 2016, 4, 181-187.	1.6	29
80	Mesenchymal stromal cells as multifunctional cellular therapeutics $\hat{a} \in \hat{a}$ a potential role for extracellular vesicles. Transfusion and Apheresis Science, 2016, 55, 62-69.	0.5	31

#	Article	IF	Citations
81	Mesenchymal Stromal Cells are Readily Recoverable from Lung Tissue, but not the Alveolar Space, in Healthy Humans. Stem Cells, 2016, 34, 2548-2558.	1.4	25
82	Characterization of intercellular communication and mitochondrial donation by mesenchymal stromal cells derived from the human lung. Stem Cell Research and Therapy, 2016, 7, 91.	2.4	94
83	Human Mesenchymal Stem Cell-Derived Microvesicles Prevent the Rupture of Intracranial Aneurysm in Part by Suppression of Mast Cell Activation via a PGE2-Dependent Mechanism. Stem Cells, 2016, 34, 2943-2955.	1.4	54
84	Cell Therapy for Bronchopulmonary Dysplasia: Promises and Perils. Paediatric Respiratory Reviews, 2016, 20, 33-41.	1.2	20
85	Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes. Scientific Reports, 2016, 6, 24805.	1.6	178
86	Mesenchymal Stromal Cell-derived Extracellular Vesicles Promote Myeloid-biased Multipotent Hematopoietic Progenitor Expansion via Toll-Like Receptor Engagement. Journal of Biological Chemistry, 2016, 291, 24607-24617.	1.6	50
87	Macrophage-derived microvesicles' pathogenic role in acute lung injury. Thorax, 2016, 71, 975-976.	2.7	3
88	Role of Microvesicles From Bone Marrow Mesenchymal Stem Cells in Acute Pancreatitis. Pancreas, 2016, 45, 1282-1293.	0.5	22
89	Stem/progenitor cells in endogenous repairing responses: new toolbox for the treatment of acute lung injury. Journal of Translational Medicine, 2016, 14, 47.	1.8	15
90	Extracellular Vesicles Derived from Adipose Mesenchymal Stem Cells Regulate the Phenotype of Smooth Muscle Cells to Limit Intimal Hyperplasia. Cardiovascular Drugs and Therapy, 2016, 30, 111-118.	1.3	29
91	Stem cell therapy for acute respiratory distress syndrome. Current Opinion in Critical Care, 2016, 22, 14-20.	1.6	36
92	Antibacterial effect of mesenchymal stem cells against <i>Escherichia coli</i> is mediated by secretion of beta―defensin―2 via toll―like receptor 4 signalling. Cellular Microbiology, 2016, 18, 424-436.	1.1	136
93	Mesenchymal stem cell derived secretome and extracellular vesicles for acute lung injury and other inflammatory lung diseases. Expert Opinion on Biological Therapy, 2016, 16, 859-871.	1.4	156
94	Exosomes from differentiating human skeletal muscle cells trigger myogenesis of stem cells and provide biochemical cues for skeletal muscle regeneration. Journal of Controlled Release, 2016, 222, 107-115.	4.8	138
95	Spheroid Mesenchymal Stem Cells and Mesenchymal Stem Cell-Derived Microvesicles: Two Potential Therapeutic Strategies. Stem Cells and Development, 2016, 25, 203-213.	1.1	39
96	Adipose stem cell-derived nanovesicles inhibit emphysema primarily via an FGF2-dependent pathway. Experimental and Molecular Medicine, 2017, 49, e284-e284.	3.2	66
97	Exosomal miR-146a Contributes to the Enhanced Therapeutic Efficacy of Interleukin- $1\hat{1}^2$ -Primed Mesenchymal Stem Cells Against Sepsis. Stem Cells, 2017, 35, 1208-1221.	1.4	364
98	Interactions between mesenchymal stem cells and the immune system. Cellular and Molecular Life Sciences, 2017, 74, 2345-2360.	2.4	234

#	ARTICLE	IF	Citations
99	Intraperitoneal adoptive transfer of mesenchymal stem cells enhances recovery from acid aspiration acute lung injury in mice. Intensive Care Medicine Experimental, 2017, 5, 13.	0.9	10
100	Concise Review: MSC-Derived Exosomes for Cell-Free Therapy. Stem Cells, 2017, 35, 851-858.	1.4	1,172
101	Extracellular Vesicle-Shuttled mRNA in Mesenchymal Stem Cell Communication. Stem Cells, 2017, 35, 1093-1105.	1.4	95
102	IL- $36\hat{l}^3$ is a crucial proximal component of protective type-1-mediated lung mucosal immunity in Gram-positive and -negative bacterial pneumonia. Mucosal Immunology, 2017, 10, 1320-1334.	2.7	60
103	Exosomes in Critical Illness. Critical Care Medicine, 2017, 45, 1054-1060.	0.4	73
104	Protective Effect of Mesenchymal Stem Cells Against the Development of Intracranial Aneurysm Rupture in Mice. Neurosurgery, 2017, 81, 1021-1028.	0.6	19
105	Stem Cells and Their Immunomodulatory Potential for the Treatment of ARDS., 2017,, 273-290.		0
106	Old and new challenges in Parkinson's disease therapeutics. Progress in Neurobiology, 2017, 156, 69-89.	2.8	69
107	Bone marrow mesenchymal stem cells and their conditioned media could potentially ameliorate ovalbumin-induced asthmatic changes. Biomedicine and Pharmacotherapy, 2017, 85, 28-40.	2.5	31
108	Inhibition of PKR ameliorates lipopolysaccharide-induced acute lung injury by suppressing NF-κB pathway in mice. Immunopharmacology and Immunotoxicology, 2017, 39, 165-172.	1.1	23
109	Circulating microparticle levels are reduced in patients with ARDS. Critical Care, 2017, 21, 120.	2.5	34
110	Mesenchymal Stromal Cells Modulate Macrophages in Clinically Relevant Lung Injury Models by Extracellular Vesicle Mitochondrial Transfer. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1275-1286.	2.5	517
111	Mesenchymal Stem Cell Microvesicles Attenuate Acute Lung Injury in Mice Partly Mediated by <i>Ang-1</i> mRNA. Stem Cells, 2017, 35, 1849-1859.	1.4	154
112	Alveolar Macrophages in Allergic Asthma: the Forgotten Cell Awakes. Current Allergy and Asthma Reports, 2017, 17, 12.	2.4	67
113	Foxp3 ⁺ Regulatory T Cell Expression of Keratinocyte Growth Factor Enhances Lung Epithelial Proliferation. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 162-173.	1.4	80
114	F <scp>ifty</scp> Y <scp>ears</scp> <scp>of</scp> R <scp>esearch</scp> <scp>in</scp> ARDS.Cell-based Therapy for Acute Respiratory Distress Syndrome. Biology and Potential Therapeutic Value. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 266-273.	2.5	179
115	Regenerative Potential of Mesenchymal Stem Cells: Therapeutic Applications in Lung Disorders. Stem Cells in Clinical Applications, 2017, , 77-117.	0.4	1
116	In Vivo Tracking of Extracellular Vesicles in Mice Using Fusion Protein Comprising Lactadherin and Gaussia Luciferase. Methods in Molecular Biology, 2017, 1660, 245-254.	0.4	25

#	Article	IF	CITATIONS
117	Concise Review: Extracellular Vesicles Overcoming Limitations of Cell Therapies in Ischemic Stroke. Stem Cells Translational Medicine, 2017, 6, 2044-2052.	1.6	36
118	Erythrocyte-based drug delivery in Transfusion Medicine: Wandering questions seeking answers. Transfusion and Apheresis Science, 2017, 56, 626-634.	0.5	21
119	Extracellular Vesicle Transfer from Mesenchymal Stromal Cells Modulates Macrophage Function in Acute Lung Injury. Basic Science and Clinical Implications. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1234-1236.	2.5	17
120	Extracellular Vesicle Biology in the Pathogenesis of Lung Disease. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1510-1518.	2.5	37
121	Adipose-derived mesenchymal stem cells modulate CD14++CD16+ expression on monocytes from sepsis patients in vitro via prostaglandin E2. Stem Cell Research and Therapy, 2017, 8, 97.	2.4	25
122	Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma. Stem Cell Research and Therapy, 2017, 8, 151.	2.4	110
123	Effects of Mesenchymal Stem Cell-Derived Exosomes on Experimental Autoimmune Uveitis. Scientific Reports, 2017, 7, 4323.	1.6	204
124	Stem Cell Extracellular Vesicles: Extended Messages of Regeneration. Annual Review of Pharmacology and Toxicology, 2017, 57, 125-154.	4.2	223
125	Biology and biogenesis of shed microvesicles. Small GTPases, 2017, 8, 220-232.	0.7	391
126	Mesenchymal stem cells attenuate ischemia–reperfusion injury after prolonged cold ischemia in a mouse model of lung transplantation: a preliminary study. Surgery Today, 2017, 47, 425-431.	0.7	15
127	Concise Review: Mesenchymal Stem (Stromal) Cells: Biology and Preclinical Evidence for Therapeutic Potential for Organ Dysfunction Following Trauma or Sepsis. Stem Cells, 2017, 35, 316-324.	1.4	130
128	Concise Review: Mesenchymal Stem Cell Therapy for Pediatric Disease: Perspectives on Success and Potential Improvements. Stem Cells Translational Medicine, 2017, 6, 539-565.	1.6	44
129	Thy-1 dependent uptake of mesenchymal stem cell-derived extracellular vesicles blocks myofibroblastic differentiation. Scientific Reports, 2017, 7, 18052.	1.6	77
130	Mesenchymal stromal cell-derived extracellular vesicles attenuate lung ischemia-reperfusion injury and enhance reconditioning of donor lungs after circulatory death. Respiratory Research, 2017, 18, 212.	1.4	104
131	Replenishing exosomes from older bone marrow stromal cells with miR-340 inhibits myeloma-related angiogenesis. Blood Advances, 2017, 1, 812-823.	2.5	75
132	Extracellular Vesicle MicroRNA Transfer in Lung Diseases. Frontiers in Physiology, 2017, 8, 1028.	1.3	77
133	Mesenchymal Stem Cell Derived Extracellular Vesicles: A Role in Hematopoietic Transplantation?. International Journal of Molecular Sciences, 2017, 18, 1022.	1.8	36
134	How Do Mesenchymal Stem Cells Influence or Are Influenced by Microenvironment through Extracellular Vesicles Communication?. Frontiers in Cell and Developmental Biology, 2017, 5, 6.	1.8	61

#	ARTICLE	IF	Citations
135	Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles and Their Potential as Novel Immunomodulatory Therapeutic Agents. International Journal of Molecular Sciences, 2017, 18, 1450.	1.8	285
136	Toward Exosome-Based Therapeutics: Isolation, Heterogeneity, and Fit-for-Purpose Potency. Frontiers in Cardiovascular Medicine, 2017, 4, 63.	1.1	180
137	A Regulatory miRNA–mRNA Network Is Associated with Tissue Repair Induced by Mesenchymal Stromal Cells in Acute Kidney Injury. Frontiers in Immunology, 2016, 7, 645.	2.2	34
138	Antimicrobial Activity of Mesenchymal Stem Cells: Current Status and New Perspectives of Antimicrobial Peptide-Based Therapies. Frontiers in Immunology, 2017, 8, 339.	2.2	191
139	Alveolar Fluid Clearance in Pathologically Relevant Conditions: In Vitro and In Vivo Models of Acute Respiratory Distress Syndrome. Frontiers in Immunology, 2017, 8, 371.	2.2	55
140	Mesenchymal stem cells microvesicles stabilize endothelial barrier function partly mediated by hepatocyte growth factor (HGF). Stem Cell Research and Therapy, 2017, 8, 211.	2.4	64
141	Adipose stem cells from chronic pancreatitis patients improve mouse and human islet survival and function. Stem Cell Research and Therapy, 2017, 8, 192.	2.4	19
142	Stem-cell extracellular vesicles and lung repair. Stem Cell Investigation, 2017, 4, 78-78.	1.3	39
143	Immunomodulatory oligonucleotide IMT504: Effects on mesenchymal stem cells as a first-in-class immunoprotective/immunoregenerative therapy. World Journal of Stem Cells, 2017, 9, 45.	1.3	8
144	Vascular endothelial growth factor mediates the therapeutic efficacy of mesenchymal stem cell-derived extracellular vesicles against neonatal hyperoxic lung injury. Experimental and Molecular Medicine, 2018, 50, 1-12.	3.2	109
145	Subpopulations of extracellular vesicles and their therapeutic potential. Molecular Aspects of Medicine, 2018, 60, 1-14.	2.7	139
146	Extracellular vesicle therapeutics for liver disease. Journal of Controlled Release, 2018, 273, 86-98.	4.8	88
147	Effect of bone marrow mesenchymal stem cells on the polarization of macrophages. Molecular Medicine Reports, 2018, 17, 4449-4459.	1.1	27
148	The extracellular vesiclesâ€derived from mesenchymal stromal cells: A new therapeutic option in regenerative medicine. Journal of Cellular Biochemistry, 2018, 119, 8048-8073.	1.2	87
149	MSC-exosome: A novel cell-free therapy for cutaneous regeneration. Cytotherapy, 2018, 20, 291-301.	0.3	191
150	Mesenchymal stem cell-derived extracellular vesicles attenuate pulmonary vascular permeability and lung injury induced by hemorrhagic shock and trauma. Journal of Trauma and Acute Care Surgery, 2018, 84, 245-256.	1.1	76
151	hucMSC derived exosomes promote functional recovery in spinal cord injury mice via attenuating inflammation. Materials Science and Engineering C, 2018, 89, 194-204.	3.8	209
152	Insights into cellâ€free therapeutic approach: Role of stem cell "soupâ€ernatant― Biotechnology and Applied Biochemistry, 2018, 65, 104-118.	1.4	24

#	Article	IF	Citations
153	Extracellular Vesicles in Lung Disease. Chest, 2018, 153, 210-216.	0.4	116
154	HucMSC exosome-transported 14-3-3ζ prevents the injury of cisplatin to HK-2 cells by inducing autophagy in vitro. Cytotherapy, 2018, 20, 29-44.	0.3	37
155	Fracture Healing and the Underexposed Role of Extracellular Vesicle-Based Cross Talk. Shock, 2018, 49, 486-496.	1.0	19
156	Secretome from hypoxia-conditioned adipose-derived mesenchymal stem cells promotes the healing of gastric mucosal injury in a rodent model. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 178-188.	1.8	46
157	The promise of mesenchymal stem cell therapy for acute respiratory distress syndrome. Journal of Trauma and Acute Care Surgery, 2018, 84, 183-191.	1.1	31
158	Graft-Versus-Host Disease Amelioration by Human Bone Marrow Mesenchymal Stromal/Stem Cell-Derived Extracellular Vesicles Is Associated with Peripheral Preservation of Naive T Cell Populations. Stem Cells, 2018, 36, 434-445.	1.4	162
159	Mesenchymal stem cells: A doubleâ€edged sword in radiationâ€induced lung injury. Thoracic Cancer, 2018, 9, 208-217.	0.8	17
160	The long and winding road: stem cells for cystic fibrosis. Expert Opinion on Biological Therapy, 2018, 18, 281-292.	1.4	16
161	Extracellular Vesicles: New Players in Lung Immunity. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 560-565.	1.4	44
162	Extracellular vesicles, exosomes and shedding vesicles in regenerative medicine – a new paradigm for tissue repair. Biomaterials Science, 2018, 6, 60-78.	2.6	207
163	Cell therapy in acute respiratory distress syndrome. Journal of Thoracic Disease, 2018, 10, 5607-5620.	0.6	46
164	Development of exosome-based DDS targeting gastrointestinal cancer. Drug Delivery System, 2018, 33, 372-376.	0.0	O
165	Alk5/Runx1 signaling mediated by extracellular vesicles promotes vascular repair in acute respiratory distress syndrome. Clinical and Translational Medicine, 2018, 7, 19.	1.7	28
166	Therapeutic potential of products derived from mesenchymal stem/stromal cells in pulmonary disease. Respiratory Research, 2018, 19, 218.	1.4	80
167	The role of stem cells in cystic fibrosis disease modeling and drug discovery. Expert Opinion on Orphan Drugs, 2018, 6, 707-717.	0.5	1
168	To Protect and to Preserve: Novel Preservation Strategies for Extracellular Vesicles. Frontiers in Pharmacology, 2018, 9, 1199.	1.6	131
169	Nanotherapies for micropreemies: Stem cells and the secretome in bronchopulmonary dysplasia. Seminars in Perinatology, 2018, 42, 453-458.	1.1	24
170	Endothelial Cell Senescence in the Pathogenesis of Endothelial Dysfunction., 2018,,.		10

#	Article	IF	CITATIONS
171	Clinical Application of Mesenchymal Stem Cell-Derived Extracellular Vesicle-Based Therapeutics for Inflammatory Lung Diseases. Journal of Clinical Medicine, 2018, 7, 355.	1.0	128
172	Bioactive factors secreted from mesenchymal stromal cells protect the intestines from experimental colitis in a three-dimensional culture. Cytotherapy, 2018, 20, 1459-1471.	0.3	9
173	Microenvironmental Influences on Extracellular Vesicle-Mediated Communication in the Lung. Trends in Molecular Medicine, 2018, 24, 963-975.	3.5	20
174	Mesenchymal stem cells transplantation attenuates brain injury and enhances bacterial clearance in Escherichia coli meningitis in newborn rats. Pediatric Research, 2018, 84, 778-785.	1.1	17
175	Promotion of Cell-Based Therapy: Special Focus on the Cooperation of Mesenchymal Stem Cell Therapy and Gene Therapy for Clinical Trial Studies. Advances in Experimental Medicine and Biology, 2018, 1119, 103-118.	0.8	18
176	Juglanin suppresses fibrosis and inflammation response caused by LPS in acute lung injury. International Journal of Molecular Medicine, 2018, 41, 3353-3365.	1.8	29
177	Exosomes in Severe Asthma: Update in Their Roles and Potential in Therapy. BioMed Research International, 2018, 2018, 1-10.	0.9	31
178	Mesenchymal stromal cell-derived extracellular vesicles: regenerative and immunomodulatory effects and potential applications in sepsis. Cell and Tissue Research, 2018, 374, 1-15.	1.5	104
179	Therapeutic effects of adipose-tissue-derived mesenchymal stromal cells and their extracellular vesicles in experimental silicosis. Respiratory Research, 2018, 19, 104.	1.4	44
180	Intraperitoneal injection of MSC-derived exosomes prevent experimental bronchopulmonary dysplasia. Biochemical and Biophysical Research Communications, 2018, 503, 2653-2658.	1.0	89
181	Human mesenchymal stromal cellâ€derived extracellular vesicles attenuate aortic aneurysm formation and macrophage activation <i>via</i> microRNAâ€147. FASEB Journal, 2018, 32, 6038-6050.	0.2	62
182	Recent Updates on Treatment of Ocular Microbial Infections by Stem Cell Therapy: A Review. International Journal of Molecular Sciences, 2018, 19, 558.	1.8	12
183	Comparative Effects of Umbilical Cord- and Menstrual Blood-Derived MSCs in Repairing Acute Lung Injury. Stem Cells International, 2018, 2018, 1-9.	1.2	23
184	Human umbilical cord mesenchymal stem cell conditioned medium attenuates renal fibrosis by reducing inflammation and epithelial-to-mesenchymal transition via the TLR4/NF-κB signaling pathway in vivo and in vitro. Stem Cell Research and Therapy, 2018, 9, 7.	2.4	80
185	Mesenchymal stem cell-derived extracellular vesicles attenuate influenza virus-induced acute lung injury in a pig model. Stem Cell Research and Therapy, 2018, 9, 17.	2.4	253
186	Mesenchymal Stem Cell Microvesicles Restore Protein Permeability Across Primary Cultures of Injured Human Lung Microvascular Endothelial Cells. Stem Cells Translational Medicine, 2018, 7, 615-624.	1.6	90
187	Extracellular Vesicles, Ageing, and Therapeutic Interventions. Cells, 2018, 7, 110.	1.8	35
188	Therapeutic effects of human mesenchymal stem cell microvesicles in an ex vivo perfused human lung injured with severe <i>E. coli</i> pneumonia. Thorax, 2019, 74, 43-50.	2.7	166

#	Article	IF	CITATIONS
189	Therapeutic Implications of Human Umbilical Cord Mesenchymal Stromal Cells in Attenuating Influenza A(H5N1) Virus–Associated Acute Lung Injury. Journal of Infectious Diseases, 2019, 219, 186-196.	1.9	102
190	Novel mechanisms regulating endothelial barrier function in the pulmonary microcirculation. Journal of Physiology, 2019, 597, 997-1021.	1.3	59
191	Secretome of Mesenchymal Stem Cells and its Impact on Chronic Obstructive Pulmonary Disease. Stem Cells in Clinical Applications, 2019, , 139-157.	0.4	0
192	Mesenchymal Stem Cells in Homeostasis and Systemic Diseases: Hypothesis, Evidences, and Therapeutic Opportunities. International Journal of Molecular Sciences, 2019, 20, 3738.	1.8	69
193	Mesenchymal stem/stromal cell secretome for lung regeneration: The long way through "pharmaceuticalization―for the best formulation. Journal of Controlled Release, 2019, 309, 11-24.	4.8	78
194	Exosomes derived from mesenchymal stem cells reverse EMT via TGF- $\hat{1}^21/S$ mad pathway and promote repair of damaged endometrium. Stem Cell Research and Therapy, 2019, 10, 225.	2.4	145
195	CT/Bioluminescence Dualâ€Modal Imaging Tracking of Mesenchymal Stem Cells in Pulmonary Fibrosis. Small, 2019, 15, e1904314.	5.2	27
196	Differential effects of extracellular vesicles from aging and young mesenchymal stem cells in acute lung injury. Aging, 2019, 11, 7996-8014.	1.4	92
197	Inoculation Pneumonia Caused by Coagulase Negative Staphylococcus. Frontiers in Microbiology, 2019, 10, 2198.	1.5	8
198	Targeting the Immune System With Mesenchymal Stromal Cell-Derived Extracellular Vesicles: What Is the Cargo's Mechanism of Action?. Frontiers in Bioengineering and Biotechnology, 2019, 7, 308.	2.0	33
199	Microvesicles as new therapeutic targets for the treatment of the acute respiratory distress syndrome (ARDS). Expert Opinion on Therapeutic Targets, 2019, 23, 931-941.	1.5	2
200	Mesenchymal stem cellsâ€derived extracellular vesicles in acute respiratory distress syndrome: a review of current literature and potential future treatment options. Clinical and Translational Medicine, 2019, 8, 25.	1.7	66
201	Biodistribution of Mesenchymal Stem Cell-Derived Extracellular Vesicles in a Radiation Injury Bone Marrow Murine Model. International Journal of Molecular Sciences, 2019, 20, 5468.	1.8	42
202	Mesenchymal Stem Cell–Derived Extracellular Vesicles Decrease Lung Injury in Mice. Journal of Immunology, 2019, 203, 1961-1972.	0.4	81
203	Exosomal miRNAs in Lung Diseases: From Biologic Function to Therapeutic Targets. Journal of Clinical Medicine, 2019, 8, 1345.	1.0	67
204	Mesenchymal Stromal Cells Are More Effective Than Their Extracellular Vesicles at Reducing Lung Injury Regardless of Acute Respiratory Distress Syndrome Etiology. Stem Cells International, 2019, 2019, 1-15.	1.2	47
205	Enhancement of therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Research and Therapy, 2019, 10, 288.	2.4	169
206	Thrombin Preconditioning Boosts Biogenesis of Extracellular Vesicles from Mesenchymal Stem Cells and Enriches Their Cargo Contents via Protease-Activated Receptor-Mediated Signaling Pathways. International Journal of Molecular Sciences, 2019, 20, 2899.	1.8	22

#	Article	IF	CITATIONS
207	Exosomes derived from microRNA-30b-3p-overexpressing mesenchymal stem cells protect against lipopolysaccharide-induced acute lung injury by inhibiting SAA3. Experimental Cell Research, 2019, 383, 111454.	1.2	99
208	Stem Cell-Based Therapies for Acute Lung Injury and Acute Respiratory Distress Syndrome. , 2019, , 331-343.		1
209	Molecular Mechanisms Responsible for Therapeutic Potential of Mesenchymal Stem Cell-Derived Secretome. Cells, 2019, 8, 467.	1.8	304
210	Microvesicles derived from human Wharton's Jelly mesenchymal stem cells ameliorate acute lung injury partly mediated by hepatocyte growth factor. International Journal of Biochemistry and Cell Biology, 2019, 112, 114-122.	1.2	15
211	Mesenchymal stem cell-derived exosomes attenuate phosgene-induced acute lung injury in rats. Inhalation Toxicology, 2019, 31, 52-60.	0.8	43
212	Extracellular Vesicles and Prospects of Their Use for Tissue Regeneration. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2019, 13, 1-11.	0.3	2
213	Biological functions of mesenchymal stem cells and clinical implications. Cellular and Molecular Life Sciences, 2019, 76, 3323-3348.	2.4	315
214	Pathogenesis of Acute Respiratory Distress Syndrome. Seminars in Respiratory and Critical Care Medicine, 2019, 40, 031-039.	0.8	276
215	Human Adipose-Derived Mesenchymal Stem Cells Modify Lung Immunity and Improve Antibacterial Defense in Pneumosepsis Caused by <i>Klebsiella pneumoniae</i> . Stem Cells Translational Medicine, 2019, 8, 785-796.	1.6	30
216	Baicalin alleviated APEC-induced acute lung injury in chicken by inhibiting NF-κB pathway activation. International Immunopharmacology, 2019, 72, 467-472.	1.7	41
217	Extracellular vesicles in lung health, disease, and therapy. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L977-L989.	1.3	48
218	Exosomes in Allergic Airway Diseases. Current Allergy and Asthma Reports, 2019, 19, 26.	2.4	28
219	The Regenerative and Reparative Potential of Amniotic Membrane Stem Cells., 2019,, 9-26.		0
220	Emerging role of extracellular vesicles in lung injury and inflammation. Biomedicine and Pharmacotherapy, 2019, 113, 108748.	2.5	52
221	Secretome of Mesenchymal Stem Cells and Its Potential Protective Effects on Brain Pathologies. Molecular Neurobiology, 2019, 56, 6902-6927.	1.9	52
222	Insights into animal models for cell-based therapies in translational studies of lung diseases: Is the horse with naturally occurring asthma the right choice?. Cytotherapy, 2019, 21, 525-534.	0.3	15
223	Exosomes of bone-marrow stromal cells inhibit cardiomyocyte apoptosis under ischemic and hypoxic conditions via miR-486-5p targeting the PTEN/PI3K/AKT signaling pathway. Thrombosis Research, 2019, 177, 23-32.	0.8	116
224	Exploring the roles of MSCs in infections: focus on bacterial diseases. Journal of Molecular Medicine, 2019, 97, 437-450.	1.7	46

#	Article	IF	Citations
225	Conditioned Medium of Mesenchymal Stromal Cells: A New Class of Therapeutics. Biochemistry (Moscow), 2019, 84, 1375-1389.	0.7	55
226	Extracellular Vesicles from Interferon-γ–primed Human Umbilical Cord Mesenchymal Stromal Cells Reduce <i>Escherichia coli</i> à€"induced Acute Lung Injury in Rats. Anesthesiology, 2019, 130, 778-790.	1.3	73
227	Long-term <i>in vivo</i> CT tracking of mesenchymal stem cells labeled with Au@BSA@PLL nanotracers. Nanoscale, 2019, 11, 20932-20941.	2.8	33
228	Induced pluripotent stem cellâ€derived extracellular vesicles: A novel approach for cellâ€free regenerative medicine. Journal of Cellular Physiology, 2019, 234, 8455-8464.	2.0	38
229	Hepatocyte Growth Factor: A Microenvironmental Resource for Leukemic Cell Growth. International Journal of Molecular Sciences, 2019, 20, 292.	1.8	10
230	Exosomes Derived from Human Primed Mesenchymal Stem Cells Induce Mitosis and Potentiate Growth Factor Secretion. Stem Cells and Development, 2019, 28, 398-409.	1.1	51
231	Therapeutic use of mesenchymal stem cell–derived extracellular vesicles in acute lung injury. Transfusion, 2019, 59, 876-883.	0.8	53
232	Therapeutic potential of mesenchymal stromal cells in the treatment of ARDS. Transfusion, 2019, 59, 869-875.	0.8	16
233	Interaction between mesenchymal stromal cellâ€derived extracellular vesicles and immune cells by distinct protein content. Journal of Cellular Physiology, 2019, 234, 8249-8258.	2.0	112
234	Exosomes in perspective: a potential surrogate for stem cell therapy. Odontology / the Society of the Nippon Dental University, 2019, 107, 271-284.	0.9	52
235	Exosomes as a novel cellâ€free therapeutic approach in gastrointestinal diseases. Journal of Cellular Physiology, 2019, 234, 9910-9926.	2.0	42
236	A comparison of clinically relevant sources of mesenchymal stem cell-derived exosomes: Bone marrow and amniotic fluid. Journal of Pediatric Surgery, 2019, 54, 86-90.	0.8	44
237	Mesenchymal stem cell-derived extracellular vesicles for the treatment of acute respiratory distress syndrome. Stem Cells Translational Medicine, 2020, 9, 28-38.	1.6	119
238	Mesenchymal stem cells in allergic diseases: Current status. Allergology International, 2020, 69, 35-45.	1.4	37
239	Therapeutic potential of mesenchymal stem/stromal cell-derived secretome and vesicles for lung injury and disease. Expert Opinion on Biological Therapy, 2020, 20, 125-140.	1.4	62
240	Immune modulation by mesenchymal stem cells. Cell Proliferation, 2020, 53, e12712.	2.4	337
241	Exosomes in respiratory disease. , 2020, , 383-414.		2
242	Isolation and characterization of microvesicles from mesenchymal stem cells. Methods, 2020, 177, 50-57.	1.9	25

#	ARTICLE	IF	CITATIONS
243	Immunoregulatory properties of mesenchymal stem cells: Micro-RNAs. Immunology Letters, 2020, 219, 34-45.	1.1	18
244	Clinical potential and current progress of mesenchymal stem cells for Parkinson's disease: a systematic review. Neurological Sciences, 2020, 41, 1051-1061.	0.9	26
245	Human ucMSCs seeded in a decellularized kidney scaffold attenuate renal fibrosis by reducing epithelial–mesenchymal transition via the TGF-β/Smad signaling pathway. Pediatric Research, 2020, 88, 192-201.	1.1	10
246	Lights and Shadows in the Use of Mesenchymal Stem Cells in Lung Inflammation, a Poorly Investigated Topic in Cystic Fibrosis. Cells, 2020, 9, 20.	1.8	16
247	Cell-Free Therapies: Novel Approaches for COVID-19. Frontiers in Immunology, 2020, 11, 583017.	2.2	6
248	BKCa channels regulate the immunomodulatory properties of WJ-MSCs by affecting the exosome protein profiles during the inflammatory response. Stem Cell Research and Therapy, 2020, 11, 440.	2.4	7
249	Potential application of mesenchymal stem cells and their exosomes in lung injury: an emerging therapeutic option for COVID-19 patients. Stem Cell Research and Therapy, 2020, 11, 437.	2.4	54
250	MicroRNA-206 antagomiRâ€'enriched extracellular vesicles attenuate lung ischemiaâ€'reperfusion injury through CXCL1 regulation in alveolar epithelial cells. Journal of Heart and Lung Transplantation, 2020, 39, 1476-1490.	0.3	14
251	Extracellular vesicles: new players in regulating vascular barrier function. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H1181-H1196.	1.5	36
252	Analysis of mesenchymal stem cell proteomes in situ in the ischemic heart. Theranostics, 2020, 10, 11324-11338.	4.6	11
253	Canine Bone Marrow Mesenchymal Stem Cell Conditioned Media Affect Bacterial Growth, Biofilm-Associated Staphylococcus aureus and AHL-Dependent Quorum Sensing. Microorganisms, 2020, 8, 1478.	1.6	17
254	Mechanisms behind the Immunoregulatory Dialogue between Mesenchymal Stem Cells and Th17 Cells. Cells, 2020, 9, 1660.	1.8	28
255	The efficacy of mesenchymal stromal cell-derived therapies for acute respiratory distress syndromeâ€"a meta-analysis of preclinical trials. Respiratory Research, 2020, 21, 307.	1.4	10
256	Clinical Applications of Mesenchymal Stem/Stromal Cell Derived Extracellular Vesicles: Therapeutic Potential of an Acellular Product. Diagnostics, 2020, 10, 999.	1.3	34
257	Stem cell therapy for COVIDâ€19: Possibilities and challenges. Cell Biology International, 2020, 44, 2182-2191.	1.4	45
258	Comparison of the biological behaviors of palatal mesenchymal and epithelial cells induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in vitro. Toxicology Letters, 2020, 333, 90-96.	0.4	6
259	Cell-Based Therapeutic Approaches for Cystic Fibrosis. International Journal of Molecular Sciences, 2020, 21, 5219.	1.8	12
260	Application of peptides with an affinity for phospholipid membranes during the automated purification of extracellular vesicles. Scientific Reports, 2020, 10, 18718.	1.6	15

#	Article	IF	CITATIONS
261	Distinct Factors Secreted by Adipose Stromal Cells Protect the Endothelium From Barrier Dysfunction and Apoptosis. Frontiers in Cell and Developmental Biology, 2020, 8, 584653.	1.8	4
262	Mesenchymal Stem Cell-Derived Extracellular Vesicles: Opportunities and Challenges for Clinical Translation. Frontiers in Bioengineering and Biotechnology, 2020, 8, 997.	2.0	94
263	Systematic review of extracellular vesicleâ€based treatments for lung injury: are EVs a potential therapy for COVIDâ€19?. Journal of Extracellular Vesicles, 2020, 9, 1795365.	5.5	66
264	Review of Current Machine Perfusion Therapeutics for Organ Preservation. Transplantation, 2020, 104, 1792-1803.	0.5	56
265	Could Mesenchymal Stem Cell-Derived Exosomes Be a Therapeutic Option for Critically Ill COVID-19 Patients?. Journal of Clinical Medicine, 2020, 9, 2762.	1.0	20
266	Effects of mesenchymal stromal cell-conditioned media on measures of lung structure and function: a systematic review and meta-analysis of preclinical studies. Stem Cell Research and Therapy, 2020, 11, 399.	2.4	8
267	Mesenchymal stromal cells for sepsis and septic shock: Lessons for treatment of COVID-19. Stem Cells Translational Medicine, 2020, 9, 1488-1494.	1.6	14
268	Bone marrow mesenchymal stem cells derived miRNA-130b enhances epithelial sodium channel by targeting PTEN. Respiratory Research, 2020, 21, 329.	1.4	8
269	Olfactory Ecto-Mesenchymal Stem Cell-Derived Exosomes Ameliorate Experimental Colitis via Modulating Th1/Th17 and Treg Cell Responses. Frontiers in Immunology, 2020, 11, 598322.	2.2	50
270	BMSC-derived exosomes from congenital polydactyly tissue alleviate osteoarthritis by promoting chondrocyte proliferation. Cell Death Discovery, 2020, 6, 142.	2.0	24
271	Extracellular Vesicles as Unique Signaling Messengers: Role in Lung Diseases. , 2020, 11, 1351-1369.		12
272	Mesenchymal Stem Cells: The Past Present and Future. Advances in Experimental Medicine and Biology, 2020, 1312, 107-129.	0.8	16
273	Comprehensive Molecular Profiles of Functionally Effective MSC-Derived Extracellular Vesicles in Immunomodulation. Molecular Therapy, 2020, 28, 1628-1644.	3.7	71
274	Mesenchymal stem cell use in acute respiratory distress syndrome: a potential therapeutic application. Future Science OA, 2020, 6, FSO584.	0.9	3
275	Rationale for the clinical use of adipose-derived mesenchymal stem cells for COVID-19 patients. Journal of Translational Medicine, 2020, 18, 203.	1.8	83
276	Acute Lung Injury: Disease Modelling and the Therapeutic Potential of Stem Cells. Advances in Experimental Medicine and Biology, 2020, 1298, 149-166.	0.8	17
277	International Society for Extracellular Vesicles and International Society for Cell and Gene Therapy statement on extracellular vesicles from mesenchymal stromal cells and other cells: considerations for potential therapeutic agents to suppress coronavirus disease-19. Cytotherapy, 2020, 22, 482-485.	0.3	94
278	Present and Future of Bronchopulmonary Dysplasia. Journal of Clinical Medicine, 2020, 9, 1539.	1.0	75

#	Article	IF	Citations
279	Exosomes Derived from Bone Marrow Mesenchymal Stem Cells as Treatment for Severe COVID-19. Stem Cells and Development, 2020, 29, 747-754.	1.1	469
280	Mesenchymal stromal/stem cell-derived extracellular vesicles in tissue repair: challenges and opportunities. Theranostics, 2020, 10, 5979-5997.	4.6	140
281	Circulating Exosomes From Lipopolysaccharide-Induced Ards Mice Trigger Endoplasmic Reticulum Stress in Lung Tissue. Shock, 2020, 54, 110-118.	1.0	11
282	Mesenchymal Stem Cell-Derived Extracellular Vesicles: Good Things Come in Small Packages*. Critical Care Medicine, 2020, 48, 1095-1097.	0.4	5
283	Aerosol-to-Hydrosol Sampling and Simultaneous Enrichment of Airborne Bacteria For Rapid Biosensing. ACS Sensors, 2020, 5, 2763-2771.	4.0	20
284	Mesenchymal Stem Cell–Derived Extracellular Vesicles Alleviate Acute Lung Injury Via Transfer of miR-27a-3p*. Critical Care Medicine, 2020, 48, e599-e610.	0.4	104
285	Biomaterials Functionalized with MSC Secreted Extracellular Vesicles and Soluble Factors for Tissue Regeneration. Advanced Functional Materials, 2020, 30, 1909125.	7.8	204
286	MSC Based Therapiesâ€"New Perspectives for the Injured Lung. Journal of Clinical Medicine, 2020, 9, 682.	1.0	118
287	Microvesicles derived from human Wharton's jelly mesenchymal stem cells enhance autophagy and ameliorate acute lung injury via delivery of miR-100. Stem Cell Research and Therapy, 2020, 11, 113.	2.4	33
288	Extracellular vesicles in the therapy of BPD. , 2020, , 129-148.		1
289	Extracellular vesicles: novel communicators in lung diseases. Respiratory Research, 2020, 21, 175.	1.4	85
290	Outbreak of COVID-19: An emerging global pandemic threat. Biomedicine and Pharmacotherapy, 2020, 129, 110499.	2.5	48
291	Potential Applications of Extracellular Vesicles in Solid Organ Transplantation. Cells, 2020, 9, 369.	1.8	25
292	Extracellular Vesicles: A New Frontier for Research in Acute Respiratory Distress Syndrome. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 15-24.	1.4	48
293	Oct-4 Enhanced the Therapeutic Effects of Mesenchymal Stem Cell-Derived Extracellular Vesicles in Acute Kidney Injury. Kidney and Blood Pressure Research, 2020, 45, 95-108.	0.9	30
294	hUCMSC-extracellular vesicles downregulated hepatic stellate cell activation and reduced liver injury in S. japonicum-infected mice. Stem Cell Research and Therapy, 2020, 11, 21.	2.4	40
295	Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Novel Cell-Free Therapy for Sepsis. Frontiers in Immunology, 2020, 11, 647.	2.2	33
296	Medicinal signaling cells: A potential antimicrobial drug store. Journal of Cellular Physiology, 2020, 235, 7731-7746.	2.0	18

#	Article	IF	CITATIONS
297	Regenerative abilities of mesenchymal stem cells via acting as an ideal vehicle for subcellular component delivery in acute kidney injury. Journal of Cellular and Molecular Medicine, 2020, 24, 4882-4891.	1.6	11
298	Effects of Mesenchymal Stem Cell Coculture on Human Lung Small Airway Epithelial Cells. BioMed Research International, 2020, 2020, 1-8.	0.9	14
299	Mesenchymal Stromal Cell–Derived Small Extracellular Vesicles Induce Ischemic Neuroprotection by Modulating Leukocytes and Specifically Neutrophils. Stroke, 2020, 51, 1825-1834.	1.0	95
300	Therapeutic Use of Extracellular Vesicles for Acute and Chronic Lung Disease. International Journal of Molecular Sciences, 2020, 21, 2318.	1.8	63
301	Novel Therapeutics for the Treatment of Burn Infection. Surgical Infections, 2021, 22, 113-120.	0.7	6
302	Mesenchymal stem cell–derived small extracellular vesicles and bone regeneration. Basic and Clinical Pharmacology and Toxicology, 2021, 128, 18-36.	1.2	47
303	Enhanced protection against lipopolysaccharideâ€induced acute lung injury by autologous transplantation of adiposeâ€derived stromal cells combined with low tidal volume ventilation in rats. Journal of Cellular Physiology, 2021, 236, 1295-1308.	2.0	1
304	Mesenchymal Stem Cell Derived Exosomes: a Nano Platform for Therapeutics and Drug Delivery in Combating COVID-19. Stem Cell Reviews and Reports, 2021, 17, 33-43.	1.7	81
305	Umbilical cord: an allogenic tissue for potential treatment of COVID-19. Human Cell, 2021, 34, 1-13.	1.2	18
306	Quietness of circular RNA circ_0054633 alleviates the inflammation and proliferation in lipopolysaccharides-induced acute lung injury model through NF-κB signaling pathway. Gene, 2021, 766, 145153.	1.0	20
307	Fostering mesenchymal stem cell therapy to halt cytokine storm in COVID-19. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166014.	1.8	29
308	Effects of Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Lung Diseases: Current Status and Future Perspectives. Stem Cell Reviews and Reports, 2021, 17, 440-458.	1.7	27
309	Mesenchymal stromal cells for acute respiratory distress syndrome (ARDS), sepsis, and COVID-19 infection: optimizing the therapeutic potential. Expert Review of Respiratory Medicine, 2021, 15, 301-324.	1.0	41
310	Brain-derived neurotropic factor mediates neuroprotection of mesenchymal stem cell-derived extracellular vesicles against severe intraventricular hemorrhage in newborn rats. Stem Cells Translational Medicine, 2021, 10, 374-384.	1.6	36
311	Review of Trials Currently Testing Stem Cells for Treatment of Respiratory Diseases: Facts Known to Date and Possible Applications to COVID-19. Stem Cell Reviews and Reports, 2021, 17, 44-55.	1.7	11
312	Role of miRâ€466 in mesenchymal stromal cell derived extracellular vesicles treating inoculation pneumonia caused by multidrugâ€resistant <i>Pseudomonas aeruginosa</i> . Clinical and Translational Medicine, 2021, 11, e287.	1.7	12
313	New Technologies and Tissue Repair and Regeneration (2): Other Biotherapeutic Technologies. , 2021, , 345-377.		1
314	Human umbilical cord mesenchymal stem cell-derived extracellular vesicles ameliorate airway inflammation in a rat model of chronic obstructive pulmonary disease (COPD). Stem Cell Research and Therapy, 2021, 12, 54.	2.4	43

#	Article	IF	CITATIONS
315	Mesenchymal stem cell-derived small extracellular vesicles in the treatment of human diseases: Progress and prospect. World Journal of Stem Cells, 2021, 13, 49-63.	1.3	37
316	MSC Based Therapies to Prevent or Treat BPD—A Narrative Review on Advances and Ongoing Challenges. International Journal of Molecular Sciences, 2021, 22, 1138.	1.8	12
317	Proposed Mechanisms of Targeting COVID-19 by Delivering Mesenchymal Stem Cells and Their Exosomes to Damaged Organs. Stem Cell Reviews and Reports, 2021, 17, 176-192.	1.7	40
318	Membrane Microvesicles as Potential Vaccine Candidates. International Journal of Molecular Sciences, 2021, 22, 1142.	1.8	11
319	The development of mesenchymal stem cell therapy in the present, and the perspective of cell-free therapy in the future. Clinical and Molecular Hepatology, 2021, 27, 70-80.	4.5	67
320	Immunomodulatory and Regenerative Effects of Mesenchymal Stem Cells and Extracellular Vesicles: Therapeutic Outlook for Inflammatory and Degenerative Diseases. Frontiers in Immunology, 2020, 11, 591065.	2.2	110
321	Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Lung Diseases: Current Status and Perspectives. Frontiers in Cell and Developmental Biology, 2021, 9, 600711.	1.8	51
322	Therapeutic Potential of Mesenchymal Stem Cells and Their Products in Lung Diseasesâ€"Intravenous Administration versus Inhalation. Pharmaceutics, 2021, 13, 232.	2.0	20
323	Mesenchymal stem cellâ€derived exosomes for organ development and cellâ€free therapy. Nano Select, 2021, 2, 1291-1325.	1.9	4
324	Treatment of Cystic Fibrosis: From Gene- to Cell-Based Therapies. Frontiers in Pharmacology, 2021, 12, 639475.	1.6	20
325	Utility of novel T-cell-specific extracellular vesicles in monitoring and evaluation of acute GVHD. International Journal of Hematology, 2021, 113, 910-920.	0.7	6
326	Taming of Covid-19: potential and emerging application of mesenchymal stem cells. Cytotechnology, 2021, 73, 253-298.	0.7	2
327	Intra-vital imaging of mesenchymal stromal cell kinetics in the pulmonary vasculature during infection. Scientific Reports, 2021, 11, 5265.	1.6	31
328	Mesenchymal Stem Cell-Derived Exosomes Exhibit Promising Potential for Treating SARS-CoV-2-Infected Patients. Cells, 2021, 10, 587.	1.8	34
329	Progress and potential of mesenchymal stromal cell therapy in acute respiratory distress syndrome., 2021,, 353-372.		1
330	Therapeutic Potential of Extracellular Vesicles for Sepsis Treatment. Advanced Therapeutics, 2021, 4, 2000259.	1.6	14
331	Mesenchymal Stem Cells and Extracellular Vesicles: An Emerging Alternative to Combat COVID-19., 0,,.		1
332	Extracellular Vesicles as Biomarkers and Therapeutic Tools: From Pre-Clinical to Clinical Applications. Biology, 2021, 10, 359.	1.3	69

#	Article	IF	CITATIONS
333	Harnessing the ECM Microenvironment to Ameliorate Mesenchymal Stromal Cell-Based Therapy in Chronic Lung Diseases. Frontiers in Pharmacology, 2021, 12, 645558.	1.6	12
334	Evidence for the involvement of lipofibroblasts, airway smooth muscle cells and FGF10 signalling in lung repair., 2021,, 99-113.		1
335	Exosome: The Regulator of the Immune System in Sepsis. Frontiers in Pharmacology, 2021, 12, 671164.	1.6	31
336	Mesenchymal stem cell-derived microvesicles improve intestinal barrier function by restoring mitochondrial dynamic balance in sepsis rats. Stem Cell Research and Therapy, 2021, 12, 299.	2.4	11
337	Role of CD44 in increasing the potency of mesenchymal stem cell extracellular vesicles by hyaluronic acid in severe pneumonia. Stem Cell Research and Therapy, 2021, 12, 293.	2.4	11
338	An indispensable tool: Exosomes play a role in therapy for radiation damage. Biomedicine and Pharmacotherapy, 2021, 137, 111401.	2.5	9
339	Mesenchymal stem cell alongside exosomes as a novel cell-based therapy for COVID-19: A review study. Clinical Immunology, 2021, 226, 108712.	1.4	19
340	Effects of mesenchymal stromal cellâ€derived extracellular vesicles in acute respiratory distress syndrome (ARDS): Current understanding and future perspectives. Journal of Leukocyte Biology, 2021, 110, 27-38.	1.5	10
341	Research Progress of Mesenchymal Stem Cell Therapy for Severe COVID-19. Stem Cells and Development, 2021, 30, 459-472.	1.1	2
342	Protective effect of miRâ€138â€5p inhibition modified human mesenchymal stem cell on ovalbuminâ€induced allergic rhinitis and asthma syndrome. Journal of Cellular and Molecular Medicine, 2021, 25, 5038-5049.	1.6	14
343	Extracellular vesicles: Their emerging roles in the pathogenesis of respiratory diseases. Respiratory Investigation, 2021, 59, 302-311.	0.9	17
344	Corticosteroid resistance in asthma: Cellular and molecular mechanisms. Molecular Aspects of Medicine, 2022, 85, 100969.	2.7	17
345	Mesenchymal stromal (stem) cell therapy modulates miR-193b-5p expression to attenuate sepsis-induced acute lung injury. European Respiratory Journal, 2022, 59, 2004216.	3.1	36
346	Review of the potential of mesenchymal stem cells for the treatment of infectious diseases. World Journal of Stem Cells, 2021, 13, 568-593.	1.3	13
347	Mesenchymal stromal cells reduce evidence of lung injury in patients with ARDS. JCI Insight, 2021, 6, .	2.3	48
348	Application of mesenchymal stem cell-derived exosomes in kidney diseases. Cellular Immunology, 2021, 364, 104358.	1.4	11
349	Emerging understanding of apoptosis in mediating mesenchymal stem cell therapy. Cell Death and Disease, 2021, 12, 596.	2.7	42
350	Mesenchymal stem cells and extracellular vesicles for the treatment of pain: Current status and perspectives. British Journal of Pharmacology, 2022, 179, 4281-4299.	2.7	11

#	Article	IF	CITATIONS
351	Mesenchymal growth hormone receptor deficiency leads to failure of alveolar progenitor cell function and severe pulmonary fibrosis. Science Advances, 2021, 7, .	4.7	10
352	Effects of mesenchymal stem cell-derived exosomes on oxidative stress responses in skin cells. Molecular Biology Reports, 2021, 48, 4527-4535.	1.0	7
353	Overexpression of HOXB4 Promotes Protection of Bone Marrow Mesenchymal Stem Cells Against Lipopolysaccharide-Induced Acute Lung Injury Partially Through the Activation of Wnt/ \hat{l}^2 -Catenin Signaling. Journal of Inflammation Research, 2021, Volume 14, 3637-3649.	1.6	5
354	Mesenchymal Stem Cells and Tuberculosis: Clinical Challenges and Opportunities. Frontiers in Immunology, 2021, 12, 695278.	2.2	10
355	Mesenchymal Stromal Cell-Derived Tailored Exosomes Treat Bacteria-Associated Diabetes Foot Ulcers: A Customized Approach From Bench to Bed. Frontiers in Microbiology, 2021, 12, 712588.	1.5	21
356	The Emerging Role of Exosomes in the Treatment of Human Disorders With a Special Focus on Mesenchymal Stem Cells-Derived Exosomes. Frontiers in Cell and Developmental Biology, 2021, 9, 653296.	1.8	22
357	Mesenchymal stromal/stem cells (MSCs) and MSC-derived extracellular vesicles in COVID-19-induced ARDS: Mechanisms of action, research progress, challenges, and opportunities. International Immunopharmacology, 2021, 97, 107694.	1.7	24
358	Therapeutic prospects of mesenchymal stem/stromal cells in COVID-19 associated pulmonary diseases: From bench to bedside. World Journal of Stem Cells, 2021, 13, 1058-1071.	1.3	14
359	Cellular Therapy for the Treatment of Paediatric Respiratory Disease. International Journal of Molecular Sciences, 2021, 22, 8906.	1.8	11
360	Mesenchymal Stem Cell-Derived Exosomes for COVID-19 Therapy, Preclinical and Clinical Evidence. International Journal of Stem Cells, 2021, 14, 252-261.	0.8	8
361	Soluble factors of mesenchimal stem cells (FS-MSC) as a potential tool to reduce inflammation in donor's lungs after hypovolemic shock. Jornal Brasileiro De Pneumologia, 2021, 47, e20200452.	0.4	1
362	Mesenchymal Stem Cell-Derived Exosomes as an Emerging Paradigm for Regenerative Therapy and Nano-Medicine: A Comprehensive Review. Life, 2021, 11, 784.	1.1	17
363	Extracellular vesicles for tissue repair and regeneration: Evidence, challenges and opportunities. Advanced Drug Delivery Reviews, 2021, 175, 113775.	6.6	86
364	Mesenchymal stem cell-based therapy and exosomes in COVID-19: current trends and prospects. Stem Cell Research and Therapy, 2021, 12, 469.	2.4	28
365	Modulating poststroke inflammatory mechanisms: Novel aspects of mesenchymal stem cells, extracellular vesicles and microglia. World Journal of Stem Cells, 2021, 13, 1030-1048.	1.3	13
367	Anti-inflammatory Effects of Mesenchymal Stem Cells and their Secretomes in Pneumonia. Current Pharmaceutical Biotechnology, 2022, 23, 1153-1167.	0.9	4
368	Extracellular vesicles in the treatment of neurological disorders. Neurobiology of Disease, 2021, 157, 105445.	2.1	28
369	Exosomal miR-132-3p from mesenchymal stem cells alleviated LPS-induced acute lung injury by repressing TRAF6. Autoimmunity, 2021, 54, 493-503.	1.2	17

#	Article	IF	Citations
370	Current therapeutic strategies for respiratory diseases using mesenchymal stem cells. MedComm, 2021, 2, 351-380.	3.1	15
371	Immunomodulatory Properties of Umbilical Cord Blood-Derived Small Extracellular Vesicles and Their Therapeutic Potential for Inflammatory Skin Disorders. International Journal of Molecular Sciences, 2021, 22, 9797.	1.8	9
372	Escherichia coli infection activates the production of IFN- \hat{l}_{\pm} and IFN- \hat{l}_{\pm} via the JAK1/STAT1/2 signaling pathway in lung cells. Amino Acids, 2021, 53, 1609-1622.	1.2	3
373	Extracellular Vesicle-Based Therapy for COVID-19: Promises, Challenges and Future Prospects. Biomedicines, 2021, 9, 1373.	1.4	33
374	Mesenchymal stromal cell extracellular vesicles as therapy for acute and chronic respiratory diseases: A metaâ€analysis. Journal of Extracellular Vesicles, 2021, 10, e12141.	5.5	31
375	Human mesenchymal stromal cells small extracellular vesicles attenuate sepsis-induced acute lung injury in a mouse model: the role of oxidative stress and the mitogen-activated protein kinase/nuclear factor kappa B pathway. Cytotherapy, 2021, 23, 918-930.	0.3	21
376	Extracellular vesicles in acute respiratory distress syndrome: Recent developments from bench to bedside. International Immunopharmacology, 2021, 100, 108118.	1.7	7
377	Mesenchymal stem cell-mediated immunomodulation of recruited mononuclear phagocytes during acute lung injury: a high-dimensional analysis study. Theranostics, 2021, 11, 2232-2246.	4.6	17
378	Human embryonic stem cell-derived extracellular vesicles alleviate retinal degeneration by upregulating Oct4 to promote retinal $M\tilde{A}\frac{1}{4}$ ller cell retrodifferentiation via HSP90. Stem Cell Research and Therapy, 2021, 12, 21.	2.4	27
379	How severe RNA virus infections such as SARS-CoV-2 disrupt tissue and organ barriersâ€"Reconstitution by mesenchymal stem cell-derived exosomes. , 2021, , 95-113.		0
380	Extracellular vesicles deposit <i>PCNA</i> to rejuvenate aged bone marrow–derived mesenchymal stem cells and slow age-related degeneration. Science Translational Medicine, 2021, 13, .	5.8	65
381	Isolation and Characterization of Extracellular Vesicles in Stem Cell-Related Studies. Neuromethods, 2017, , 205-223.	0.2	1
382	Preclinical Evidence for the Role of Stem/Stromal Cells in Targeting ARDS., 2019,, 199-217.		3
383	The Safety and Efficiency of Addressing ARDS Using Stem Cell Therapies in Clinical Trials. , 2019, , 219-238.		4
384	The Potential of Factors Released from Mesenchymal Stromal Cells as Therapeutic Agents in the Lung. , 2019, , 57-70.		1
385	The Role of Extracellular Vesicles as Paracrine Effectors in Stem Cell-Based Therapies. Advances in Experimental Medicine and Biology, 2019, 1201, 175-193.	0.8	26
386	Mesenchymal Stromal Cell-Based Therapies for Lung Disease. Pancreatic Islet Biology, 2015, , 225-242.	0.1	1
387	"Good things come in small packages†application of exosome-based therapeutics in neonatal lung injury. Pediatric Research, 2018, 83, 298-307.	1.1	48

#	Article	IF	CITATIONS
388	Immunomodulatory and Therapeutic Effects of Mesenchymal Stem Cells on Organ Dysfunction in Sepsis. Shock, 2021, 55, 423-440.	1.0	23
389	Acute Respiratory Distress Syndrome: The Role of Mesenchymal Stem Cells and Arising Complications Due to an Aging Lung., 2016,, 181-196.		1
390	Mesenchymal stromal cell extracellular vesicles rescue mitochondrial dysfunction and improve barrier integrity in clinically relevant models of ARDS. European Respiratory Journal, 2021, 58, 2002978.	3.1	94
391	Mesenchymal stem cell-derived extracellular vesicles alter disease outcomes via endorsement of macrophage polarization. Stem Cell Research and Therapy, 2020, 11, 424.	2.4	63
392	Human embryonic stem cells extracellular vesicles and their effects on immortalized human retinal MÃ $^1\!\!/\!4$ ller cells. PLoS ONE, 2018, 13, e0194004.	1.1	19
393	The Roles of MicroRNAs and Extracellular Vesicles in the Pathogeneses of Idiopathic Pulmonary Fibrosis and Acute Respiratory Distress Syndrome. Tohoku Journal of Experimental Medicine, 2020, 251, 313-326.	0.5	6
394	Long non-coding RNAs in heart failure: an obvious lnc. Annals of Translational Medicine, 2016, 4, 182-182.	0.7	19
395	The effect of human adipose-derived stem cells on lipopolysaccharide-induced acute respiratory distress syndrome in mice. Annals of Translational Medicine, 2019, 7, 674-674.	0.7	27
396	Exosomes in Sepsis and Inflammatory Tissue Injury. Current Pharmaceutical Design, 2020, 25, 4486-4495.	0.9	28
397	Potential application of mesenchymal stem cell-derived exosomes as a novel therapeutic drug. Drug Delivery System, 2014, 29, 140-151.	0.0	1
398	Cell membrane and bioactive factors derived from mesenchymal stromal cells: Cell-free based therapy for inflammatory bowel diseases. World Journal of Stem Cells, 2019, 11, 618-633.	1.3	12
399	Stem cell therapy for COVID-19 and other respiratory diseases: Global trends of clinical trials. World Journal of Stem Cells, 2020, 12, 471-480.	1.3	15
400	Researches and Applications of Stem Cell Secretome. , 2021, , 191-223.		11
401	Mesenchymal Stromal Cells: an Antimicrobial and Host-Directed Therapy for Complex Infectious Diseases. Clinical Microbiology Reviews, 2021, 34, e0006421.	5. 7	13
402	Mechanism and Potential of Extracellular Vesicles Derived From Mesenchymal Stem Cells for the Treatment of Infectious Diseases. Frontiers in Microbiology, 2021, 12, 761338.	1.5	12
403	Repair of acute respiratory distress syndrome by stromal cell administration (REALIST) trial: A phase 1 trial. EClinicalMedicine, 2021, 41, 101167.	3.2	22
405	Modes d'actions paracrines des Cellules Stromales Mésenchymateuses. Bulletin De L'Academie Nationale De Medecine, 2015, 199, 501-514.	0.0	0
406	Stem Cell Therapy for Neonatal Lung Diseases. , 2016, , 319-357.		0

#	Article	IF	CITATIONS
407	Exosomes in Sepsis Diagnosis and Treatment. International Journal of Clinical Medicine, 2019, 10, 565-575.	0.1	1
408	Comparison of the Regenerative Potential for Lung Tissue of Mesenchymal Stromal Cells from Different Sources/Locations Within the Body. , 2019, , 35-55.		0
409	Mesenchymal Stem (Stromal) Cell Communications in Their Niche and Beyond: The Role of Extra Cellular Vesicles and Organelle Transfer in Lung Regeneration., 2019,, 229-229.		0
410	Future Perspectives of Bone Tissue Engineering with Special Emphasis on Extracellular Vesicles. , 2019, , 159-169.		0
411	Mesenchymal Stem Cell Signaling Pathway and Interaction Factors. Experimed, 2020, 9, 120-129.	0.0	0
413	Cell–Matrix Interactions Regulate Functional Extracellular Vesicle Secretion from Mesenchymal Stromal Cells. ACS Nano, 2021, 15, 17439-17452.	7.3	20
414	Role of microRNA Shuttled in Small Extracellular Vesicles Derived From Mesenchymal Stem/Stromal Cells for Osteoarticular Disease Treatment. Frontiers in Immunology, 2021, 12, 768771.	2.2	20
415	Promotion or inhibition of extracellular vesicle release: Emerging therapeutic opportunities. Journal of Controlled Release, 2021, 340, 136-148.	4.8	45
417	The role of mesenchymal stem cells in COVID-19 treatment. Tuberkuloz Ve Toraks, 2020, 68, 430-436.	0.2	1
418	Extracellular Vesicles: The Next Frontier in Regenerative Medicine and Drug Delivery. Advances in Experimental Medicine and Biology, 2020, 1249, 143-160.	0.8	2
419	Extracellular Vesicles in ARDS: New Insights into Pathogenesis with Novel Clinical Applications. Annual Update in Intensive Care and Emergency Medicine, 2020, , 53-65.	0.1	5
420	Ischemic preconditioning potentiates the protective effect of mesenchymal stem cells on endotoxin-induced acute lung injury in mice through secretion of exosome. International Journal of Clinical and Experimental Medicine, 2015, 8, 3825-32.	1.3	34
421	A protocol for isolation and culture of mesenchymal stem cells from human gingival tissue. American Journal of Clinical and Experimental Immunology, 2019, 8, 21-26.	0.2	6
423	Mesenchymal stem cell-derived exosome: A tumor regulator and carrier for targeted tumor therapy. Cancer Letters, 2022, 526, 29-40.	3.2	48
424	Extracellular Vesicles and Alveolar Epithelial-Capillary Barrier Disruption in Acute Respiratory Distress Syndrome: Pathophysiological Role and Therapeutic Potential. Frontiers in Physiology, 2021, 12, 752287.	1.3	8
425	Morphology of the Myocardium after Experimental Bone Tissue Trauma and the Use of Extracellular Vesicles Derived from Mesenchymal Multipotent Stromal Cells. Journal of Personalized Medicine, 2021, 11, 1206.	1.1	0
426	Mesenchymal stromal cell-derived extracellular vesicles reduce lung inflammation and damage in nonclinical acute lung injury: Implications for COVID-19. PLoS ONE, 2021, 16, e0259732.	1.1	5
427	Secretome of Stem Cells: Roles of Extracellular Vesicles in Diseases, Stemness, Differentiation, and Reprogramming. Tissue Engineering and Regenerative Medicine, 2022, 19, 19-33.	1.6	12

#	Article	IF	CITATIONS
428	Mesenchymal Stromal Cells for the Treatment of Interstitial Lung Disease in Children: A Look from Pediatric and Pediatric Surgeon Viewpoints. Cells, 2021, 10, 3270.	1.8	7
429	Promoted NIRâ€II Fluorescence by Heteroatomâ€Inserted Rigidâ€Planar Cores for Monitoring Cell Therapy of Acute Lung Injury. Small, 2022, 18, e2105362.	5.2	19
430	Mesenchymal Stem Cell-Derived Exosome Therapy of Microbial Diseases: From Bench to Bed. Frontiers in Microbiology, 2021, 12, 804813.	1.5	7
431	Extracellular vesicle-mediated cellular crosstalk in lung repair, remodelling and regeneration. European Respiratory Review, 2022, 31, 210106.	3.0	11
432	Mesenchymal Stem Cell-Derived Exosomes as a Novel Strategy for the Treatment of Intervertebral Disc Degeneration. Frontiers in Cell and Developmental Biology, 2021, 9, 770510.	1.8	6
433	Overview of current technologies for tissue engineering and regenerative medicine., 2022, , 11-31.		1
434	Wnt/ \hat{l}^2 -Catenin Participates in the Repair of Acute Respiratory Distress Syndrome-Associated Early Pulmonary Fibrosis via Mesenchymal Stem Cell Microvesicles. Drug Design, Development and Therapy, 2022, Volume 16, 237-247.	2.0	5
435	Potential of Mesenchymal Stem Cell-Derived Exosomes as a Novel Treatment for Female Infertility Caused by Bacterial Infections. Frontiers in Microbiology, 2021, 12, 785649.	1.5	5
436	Mesenchymal Stem-Cell Derived Exosome Therapy as a Potential Future Approach for Treatment of Male Infertility Caused by Chlamydia Infection. Frontiers in Microbiology, 2021, 12, 785622.	1.5	6
437	Therapeutic potential of induced pluripotent stem cell–derived extracellular vesicles. , 2022, , 393-449.		0
438	Mechanisms governing the therapeutic effect of mesenchymal stromal cell-derived extracellular vesicles: A scoping review of preclinical evidence. Biomedicine and Pharmacotherapy, 2022, 147, 112683.	2.5	13
439	Small extracellular vesicles from hypoxic mesenchymal stem cells alleviate intervertebral disc degeneration by delivering miR-17-5p. Acta Biomaterialia, 2022, 140, 641-658.	4.1	18
442	Mesenchymal Stromal/Stem Cells and Their Products as a Therapeutic Tool to Advance Lung Transplantation. Cells, 2022, 11, 826.	1.8	13
443	The Role of Extracellular Vesicles in Idiopathic Pulmonary Fibrosis Progression: An Approach on Their Therapeutics Potential. Cells, 2022, 11, 630.	1.8	5
444	Mesenchymal stem cells microvesicles versus granulocytes colony stimulating factor efficacy in ameliorating septic induced acute renal cortical injury in adult male albino rats (Histological and) Tj ETQq0 0 0 rg	gBTq/ @ verl	ock210 Tf 50 :
445	Cellular therapies for the treatment and prevention of SARS-CoV-2 infection. Blood, 2022, 140, 208-221.	0.6	13
446	Extracellular Vesicles, New Players in Sepsis and Acute Respiratory Distress Syndrome. Frontiers in Cellular and Infection Microbiology, 2022, 12, 853840.	1.8	5
447	Mesenchymal Stem Cell-Derived Extracellular Vesicles in the Management of COVID19-Associated Lung Injury: A Review on Publications, Clinical Trials and Patent Landscape. Tissue Engineering and Regenerative Medicine, 2022, 19, 659-673.	1.6	11

#	Article	IF	CITATIONS
448	Regenerative therapy by using mesenchymal stem cells-derived exosomes in COVID-19 treatment. The potential role and underlying mechanisms. Regenerative Therapy, 2022, 20, 61-71.	1.4	5
449	Current Status and Future Perspectives on Machine Perfusion: A Treatment Platform to Restore and Regenerate Injured Lungs Using Cell and Cytokine Adsorption Therapy. Cells, 2022, 11, 91.	1.8	9
450	Application of Mesenchymal Stem Cells During Machine Perfusion: An Emerging Novel Strategy for Organ Preservation. Frontiers in Immunology, 2021, 12, 713920.	2.2	11
451	Efficacy of Mesenchymal Stem Cells from Human Exfoliated Deciduous Teeth and their Derivatives in Inflammatory Diseases Therapy. Current Stem Cell Research and Therapy, 2022, 17, 302-316.	0.6	3
462	Stem Cell-Derived Exosome as Potential Therapeutics for Microbial Diseases. Frontiers in Microbiology, 2021, 12, 786111.	1.5	13
463	Therapeutic scale stem cell-derived exosomes for COVID-19: Modelsâ€"Validation, management, and strategies. , 2022, , 153-168.		0
464	Mesenchymal Stromal Cells and their EVs as Potential Leads for SARSCoV2 Treatment. Current Stem Cell Research and Therapy, 2023, 18, 35-53.	0.6	0
465	Dental follicle cellsâ€derived small extracellular vesicles inhibit pathogenicity of <i>Porphyromonas gingivalis</i> . Oral Diseases, 2023, 29, 2297-2309.	1.5	5
466	Therapeutic role of mesenchymal stem cell-derived exosomes in respiratory disease. Stem Cell Research and Therapy, 2022, 13, 194.	2.4	15
467	miR-142-5p Encapsulated by Serum-Derived Extracellular Vesicles Protects against Acute Lung Injury in Septic Rats following Remote Ischemic Preconditioning via the PTEN/PI3K/Akt Axis. Journal of Innate Immunity, 2022, 14, 532-542.	1.8	3
468	Exosomes derived from bone marrow mesenchymal stem cells inhibit neuroinflammation after traumatic brain injury. Neural Regeneration Research, 2022, 17, 2717.	1.6	23
469	Bone marrow mesenchymal stem cell-derived extracellular vesicles repair articular cartilage injury via the p38-MAPK pathway. Minerva Biotechnology and Biomolecular Research, 2022, 34, .	0.3	0
470	NAD(H)-loaded nanoparticles for efficient sepsis therapy via modulating immune and vascular homeostasis. Nature Nanotechnology, 2022, 17, 880-890.	15.6	40
471	Safety, efficacy and biomarkers analysis of mesenchymal stromal cells therapy in ARDS: a systematic review and meta-analysis based on phase I and II RCTs. Stem Cell Research and Therapy, 2022, 13, .	2.4	2
472	Therapeutic Strategy of Mesenchymal-Stem-Cell-Derived Extracellular Vesicles as Regenerative Medicine. International Journal of Molecular Sciences, 2022, 23, 6480.	1.8	27
473	The role of the immune system in the pathogenesis of NAFLD and potential therapeutic impacts of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Research and Therapy, 2022, 13, .	2.4	16
474	Extracellular vesicles as bioactive nanotherapeutics: An emerging paradigm for regenerative medicine. Theranostics, 2022, 12, 4879-4903.	4.6	33
476	Mesenchymal Stem Cell-Derived Extracellular Vesicles: Progress and Remaining Hurdles in Developing Regulatory Compliant Quality Control Assays. Advances in Experimental Medicine and Biology, 2022, , 191-211.	0.8	2

#	Article	IF	Citations
477	Tissue repair strategies: What we have learned from COVID-19 in the application of MSCs therapy. Pharmacological Research, 2022, 182, 106334.	3.1	2
478	Decidual mesenchymal stem/stromal cells from preeclamptic patients secrete endoglin, which at high levels inhibits endothelial cell attachment in vitro. Placenta, 2022, 126, 175-183.	0.7	0
479	Reduced graphene oxide-embedded nerve conduits loaded with bone marrow mesenchymal stem cell-derived extracellular vesicles promote peripheral nerve regeneration. Neural Regeneration Research, 2023, 18, 200.	1.6	15
480	Potential Cell-Based and Cell-Free Therapy for Patients with COVID-19. Cells, 2022, 11, 2319.	1.8	9
481	Role of extracellular vesicles in lung diseases. Chinese Medical Journal, 2022, 135, 1765-1780.	0.9	4
482	Novel approaches for long-term lung transplant survival. Frontiers in Immunology, 0, 13, .	2.2	7
483	microRNA-130b-3p delivery by mesenchymal stem cells-derived exosomes confers protection on acute lung injury. Autoimmunity, 2022, 55, 597-607.	1.2	3
484	Advances in extracellular vesicle functionalization strategies for tissue regeneration. Bioactive Materials, 2023, 25, 500-526.	8.6	17
485	Advances in the use of exosomes for the treatment of ALI/ARDS. Frontiers in Immunology, 0, 13, .	2.2	15
486	Acute Respiratory Failure. Lessons From the ICU, 2022, , 441-461.	0.1	0
487	Global trends in research on miRNA \hat{a} e"microbiome interaction from 2011 to 2021: A bibliometric analysis. Frontiers in Pharmacology, 0, 13, .	1.6	3
488	Role of Mesenchymal Stem Cells and Extracellular Vesicles in Idiopathic Pulmonary Fibrosis. International Journal of Molecular Sciences, 2022, 23, 11212.	1.8	7
489	Regenerative mesenchymal stem c <scp>ellâ€derived</scp> extracellular vesicles: A potential alternative to c <scp>ellâ€based</scp> therapy in viral infection and disease damage control. WIREs Mechanisms of Disease, 2022, 14, .	1.5	2
490	Dual Role of Extracellular Vesicles in Sepsis-Associated Kidney and Lung Injury. Biomedicines, 2022, 10, 2448.	1.4	2
491	New mechanism for mesenchymal stem cell microvesicle to restore lung permeability: intracellular S1P signaling pathway independent of S1P receptor-1. Stem Cell Research and Therapy, 2022, 13, .	2.4	5
492	Biological Cardiac Patch Based on Extracellular Vesicles and Extracellular Matrix for Regulating Injury-Related Microenvironment and Promoting Cardiac Tissue Recovery. ACS Applied Bio Materials, 2022, 5, 5218-5230.	2.3	1
493	The Emerging Role of Extracellular Vesicles from Mesenchymal Stem Cells and Macrophages in Pulmonary Fibrosis: Insights into miRNA Delivery. Pharmaceuticals, 2022, 15, 1276.	1.7	6
494	Effects of Human Deciduous Dental Pulp-Derived Mesenchymal Stem Cell-Derived Conditioned Medium on the Metabolism of HUVECs, Osteoblasts, and BMSCs. Cells, 2022, 11, 3222.	1.8	1

#	Article	IF	CITATIONS
495	Extracellular vesicles in the pathogenesis and treatment of acute lung injury. Military Medical Research, 2022, 9, .	1.9	13
496	Mesenchymal Stem Cell-Extracellular Vesicle Therapy in Patients with Stroke. , 2022, , 947-972.		0
497	Mesenchymal Stem Cell Secretome: A Potential Biopharmaceutical Component to Regenerative Medicine., 2022,, 973-1005.		0
498	Harnessing Normal and Engineered Mesenchymal Stem Cells Derived Exosomes for Cancer Therapy: Opportunity and Challenges. International Journal of Molecular Sciences, 2022, 23, 13974.	1.8	14
499	Lung Extracellular Matrix Hydrogels-Derived Vesicles Contribute to Epithelial Lung Repair. Polymers, 2022, 14, 4907.	2.0	1
500	Mesenchymal stromal cells as treatment for acute respiratory distress syndrome. Case Reports following hematopoietic cell transplantation and a review. Frontiers in Immunology, 0, 13, .	2.2	5
501	Mesenchymal Stem Cells and MSCs-Derived Extracellular Vesicles in Infectious Diseases: From Basic Research to Clinical Practice. Bioengineering, 2022, 9, 662.	1.6	13
502	Microvesicles as drug delivery systems: A new frontier for bionic therapeutics in cancer. Journal of Drug Delivery Science and Technology, 2023, 79, 104088.	1.4	3
503	Versatility of mesenchymal stem cell-derived extracellular vesicles in tissue repair and regenerative applications. Biochimie, 2023, 207, 33-48.	1.3	10
504	Extracellular Vesicles in Regenerative Processes Associated with Muscle Injury Recovery of Professional Athletes Undergoing Sub Maximal Strength Rehabilitation. International Journal of Molecular Sciences, 2022, 23, 14913.	1.8	3
505	Therapeutic Potential of Extracellular Vesicles in Aging and Age-Related Diseases. International Journal of Molecular Sciences, 2022, 23, 14632.	1.8	5
506	Extracellular Vesicles' Role in the Pathophysiology and as Biomarkers in Cystic Fibrosis and COPD. International Journal of Molecular Sciences, 2023, 24, 228.	1.8	5
507	EVs vs. EVs: MSCs and Tregs as a source of invisible possibilities. Journal of Molecular Medicine, 2023, 101, 51-63.	1.7	5
508	Extracellular vesicles participate in the pathogenesis of sepsis. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	7
509	Effects of mesenchymal stem cell-derived nanovesicles in experimental allergic airway inflammation. Respiratory Research, 2023, 24, .	1.4	6
510	Strategies to Reduce Endotoxin Activity. , 2023, , 117-125.		0
511	The potential value of exosomes as adjuvants for novel biologic local anesthetics. Frontiers in Pharmacology, $0,14,.$	1.6	0
512	Stem cell- derived extracellular vesicles as new tools in regenerative medicine - Immunomodulatory role and future perspectives. Frontiers in Immunology, $0,14,.$	2.2	12

#	Article	IF	CITATIONS
513	Key Role of Mesenchymal Stromal Cell Interaction with Macrophages in Promoting Repair of Lung Injury. International Journal of Molecular Sciences, 2023, 24, 3376.	1.8	12
514	What is the need and why is it time for innovative models for understanding lung repair and regeneration?. Frontiers in Pharmacology, 0, 14 , .	1.6	1
515	Exosomes as natural nanocarrier-based drug delivery system: recent insights and future perspectives. 3 Biotech, 2023, 13, .	1,1	18
516	Extracellular vesicles derived from mesenchymal stem cells — a novel therapeutic tool in infectious diseases. Inflammation and Regeneration, 2023, 43, .	1.5	14
517	Superior protective effects of PGE2 priming mesenchymal stem cells against LPS-induced acute lung injury (ALI) through macrophage immunomodulation. Stem Cell Research and Therapy, 2023, 14, .	2.4	9
518	Non-Classical Intercellular Communications: Basic Mechanisms and Roles in Biology and Medicine. International Journal of Molecular Sciences, 2023, 24, 6455.	1.8	3
519	Building Basic and Clinical Research Around Lung Transplantation. Organ and Tissue Transplantation, 2023, , 1-21.	0.0	0
522	Introduction of mesenchymal stem/stromal cells. , 2023, , 1-13.		0
538	Emerging role and therapeutic application of mesenchymal stem cell (MSC) and MSC-derived exosome in Coronavirus disease-2019 (COVID-19) infection. , 0, , .		0
542	Cell-derived biomimetic nanoparticles for the targeted therapy of ALI/ARDS. Drug Delivery and Translational Research, 0, , .	3.0	0
543	Immune dysregulation in sepsis: experiences, lessons and perspectives. Cell Death Discovery, 2023, 9, .	2.0	2
545	Cytokine storm in COVID-19 and other diseases: emerging therapeutic interventions. , 2024, , 209-241.		0
546	Focusing on the cytokine storm in the battle against COVID-19: the rising role of mesenchymal-derived stem cells., 2024,, 191-207.		0