Autonomous Soft Robotic Fish Capable of Escape Maner Actuators

Soft Robotics

1, 75-87

DOI: 10.1089/soro.2013.0009

Citation Report

#	Article	IF	CITATIONS
1	Fluidâ \in structure interaction study on the performance of flexible articulated caudal fin. Advanced Robotics, 2014, 28, 1665-1676.	1.1	12
2	Inner Workings: A soft robot that swims like a fish. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17688-17688.	3.3	1
3	Dynamics of viscous liquid within a closed elastic cylinder subject to external forces with application to soft robotics. Journal of Fluid Mechanics, 2014, 758, 221-237.	1.4	26
4	Locomotion of inchworm-inspired robot made of smart soft composite (SSC). Bioinspiration and Biomimetics, 2014, 9, 046006.	1.5	181
5	Using "Clickâ€eâ€Bricks―to Make 3D Elastomeric Structures. Advanced Materials, 2014, 26, 5991-5999.	11.1	73
6	A Resilient, Untethered Soft Robot. Soft Robotics, 2014, 1, 213-223.	4.6	885
7	FERROMAGNETIC SOFT ROBOT BIO-MIMETICALLY INSPIRED. , 2015, , .		0
8	Slithering towards autonomy: a self-contained soft robotic snake platform with integrated curvature sensing. Bioinspiration and Biomimetics, 2015, 10, 055001.	1.5	59
9	A comprehensive physics-based model encompassing variable surface resistance and underlying physics of ionic polymer-metal composite actuators. Journal of Applied Physics, 2015, 118, .	1.1	29
10	Bioinspired design and fabrication principles of reliable fluidic soft actuation modules. , 2015, , .		13
11	Contrast Agent Incorporation into Silicone Enables Realâ€Time Flowâ€Structure Analysis of Mammalian Veinâ€Inspired Soft Pumps. Advanced Functional Materials, 2015, 25, 2129-2137.	7.8	12
12	Poroelastic Foams for Simple Fabrication of Complex Soft Robots. Advanced Materials, 2015, 27, 6334-6340.	11.1	109
13	Elastomeric Actuators on Airfoils for Aerodynamic Control of Lift and Drag. Advanced Engineering Materials, 2015, 17, 951-960.	1.6	7
14	Performance of Very Small Robotic Fish Equipped with CMOS Camera. Robotics, 2015, 4, 421-434.	2.1	6
15	Soft-Body Robot Fish. Springer Tracts in Mechanical Engineering, 2015, , 161-191.	0.1	5
16	Qualitative control of soft robotic peristaltic sorting tables. , 2015, , .		2
17	Soft Robotics., 2015,,.		51
18	Design, fabrication and control of soft robots. Nature, 2015, 521, 467-475.	13.7	3,902

#	Article	IF	Citations
19	Dynamics and trajectory optimization for a soft spatial fluidic elastomer manipulator., 2015,,.		32
20	Haptic identification of objects using a modular soft robotic gripper. , 2015, , .		194
21	3D printing antagonistic systems of artificial muscle using projection stereolithography. Bioinspiration and Biomimetics, 2015, 10, 055003.	1.5	225
22	Ferrofluid soft-robot bio-inspired by Amoeba locomotion. , 2015, , .		7
23	Momentum-driven single-actuated swimming robot. , 2015, , .		3
24	A Recipe for Soft Fluidic Elastomer Robots. Soft Robotics, 2015, 2, 7-25.	4.6	538
25	Parameter optimization and experimentation of the undulating fin of a knife fish robot. , 2015, , .		0
26	A 3D-printed, functionally graded soft robot powered by combustion. Science, 2015, 349, 161-165.	6.0	802
27	Mid-infrared plasmonic biosensing with graphene. Science, 2015, 349, 165-168.	6.0	1,167
28	Hydrodynamics of C-Start Escape Responses of Fish as Studied with Simple Physical Models. Integrative and Comparative Biology, 2015, 55, 728-739.	0.9	43
29	Scalable manufacturing of high force wearable soft actuators. Extreme Mechanics Letters, 2015, 3, 89-104.	2.0	91
30	Robot Fish. Springer Tracts in Mechanical Engineering, 2015, , .	0.1	68
31	Can Magnetic Multilayers Propel Artificial Microswimmers Mimicking Sperm Cells?. Soft Robotics, 2015, 2, 117-128.	4.6	34
32	Effect of flexure hinge type on a 3D printed fully compliant prosthetic finger. , 2015, , .		29
33	A multi-level control architecture for the bionic handling assistant. Advanced Robotics, 2015, 29, 847-859.	1.1	16
34	Dynamics of Elastic Beams with Embedded Fluid-Filled Parallel-Channel Networks. Soft Robotics, 2015, 2, 42-47.	4.6	32
35	Agile gait generation for an anguilliform robotic fish. , 2015, , .		0
36	A soft exoskeleton for hand assistive and rehabilitation application using pneumatic actuators with variable stiffness. , $2015, \ldots$		175

#	ARTICLE	IF	Citations
37	Integrated soft sensors and elastomeric actuators for tactile machines with kinesthetic sense. Extreme Mechanics Letters, 2015, 5, 47-53.	2.0	126
39	Soft Manipulators and Grippers: A Review. Frontiers in Robotics and Al, 0, 3, .	2.0	403
40	Flexible and Stretchable Strain Sensing Actuator for Wearable Soft Robotic Applications. Advanced Materials Technologies, 2016, 1, 1600018.	3.0	188
41	Investigation of Collective Behaviour and Electrocommunication in the Weakly Electric Fish, $\langle i \rangle$ Mormyrus rume $\langle i \rangle$, through a biomimetic Robotic Dummy Fish. Bioinspiration and Biomimetics, 2016, 11, 066009.	1.5	31
42	Using Voice Coils to Actuate Modular Soft Robots: Wormbot, an Example. Soft Robotics, 2016, 3, 198-204.	4.6	70
43	Kinematics and Statics for Soft Continuum Manipulators With Heterogeneous Soft Materials. , 2016, , .		4
44	A novel biomimetic jellyfish robot based on a soft and smart modular structure (SMS)., 2016,,.		9
45	Evolving soft robots to execute multiple tasks with Combined-CPPN-NEAT. , 2016, , .		5
46	Printable programmable viscoelastic materials for robots. , 2016, , .		7
47	Cyclic hydraulic actuation for soft robotic devices. , 2016, , .		16
48	Biomimetic underwater robots based on dielectric elastomer actuators. , 2016, , .		51
49	Soft damper for quick stabilization of soft robotic actuator. , 2016, , .		8
50	A three-chambed soft actuator module with omnidirectional bending motion. , 2016, , .		17
51	Soft robotics: Technologies and systems pushing the boundaries of robot abilities. Science Robotics, $2016, 1, \dots$	9.9	987
52	Embedded infrared imaging to measure the deformation of a soft robotic actuator. , 2016, , .		3
53	Precise planar motion measurement of a swimming multi-joint robotic fish. Science China Information Sciences, 2016, 59, 1.	2.7	25
54	Mechanical stiffness augmentation of a 3D printed soft prosthetic finger., 2016,,.		14
55	Biomimetic Robots. Springer Handbooks, 2016, , 543-574.	0.3	12

#	ARTICLE	IF	Citations
56	Stable propagation of mechanical signals in soft media using stored elastic energy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9722-9727.	3.3	254
57	Soft and smart modular structures actuated by shape memory alloy (SMA) wires as tentacles of soft robots. Smart Materials and Structures, 2016, 25, 085026.	1.8	107
58	An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature, 2016, 536, 451-455.	13.7	1,557
59	Terminal Sliding Mode Control for speed tracking of a Carangiform robotic fish. , 2016, , .		3
60	Design, analysis, and simulation of a planar serial–parallel mechanism for a compliant robotic fish with variable stiffness. Advances in Mechanical Engineering, 2016, 8, 168781401666092.	0.8	5
61	High-Force Soft Printable Pneumatics for Soft Robotic Applications. Soft Robotics, 2016, 3, 144-158.	4.6	427
62	Multifunctional composites with intrinsic pressure actuation and prestress for morphing structures. Composite Structures, 2016, 157, 265-274.	3.1	26
63	3D Printed Flexure Hinges for Soft Monolithic Prosthetic Fingers. Soft Robotics, 2016, 3, 120-133.	4.6	135
64	Wall following control of a robotic fish using dynamic pressure. , 2016, , .		4
65	Controlling and Simulating Soft Robotic Systems: Insights from a Thermodynamic Perspective. Soft Robotics, 2016, 3, 170-176.	4.6	28
66	Towards a miniature self-propelled jellyfish-like swimming robot. International Journal of Advanced Robotic Systems, 2016, 13, 172988141666679.	1.3	11
67	A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation. Scientific Reports, 2016, 6, 24462.	1.6	98
68	Meso-Scale Digital Materials: Modular, Reconfigurable, Lattice-Based Structures. , 2016, , .		23
69	Reduction of power consumption for fluidic soft robots using energy recovery technique. , 2016, , .		3
70	An Autonomous Charging System for a Robotic Fish. IEEE/ASME Transactions on Mechatronics, 2016, 21, 2953-2963.	3.7	31
71	Dynamics and trajectory optimization for a soft spatial fluidic elastomer manipulator. International Journal of Robotics Research, 2016, 35, 1000-1019.	5.8	161
72	A composite soft bending actuation module with integrated curvature sensing. , 2016, , .		44
73	System-level challenges in pressure-operated soft robotics. Proceedings of SPIE, 2016, , .	0.8	2

#	Article	IF	Citations
74	Design and Control of a Single-Motor-Actuated Robotic Fish Capable of Fast Swimming and Maneuverability. IEEE/ASME Transactions on Mechatronics, 2016, 21, 1711-1719.	3.7	53
75	Optimal, Efficient Sequential Control of a Soft-Bodied, Peristaltic Sorting Table. IEEE Transactions on Automation Science and Engineering, 2016, 13, 858-867.	3.4	15
76	Swimming Robots Have Scaling Laws, Too. IEEE/ASME Transactions on Mechatronics, 2016, 21, 598-600.	3.7	15
77	Electrorheological Valves for Flexible Fluidic Actuators. Soft Robotics, 2016, 3, 34-41.	4.6	56
78	Hydraulic Autonomous Soft Robotic Fish for 3D Swimming. Springer Tracts in Advanced Robotics, 2016, , 405-420.	0.3	144
79	Underwater soft-bodied pulsed-jet thrusters: Actuator modeling and performance profiling. International Journal of Robotics Research, 2016, 35, 1308-1329.	5.8	47
80	Design, kinematics, and control of a soft spatial fluidic elastomer manipulator. International Journal of Robotics Research, 2016, 35, 840-869.	5.8	255
81	Soft robotic sleeve supports heart function. Science Translational Medicine, 2017, 9, .	5.8	280
82	Adapting to Flexibility: Model Reference Adaptive Control of Soft Bending Actuators. IEEE Robotics and Automation Letters, 2017, 2, 964-970.	3.3	45
83	VAM: Hypocycloid Mechanism for Efficient Bioinspired Robotic Gaits. IEEE Robotics and Automation Letters, 2017, 2, 1055-1061.	3.3	5
84	Soft robot review. International Journal of Control, Automation and Systems, 2017, 15, 3-15.	1.6	418
85	Fin Ray Stiffness and Fin Morphology Control Ribbon-Fin-Based Propulsion. Soft Robotics, 2017, 4, 103-116.	4.6	30
86	The Quest for Natural Machine Motion: An Open Platform to Fast-Prototyping Articulated Soft Robots. IEEE Robotics and Automation Magazine, 2017, 24, 48-56.	2.2	87
87	A bio-inspired electrocommunication system for small underwater robots. Bioinspiration and Biomimetics, 2017, 12, 036002.	1.5	33
88	Flexible and stretchable sensors for fluidic elastomer actuated soft robots. MRS Bulletin, 2017, 42, 138-142.	1.7	76
89	Hybrid parameter identification of a multi-modal underwater soft robot. Bioinspiration and Biomimetics, 2017, 12, 025007.	1.5	43
90	Leveraging Internal Viscous Flow to Extend the Capabilities of Beam-Shaped Soft Robotic Actuators. Soft Robotics, 2017, 4, 126-134.	4.6	23
91	Force Measurement Toward the Instability Theory of Soft Pneumatic Actuators. IEEE Robotics and Automation Letters, 2017, 2, 985-992.	3.3	36

#	Article	IF	Citations
92	Fluid electrodes for submersible robotics based on dielectric elastomer actuators. Proceedings of SPIE, 2017, , .	0.8	7
93	Soft-Material Robotics. Foundations and Trends in Robotics, 2017, 5, 191-259.	5.0	42
94	Entirely soft dielectric elastomer robots. Proceedings of SPIE, 2017, , .	0.8	10
95	On the development of rod-based models for pneumatically actuated soft robot arms: A five-parameter constitutive relation. International Journal of Solids and Structures, 2017, 120, 226-235.	1.3	35
96	Design and control of a 3-chambered fiber reinforced soft actuator with off-the-shelf stretch sensors. International Journal of Intelligent Robotics and Applications, 2017, 1, 342-351.	1.6	24
97	Smart Braid Feedback for the Closed-Loop Control of Soft Robotic Systems. Soft Robotics, 2017, 4, 261-273.	4.6	29
98	Undulatory Swimming Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model. Soft Robotics, 2017, 4, 202-210.	4.6	82
99	Stiffness Customization and Patterning for Property Modulation of Silicone-Based Soft Pneumatic Actuators. Soft Robotics, 2017, 4, 251-260.	4.6	74
100	Fundamentals of soft robot locomotion. Journal of the Royal Society Interface, 2017, 14, 20170101.	1.5	207
101	Soft Robotics: Review of Fluidâ€Driven Intrinsically Soft Devices; Manufacturing, Sensing, Control, and Applications in Humanâ€Robot Interaction. Advanced Engineering Materials, 2017, 19, 1700016.	1.6	707
102	Architectures of soft robotic locomotion enabled by simple mechanical principles. Soft Matter, 2017, 13, 4441-4456.	1.2	26
103	Fast-moving soft electronic fish. Science Advances, 2017, 3, e1602045.	4.7	621
104	Automatic design of fiber-reinforced soft actuators for trajectory matching. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 51-56.	3.3	367
105	Elastic Inflatable Actuators for Soft Robotic Applications. Advanced Materials, 2017, 29, 1604977.	11.1	300
106	Energy efficiency of mobile soft robots. Soft Matter, 2017, 13, 8223-8233.	1.2	36
107	A soft robot that navigates its environment through growth. Science Robotics, 2017, 2, .	9.9	603
108	Multimaterials 3D Printing for Free Assembly Manufacturing of Magnetic Driving Soft Actuator. Advanced Materials Interfaces, 2017, 4, 1700629.	1.9	94
109	Hybrid 3D Printing of Soft Electronics. Advanced Materials, 2017, 29, 1703817.	11.1	501

#	Article	IF	CITATIONS
110	3D printed soft actuators for a legged robot capable of navigating unstructured terrain., 2017,,.		123
111	Temporal and spatial programming in soft composite hydrogel objects. Journal of Materials Chemistry B, 2017, 5, 7491-7495.	2.9	4
112	An Additive Millimeterâ€Scale Fabrication Method for Soft Biocompatible Actuators and Sensors. Advanced Materials Technologies, 2017, 2, 1700135.	3.0	54
113	Torque Characterization of a Novel Pneumatic Soft-and-Rigid Hybrid Actuator. , 2017, , .		6
114	Developing a Novel Robotic Fish With Antagonistic Artificial Muscle Actuators. , 2017, , .		6
115	Soft Photochemical Actuation Systems: Tuning Performance Through Solvent Selection. , 2017, , .		0
116	A Constitutive Model for Torsional Loads on Fluid-Driven Soft Robots. , 2017, , .		5
117	Click chemistry stereolithography for soft robots that self-heal. Journal of Materials Chemistry B, 2017, 5, 6249-6255.	2.9	126
118	A Biomimetic Underwater Soft Robot Inspired by Cephalopod Mollusc. IEEE Robotics and Automation Letters, 2017, 2, 2217-2223.	3.3	40
119	Electromechanical Control and Stability Analysis of a Soft Swim-Bladder Robot Driven by Dielectric Elastomer. Journal of Applied Mechanics, Transactions ASME, 2017, 84, .	1.1	16
120	A survey on fabrication, control, and hydrodynamic function of biomimetic robotic fish. Science China Technological Sciences, 2017, 60, 1365-1380.	2.0	29
121	Design and characterization of a miniature free-swimming robotic fish based on multi-material 3D printing. International Journal of Intelligent Robotics and Applications, 2017, 1, 209-223.	1.6	26
122	Modeling and experiments of a soft robotic gripper in amphibious environments. International Journal of Advanced Robotic Systems, 2017, 14, 172988141770714.	1.3	87
123	Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures. Soft Robotics, 2017, 4, 33-48.	4.6	164
124	Data-Assisted Modeling and Speed Control of a Robotic Fish. IEEE Transactions on Industrial Electronics, 2017, 64, 4150-4157.	5.2	30
125	Directly Fabricating Soft Robotic Actuators With an Open-Source 3-D Printer. IEEE Robotics and Automation Letters, 2017, 2, 277-281.	3.3	54
126	Soft Robotics Technology and a Soft Table for Industrial Applications. Advances in Intelligent Systems and Computing, 2017, , 397-409.	0.5	1
127	Computational design and fabrication of soft pneumatic objects with desired deformations. ACM Transactions on Graphics, 2017, 36, 1-12.	4.9	52

#	Article	IF	CITATIONS
128	SHIN-TAI: A method for controlling characteristics of a humanoid robot's body using artificial muscles and fats. , 2017 , , .		1
129	Design and research of a novel caudal-fin propulsion mechanism with two degrees of freedom. , 2017, , .		2
130	A kind of soft pneumatic actuator based on multi-material 3D print technology. , 2017, , .		9
131	A rolling soft cable climbing robot: Design analysis and fabrication. , 2017, , .		2
132	3D printing of a thin-wall soft and monolithic gripper using fused filament fabrication. , 2017, , .		25
133	Visual servoing control of soft robots based on finite element model. , 2017, , .		21
134	Development of bio-inspired underwater robot with adaptive morphology capable of multiple swimming modes. , $2017, \dots$		6
135	A 3D printed monolithic soft gripper with adjustable stiffness. , 2017, , .		31
136	Stimuli-Responsive Soft Untethered Grippers for Drug Delivery and Robotic Surgery. Frontiers in Mechanical Engineering, $2017, 3, \ldots$	0.8	97
137	DESIGNING DIELECTRIC ELASTOMERS OVER MULTIPLE LENGTH SCALES FOR 21ST CENTURY SOFT MATERIALS TECHNOLOGIES. Rubber Chemistry and Technology, 2017, 90, 207-224.	0.6	8
138	Soft Somatosensitive Actuators via Embedded 3D Printing. Advanced Materials, 2018, 30, e1706383.	11.1	398
139	3D printing of robotic soft actuators with programmable bioinspired architectures. Nature Communications, 2018, 9, 878.	5.8	346
140	HCI meets Material Science. , 2018, , .		67
141	Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators. Science Robotics, 2018, 3, .	9.9	229
142	Fully Soft 3D-Printed Electroactive Fluidic Valve for Soft Hydraulic Robots. Soft Robotics, 2018, 5, 258-271.	4.6	68
143	Understanding Fish Linear Acceleration Using an Undulatory Biorobotic Model with Soft Fluidic Elastomer Actuated Morphing Median Fins. Soft Robotics, 2018, 5, 375-388.	4.6	57
144	The tongue as a gripper. Journal of Experimental Biology, 2018, 221, .	0.8	27
145	Soft Ultrathin Electronics Innervated Adaptive Fully Soft Robots. Advanced Materials, 2018, 30, e1706695.	11.1	301

#	Article	IF	CITATIONS
146	Interaction Between Inertia, Viscosity, and Elasticity in Soft Robotic Actuator With Fluidic Network. IEEE Transactions on Robotics, 2018, 34, 81-90.	7.3	19
147	A Continuum Model for Fiber-Reinforced Soft Robot Actuators. Journal of Mechanisms and Robotics, 2018, 10, .	1.5	34
148	Controlling a Robotic Fish to Swim Along a Wall Using Hydrodynamic Pressure Feedback. IEEE Journal of Oceanic Engineering, 2018, 43, 369-380.	2.1	31
149	Untethered soft robotics. Nature Electronics, 2018, 1, 102-112.	13.1	704
150	A cephalopod-inspired combustion powered hydro-jet engine using soft actuators. Extreme Mechanics Letters, 2018, 20, 1-8.	2.0	23
151	Slit Tubes for Semisoft Pneumatic Actuators. Advanced Materials, 2018, 30, 1704446.	11.1	68
152	3D printing of soft robotic systems. Nature Reviews Materials, 2018, 3, 84-100.	23.3	620
153	Exploration of underwater life with an acoustically controlled soft robotic fish. Science Robotics, 2018, 3, .	9.9	489
154	Untethered soft robot capable of stable locomotion using soft electrostatic actuators. Extreme Mechanics Letters, 2018, 21, 9-16.	2.0	160
155	Motion Control of Robotic Fish Under Dynamic Environmental Conditions Using Adaptive Control Approach. IEEE Journal of Oceanic Engineering, 2018, 43, 381-390.	2.1	11
156	Compliant Buckled Foam Actuators and Application in Patient-Specific Direct Cardiac Compression. Soft Robotics, 2018, 5, 99-108.	4.6	21
157	Artificial Heliotropism and Nyctinasty Based on Optomechanical Feedback and No Electronics. Soft Robotics, 2018, 5, 93-98.	4.6	13
159	An Ultralightweight and Living Legged Robot. Soft Robotics, 2018, 5, 17-23.	4.6	34
160	A Soft Biomimetic Module of Elephant Trunk Driven by Dielectric Elastomers. , 2018, , .		4
161	Force Generation by Parallel Combinations of Fiber-Reinforced Fluid-Driven Actuators. IEEE Robotics and Automation Letters, 2018, 3, 3999-4006.	3.3	17
162	Development of High-Performance Soft Robotic Fish by Numerical Coupling Analysis. Applied Bionics and Biomechanics, 2018, 2018, 1-12.	0.5	13
163	Design of a Multi-Stage Stiffness Enhancing Unit for a Soft Robotic Finger and its Robust Motion Control. , 2018, , .		3
164	Modeling and Motion Planning for an Artificial Fishtail. IFAC-PapersOnLine, 2018, 51, 319-324.	0.5	4

#	Article	IF	Citations
165	Approach of Flow Control Around Unmanned Underwater Robot. IFAC-PapersOnLine, 2018, 51, 452-457.	0.5	4
166	Assessing the Significance of Tail Actuation Strategy in Ethorobotic Fish. , 2018, , .		1
167	On Locomotion of a Laminated Fish-Inspired Robot in a Small-to-Size Environment. , 2018, , .		1
168	Learning Based Speed Control of Soft Robotic Fish. , 2018, , .		7
169	A Traveling Wave Model Guided Robotic Fish Design Using Double Slot-Crank Mechanism. , 2018, , .		0
170	Using Multi-Stable Origami Mechanism for Peristaltic Gait Generation: A Case Study. , 2018, , .		4
171	Soft Robotic Finger with Integrated Stretchable Strain Sensor. , 2018, , .		13
172	Chasing biomimetic locomotion speeds: Creating untethered soft robots with shape memory alloy actuators. Science Robotics, 2018, 3, .	9.9	125
173	Softâ€Matter Engineering for Soft Robotics. Advanced Materials Technologies, 2019, 4, 1800477.	3.0	201
174	Vacuum-Actuated Bending for Grasping. Robotics, 2018, 7, 73.	2.1	1
175	Accurate multivariable arbitrary piecewise model regression of McKibben and Peano muscle static and damping force behavior. Smart Materials and Structures, 2018, 27, 105048.	1.8	4
176	Bio-Inspired Octopus Robot Based on Novel Soft Fluidic Actuator. , 2018, , .		27
177	Mechatronics Design, Modeling, and Characterization of a Soft Robotic Table for Object Manipulation on Surface. IEEE/ASME Transactions on Mechatronics, 2018, 23, 2715-2725.	3.7	8
178	Thrust force characterization of free-swimming soft robotic jellyfish. Bioinspiration and Biomimetics, 2018, 13, 064001.	1.5	104
179	A Novel Approach to Under-Actuated Control of Fluidic Systems. , 2018, , .		4
180	Design of Frictional 2D-Anisotropy Surface for Wriggle Locomotion of Printable Soft-Bodied Robots. , 2018, , .		21
181	Adaptive visual servoing control for an underwater soft robot. Assembly Automation, 2018, 38, 669-677.	1.0	13
182	Multipoint Bending and Shape Retention of a Pneumatic Bending Actuator by a Variable Stiffness Endoskeleton. Soft Robotics, 2018, 5, 718-725.	4.6	37

#	Article	IF	Citations
183	Systematic engineering design helps creating new soft machines. Robotics and Biomimetics, 2018, 5, 5.	1.7	17
184	A Modular Dielectric Elastomer Actuator to Drive Miniature Autonomous Underwater Vehicles. , 2018, , .		45
185	Motion Control of Bionic Robots via Biomimetic Learning. Unmanned Systems, 2018, 06, 165-174.	2.7	1
186	Incorporate Oblique Muscle Contractions to Strengthen Soft Robots. , 2018, , .		1
187	Control of a muscle-like soft actuator via a bioinspired approach. Bioinspiration and Biomimetics, 2018, 13, 066005.	1.5	31
188	Pneumatically Actuated Soft Robotic Arm for Adaptable Grasping. Acta Mechanica Solida Sinica, 2018, 31, 608-622.	1.0	30
189	Toward a Common Framework for the Design of Soft Robotic Manipulators with Fluidic Actuation. Soft Robotics, 2018, 5, 622-649.	4.6	30
190	Untethered Recyclable Tubular Actuators with Versatile Locomotion for Soft Continuum Robots. Advanced Materials, 2018, 30, e1801103.	11.1	133
191	Design of Multifunctional Soft Doming Actuator for Soft Machines. Advanced Materials Technologies, 2018, 3, 1800069.	3.0	14
192	Electronic skins for soft, compact, reversible assembly of wirelessly activated fully soft robots. Science Robotics, 2018, 3, .	9.9	176
193	Bio-inspired soft robotics: Material selection, actuation, and design. Extreme Mechanics Letters, 2018, 22, 51-59.	2.0	247
194	Harnessing bistability for directional propulsion of soft, untethered robots. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5698-5702.	3.3	276
195	Artificial muscle driven soft hydraulic robot: electromechanical actuation and simplified modeling. Smart Materials and Structures, 2018, 27, 095016.	1.8	24
196	Robotics and High-Throughput Techniques. , 2018, , 155-166.		2
197	Soft Biomimetic Fish Robot Made of Dielectric Elastomer Actuators. Soft Robotics, 2018, 5, 466-474.	4.6	222
198	Switchable Adhesion Actuator for Amphibious Climbing Soft Robot. Soft Robotics, 2018, 5, 592-600.	4.6	112
199	Continuum-Based Geometry/Analysis Approach for Flexible and Soft Robotic Systems. Soft Robotics, 2018, 5, 613-621.	4.6	20
200	Self-Growing and Serpentine Locomotion of Liquid Metal Induced by Copper Ions. ACS Applied Materials & Samp; Interfaces, 2018, 10, 22889-22895.	4.0	62

#	Article	lF	Citations
201	Low-inertia vacuum-powered soft pneumatic actuator coil characterization and design methodology. , 2018, , .		10
202	Highly Bendable Ionic Soft Actuator Based on Nitrogenâ€Enriched 3D Heteroâ€Nanostructure Electrode. Advanced Functional Materials, 2018, 28, 1802464.	7.8	51
203	Directly Printable Flexible Strain Sensors for Bending and Contact Feedback of Soft Actuators. Frontiers in Robotics and Al, 2018, 5, 2.	2.0	53
204	Robotic Flexible Electronics with Self-Bendable Films. Soft Robotics, 2018, 5, 710-717.	4.6	13
205	Mechatronic Design and Manufacturing of the Intelligent Robotic Fish for Bio-Inspired Swimming Modes. Electronics (Switzerland), 2018, 7, 118.	1.8	21
206	Motion Control and Motion Coordination of Bionic Robotic Fish: A Review. Journal of Bionic Engineering, 2018, 15, 579-598.	2.7	84
207	Effect of base rotation on the controllability of a redundant soft robotic arm., 2018,,.		1
208	An inverse kinematics method of a soft robotic arm with three-dimensional locomotion for underwater manipulation. , 2018, , .		15
209	Capability by Stacking: The Current Design Heuristic for Soft Robots. Biomimetics, 2018, 3, 16.	1.5	15
210	Acoustic actuators based on the resonance of an acoustic-film system applied to the actuation of soft robots. Journal of Sound and Vibration, 2018, 432, 310-326.	2.1	1
211	Prototype of a fish inspired swimming silk robot. , 2018, , .		3
212	A Soft Robotic Fish with Variable-stiffness Decoupled Mechanisms. Journal of Bionic Engineering, 2018, 15, 599-609.	2.7	24
213	A unified multi-soft-body dynamic model for underwater soft robots. International Journal of Robotics Research, 2018, 37, 648-666.	5.8	49
214	Leveraging fluid resistance in soft robots. , 2018, , .		14
215	Robotic tails: a state-of-the-art review. Robotica, 2018, 36, 1263-1277.	1.3	26
216	Three-Dimensional Modeling of a Fin-Actuated Robotic Fish With Multimodal Swimming. IEEE/ASME Transactions on Mechatronics, 2018, 23, 1641-1652.	3.7	51
217	Inchworm-Inspired Locomotion in Untethered Soft Robots. , 2019, , .		19
218	Resilient Task Planning and Execution for Reactive Soft Robots. , 2019, , .		3

#	ARTICLE	IF	CITATIONS
219	A comparison of second-order model order reduction methods for an artificial fishtail. Automatisierungstechnik, 2019, 67, 648-667.	0.4	17
220	Analysis and Application of the Bending Actuators Used in Soft Robotics. Lecture Notes in Computer Science, 2019, , 568-575.	1.0	2
221	Development of MEMS-fabricated bidirectional ECF (electro-conjugate fluid) micropumps. Sensors and Actuators A: Physical, 2019, 295, 317-323.	2.0	10
222	Multi-DoF Force Characterization of Soft Actuators. IEEE Robotics and Automation Letters, 2019, 4, 3679-3686.	3.3	13
223	Efficiency of Origami-Based Vacuum Pneumatic Artificial Muscle for Off-Grid Operation. International Journal of Precision Engineering and Manufacturing - Green Technology, 2019, 6, 789-797.	2.7	12
224	Swimming Performance of a Tensegrity Robotic Fish. Soft Robotics, 2019, 6, 520-531.	4.6	58
225	FludoJelly: Experimental Study on Jellyfish-Like Soft Robot Enabled by Soft Pneumatic Composite (SPC). Robotics, 2019, 8, 56.	2.1	50
226	Design of soft multi-material pneumatic actuators based on principal strain field. Materials and Design, 2019, 182, 108000.	3.3	33
227	Inflatable L-shaped prisms as soft actuators for soft exogloves. Engineering Research Express, 2019, 1, 025009.	0.8	5
228	Direct-Ink-Write 3D Printing of Hydrogels into Biomimetic Soft Robots. ACS Nano, 2019, 13, 13176-13184.	7.3	203
229	Stickâ€On Largeâ€Strain Sensors for Soft Robots. Advanced Materials Interfaces, 2019, 6, 1900985.	1.9	79
230	PDMS-based dual-channel pneumatic micro-actuator. Smart Materials and Structures, 2019, 28, 115044.	1.8	16
231	A Periodic Deformation Mechanism of a Soft Actuator for Crawling and Grasping. Advanced Materials Technologies, 2019, 4, 1900653.	3.0	27
232	Remotely Lightâ€Powered Soft Fluidic Actuators Based on Plasmonicâ€Driven Phase Transitions in Elastic Constraint. Advanced Materials, 2019, 31, e1905671.	11.1	26
233	Fully 3D Printed Monolithic Soft Gripper with High Conformal Grasping Capability. , 2019, , .		27
234	Jellyfish-Inspired Soft Robot Driven by Fluid Electrode Dielectric Organic Robotic Actuators. Frontiers in Robotics and Al, 2019, 6, 126.	2.0	57
235	Recycling-Oriented Design in Soft Robotics. Actuators, 2019, 8, 62.	1.2	7
236	Ultragentle manipulation of delicate structures using a soft robotic gripper. Science Robotics, 2019, 4, .	9.9	186

#	Article	IF	CITATIONS
237	Multi-Material Soft Strain Sensors with High Gauge Factors for Proprioceptive Sensing of Soft Bending Actuators. , 2019, , .		8
238	Nonlinear Orientation Controller for a Compliant Robotic Fish Based on Asymmetric Actuation. , 2019,		6
239	A 3D Printed Paper-Based Thermally Driven Soft Robotic Gripper Inspired by Cabbage. International Journal of Precision Engineering and Manufacturing, 2019, 20, 1915-1928.	1.1	33
240	A Low-cost Inchworm-inspired Soft Robot Driven by Supercoiled Polymer Artificial Muscle. , 2019, , .		27
241	3D Printed Ferrofluid Based Soft Actuators. , 2019, , .		5
242	A soft matter computer for soft robots. Science Robotics, 2019, 4, .	9.9	59
243	Biomimetic Micro-Gel Robot Having a Soft-Rigid Hybrid Structure. , 2019, , .		1
244	Film-based anisotropic balloon inflatable bending actuator. Journal of Mechanical Science and Technology, 2019, 33, 4469-4476.	0.7	8
245	Morphing Structure for Changing Hydrodynamic Characteristics of a Soft Underwater Walking Robot. IEEE Robotics and Automation Letters, 2019, 4, 4163-4169.	3.3	42
246	An Actively Controlled Variable Stiffness Structure via Layer Jamming and Pneumatic Actuation. , 2019, , .		5
247	Optimal Design of Soft Pneumatic Bending Actuators Subjected to Design-Dependent Pressure Loads. IEEE/ASME Transactions on Mechatronics, 2019, 24, 2873-2884.	3.7	20
248	Contactless Manipulation of Soft Robots. Materials, 2019, 12, 3065.	1.3	34
249	An untethered soft chemo-mechanical robot with composite structure and optimized control. Extreme Mechanics Letters, 2019, 27, 27-33.	2.0	17
250	Bioinspiriertes Design und additive Fertigung von weichen Materialien, Maschinen, Robotern und haptischen Schnittstellen. Angewandte Chemie, 2019, 131, 11300-11324.	1.6	5
251	Bioâ€inspired Design and Additive Manufacturing of Soft Materials, Machines, Robots, and Haptic Interfaces. Angewandte Chemie - International Edition, 2019, 58, 11182-11204.	7.2	120
252	Realizing the potential of dielectric elastomer artificial muscles. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2476-2481.	3.3	276
253	Color and Morphology Camouflaging using Biomimetic Scales. Advanced Intelligent Systems, 2019, 1, 1900021.	3.3	2
254	Electrolytic vascular systems for energy-dense robots. Nature, 2019, 571, 51-57.	13.7	143

#	Article	IF	Citations
255	Soft Sensors for Curvature Estimation under Water in a Soft Robotic Fish. , 2019, , .		10
256	Computational Resources of Miniature Robots: Classification and Implications. IEEE Robotics and Automation Letters, 2019, 4, 2722-2729.	3.3	1
257	Soft Robot Actuation Strategies for Locomotion in Granular Substrates. IEEE Robotics and Automation Letters, 2019, 4, 2630-2636.	3.3	46
258	Materials that make robots smart. International Journal of Robotics Research, 2019, 38, 1338-1351.	5.8	16
259	Soft Electronic Skin for Multiâ€Site Damage Detection and Localization. Advanced Functional Materials, 2019, 29, 1900160.	7.8	57
260	On-Board Pneumatic Pressure Generation Methods for Soft Robotics Applications. Actuators, 2019, 8, 2.	1.2	26
261	FifoBots: Foldable Soft Robots for Flipping Locomotion. Soft Robotics, 2019, 6, 532-559.	4.6	12
262	Elementary Slender Soft Robots Inspired by Skeleton Joint System of Animals. Soft Robotics, 2019, 6, 377-388.	4.6	10
263	Folded-Tube Soft Pneumatic Actuators for Bending. Soft Robotics, 2019, 6, 174-183.	4.6	28
264	A Soft Ring-Shaped Actuator for Radial Contracting Deformation: Design and Modeling. Soft Robotics, 2019, 6, 444-454.	4.6	26
265	Bioinspired Robotics., 2019,, 495-541.		0
266	Fabrication and Dynamic Modeling of Bidirectional Bending Soft Actuator Integrated with Optical Waveguide Curvature Sensor. Soft Robotics, 2019, 6, 495-506.	4.6	73
267	Pleated Film-Based Soft Twisting Actuator. International Journal of Precision Engineering and Manufacturing, 2019, 20, 1149-1158.	1.1	9
268	A soft crawling robot driven by single twisted and coiled actuator. Sensors and Actuators A: Physical, 2019, 291, 80-86.	2.0	58
269	A Fully Three-Dimensional Printed Inchworm-Inspired Soft Robot with Magnetic Actuation. Soft Robotics, 2019, 6, 333-345.	4.6	162
270	Inchworm-Inspired Soft Robot With Light-Actuated Locomotion. IEEE Robotics and Automation Letters, 2019, 4, 1647-1652.	3.3	16
271	Transformer Hydrogels: A Review. Advanced Materials Technologies, 2019, 4, 1900043.	3.0	207
272	Design of a Robotic Fish Based on a Passive Flexible Mechanism. , 2019, , .		1

#	Article	IF	CITATIONS
273	Basic Body Plans for Soft Modular Pneubotics in Architecture. Prostor, 2019, 27, 248-257.	0.0	1
274	A 2D Pneumatic Soft Robot with Suckers for Locomotion. , 2019, , .		0
275	Neural-Dynamics-Based Path Planning of a Bionic Robotic Fish*., 2019, , .		1
276	Design, Modeling and Testing of a Flagellum-inspired Soft Underwater Propeller Exploiting Passive Elasticity., 2019,,.		2
277	Structurally isolated photoactuation of graphene-mixed temperature-responsive hydrogels in soft-rigid series structure. ROBOMECH Journal, 2019, 6, .	0.9	7
278	3D-Printing and Machine Learning Control of Soft Ionic Polymer-Metal Composite Actuators. Scientific Reports, 2019, 9, 17482.	1.6	46
279	Modeling and Control of A Soft Circular Crawling Robot. , 2019, , .		0
280	An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Science Robotics, 2019, 4, .	9.9	295
281	Design, Modeling, and Control of Biomimetic Fish Robot: A Review. Journal of Bionic Engineering, 2019, 16, 967-993.	2.7	70
282	Hydrogel-matrix encapsulated Nitinol actuation with self-cooling mechanism. RSC Advances, 2019, 9, 34244-34255.	1.7	27
283	A Biomimetic Flexible Fishtail Embedded With Shape Memory Alloy Wires. IEEE Access, 2019, 7, 166906-166916.	2.6	14
284	Fluidic Elastomer Actuators for Haptic Interactions in Virtual Reality. IEEE Robotics and Automation Letters, 2019, 4, 277-284.	3.3	22
285	Tube-crawling soft robots driven by multistable buckling mechanics. Extreme Mechanics Letters, 2019, 26, 61-68.	2.0	27
286	Untethered soft robotic jellyfish. Smart Materials and Structures, 2019, 28, 015019.	1.8	60
287	A Geometrically Exact Model for Soft Continuum Robots: The Finite Element Deformation Space Formulation. Soft Robotics, 2019, 6, 790-811.	4.6	151
288	Application-Driven Design of Soft, 3-D Printed, Pneumatic Actuators With Bellows. IEEE/ASME Transactions on Mechatronics, 2019, 24, 78-87.	3.7	106
289	Design and Modelling of Flex-Rigid Soft Robot for Flipping Locomotion. Journal of Intelligent and Robotic Systems: Theory and Applications, 2019, 95, 379-388.	2.0	8
290	Hardware Sequencing of Inflatable Nonlinear Actuators for Autonomous Soft Robots. Advanced Materials, 2019, 31, e1804598.	11.1	46

#	Article	IF	CITATIONS
291	Highly Dynamic Shape Memory Alloy Actuator for Fast Moving Soft Robots. Advanced Materials Technologies, 2019, 4, 1800540.	3.0	125
292	A general soft robot module driven by twisted and coiled actuators. Smart Materials and Structures, 2019, 28, 035019.	1.8	42
293	Fastâ€Response, Stiffnessâ€Tunable Soft Actuator by Hybrid Multimaterial 3D Printing. Advanced Functional Materials, 2019, 29, 1806698.	7.8	292
294	Additive manufacturing of soft robots. , 2019, , 335-359.		18
295	Design of Paired Pouch Motors for Robotic Applications. Advanced Materials Technologies, 2019, 4, 1800414.	3.0	33
296	Delayed burst of a gel balloon. Journal of the Mechanics and Physics of Solids, 2019, 124, 143-158.	2.3	11
297	Bioinspired Design of Vascular Artificial Muscle. Advanced Materials Technologies, 2019, 4, 1800244.	3.0	86
298	Chemicals Enabled Liquid Metal Machine. Topics in Mining, Metallurgy and Materials Engineering, 2019, , 311-328.	1.4	0
299	A Single-Actuated Swimming Robot: Design, Modelling, and Experiments. Journal of Intelligent and Robotic Systems: Theory and Applications, 2019, 94, 471-489.	2.0	6
300	Robust proprioceptive grasping with a soft robot hand. Autonomous Robots, 2019, 43, 681-696.	3.2	120
301	Toward a Maneuverable Miniature Robotic Fish Equipped With a Novel Magnetic Actuator System. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 2327-2337.	5.9	17
302	Gliding Motion Regulation of a Robotic Dolphin Based on a Controllable Fluke. IEEE Transactions on Industrial Electronics, 2020, 67, 2945-2953.	5.2	19
303	Soft Robotic Pad Maturing for Practical Applications. Soft Robotics, 2020, 7, 30-43.	4.6	23
304	An Experimental Study on the Fish Body Flapping Patterns by Using a Biomimetic Robot Fish. IEEE Robotics and Automation Letters, 2020, 5, 64-71.	3.3	42
305	Underwater Bioinspired Propulsion: From Inspection to Manipulation. IEEE Transactions on Industrial Electronics, 2020, 67, 7629-7638.	5.2	48
306	Pre-Programmed Tri-Layer Electro-Thermal Actuators Composed of Shape Memory Polymer and Carbon Nanotubes. Soft Robotics, 2020, 7, 123-129.	4.6	33
307	Modeling and Analysis of Soft Pneumatic Actuator with Symmetrical Chambers Used for Bionic Robotic Fish. Soft Robotics, 2020, 7, 168-178.	4.6	30
308	Grapheneâ€Based Devices for Thermal Energy Conversion and Utilization. Advanced Functional Materials, 2020, 30, 1903888.	7.8	30

#	Article	IF	CITATIONS
309	Review of Morphing Laminated Composites. Applied Mechanics Reviews, 2020, 72, .	4.5	50
310	Meet Stevie: a Socially Assistive Robot Developed Through Application of a  Design-Thinking' Approach. Journal of Intelligent and Robotic Systems: Theory and Applications, 2020, 98, 39-58.	2.0	26
311	Novel Accordion-Inspired Foldable Pneumatic Actuators for Knee Assistive Devices. Soft Robotics, 2020, 7, 95-108.	4.6	42
312	Interfacing Soft and Hard: A Spring Reinforced Actuator. Soft Robotics, 2020, 7, 44-58.	4.6	51
313	Bioinspired Three-Dimensional-Printed Helical Soft Pneumatic Actuators and Their Characterization. Soft Robotics, 2020, 7, 267-282.	4.6	91
314	Towards Sensorless Soft Robotics: Self-Sensing Stiffness Control of Dielectric Elastomer Actuators. IEEE Transactions on Robotics, 2020, 36, 174-188.	7.3	26
315	Smart Composites and Hybrid Soft-Foldable Technologies for Minimally Invasive Surgical Robots. , 2020, , 323-340.		2
316	Nonlinear Free Vibration of Hyperelastic Beams Based on Neo-Hookean Model. International Journal of Structural Stability and Dynamics, 2020, 20, 2050015.	1.5	16
317	MakeSense: Automated Sensor Design for Proprioceptive Soft Robots. Soft Robotics, 2020, 7, 332-345.	4.6	70
318	Design and Control of Foam Hands for Dexterous Manipulation. International Journal of Humanoid Robotics, 2020, 17, 1950033.	0.6	12
319	Operation Planning and Closed-Loop Control of a Soft Robotic Table for Simultaneous Multiple-Object Manipulation. IEEE Transactions on Automation Science and Engineering, 2020, 17, 981-990.	3.4	7
320	Body Wave Generation for Anguilliform Locomotion Using a Fiber-Reinforced Soft Fluidic Elastomer Actuator Array Toward the Development of the Eel-Inspired Underwater Soft Robot. Soft Robotics, 2020, 7, 233-250.	4.6	45
321	Chamber layout design optimization of soft pneumatic robots. Smart Materials and Structures, 2020, 29, 025017.	1.8	12
322	Soft Underwater Robot Actuated by Shape-Memory Alloys "JellyRobcib―for Path Tracking through Fuzzy Visual Control. Applied Sciences (Switzerland), 2020, 10, 7160.	1.3	24
323	Development and Performance Analysis of Pneumatic Soft-Bodied Bionic Basic Execution Unit. Journal of Robotics, 2020, 2020, 1-13.	0.6	2
324	Role of Fiber Orientations in the Mechanics of Bioinspired Fiber-Reinforced Elastomers. Soft Robotics, 2021, 8, 640-650.	4.6	9
325	Reconfigurable Particle Swarm Robotics Powered by Acoustic Vibration Tweezer. Soft Robotics, 2021, 8, 735-743.	4.6	13
326	Numerical simulation and experimental study on flexible buoyancy material of hollow glass microsphere and silicone rubber for small deep-sea soft robots. Applied Materials Today, 2020, 21, 100875.	2.3	1

#	Article	IF	CITATIONS
327	Control-oriented Modeling of Soft Robotic Swimmer with Koopman Operators. , 2020, , .		8
328	Recent Progress of Soft Electrothermal Actuators. Soft Robotics, 2021, 8, 241-250.	4.6	30
329	Development and Motion Control of Biomimetic Underwater Robots: A Survey. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 833-844.	5.9	48
330	Performance Enhancement of Soft Nanotextured Thermopneumatic Actuator by Incorporating Silver Nanowires into Elastomer Body. Soft Robotics, 2020, 8, 711-719.	4.6	3
331	Intergrated Shape Memory Alloys Soft Actuators with Periodic and Inhomogeneous Deformations by Modulating Elastic Tendon Structures. Advanced Engineering Materials, 2020, 22, 2000640.	1.6	3
332	Bio-inspired Tensegrity Fish Robot. , 2020, , .		20
333	Soft Pneumatic Actuator with Bimodal Bending Response Using a Single Pressure Source. Soft Robotics, 2021, 8, 478-484.	4.6	12
334	Design and Fabrication of a Low-Cost Silicone and Water-Based Soft Actuator with a High Load-to-Weight Ratio. Soft Robotics, 2021, 8, 448-461.	4.6	19
335	Rapid 3D Printing of Electrohydraulic (HASEL) Tentacle Actuators. Advanced Functional Materials, 2020, 30, 2005244.	7.8	22
336	Analytical Modeling and Design of Generalized Pneu-Net Soft Actuators with Three-Dimensional Deformations. Soft Robotics, 2021, 8, 462-477.	4.6	41
337	Soft Pneumatic Gripper With a Tendon-Driven Soft Origami Pump. Frontiers in Bioengineering and Biotechnology, 2020, 8, 461.	2.0	48
338	Sliding Mode Control With PID Sliding Surface for Active Vibration Damping of Pneumatically Actuated Soft Robots. IEEE Access, 2020, 8, 88793-88800.	2.6	42
339	Dynamic simulation of articulated soft robots. Nature Communications, 2020, 11, 2233.	5.8	57
340	Biomedical soft robots: current status and perspective. Biomedical Engineering Letters, 2020, 10, 369-385.	2.1	47
341	Swimming Performance of the Frog-Inspired Soft Robot. Soft Robotics, 2020, 7, 615-626.	4.6	57
342	A bio-inspired robotic fish utilizes the snap-through buckling of its spine to generate accelerations of more than $20 < i > g < /i >$. Bioinspiration and Biomimetics, 2020, 15, 055006.	1.5	8
343	A Biomimetic Fish Fin-Like Robot Based on Textile Reinforced Silicone. Micromachines, 2020, 11, 298.	1.4	28
344	Fluid–Structure Coupling Model and Experimental Validation of Interaction Between Pneumatic Soft Actuator and Lower Limb. Soft Robotics, 2020, 7, 627-638.	4.6	11

#	Article	IF	CITATIONS
345	Which is the best PID variant for pneumatic soft robots an experimental study. IEEE/CAA Journal of Automatica Sinica, 2020, 7, 451-460.	8.5	29
346	Kinematic Modelling and Experimental Validation of a Foldable Pneumatic Soft Manipulator. Applied Sciences (Switzerland), 2020, 10, 1447.	1.3	5
347	Hemispherical Cell-Inspired Soft Actuator. Frontiers in Bioengineering and Biotechnology, 2020, 8, 20.	2.0	6
348	Development of a biomimetic scallop robot capable of jet propulsion. Bioinspiration and Biomimetics, 2020, 15, 036008.	1.5	11
349	Self-Excited Vibration Valve That Induces Traveling Waves in Pneumatic Soft Mobile Robots. IEEE Robotics and Automation Letters, 2020, 5, 4133-4139.	3.3	12
350	An untethered isoperimetric soft robot. Science Robotics, 2020, 5, .	9.9	72
351	Fabrication and study of miniaturized soft pneumatic fingers. Japanese Journal of Applied Physics, 2020, 59, SIIL07.	0.8	2
352	Three-Dimensional Programmable, Reconfigurable, and Recyclable Biomass Soft Actuators Enabled by Designing an Inverse Opal-Mimetic Structure with Exchangeable Interfacial Crosslinks. ACS Applied Materials & Designing amp; Interfaces, 2020, 12, 15757-15764.	4.0	29
353	Kinematic Evaluation of a Series of Soft Actuators in Designing an Eel-inspired Robot., 2020,,.		5
354	Modular Platform for the Exploration of Form-Function Relationships in Soft Swimming Robots. , 2020, , .		6
355	EELWORM: a bioinspired multimodal amphibious soft robot., 2020,,.		17
356	Design and Characterization of a Miniature Hydraulic Power Supply for High-Bandwidth Control of Soft Robotics. , 2020, , .		2
357	Open-source five degree of freedom motion platform for investigating fish-robot interaction. HardwareX, 2020, 7, e00107.	1.1	8
358	An organosynthetic dynamic heart model with enhanced biomimicry guided by cardiac diffusion tensor imaging. Science Robotics, 2020, 5, .	9.9	30
359	Electrically Controlled Soft Actuators with Multiple and Reprogrammable Actuation Modes. Advanced Intelligent Systems, 2020, 2, 1900177.	3.3	26
360	Nonlinear Error Feedback Positioning Control for a Pneumatic Soft Bionic Fin via an Extended State Observer. IEEE Access, 2020, 8, 12688-12696.	2.6	5
361	Fluid–Structure Interaction Based on Meshless Local Petrov–Galerkin Method for Worm Soft Robot Analysis. International Journal of Precision Engineering and Manufacturing - Green Technology, 2020, 7, 727-742.	2.7	11
362	Continuum soft actuators based on reprogrammable geometric constraints. Extreme Mechanics Letters, 2020, 36, 100649.	2.0	3

#	Article	IF	CITATIONS
363	Experimental Investigation into the Dynamics of a Radially Contracting Actuator with Embedded Sensing Capability. Soft Robotics, 2020, 7, 478-490.	4.6	13
364	Understanding Inchworm Crawling for Soft-Robotics. IEEE Robotics and Automation Letters, 2020, 5, 1397-1404.	3.3	35
365	Basic design of a biomimetic underwater soft robot with switchable swimming modes and programmable artificial muscles. Smart Materials and Structures, 2020, 29, 035038.	1.8	25
366	A Programmably Compliant Origami Mechanism for Dynamically Dexterous Robots. IEEE Robotics and Automation Letters, 2020, 5, 2131-2137.	3.3	29
367	Soft Rod-Climbing Robot Inspired by Winding Locomotion of Snake. Soft Robotics, 2020, 7, 500-511.	4.6	110
368	High-force soft pneumatic actuators based on novel casting method for robotic applications. Sensors and Actuators A: Physical, 2020, 306, 111957.	2.0	50
369	A fluidic demultiplexer for controlling large arrays of soft actuators. Soft Matter, 2020, 16, 5871-5877.	1.2	25
370	Linear Acceleration of an Undulatory Robotic Fish with Dynamic Morphing Median Fin under the Instantaneous Self-propelled Condition. Journal of Bionic Engineering, 2020, 17, 241-253.	2.7	7
371	Differential Sensing Method for Multidimensional Soft Angle Measurement Using Coiled Conductive Polymer Fiber. IEEE Transactions on Industrial Electronics, 2021, 68, 401-411.	5.2	11
372	A soft manipulator for efficient delicate grasping in shallow water: Modeling, control, and real-world experiments. International Journal of Robotics Research, 2021, 40, 449-469.	5.8	118
373	Adaptive neuro-fuzzy modeling of a soft finger-like actuator for cyber-physical industrial systems. Journal of Supercomputing, 2021, 77, 2624-2644.	2.4	4
374	Morphologically induced stability on an underwater legged robot with a deformable body. International Journal of Robotics Research, 2021, 40, 435-448.	5.8	20
375	Finite Element Modeling of Soft Fluidic Actuators: Overview and Recent Developments. Advanced Intelligent Systems, 2021, 3, 2000187.	3.3	130
376	Bioinspired Sensing, Actuation, and Control in Underwater Soft Robotic Systems., 2021,,.		13
377	3D Printing Materials for Soft Robotics. Advanced Materials, 2021, 33, e2003387.	11.1	173
378	Dynamic manipulation of pneumatically controlled soft finger for home automation. Measurement: Journal of the International Measurement Confederation, 2021, 170, 108680.	2.5	4
379	Current Algorithms, Communication Methods and Designs for Underwater Swarm Robotics: A Review. IEEE Sensors Journal, 2021, 21, 153-169.	2.4	36
380	Pneumatic Supply System Parameter Optimization for Soft Actuators. Soft Robotics, 2021, 8, 152-163.	4.6	31

#	Article	IF	CITATIONS
381	Fluid-driven artificial muscles: bio-design, manufacturing, sensing, control, and applications. Bio-Design and Manufacturing, 2021, 4, 123-145.	3.9	40
382	Submersible Softâ€Robotic Platform for Noiseâ€Free Hovering Utilizing Liquid–Vapor Phase Transition. Advanced Intelligent Systems, 2021, 3, 2000147.	3.3	2
383	A 3D-printed 3D actuator for miniaturized laser scanning probes. Sensors and Actuators A: Physical, 2021, 317, 112448.	2.0	8
384	Finite-time tracking control for a variable stiffness pneumatic soft bionic caudal fin. Mechanical Systems and Signal Processing, 2021, 152, 107314.	4.4	10
385	Locomotion of Miniature Soft Robots. Advanced Materials, 2021, 33, e2003558.	11.1	95
387	Management and Intelligent Decision-Making in Complex Systems: An Optimization-Driven Approach., 2021,,.		1
388	Synergizing microfluidics with soft robotics: A perspective on miniaturization and future directions. Biomicrofluidics, 2021, 15, 011302.	1.2	22
389	Design and Modeling of Tetrahedral Soft-Legged Robot for Multigait Locomotion. IEEE/ASME Transactions on Mechatronics, 2022, 27, 1288-1298.	3.7	3
390	Advances in printing technologies for soft robotics devices applications. Advances in Chemical Engineering, 2021, , 45-89.	0.5	4
391	Laser Scanning Drive of the Peristaltic Micro-Gelrobot with Soft Rigid Hybrid Structures. , 2021, , .		1
392	Model-Based Control and External Load Estimation of an Extensible Soft Robotic Arm. Frontiers in Robotics and Al, 2020, 7, 586490.	2.0	8
393	Soft Robots for Ocean Exploration and Offshore Operations: A Perspective. Soft Robotics, 2021, 8, 625-639.	4.6	66
394	Origami Pump Actuator Based Pneumatic Quadruped Robot (OPARO). IEEE Access, 2021, 9, 41010-41018.	2.6	15
395	A Review on Actuator and Manipulator Techniques in Soft Robotics. Lecture Notes in Electrical Engineering, 2021, , 123-137.	0.3	1
396	Soft Robotics: Research, Challenges, and Prospects. Journal of Robotics and Mechatronics, 2021, 33, 45-68.	0.5	14
397	Design and Experiments of Pneumatic Soft Actuators. Robotica, 2021, 39, 1806-1815.	1.3	7
398	Development and Performance Analysis of Pneumatic Soft-Bodied Bionic Actuator. Applied Bionics and Biomechanics, 2021, 2021, 1-13.	0.5	5
399	Nonlinear analysis of compliant robotic fish locomotion. JVC/Journal of Vibration and Control, 2022, 28, 1673-1685.	1.5	3

#	Article	IF	CITATIONS
400	Tactile sensing biohybrid soft E-skin based on bioimpedance using aloe vera pulp tissues. Scientific Reports, 2021, 11, 3054.	1.6	7
401	Electronics-free pneumatic circuits for controlling soft-legged robots. Science Robotics, 2021, 6, .	9.9	177
402	Self-powered soft robot in the Mariana Trench. Nature, 2021, 591, 66-71.	13.7	545
403	Microengineered Materials with Selfâ€Healing Features for Soft Robotics. Advanced Intelligent Systems, 2021, 3, 2100005.	3.3	14
404	A Rhythmic Activation Mechanism for Soft Multi-legged Robots. Journal of Intelligent and Robotic Systems: Theory and Applications, 2021, 101, 1.	2.0	4
405	Motion and shape control of soft robots and materials. Nonlinear Dynamics, 2021, 104, 165-189.	2.7	17
406	Highly Stretchable Flame-Retardant Skin for Soft Robotics with Hydrogel–Montmorillonite-Based Translucent Matrix. Soft Robotics, 2022, 9, 98-118.	4.6	9
407	Modeling and Control of a Soft Robotic Fish with Integrated Soft Sensing. Advanced Intelligent Systems, 2023, 5, 2000244.	3.3	29
408	Water hydraulic soft actuators for underwater autonomous robotic systems. Applied Ocean Research, 2021, 109, 102551.	1.8	37
409	Designs of the Biomimetic Robotic Fishes Performing Body and/or Caudal Fin (BCF) Swimming Locomotion: A Review. Journal of Intelligent and Robotic Systems: Theory and Applications, 2021, 102, 1.	2.0	31
410	Evaluation on Swimming Efficiency of an Eel-inspired Soft Robot with Partially Damaged Body., 2021,,.		3
411	An untethered soft robotic gripper with high payload-to-weight ratio. Mechanism and Machine Theory, 2021, 158, 104226.	2.7	31
412	Liquid vaporization actuated soft structures with active cooling and heat loss control. Smart Materials and Structures, 2021, 30, 055007.	1.8	3
413	Printed silicone pneumatic actuators for soft robotics. Additive Manufacturing, 2021, 40, 101860.	1.7	29
414	Real-Time Path Planning and Following of a Gliding Robotic Dolphin Within a Hierarchical Framework. IEEE Transactions on Vehicular Technology, 2021, 70, 3243-3255.	3.9	17
415	Soft Ferrofluid Actuator Based on 3D-Printed Scaffold Removal. 3D Printing and Additive Manufacturing, 2021, 8, 126-135.	1.4	2
416	Increasing the Payload and Terrain Adaptivity of an Untethered Crawling Robot Via Soft-Rigid Coupled Linear Actuators. IEEE Robotics and Automation Letters, 2021, 6, 2405-2412.	3.3	18
417	Automatic segmentation of fish midlines for optimizing robot design. Bioinspiration and Biomimetics, 2021, 16, 046005.	1.5	8

#	Article	IF	CITATIONS
418	Soft Adaptive Mechanical Metamaterials. Frontiers in Robotics and Al, 2021, 8, 673478.	2.0	21
419	Intelligent Soft Surgical Robots for Nextâ€Generation Minimally Invasive Surgery. Advanced Intelligent Systems, 2021, 3, 2100011.	3.3	55
420	Cartilage structure increases swimming efficiency of underwater robots. Scientific Reports, 2021, 11, 11288.	1.6	8
421	A Physics-based and Control-oriented Model for Dielectric Elastomer Tubular Actuator., 2021,,.		2
422	Position Control for Soft Actuators, Next Steps toward Inherently Safe Interaction. Electronics (Switzerland), 2021, 10, 1116.	1.8	8
423	Learning to swim in potential flow. Physical Review Fluids, 2021, 6, .	1.0	27
424	A multi-DOF soft microactuator integrated with flexible electro-rheological microvalves using an alternating pressure source. Smart Materials and Structures, 2021, 30, 085006.	1.8	3
425	A methodology for design and simulation of soft grippers. Simulation, 2021, 97, 779-791.	1.1	2
426	Fast-moving piezoelectric micro-robotic fish with double caudal fins. Robotics and Autonomous Systems, 2021, 140, 103733.	3.0	42
427	Data-Driven Control of Soft Robots Using Koopman Operator Theory. IEEE Transactions on Robotics, 2021, 37, 948-961.	7.3	90
428	Trout-like multifunctional piezoelectric robotic fish and energy harvester. Bioinspiration and Biomimetics, 2021, 16, 046024.	1.5	22
429	Optimal Soft Composites for Underâ€Actuated Soft Robots. Advanced Materials Technologies, 2021, 6, 2100361.	3.0	10
430	CFD Investigation of Trout-Like Configuration Holding Station near an Obstruction. Fluids, 2021, 6, 204.	0.8	3
431	Research on performance of rigid-hoop-reinforced multi-DOF soft actuator. Advances in Mechanical Engineering, 2021, 13, 168781402110267.	0.8	2
432	Soft-Tentacle Gripper for Pipe Crawling to Inspect Industrial Facilities Using UAVs. Sensors, 2021, 21, 4142.	2.1	10
433	Design and experimental evaluation of the novel undulatory propulsors for biomimetic underwater robots. Bioinspiration and Biomimetics, 2021, 16, 056005.	1.5	8
434	Design of multi-material soft pneumatic modules. Smart Materials and Structures, 2021, 30, 095006.	1.8	7
435	A pneumatic random-access memory for controlling soft robots. PLoS ONE, 2021, 16, e0254524.	1.1	17

#	Article	IF	Citations
436	Systemâ€Engineered Miniaturized Robots: From Structure to Intelligence. Advanced Intelligent Systems, 2021, 3, 2000284.	3.3	18
437	Maneuverable gait selection for a novel fish-inspired robot using a CMA-ES-assisted workflow. Bioinspiration and Biomimetics, 2021, 16, 056017.	1.5	6
438	A Novel Biomimetic Compliant Structural Skin Based on Composite Materials for Biorobotics Applications. Soft Robotics, 2022, 9, 440-450.	4.6	8
439	Diaphragm-Type Pneumatic-Driven Soft Grippers for Precision Harvesting. Agronomy, 2021, 11, 1727.	1.3	11
440	Hardware Methods for Onboard Control of Fluidically Actuated Soft Robots. Frontiers in Robotics and Al, 2021, 8, 720702.	2.0	9
441	Finite element simulation of the viscoelastic behavior of elastomers under finite deformation with consideration of nonlinear material viscosity. Acta Mechanica, 2021, 232, 4111-4132.	1.1	9
442	An Elastic Biomimetic Fish Tail and Its Undulation Fitting Method of Body Wave. , 2021, , .		1
443	A herringbone soft pneu-net actuator for enhanced conformal gripping. Robotica, 2022, 40, 1345-1360.	1.3	10
444	Pneumatic Soft Actuators With Kirigami Skins. Frontiers in Robotics and Al, 2021, 8, 749051.	2.0	5
445	A squidâ€inspired swimming robot using folding of origami. Journal of Engineering, 2021, 2021, 630-639.	0.6	5
446	Soft Pneumatic Actuators: Modeling, Control, and Application. , 2022, , 129-219.		0
447	Amphibious Transport of Fluids and Solids by Soft Magnetic Carpets. Advanced Science, 2021, 8, e2102510.	5.6	31
448	Flow Path Optimization for Soft Pneumatic Actuators: Towards Optimal Performance and Portability. IEEE Robotics and Automation Letters, 2021, 6, 7949-7956.	3.3	13
449	Origami-Inspired Robot That Swims via Jet Propulsion. IEEE Robotics and Automation Letters, 2021, 6, 7145-7152.	3.3	13
450	Theoretical and experimental investigation study of data driven work envelope modelling for 3D printed soft pneumatic actuators. Sensors and Actuators A: Physical, 2021, 331, 112978.	2.0	9
451	Origami-inspired magnetic-driven soft actuators with programmable designs and multiple applications. Nano Energy, 2021, 89, 106424.	8.2	42
452	Fully 3D printed multi-material soft bio-inspired frog for underwater synchronous swimming. International Journal of Mechanical Sciences, 2021, 210, 106725.	3.6	39
453	Time reversal pulse position modulation communication in shallow water acoustic channels. Applied Acoustics, 2021, 182, 108249.	1.7	2

#	Article	IF	CITATIONS
454	Predicting interfacial layer adhesion strength in 3D printable silicone. Additive Manufacturing, 2021, 47, 102320.	1.7	9
455	On the snake-like lateral un-dulatory locomotion in terrestrial, aquatic and sand environments. Journal of the Mechanics and Physics of Solids, 2021, 157, 104629.	2.3	3
456	Design, Control and Manufacturing Studies of Soft Robots. Uluslararası Muhendislik Arastirma Ve Gelistirme Dergisi, 2021, 13, 74-86.	0.1	2
457	Hierarchical control of soft manipulators towards unstructured interactions. International Journal of Robotics Research, 2021, 40, 411-434.	5.8	52
459	Flagellate Underwater Robotics at Macroscale: Design, Modeling, and Characterization. IEEE Transactions on Robotics, 2022, 38, 731-747.	7.3	18
460	Geometrically weighted modal decomposition techniques. Journal of Fluid Mechanics, 2021, 911, .	1.4	10
461	Soft Underwater Robots Imitating Manta Actuated by Dielectric-Elastomer Minimum-Energy Structures. Lecture Notes in Mechanical Engineering, 2020, , 882-891.	0.3	2
463	Artificial Muscles for Underwater Soft Robotic System. , 2021, , 71-97.		3
464	Soft Robot Control with a Behaviour-Based Architecture. , 2015, , 81-91.		3
465	Morphing Structures, Applications of. , 2019, , 1-13.		3
466	Design, fabrication and modeling analysis of a spiral support structure with superelastic Ni-Ti shape memory alloy for continuum robot. Smart Materials and Structures, 2020, 29, 045007.	1.8	7
467	Alternative design strategy and multi-material integration in the development of biologically-inspired soft robots: a proof-of-concept. Smart Materials and Structures, 2020, 29, 125016.	1.8	2
468	Cephalopod-inspired robot capable of cyclic jet propulsion through shape change. Bioinspiration and Biomimetics, 2020, 16, 016014.	1.5	33
469	Learning Closed Loop Kinematic Controllers for Continuum Manipulators in Unstructured Environments. Soft Robotics, 2017, 4, 285-296.	4.6	84
470	Viscous-elastic dynamics of power-law fluids within an elastic cylinder. Physical Review Fluids, 2017, 2, .	1.0	18
471	A New Type of Soft Pneumatic Torsional Actuator With Helical Chambers for Flexible Machines. Journal of Mechanisms and Robotics, 2021, 13, .	1.5	25
472	Soft-matter damage detection systems for electronics and structures. , 2019, , .		1
473	Suction pad unit using a bellows pneumatic actuator as a support mechanism for an end effector of depalletizing robots. ROBOMECH Journal, 2020, 7, .	0.9	16

#	Article	IF	CITATIONS
474	Disposable Robotic Finger Driven Pneumatically by Flat Tubes and a Hollow Link Mechanism. Journal of Robotics and Mechatronics, 2020, 32, 958-976.	0.5	3
475	Improving Structural Design of Soft Actuators Using Finite Element Method Analysis. Interdisciplinary Description of Complex Systems, 2020, 18, 490-500.	0.3	5
476	Development of Biomimetic Soft Underwater Robot. Transactions of the Society of Instrument and Control Engineers, 2019, 55, 252-259.	0.1	5
477	Design and Motion Analysis of a Pneumatic Soft Active Structure to Imitate Neck Muscle. Lecture Notes in Computer Science, 2021, , 539-551.	1.0	0
478	Design and Control of Pneumatic Systems for Soft Robotics: A Simulation Approach. IEEE Robotics and Automation Letters, 2021, 6, 5800-5807.	3.3	26
479	Bionic Body Wave Control for an Eel-Like Robot Based on Segmented Soft Actuator Array. , 2021, , .		0
480	Physics-lumped parameter based control oriented model of dielectric tubular actuator. International Journal of Intelligent Robotics and Applications, 2022, 6, 397-413.	1.6	1
481	Processing of Selfâ€Healing Polymers for Soft Robotics. Advanced Materials, 2022, 34, e2104798.	11.1	80
482	An enhanced flexoelectric dielectric elastomer actuator with stretchable electret. Smart Materials and Structures, 2021, 30, 125004.	1.8	2
483	From Bioinspiration to Computer Generation: Developments in Autonomous Soft Robot Design. Advanced Intelligent Systems, 2022, 4, 2100086.	3.3	47
484	Comparison of Production Methods in Soft Robotic. , 2015, , .		1
485	Design Optimization of the Biomimetic Undulating Fin of a Knife Fish Robot. Journal of Automation, Mobile Robotics and Intelligent Systems, 2016, 10, 26-33.	0.4	4
486	Sponge Robotic Hand Design for Prostheses. International Journal of Biomedical Engineering and Science, 2016, 3, 11-18.	1.0	0
487	Modified Swimming Pattern to Control Propulsive Force for Biomimetic Underwater Articulated Robot. The Journal of Korea Robotics Society, 2016, 11, 285-292.	0.2	0
488	Soft Robotic Micro-Tentacle: A Case Study. SpringerBriefs in Applied Sciences and Technology, 2017, , 39-58.	0.2	0
489	Enabling Technologies. SpringerBriefs in Applied Sciences and Technology, 2017, , 11-38.	0.2	0
491	Current Progress. SpringerBriefs in Applied Sciences and Technology, 2017, , 59-78.	0.2	0
492	Towards Full-Scale Integration and Beyond. SpringerBriefs in Applied Sciences and Technology, 2017, , 79-91.	0.2	0

#	Article	IF	CITATIONS
493	Mechanism Design of a Bionic Robotic Fish. DEStech Transactions on Engineering and Technology Research, 2018, , .	0.0	1
494	Constructive approach on swimming of scallop (Experimental verification of the effect of mantle) Tj ETQq1 1 0.78	4314 rgBT 0.1	 Overlock
495	Electromated Fish for Underwater Surveillance. SSRN Electronic Journal, 0, , .	0.4	O
496	Design and Analysis of a Soft Pneumatic Actuator to Develop Modular Soft Robotic Systems. Journal of Automation, Mobile Robotics and Intelligent Systems, 0, , 30-36.	0.4	0
497	Probabilistic swimming pattern of magnetic small fish in underwater magnetic field. Proceedings of the ISCIE International Symposium on Stochastic Systems Theory and Its Applications, 2019, 2019, 235-240.	0.1	0
498	Design and Testing of 2-Degree-of-Freedom (DOF) Printable Pneumatic Soft Finger. Mechanisms and Machine Science, 2020, , 298-308.	0.3	1
499	Materials That Make Robots Smart. Springer Proceedings in Advanced Robotics, 2020, , 41-48.	0.9	O
500	DEVELOPMENT OF AN APPROACH TO THE MANAGEMENT OF THE STRUCTURE OF WALL-FLOWING. Journal of Dynamics and Vibroacoustics, 2020, 5, 13-20.	0.0	o
501	Dynamic modeling of hyper-elastic soft robots using spatial curves. IFAC-PapersOnLine, 2020, 53, 9238-9243.	0.5	8
502	Morphing Structures, Applications of., 2020, , 1741-1753.		2
504	Emergence of flexible technology in developing advanced systems for post-stroke rehabilitation: a comprehensive review. Journal of Neural Engineering, 2021, 18, 061003.	1.8	15
505	Hydrodynamics Modeling of a Piezoelectric Micro-Robotic Fish With Double Caudal Fins. Journal of Mechanisms and Robotics, 2022, 14, .	1.5	7
506	A numerical study on the instabilities of viscoelastic dielectric elastomers considering nonlinear material viscosity. Extreme Mechanics Letters, 2021, 49, 101513.	2.0	4
507	Management of Soft Agents withÂStructural Uncertainty. , 2021, , 31-53.		O
508	Amphibious Robotic Propulsive Mechanisms: Current Technologies and Open Challenges., 2021,, 41-69.		9
509	Force and Pressure Control of Soft Robotic Actuators. , 2018, 2018, 39-43.		O
510	Design and FEA-based Methodology for a Novel 3 Parallel Soft Muscle Actuator., 2021,,.		1
511	Bubble casting soft robotics. Nature, 2021, 599, 229-233.	13.7	113

#	Article	lF	Citations
512	An Accelerated Error Convergence Design Criterion and Implementation of Lebesgue-p Norm ILC Control Topology for Linear Position Control Systems. Mathematical Problems in Engineering, 2021, 2021, 1-12.	0.6	11
513	A Design Concept and Kinematic Model for a Soft Aquatic Robot with Complex Bio-mimicking Motion. Journal of Bionic Engineering, 2022, 19, 16-28.	2.7	9
514	Undulatory Swimming Performance Explored With a Biorobotic Fish and Measured by Soft Sensors and Particle Image Velocimetry. Frontiers in Robotics and AI, 2021, 8, 791722.	2.0	6
515	Bending behavior of 3D printed mechanically robust tubular lattice metamaterials. Additive Manufacturing, 2022, 50, 102565.	1.7	13
516	A Multigait Stringy Robot with Bi-stable Soft-bodied Structures in Multiple Viscous Environments. , 2020, , .		4
517	An Untethered Brittle Star-Inspired Soft Robot for Closed-Loop Underwater Locomotion. , 2020, , .		22
518	Demonstration of a Novel Phase Lag Controlled Roll Rotation Mechanism using a Two-DOF Soft Swimming Robot. , 2020, , .		1
519	Hybrid fluidic actuation for a foam-based soft actuator. , 2020, , .		6
520	Anthropomorphic flexible joint design and simulation. , 2020, , .		1
521	Analysis of Fiber-reinforced Soft Bending Actuators on Various Parameters for Hand Rehabilitation. , 2021, , .		0
522	Position Control and Variable-Height Trajectory Tracking of a Soft Pneumatic Legged Robot., 2021,,.		4
523	SoPrA: Fabrication & Dynamical Modeling of a Scalable Soft Continuum Robotic Arm with Integrated Proprioceptive Sensing. , 2021, , .		22
524	Pneumatic System Capable of Supplying Programmable Pressure States for Soft Robots. Soft Robotics, 2022, 9, 1001-1013.	4.6	11
525	Machine-learning-accelerated design of functional structural components in deep-sea soft robots. Extreme Mechanics Letters, 2022, 52, 101635.	2.0	9
526	Underwater Soft Robotics: A Review of Bioinspiration in Design, Actuation, Modeling, and Control. Micromachines, 2022, 13, 110.	1.4	42
527	Roadmap on soft robotics: multifunctionality, adaptability and growth without borders. Multifunctional Materials, 2022, 5, 032001.	2.4	37
528	Smart Film Actuators for Biomedical Applications. Small, 2022, 18, e2105116.	5.2	15
529	A Shift from Efficiency to Adaptability: Recent Progress in Biomimetic Interactive Soft Robotics in Wet Environments. Advanced Science, 2022, 9, e2104347.	5.6	29

#	Article	IF	CITATIONS
530	A review of motor neural system robotic modeling approaches and instruments. Biological Cybernetics, 2022, , $1.$	0.6	0
531	Modeling of Soft Pneumatic Actuators with Different Orientation Angles Using Echo State Networks for Irregular Time Series Data. Micromachines, 2022, 13, 216.	1.4	6
532	Drive of Peristaltic Micro-Gel Robot by Using Laser Irradiation. Journal of the Robotics Society of Japan, 2022, 40, 83-86.	0.0	0
533	Modulation of Magnetorheological Fluid Flow in Soft Robots Using Electropermanent Magnets. IEEE Robotics and Automation Letters, 2022, 7, 3914-3921.	3.3	20
534	Kinematics Modeling of Soft Manipulator Interacting with Environment Using Segmented Variable Curvature Method. International Journal of Control, Automation and Systems, 2022, 20, 255-267.	1.6	4
535	3D printing of resilient biogels for omnidirectional and exteroceptive soft actuators. Science Robotics, 2022, 7, eabk2119.	9.9	70
536	The role of pre-tensioned springs in 3 pneumatic artificial muscles driven joint mechanisms with sliding mode controllers. Robotics and Autonomous Systems, 2022, 151, 104017.	3.0	3
537	Fluid-Driven Traveling Waves in Soft Robots. Soft Robotics, 2022, 9, 1134-1143.	4.6	4
538	Shape morphing mechanical metamaterials through reversible plasticity. Science Robotics, 2022, 7, eabg2171.	9.9	67
539	A Printable Soft-bodied Wriggle Robot with Frictional 2D-anisotropy Surface. Journal of Information Processing, 2022, 30, 201-208.	0.3	0
540	Articulating Resilience: Adaptive Locomotion of Wheeled Tensegrity Robot. Electronics (Switzerland), 2022, 11, 666.	1.8	2
541	Reinforcement learning for pursuit and evasion of microswimmers at low Reynolds number. Physical Review Fluids, 2022, 7, .	1.0	17
542	Model-Based Nonlinear Feedback Controllers for Pressure Control of Soft Pneumatic Actuators Using On/Off Valves. Frontiers in Robotics and Al, 2022, 9, 818187.	2.0	3
543	Modeling and analysis of soft robotic surfaces actuated by pneumatic network bending actuators. Smart Materials and Structures, 2022, 31, 055001.	1.8	9
544	Design, Modeling, and Visual Learning-Based Control of Soft Robotic Fish Driven by Super-Coiled Polymers. Frontiers in Robotics and Al, 2021, 8, 809427.	2.0	5
545	Propulsion optimization of a jellyfish-inspired robot based on a nonintrusive reduced-order model with proper orthogonal decomposition. Bioinspiration and Biomimetics, 2022, 17, 046005.	1.5	2
546	A Snake-Inspired Multi-Segmented Magnetic Soft Robot Towards Medical Applications. IEEE Robotics and Automation Letters, 2022, 7, 5795-5802.	3.3	21
547	Design Consideration Investigation of Soft-Valve Pipe. Micromachines, 2022, 13, 568.	1.4	0

#	Article	IF	CITATIONS
548	Speed Control of a Biomimetic Robotic Fish Based on Linear Active Disturbance Rejection Control. , 2021, , .		0
549	Soft pipe-climbing robot for vertical creeping locomotion. , 2021, , .		1
550	Hardware Programming of a Single-input Pneumatic Mechanism to Control Multiple Elastic Inflatable Actuators. , $2021, \dots$		0
551	Bio-Inspired Design of Artificial Striated Muscles Composed of Sarcomere-Like Contraction Units. , 2021, , .		0
552	Deformation control method based on reaction current for soft pneumatic actuator actuated by electrochemical reactions. , 2021, , .		1
553	A soft actuator with integrated pneumatic source using electrically induced liquid-to-gas conversion. , 2021, , .		1
554	A Dataâ€Driven Review of Soft Robotics. Advanced Intelligent Systems, 2022, 4, .	3.3	28
555	An Investigation on the Grasping Position Optimization-Based Control for Industrial Soft Robot Manipulator. Machines, 2021, 9, 363.	1.2	4
556	Soft Mobile Robots: a Review of Soft Robotic Locomotion Modes. Current Robotics Reports, 2021, 2, 371-397.	5.1	18
557	Modeling and Control of Soft Robotic Tail Based Aerial Maneuvering (STAM) System: Towards Agile Self-Righting with a Soft Tail., 2021,,.		2
558	Review of multi-fin propulsion and functional materials of underwater bionic robotic fish. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236, 7350-7367.	1.1	7
559	Design and Motion Analysis of a Bio-Inspired Soft Robotic Finger Based on Multi-Sectional Soft Reinforced Actuator. Journal of Intelligent and Robotic Systems: Theory and Applications, 2022, 104, 1.	2.0	2
560	Model reference adaptive control of a soft bending actuator with input constraints and parametric uncertainties. Mechatronics, 2022, 84, 102800.	2.0	6
571	LM-Jelly: Liquid Metal Enabled Biomimetic Robotic Jellyfish. Soft Robotics, 2022, 9, 1098-1107.	4.6	30
572	Module-W: Reconfigurable Modular Robots Forming Compliant Structures. , 2022, , .		2
573	Electroactive Polymer-Based Soft Actuator with Integrated Functions of Multi-Degree-of-Freedom Motion and Perception. Soft Robotics, 2023, 10, 119-128.	4.6	13
574	A Simulation-Based Toolbox to Expedite the Digital Design of Bellow Soft Pneumatic Actuators. , 2022, , .		9
575	Fish-inspired segment models for undulatory steady swimming. Bioinspiration and Biomimetics, 2022, 17, 046007.	1.5	5

#	Article	IF	CITATIONS
576	Single-Actuator Soft Robot for In-Pipe Crawling. Soft Robotics, 2023, 10, 174-186.	4.6	18
577	Parameter optimization of the bio-inspired robot propulsion through the deep learning based reduced order fluid-structure interaction model. Ocean Engineering, 2022, 255, 111436.	1.9	3
578	Bidirectional Tether Less Soft Actuator with Expeditious Position Control Mechanism., 2021,,.		0
579	Toward the Development of Large-Scale Inflatable Robotic Arms Using Hot Air Welding. Soft Robotics, 2023, 10, 88-96.	4.6	6
580	Toward understanding the communication in sperm whales. IScience, 2022, 25, 104393.	1.9	7
581	Multi-material Bio-inspired Soft Octopus Robot for Underwater Synchronous Swimming. Journal of Bionic Engineering, 2022, 19, 1229-1241.	2.7	23
582	An Underwater Glider with Muscleâ€"Actuated Buoyancy Control and Caudal Fin Turning. Machines, 2022, 10, 381.	1.2	3
583	Evaluation of two complementary modeling approaches for fiber-reinforced soft actuators. ROBOMECH Journal, 2022, 9, .	0.9	2
584	Soft Pneumatic Actuators: A Review of Design, Fabrication, Modeling, Sensing, Control and Applications. IEEE Access, 2022, 10, 59442-59485.	2.6	72
585	Biomimetic Aquatic Robots Based on Fluid-Driven Actuators: A Review. Journal of Marine Science and Engineering, 2022, 10, 735.	1.2	9
586	Bioinspired Soft Robotic Fish for Wireless Underwater Control of Gliding Locomotion. Advanced Intelligent Systems, 2022, 4, .	3.3	14
587	Inflatable Origami: Multimodal Deformation via Multistability. Advanced Functional Materials, 2022, 32, .	7.8	30
589	A comprehensive review on fish-inspired robots. International Journal of Advanced Robotic Systems, 2022, 19, 172988062211037.	1.3	15
590	Control-Oriented Models for Hyperelastic Soft Robots Through Differential Geometry of Curves. Soft Robotics, 2023, 10, 129-148.	4.6	11
591	Bioinspired Amphibious Origami Robot with Body Sensing for Multimodal Locomotion. Soft Robotics, 2022, 9, 1198-1209.	4.6	9
592	Bidirectional Locomotion of Soft Inchworm Crawler Using Dynamic Gaits. Frontiers in Robotics and Al, O, 9, .	2.0	4
593	Locomotion Optimization of a Tendon-Driven Robotic Fish With Variable Passive Tail Fin. IEEE Transactions on Industrial Electronics, 2023, 70, 4983-4992.	5.2	6
594	Printable Origami Bistable Structures for Foldable Jumpers. , 2022, , .		5

#	Article	IF	Citations
595	A Fully 3Dâ€Printed Tortoiseâ€Inspired Soft Robot with Terrainsâ€Adaptive and Amphibious Landing Capabilities. Advanced Materials Technologies, 2022, 7, .	3.0	18
596	Dynamic response of Maxwell fluid in an elastic cylindrical tube. Physics of Fluids, 2022, 34, .	1.6	2
597	3D Printing of Silicone Elastomers for Soft Actuators. Actuators, 2022, 11, 200.	1.2	12
598	Necrobotics: Biotic Materials as Readyâ€toâ€Use Actuators. Advanced Science, 2022, 9, .	5.6	8
599	Development of an Autonomous UAV Integrated with a Manipulator and a Soft Gripper. , 2022, , .		0
600	Bioinspired untethered soft robot with pumpless phase change soft actuators by bidirectional thermoelectrics. Chemical Engineering Journal, 2023, 451, 138794.	6.6	15
601	A BCF Bionic Robot Fish Driven by A Dielectric Elastomer Actuator. Journal of Physics: Conference Series, 2022, 2331, 012010.	0.3	1
602	A New Fabrication Method for Soft Pneumatic Actuators based on Paraffin. , 2022, , .		1
603	Soft Robotics. Analecta Technica Szegedinensia, 2022, 16, 8-13.	0.2	1
604	Computational Design of a Soft Robotic Myocardium for Biomimetic Motion and Function. Advanced Functional Materials, 2022, 32, .	7.8	5
605	Development of Bendable Elliptical Cone Dielectric Elastomer Actuator., 2022,,.		3
606	Model-Based Design Optimization of Underwater Flagellate Propellers. IEEE Robotics and Automation Letters, 2022, 7, 10089-10096.	3.3	2
607	Dynamic Modeling and Performance Analysis for a Wire-Driven Elastic Robotic Fish. IEEE Robotics and Automation Letters, 2022, 7, 11174-11181.	3.3	4
608	Indwelling robots for ruminant health monitoring: A review of elements. Smart Agricultural Technology, 2023, 3, 100109.	3.1	1
609	Electrically actuated soft actuator integrated with an electrochemical reactor. Extreme Mechanics Letters, 2022, 56, 101891.	2.0	2
610	Recent advances in biomimetic soft robotics: fabrication approaches, driven strategies and applications. Soft Matter, 2022, 18, 7699-7734.	1.2	25
611	Energy-Shaping Controllers for Soft Robot Manipulators Through Port-Hamiltonian Cosserat Models. SN Computer Science, 2022, 3, .	2.3	1
612	The design and development of a soft robotic gripper. Materials Today: Proceedings, 2022, , .	0.9	O

#	Article	IF	CITATIONS
613	Research Development on Fish Swimming. Chinese Journal of Mechanical Engineering (English) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 74
614	A Review of Locomotion, Control, and Implementation of Robot Fish. Journal of Intelligent and Robotic Systems: Theory and Applications, 2022, 106, .	2.0	9
615	Optimal design and experimental validation of 3D printed soft pneumatic actuators. Smart Materials and Structures, 2022, 31, 115010.	1.8	3
616	AUH, a New Technology for Ocean Exploration. Engineering, 2023, 25, 21-27.	3.2	7
617	Additive Manufacturing Techniques in Fabrication of Soft Robotic Sensors and Actuators: A Review. Lecture Notes in Mechanical Engineering, 2023, , 719-730.	0.3	0
618	Electromagnetic actuator design for distributed stiffness. Smart Materials and Structures, 2022, 31, 115023.	1.8	2
619	A lightweight flexible semi-cylindrical valve for seamless integration in soft robots based on the giant electrorheological fluid. Sensors and Actuators A: Physical, 2022, 347, 113905.	2.0	5
620	Untethered Robotic Millipede Driven by Low-Pressure Microfluidic Actuators for Multi-Terrain Exploration. IEEE Robotics and Automation Letters, 2022, 7, 12142-12149.	3.3	8
621	The Effect of Design and Control Parameters of a Soft Robotic Fish Tail to Maximize Propulsion Force in Undulatory Actuation. , 2022, , .		0
622	Soft Underwater Swimming Robots Based on Artificial Muscle. Advanced Materials Technologies, 2023, 8, .	3.0	12
623	Multifunctional Underwater Soft Robots: A Simulation Essay. IOP Conference Series: Materials Science and Engineering, 2022, 1261, 012008.	0.3	1
624	4D printing Light-Driven soft actuators based on Liquid-Vapor phase transition composites with inherent sensing capability. Chemical Engineering Journal, 2023, 454, 140271.	6.6	12
625	Manta Ray Inspired Soft Robot Fish with Tough Hydrogels as Structural Elements. ACS Applied Materials & Structu	4.0	5
626	AquaClimber: a limbed swimming and climbing robot based on reduced order models. Bioinspiration and Biomimetics, 2023, 18, 016004.	1.5	2
627	Hydrodynamic analysis and motion control of the Coanda-effect jet thruster for underwater robots. Ocean Engineering, 2022, 266, 113096.	1.9	4
628	Snapping for high-speed and high-efficient butterfly stroke–like soft swimmer. Science Advances, 2022, 8, .	4.7	27
629	Neural network-based motion modeling and control of water-actuated soft robotic fish. Smart Materials and Structures, 2023, 32, 015004.	1.8	19
630	A variable-stiffness and healable pneumatic actuator. Materials Horizons, 2023, 10, 908-917.	6.4	2

#	Article	IF	CITATIONS
631	A Soft Robotic Gripper Material Study. Advances in Computational Intelligence and Robotics Book Series, 2022, , 60-73.	0.4	0
632	Bioinspired Multi-material Polyjet-printed Frog Robot for Synchronous and Asynchronous Swimming. Journal of Bionic Engineering, 2023, 20, 923-933.	2.7	1
633	Magnetic-field-induced propulsion of jellyfish-inspired soft robotic swimmers. Physical Review E, 2023, 107, .	0.8	1
634	Performa of SCARA based intelligent 3 axis robotic soft gripper for enhanced material handling. Advances in Engineering Software, 2023, 176, 103366.	1.8	2
635	Planar Modeling and Sim-to-Real of a Tethered Multimaterial Soft Swimmer Driven by Peano-HASELs., 2022,,.		4
636	Soft-Skin Actuator Capable of Seawater Propulsion based on MagnetoHydroDynamics. , 2022, , .		1
637	Acoustic Localization and Communication Using a MEMS Microphone for Low-cost and Low-power Bio-inspired Underwater Robots. , 2022, , .		0
638	Amoeba-inspired swimming through isoperimetric modulation of body shape. , 2022, , .		0
639	A Wire-driven Elastic Robotic Fish and its Design and CPG-Based Control. Journal of Intelligent and Robotic Systems: Theory and Applications, 2023, 107, .	2.0	3
640	Design, Fabrication and Experiment of a Bionic Manta Ray Robot Fish. , 2022, , .		0
641	Development of Soft Underwater Robot that Mimics Red Muscle and Tendon Structure of Fish. , 2022, , .		1
642	Active-Cooling-in-the-Loop Controller Design and Implementation for an SMA-Driven Soft Robotic Tentacle. IEEE Transactions on Robotics, 2023, 39, 2325-2341.	7.3	11
643	A BIOMIMETIC UNDERWATER ROBOT DIRECTION CHANGING ALGORITHMS. FUDMA Journal of Sciences, 2023, 6, 229-240.	0.1	0
644	A 5 cmâ€6cale Piezoelectric Jetting Agile Underwater Robot. Advanced Intelligent Systems, 2023, 5, .	3.3	6
645	A Three-Dimensional W-Shaped Model of Musculo-Tendinous System for Kinematic Analysis of Undulatory Swimming. Iranian Journal of Science and Technology - Transactions of Mechanical Engineering, 0, , .	0.8	0
646	A bioinspired modular soft robotic arm. Engineering Research Express, 2023, 5, 015021.	0.8	2
647	Highâ€Speed and Lowâ€Energy Actuation for Pneumatic Soft Robots with Internal Exhaust Air Recirculation. Advanced Intelligent Systems, 2023, 5, .	3.3	4
648	A Self-healable, recyclable and degradable soft network structure material for soft robotics. Materials and Design, 2023, 227, 111783.	3.3	1

#	Article	IF	Citations
649	Liquid Metal Smart Materials toward Soft Robotics. Advanced Intelligent Systems, 2023, 5, .	3.3	13
650	A Modular Soft Gripper with Combined Pneu-Net Actuators. Actuators, 2023, 12, 172.	1.2	4
651	Research on flexible collapsible fluid-driven bionic robotic fish. Ocean Engineering, 2023, 276, 114203.	1.9	5
652	Design and experimental research of the hybrid-driven soft robot. Industrial Robot, 2023, 50, 648-658.	1.2	1
653	A Bio-Mimetic Three-Dimensional Design and Modeling of a Fish-Like Robot. , 2022, , .		0
654	Power Autonomy and Agility Control of an Untethered Insect-Scale Soft Robot. Soft Robotics, 2023, 10, 749-759.	4.6	0
655	Fluidic Hardware Strategies for Powering Combined Negative―and Positiveâ€Pressure Artificial Muscles. Advanced Engineering Materials, 2023, 25, .	1.6	2
656	A self-sensing intelligent soft pneumatic actuator with soft magnetic structures. International Journal of Mechanical Sciences, 2023, 250, 108279.	3.6	4
657	A Critical Review on Factors Affecting the User Adoption of Wearable and Soft Robotics. Sensors, 2023, 23, 3263.	2.1	2
658	A Hierarchical Design Framework for the Design of Soft Robots. Mathematical and Computational Applications, 2023, 28, 47.	0.7	1
659	Caterpillar-inspired soft crawling robot with distributed programmable thermal actuation. Science Advances, 2023, 9, .	4.7	34
660	Biomimetic Soft Underwater Robot Inspired by the Red Muscle and Tendon Structure of Fish. Biomimetics, 2023, 8, 133.	1.5	2
661	Soft Electromagnetic Motor and Soft Magnetic Sensors for Synchronous Rotary Motion. Soft Robotics, 2023, 10, 912-922.	4.6	2
662	Mechanical Modeling and Analysis of Flexible Cavity Fishtail. , 2022, , .		0
663	Rapid manoeuvre of fan worms (Annelida: Sabellidae) through tubes. Journal of Experimental Biology, 2023, 226, .	0.8	2
664	Reconfigurable Innervation of Modular Soft Machines via Soft, Sticky, and Instant Electronic Adhesive Interlocking. Advanced Intelligent Systems, 2023, 5, .	3.3	0
667	A review on soft robotic technologies. AIP Conference Proceedings, 2023, , .	0.3	0
676	DragonClaw: A low-cost pneumatic gripper with integrated magnetic sensing. , 2023, , .		0

#	ARTICLE	IF	CITATIONS
677	Development of a Modular and Submersible Soft Robotic Arm and Corresponding Learned Kinematics Models. , 2023 , , .		2
679	Design of Fish-like Biomorphic Propulsion. , 2023, , .		0
680	Task Space Tracking of Soft Manipulators: Inner-Outer Loop Control Based on Cosserat-Rod Models. , 2023, , .		0
682	Cross-domain Transfer Learning and State Inference for Soft Robots via a Semi-supervised Sequential Variational Bayes Framework. , 2023, , .		0
685	Soft robotics in medical applications: State of the art, challenges, and recent advances., 2023,, 25-61.		0
703	Design andÂControl ofÂaÂMiniature Soft Robotic Fish Actuated byÂArtificial Muscles. Lecture Notes in Computer Science, 2023, , 597-609.	1.0	0
704	Review of research and control technology of underwater bionic robots. , 2023, 1, .		1
708	Optimal Synthesis and Experimental Validation of a Bio-inspired Variable Stiffness Universal Compliant Joint for Continuum Robots. Mechanisms and Machine Science, 2023, , 419-428.	0.3	O
713	A Fabrication and Simulation Recipe for Untethering Soft-Rigid Robots with Cable-Driven Stiffness Modulation. , 2023, , .		0
714	Underwater and Surface Aquatic Locomotion of Soft Biomimetic Robot Based on Bending Rolled Dielectric Elastomer Actuators. , 2023, , .		0
716	Review on Coral Reef Regeneration Methods through Renewable Powered Electrotherapy. , 2023, , .		0
717	Snake-inspired Swarm Robot Design for Distributed Underwater Search and Rescue., 2023,,.		0
719	Low-Cost Fish-Based Soft Robot Development for Underwater Environment. , 2023, , .		0
722	Fishtail-inspired soft actuator. AIP Conference Proceedings, 2024, , .	0.3	O