Selective VPS34 inhibitor blocks autophagy and uncove degradation and iron homeostasis in vivo

Nature Cell Biology 16, 1069-1079 DOI: 10.1038/ncb3053

Citation Report

#	Article	IF	CITATIONS
2	Cinderella finds her shoe: the first Vps34 inhibitor uncovers a new PI3K–AGC protein kinase connection. Biochemical Journal, 2014, 464, e7-e10.	1.7	17
3	Postâ€ŧranslationallyâ€modified structures in the autophagy machinery: an integrative perspective. FEBS Journal, 2015, 282, 3474-3488.	2.2	39
4	Current questions and possible controversies in autophagy. Cell Death Discovery, 2015, 1, .	2.0	51
5	Autophagy in cancer. F1000prime Reports, 2015, 7, 18.	5.9	73
6	Inhibition of Autophagy by Targeting ATG4B: Promises and Challenges of An Emerging Anti-cancer Strategy. Clinical Cancer Drugs, 2015, 2, 61-70.	0.3	2
7	Oligomerization of p62 allows for selection of ubiquitinated cargo and isolation membrane during selective autophagy. ELife, 2015, 4, e08941.	2.8	193
8	Antimicrobial Mechanisms of Macrophages and the Immune Evasion Strategies of Staphylococcus aureus. Pathogens, 2015, 4, 826-868.	1.2	151
9	Iron Homeostasis and Inflammatory Status in Mice Deficient for the Cystic Fibrosis Transmembrane Regulator. PLoS ONE, 2015, 10, e0145685.	1.1	2
10	Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis. ELife, 2015, 4, .	2.8	309
11	Apoptosis, Necrosis, and Necroptosis in the Gut and Intestinal Homeostasis. Mediators of Inflammation, 2015, 2015, 1-10.	1.4	110
12	Quantifying Ubiquitin Signaling. Molecular Cell, 2015, 58, 660-676.	4.5	124
13	Differential regulatory functions of three classes of phosphatidylinositol and phosphoinositide 3-kinases in autophagy. Autophagy, 2015, 11, 1711-1728.	4.3	143
14	Recent insights into cell death and autophagy. FEBS Journal, 2015, 282, 4279-4288.	2.2	145
15	Autophagy, Metabolism, and Cancer. Clinical Cancer Research, 2015, 21, 5037-5046.	3.2	540
16	Beclin 1-Vps34 complex architecture: Understanding the nuts and bolts of therapeutic targets. Frontiers in Biology, 2015, 10, 398-426.	0.7	48
17	The importance of eukaryotic ferritins in iron handling and cytoprotection. Biochemical Journal, 2015, 472, 1-15.	1.7	79
18	Solving the centriole disengagement puzzle. Nature Cell Biology, 2015, 17, 3-5.	4.6	7
19	Selective autophagy: Xenophagy. Methods, 2015, 75, 120-127.	1.9	101

#	Article	IF	Citations
20	PI3K inhibitors in inflammation, autoimmunity and cancer. Current Opinion in Pharmacology, 2015, 23, 82-91.	1.7	258
21	Role of Autophagy in the Maintenance of Intestinal Homeostasis. Gastroenterology, 2015, 149, 553-562.	0.6	76
22	Autophagy at the crossroads of catabolism and anabolism. Nature Reviews Molecular Cell Biology, 2015, 16, 461-472.	16.1	778
23	Immunoaffinity Enrichment Coupled to Quantitative Mass Spectrometry Reveals Ubiquitin-Mediated Signaling Events. Journal of Molecular Biology, 2015, 427, 2121-2134.	2.0	14
24	Pharmacological Inhibition of ULK1 Kinase Blocks Mammalian Target of Rapamycin (mTOR)-dependent Autophagy. Journal of Biological Chemistry, 2015, 290, 11376-11383.	1.6	261
25	An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1347-1359.	1.8	234
26	Autophagy signal transduction by ATG proteins: from hierarchies to networks. Cellular and Molecular Life Sciences, 2015, 72, 4721-4757.	2.4	187
27	Structure and flexibility of the endosomal Vps34 complex reveals the basis of its function on membranes. Science, 2015, 350, aac7365.	6.0	208
28	bULKing up mTOR inhibition. Nature Chemical Biology, 2015, 11, 758-760.	3.9	1
29	Simple structure, complex function. Nature Chemical Biology, 2015, 11, 760-761.	3.9	8
30	Ironing out VPS34 inhibition. Nature Cell Biology, 2015, 17, 1-3.	4.6	36
31	Iron Metabolism in Aging. , 2016, , 523-536.		0
32	Functional CRISPR screening identifies the ufmylation pathway as a regulator of SQSTM1/p62. ELife, 2016, 5, .	2.8	122
33	Advances in Autophagy Regulatory Mechanisms. Cells, 2016, 5, 24.	1.8	105
34	Iron overload causes endolysosomal deficits modulated by NAADP-regulated 2-pore channels and RAB7A. Autophagy, 2016, 12, 1487-1506.	4.3	37
35	Iron and cancer: recent insights. Annals of the New York Academy of Sciences, 2016, 1368, 149-161.	1.8	331
36	Lipid Peroxidation-Dependent Cell Death Regulated by GPx4 and Ferroptosis. Current Topics in Microbiology and Immunology, 2016, 403, 143-170.	0.7	350
37	Therapeutic Targeting of Autophagy. EBioMedicine, 2016, 14, 15-23.	2.7	232

	CITATION	REPORT	
#	Article	IF	CITATIONS
38	Digesting the Expanding Mechanisms of Autophagy. Trends in Cell Biology, 2016, 26, 624-635.	3.6	303
39	Deciphering the roles of phosphoinositide lipids in phagolysosome biogenesis. Communicative and Integrative Biology, 2016, 9, e1174798.	0.6	24
40	Regulation of Autophagy By Signaling Through the Atg1/ULK1 Complex. Journal of Molecular Biology, 2016, 428, 1725-1741.	2.0	139
41	ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells. Autophagy, 2016, 12, 936-948.	4.3	84
42	Atg7 suppression enhances chemotherapeutic agent sensitivity and overcomes stroma-mediated chemoresistance in acute myeloid leukemia. Blood, 2016, 128, 1260-1269.	0.6	104
43	Autophagy as a Therapeutic Target in Cancer. Current Cancer Research, 2016, , 1-16.	0.2	0
44	Targeting PI3-Kinases in Modulating Autophagy and Anti-cancer Therapy. Current Cancer Research, 2016, , 85-97.	0.2	0
45	Recent insights into the function of autophagy in cancer. Genes and Development, 2016, 30, 1913-1930.	2.7	641
46	The intricate regulation and complex functions of the Class III phosphoinositide 3-kinase Vps34. Biochemical Journal, 2016, 473, 2251-2271.	1.7	186
47	Novel pharmacological modulators of autophagy: an updated patent review (2012-2015). Expert Opinion on Therapeutic Patents, 2016, 26, 1273-1289.	2.4	30
48	Autophagy in leukocytes and other cells: mechanisms, subsystem organization, selectivity, and links to innate immunity. Journal of Leukocyte Biology, 2016, 100, 969-978.	1.5	38
49	Ferroptosis is an autophagic cell death process. Cell Research, 2016, 26, 1021-1032.	5.7	1,073
50	Autophagy Networks in Inflammation. , 2016, , .		3
51	Target Autophagy as a Novel Therapeutic Strategy in Autoimmune Diseases. , 2016, , 267-295.		0
52	The ubiquitin-proteasome system and autophagy: Coordinated and independent activities. International Journal of Biochemistry and Cell Biology, 2016, 79, 403-418.	1.2	135
53	Phosphatidylinositol 3â€phosphates—at the interface between cell signalling and membrane traffic. EMBO Journal, 2016, 35, 561-579.	3.5	221
54	Autophagy promotes ferroptosis by degradation of ferritin. Autophagy, 2016, 12, 1425-1428.	4.3	1,318
55	NCOA4 Deficiency Impairs Systemic Iron Homeostasis. Cell Reports, 2016, 14, 411-421.	2.9	167

#	Article	IF	CITATIONS
56	Macroautophagy is dispensable for growth of KRAS mutant tumors and chloroquine efficacy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 182-187.	3.3	200
57	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
58	Combined deficiency of PI3KC2α and PI3KC2β reveals a nonredundant role for PI3KC2α in regulating mouse platelet structure and thrombus stability. Platelets, 2016, 27, 402-409.	1.1	15
59	Ferritinophagy drives uropathogenic <i>Escherichia coli</i> persistence in bladder epithelial cells. Autophagy, 2016, 12, 850-863.	4.3	75
60	Mechanisms of Selective Autophagy. Journal of Molecular Biology, 2016, 428, 1714-1724.	2.0	469
61	Precision autophagy directed by receptor regulators – emerging examples within the TRIM family. Journal of Cell Science, 2016, 129, 881-91.	1.2	81
62	Inhibition of cholesterol metabolism underlies synergy between mTOR pathway inhibition and chloroquine in bladder cancer cells. Oncogene, 2016, 35, 4518-4528.	2.6	49
63	Mammalian Autophagy: How Does It Work?. Annual Review of Biochemistry, 2016, 85, 685-713.	5.0	578
64	Pharmacological inhibitors of autophagy as novel cancer therapeutic agents. Pharmacological Research, 2016, 105, 164-175.	3.1	83
65	NBR1 enables autophagy-dependent focal adhesion turnover. Journal of Cell Biology, 2016, 212, 577-590.	2.3	131
66	Mechanisms of Selective Autophagy in Normal Physiology and Cancer. Journal of Molecular Biology, 2016, 428, 1659-1680.	2.0	156
67	Regulators of Iron Homeostasis: New Players in Metabolism, Cell Death, and Disease. Trends in Biochemical Sciences, 2016, 41, 274-286.	3.7	611
68	Autophagy inhibitors. Cellular and Molecular Life Sciences, 2016, 73, 985-1001.	2.4	231
69	Leaving the lysosome behind: novel developments in autophagy inhibition. Future Medicinal Chemistry, 2016, 8, 73-86.	1.1	47
70	Potent, Selective, and Orally Bioavailable Inhibitors of VPS34 Provide Chemical Tools to Modulate Autophagy <i>in Vivo</i> . ACS Medicinal Chemistry Letters, 2016, 7, 72-76.	1.3	46
71	Ubiquitin-Dependent And Independent Signals In Selective Autophagy. Trends in Cell Biology, 2016, 26, 6-16.	3.6	577
72	Iron and Neurodegeneration: Is Ferritinophagy the Link?. Molecular Neurobiology, 2016, 53, 5542-5574.	1.9	84
73	Emerging strategies to effectively target autophagy in cancer. Oncogene, 2016, 35, 1-11.	2.6	226

	CITATION		
#	Article	IF	CITATIONS
74	Contributions to magnetic susceptibility of brain tissue. NMR in Biomedicine, 2017, 30, e3546.	1.6	142
75	Iron overload and altered iron metabolism in ovarian cancer. Biological Chemistry, 2017, 398, 995-1007.	1.2	31
76	Methods for Studying Interactions Between Atg8/LC3/GABARAP and LIR-Containing Proteins. Methods in Enzymology, 2017, 587, 143-169.	0.4	27
77	Autophagy: A Druggable Process. Annual Review of Pharmacology and Toxicology, 2017, 57, 375-398.	4.2	134
78	Autophagy in renal tubular injury and repair. Acta Physiologica, 2017, 220, 229-237.	1.8	32
79	A Red Carpet for Iron Metabolism. Cell, 2017, 168, 344-361.	13.5	847
80	The Role of Autophagy in Cancer. Annual Review of Cancer Biology, 2017, 1, 19-39.	2.3	158
81	Loss of Ssq1 leads to mitochondrial dysfunction, activation of autophagy and cell cycle arrest due to iron overload triggered by mitochondrial iron–sulfur cluster assembly defects in Candida albicans. International Journal of Biochemistry and Cell Biology, 2017, 85, 44-55.	1.2	28
82	Drug discovery for Diamond-Blackfan anemia using reprogrammed hematopoietic progenitors. Science Translational Medicine, 2017, 9, .	5.8	87
83	Apoptotic and Non-apoptotic Cell Death. Current Topics in Microbiology and Immunology, 2017, , .	0.7	4
84	Iron and thiol redox signaling in cancer: An exquisite balance to escape ferroptosis. Free Radical Biology and Medicine, 2017, 108, 610-626.	1.3	180
85	<i>N</i> -(1-Benzyl-3,5-dimethyl-1 <i>H</i> -pyrazol-4-yl)benzamides: Antiproliferative Activity and Effects on mTORC1 and Autophagy. ACS Medicinal Chemistry Letters, 2017, 8, 90-95.	1.3	12
86	Cytosolic iron chaperones: Proteins delivering iron cofactors in the cytosol of mammalian cells. Journal of Biological Chemistry, 2017, 292, 12764-12771.	1.6	95
87	In Vitro Characterization of VPS34 Lipid Kinase Inhibition by Small Molecules. Methods in Enzymology, 2017, 587, 447-464.	0.4	7
88	Molecular definitions of autophagy and related processes. EMBO Journal, 2017, 36, 1811-1836.	3.5	1,230
89	Ferroptosis: Role of lipid peroxidation, iron and ferritinophagy. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1893-1900.	1.1	529
90	Iron and inflammation – the gut reaction. Metallomics, 2017, 9, 101-111.	1.0	29
91	Dedicated <scp>SNARE</scp> s and specialized <scp>TRIM</scp> cargo receptors mediate secretory autophagy. EMBO Journal, 2017, 36, 42-60.	3.5	247

	CITATION R	EPORT	
#	Article	IF	CITATIONS
92	Autophagy, a key mechanism of oncogenesis and resistance in leukemia. Blood, 2017, 129, 547-552.	0.6	121
93	α-Synuclein impairs ferritinophagy in the retinal pigment epithelium: Implications for retinal iron dyshomeostasis in Parkinson's disease. Scientific Reports, 2017, 7, 12843.	1.6	47
94	Autophagy-monitoring and autophagy-deficient mice. Autophagy, 2017, 13, 1619-1628.	4.3	248
95	Thyroid hormone receptor beta and NCOA4 regulate terminal erythrocyte differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10107-10112.	3.3	59
96	Autophagy: The spotlight for cellular stress responses. Life Sciences, 2017, 188, 53-67.	2.0	466
97	Autophagy-Independent Lysosomal Targeting Regulated by ULK1/2-FIP200 and ATG9. Cell Reports, 2017, 20, 2341-2356.	2.9	126
98	Inhibition of Human Class I vs Class III Phosphatidylinositol 3′-Kinases. Biochemistry, 2017, 56, 4326-4334.	1.2	7
99	Targeting autophagy in cancer. Nature Reviews Cancer, 2017, 17, 528-542.	12.8	1,856
100	2,5-Hexanedione induces autophagic death of VSC4.1 cells via a PI3K/Akt/mTOR pathway. Molecular BioSystems, 2017, 13, 1993-2005.	2.9	16
101	Remodeling of <scp>ER</scp> â€exit sites initiates a membrane supply pathway for autophagosome biogenesis. EMBO Reports, 2017, 18, 1586-1603.	2.0	134
102	Expression and characterization of the ferritin binding domain of Nuclear Receptor Coactivator-4 (NCOA4). Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2710-2716.	1.1	53
103	Dynamics of phosphoinositide conversion in clathrin-mediated endocytic traffic. Nature, 2017, 552, 410-414.	13.7	119
104	Relative transcription of autophagy-related genes in Amblyomma sculptum and Rhipicephalus microplus ticks. Experimental and Applied Acarology, 2017, 73, 401-428.	0.7	9
105	Vps34 PI 3-kinase inactivation enhances insulin sensitivity through reprogramming of mitochondrial metabolism. Nature Communications, 2017, 8, 1804.	5.8	59
106	Endosomal Phosphatidylinositol 3-Kinase Is Essential for Canonical GPCR Signaling. Molecular Pharmacology, 2017, 91, 65-73.	1.0	9
107	Nicotineâ€induced protein expression profiling reveals mutually altered proteins across four human cell lines. Proteomics, 2017, 17, 1600319.	1.3	40
108	Class II Phosphoinositide 3-Kinases as Novel Drug Targets. Journal of Medicinal Chemistry, 2017, 60, 47-65.	2.9	26
110	Regulation of selective autophagy: the p62/SQSTM1 paradigm. Essays in Biochemistry, 2017, 61, 609-624.	2.1	490

	C	ITATION REPOR	т
# 111	ARTICLE Developmental Control of NRAMP1 (SLC11A1) Expression in Professional Phagocytes. Biology, 2017, 28.	IF , 6, 1.3	CITATION:
112	Targeting Autophagy in Cancer: Update on Clinical Trials and Novel Inhibitors. International Journal of Molecular Sciences, 2017, 18, 1279.	1.8	3 293
113	Clinical Applications of Autophagy Proteins in Cancer: From Potential Targets to Biomarkers. International Journal of Molecular Sciences, 2017, 18, 1496.	1.8	3 41
114	Overview of Autophagy. , 2017, , 1-122.		1
115	Does Hypoxia Cause Carcinogenic Iron Accumulation in Alcoholic Liver Disease (ALD)?. Cancers, 2017 145.	7, 9, 1.7	7 17
116	Genetic Rodent Models of Systemic Iron Homeostasis. , 2017, , 187-201.		0
117	Autophagy as a cytoprotective mechanism in esophageal squamous cell carcinoma. Current Opinion Pharmacology, 2018, 41, 12-19.	in 1.7	7 23
118	Targeting autophagy in cancer. Cancer, 2018, 124, 3307-3318.	2.0	0 484
119	Mechanism and medical implications of mammalian autophagy. Nature Reviews Molecular Cell Biolog 2018, 19, 349-364.	gy, 16.	.1 1,933
120	The flux of iron through ferritin in erythrocyte development. Current Opinion in Hematology, 2018, 25, 183-188.	1.2	2 29
121	Mechanisms of autophagy and relevant small-molecule compounds for targeted cancer therapy. Cellular and Molecular Life Sciences, 2018, 75, 1803-1826.	2.4	4 46
122	Neuronal lysosomal dysfunction releases exosomes harboring APP C-terminal fragments and unique lipid signatures. Nature Communications, 2018, 9, 291.	5.8	3 165
123	Targeting urothelial carcinoma cells by combining cisplatin with a specific inhibitor of the autophagy-inducing class III PtdIns3K complex. Urologic Oncology: Seminars and Original Investigations, 2018, 36, 160.e1-160.e13.	0.8	8 33
124	Autophagy and lysosomal pathways in nervous system disorders. Molecular and Cellular Neurosciences, 2018, 91, 167-208.	1.0) 22
125	Bone marrow mesenchymal stem cells conditioned medium protects VSC4.1 cells against 2,5-hexanedione-induced autophagy via NGF-PI3K/Akt/mTOR signaling pathway. Brain Research, 2018 1-9.	3, 1696, 1.1	9
126	Human Cytomegalovirus Protein pUL38 Prevents Premature Cell Death by Binding to Ubiquitin-Speci Protease 24 and Regulating Iron Metabolism. Journal of Virology, 2018, 92, .	fic 1.5	5 30
127	Iron and innate antimicrobial immunity—Depriving the pathogen, defending the host. Journal of Tra Elements in Medicine and Biology, 2018, 48, 118-133.	ce 1.5	5 82
128	The antipsychotic agent clozapine induces autophagy via the AMPK-ULK1-Beclin1 signaling pathway the rat frontal cortex. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 81, 96-104.	in 2.5	5 31

~			-	
(``		ON	REPC	NDT
\sim	$\Pi \cap \Pi$		ILLI C	

#	ARTICLE	IF	CITATIONS
129	Ferritin iron regulators, PCBP1 and NCOA4, respond to cellular iron status in developing red cells. Blood Cells, Molecules, and Diseases, 2018, 69, 75-81.	0.6	45
130	To eat or not to eat — the metabolic flavor of ferroptosis. Current Opinion in Cell Biology, 2018, 51, 58-64.	2.6	109
131	Vacuolar Trafficking Protein VPS38 Is Dispensable for Autophagy. Plant Physiology, 2018, 176, 1559-1572.	2.3	34
132	Design of Small Molecule Autophagy Modulators: A Promising Druggable Strategy. Journal of Medicinal Chemistry, 2018, 61, 4656-4687.	2.9	25
133	Mobilization of iron from ferritin: new steps and details. Metallomics, 2018, 10, 154-168.	1.0	40
134	Iron in the Tumor Microenvironment—Connecting the Dots. Frontiers in Oncology, 2018, 8, 549.	1.3	108
135	Autophagy in Cancer: Regulation by Small Molecules. Trends in Pharmacological Sciences, 2018, 39, 1021-1032.	4.0	80
136	The Isoform Selective Roles of PI3Ks in Dendritic Cell Biology and Function. Frontiers in Immunology, 2018, 9, 2574.	2.2	29
137	Links Between Iron and Lipids: Implications in Some Major Human Diseases. Pharmaceuticals, 2018, 11, 113.	1.7	46
138	The Role of NCOA4-Mediated Ferritinophagy in Health and Disease. Pharmaceuticals, 2018, 11, 114.	1.7	180
139	The Ins and Outs of Autophagy and Metabolism in Hematopoietic and Leukemic Stem Cells: Food for Thought. Frontiers in Cell and Developmental Biology, 2018, 6, 120.	1.8	17
140	Autophagy differentially regulates TNF receptor Fn14 by distinct mammalian Atg8 proteins. Nature Communications, 2018, 9, 3744.	5.8	14
141	Structural Basis for Regulation of Phosphoinositide Kinases and Their Involvement in Human Disease. Molecular Cell, 2018, 71, 653-673.	4.5	174
142	Autophagy therapeutics: preclinical basis and initial clinical studies. Cancer Chemotherapy and Pharmacology, 2018, 82, 923-934.	1.1	23
143	Advances in understanding iron metabolism and its crosstalk with erythropoiesis. British Journal of Haematology, 2018, 182, 481-494.	1.2	22
144	Crossing the Iron Gate: Why and How Transferrin Receptors Mediate Viral Entry. Annual Review of Nutrition, 2018, 38, 431-458.	4.3	106
145	A new quinoline-based chemical probe inhibits the autophagy-related cysteine protease ATG4B. Scientific Reports, 2018, 8, 11653.	1.6	33
146	Phyllanthusmin Derivatives Induce Apoptosis and Reduce Tumor Burden in High-Grade Serous Ovarian Cancer by Late-Stage Autophagy Inhibition. Molecular Cancer Therapeutics, 2018, 17, 2123-2135.	1.9	24

#	Article	IF	CITATIONS
147	Targeting autophagy by small molecule inhibitors of vacuolar protein sorting 34 (Vps34) improves the sensitivity of breast cancer cells to Sunitinib. Cancer Letters, 2018, 435, 32-43.	3.2	93
148	Alterations in Cellular Iron Metabolism Provide More Therapeutic Opportunities for Cancer. International Journal of Molecular Sciences, 2018, 19, 1545.	1.8	73
149	Starvation induces rapid degradation of selective autophagy receptors by endosomal microautophagy. Journal of Cell Biology, 2018, 217, 3640-3655.	2.3	213
150	Genome-wide sequence and expressional analysis of autophagy Gene family in bread wheat (Triticum) Tj ETQq1 3	1 0,784314 1.6	4 rgBT /Overl
151	Dysregulation of Neuronal Iron Homeostasis as an Alternative Unifying Effect of Mutations Causing Familial Alzheimer's Disease. Frontiers in Neuroscience, 2018, 12, 533.	1.4	41
152	Iron and Cancer. Annual Review of Nutrition, 2018, 38, 97-125.	4.3	285
153	The significance, trafficking and determination of labile iron in cytosol, mitochondria and lysosomes. Metallomics, 2018, 10, 899-916.	1.0	82
154	The lipid products of phosphoinositide 3-kinase isoforms in cancer and thrombosis. Cancer and Metastasis Reviews, 2018, 37, 477-489.	2.7	5
155	Transferrin and transferrin receptors update. Free Radical Biology and Medicine, 2019, 133, 46-54.	1.3	355
156	Mechanisms of selective autophagy and mitophagy: Implications for neurodegenerative diseases. Neurobiology of Disease, 2019, 122, 23-34.	2.1	163
157	Tamoxifen erythroid toxicity revealed by studying the role of nuclear receptor co-activator 4 in erythropoiesis. Haematologica, 2019, 104, e383-e384.	1.7	6
158	Cytoplasmic DAXX drives SQSTM1/p62 phase condensation to activate Nrf2-mediated stress response. Nature Communications, 2019, 10, 3759.	5.8	70
159	Oncogenic KIT mutations induce STAT3-dependent autophagy to support cell proliferation in acute myeloid leukemia. Oncogenesis, 2019, 8, 39.	2.1	26
160	Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nature Communications, 2019, 10, 3145.	5.8	303
161	Diverse Cellular Roles of Autophagy. Annual Review of Cell and Developmental Biology, 2019, 35, 453-475.	4.0	250
162	The Impact of Iron Overload and Ferroptosis on Reproductive Disorders in Humans: Implications for Preeclampsia. International Journal of Molecular Sciences, 2019, 20, 3283.	1.8	87
163	Selective Autophagy of Mitochondria on a Ubiquitin-Endoplasmic-Reticulum Platform. Developmental Cell, 2019, 50, 627-643.e5.	3.1	101
164	Unraveling the Potential Role of Glutathione in Multiple Forms of Cell Death in Cancer Therapy. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-16.	1.9	177

#	Article	IF	CITATIONS
165	A Comprehensive Review of Autophagy and Its Various Roles in Infectious, Non-Infectious, and Lifestyle Diseases: Current Knowledge and Prospects for Disease Prevention, Novel Drug Design, and Therapy. Cells, 2019, 8, 674.	1.8	154
167	Molecular Mechanisms Underlying Autophagy-Mediated Treatment Resistance in Cancer. Cancers, 2019, 11, 1775.	1.7	62
168	Targeting Autophagy for Cancer Treatment and Tumor Chemosensitization. Cancers, 2019, 11, 1599.	1.7	112
169	Heme acquisition by Shu1 requires Nbr1 and proteins of the ESCRT complex in <i>Schizosaccharomyces pombe</i> . Molecular Microbiology, 2019, 112, 1499-1518.	1.2	12
170	Ferritin expression in the periodontal tissues of primates. European Journal of Histochemistry, 2019, 63, .	0.6	3
171	Effect of early-stage autophagy inhibition in BRAFV600E autophagy-dependent brain tumor cells. Cell Death and Disease, 2019, 10, 679.	2.7	24
172	A Diversity of Selective Autophagy Receptors Determines the Specificity of the Autophagy Pathway. Molecular Cell, 2019, 76, 268-285.	4.5	353
173	Autophagy in liver diseases: Time for translation?. Journal of Hepatology, 2019, 70, 985-998.	1.8	252
174	Lipids lead the way. Nature Chemical Biology, 2019, 15, 653-654.	3.9	0
175	Unconventional Secretion of Adipocyte Fatty Acid Binding Protein 4 Is Mediated By Autophagic Proteins in a Sirtuin-1–Dependent Manner. Diabetes, 2019, 68, 1767-1777.	0.3	32
176	PI3K isoforms in cell signalling andÂvesicle trafficking. Nature Reviews Molecular Cell Biology, 2019, 20, 515-534.	16.1	316
177	lron Supply via NCOA4-Mediated Ferritin Degradation Maintains Mitochondrial Functions. Molecular and Cellular Biology, 2019, 39, .	1.1	45
178	Iron in Neurodegeneration – Cause or Consequence?. Frontiers in Neuroscience, 2019, 13, 180.	1.4	204
179	NCOA4-Mediated Ferritinophagy: A Potential Link to Neurodegeneration. Frontiers in Neuroscience, 2019, 13, 238.	1.4	132
180	Targeting PI3K signaling in cancer: Challenges and advances. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 361-366.	3.3	54
181	Watch What You (Self-) Eat: Autophagic Mechanisms that Modulate Metabolism. Cell Metabolism, 2019, 29, 803-826.	7.2	206
182	Autophagy and cancer stem cells: molecular mechanisms and therapeutic applications. Cell Death and Differentiation, 2019, 26, 690-702.	5.0	266
183	Neisseria gonorrhoeae evades autophagic killing by downregulating CD46-cyt1 and remodeling lysosomes. PLoS Pathogens, 2019, 15, e1007495.	2.1	23

#	Article	IF	CITATIONS
184	Iron-Related Parameters are Altered Between C57BL/6N and C57BL/6J Mus Musculus Wild-Type Substrains. HemaSphere, 2019, 3, e304.	1.2	5
185	Autophagy Induction by a Small Molecule Inhibits <i>Salmonella</i> Survival in Macrophages and Mice. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	15
186	Structural Biology and Electron Microscopy of the Autophagy Molecular Machinery. Cells, 2019, 8, 1627.	1.8	9
187	Autophagy and cancer: Modulation of cell death pathways and cancer cell adaptations. Journal of Cell Biology, 2020, 219, jcb.201909033.	2.3	80
188	Principles and applications of optogenetics in developmental biology. Development (Cambridge), 2019, 146, .	1.2	83
189	Autophagy and mitochondrial metabolism: insights into their role and therapeutic potential in chronic myeloid leukaemia. FEBS Journal, 2019, 286, 1271-1283.	2.2	11
190	Targeting quiescent leukemic stem cells using second generation autophagy inhibitors. Leukemia, 2019, 33, 981-994.	3.3	99
191	Iron catalysis of lipid peroxidation in ferroptosis: Regulated enzymatic or random free radical reaction?. Free Radical Biology and Medicine, 2019, 133, 153-161.	1.3	212
192	A Dual Role of Heme Oxygenase-1 in Cancer Cells. International Journal of Molecular Sciences, 2019, 20, 39.	1.8	292
193	VPS34 complexes from a structural perspective. Journal of Lipid Research, 2019, 60, 229-241.	2.0	86
193 194		2.0 1.7	86 54
	VPS34 complexes from a structural perspective. Journal of Lipid Research, 2019, 60, 229-241.		
194	VPS34 complexes from a structural perspective. Journal of Lipid Research, 2019, 60, 229-241. Iron Homeostasis in the Lungs—A Balance between Health and Disease. Pharmaceuticals, 2019, 12, 5.	1.7	54
194 195	VPS34 complexes from a structural perspective. Journal of Lipid Research, 2019, 60, 229-241. Iron Homeostasis in the Lungs—A Balance between Health and Disease. Pharmaceuticals, 2019, 12, 5. NCOA4 maintains murine erythropoiesis via cell autonomous and non-autonomous mechanisms. Haematologica, 2019, 104, 1342-1354. Harnessing autophagy to overcome mitogenâ€activated protein kinase kinase inhibitorâ€induced	1.7	54 38
194 195 196	VPS34 complexes from a structural perspective. Journal of Lipid Research, 2019, 60, 229-241. Iron Homeostasis in the Lungs—A Balance between Health and Disease. Pharmaceuticals, 2019, 12, 5. NCOA4 maintains murine erythropoiesis via cell autonomous and non-autonomous mechanisms. Haematologica, 2019, 104, 1342-1354. Harnessing autophagy to overcome mitogenâ€activated protein kinase kinase inhibitorâ€induced resistance in metastatic melanoma. British Journal of Dermatology, 2019, 180, 346-356. The role of iron metabolism in cancer therapy focusing on tumorâ€associated macrophages. Journal of	1.7 1.7 1.4	54 38 23
194 195 196 197	 VPS34 complexes from a structural perspective. Journal of Lipid Research, 2019, 60, 229-241. Iron Homeostasis in the Lungs—A Balance between Health and Disease. Pharmaceuticals, 2019, 12, 5. NCOA4 maintains murine erythropoiesis via cell autonomous and non-autonomous mechanisms. Haematologica, 2019, 104, 1342-1354. Harnessing autophagy to overcome mitogenâ€activated protein kinase kinase inhibitorâ€induced resistance in metastatic melanoma. British Journal of Dermatology, 2019, 180, 346-356. The role of iron metabolism in cancer therapy focusing on tumorâ€associated macrophages. Journal of Cellular Physiology, 2019, 234, 8028-8039. Autophagy inhibition as a potential future targeted therapy for ETV6-RUNX1-driven B-cell precursor 	1.7 1.7 1.4 2.0	54 38 23 26
194 195 196 197 198	 VPS34 complexes from a structural perspective. Journal of Lipid Research, 2019, 60, 229-241. Iron Homeostasis in the Lungsâ€"A Balance between Health and Disease. Pharmaceuticals, 2019, 12, 5. NCOA4 maintains murine erythropoiesis via cell autonomous and non-autonomous mechanisms. Haematologica, 2019, 104, 1342-1354. Harnessing autophagy to overcome mitogenâ€activated protein kinase kinase inhibitorâ€induced resistance in metastatic melanoma. British Journal of Dermatology, 2019, 180, 346-356. The role of iron metabolism in cancer therapy focusing on tumorâ€associated macrophages. Journal of Cellular Physiology, 2019, 234, 8028-8039. Autophagy inhibition as a potential future targeted therapy for ETV6-RUNX1-driven B-cell precursor acute lymphoblastic leukemia. Haematologica, 2019, 104, 738-748. 	1.7 1.7 1.4 2.0 1.7	 54 38 23 26 36

#	Article	IF	CITATIONS
202	Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis. Cell Death and Differentiation, 2020, 27, 242-254.	5.0	269
203	History of the Selective Autophagy Research: How Did It Begin and Where Does It Stand Today?. Journal of Molecular Biology, 2020, 432, 3-27.	2.0	97
204	Mechanisms of Autophagy in Metabolic Stress Response. Journal of Molecular Biology, 2020, 432, 28-52.	2.0	52
205	Pro-survival autophagy: An emerging candidate of tumor progression through maintaining hallmarks of cancer. Seminars in Cancer Biology, 2020, 66, 59-74.	4.3	44
206	Selective Autophagy in Normal and Malignant Hematopoiesis. Journal of Molecular Biology, 2020, 432, 261-282.	2.0	21
207	Selective Autophagy: ATG8 Family Proteins, LIR Motifs and Cargo Receptors. Journal of Molecular Biology, 2020, 432, 80-103.	2.0	446
208	Autophagy as a mechanism for anti-angiogenic therapy resistance. Seminars in Cancer Biology, 2020, 66, 75-88.	4.3	26
209	Phosphoinositides in autophagy: current roles and future insights. FEBS Journal, 2020, 287, 222-238.	2.2	43
210	Selective Autophagy Receptors in Neuronal Health and Disease. Journal of Molecular Biology, 2020, 432, 2483-2509.	2.0	54
211	Adaptor protein complex 4 deficiency: a paradigm of childhood-onset hereditary spastic paraplegia caused by defective protein trafficking. Human Molecular Genetics, 2020, 29, 320-334.	1.4	45
212	Autophagy modulator scoring system: a user-friendly tool for quantitative analysis of methodological integrity of chemical autophagy modulator studies. Autophagy, 2020, 16, 195-202.	4.3	14
213	Autophagy in cancer: moving from understanding mechanism to improving therapy responses in patients. Cell Death and Differentiation, 2020, 27, 843-857.	5.0	278
214	Lowering Mutant Huntingtin Levels and Toxicity: Autophagy-Endolysosome Pathways in Huntington's Disease. Journal of Molecular Biology, 2020, 432, 2673-2691.	2.0	26
215	Autophagy Takes Center Stage as a Possible Cancer Hallmark. Frontiers in Oncology, 2020, 10, 586069.	1.3	31
216	Iron mineralization and core dissociation in mammalian homopolymeric H-ferritin: Current understanding and future perspectives. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129700.	1.1	16
217	Ferroptosis: regulated cell death. Arhiv Za Higijenu Rada I Toksikologiju, 2020, 71, 99-109.	0.4	16
218	A mass spectrometry-based proteome map of drug action in lung cancer cell lines. Nature Chemical Biology, 2020, 16, 1111-1119.	3.9	31
219	The role of lysosome in regulated necrosis. Acta Pharmaceutica Sinica B, 2020, 10, 1880-1903.	5.7	60

#	Article	IF	CITATIONS
220	NCOA4 is Regulated by HIF and Mediates Mobilization of Murine Hepatic Iron Stores After Blood Loss. Blood, 2020, 136, 2691-2702.	0.6	20
221	GLIPR2 is a negative regulator of autophagy and the BECN1-ATG14-containing phosphatidylinositol 3-kinase complex. Autophagy, 2021, 17, 2891-2904.	4.3	22
222	SARS-CoV-2 infection: can ferroptosis be a potential treatment target for multiple organ involvement?. Cell Death Discovery, 2020, 6, 130.	2.0	52
223	Iron on the move: mobilizing liver iron via NCOA4. Blood, 2020, 136, 2604-2605.	0.6	7
224	The Inhibitory Effect of 6-Gingerol on Ubiquitin-Specific Peptidase 14 Enhances Autophagy-Dependent Ferroptosis and Anti-Tumor in vivo and in vitro. Frontiers in Pharmacology, 2020, 11, 598555.	1.6	66
225	HPV sensitizes OPSCC cells to cisplatin-induced apoptosis by inhibiting autophagy through E7-mediated degradation of AMBRA1. Autophagy, 2021, 17, 2842-2855.	4.3	25
226	Irisin Is a Positive Regulator for Ferroptosis in Pancreatic Cancer. Molecular Therapy - Oncolytics, 2020, 18, 457-466.	2.0	21
227	Saponin Formosanin C-Induced Ferritinophagy and Ferroptosis in Human Hepatocellular Carcinoma Cells. Antioxidants, 2020, 9, 682.	2.2	63
228	Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis. Redox Biology, 2020, 36, 101670.	3.9	189
229	Nanomaterials for Autophagy-Related miRNA-34a Delivery in Cancer Treatment. Frontiers in Pharmacology, 2020, 11, 1141.	1.6	16
230	Antileukemic activity of the VPS34-IN1 inhibitor in acute myeloid leukemia. Oncogenesis, 2020, 9, 94.	2.1	23
231	Fostered Nrf2 expression antagonizes iron overload and glutathione depletion to promote resistance of neuron-like cells to ferroptosis. Toxicology and Applied Pharmacology, 2020, 407, 115241.	1.3	49
232	An iron-dependent metabolic vulnerability underlies VPS34-dependence in RKO cancer cells. PLoS ONE, 2020, 15, e0235551.	1.1	8
233	Iron and Cancer: 2020 Vision. Cancer Research, 2020, 80, 5435-5448.	0.4	91
234	Taming the Autophagy as a Strategy for Treating COVID-19. Cells, 2020, 9, 2679.	1.8	52
235	Periodontitis-level butyrate-induced ferroptosis in periodontal ligament fibroblasts by activation of ferritinophagy. Cell Death Discovery, 2020, 6, 119.	2.0	46
236	Iron: An Essential Element of Cancer Metabolism. Cells, 2020, 9, 2591.	1.8	56
237	Recent Advances in Single-Particle Electron Microscopic Analysis of Autophagy Degradation Machinery. International Journal of Molecular Sciences, 2020, 21, 8051.	1.8	3

#	Article	IF	CITATIONS
238	Pathogenic Single Nucleotide Polymorphisms on Autophagy-Related Genes. International Journal of Molecular Sciences, 2020, 21, 8196.	1.8	14
239	Ferritins in Kidney Disease. Seminars in Nephrology, 2020, 40, 160-172.	0.6	17
240	Stapled Peptide Inhibitors of Autophagy Adapter LC3B. ChemBioChem, 2020, 21, 2777-2785.	1.3	14
241	The Application of Ferroptosis in Diseases. Pharmacological Research, 2020, 159, 104919.	3.1	236
242	PIK3C3 regulates the expansion of liver CSCs and PIK3C3 inhibition counteracts liver cancer stem cell activity induced by PI3K inhibitor. Cell Death and Disease, 2020, 11, 427.	2.7	26
243	Epithelial Haven and Autophagy Breakout in Gonococci Infection. Frontiers in Cell and Developmental Biology, 2020, 8, 439.	1.8	7
244	Rap1-GTPases control mTORC1 activity by coordinating lysosome organization with amino acid availability. Nature Communications, 2020, 11, 1416.	5.8	51
245	Machinery for fungal heme acquisition. Current Genetics, 2020, 66, 703-711.	0.8	14
246	Yeast β-D-glucan exerts antitumour activity in liver cancer through impairing autophagy and lysosomal function, promoting reactive oxygen species production and apoptosis. Redox Biology, 2020, 32, 101495.	3.9	46
247	Thermodynamic and Kinetic Studies of the Interaction of Nuclear Receptor Coactivator-4 (NCOA4) with Human Ferritin. Biochemistry, 2020, 59, 2707-2717.	1.2	12
248	Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica, 2020, 105, 260-272.	1.7	349
249	Iron Metabolism, Ferroptosis, and the Links With Alzheimer's Disease. Frontiers in Neuroscience, 2019, 13, 1443.	1.4	157
250	How autophagy can restore proteostasis defects in multiple diseases?. Medicinal Research Reviews, 2020, 40, 1385-1439.	5.0	27
251	Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Letters, 2020, 483, 127-136.	3.2	308
252	Frataxin deficiency induces lipid accumulation and affects thermogenesis in brown adipose tissue. Cell Death and Disease, 2020, 11, 51.	2.7	47
253	Autophagy Function and Regulation in Kidney Disease. Biomolecules, 2020, 10, 100.	1.8	64
254	Achieving Life through Death: Redox Biology of Lipid Peroxidation in Ferroptosis. Cell Chemical Biology, 2020, 27, 387-408.	2.5	144
255	Nrf2 and Ferroptosis: A New Research Direction for Neurodegenerative Diseases. Frontiers in Neuroscience, 2020, 14, 267.	1.4	296

#	Article	IF	CITATIONS
256	Molecular Insights Into Therapeutic Potential of Autophagy Modulation by Natural Products for Cancer Stem Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 283.	1.8	39
257	Cysteine Deprivation Targets Ovarian Clear Cell Carcinoma <i>Via</i> Oxidative Stress and Ironâ^'Sulfur Cluster Biogenesis Deficit. Antioxidants and Redox Signaling, 2020, 33, 1191-1208.	2.5	25
258	p62/SQSTM1, a Central but Unexploited Target: Advances in Its Physiological/Pathogenic Functions and Small Molecular Modulators. Journal of Medicinal Chemistry, 2020, 63, 10135-10157.	2.9	26
259	Beclin 1–ATG14L Protein–Protein Interaction Inhibitor Selectively Inhibits Autophagy through Disruption of VPS34 Complex I. Journal of the American Chemical Society, 2020, 142, 8174-8182.	6.6	32
260	The Chemistry and Biology of Ferroptosis. Cell Chemical Biology, 2020, 27, 365-375.	2.5	204
261	NCOA4-mediated ferritinophagy in macrophages is crucial to sustain erythropoiesis in mice. Haematologica, 2021, 106, 795-805.	1.7	37
262	Iron Chaperone Poly rC Binding Protein 1 Protects Mouse Liver From Lipid Peroxidation and Steatosis. Hepatology, 2021, 73, 1176-1193.	3.6	101
263	NCOA4-mediated ferritinophagy promotes ferroptosis induced by erastin, but not by RSL3 in HeLa cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118913.	1.9	69
264	Sorting nexin 5 mediates virus-induced autophagy and immunity. Nature, 2021, 589, 456-461.	13.7	61
265	Nanomedicine enables autophagy-enhanced cancer-cell ferroptosis. Science Bulletin, 2021, 66, 464-477.	4.3	26
266	Biochemistry of mammalian ferritins in the regulation of cellular iron homeostasis and oxidative responses. Science China Life Sciences, 2021, 64, 352-362.	2.3	34
267	Involvement of oxidative stressâ€induced annulus fibrosus cell and nucleus pulposus cell ferroptosis in intervertebral disc degeneration pathogenesis. Journal of Cellular Physiology, 2021, 236, 2725-2739.	2.0	99
268	Autophagy as a therapeutic target in pancreatic cancer. British Journal of Cancer, 2021, 124, 333-344.	2.9	116
269	The Role of NCOA4-Mediated Ferritinophagy in Ferroptosis. Advances in Experimental Medicine and Biology, 2021, 1301, 41-57.	0.8	80
270	Iron Metabolism and Related Disorders. , 2021, , 445-499.		0
271	Targeting the Autophagy Specific Lipid Kinase VPS34 for Cancer Treatment: An Integrative Repurposing Strategy. Protein Journal, 2021, 40, 41-53.	0.7	6
272	New Insights into the Role of Ferritin in Iron Homeostasis and Neurodegenerative Diseases. Molecular Neurobiology, 2021, 58, 2812-2823.	1.9	78
273	Low expression of ferritinophagy-related NCOA4 gene in relation to unfavorable outcome and defective immune cells infiltration in clear cell renal carcinoma. BMC Cancer, 2021, 21, 18.	1.1	67

#	Article	IF	CITATIONS
274	Exosomes derived from vascular endothelial cells antagonize glucocorticoidâ€induced osteoporosis by inhibiting ferritinophagy with resultant limited ferroptosis of osteoblasts. Journal of Cellular Physiology, 2021, 236, 6691-6705.	2.0	40
275	Iron derived from autophagy-mediated ferritin degradation induces cardiomyocyte death and heart failure in mice. ELife, 2021, 10, .	2.8	60
276	Iron control of erythroid microtubule cytoskeleton as a potential target in treatment of iron-restricted anemia. Nature Communications, 2021, 12, 1645.	5.8	9
277	A Combined Model of Human iPSCâ€Derived Liver Organoids and Hepatocytes Reveals Ferroptosis in DGUOK Mutant mtDNA Depletion Syndrome. Advanced Science, 2021, 8, 2004680.	5.6	45
278	Iron Metabolism Disorders for Cognitive Dysfunction After Mild Traumatic Brain Injury. Frontiers in Neuroscience, 2021, 15, 587197.	1.4	12
279	Ciclopirox olamine induces ferritinophagy and reduces cyst burden in polycystic kidney disease. JCI Insight, 2021, 6, .	2.3	21
280	Autophagy in tumour immunity and therapy. Nature Reviews Cancer, 2021, 21, 281-297.	12.8	185
281	The Multifaceted Regulation of Mitochondria in Ferroptosis. Life, 2021, 11, 222.	1.1	49
282	TOR functions as a molecular switch connecting an iron cue with host innate defense against bacterial infection. PLoS Genetics, 2021, 17, e1009383.	1.5	3
283	Ferritinophagy is involved in the zinc oxide nanoparticles-induced ferroptosis of vascular endothelial cells. Autophagy, 2021, 17, 4266-4285.	4.3	162
284	Ferroptosis and its emerging roles in cardiovascular diseases. Pharmacological Research, 2021, 166, 105466.	3.1	126
285	Baicalin Prevents Myocardial Ischemia/Reperfusion Injury Through Inhibiting ACSL4 Mediated Ferroptosis. Frontiers in Pharmacology, 2021, 12, 628988.	1.6	92
286	<i>WDR45</i> , one gene associated with multiple neurodevelopmental disorders. Autophagy, 2021, 17, 3908-3923.	4.3	20
287	A guide to the regulation of selective autophagy receptors. FEBS Journal, 2022, 289, 75-89.	2.2	95
288	Inhibiting Ferroptosis through Disrupting the NCOA4–FTH1 Interaction: A New Mechanism of Action. ACS Central Science, 2021, 7, 980-989.	5.3	163
289	The iron chaperone and nucleic acid–binding activities of poly(rC)-binding protein 1 are separable and independently essential. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	30
290	The sGC-cGMP Signaling Pathway as a Potential Therapeutic Target in Doxorubicin-Induced Heart Failure: A Narrative Review. American Journal of Cardiovascular Drugs, 2022, 22, 117-125.	1.0	6
291	Mechanisms of Selective Autophagy. Annual Review of Cell and Developmental Biology, 2021, 37, 143-169.	4.0	137

#	ARTICLE	IF	CITATIONS
292	Recent advances in developing small-molecule inhibitors against SARS-CoV-2. Acta Pharmaceutica Sinica B, 2022, 12, 1591-1623.	5.7	57
293	CD63 is regulated by iron via the IRE-IRP system and is important for ferritin secretion by extracellular vesicles. Blood, 2021, 138, 1490-1503.	0.6	57
294	Mechanisms of cellular iron sensing, regulation of erythropoiesis and mitochondrial iron utilization. Seminars in Hematology, 2021, 58, 161-174.	1.8	24
295	The Link Between Ferroptosis and Cardiovascular Diseases: A Novel Target for Treatment. Frontiers in Cardiovascular Medicine, 2021, 8, 710963.	1.1	49
297	Targeting autophagy in disease: established and new strategies. Autophagy, 2022, 18, 473-495.	4.3	77
298	SCD1, autophagy and cancer: implications for therapy. Journal of Experimental and Clinical Cancer Research, 2021, 40, 265.	3.5	57
299	A Prognostic Nomogram for Predicting Overall Survival in Pediatric Wilms Tumor Based on an Autophagy-related Gene Signature. Combinatorial Chemistry and High Throughput Screening, 2021, 24, .	0.6	5
300	Inhibitors of VPS34 and fatty-acid metabolism suppress SARS-CoV-2 replication. Cell Reports, 2021, 36, 109479.	2.9	51
301	The lysosome as a master regulator of iron metabolism. Trends in Biochemical Sciences, 2021, 46, 960-975.	3.7	79
302	Ferroptosis: A Novel Therapeutic Target for Ischemia-Reperfusion Injury. Frontiers in Cell and Developmental Biology, 2021, 9, 688605.	1.8	44
303	Lysosomes and the pathogenesis of merosin-deficient congenital muscular dystrophy. Human Molecular Genetics, 2022, 31, 733-747.	1.4	3
304	ULK1 inhibition promotes oxidative stress–induced differentiation and sensitizes leukemic stem cells to targeted therapy. Science Translational Medicine, 2021, 13, eabd5016.	5.8	26
305	An alcoholic extract of Thuja orientalis L. leaves inhibits autophagy by specifically targeting pro-autophagy PIK3C3/VPS34 complex. Scientific Reports, 2021, 11, 17712.	1.6	3
306	Host proviral and antiviral factors for SARS-CoV-2. Virus Genes, 2021, 57, 475-488.	0.7	11
307	A perspective on the role of autophagy in cancer. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166262.	1.8	54
308	Autophagy in cancer: friend or foe?. , 2022, , 361-384.		1
309	Mechanisms of autophagy: the machinery of macroautophagy and points of control. , 2022, , 9-19.		2
310	Autophagy in hematopoiesis and leukemogenesis. , 2022, , 125-141.		1

		CITATION RE	PORT	
#	Article		IF	CITATIONS
311	Cellular degradation systems in ferroptosis. Cell Death and Differentiation, 2021, 28, 1	135-1148.	5.0	283
312	Loss of COPZ1 induces NCOA4 mediated autophagy and ferroptosis in glioblastoma ce Oncogene, 2021, 40, 1425-1439.	ll lines.	2.6	108
313	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj E	[Qq0 0 0 rgBT /Overlock]	.0 Tf 50 66 4.3	52 Td (editio 1,430
314	The identification and characterisation of autophagy inhibitors from the published kinas sets. Biochemical Journal, 2020, 477, 801-814.	se inhibitor	1.7	12
315	Autophagy and post-ischemic conditioning in retinal ischemia. Autophagy, 2021, 17, 14	179-1499.	4.3	34
318	PCBP1 and NCOA4 regulate erythroid iron storage and heme biosynthesis. Journal of Cl Investigation, 2017, 127, 1786-1797.	inical	3.9	113
319	Autophagy and airway fibrosis: Is there a link?. F1000Research, 2017, 6, 409.		0.8	13
320	Autophagy and airway fibrosis: Is there a link?. F1000Research, 2017, 6, 409.		0.8	12
321	H-Ferritin Is Preferentially Incorporated by Human Erythroid Cells through Transferrin Re a Threshold-Dependent Manner. PLoS ONE, 2015, 10, e0139915.	ceptor 1 in	1.1	33
322	Ferroptosis and autophagy induced cell death occur independently after siramesine and treatment in breast cancer cells. PLoS ONE, 2017, 12, e0182921.	l lapatinib	1.1	136
323	Macrophageâ€driven nutrient delivery to phagosomal <i>Staphylococcus aureus</i> su growth. EMBO Reports, 2020, 21, e50348.	pports bacterial	2.0	12
324	Targeting autophagy in thyroid cancers. Endocrine-Related Cancer, 2019, 26, R181-R19	4.	1.6	18
325	Simultaneous inhibition of Vps34 kinase would enhance PI3Kδ inhibitor cytotoxicity in t malignancies. Oncotarget, 2016, 7, 53515-53525.	he B-cell	0.8	19
326	Chronic myeloid leukemia progenitor cells require autophagy when leaving hypoxia-indu quiescence. Oncotarget, 2017, 8, 96984-96992.	uced	0.8	15
327	Expression and function of nuclear receptor coactivator 4 isoforms in transformed endo and malignant ovarian cells. Oncotarget, 2018, 9, 5344-5367.	ometriotic	0.8	24
328	Dual PI-3 kinase/mTOR inhibition impairs autophagy flux and induces cell death indeper apoptosis and necroptosis. Oncotarget, 2016, 7, 5157-5175.	ident of	0.8	31
329	Targeting Autophagy to Treat Cancer: Challenges and Opportunities. Frontiers in Pharm 11, 590344.	acology, 2020,	1.6	29
330	Molecular modulation of autophagy: New venture to target resistant cancer stem cells. Journal of Stem Cells, 2020, 12, 303-322.	World	1.3	19

# 331	ARTICLE Targeting Ferroptosis for Lung Diseases: Exploring Novel Strategies in Ferroptosis-Associated Mechanisms. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-21.	IF 1.9	CITATIONS
332	Supraphysiologic Testosterone Induces Ferroptosis and Activates Immune Pathways through Nucleophagy in Prostate Cancer. Cancer Research, 2021, 81, 5948-5962.	0.4	30
333	The Role of Phosphatidylinositol 3-Kinase Catalytic Subunit Type 3 in the Pathogenesis of Human Cancer. International Journal of Molecular Sciences, 2021, 22, 10964.	1.8	5
334	Metformin may induce ferroptosis by inhibiting autophagy <i>via</i> IncRNA H19 in breast cancer. FEBS Open Bio, 2022, 12, 146-153.	1.0	40
335	Formaldehyde induces ferritinophagy to damage hippocampal neuronal cells. Toxicology and Industrial Health, 2021, 37, 685-694.	0.6	3
336	Selective elimination of host cells harboring replication-competent human immunodeficiency virus reservoirs: a promising therapeutic strategy for HIV cure. Chinese Medical Journal, 2021, 134, 2776-2787.	0.9	6
337	Autophagy in Cancer Therapy: Progress and Issues. Journal of Cancer Research Updates, 2015, 4, 1-12.	0.3	0
339	Neurodegenerative Diseases and Autophagy. , 2018, , 299-343.		1
340	Regulation of Ferroptosis by MicroRNAs. , 2019, , 125-145.		2
342	Tailored Parameterization of the LIE Method for Calculating the Binding Free Energy of Vps34–Inhibitor Complexes. ACS Omega, 2021, 6, 29525-29536.	1.6	4
343	Autophagy and Cell Death: Antitumor Drugs Targeting Autophagy. , 0, , .		1
345	A Decade of Mighty Lipophagy: What We Know and What Facts We Need to Know?. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-18.	1.9	10
347	Autophagy and cancer metabolism—The twoâ€way interplay. IUBMB Life, 2022, 74, 281-295.	1.5	5
348	Recent Progress of Ferroptosis in Lung Diseases. Frontiers in Cell and Developmental Biology, 2021, 9, 789517.	1.8	29
349	Activation Mechanisms of the VPS34 Complexes. Cells, 2021, 10, 3124.	1.8	16
350	Contribution of autophagy machinery factors to HCV and SARS-CoV-2 replication organelle formation. Cell Reports, 2021, 37, 110049.	2.9	60
351	Therapeutic Targeting of Autophagy in Pancreatic Ductal Adenocarcinoma. Frontiers in Pharmacology, 2021, 12, 751568.	1.6	10
352	Structure-Based Design of Potent, Selective, and Orally Bioavailable VPS34 Kinase Inhibitors. Journal of Medicinal Chemistry, 2022, 65, 11500-11512.	2.9	12

#	Article	IF	CITATIONS
353	The Role of Iron in Cancer Progression. Frontiers in Oncology, 2021, 11, 778492.	1.3	55
354	A New High-Risk Environmental Pollutant 4-Tert-Butylphenol Threatens the Health of Fish: Tissue Damage, Oxidative Stress, Iron Overload, and Ferroptosis. SSRN Electronic Journal, 0, , .	0.4	0
355	Modulation of the HIF2α-NCOA4 axis in enterocytes attenuates iron loading in a mouse model of hemochromatosis. Blood, 2022, 139, 2547-2552.	0.6	20
356	A mass spectrometric method for in-depth profiling of phosphoinositide regioisomers and their disease-associated regulation. Nature Communications, 2022, 13, 83.	5.8	20
357	Autophagy Targeting and Hematological Mobilization in FLT3-ITD Acute Myeloid Leukemia Decrease Repopulating Capacity and Relapse by Inducing Apoptosis of Committed Leukemic Cells. Cancers, 2022, 14, 453.	1.7	5
358	Lysosomal iron recycling in mouse macrophages is dependent upon both LcytB and Steap3 reductases. Blood Advances, 2022, 6, 1692-1707.	2.5	18
359	The Potential Mechanisms by which Artemisinin and Its Derivatives Induce Ferroptosis in the Treatment of Cancer. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-12.	1.9	24
360	Mitochondria damage and ferroptosis involved in Ni-induced hepatotoxicity in mice. Toxicology, 2022, 466, 153068.	2.0	25
362	Metabolic regulation of ferroptosis in the tumor microenvironment. Journal of Biological Chemistry, 2022, 298, 101617.	1.6	44
363	Ferroptosis in cancer and cancer immunotherapy. Cancer Communications, 2022, 42, 88-116.	3.7	179
364	ER-phagy: mechanisms, regulation, and diseases connected to the lysosomal clearance of the endoplasmic reticulum. Physiological Reviews, 2022, 102, 1393-1448.	13.1	53
365	SARS-CoV-2 Infects Red Blood Cell Progenitors and Dysregulates Hemoglobin and Iron Metabolism. Stem Cell Reviews and Reports, 2022, 18, 1809-1821.	1.7	47
366	Early Endosomal Vps34-Derived Phosphatidylinositol-3-Phosphate Is Indispensable for the Biogenesis of the Endosomal Recycling Compartment. Cells, 2022, 11, 962.	1.8	7
367	Potential relationship between autophagy and ferroptosis in myocardial ischemia/reperfusion injury. Genes and Diseases, 2023, 10, 2285-2295.	1.5	4
368	Regulated cell death: discovery, features and implications for neurodegenerative diseases. Cell Communication and Signaling, 2021, 19, 120.	2.7	48
369	NCOA4-Mediated Ferritinophagy: A Vicious Culprit in COVID-19 Pathogenesis?. Frontiers in Molecular Biosciences, 2021, 8, 761793.	1.6	10
370	Emerging Role of Autophagy in the Development and Progression of Oral Squamous Cell Carcinoma. Cancers, 2021, 13, 6152.	1.7	3
371	Exploration of potential mechanism of interleukin-33 up-regulation caused by 1,4-naphthoquinone black carbon in RAW264.7 cells. Science of the Total Environment, 2022, 835, 155357.	3.9	6

		CITATION REP	ORT	
#	Article		IF	CITATIONS
372	Autophagy in cancer cell remodeling and quality control. Molecular Cell, 2022, 82, 1514-1	527.	4.5	31
373	Cisplatin resistance can be curtailed by blunting Bnip3-mediated mitochondrial autophagy. and Disease, 2022, 13, 398.	Cell Death	2.7	20
374	Ironâ€induced NCOA4 condensation regulates ferritin fate and iron homeostasis. EMBO Ra 23, e54278.	2ports, 2022,	2.0	21
375	Role of dietary iron revisited: in metabolism, ferroptosis and pathophysiology of cancer Ar Journal of Cancer Research, 2022, 12, 974-985.	nerican	1.4	1
376	Exosomes and ferroptosis: roles in tumour regulation and new cancer therapies. PeerJ, 202 e13238.	2, 10,	0.9	7
377	Targeting iron metabolism using gallium nanoparticles to suppress ferroptosis and effectiv mitigate acute kidney injury. Nano Research, 2022, 15, 6315-6327.	ely	5.8	9
378	Dynamic O-GlcNAcylation coordinates ferritinophagy and mitophagy to activate ferroptosi Discovery, 2022, 8, 40.	s. Cell	3.1	62
379	Ferroptosis: A Critical Moderator in the Life Cycle of Immune Cells. Frontiers in Immunolog .	y, 2022, 13,	2.2	16
380	Hepcidin Alleviates LPS-Induced ARDS by Regulating the Ferritin-Mediated Suppression of F Shock, 2022, 57, 274-281.	erroptosis.	1.0	14
381	Ferroptosis - A new target of osteoporosis. Experimental Gerontology, 2022, 165, 111836.		1.2	29
382	Autophagy in asthma and chronic obstructive pulmonary disease. Clinical Science, 2022, 1	36, 733-746.	1.8	20
383	Mercuric chloride induces sequential activation of ferroptosis and necroptosis in chicken e kidney cells by triggering ferritinophagy. Free Radical Biology and Medicine, 2022, 188, 35		1.3	28
384	Targeting autophagy as a therapeutic strategy against pancreatic cancer. Journal of Gastroenterology, 2022, 57, 603-618.		2.3	12
385	Multifaceted Roles of Ferroptosis in Lung Diseases. Frontiers in Molecular Biosciences, 0, 9		1.6	16
386	Ferroptosis and its role in cardiomyopathy. Biomedicine and Pharmacotherapy, 2022, 153,	113279.	2.5	32
387	Effects of Ferroptosis on Male Reproduction. International Journal of Molecular Sciences, 2 7139.	022, 23,	1.8	21
388	Coordinated Transcriptional and Catabolic Programs Support Iron-Dependent Adaptation t RAS–MAPK Pathway Inhibition in Pancreatic Cancer. Cancer Discovery, 2022, 12, 2198-2	o 219.	7.7	32
389	Autophagy in health and disease: From molecular mechanisms to therapeutic target. MedC ·	lomm, 2022, 3,	3.1	30

ARTICLE IF CITATIONS # Activation of the Hepcidin-Ferroportin1 pathway in the brain and astrocytic–neuronal crosstalk to 390 4 1.6 counteract iron dyshomeostasis during aging. Scientific Reports, 2022, 12, . Molecular Mechanisms of Autophagy in Cancer Development, Progression, and Therapy. Biomedicines, 391 1.4 2022, 10, 1596. Novel insights into alcoholic liver disease: Iron overload, iron sensing and hemolysis. Journal of 392 1.0 10 Translational Internal Medicine, 2022, 10, 92-124. S100A8 regulates autophagy-dependent ferroptosis in microglia after experimental subarachnoid 2.0 hemorrhage. Experimental Neurology, 2022, 357, 114171. Ferroptosis in COVID-19-related liver injury: A potential mechanism and therapeutic target. Frontiers 394 1.8 14 in Cellular and Infection Microbiology, 0, 12, . Coâ€regulation of hepatic steatosis by ferritinophagy and unsaturated fatty acid supply. Hepatology Communications, 2022, 6, 2640-2653. Age-Related Changes in Skeletal Muscle Iron Homeostasis. Journals of Gerontology - Series A 396 1.7 4 Biological Sciences and Medical Sciences, 2023, 78, 16-24. Subversion of autophagy machinery and organelle-specific autophagy by SARS-CoV-2 and 4.3 coronaviruses. Autophagy, 2023, 19, 1055-1069. NCOA4-Mediated Ferritinophagy Is a Pancreatic Cancer Dependency via Maintenance of Iron 398 7.7 40 Bioavailability for Ironâ€"Sulfur Cluster Proteins. Cancer Discovery, 2022, 12, 2180-2197. YAP1 alleviates sepsis-induced acute lung injury via inhibiting ferritinophagy-mediated ferroptosis. 399 2.2 Frontiers in Immunology, 0, 13, . NCOA4 links iron bioavailability to DNA metabolism. Cell Reports, 2022, 40, 111207. 400 2.9 10 Pathologically high intraocular pressure disturbs normal iron homeostasis and leads to retinal 5.0 ganglion cell ferroptosis in glaucoma. Cell Death and Differentiation, 2023, 30, 69-81. Inhibiting Cytoprotective Autophagy in Cancer Therapy: An Update on Pharmacological Small-Molecule 402 1.6 3 Compounds. Frontiers in Pharmacology, 0, 13, . Lysosome docking to WIPI1 rings and ER-connected phagophores occurs during DNAJB12- and GABARAP-dependent selective autophagy of misfolded P23H-rhodopsin. Molecular Biology of the Cell, 2022, 33, . 4-tert-butylphenol triggers common carp hepatocytes ferroptosis via oxidative stress, iron overload, SLC7A11/GSH/GPX4 axis, and ATF4/HSPA5/GPX4 axis. Ecotoxicology and Environmental Safety, 2022, 242, 404 49 2.9 113944. Unraveling the interplay between iron homeostasis, ferroptosis and extramedullary hematopoiesis. 3.1 Pharmacological Research, 2022, 183, 106386. Tumor cell metabolism and autophagy as therapeutic targets., 2022, , 73-107. 406 0 NCOA4 Regulates Iron Recycling and Responds to Hepcidin Activity and Lipopolysaccharide in 2.2 Macrophages. Antioxidants, 2022, 11, 1926.

		CITATION R	EPORT	
#	Article		IF	Citations
409	NCOA4: More than a receptor for ferritinophagy. Journal of Cell Biology, 2022, 221, .		2.3	7
410	Targeting the Metabolic Rewiring in Pancreatic Cancer and Its Tumor Microenvironmer 2022, 14, 4351.	nt. Cancers,	1.7	15
411	New Players in Neuronal Iron Homeostasis: Insights from CRISPRi Studies. Antioxidants	s, 2022, 11, 1807.	2.2	1
412	Ferroptosis in glioma treatment: Current situation, prospects and drug applications. Fr Oncology, 0, 12, .	ontiers in	1.3	4
413	NCOA4 drives ferritin phase separation to facilitate macroferritinophagy and microferri Journal of Cell Biology, 2022, 221, .	itinophagy.	2.3	23
414	Targeted Protein Degradation via Lysosomes. Biochemistry, 2023, 62, 564-579.		1.2	12
415	YAP1 protects against septic liver injury via ferroptosis resistance. Cell and Bioscience,	2022, 12, .	2.1	14
417	Class III PI3K Biology. Current Topics in Microbiology and Immunology, 2022, , 69-93.		0.7	0
418	Ferritinophagy, a form of autophagic ferroptosis: New insights into cancer treatment. F Pharmacology, 0, 13, .	-rontiers in	1.6	15
419	GPX4-independent ferroptosis—a new strategy in disease's therapy. Cell Death D	iscovery, 2022, 8, .	2.0	30
420	Overexpression of LINC00551 promotes autophagy-dependent ferroptosis of lung ade upregulating DDIT4 by sponging miR-4328. PeerJ, 0, 10, e14180.	nocarcinoma via	0.9	11
421	Integrated analysis of transcriptomics, proteomics and metabolomics data reveals the in renal cell carcinoma. Frontiers in Cell and Developmental Biology, 0, 10, .	role of SLC39A1	1.8	3
422	The SAR and action mechanisms of autophagy inhibitors that eliminate drug resistance Journal of Medicinal Chemistry, 2022, 244, 114846.	2. European	2.6	1
423	Ferroptosis-related small-molecule compounds in cancer therapy: Strategies and applic European Journal of Medicinal Chemistry, 2022, 244, 114861.	ations.	2.6	17
424	Iron homeostasis in the heart: Molecular mechanisms and pharmacological implication Molecular and Cellular Cardiology, 2023, 174, 15-24.	s. Journal of	0.9	3
425	Beyond PI3Ks: targeting phosphoinositide kinases in disease. Nature Reviews Drug Dise 357-386.	covery, 2023, 22,	21.5	27
426	Ferroptosis and its interaction with tumor immune microenvironment in liver cancer. B Biophysica Acta: Reviews on Cancer, 2023, 1878, 188848.	iochimica Et	3.3	3
427	Diesel exhaust PM2.5 greatly deteriorates fibrosis process in pre-existing pulmonary fib ferroptosis. Environment International, 2023, 171, 107706.	prosis via	4.8	17

#	Article	IF	CITATIONS
428	<i>WDR45</i> variants cause ferrous iron loss due to impaired ferritinophagy associated with nuclear receptor coactivator 4 and WD repeat domain phosphoinositide interacting protein 4 reduction. Brain Communications, 2022, 4, .	1.5	4
429	Mitochondrial ferritin expression in human macrophages is facilitated by thrombinâ€mediated cleavage under hypoxia. FEBS Letters, 2023, 597, 276-287.	1.3	2
430	Liver injury in COVID-19: Holds ferritinophagy-mediated ferroptosis accountable. World Journal of Clinical Cases, 0, 10, 13148-13156.	0.3	1
431	Targeting ferroptosis: a novel insight against myocardial infarction and ischemia–reperfusion injuries. Apoptosis: an International Journal on Programmed Cell Death, 2023, 28, 108-123.	2.2	7
432	Lysosome signaling in cell survival and programmed cell death for cellular homeostasis. Journal of Cellular Physiology, 2023, 238, 287-305.	2.0	19
433	Enhancing Anti-Cancer Therapy with Selective Autophagy Inhibitors by Targeting Protective Autophagy. Biomolecules and Therapeutics, 2023, 31, 1-15.	1.1	6
434	Elabela: Negative Regulation of Ferroptosis in Trophoblasts via the Ferritinophagy Pathway Implicated in the Pathogenesis of Preeclampsia. Cells, 2023, 12, 99.	1.8	8
435	Iron-frataxin involved in the protective effect of quercetin against alcohol-induced liver mitochondrial dysfunction. Journal of Nutritional Biochemistry, 2022, , 109258.	1.9	2
436	Quantitative omics analyses of NCOA4 deficiency reveal an integral role of ferritinophagy in iron homeostasis of hippocampal neuronal HT22 cells. Frontiers in Nutrition, 0, 10, .	1.6	2
437	Autophagy and cancer: Basic mechanisms and inhibitor development. Cancer Science, 2023, 114, 2699-2708.	1.7	7
438	The potential role of CpG oligodeoxynucleotides on diabetic cardiac autonomic neuropathy mediated by P2Y12 receptor in rat stellate ganglia. International Immunopharmacology, 2023, 119, 110044.	1.7	0
439	A novel sesquiterpene lactone fraction from Eupatorium chinense L. suppresses hepatocellular carcinoma growth by triggering ferritinophagy and mitochondrial damage. Phytomedicine, 2023, 112, 154671.	2.3	6
440	ATM orchestrates ferritinophagy and ferroptosis by phosphorylating NCOA4. Autophagy, 2023, 19, 2062-2077.	4.3	16
441	Betulinic acid inhibits growth of hepatoma cells through activating the NCOA4-mediated ferritinophagy pathway. Journal of Functional Foods, 2023, 102, 105441.	1.6	6
442	Disrupting Intracellular Iron Homeostasis by Engineered Metalâ€Organic Framework for Nanocatalytic Tumor Therapy in Synergy with Autophagy Amplificationâ€Promoted Ferroptosis. Advanced Functional Materials, 2023, 33, .	7.8	10
443	The Research Progress of Ferroptosis in Heart Failure Disease. Advances in Clinical Medicine, 2023, 13, 4459-4465.	0.0	0
444	Hepcidin and its multiple partners: Complex regulation of iron metabolism in health and disease. Vitamins and Hormones, 2023, , .	0.7	0
445	AKT1 participates in ferroptosis vulnerability by driving autophagic degradation of FTH1 in cisplatin-resistant ovarian cancer. Biochemistry and Cell Biology, 2023, 101, 422-431.	0.9	4

#	Article	IF	CITATIONS
446	Schisandrin B promotes senescence of activated hepatic stellate cell via NCOA4-mediated ferritinophagy. Pharmaceutical Biology, 2023, 61, 621-629.	1.3	3
447	Oxygen modulates iron homeostasis by switching iron sensing of NCOA4. Journal of Biological Chemistry, 2023, 299, 104701.	1.6	5
448	Ferritinophagy in the etiopathogenic mechanism of related diseases. Journal of Nutritional Biochemistry, 2023, 117, 109339.	1.9	4
449	Mycobacterium tuberculosis hijacks host TRIM21- and NCOA4-dependent ferritinophagy to enhance intracellular growth. Journal of Clinical Investigation, 2023, 133, .	3.9	7
450	Diaryl ether derivative inhibits GPX4 expression levels to induce ferroptosis in thyroid cancer cells. Drug Development Research, 2023, 84, 861-887.	1.4	1
479	Mechanisms controlling cellular and systemic iron homeostasis. Nature Reviews Molecular Cell Biology, 2024, 25, 133-155.	16.1	28
481	Ferritinophagy induced ferroptosis in the management of cancer. Cellular Oncology (Dordrecht), 2024, 47, 19-35.	2.1	1
482	Thermal Shift Assay in Ferroptosis. Methods in Molecular Biology, 2023, , 179-186.	0.4	0
492	Hepatic Iron Overload in Heavy Drinkers: Molecular Mechanisms and Relation to Hemolysis and Enhanced Red Blood Cell Turnover. , 2023, , 1075-1106.		0
495	Lysosomes as coordinators of cellular catabolism, metabolic signalling and organ physiology. Nature Reviews Molecular Cell Biology, 2024, 25, 223-245.	16.1	5
497	Perspectives of current understanding and therapeutics of Diamond-Blackfan anemia. Leukemia, 0, , .	3.3	0
507	Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	7
511	Modulation of Autophagy and Apoptosis in Leukemia. , 2024, , .		0
524	Endolysosome dysfunction in HAND. , 2024, , 271-293.		0