Exposure of U.S. National Parks to land use and climate

Ecological Applications 24, 484-502 DOI: 10.1890/13-0905.1

Citation Report

#	Article	IF	CITATIONS
1	Is U.S. climatic diversity well represented within the existing federal protection network?. Ecological Applications, 2014, 24, 1898-1907.	1.8	14
2	Allocating Untreated "Controls―in the National Wilderness Preservation System as a Climate Adaptation Strategy: A Case Study from the Flathead National Forest, Montana. Northwest Science, 2015, 89, 239-254.	0.1	6
3	Repeated landscape-scale treatments following fire suppress a non-native annual grass and promote recovery of native perennial vegetation. Biological Invasions, 2015, 17, 1915-1926.	1.2	25
4	Changes in volcanic hazard exposure in the Northwest USA from 1940 to 2100. Natural Hazards, 2015, 77, 1365-1392.	1.6	13
5	Scenarios of future land use change around United States' protected areas. Biological Conservation, 2015, 184, 446-455.	1.9	89
6	Landscape Dynamics in a Rapidly Changing World. , 2015, , 333-381.		3
7	Solar energy development impacts on land cover change and protected areas. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13579-13584.	3.3	177
8	Using custom scientific workflow software and GIS to inform protected area climate adaptation planning in the Greater Yellowstone Ecosystem. Ecological Informatics, 2015, 30, 40-48.	2.3	22
9	Potential future land use threats to California's protected areas. Regional Environmental Change, 2015, 15, 1051-1064.	1.4	19
10	Global change at the landscape level: relating regional and landscapeâ€scale drivers of historical climate trends in the Southern Appalachians. International Journal of Climatology, 2016, 36, 1197-1209.	1.5	11
11	Implementation and evaluation of a monthly water balance model over the <scp>U</scp> S on an 800 m grid. Water Resources Research, 2016, 52, 9600-9620.	1.7	21
12	A macroecological perspective on strategic bat conservation in theÂU.S. National Park Service. Ecosphere, 2016, 7, e01576.	1.0	16
13	Climate change is advancing spring onset across the U.S. national park system. Ecosphere, 2016, 7, e01465.	1.0	61
14	In an arid urban matrix, fragment size predicts access to frugivory and rain necessary for plant population persistence. Ecosphere, 2016, 7, e01284.	1.0	5
15	Using regional bird community dynamics to evaluate ecological integrity within national parks. Ecosphere, 2016, 7, e01464.	1.0	13
17	Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes. Science Advances, 2016, 2, e1600026.	4.7	146
18	Are U.S. national parks in the Upper Midwest acting as refugia? Inside vs. outside park disturbance regimes. Ecosphere, 2016, 7, e01467.	1.0	7
19	Postâ€settlement ecological changes in the forests of the Great Lakes National Parks. Ecosphere, 2016, 7, e01490.	1.0	16

#	Article	IF	CITATIONS
20	Spatial, temporal and frequency based climate change assessment in Columbia River Basin using multi downscaled-scenarios. Climate Dynamics, 2016, 47, 579-600.	1.7	21
21	The exposure, sensitivity and vulnerability of natural vegetation in China to climate thermal variability (1901–2013): An indicator-based approach. Ecological Indicators, 2016, 63, 258-272.	2.6	29
22	Potential relocation of climatic environments suggests high rates of climate displacement within the North American protection network. Global Change Biology, 2017, 23, 3219-3230.	4.2	48
23	Wild, connected, and diverse: building a more resilient system of protected areas. Ecological Applications, 2017, 27, 1050-1056.	1.8	68
24	Analyzing land-use change scenarios for trade-offs among cultural ecosystem services in the Southern Rocky Mountains. Ecosystem Services, 2017, 26, 431-444.	2.3	64
25	Potential impacts of overlapping landâ€use and climate in a sensitive dryland: a case study of the Colorado Plateau, USA. Ecosphere, 2017, 8, e01823.	1.0	41
26	Guest Editorial: Aquatic Science in the Northwest. Northwest Science, 2017, 91, 230-233.	0.1	0
27	Manipulating the wild: a survey of restoration and management interventions in U.S. wilderness. Restoration Ecology, 2018, 26, 900-908.	1.4	5
28	The interaction of drought and habitat explain space–time patterns of establishment in saguaro (<i>Carnegiea gigantea</i>). Ecology, 2018, 99, 621-631.	1.5	16
29	Exposure of Protected and Unprotected Forest to Plant Invasions in the Eastern United States. Forests, 2018, 9, 723.	0.9	43
30	Use of landscape simulation modeling to quantify resilience for ecological applications. Ecosphere, 2018, 9, e02414.	1.0	49
31	Taxonomic and Phylogenetic Homogenization Across US National Parks: The Role of Non-native Species. Ecology and Ethics, 2018, , 275-288.	0.2	3
32	OBSOLETE: Systematic Conservation Planning in the Anthropocene. , 2018, , .		1
33	Disproportionate magnitude of climate change in United States national parks. Environmental Research Letters, 2018, 13, 104001.	2.2	64
34	Trends in vital signs for Greater Yellowstone: application of a Wildland Health Index. Ecosphere, 2018, 9, e02380.	1.0	28
35	Quantitative assessment of ecosystem vulnerability to climate change: methodology and application in China. Environmental Research Letters, 2018, 13, 094016.	2.2	28
36	Land use change and habitat fragmentation of wildland ecosystems of the North Central United States. Landscape and Urban Planning, 2018, 177, 196-216.	3.4	32
37	Somewhere between acceptable and sustainable: When do impacts to resources become too large in protected areas?. Biological Conservation, 2018, 223, 138-146.	1.9	7

#	ARTICLE	IF	CITATIONS
38	Life history characteristics may be as important as climate projections for defining range shifts: An example for common tree species in the intermountain western <scp>US</scp> . Diversity and Distributions, 2018, 24, 1844-1859.	1.9	4
39	Socioeconomic Indicators for the Evaluation and Monitoring of Climate Change in National Parks: An Analysis of the Sierra de Guadarrama National Park (Spain). Environments - MDPI, 2018, 5, 25.	1.5	14
40	Systematic Conservation Planning in the Anthropocene. , 2018, , 461-469.		2
41	Genetic integrity, diversity, and population structure of the Cascade red fox. Conservation Genetics, 2018, 19, 969-980.	0.8	9
42	Climatically driven changes in primary production propagate through trophic levels. Global Change Biology, 2018, 24, 4453-4463.	4.2	25
43	Climatic and socioeconomic effects on land cover changes across Europe: Does protected area designation matter?. PLoS ONE, 2019, 14, e0219374.	1.1	19
44	Moving Beyond the Frame: Geovisualization of Landscape Change Along the Southwestern Edge of Yosemite National Park. Journal of Geovisualization and Spatial Analysis, 2019, 3, 1.	2.1	2
45	Projected urban growth in the southeastern USA puts small streams at risk. PLoS ONE, 2019, 14, e0222714.	1.1	20
46	Ecological quality dynamics around marine reserves in the Bohai Sea coastal zone and their relationship with landscape artificialization. Global Ecology and Conservation, 2019, 20, e00778.	1.0	6
47	Ecological vulnerability analysis of Beidagang National Park, China. Frontiers of Earth Science, 2019, 13, 385-397.	0.9	18
48	Challenges to Arid Public Lands through the Lens of the Grand Canyon. BioScience, 2019, 69, 228-229.	2.2	0
49	Catalyzing Transformations to Sustainability in the World's Mountains. Earth's Future, 2019, 7, 547-557.	2.4	65
50	Spatial and temporal patterns of public and private land protection within the Blue Ridge and Piedmont ecoregions of the eastern US. Landscape and Urban Planning, 2019, 186, 91-102.	3.4	7
51	Grounding simulation models with qualitative case studies: Toward a holistic framework to make climate science usable for US public land management. Climate Risk Management, 2019, 23, 50-66.	1.6	8
52	Climate and water balance change among public, private, and tribal lands within Greater Wild land Ecosystems across North Central USA. Climatic Change, 2019, 152, 551-567.	1.7	5
53	Giant Sequoia—Forest, Monument, or Park?: Political-Legal Mandates and Socio-Ecological Complexity Shaping Landscape-Level Management. Society and Natural Resources, 2020, 33, 721-737.	0.9	4
54	Protected area stewardship in the Anthropocene: integrating science, law, and ethics to evaluate proposals for ecological restoration in wilderness. Restoration Ecology, 2020, 28, 315-327.	1.4	7
55	Conservation value of national forest roadless areas. Conservation Science and Practice, 2020, 2, e288.	0.9	6

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
56	Pax6 organizes the anterior eye segment by guiding two distinct neural crest waves. PLoS Genetics, 2020, 16, e1008774.	1.5	29
57	Delineating greater ecosystems around protected areas to guide conservation. Conservation Science and Practice, 2020, 2, e196.	0.9	18
58	Understanding the dynamic nature of risk in climate change assessments—A new starting point for discussion. Atmospheric Science Letters, 2020, 21, e958.	0.8	22
59	Simulation Modeling of Complex Climate, Wildfire, and Vegetation Dynamics to Address Wicked Problems in Land Management. Frontiers in Forests and Global Change, 2020, 3, .	1.0	25
60	Climate change assessment using spatial climate datasets: Theodore Roosevelt National Park (South) Tj ETQq0 C	0 0 rgBT /0	verlock 10 Tf

61	Developing a set of indicators to identify, monitor, and track impacts and change in forests of the United States. Climatic Change, 2021, 165, 1.	1.7	2
62	A habitat-based approach to determining the effects of drought on aridland bird communities. Auk, 2021, 138, .	0.7	6
63	High-latitude EU Habitats Directive species at risk due to climate change and land use. Global Ecology and Conservation, 2021, 28, e01664.	1.0	9
64	Historical changes in plant water use and need in the continental United States. PLoS ONE, 2021, 16, e0256586.	1.1	7
65	Monitoring Global Change in High Mountains. Advances in Global Change Research, 2017, , 385-413.	1.6	11
66	Climate Exposure of US National Parks in a New Era of Change. PLoS ONE, 2014, 9, e101302.	1.1	62
67	Assessing Local and Surrounding Threats to the Protected Area Network in a Biodiversity Hotspot: The Hengduan Mountains of Southwest China. PLoS ONE, 2015, 10, e0138533.	1.1	21
68	Ungulate Reproductive Parameters Track Satellite Observations of Plant Phenology across Latitude and Climatological Regimes. PLoS ONE, 2016, 11, e0148780.	1.1	33
69	Insights from the Greater Yellowstone Ecosystem on Assessing Success in Sustaining Wildlands. , 2016, , 327-353.		2
70	Effectively Linking Climate Science and Management. , 2016, , 17-32.		1
71	Analyses of Historical and Projected Climates to Support Climate Adaptation in the Northern Rocky Mountains. , 2016, , 55-77.		7
72	Natural vegetation cover on private lands: locations and risk of loss in the northwestern United States. Ecosphere, 2021, 12, .	1.0	1
74	Synthesis of Climate Adaptation Planning in Wildland Ecosystems. , 2016, , 354-367.		0

#	ARTICLE	IF	CITATIONS
75	Historical Range and Variation (HRV). , 2019, , 1-12.		0
76	Historical Range and Variation (HRV). , 2020, , 620-631.		1
77	Growth of the wildland-urban interface within and around U.S. National Forests and Grasslands, 1990–2010. Landscape and Urban Planning, 2022, 218, 104283.	3.4	10
78	Shale Resources, Parks Conservation, and Contested Public Lands in North Dakota's Theodore Roosevelt National Park: Is Fracking Booming?. Case Studies in the Environment, 2020, 4, 1-13.	0.4	1
79	The World's Mountains in the Anthropocene. Sustainable Development Goals Series, 2022, , 1-144.	0.2	3
80	An Ecoacoustic Snapshot of a Subarctic Coastal Wilderness: Aialik Bay, Alaska 2019. Journal of Ecoacoustics, 2020, 4, 1.	1.5	3
81	Landscape Changes in Protected Areas in Poland. Sustainability, 2022, 14, 753.	1.6	2
82	The Value of Trail Corridors for Bold Conservation Planning. Land, 2022, 11, 348.	1.2	2
83	Land Vulnerability, Risk Zoning, and Ecological Protection in the Protection Forest of Pagaibamba (Peru). Forests, 2022, 13, 436.	0.9	2
84	U.S. National Wildlife Refuge System likely to see regional and seasonal species turnover in bird assemblages under a 2°C warming scenario. Condor, 2022, 124, .	0.7	3
85	Climateâ€change vulnerability assessments of natural resources in U.S. National Parks. Conservation Science and Practice, 2022, 4, .	0.9	5
86	Economics of the US National Park System: Values, Funding, and Resource Management Challenges. Annual Review of Resource Economics, 2022, 14, 579-596.	1.5	4
88	Feast or famine: How is global change affecting forage supply for Yellowstone's ungulate herds?. Ecological Applications, 2023, 33, .	1.8	3
89	From Meadow to Map: Integrating Field Surveys and Interactive Visualizations for Invasive Species Management in a National Park. ISPRS International Journal of Geo-Information, 2022, 11, 525.	1.4	2
90	Integrating Social and Ecological Predictors to Understand Variation within Ecosystems: A Case Study of the Great Smoky Mountains National Park PACE. Natural Areas Journal, 2022, 42, .	0.2	2
91	European National Parks protect their surroundings but not everywhere: A study using land use/land cover dynamics derived from CORINE Land Cover data. Land Use Policy, 2023, 124, 106434.	2.5	6
92	Progress and prospect of ecological risks of land use change. Frontiers in Environmental Science, 0, 10, .	1.5	5
93	Soil characteristics and bare ground cover differ among jurisdictions and disturbance histories in Western US protected area-centered ecosystems. Frontiers in Ecology and Evolution, 0, 10, .	1.1	0

ARTICLE

IF CITATIONS