Solution-processed, high-performance light-emitting d

Nature 515, 96-99 DOI: 10.1038/nature13829

Citation Report

#	Article	IF	CITATIONS
17	Color conversion using Quantum Dots on high-brightness GaN LED arrays for display application. Materials Research Society Symposia Proceedings, 2015, 1788, 19-21.	0.1	4
18	Non-blinking (Zn)CulnS/ZnS Quantum Dots Prepared by In Situ Interfacial Alloying Approach. Scientific Reports, 2015, 5, 15227.	1.6	52
19	Solution-processed yellow-white light-emitting diodes based on mixed-solvent dispersed luminescent ZnO nanocrystals. Applied Physics Letters, 2015, 106, 263506.	1.5	6
20	Atomic layer deposition of absorbing thin films on nanostructured electrodes for short-wavelength infrared photosensing. Applied Physics Letters, 2015, 107, .	1.5	5
21	Size-Dependent Melting Behavior of Colloidal In, Sn and Bi Nanocrystals. Scientific Reports, 2015, 5, 16353.	1.6	40
22	High efficiency and ultra-wide color gamut quantum dot LEDs for next generation displays. Journal of the Society for Information Display, 2015, 23, 523-528.	0.8	103
23	Graphene oxide/PEDOT:PSS as injection layer for quantum dot light emitting diode. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2856-2861.	0.8	9
24	Pâ€84: A Lowâ€Cost, Highâ€Throughput Procedure Synthesize of Pureâ€Green Coreâ€Multishell Quantum Dots by using Modified Triâ€nâ€Octylphosphineâ€Assisted SILAR Method. Digest of Technical Papers SID International Symposium, 2015, 46, 1465-1468.	0.1	4
25	20.4: <i>Distinguished Paper</i> : Quantumâ€dot Light Emitting Diodes with Charge Generation Layers. Digest of Technical Papers SID International Symposium, 2015, 46, 278-281.	0.1	0
26	46.1: <i>Invited Paper</i> : Recent Progress of Lightâ€Emitting Diodes Based on Colloidal Quantum Dots. Digest of Technical Papers SID International Symposium, 2015, 46, 685-687.	0.1	5
27	20.3: Optimizing the Balance of Holes and Electrons in Inverted Quantum Dot Lightâ€Emitting Diodes by Inserting Electron Transportation Barrier Layer. Digest of Technical Papers SID International Symposium, 2015, 46, 274-277.	0.1	4
28	Electroluminescence Efficiency Enhancement in Quantum Dot Lightâ€Emitting Diodes by Embedding a Silver Nanoisland Layer. Advanced Optical Materials, 2015, 3, 1439-1445.	3.6	59
29	Carbon and Graphene Quantum Dots for Optoelectronic and Energy Devices: A Review. Advanced Functional Materials, 2015, 25, 4929-4947.	7.8	1,072
30	Quantum Dot Lightâ€Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX ₃). Advanced Materials, 2015, 27, 7162-7167.	11.1	2,457
31	Tuning the luminescence and UV photosensing properties of ZnO nanorods by strategic aqueous chemical growth. Materials Research Express, 2015, 2, 105008.	0.8	7
32	Functionalization of Carbonaceous Nanodots from Mn ^{II} oordinating Functional Knots. Chemistry - A European Journal, 2015, 21, 14843-14850.	1.7	50
33	20.2: Ultraâ€Bright, Highly Efficient, Low Rollâ€Off Inverted Quantumâ€Dot Light Emitting Devices (QLEDs). Digest of Technical Papers SID International Symposium, 2015, 46, 270-273.	0.1	66
34	Efficiency enhancement of InPâ€based inverted QDâ€LEDs by incorporation of a polyethylenimine modified Al:ZnO layer. Journal of the Society for Information Display, 2015, 23, 377-383.	0.8	8

#	Article	IF	CITATIONS
35	Pâ€89: Effects of Nanoâ€TiO ₂ Particles on Conversion Efficiency of Quantum Dots Light Converting Nanocomposites. Digest of Technical Papers SID International Symposium, 2015, 46, 1491-1494.	0.1	5
36	Colloidal CdSe _{1–<i>x</i>} S _{<i>x</i>} Nanoplatelets with Narrow and Continuously-Tunable Electroluminescence. Nano Letters, 2015, 15, 4611-4615.	4.5	114
37	Fluorescent silicon nanoparticles utilized as stable color converters for white light-emitting diodes. Applied Physics Letters, 2015, 106, .	1.5	25
38	Enhancing the outcoupling efficiency of quantum dot LEDs with internal nano-scattering pattern. Optics Express, 2015, 23, 12910.	1.7	36
39	The thermo-optic characteristics of CdSe/ZnS quantum dot with Z-scan measurement method using a CW laser. Proceedings of SPIE, 2015, , .	0.8	0
40	Emulsion Synthesis of Size-Tunable CH ₃ NH ₃ PbBr ₃ Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2015, 7, 28128-28133.	4.0	429
41	What future for quantum dot-based light emitters?. Nature Nanotechnology, 2015, 10, 1001-1004.	15.6	68
42	Temperature-dependent photoluminescence of cadmium-free Cu–Zn–In–S quantum dot thin films as temperature probes. Dalton Transactions, 2015, 44, 20763-20768.	1.6	8
43	Modifying Thermal Transport in Colloidal Nanocrystal Solids with Surface Chemistry. ACS Nano, 2015, 9, 12079-12087.	7.3	32
44	Ionic Functionalization of Hydrophobic Colloidal Nanoparticles To Form Ionic Nanoparticles with Enzymelike Properties. Journal of the American Chemical Society, 2015, 137, 14952-14958.	6.6	130
45	Towards the design of efficient quantum dot light-emitting diodes by controlling the exciton lifetime. Optics Express, 2015, 23, 32413.	1.7	5
46	Highâ€Performance Shortwaveâ€Infrared Lightâ€Emitting Devices Using Core–Shell (PbS–CdS) Colloidal Quantum Dots. Advanced Materials, 2015, 27, 1437-1442.	11.1	167
47	Controlling the Size, Shape, Phase, Band Gap, and Localized Surface Plasmon Resonance of Cu _{2–<i>x</i>} S and Cu _{<i>x</i>} In _{<i>y</i>} S Nanocrystals. Chemistry of Materials, 2015, 27, 1786-1791.	3.2	71
48	Three-dimensional printed electronics. Nature, 2015, 518, 42-43.	13.7	209
49	Inverting Asymmetric Confinement Potentials in Core/Thick-Shell Nanocrystals. Journal of Physical Chemistry Letters, 2015, 6, 706-711.	2.1	6
50	Ternary Alloyed ZnSe _{<i>x</i>} Te _{1–<i>x</i>} Nanowires: Solution-Phase Synthesis and Band Gap Bowing. Chemistry of Materials, 2015, 27, 1140-1146.	3.2	27
51	Preparation of highly luminescent BaSO ₄ protected CdTe quantum dots as conversion materials for excellent color-rendering white LEDs. Journal of Materials Chemistry C, 2015, 3, 2831-2836.	2.7	36
52	High Efficiency and Optical Anisotropy in Double-Heterojunction Nanorod Light-Emitting Diodes. ACS Nano, 2015, 9, 878-885.	7.3	121

#	Article	IF	CITATIONS
53	Fabrication of a white electroluminescent device based on bilayered yellow and blue quantum dots. Nanoscale, 2015, 7, 5363-5370.	2.8	41
54	A quinoxaline based N-heteroacene interfacial layer for efficient hole-injection in quantum dot light-emitting diodes. Nanoscale, 2015, 7, 11531-11535.	2.8	22
55	New faces of porous Prussian blue: interfacial assembly of integrated hetero-structures for sensing applications. Chemical Society Reviews, 2015, 44, 7997-8018.	18.7	240
56	Colloidal quantum-dot LEDs with a solution-processed copper oxide (CuO) hole injection layer. Organic Electronics, 2015, 26, 245-250.	1.4	53
57	Vacuum-free transparent quantum dot light-emitting diodes with silver nanowire cathode. Scientific Reports, 2015, 5, 12499.	1.6	44
58	Blue-Green Color Tunable Solution Processable Organolead Chloride–Bromide Mixed Halide Perovskites for Optoelectronic Applications. Nano Letters, 2015, 15, 6095-6101.	4.5	461
59	Highly Efficient and Low Turn-On Voltage Quantum Dot Light-Emitting Diodes by Using a Stepwise Hole-Transport Layer. ACS Applied Materials & Interfaces, 2015, 7, 15955-15960.	4.0	76
60	Continuous synthesis of high quality CdSe quantum dots in supercritical fluids. Journal of Materials Chemistry C, 2015, 3, 7561-7566.	2.7	30
61	Surface Ligand Dynamics-Guided Preparation of Quantum Dots–Cellulose Composites for Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2015, 7, 15830-15839.	4.0	57
63	A water–ethanol phase assisted co-precipitation approach toward high quality quantum dot–inorganic salt composites and their application for WLEDs. Green Chemistry, 2015, 17, 4439-4445.	4.6	31
64	High-Efficiency All-Solution-Processed Light-Emitting Diodes Based on Anisotropic Colloidal Heterostructures with Polar Polymer Injecting Layers. Nano Letters, 2015, 15, 5455-5464.	4.5	69
65	Temperature-Dependent Optical Properties of PbS/CdS Core/Shell Quantum Dot Thin Films: Probing the Wave Function Delocalization. Journal of Physical Chemistry C, 2015, 119, 17480-17486.	1.5	18
66	DFT/TDDFT investigation on the electronic structures and photophysical properties of phosphorescent platinum(II) complexes with triarylboron/triarylnitrogen-functionalized N-heterocyclic carbene chelate ligands. Chemical Physics Letters, 2015, 635, 217-223.	1.2	8
67	A sustainable future for photonic colloidal nanocrystals. Chemical Society Reviews, 2015, 44, 5897-5914.	18.7	115
68	Complementary LED technologies. Nature Materials, 2015, 14, 459-462.	13.3	144
69	Metal nanocluster light-emitting devices with suppressed parasitic emission and improved efficiency: exploring the impact of photophysical properties. Nanoscale, 2015, 7, 9140-9146.	2.8	38
70	Sub-5 nm porous nanocrystals: interfacial site-directed growth on graphene for efficient biocatalysis. Chemical Science, 2015, 6, 4029-4034.	3.7	18
71	High-Power Genuine Ultraviolet Light-Emitting Diodes Based On Colloidal Nanocrystal Quantum Dots. Nano Letters, 2015, 15, 3793-3799.	4.5	105

#	Article	IF	CITATIONS
72	Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nature Communications, 2015, 6, 7149.	5.8	536
73	High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nature Photonics, 2015, 9, 259-266.	15.6	886
74	Soft Contact Transplanted Nanocrystal Quantum Dots for Light-Emitting Diodes: Effect of Surface Energy on Device Performance. ACS Applied Materials & Interfaces, 2015, 7, 10828-10833.	4.0	31
75	Efficient Quantum-Dot Light-Emitting Diodes With 4,4,4-Tris(N-Carbazolyl)-Triphenylamine (TcTa) Electron-Blocking Layer. IEEE Electron Device Letters, 2015, 36, 369-371.	2.2	37
76	Lateral Size-Dependent Spontaneous and Stimulated Emission Properties in Colloidal CdSe Nanoplatelets. ACS Nano, 2015, 9, 5041-5050.	7.3	154
77	Determination of Exciton Diffusion Length by Transient Photoluminescence Quenching and Its Application to Quantum Dot Films. Journal of Physical Chemistry C, 2015, 119, 9005-9015.	1.5	84
78	Highly Efficient, Color-Reproducible Full-Color Electroluminescent Devices Based on Red/Green/Blue Quantum Dot-Mixed Multilayer. ACS Nano, 2015, 9, 10941-10949.	7.3	221
79	Realizing Rec 2020 color gamut with quantum dot displays. Optics Express, 2015, 23, 23680.	1.7	265
80	Temperature-dependent photoluminescence properties of Mn:ZnCuInS nanocrystals. Optical Materials Express, 2015, 5, 2069.	1.6	23
81	Size-dependent ligand exchange of colloidal CdSe nanocrystals with S2â~' ions. RSC Advances, 2015, 5, 90570-90577.	1.7	8
82	Luminescent properties of CdSe quantum dots in dispersion media with different polarity. High Energy Chemistry, 2015, 49, 426-432.	0.2	11
83	Phosphine-free synthesis of Ag–In–Se alloy nanocrystals with visible emissions. Nanoscale, 2015, 7, 18570-18578.	2.8	32
84	Shifting the light emitting component from core to shell: an effective approach to improve the efficiency of light-emitting diodes based on multi-junction quantum materials. Nanoscale, 2015, 7, 17283-17288.	2.8	4
85	"Flash―synthesis of "giant―Mn-doped CdS/ZnS nanocrystals for high photostability. RSC Advances, 2015, 5, 88921-88927.	1.7	7
86	High efficient and color rendering quantum dots optimized white light emitting diodes. , 2015, , .		0
87	Cesium Azide—An Efficient Material for Green Light-Emitting Diodes With Giant Quantum Dots. IEEE Photonics Technology Letters, 2015, 27, 2123-2126.	1.3	6
88	Synthesis of colloidal InAs/ZnSe quantum dots and their quantum dot sensitized solar cell (QDSSC) application. Optical Materials, 2015, 49, 230-234.	1.7	26
89	Highly Enhanced Fluorescence of CdSeTe Quantum Dots Coated with Polyanilines via In-Situ Polymerization and Cell Imaging Application. ACS Applied Materials & Interfaces, 2015, 7, 19126-19133.	4.0	16

#	Article	IF	CITATIONS
90	Controlling Solid–Gas Reactions at Nanoscale for Enhanced Thin Film Morphologies and Device Performances in Solution-Processed Cu ₂ ZnSn(S,Se) ₄ Solar Cells. Journal of the American Chemical Society, 2015, 137, 11069-11075.	6.6	16
91	Synthesis and characterization of quantum dots for application in laser soft desorption/ionization mass spectrometry to detect labile metal–drug interactions and their antibacterial activity. RSC Advances, 2015, 5, 76107-76115.	1.7	28
92	Efficient quantum dot light emitting devices with ethanol treated PEDOT: PSS hole injection layer. Synthetic Metals, 2015, 209, 484-489.	2.1	12
93	Flexible quantum dot light emitting diodes based on ZnO nanoparticles. RSC Advances, 2015, 5, 82192-82198.	1.7	41
94	Solution-Processed Transistors Using Colloidal Nanocrystals with Composition-Matched Molecular "Solders― Approaching Single Crystal Mobility. Nano Letters, 2015, 15, 6309-6317.	4.5	88
95	Heating-up synthesis of cadimum-free and color-tunable quaternary and five-component Cu–In–Zn–S-based semiconductor nanocrystals. Journal of Materials Chemistry C, 2015, 3, 10114-10120.	2.7	63
96	An efficient and surface-benign purification scheme for colloidal nanocrystals based on quantitative assessment. Nano Research, 2015, 8, 3353-3364.	5.8	40
97	In Situ Encapsulation of Ultrasmall CuO Quantum Dots with Controlled Band-Gap and Reversible Thermochromism. ACS Applied Materials & Interfaces, 2015, 7, 26437-26444.	4.0	31
98	Charge transport in strongly coupled quantum dot solids. Nature Nanotechnology, 2015, 10, 1013-1026.	15.6	473
99	A Suite of Tetraphenylethylene-Based Discrete Organoplatinum(II) Metallacycles: Controllable Structure and Stoichiometry, Aggregation-Induced Emission, and Nitroaromatics Sensing. Journal of the American Chemical Society, 2015, 137, 15276-15286.	6.6	260
100	Electrophoretic deposited oxide thin films as charge transporting interlayers for solution-processed optoelectronic devices: the case of ZnO nanocrystals. RSC Advances, 2015, 5, 8216-8222.	1.7	9
101	Engineering of Semiconductor Nanocrystals for Light Emitting Applications. Materials, 2016, 9, 672.	1.3	47
102	Silicon-quantum-dot light-emitting diodes with varying emission layer thickness. , 2016, , .		0
103	Improving the modulation bandwidth of LED by CdSe/ZnS quantum dots for visible light communication. Optics Express, 2016, 24, 21577.	1.7	55
104	High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering. Optics Express, 2016, 24, 25955.	1.7	37
105	P-93: High Performance of Quantum Dot Based Light Emitting Diodes Optimized by Graphene Sheets. Digest of Technical Papers SID International Symposium, 2016, 47, 1472-1475.	0.1	1
106	P-88: Transparent Quantum Dot Light-Emitting Diodes with Sputtered ITO Electrodes. Digest of Technical Papers SID International Symposium, 2016, 47, 1455-1457.	0.1	1
107	34-2: A Rapid, Highly Emissive Procedure Synthesize of Giant Pure Red Coreshell Quantum Rods by Using Modified Tributylphosphine-assisted Method. Digest of Technical Papers SID International Symposium, 2016, 47, 428-431.	0.1	2

#	Article	IF	CITATIONS
108	34-3: A Low-cost, Two-step Nucleation and Growth of CdTe Quantum Dots via Magic-sized Cluster Intermediates in Aqueous Phase. Digest of Technical Papers SID International Symposium, 2016, 47, 432-435.	0.1	0
109	48-1: <i>Invited Paper</i> : High Efficiency and Ultra-Wide Color Gamut Quantum Dot LEDs for Next Generation Displays. Digest of Technical Papers SID International Symposium, 2016, 47, 644-647.	0.1	5
110	P-59: Toward High Resolution Inkjet-Printed Quantum Dot Light-Emitting Diodes for Next Generation Display. Digest of Technical Papers SID International Symposium, 2016, 47, 1354-1357.	0.1	3
111	Structures, Oxidation, and Charge Transport of Phosphorusâ€Doped Germanium Nanocrystals. Particle and Particle Systems Characterization, 2016, 33, 271-278.	1.2	19
112	P-210L:Late-News Poster: High-Performance Electroluminescence Devices Based on Size-Uniform Gigantic Red-Emission Quantum Dots. Digest of Technical Papers SID International Symposium, 2016, 47, 1487-1490.	0.1	1
113	Assembly of lightâ€emitting diode based on hydrophilic CdTe quantum dots incorporating dehydrated silica gel. Luminescence, 2016, 31, 419-422.	1.5	8
114	Designed Assembly and Integration of Colloidal Nanocrystals for Device Applications. Advanced Materials, 2016, 28, 1176-1207.	11.1	211
115	Perovskite Materials for Lightâ€Emitting Diodes and Lasers. Advanced Materials, 2016, 28, 6804-6834.	11.1	1,188
116	Recombination processes in CuInS2/ZnS nanocrystals during steady-state photoluminescence. Applied Physics Letters, 2016, 108, .	1.5	8
117	Injection of 2D electron gas into a quantum-dot organic light-emitting diode structure on silicon substrate. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, 06KJ01.	0.6	2
118	High Efficiency and Color Rendering Quantum Dots White Light Emitting Diodes Optimized by Luminescent Microspheres Incorporating. Nanophotonics, 2016, 5, 565-572.	2.9	35
119	Tailoring the highest occupied molecular orbital level of poly(N-vinylcarbazole) hole transport layers in organic multilayer heterojunctions. Applied Physics Letters, 2016, 108, 023301.	1.5	8
120	Carrier recombination spatial transfer by reduced potential barrier causes blue/red switchable luminescence in C8 carbon quantum dots/organic hybrid light-emitting devices. APL Materials, 2016, 4, .	2.2	5
121	Morphology control of perovskite light-emitting diodes by using amino acid self-assembled monolayers. Applied Physics Letters, 2016, 108, .	1.5	69
124	Microwave synthesis of CdTe/TGA quantum dots and their thermodynamic interaction with bovine serum albumin. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 1408-1414.	0.4	3
125	Research Update: Challenges for high-efficiency hybrid lead-halide perovskite LEDs and the path towards electrically pumped lasing. APL Materials, 2016, 4, .	2.2	49
126	Highly stable solution processed metal-halide perovskite lasers on nanoimprinted distributed feedback structures. Applied Physics Letters, 2016, 109, .	1.5	82
127	Fabrication of composite materials from semiconductor quantum dots and organic polymers for optoelectronics and biomedicine: role of surface ligands. Russian Chemical Bulletin, 2016, 65, 2568-2577.	0.4	11

#	Article	IF	CITATIONS
128	Mixture interlayer for high performance organic-inorganic perovskite photodetectors. Applied Physics Letters, 2016, 109, .	1.5	38
129	Bright hybrid white light-emitting quantum dot device with direct charge injection into quantum dot. Chinese Physics B, 2016, 25, 128502.	0.7	7
130	Low temperature synthesis of silicon quantum dots with plasma chemistry control in dual frequency non-thermal plasmas. Physical Chemistry Chemical Physics, 2016, 18, 15697-15710.	1.3	16
131	Influence of size and surface state emission on photoluminescence of CdSe quantum dots under UV irradiation. Journal of Luminescence, 2016, 177, 306-313.	1.5	10
132	Charge Carrier Conduction Mechanism in PbS Quantum Dot Solar Cells: Electrochemical Impedance Spectroscopy Study. ACS Applied Materials & Interfaces, 2016, 8, 18526-18533.	4.0	59
133	Near-band-edge emission characteristics of ZnO-MgO core-shell quantum-dots. Materials Letters, 2016, 178, 27-30.	1.3	17
134	Super color purity green quantum dot light-emitting diodes fabricated by using CdSe/CdS nanoplatelets. Nanoscale, 2016, 8, 12182-12188.	2.8	111
135	High Performance PbS Quantum Dot/Graphene Hybrid Solar Cell with Efficient Charge Extraction. ACS Applied Materials & Interfaces, 2016, 8, 13902-13908.	4.0	72
136	Controllable Growth of Ultrathin P-doped ZnO Nanosheets. Nanoscale Research Letters, 2016, 11, 175.	3.1	12
137	Light-Emitting Diodes Based on All-Quantum-Dot Multilayer Films and the Influence of Various Hole-Transporting Layers on the Performance. Chinese Physics Letters, 2016, 33, 037301.	1.3	2
138	Charge Transfer Dynamics from Photoexcited Semiconductor Quantum Dots. Annual Review of Physical Chemistry, 2016, 67, 259-281.	4.8	156
139	Influence of Ambient Gas on the Performance of Quantum-Dot Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2016, 8, 11557-11563.	4.0	13
140	Computational Study of Magic-Size CdSe Clusters with Complementary Passivation by Carboxylic and Amine Ligands. Journal of Physical Chemistry C, 2016, 120, 10015-10019.	1.5	32
141	Perovskite photonic sources. Nature Photonics, 2016, 10, 295-302.	15.6	1,369
142	Colloidal nanocrystal superlattices as phononic crystals: plane wave expansion modeling of phonon band structure. RSC Advances, 2016, 6, 44578-44587.	1.7	20
143	Non-injection gram-scale synthesis of cesium lead halide perovskite quantum dots with controllable size and composition. Nano Research, 2016, 9, 1994-2006.	5.8	93
144	Facile synthesis of fluorescent graphene quantum dots from coffee grounds for bioimaging and sensing. Chemical Engineering Journal, 2016, 300, 75-82.	6.6	208
145	A Two-Step Synthetic Strategy toward Monodisperse Colloidal CdSe and CdSe/CdS Core/Shell Nanocrystals. Journal of the American Chemical Society, 2016, 138, 6475-6483.	6.6	92

#	ARTICLE One-step fabrication of a transparent and conductive TiOx/Ag nanowire hybrid thin film with high	IF	CITATIONS
146	robustness. RSC Advances, 2016, 6, 40886-40889.	1.7	3
147	Hybrid photonic crystal light-emitting diode renders 123% color conversion effective quantum yield. Optica, 2016, 3, 503.	4.8	30
148	High efficiency quantum dot and organic LEDs with a back-cavity and a high index substrate. Journal Physics D: Applied Physics, 2016, 49, 145103.	1.3	18
149	Toward highâ€resolution, inkjetâ€printed, quantum dot lightâ€emitting diodes for nextâ€generation displays. Journal of the Society for Information Display, 2016, 24, 545-551.	0.8	55
150	Synthesis of InP Quantum Dots and Their Application. , 2016, , 473-483.		1
151	Coffee-Ring-Free Quantum Dot Thin Film Using Inkjet Printing from a Mixed-Solvent System on Modified ZnO Transport Layer for Light-Emitting Devices. ACS Applied Materials & Interfaces, 2016, 8, 26162-26168.	4.0	219
152	Enhanced amplified spontaneous emission in a quantum dot-doped polymer-dispersed liquid crystal. Nanotechnology, 2016, 27, 26LT01.	1.3	15
153	A Microscale Perovskite as Single Component Broadband Phosphor for Downconversion Whiteâ€Lightâ€Emitting Devices. Advanced Optical Materials, 2016, 4, 2009-2015.	3.6	57
154	Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics, 2016, 10, 699-704.	15.6	1,535
155	Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. Chemical Reviews, 2016, 116, 10513-10622.	23.0	744
156	Metal halide perovskite light emitters. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11694-11702.	3.3	465
157	Colloidal Spherical Quantum Wells with Near-Unity Photoluminescence Quantum Yield and Suppressed Blinking. ACS Nano, 2016, 10, 9297-9305.	7.3	119
158	Enhancing Quantum Dot LED Efficiency by Tuning Electron Mobility in the ZnO Electron Transport Layer. Advanced Materials Interfaces, 2016, 3, 1600868.	1.9	83
159	Ammonia reduced graphene oxides as a hole injection layer for CdSe/CdS/ZnS quantum dot light-emitting diodes. Nanotechnology, 2016, 27, 325201.	1.3	7
160	A Case Study of ALD Encapsulation of Quantum Dots: Embedding Supported CdSe/CdS/ZnS Quantum Dots in a ZnO Matrix. Journal of Physical Chemistry C, 2016, 120, 18039-18045.	1.5	33
161	Cold Flow as Versatile Approach for Stable and Highly Luminescent Quantum Dot–Salt Composites. ACS Applied Materials & Interfaces, 2016, 8, 21570-21575.	4.0	28
162	High-Efficiency Cu–In–S Quantum-Dot-Light-Emitting Device Exceeding 7%. Chemistry of Materials, 2016, 28, 6329-6335.	3.2	133
163	Quantum Dot/Light-Emitting Electrochemical Cell Hybrid Device and Mechanism of Its Operation. ACS Applied Materials & Interfaces, 2016, 8, 24692-24698.	4.0	41

#	Article	IF	CITATIONS
164	Efficient vacuum-free-processed quantum dot light-emitting diodes with printable liquid metal cathodes. Nanoscale, 2016, 8, 17765-17773.	2.8	54
165	Aqueous Based Semiconductor Nanocrystals. Chemical Reviews, 2016, 116, 10623-10730.	23.0	364
166	Solution-processed highly bright and durable cesium lead halide perovskite light-emitting diodes. Nanoscale, 2016, 8, 18021-18026.	2.8	160
167	Nonthermal Plasma Synthesis of Nanocrystals: Fundamental Principles, Materials, and Applications. Chemical Reviews, 2016, 116, 11061-11127.	23.0	309
168	Enhanced performance of blue polymer light-emitting diodes by incorporation of Ag nanoparticles through the ligand-exchange process. Journal of Materials Chemistry C, 2016, 4, 10445-10452.	2.7	14
169	Building devices from colloidal quantum dots. Science, 2016, 353, .	6.0	996
170	Design and assembly of an aqueous red CdTe QD-LED: major factors to fabricate aqueous QD-LEDs. RSC Advances, 2016, 6, 77963-77967.	1.7	4
171	Highly Efficient Perovskiteâ€Quantumâ€Dot Lightâ€Emitting Diodes by Surface Engineering. Advanced Materials, 2016, 28, 8718-8725.	11.1	917
172	Combined study of the effect of deposition temperature and post-deposition annealing on the photoluminescence of silicon quantum dots embedded in chlorinated silicon nitride thin films. RSC Advances, 2016, 6, 77440-77451.	1.7	5
173	Enhanced Optical and Electrical Properties of Polymerâ€Assisted Allâ€Inorganic Perovskites for Lightâ€Emitting Diodes. Advanced Materials, 2016, 28, 8983-8989.	11.1	326
174	Application of Solvent Modified PEDOT:PSS in All-Solution-Processed Inverted Quantum Dot Light-Emitting Diodes. Journal of Display Technology, 2016, 12, 1157-1161.	1.3	7
175	High-efficiency red electroluminescent device based on multishelled InP quantum dots. Optics Letters, 2016, 41, 3984.	1.7	101
176	Room temperature synthesis of fluorescent band gap tunable Cu 1 In 1â^'x Ga x Se 2.5 nanocrystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509, 182-189.	2.3	7
177	Double-Heterojunction Nanorod Light-Emitting Diodes with High Efficiencies at High Brightness Using Self-Assembled Monolayers. ACS Photonics, 2016, 3, 1862-1868.	3.2	24
178	Metal sulfide precursor aqueous solutions for fabrication of Ag-doped Zn Cd1â^'S quantum dots thin films. Journal of Luminescence, 2016, 180, 258-263.	1.5	6
179	PbS/CdS Core/Shell Quantum Dots by Additive, Layer-by-Layer Shell Growth. Chemistry of Materials, 2016, 28, 6953-6959.	3.2	35
180	Multistage growth of monocrystalline ZnO nanowires and twin-nanorods: oriented attachment and role of the spontaneous polarization force. CrystEngComm, 2016, 18, 6492-6501.	1.3	36
181	High-performance azure blue quantum dot light-emitting diodes via doping PVK in emitting layer. Organic Electronics, 2016, 37, 280-286.	1.4	55

#	Article	IF	CITATIONS
182	The Role of Emission Layer Morphology on the Enhanced Performance of Lightâ€Emitting Diodes Based on Quantum Dotâ€Semiconducting Polymer Hybrids. Advanced Materials Interfaces, 2016, 3, 1600279.	1.9	33
183	In situ investigation of energy transfer in hybrid organic/colloidal quantum dot light-emitting diodes via magneto-electroluminescence. Physical Chemistry Chemical Physics, 2016, 18, 22373-22378.	1.3	6
184	High luminance of CuInS2-based yellow quantum dot light emitting diodes fabricated by all-solution processing. RSC Advances, 2016, 6, 72462-72470.	1.7	20
185	Chargeâ€Carrier Balance for Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells. Advanced Materials, 2016, 28, 10718-10724.	11.1	214
186	Utilizing CdSe/ZnS core/shell QDs to improve the modulation bandwidth of WLED for visible light communication. , 2016, , .		1
187	Luminescent properties of cadmium selenide quantum dots in fluorophosphate glasses. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2016, 121, 713-721.	0.2	4
188	Emissive CdTe/ZnO/GO quasi-core–shell–shell hybrid quantum dots for white light emitting diodes. Nanoscale, 2016, 8, 19737-19743.	2.8	12
189	Design and Synthesis of Antiblinking and Antibleaching Quantum Dots in Multiple Colors via Wave Function Confinement. Journal of the American Chemical Society, 2016, 138, 15727-15735.	6.6	60
190	Enhanced Performance of Quantum Dot-Based Light-Emitting Diodes with Gold Nanoparticle-Doped Hole Injection Layer. Nanoscale Research Letters, 2016, 11, 376.	3.1	13
191	Polyhedral Oligomeric Silsesquioxane Enhances the Brightness of Perovskite Nanocrystal-Based Green Light-Emitting Devices. Journal of Physical Chemistry Letters, 2016, 7, 4398-4404.	2.1	105
192	Ultrastable Quantum-Dot Light-Emitting Diodes by Suppression of Leakage Current and Exciton Quenching Processes. ACS Applied Materials & Interfaces, 2016, 8, 31385-31391.	4.0	119
193	Reduced reabsorption and enhanced propagation induced by large Stokes shift in quantum dot-filled optical fiber. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	7
194	Solventâ€Polarityâ€Engineered Controllable Synthesis of Highly Fluorescent Cesium Lead Halide Perovskite Quantum Dots and Their Use in White Lightâ€Emitting Diodes. Advanced Functional Materials, 2016, 26, 8478-8486.	7.8	129
195	Bright Perovskite Nanocrystal Films for Efficient Light-Emitting Devices. Journal of Physical Chemistry Letters, 2016, 7, 4602-4610.	2.1	288
196	Plasmonic twinned silver nanoparticles with molecular precision. Nature Communications, 2016, 7, 12809.	5.8	235
197	P-90: Highly Efficient Quantum-dot Light-emitting Devices with Enhanced Charge Injection in the Simplest Trilayer Structure. Digest of Technical Papers SID International Symposium, 2016, 47, 1462-1464.	0.1	0
198	White Electroluminescent Lighting Device Based on a Single Quantum Dot Emitter. Advanced Materials, 2016, 28, 5093-5098.	11.1	73
199	Integration of Semiconducting Sulfides for Fullâ€5pectrum Solar Energy Absorption and Efficient Charge Separation. Angewandte Chemie, 2016, 128, 6506-6510.	1.6	21

#		IF	Citations
200	High-efficiency deep-red quantum-dot light-emitting diodes with type-II CdSe/CdTe core/shell quantum dots as emissive layers. Journal of Materials Chemistry C, 2016, 4, 7223-7229.	2.7	33
201	Solution-processed high-efficiency cadmium-free Cu-Zn-In-S-based quantum-dot light-emitting diodes with low turn-on voltage. Organic Electronics, 2016, 36, 97-102.	1.4	40
202	Very Bright and Efficient Microcavity Top-Emitting Quantum Dot Light-Emitting Diodes with Ag Electrodes. ACS Applied Materials & Interfaces, 2016, 8, 16768-16775.	4.0	81
203	Mastering heterostructured colloidal nanocrystal properties for light-emitting diodes and solar cells. Journal of Materials Chemistry C, 2016, 4, 6430-6446.	2.7	23
204	To Battle Surface Traps on CdSe/CdS Core/Shell Nanocrystals: Shell Isolation versus Surface Treatment. Journal of the American Chemical Society, 2016, 138, 8134-8142.	6.6	192
205	Purification of quantum dot-based bioprobes via high-performance size exclusion chromatography. Talanta, 2016, 159, 64-73.	2.9	13
206	Effect of Core/Shell Interface on Carrier Dynamics and Optical Gain Properties of Dual-Color Emitting CdSe/CdS Nanocrystals. ACS Nano, 2016, 10, 6877-6887.	7.3	57
207	Light Conversion Efficiency Enhancement of Modified Quantum Dot Films Integrated With Micro SiO ₂ Particles. Journal of Display Technology, 2016, 12, 1152-1156.	1.3	15
208	High-Efficiency Light-Emitting Diodes of Organometal Halide Perovskite Amorphous Nanoparticles. ACS Nano, 2016, 10, 6623-6630.	7.3	347
209	Improving charge balance in quantumâ€dot lightâ€emitting diodes by using copper cathode. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2371-2374.	0.8	1
210	48-4: <i>Invited Paper</i> : Quantum Dots for Display: From Photoluminescence to Electroluminescence. Digest of Technical Papers SID International Symposium, 2016, 47, 657-659.	0.1	13
211	P-95: Inverted Tandem Architecture of Quantum-dot Light Emitting Diodes with Solution Processed Charge Generation Layers. Digest of Technical Papers SID International Symposium, 2016, 47, 1480-1483.	0.1	13
212	CsPbX ₃ Quantum Dots for Lighting and Displays: Roomâ€Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Lightâ€Emitting Diodes. Advanced Functional Materials, 2016, 26, 2435-2445.	7.8	2,055
213	Integration of Semiconducting Sulfides for Fullâ€Spectrum Solar Energy Absorption and Efficient Charge Separation. Angewandte Chemie - International Edition, 2016, 55, 6396-6400.	7.2	119
214	Comparative photoluminescence properties of type-I and type-II CdTe/CdS core/shell quantum dots. Optical Materials, 2016, 53, 34-38.	1.7	20
215	A self-assembly aptasensor based on thick-shell quantum dots for sensing of ochratoxin A. Nanoscale, 2016, 8, 4127-4133.	2.8	34
216	Improved performance of inverted quantum dots light emitting devices by introducing double hole transport layers. Organic Electronics, 2016, 31, 82-89.	1.4	59
217	Hydroxyl-Terminated CuInS ₂ Based Quantum Dots: Toward Efficient and Bright Light Emitting Diodes. Chemistry of Materials, 2016, 28, 1085-1091.	3.2	155

ARTICLE IF CITATIONS # Stable fluorescent CdS:Cu QDs and their hybridization with carbon polymer dots for white light 218 2.7 10 emission. Journal of Materials Chemistry C, 2016, 4, 1665-1674. Size Tunable ZnO Nanoparticles To Enhance Electron Injection in Solution Processed QLEDs. ACS 3.2 159 Photonics, 2016, 3, 215-222. Efficient silicon quantum dots light emitting diodes with an inverted device structure. Journal of 220 2.7 64 Materials Chemistry C, 2016, 4, 673-677. Controlling the spectroscopic properties of quantum dots via energy transfer and charge transfer interactions: Concepts and applications. Nano Today, 2016, 11, 98-121. Light-Emitting Superstructures with Anion Effect: Coordination-Driven Self-Assembly of Pure 222 Tetraphenylethylene Metallacycles and Metallacages. Journal of the American Chemical Society, 2016, 211 6.6 138, 4580-4588. Deformable devices with integrated functional nanomaterials for wearable electronics. Nano 6.3 Convergence, 2016, 3, 4. Effects of the host molecular dynamics on the photoemission temperature dependence of host/guest 224 1.8 9 photoluminescent blends. Polymer, 2016, 90, 132-137. Inverted Quantum-Dot Light-Emitting Diodes Fabricated by All-Solution Processing. ACS Applied Materials & amp; Interfaces, 2016, 8, 5493-5498. 4.0 Application of CdSe/ZnS/CdS/ZnS Core–multishell Quantum Dots to Modern OLED Technology. 226 0.9 15 Materials Today: Proceedings, 2016, 3, 211-215. Performance of Inverted Quantum Dot Light-Emitting Diodes Enhanced by Using Phosphorescent 1.5 Molecules as Exciton Harvesters. Journal of Physical Chemistry C, 2016, 120, 4667-4672. Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Nanocrystals. Journal of 228 792 6.6 the American Chemical Society, 2016, 138, 2941-2944. Shell-thickness dependent optical properties of CdSe/CdS core/shell nanocrystals coated with thiol 229 5.8 ligands. Nano Research, 2016, 9, 260-271. A green synthesis route for the phase and size tunability of copper antimony sulfide nanocrystals 230 2.8 54 with high yield. Nanoscale, 2016, 8, 5146-5152. Highly transparent quantum-dot light-emitting diodes with sputtered indium-tin-oxide electrodes. Journal of Materials Chemistry C, 2016, 4, 1838-1841. 2.7 3D-Encapsulated iridium-complexed nanophosphors for highly efficient host-free organic 232 2.2 17 light-emitting diodes. Chemical Communications, 2016, 52, 5183-5186. Improved quantum dot light-emitting diodes with a cathode interfacial layer. Organic Electronics, 2016, 32, 89-93. 1.4 Entropic Ligands for Nanocrystals: From Unexpected Solution Properties to Outstanding 234 4.5 174 Processability. Nano Letters, 2016, 16, 2133-2138. A novel method for fabricating hybrid biobased nanocomposites film with stable fluorescence containing CdTe quantum dots and montmorillonite-chitosan nanosheets. Carbohydrate Polymers, 5.1 19 2016, 145, 13-19.

#	Article	IF	CITATIONS
236	Colloidal quantum dot ligand engineering for high performance solar cells. Energy and Environmental Science, 2016, 9, 1130-1143.	15.6	297
237	Solution-Processed Gas Sensors Employing SnO ₂ Quantum Dot/MWCNT Nanocomposites. ACS Applied Materials & Interfaces, 2016, 8, 840-846.	4.0	79
238	Enhancing the Brightness of Cesium Lead Halide Perovskite Nanocrystal Based Green Light-Emitting Devices through the Interface Engineering with Perfluorinated Ionomer. Nano Letters, 2016, 16, 1415-1420.	4.5	685
239	Reaction mechanism of a PbS-on-ZnO heterostructure and enhanced photovoltaic diode performance with an interface-modulated heterojunction energy band structure. Physical Chemistry Chemical Physics, 2016, 18, 4144-4153.	1.3	12
240	Quantum Dots-Based Multiplexed Fiber-Optic Temperature Sensors. IEEE Sensors Journal, 2016, 16, 2437-2441.	2.4	8
241	Disentangling the Role of Shape, Ligands, and Dielectric Constants in the Absorption Properties of Colloidal CdSe/CdS Nanocrystals. ACS Photonics, 2016, 3, 58-67.	3.2	34
242	Enhanced Light Extraction From Green Quantum Dot Light-Emitting Diodes by Attaching Microstructure Arrayed Films. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 42-47.	1.9	11
243	Nonthermal Plasma Synthesis of Nanocrystals: Fundamentals, Applications, and Future Research Needs. Plasma Chemistry and Plasma Processing, 2016, 36, 73-84.	1.1	37
244	Side-chain conjugated polymers for use in the active layers of hybrid semiconducting polymer/quantum dot light emitting diodes. Polymer Chemistry, 2016, 7, 101-112.	1.9	24
245	Nonthermal Plasma Synthesized Boron-Doped Germanium Nanocrystals. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-5.	1.9	10
246	Perovskite nanocrystals: synthesis, properties and applications. Science Bulletin, 2017, 62, 369-380.	4.3	96
247	All Inorganic Halide Perovskites Nanosystem: Synthesis, Structural Features, Optical Properties and Optoelectronic Applications. Small, 2017, 13, 1603996.	5.2	537
248	Highly Efficient and Stable Perovskite Solar Cells by Interfacial Engineering Using Solution-Processed Polymer Layer. Journal of Physical Chemistry C, 2017, 121, 1562-1568.	1.5	166
249	Water-free synthesis of ZnO quantum dots for application as an electron injection layer in light-emitting electrochemical cells. Journal of Materials Chemistry C, 2017, 5, 2344-2351.	2.7	30
250	Colloidal quantum-dots surface and device structure engineering for high-performance light-emitting diodes. National Science Review, 2017, 4, 170-183.	4.6	98
251	A solution-processable inorganic hole injection layer that improves the performance of quantum-dot light-emitting diodes. Current Applied Physics, 2017, 17, 442-447.	1.1	31
252	Turnâ€On Fluorescence in Tetraâ€NHC Ligands by Rigidification through Metal Complexation: An Alternative to Aggregationâ€Induced Emission. Angewandte Chemie - International Edition, 2017, 56, 2785-2789.	7.2	136
253	Green light-emitting diodes based on hybrid perovskite films with mixed cesium and methylammonium cations. Nano Research, 2017, 10, 1329-1335.	5.8	26

#	Article	IF	CITATIONS
254	Photoluminescence of CdTe colloidal quantum wells in external electric field. Journal of Luminescence, 2017, 186, 194-198.	1.5	8
255	Near-infrared excitation of CdTe quantum dots based on fluorescence resonance energy transfer and their use as fluorescent sensors. Sensors and Actuators B: Chemical, 2017, 246, 127-135.	4.0	37
256	Employing CdSe _{<i>x</i>} Te _{1–<i>x</i>} Alloyed Quantum Dots to Avoid the Temperature-Dependent Emission Shift of Light-Emitting Diodes. Journal of Physical Chemistry C, 2017, 121, 5313-5323.	1.5	21
257	1,2-Ethanedithiol Treatment for AgIn ₅ S ₈ /ZnS Quantum Dot Light-Emitting Diodes with High Brightness. ACS Applied Materials & Interfaces, 2017, 9, 8187-8193.	4.0	60
258	Quantum Dots for Wide Color Gamut Displays from Photoluminescence to Electroluminescence. Nanoscale Research Letters, 2017, 12, 154.	3.1	38
259	Strain Engineered Band Structure and Optical Properties of Confined GaAs Quantum Dots. Journal of Physical Chemistry C, 2017, 121, 5800-5804.	1.5	11
260	Einschaltbare Fluoreszenz in Tetraâ€NHCâ€Liganden durch Versteifung bei der Komplexbildung: eine Alternative zu aggregationsinduzierter Emission. Angewandte Chemie, 2017, 129, 2829-2833.	1.6	36
261	Solution-processed fabrication of highly transparent mono- and tri-colored quantum dot-light-emitting diodes. Organic Electronics, 2017, 45, 145-150.	1.4	22
262	Crosslinked conjugated polymers as hole transport layers in high-performance quantum dot light-emitting diodes. Nanoscale Horizons, 2017, 2, 156-162.	4.1	31
264	Solution-processed planar white light-emitting diodes based on cadmium-free Cu-In-Zn-S/ZnS quantum dots and polymer. Organic Electronics, 2017, 45, 20-25.	1.4	20
265	Colloidal metal oxide nanocrystals as charge transporting layers for solution-processed light-emitting diodes and solar cells. Chemical Society Reviews, 2017, 46, 1730-1759.	18.7	99
266	Understanding Surface and Interfacial Chemistry in Functional Nanomaterials via Solidâ€&tate NMR. Advanced Materials, 2017, 29, 1605895.	11.1	91
267	Synthesis of Size-controlled Luminescent Si Nanocrystals from (HSiO _{1.5}) <i>_n</i> Polymers. Chemistry Letters, 2017, 46, 699-702.	0.7	9
268	Dialectics of nature: Temporal and spatial regulation in material sciences. Nano Research, 2017, 10, 1115-1124.	5.8	3
269	Directional Carrier Transfer in Strongly Coupled Binary Nanocrystal Superlattice Films Formed by Assembly and <i>in Situ</i> Ligand Exchange at a Liquid–Air Interface. Journal of Physical Chemistry C, 2017, 121, 4146-4157.	1.5	19
270	Synthetic Control of Exciton Behavior in Colloidal Quantum Dots. Journal of the American Chemical Society, 2017, 139, 3302-3311.	6.6	198
271	Electroluminescence from ZnCuInS/ZnS quantum dots/poly(9-vinylcarbazole) multilayer films with different thicknesses of quantum dot layer. Journal of Physics and Chemistry of Solids, 2017, 104, 133-138.	1.9	10
272	Double-heterojunction nanorod light-responsive LEDs for display applications. Science, 2017, 355, 616-619.	6.0	207

#	Article	IF	CITATIONS
273	A highly efficient white-light-emitting diode based on a two-component polyfluorene/quantum dot composite. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2017, 122, 12-15.	0.2	6
274	Photoluminescence Intermittency and Photoâ€Bleaching of Single Colloidal Quantum Dot. Advanced Materials, 2017, 29, 1606923.	11.1	66
275	Quantumâ€Dot Lightâ€Emitting Diodes for Largeâ€Area Displays: Towards the Dawn of Commercialization. Advanced Materials, 2017, 29, 1607022.	11.1	620
276	Phosphine-Free Synthesis of Metal Chalcogenide Quantum Dots by Directly Dissolving Chalcogen Dioxides in Alkylthiol as the Precursor. ACS Applied Materials & Interfaces, 2017, 9, 9840-9848.	4.0	20
277	Quantum Dot Thin-Films as Rugged, High-Performance Photocathodes. Nano Letters, 2017, 17, 2319-2327.	4.5	6
278	Quantum conductance in MoS2 quantum dots-based nonvolatile resistive memory device. Applied Physics Letters, 2017, 110, .	1.5	43
279	Analytical model of photon reabsorption in ZnO quantum dots with size and concentration dependent dual-color photoluminescence. Journal of Applied Physics, 2017, 121, .	1.1	10
280	Silicon-Quantum-Dot Light-Emitting Diodes With Interlayer-Enhanced Hole Transport. IEEE Photonics Journal, 2017, 9, 1-10.	1.0	24
282	Polyethylenimine Ethoxylated-Mediated All-Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device. ACS Nano, 2017, 11, 1982-1990.	7.3	173
283	Photoluminescence and self-assembly of cesium lead halide perovskite nanocrystals: Effects of chain length of organic amines and reaction temperature. Applied Surface Science, 2017, 405, 280-288.	3.1	38
284	A Few Key Technologies of Quantum Dot Light-Emitting Diodes for Display. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-12.	1.9	17
285	All solutionâ€processed white quantumâ€dot lightâ€emitting diodes with threeâ€unit tandem structure. Journal of the Society for Information Display, 2017, 25, 143-150.	0.8	28
286	Investigation on microstructural and optical properties of nano-crystalline CdSe thin films. Thin Solid Films, 2017, 631, 219-226.	0.8	12
287	Compound Copper Chalcogenide Nanocrystals. Chemical Reviews, 2017, 117, 5865-6109.	23.0	670
288	All-inorganic quantum-dot light-emitting diodes based on perovskite emitters with low turn-on voltage and high humidity stability. Journal of Materials Chemistry C, 2017, 5, 4565-4570.	2.7	149
289	Ultrasonic Spray Processed, Highly Efficient All-Inorganic Quantum-Dot Light-Emitting Diodes. ACS Photonics, 2017, 4, 1271-1278.	3.2	84
290	Highly efficient flexible quantum-dot light emitting diodes with an ITO/Ag/ITO cathode. Journal of Materials Chemistry C, 2017, 5, 4543-4548.	2.7	42
291	Pure Blue and Highly Luminescent Quantumâ€Dot Lightâ€Emitting Diodes with Enhanced Electron Injection and Exciton Confinement via Partially Oxidized Aluminum Cathode. Advanced Optical Materials, 2017, 5, 1700035.	3.6	39

#	Article	IF	CITATIONS
292	Syntheses and characterizations of alloyed Co x Ni1â^'x O nanocrystals. Journal of Zhejiang University: Science A, 2017, 18, 306-312.	1.3	0
293	Monodisperse Hexagonal Pyramidal and Bipyramidal Wurtzite CdSe-CdS Core–Shell Nanocrystals. Chemistry of Materials, 2017, 29, 4097-4108.	3.2	59
294	High-efficiency inverted quantum dot light-emitting diodes with enhanced hole injection. Nanoscale, 2017, 9, 6748-6754.	2.8	35
295	Solvothermal Synthesis of Highâ€Quality Allâ€Inorganic Cesium Lead Halide Perovskite Nanocrystals: From Nanocube to Ultrathin Nanowire. Advanced Functional Materials, 2017, 27, 1701121.	7.8	283
296	Inkjet-Printed Quantum Dot Light-Emitting Diodes with an Air-Stable Hole Transport Material. ACS Applied Materials & Interfaces, 2017, 9, 16351-16359.	4.0	40
297	Enhancing the Performance of Quantum Dot Light-Emitting Diodes Using Room-Temperature-Processed Ga-Doped ZnO Nanoparticles as the Electron Transport Layer. ACS Applied Materials & Interfaces, 2017, 9, 15605-15614.	4.0	113
298	CuS–MWCNT based electrochemical sensor for sensitive detection of bisphenol A. Russian Journal of Electrochemistry, 2017, 53, 366-373.	0.3	23
299	Improved Performance and Stability of Allâ€Inorganic Perovskite Lightâ€Emitting Diodes by Antisolvent Vapor Treatment. Advanced Functional Materials, 2017, 27, 1700338.	7.8	221
300	Efficient quantum dot light-emitting diodes with a Zn _{0.85} Mg _{0.15} O interfacial modification layer. Nanoscale, 2017, 9, 8962-8969.	2.8	149
301	Enhanced performances of quantum dot light-emitting diodes with doped emitting layers by manipulating the charge carrier balance. Journal of Materials Chemistry C, 2017, 5, 5018-5023.	2.7	9
302	High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinlycarbazole) as a hole-transporting layer. Journal of Materials Chemistry C, 2017, 5, 5372-5377.	2.7	57
303	"Quantized―Doping of Individual Colloidal Nanocrystals Using Size-Focused Metal Quantum Clusters. ACS Nano, 2017, 11, 6233-6242.	7.3	21
304	Solution-processed inorganic copper(i) thiocyanate as a hole injection layer for high-performance quantum dot-based light-emitting diodes. RSC Advances, 2017, 7, 26322-26327.	1.7	27
305	Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2017, 9, 20231-20238.	4.0	105
306	Facile fabrication of p-type Cu x S transparent conducting thin films by metal sulfide precursor solution approach and their application in quantum dot thin films. Journal of Alloys and Compounds, 2017, 716, 278-283.	2.8	8
307	Tunable emission of Cu (Mn)-doped ZnInS quantum dots via dopant interaction. Journal of Colloid and Interface Science, 2017, 506, 27-35.	5.0	33
308	A Mg-CP with <i>in Situ</i> Encapsulated Photochromic Guest as Sensitive Fluorescence Sensor for Fe ³⁺ /Cr ³⁺ lons and Nitro-Explosives. Inorganic Chemistry, 2017, 56, 7397-7403.	1.9	73
309	Spectro-electrochemical Probing of Intrinsic and Extrinsic Processes in Exciton Recombination in I–Ill–VI ₂ Nanocrystals. Nano Letters, 2017, 17, 4508-4517.	4.5	60

#	Article	IF	CITATIONS
310	Fully Transparent Quantum Dot Light-Emitting Diode with a Laminated Top Graphene Anode. ACS Applied Materials & Interfaces, 2017, 9, 24005-24010.	4.0	38
311	Coherent Light Emitters From Solution Chemistry: Inorganic Il–VI Nanocrystals and Organometallic Perovskites. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-14.	1.9	3
312	Fullyâ€Inorganic Trihalide Perovskite Nanocrystals: A New Research Frontier of Optoelectronic Materials. Advanced Materials, 2017, 29, 1700775.	11.1	230
313	Field-Driven Ion Migration and Color Instability in Red-Emitting Mixed Halide Perovskite Nanocrystal Light-Emitting Diodes. Chemistry of Materials, 2017, 29, 5965-5973.	3.2	267
314	A Selfâ€Assembled Trigonal Prismatic Molecular Vessel for Catalytic Dehydration Reactions in Water. Chemistry - A European Journal, 2017, 23, 12565-12574.	1.7	72
315	6â€2: <i>Invited Paper</i> : Key Challenges towards the Commercialization of Quantumâ€Dot Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2017, 48, 55-57.	0.1	15
316	13â€1: <i>Invited Paper</i> : White Quantum Dot Lightâ€Emitting Diodes With Improved Efficiency and Color Stability. Digest of Technical Papers SID International Symposium, 2017, 48, 153-156.	0.1	3
317	13â€3: Topâ€emitting Quantumâ€dot Lightâ€emitting Diodes with all the pâ€iâ€n Functional Layers Deposited b Solution Processes. Digest of Technical Papers SID International Symposium, 2017, 48, 161-164.	^y 0.1	5
318	39â€4: <i>Invited Paper</i> : Innovation in Heavy Metalâ€Free Quantum Dot Technology. Digest of Technical Papers SID International Symposium, 2017, 48, 562-564.	0.1	3
319	67â€1: <i>Invited Paper</i> : Environmentally Friendly Quantum Dots for Display Applications. Digest of Technical Papers SID International Symposium, 2017, 48, 980-983.	0.1	5
320	Pâ€120: Over 60 cd/A Efficient Vacuumâ€freeâ€processed Green Quantum Dot Lightâ€Emitting Diodes for Next Generation Displays. Digest of Technical Papers SID International Symposium, 2017, 48, 1708-1710.	0.1	0
321	Preparation of CdTe nanocrystals doped fluorescent silica spheres by sol-gel method and their surface modification via thiol-ene chemistry. Chemical Research in Chinese Universities, 2017, 33, 327-332.	1.3	1
322	Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nature Communications, 2017, 8, 15640.	5.8	669
323	Effect of the charge balance on high-efficiency inverted polymer light-emitting diodes. Organic Electronics, 2017, 49, 123-128.	1.4	11
324	Engineering charge transport by heterostructuring solution-processed semiconductors. Nature Reviews Materials, 2017, 2, .	23.3	105
325	Colloidal quantum dots for optoelectronics. Journal of Materials Chemistry A, 2017, 5, 13252-13275.	5.2	167
326	CdSe Nanoplatelet Films with Controlled Orientation of their Transition Dipole Moment. Nano Letters, 2017, 17, 3837-3843.	4.5	135
327	An all-inkjet-printed flexible UV photodetector. Nanoscale, 2017, 9, 8580-8585.	2.8	49

#	Article	IF	CITATIONS
328	Quantitative Solid-State NMR Study on Ligand–Surface Interaction in Cysteine-Capped CdSe Magic-Sized Clusters. Journal of Physical Chemistry Letters, 2017, 8, 2555-2559.	2.1	26
329	Polymer as an Additive in the Emitting Layer for High-Performance Quantum Dot Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2017, 9, 20239-20246.	4.0	50
330	Transparent Ultra-High-Loading Quantum Dot/Polymer Nanocomposite Monolith for Gamma Scintillation. ACS Nano, 2017, 11, 6422-6430.	7.3	100
331	Pâ€117: Inverted Quantum Dot Lightâ€Emitting Diodes with MgZnO Modified Electron Transport Layer. Digest of Technical Papers SID International Symposium, 2017, 48, 1699-1701.	0.1	1
332	Broadly tunable metal halide perovskites for solid-state light-emission applications. Materials Today, 2017, 20, 413-424.	8.3	204
333	Full-Spectral Fine-Tuning Visible Emissions from Cation Hybrid Cs _{1–<i>m</i>} FA <i>_m</i> PbX ₃ (X = Cl, Br, and I, 0 ≤i>m ≤) Quantum Dots. ACS Applied Materials & Interfaces, 2017, 9, 20671-20678.	4.0	43
334	Low-temperature solution-processed MoO _x as hole injection layer for efficient quantum dot light-emitting diodes. RSC Advances, 2017, 7, 27464-27472.	1.7	9
335	Ultraviolet-ozone surface modification for non-wetting hole transport materials based inverted planar perovskite solar cells with efficiency exceeding 18%. Journal of Power Sources, 2017, 360, 157-165.	4.0	106
336	Directional Fluorescence Spectral Narrowing in All-Polymer Microcavities Doped with CdSe/CdS Dot-in-Rod Nanocrystals. ACS Photonics, 2017, 4, 1761-1769.	3.2	42
337	Interfacial engineering of core/shell heterostructured nanocrystal quantum dots for light-emitting applications. Journal of Information Display, 2017, 18, 57-65.	2.1	30
338	Pâ€240: <i>Lateâ€News Poster</i> : Inverted Hybrid Quantum Dot LED with Blue Polymer as Both Hole Transporting Layer and Emission Layer. Digest of Technical Papers SID International Symposium, 2017, 48, 1725-1728.	0.1	0
339	Synthesis of Air-Stable CdSe/ZnS Core–Shell Nanoplatelets with Tunable Emission Wavelength. Chemistry of Materials, 2017, 29, 5671-5680.	3.2	96
340	Singleâ€Source Precursor Route for Synthesis of Highâ€Quality Greenâ€emitting Quantum Dots and Their Hydrophilic Surface Modification. Bulletin of the Korean Chemical Society, 2017, 38, 700-705.	1.0	1
341	Simultaneous Sign Change of Magneto-Electroluminescence and Magneto-Conductance in Polymer/Colloidal Quantum Dot Nanocomposites. Journal of Physical Chemistry C, 2017, 121, 8128-8135.	1.5	7
342	Single-Mode Lasing from "Giant―CdSe/CdS Core–Shell Quantum Dots in Distributed Feedback Structures. ACS Applied Materials & Interfaces, 2017, 9, 13293-13303.	4.0	23
343	Colloidal stable quantum dots modified by dual functional group polymers for inkjet printing. Journal of Materials Chemistry C, 2017, 5, 4629-4635.	2.7	30
344	Alcohol-Soluble Quantum Dots: Enhanced Solution Processability and Charge Injection for Electroluminescence Devices. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-8.	1.9	18
345	Colloidal nanorod heterostructures for photovoltaics and optoelectronics. Journal Physics D: Applied Physics, 2017, 50, 173002.	1.3	12

#	Article	IF	CITATIONS
346	Enhanced device lifetime of double-heterojunction nanorod light-emitting diodes. Nanoscale, 2017, 9, 6103-6110.	2.8	31
347	Efficient deep-red electroluminescent donor-acceptor copolymers based on 6,7-dichloroquinoxaline. Organic Electronics, 2017, 46, 276-282.	1.4	16
348	High-performance light-emitting diodes based on carbene-metal-amides. Science, 2017, 356, 159-163.	6.0	444
349	Over 100 cd A ^{â^1} Efficient Quantum Dot Lightâ€Emitting Diodes with Inverted Tandem Structure. Advanced Functional Materials, 2017, 27, 1700610.	7.8	117
350	Solid Confinement of Quantum Dots in ZIFâ€8 for Efficient and Stable Color onversion White LEDs. ChemSusChem, 2017, 10, 1346-1350.	3.6	18
351	Enhancing the Performance of Blue Quantum-Dot Light-Emitting Diodes Based on Mg-Doped ZnO as an Electron Transport Layer. IEEE Photonics Journal, 2017, 9, 1-8.	1.0	15
352	Bandgap tunable Zn _{1â^'x} Mg _x O thin films as electron transport layers for high performance quantum dot light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 4724-4730.	2.7	88
353	Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature, 2017, 544, 75-79.	13.7	319
354	Electron–hole exchange blockade and memory-less recombination in photoexcitedÂfilmsÂof colloidal quantum dots. Nature Physics, 2017, 13, 604-610.	6.5	19
356	Highly flexible organometal halide perovskite quantum dot based light-emitting diodes on a silver nanowire–polymer composite electrode. Journal of Materials Chemistry C, 2017, 5, 531-538.	2.7	80
357	Luminance enhancement in quantum dot light-emitting diodes fabricated with Field's metal as the cathode. Journal Physics D: Applied Physics, 2017, 50, 095106.	1.3	1
358	Influence of post-synthesis annealing on PbS quantum dot solar cells. Organic Electronics, 2017, 42, 309-315.	1.4	25
359	Surface activation of colloidal indium phosphide nanocrystals. Nano Research, 2017, 10, 941-958.	5.8	39
360	0D/2D Heterojunctions of Vanadate Quantum Dots/Graphitic Carbon Nitride Nanosheets for Enhanced Visibleâ€Lightâ€Driven Photocatalysis. Angewandte Chemie - International Edition, 2017, 56, 8407-8411.	7.2	421
361	0D/2D Heterojunctions of Vanadate Quantum Dots/Graphitic Carbon Nitride Nanosheets for Enhanced Visibleâ€Lightâ€Driven Photocatalysis. Angewandte Chemie, 2017, 129, 8527-8531.	1.6	44
362	Experimental investigation of energy transfer between CdSe/ZnS quantum dots and different-sized gold nanoparticles. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 88, 109-114.	1.3	9
363	Enhanced Emission of Nanocrystal Solids Featuring Slowly Diffusive Excitons. Journal of Physical Chemistry C, 2017, 121, 1477-1487.	1.5	20
364	Full-spectra hyperfluorescence cesium lead halide perovskite nanocrystals obtained by efficient halogen anion exchange using zinc halogenide salts. CrystEngComm, 2017, 19, 1165-1171.	1.3	42

#	Article	IF	CITATIONS
365	Enhanced performance of quantum dots light-emitting diodes: The case of Al2O3 electron blocking layer. Vacuum, 2017, 137, 38-41.	1.6	21
366	Efficient and longâ€life green lightâ€emitting diodes comprising tridentate thiol capped quantum dots. Laser and Photonics Reviews, 2017, 11, 1600227.	4.4	67
367	Multifunctional Dendrimer Ligands for High-Efficiency, Solution-Processed Quantum Dot Light-Emitting Diodes. ACS Nano, 2017, 11, 684-692.	7.3	70
368	Electrically-driven single-photon sources based on colloidal quantum dots with near-optimal antibunching at room temperature. Nature Communications, 2017, 8, 1132.	5.8	105
369	Highâ€Efficiency and Stable Quantum Dot Lightâ€Emitting Diodes Enabled by a Solutionâ€Processed Metalâ€Doped Nickel Oxide Hole Injection Interfacial Layer. Advanced Functional Materials, 2017, 27, 1704278.	7.8	114
370	Ideal CdSe/CdS Core/Shell Nanocrystals Enabled by Entropic Ligands and Their Core Size-, Shell Thickness-, and Ligand-Dependent Photoluminescence Properties. Journal of the American Chemical Society, 2017, 139, 16556-16567.	6.6	186
371	Improved performance of quantum dot light emitting diode by modulating electron injection with yttrium-doped ZnO nanoparticles. Journal of Applied Physics, 2017, 122, .	1.1	22
372	White Light-Emitting Diodes Based on Individual Polymerized Carbon Nanodots. Scientific Reports, 2017, 7, 12146.	1.6	40
373	Halide Re-Shelled Quantum Dot Inks for Infrared Photovoltaics. ACS Applied Materials & Interfaces, 2017, 9, 37536-37541.	4.0	35
374	Blue Quantum Dot Light-Emitting Diodes with High Electroluminescent Efficiency. ACS Applied Materials & Interfaces, 2017, 9, 38755-38760.	4.0	204
375	Efficient and High-Color-Purity Light-Emitting Diodes Based on <i>In Situ</i> Grown Films of CsPbX ₃ (X = Br, I) Nanoplates with Controlled Thicknesses. ACS Nano, 2017, 11, 11100-11107.	7.3	190
376	A novel dual-emission QDs/PCDs assembled composite nanoparticle for high sensitive visual detection of Hg ²⁺ . RSC Advances, 2017, 7, 49330-49336.	1.7	5
377	High efficiency quantum dot light emitting diodes from positive aging. Nanoscale, 2017, 9, 14451-14457.	2.8	113
378	CuInS ₂ â€Based Quantum Dot Lightâ€Emitting Electrochemical Cells (QLECs). Advanced Materials Technologies, 2017, 2, 1700154.	3.0	26
379	Quantum Dot Light-Emitting Devices: Beyond Alignment of Energy Levels. ACS Applied Materials & Interfaces, 2017, 9, 30741-30745.	4.0	40
380	Enhanced Stability and Performance in Perovskite Nanocrystal Lightâ€Emitting Devices Using a ZnMgO Interfacial Layer. Advanced Optical Materials, 2017, 5, 1700377.	3.6	56
381	Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films. Solar Energy Materials and Solar Cells, 2017, 172, 341-346.	3.0	408
382	Novel synthesis and optical characterization of CsPb2Br5 quantum dots in borosilicate glasses. Materials Letters, 2017, 209, 483-485.	1.3	29

#	Article	IF	CITATIONS
383	All-solution-processed fluorene/dibenzothiophene-S,S-dioxide blue co-oligomer light-emitting diodes with an electron transporting PEI/ultrafine-ZnO-nanoparticle bilayer. RSC Advances, 2017, 7, 41855-41861.	1.7	15
384	Solution-processable highly efficient deep-red and orange organic light-emitting diodes based on multi-functional Ir(iii) complexes. Journal of Materials Chemistry C, 2017, 5, 10029-10038.	2.7	20
385	Highly Controllable and Efficient Synthesis of Mixed-Halide CsPbX ₃ (X = Cl, Br, I) Perovskite QDs toward the Tunability of Entire Visible Light. ACS Applied Materials & Interfaces, 2017, 9, 33020-33028.	4.0	132
386	Flexible Photodetectors Based on Novel Functional Materials. Small, 2017, 13, 1701822.	5.2	259
387	MoO ₃ -induced oxidation doping of PEDOT:PSS for high performance full-solution-processed inverted quantum-dot light emitting diodes. Journal of Materials Chemistry C, 2017, 5, 10555-10561.	2.7	47
388	Rational engineering of semiconductor QDs enabling remarkable 1 O 2 production for tumor-targeted photodynamic therapy. Biomaterials, 2017, 148, 31-40.	5.7	62
389	High performance blue quantum dot light-emitting diodes employing polyethylenimine ethoxylated as the interfacial modifier. Nanoscale, 2017, 9, 14792-14797.	2.8	42
390	A highly efficient quantum dot light emitting diode via improving the carrier balance by modulating the hole transport. RSC Advances, 2017, 7, 43366-43372.	1.7	59
391	Near-Unity Photoluminescence Quantum Yield in CsPbBr ₃ Nanocrystal Solid-State Films via Postsynthesis Treatment with Lead Bromide. Chemistry of Materials, 2017, 29, 7663-7667.	3.2	295
392	Effect of Sr doping on the electronic band structure and optical properties of ZnO: A first principle calculation. Journal of Applied Physics, 2017, 122, .	1.1	14
393	A customizable class of colloidal-quantum-dot metallic lasers and amplifiers. Science Advances, 2017, 3, e1700688.	4.7	50
394	Colloidal Quantum Dots Enabling Coherent Light Sources for Integrated Silicon-Nitride Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-13.	1.9	17
395	High-Efficiency Aqueous-Processed Polymer/CdTe Nanocrystals Planar Heterojunction Solar Cells with Optimized Band Alignment and Reduced Interfacial Charge Recombination. ACS Applied Materials & Interfaces, 2017, 9, 31345-31351.	4.0	29
396	Synthesis of highly fluorescent InP/ZnS small-core/thick-shell tetrahedral-shaped quantum dots for blue light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 8243-8249.	2.7	93
397	Controlling charge balance using non-conjugated polymer interlayer in quantum dot light-emitting diodes. Organic Electronics, 2017, 50, 82-86.	1.4	22
398	Investigation of Exciton Recombination Zone in Quantum Dot Light-Emitting Diodes Using a Fluorescent Probe. ACS Applied Materials & amp; Interfaces, 2017, 9, 27809-27816.	4.0	8
399	Simple and Fast Patterning Process by Laser Direct Writing for Perovskite Quantum Dots. Advanced Materials Technologies, 2017, 2, 1700132.	3.0	55
400	Novel Light Source Integration Approaches for Silicon Photonics. Laser and Photonics Reviews, 2017, 11, 1700063.	4.4	143

#	Article	IF	CITATIONS
401	Graphene Oxide Inserted Poly(<i>N</i> â€Vinylcarbazole)/Vanadium Oxide Hole Transport Heterojunctions for Highâ€Efficiency Quantumâ€Dot Lightâ€Emitting Diodes. Advanced Materials Interfaces, 2017, 4, 1700476.	1.9	11
402	Synthesis of WO _{<i>n</i>} â€WX ₂ (<i>n</i> =2.7, 2.9; X=S, Se) Heterostructures for Highly Efficient Green Quantum Dot Lightâ€Emitting Diodes. Angewandte Chemie, 2017, 129, 10622-10626.	1.6	7
403	Synthesis of WO _{<i>n</i>} â€WX ₂ (<i>n</i> =2.7, 2.9; X=S, Se) Heterostructures for Highly Efficient Green Quantum Dot Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2017, 56, 10486-10490.	7.2	21
404	Full-color quantum dots active matrix display fabricated by ink-jet printing. Science China Chemistry, 2017, 60, 1349-1355.	4.2	67
405	Emission tunable CdZnS/ZnSe core/shell quantum dots for white light emitting diodes. Journal of Luminescence, 2017, 192, 867-874.	1.5	27
406	High performance, top-emitting, quantum dot light-emitting diodes with all solution-processed functional layers. Journal of Materials Chemistry C, 2017, 5, 9138-9145.	2.7	18
407	Multicolored Mixed-Organic-Cation Perovskite Quantum Dots (FA _{<i>x</i>} MA _{1–<i>x</i>} PbX ₃ , X = Br and I) for White Light-Emitting Diodes. Industrial & Engineering Chemistry Research, 2017, 56, 10053-10059.	1.8	41
408	Efficient and long-lifetime full-color light-emitting diodes using high luminescence quantum yield thick-shell quantum dots. Nanoscale, 2017, 9, 13583-13591.	2.8	102
409	Strongly interactive 0D/2D hetero-structure of a Zn _x Cd _{1â^²x} S nano-particle decorated phosphorene nano-sheet for enhanced visible-light photocatalytic H ₂ production. Chemical Communications, 2017, 53, 9882-9885.	2.2	68
410	Flexible and stretchable mechanoluminescent fiber and fabric. Journal of Materials Chemistry C, 2017, 5, 8027-8032.	2.7	69
411	Highly Efficient and Stable Quantum Dot Light Emitting Diodes Optimized by Micro-Packaged Luminescent Microspheres. , 2017, , .		0
412	Inkjet printing for electroluminescent devices: emissive materials, film formation, and display prototypes. Frontiers of Optoelectronics, 2017, 10, 329-352.	1.9	32
413	High-Performance Green Light-Emitting Diodes Based on MAPbBr ₃ –Polymer Composite Films Prepared by Gas-Assisted Crystallization. ACS Applied Materials & Interfaces, 2017, 9, 44106-44113.	4.0	24
414	Enhanced Electroluminescence from ZnO Quantum Dot Lightâ€Emitting Diodes via Introducing Al ₂ O ₃ Retarding Layer and Ag@ZnO Hybrid Nanodots. Advanced Optical Materials, 2017, 5, 1700493.	3.6	21
415	Iodide capped PbS/CdS core-shell quantum dots for efficient long-wavelength near-infrared light-emitting diodes. Scientific Reports, 2017, 7, 14741.	1.6	32
416	Efficient interface and bulk passivation of PbS quantum dot infrared photodetectors by PbI2 incorporation. RSC Advances, 2017, 7, 52947-52954.	1.7	20
417	Colloidal CsPbX3 (X = Br, I, Cl) NCs: Morphology controlling, composition evolution, and photoluminescence shift. Journal of Luminescence, 2017, 190, 397-402.	1.5	35
418	Deciphering Charging Status, Absolute Quantum Efficiency, and Absorption Cross Section of Multicarrier States in Single Colloidal Quantum Dots. Nano Letters, 2017, 17, 7487-7493.	4.5	25

ARTICLE IF CITATIONS # WO₃nanobelt doped PEDOT:PSS layers for efficient hole-injection in quantum dot 419 2.7 23 light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 12343-12348. Field-effect enhanced triboelectric colloidal quantum dot flexible sensor. Applied Physics Letters, 420 1.5 2017, 111, . Bright and high-photostable inner-Mn-doped core/giant-shell quantum dots. Superlattices and 421 1.4 6 Microstructures, 2017, 111, 665-670. Efficient All-Solution Processed Quantum Dot Light Emitting Diodes Based on Inkjet Printing 422 4.0 Technique. ACS Applied Materials & amp; Interfaces, 2017, 9, 25506-25512. Interface passivation using ultrathin polymerâ€"fullerene films for high-efficiency perovskite solar 423 15.6 381 cells with negligible hysteresis. Energy and Environmental Science, 2017, 10, 1792-1800. Inverted structural quantum dot light-emitting diodes based on Al-doped ZnO electrode. 424 1.3 Nanotechnology, 2017, 28, 365201. Current-Induced Magnetic Polarons in a Colloidal Quantum-Dot Device. Nano Letters, 2017, 17, 425 4.5 22 4768-4773. Electrically Tunable Enhanced Photoluminescence of Semiconductor Quantum Dots on Graphene. ACS 426 3.2 Photonics, 2017, 4, 1967-1973. Pure ultraviolet emission from ZnO quantum dots-based/GaN heterojunction diodes by MgO 427 1.0 1 interlayer. Electronic Materials Letters, 2017, 13, 313-317. Hybrid Colloidal Stabilization Mechanism toward Improved Photoluminescence and Stability of 1.6 CdSe/CdS Core/Shell Quantum Dots. Langmuir, 2017, 33, 7124-7129. One-pot/three-step synthesis of zinc-blende CdSe/CdS core/shell nanocrystals with thick shells. Nano 429 5.8 56 Research, 2017, 10, 1149-1162. Assembly and Electronic Applications of Colloidal Nanomaterials. Advanced Materials, 2017, 29, 11.1 98 1603895. Performance Enhancement by ZnO Nanoparticle Layer in Hybrid Ionic Transition Metal Complexâ€Lightâ€Emitting Electrochemical Cells (iTMCâ€LECs). Advanced Materials Technologies, 2017, 2, 431 3.0 26 1600215. Comparative cradle-to-gate energy assessment of indium phosphide and cadmium selenide quantum dot displays. Environmental Science: Nano, 2017, 4, 244-254. 2.2 14 Enhanced chemiluminescence from reactions between CdTe/CdS/ZnS quantum dots and periodate. 433 4.8 21 Chinese Chemical Letters, 2017, 28, 184-188. Sky-blue perovskite light-emitting diodes based on quasi-two-dimensional layered perovskites. Chinese Chemical Letters, 2017, 28, 29-31. 434 4.8 94 A General Solvent Selection Strategy for Solution Processed Quantum Dots Targeting High 435 7.8 94 Performance Lightâ€Emitting Diode. Advanced Functional Materials, 2017, 27, 1603325. An experimental study on the reproducibility of different multilayer OLED materials processed by slot die coating. Chemical Engineering Science, 2017, 160, 113-120.

#	Article	IF	Citations
π 437	Mobility enhancement of hole transporting layer in quantum-dot light-emitting diodes incorporating	1.8	12
437	single-walled carbon nanotubes. Diamond and Related Materials, 2017, 73, 154-160.	1.0	12
438	Improving lumen maintenance by nanopore array dispersed quantum dots for on-chip light emitting diodes. Applied Physics Letters, 2017, 111, .	1.5	4
439	Preparation and characterization of an intelligent multi-target tracking HA-RGD-CLB-QDs drug delivery system. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 1493-1502.	0.4	2
440	Self-Trapped Exciton and Large Stokes Shift in Pristine and Carbon-Coated Silicon Carbide Quantum Dots. Journal of Physical Chemistry C, 2017, 121, 20031-20038.	1.5	8
441	Coherent Exciton-Phonon Coupling in CdSe/ZnS Nanocrystals Studied by Two-Dimensional Electronic Spectroscopy. Chinese Journal of Chemical Physics, 2017, 30, 637-642.	0.6	2
442	Enhancing extraction efficiency of quantum dot light-emitting diodes by surface engineering. Optics Express, 2017, 25, 17683.	1.7	20
443	Highly efficient quantum-dot light emitting diodes with sol-gel ZnO electron contact. Optical Materials Express, 2017, 7, 2161.	1.6	21
444	Highly luminescent red emitting CdZnSe/ZnSe quantum dots synthesis and application for quantum dot light emitting diodes. Optical Materials Express, 2017, 7, 3875.	1.6	19
445	Efficient light-emitting diodes based on reverse type-l quantum dots. Optical Materials Express, 2017, 7, 4395.	1.6	11
446	Synthesis of Quantum Dot-ZnS Nanosheet Inorganic Assembly with Low Thermal Fluorescent Quenching for LED Application. Materials, 2017, 10, 1242.	1.3	4
447	Strategies to Achieve High-Performance White Organic Light-Emitting Diodes. Materials, 2017, 10, 1378.	1.3	43
448	Quantum Dot-Based Light Emitting Diodes (QDLEDs): New Progress. , 0, , .		8
449	13â€4: <i>Invited Paper</i> : Charge Generation Junction for Quantumâ€dot Light Emitting Diodes. Digest of Technical Papers SID International Symposium, 2017, 48, 165-168.	0.1	1
450	Quantum Dot Light-Emitting Diode with Ligand-Exchanged ZnCuInS ₂ Quantum Dot. IEICE Transactions on Electronics, 2017, E100.C, 943-948.	0.3	0
451	Emerging Solutionâ€Processable Luminescent Nanomaterials in Hybrid Structures Offer New Solutions for Displays and Lighting. Information Display, 2017, 33, 6-14.	0.1	5
452	High-efficiency, deep blue ZnCdS/Cd _x Zn _{1â^'x} S/ZnS quantum-dot-light-emitting devices with an EQE exceeding 18%. Nanoscale, 2018, 10, 5650-5657.	2.8	103
453	Unraveling the mechanism of ultraviolet-induced optical gating in Zn _{1â^'<i>x</i>} Mg _{<i>x</i>} O nanocrystal solid solution field effect transistors. Journal Physics D: Applied Physics, 2018, 51, 105305.	1.3	4
454	Light-emitting diodes of colloidal quantum dots and nanorod heterostructures for future emissive displays. Journal of Materials Chemistry C, 2018, 6, 2618-2634.	2.7	82

#	Article	IF	Citations
455	Improve the surface of silver nanowire transparent electrode using a double-layer structure for the quantum-dot light-emitting diodes. Japanese Journal of Applied Physics, 2018, 57, 032101.	0.8	5
456	Graphene devices based on laser scribing technology. Japanese Journal of Applied Physics, 2018, 57, 04FA01.	0.8	19
457	Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination. Nature Photonics, 2018, 12, 159-164.	15.6	303
458	Concentration-dependent photophysical switching in mixed self-assembled monolayers of pentacene and perylenediimide on gold nanoclusters. Physical Chemistry Chemical Physics, 2018, 20, 8695-8706.	1.3	6
459	Surface structure, optoelectronic properties and charge transport in ZnO nanocrystal/MDMO-PPV multilayer films. Physical Chemistry Chemical Physics, 2018, 20, 12260-12271.	1.3	2
460	Achieving deep-red-to-near-infrared emissions in Sn-doped Cu–In–S/ZnS quantum dots for red-enhanced white LEDs and near-infrared LEDs. Nanoscale, 2018, 10, 9788-9795.	2.8	23
461	Ultrahigh Brightness Carbon Dot–Based Blue Electroluminescent LEDs by Host–Guest Energy Transfer Emission Mechanism. Advanced Optical Materials, 2018, 6, 1800181.	3.6	51
462	Quasiâ€⊉D Inorganic CsPbBr ₃ Perovskite for Efficient and Stable Lightâ€Emitting Diodes. Advanced Functional Materials, 2018, 28, 1801193.	7.8	108
463	Dual role of Ag nanowires in ZnO quantum dot/Ag nanowire hybrid channel photo thin film transistors. RSC Advances, 2018, 8, 8349-8354.	1.7	7
464	Balancing the Electron and Hole Transfer for Efficient Quantum Dot Light-Emitting Diodes by Employing a Versatile Organic Electron-Blocking Layer. ACS Applied Materials & Interfaces, 2018, 10, 15803-15811.	4.0	67
465	Encapsulated Silicon Nitride Nanobeam Cavity for Hybrid Nanophotonics. ACS Photonics, 2018, 5, 2176-2181.	3.2	43
466	Full color quantum dot lightâ€emitting diodes patterned by photolithography technology. Journal of the Society for Information Display, 2018, 26, 121-127.	0.8	33
467	Reduced Efficiency Roll-Off and Enhanced Stability in Perovskite Light-Emitting Diodes with Multiple Quantum Wells. Journal of Physical Chemistry Letters, 2018, 9, 2038-2042.	2.1	55
468	Flexible quantum dot light-emitting diodes for next-generation displays. Npj Flexible Electronics, 2018, 2, .	5.1	261
469	Charge Transport between Coupling Colloidal Perovskite Quantum Dots Assisted by Functional Conjugated Ligands. Angewandte Chemie, 2018, 130, 5856-5860.	1.6	3
470	Improved color purity and efficiency of blue quantum dot light-emitting diodes. Organic Electronics, 2018, 58, 245-249.	1.4	25
471	Influence of Shell Thickness on the Performance of NiO-Based All-Inorganic Quantum Dot Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 14894-14900.	4.0	30
473	Ultrastable Quantum Dot Composite Films under Severe Environments. ACS Applied Materials & Interfaces, 2018, 10, 15880-15887.	4.0	11

#	Article	IF	Citations
474	Mn-doped CsPbCl3 perovskite quantum dots (PQDs) incorporated into silica/alumina particles used for WLEDs. Applied Surface Science, 2018, 448, 400-406.	3.1	65
475	Mn(II)-coordinated Fluorescent Carbon Dots: Preparation and Discrimination of Organic Solvents. Optical Materials, 2018, 78, 118-125.	1.7	20
476	Size- and composition-dependent photocatalytic hydrogen production over colloidal Cd1-xZnxSe nanocrystals. International Journal of Hydrogen Energy, 2018, 43, 13911-13920.	3.8	9
477	Morphology Evolution of Gradient-Alloyed Cd <i>_x</i> Zn _{1â€"<i>x</i>} Se <i>_y</i> S _{1â€"<i>y</i>} @ZnS Coreâ€"Shell Quantum Dots during Transmission Electron Microscopy Determination: A Route to Illustrate Strain Effects, Iournal of Physical Chemistry C. 2018, 122, 4583-4588.	1.5	13
478	Tunable quantum dot arrays as efficient sensitizers for enhanced near-infrared electroluminescence of erbium ions. Nanoscale, 2018, 10, 4138-4146.	2.8	23
479	High-efficiency all-inorganic full-colour quantum dot light-emitting diodes. Nano Energy, 2018, 46, 229-233.	8.2	52
480	Relations of exciton dynamics in quantum dots to photoluminescence, lasing, and energy harvesting. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 34, 137-151.	5.6	24
481	A Comparative Study of Lightâ€Emitting Diodes Based on Allâ€Inorganic Perovskite Nanoparticles (CsPbBr ₃) Synthesized at Room Temperature and by a Hotâ€Injection Method. ChemPlusChem, 2018, 83, 294-299.	1.3	27
482	Enhanced photoeletrocatalytic reduction dechlorinations of PCP by Ru-Pd BQDs anchored Titania NAEs composites with double Schottky junctions: First-principles evidence and experimental verifications. Applied Catalysis B: Environmental, 2018, 227, 499-511.	10.8	25
483	Interface dipole for remarkable efficiency enhancement in all-solution-processable transparent inverted quantum dot light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 2596-2603.	2.7	27
484	Al2O3-Interlayer-Enhanced Performance of All-Inorganic Silicon-Quantum-Dot Near-Infrared Light-Emitting Diodes. IEEE Transactions on Electron Devices, 2018, 65, 577-583.	1.6	15
485	Copper thiocyanate/copper iodide based hole transport composites with balanced properties for efficient polymer light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 4895-4902.	2.7	25
486	Nonblinking Quantum-Dot-Based Blue Light-Emitting Diodes with High Efficiency and a Balanced Charge-Injection Process. ACS Photonics, 2018, 5, 939-946.	3.2	113
487	The role of polyethylenimine in enhancing the efficiency of quantum dot light-emitting devices. Nanoscale, 2018, 10, 2623-2631.	2.8	28
488	Ce ³⁺ -Doping to Modulate Photoluminescence Kinetics for Efficient CsPbBr ₃ Nanocrystals Based Light-Emitting Diodes. Journal of the American Chemical Society, 2018, 140, 3626-3634.	6.6	442
489	Light-Emitting Diodes Based on Colloidal Silicon Quantum Dots with Octyl and Phenylpropyl Ligands. ACS Applied Materials & Interfaces, 2018, 10, 5959-5966.	4.0	68
490	High-Bandwidth White-Light System Combining a Micro-LED with Perovskite Quantum Dots for Visible Light Communication. ACS Applied Materials & Interfaces, 2018, 10, 5641-5648.	4.0	194
491	Carrier Dynamics, Optical Gain, and Lasing with Colloidal Quantum Wells. Journal of Physical Chemistry C, 2018, 122, 10659-10674.	1.5	58

#	Article	IF	CITATIONS
492	Efficient Quantum-Dot Light-Emitting Diodes Employing Thermally Activated Delayed Fluorescence Emitters as Exciton Harvesters. ACS Applied Materials & Interfaces, 2018, 10, 7435-7441.	4.0	23
493	Improving Charge Injection via a Blade-Coating Molybdenum Oxide Layer: Toward High-Performance Large-Area Quantum-Dot Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 8258-8264.	4.0	39
494	Room-Temperature Construction of Mixed-Halide Perovskite Quantum Dots with High Photoluminescence Quantum Yield. Journal of Physical Chemistry C, 2018, 122, 5151-5160.	1.5	79
495	Extinction coefficient per CdE (E = Se or S) unit for zinc-blende CdE nanocrystals. Nano Research, 2018, 11, 3991-4004.	5.8	38
496	Three-Dimensional Self-Assembled Columnar Arrays of AlInP Quantum Wires for Polarized Micrometer-Sized Amber Light Emitting Diodes. ACS Photonics, 2018, 5, 1318-1325.	3.2	4
497	Enhancing the Performance of CdSe/CdS Dot-in-Rod Light-Emitting Diodes via Surface Ligand Modification. ACS Applied Materials & Interfaces, 2018, 10, 5665-5672.	4.0	55
498	Cosensitized Quantum Dot Solar Cells with Conversion Efficiency over 12%. Advanced Materials, 2018, 30, 1705746.	11.1	148
499	Highly Efficient All-Solution Processed Inverted Quantum Dots Based Light Emitting Diodes. ACS Nano, 2018, 12, 1564-1570.	7.3	121
500	Post Deposition Annealing Atmosphere Effect on Performance of Solid State Incandescent Light Emitting Device. ECS Journal of Solid State Science and Technology, 2018, 7, R3023-R3029.	0.9	1
501	A thin CdSe shell boosts the electron transfer from CdTe quantum dots to methylene blue. Nanoscale, 2018, 10, 2162-2169.	2.8	14
502	Luminescence Properties of ZnO Twin Nanorod–Ag Heteronanocrystals and Interfacial Exciton–Surface Plasmon Coupling. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1700375.	1.2	1
503	Highly Efficient Solutionâ€Processable Nanophosphor with Ambipolar Shell. Chemistry - A European Journal, 2018, 24, 2971-2979.	1.7	5
504	Controlling electron transfer from photoexcited quantum dots to Al doped ZnO nanoparticles with varied dopant concentration. Chemical Physics Letters, 2018, 692, 178-183.	1.2	10
505	Two-photon absorption and upconversion luminescence of colloidal CsPbX3 quantum dots. Optical Materials, 2018, 75, 880-886.	1.7	45
506	Efficient Red/Green/Blue Tandem Quantum-Dot Light-Emitting Diodes with External Quantum Efficiency Exceeding 21%. ACS Nano, 2018, 12, 697-704.	7.3	234
507	Improvement in luminance of light-emitting diode using InP/ZnS quantum dot with 1-dodecanethiol ligand. Japanese Journal of Applied Physics, 2018, 57, 03EH06.	0.8	1
508	Preparation of Fluorescent Thiol Groupâ€Functionalized Silica Microspheres for the Detection and Removal of Silver Ions in Aqueous Solutions. Journal of the Chinese Chemical Society, 2018, 65, 591-596.	0.8	9
509	Highly Luminescent and Stable Perovskite Nanocrystals with Octylphosphonic Acid as a Ligand for Efficient Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 3784-3792.	4.0	255

#	ARTICLE	IF	CITATIONS
510	Small Molecule-Modified Hole Transport Layer Targeting Low Turn-On-Voltage, Bright, and Efficient Full-Color Quantum Dot Light Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 3865-3873.	4.0	48
511	From Large-Scale Synthesis to Lighting Device Applications of Ternary I–III–VI Semiconductor Nanocrystals: Inspiring Greener Material Emitters. Journal of Physical Chemistry Letters, 2018, 9, 435-445.	2.1	136
512	Light-permeable, photoluminescent microbatteries embedded in the color filter of a screen. Energy and Environmental Science, 2018, 11, 2414-2422.	15.6	97
513	Towards Low-Toxic Colloidal Quantum Dots. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1443-1455.	1.4	6
514	Efficient Solution-Processed Nanoplatelet-Based Light-Emitting Diodes with High Operational Stability in Air. Nano Letters, 2018, 18, 3441-3448.	4.5	88
515	High Efficiency Lightâ€Emitting Transistor with Vertical Metal–Oxide Heterostructure. Small, 2018, 14, e1800265.	5.2	17
516	Enhancement in fluorescence quantum yield of MEH-PPV:BT blends for polymer light emitting diode applications. Optical Materials, 2018, 80, 143-148.	1.7	33
517	Nanocrystal light-emitting diodes based on type II nanoplatelets. Nano Energy, 2018, 47, 115-122.	8.2	62
518	Textile Display for Electronic and Brainâ€Interfaced Communications. Advanced Materials, 2018, 30, e1800323.	11.1	145
519	Low turn-on voltage and highly bright Ag–In–Zn–S quantum dot light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 4683-4690.	2.7	28
520	Toward Highly Luminescent and Stabilized Silica-Coated Perovskite Quantum Dots through Simply Mixing and Stirring under Room Temperature in Air. ACS Applied Materials & Interfaces, 2018, 10, 13053-13061.	4.0	115
521	Highly Efficient Green Lightâ€Emitting Diodes from Allâ€Inorganic Perovskite Nanocrystals Enabled by a New Electron Transport Layer. Advanced Optical Materials, 2018, 6, 1800220.	3.6	74
522	Charge Transport between Coupling Colloidal Perovskite Quantum Dots Assisted by Functional Conjugated Ligands. Angewandte Chemie - International Edition, 2018, 57, 5754-5758.	7.2	117
523	Strong Photonicâ€Bandâ€Gap Effect on the Spontaneous Emission in 3D Lead Halide Perovskite Photonic Crystals. ChemPhysChem, 2018, 19, 2101-2106.	1.0	12
524	Effects of coffee ring via inkjet printing seed layers on field emission properties of patterned ZnO nanorods. Ceramics International, 2018, 44, 10735-10743.	2.3	15
525	Perovskite/Colloidal Quantum Dot Tandem Solar Cells: Theoretical Modeling and Monolithic Structure. ACS Energy Letters, 2018, 3, 869-874.	8.8	77
526	Full-color capable light-emitting diodes based on solution-processed quantum dot layer stacking. Nanoscale, 2018, 10, 6300-6305.	2.8	43
527	Extremely Vivid, Highly Transparent, and Ultrathin Quantum Dot Lightâ€Emitting Diodes. Advanced Materials, 2018, 30, 1703279.	11.1	157

#	Article	IF	CITATIONS
528	Bright alloy type-II quantum dots and their application to light-emitting diodes. Journal of Colloid and Interface Science, 2018, 510, 376-383.	5.0	21
529	Device performance and light characteristics stability of quantum-dot-based white-light-emitting diodes. Nano Research, 2018, 11, 1575-1588.	5.8	20
530	Allâ€Inorganic Metal Halide Perovskite Nanostructures: From Photophysics to Lightâ€Emitting Applications. Small Methods, 2018, 2, 1700252.	4.6	83
531	Preparing of green-emitting CdZnSe ternary nanocrystals with narrow emission spectrum. Superlattices and Microstructures, 2018, 113, 394-400.	1.4	4
532	Boosting the efficiency of inverted quantum dot light-emitting diodes by balancing charge densities and suppressing exciton quenching through band alignment. Nanoscale, 2018, 10, 592-602.	2.8	66
533	Perovskite Quantum Dots and Their Application in Lightâ€Emitting Diodes. Small, 2018, 14, 1702433.	5.2	238
534	Hybrid light-emitting devices by incorporating WO3 nanorod arrays as the electron transport layer and PEIE as the buffer layer. Superlattices and Microstructures, 2018, 113, 667-677.	1.4	3
535	Structure-dependent luminescence of tetra-(4-pyridylphenyl)ethylene: a first-principles study. Physical Chemistry Chemical Physics, 2018, 20, 41-45.	1.3	4
536	A 3D Selfâ€ 5 haping Strategy for Nanoresolution Multicomponent Architectures. Advanced Materials, 2018, 30, 1703963.	11.1	39
537	Fineâ€Tuned Multilayered Transparent Electrode for Highly Transparent Perovskite Lightâ€Emitting Devices. Advanced Electronic Materials, 2018, 4, 1700285.	2.6	31
538	Excitation wavelength dependent photon anti-bunching/bunching from single quantum dots near gold nanostructures. Nanoscale, 2018, 10, 1038-1046.	2.8	16
539	Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nature Materials, 2018, 17, 42-49.	13.3	204
540	Recent progress in organohalide lead perovskites for photovoltaic and optoelectronic applications. Coordination Chemistry Reviews, 2018, 373, 258-294.	9.5	67
541	Exciton Dynamics in Colloidal Quantum-Dot LEDs under Active Device Operations. ACS Photonics, 2018, 5, 480-486.	3.2	11
542	Extremely flexible, transparent, and strain-sensitive electroluminescent device based on ZnS:Cu-polyvinyl butyral composite and silver nanowires. Applied Surface Science, 2018, 429, 144-150.	3.1	27
543	Application of Quantum Dots in Photodetectors. , 2018, , .		0
544	Nanostructure and device architecture engineering for high-performance quantum-dot light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 10958-10981.	2.7	32
546	Heterojunction Area-Controlled Inorganic Nanocrystal Solar Cells Fabricated Using Supra-Quantum Dots. ACS Applied Materials & Interfaces, 2018, 10, 43768-43773.	4.0	5

#	Article	IF	CITATIONS
547	Design and Realization of White Quantum Dot Light-Emitting Electrochemical Cell Hybrid Devices. ACS Applied Materials & Interfaces, 2018, 10, 42637-42646.	4.0	23
548	Pulsed axial epitaxy of colloidal quantum dots in nanowires enables facet-selective passivation. Nature Communications, 2018, 9, 4947.	5.8	22
549	Efficient radical-based light-emitting diodes with doublet emission. Nature, 2018, 563, 536-540.	13.7	453
550	High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nature Photonics, 2018, 12, 783-789.	15.6	715
551	Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 2018, 563, 541-545.	13.7	1,451
552	The Dawn of QLED for the FPD Industry. Information Display, 2018, 34, 14-17.	0.1	3
553	Hybrid PVK: OXD-7: QDs Emitting Layer for High Color Purified Quantum Dot Light Emitting-Diode. , 2018, , .		0
554	Hybrid materials based on polymer nanocomposites for environmental applications. , 2018, , 507-551.		7
555	Near Infrared LED Based on PbS Nanocrystals. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq	0 0 0 rgBT	- /Qyerlock 10
555 556	Near Infrared LED Based on PbS Nanocrystals. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq Realization of linearly polarized exciton emission in wurtzite zinc oxide quantum dots. Physical Review B, 2018, 98, .	0 0 0 0 rgBT 0.2	7 /Oyverlock 10
	Realization of linearly polarized exciton emission in wurtzite zinc oxide quantum dots. Physical	0.2	5
556	Realization of linearly polarized exciton emission in wurtzite zinc oxide quantum dots. Physical Review B, 2018, 98, . Facile synthesis of two-dimensional Ruddlesden–Popper perovskite quantum dots with fine-tunable	1.1	13
556 558	 Realization of linearly polarized exciton emission in wurtzite zinc oxide quantum dots. Physical Review B, 2018, 98, . Facile synthesis of two-dimensional Ruddlesden–Popper perovskite quantum dots with fine-tunable optical properties. Nanoscale Research Letters, 2018, 13, 247. Pâ€9.7: Stable Quantum Dot Lightâ€Emitting Diodes via Adopting Solutionâ€Processed Allâ€horganic 	1.1	13 55
556 558 559	Realization of linearly polarized exciton emission in wurtzite zinc oxide quantum dots. Physical Review B, 2018, 98, . Facile synthesis of two-dimensional Ruddlesden–Popper perovskite quantum dots with fine-tunable optical properties. Nanoscale Research Letters, 2018, 13, 247. Pâ€9.7: Stable Quantum Dot Lightâ€Emitting Diodes via Adopting Solutionâ€Processed Allâ€horganic Heterostructure. Digest of Technical Papers SID International Symposium, 2018, 49, 679-680. Facile Synthesis of Cu–In–S/ZnS Core/Shell Quantum Dots in 1-Dodecanethiol for Efficient Light-Emitting Diodes with an External Quantum Efficiency of 7.8%. Chemistry of Materials, 2018, 30,	0.2 1.1 3.1 0.1	13 55 0
5556 5558 5559 560	Realization of linearly polarized exciton emission in wurtzite zinc oxide quantum dots. Physical Review B, 2018, 98, . Facile synthesis of two-dimensional Ruddlesden–Popper perovskite quantum dots with fine-tunable optical properties. Nanoscale Research Letters, 2018, 13, 247. Pâ€9.7: Stable Quantum Dot Lightâ€Emitting Diodes via Adopting Solutionâ€Processed Allâ€horganic Heterostructure. Digest of Technical Papers SID International Symposium, 2018, 49, 679-680. Facile Synthesis of Cu–In–S/ZnS Core/Shell Quantum Dots in 1-Dodecanethiol for Efficient Light-Emitting Diodes with an External Quantum Efficiency of 7.8%. Chemistry of Materials, 2018, 30, 8939-8947. High-efficiency, solution-processable, multilayer triple cation perovskite light-emitting diodes with copper sulfide〓gallium〓tin oxide hole transport layer and aluminum-zinc oxide〓doped cesium	0.2 1.1 3.1 0.1 3.2	3 13 55 0 70
5556 5558 5559 560 561	Realization of linearly polarized exciton emission in wurtzite zinc oxide quantum dots. Physical Review B, 2018, 98, . Facile synthesis of two-dimensional Ruddlesden–Popper perovskite quantum dots with fine-tunable optical properties. Nanoscale Research Letters, 2018, 13, 247. Pâ€9.7: Stable Quantum Dot Lightâ€Emitting Diodes via Adopting Solutionâ€Processed Allâ€horganic Heterostructure. Digest of Technical Papers SID International Symposium, 2018, 49, 679-680. Facile Synthesis of Cu–In–S/ZnS Core/Shell Quantum Dots in 1-Dodecanethiol for Efficient Light-Emitting Diodes with an External Quantum Efficiency of 7.8%. Chemistry of Materials, 2018, 30, 8939-8947. High-efficiency, solution-processable, multilayer triple cation perovskite light-emitting diodes with copper sulfide〓gallium〔tin oxide hole transport layer and aluminum-zinc oxide〓doped cesium electron injection layer. Materials Today Chemistry, 2018, 10, 104-111. Synthesis of Anisotropic CdSe/CdS Dot-in-Giant-Rod Nanocrystals with Persistent Blue-Shifted	 1.1 3.1 0.1 3.2 1.7 	13 55 0 70 31

565Halide Perovskite Quantum Dots for Lightâ€Emitting Diodes: Properties, Synthesis, Applications, and
Outlooks. Advanced Electronic Materials, 2018, 4, 1800335.2.650

#	Article	IF	CITATIONS
566	Ultrathin PVK charge control layer for advanced manipulation of efficient giant CdSe@ZnS/ZnS quantum dot light-emitting diodes. Organic Electronics, 2018, 63, 349-354.	1.4	13
567	Perspective: Nonequilibrium dynamics of localized and delocalized excitons in colloidal quantum dot solids. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	0.9	15
568	New Insights into the Multiexciton Dynamics in Phase-Pure Thick-Shell CdSe/CdS Quantum Dots. Journal of Physical Chemistry C, 2018, 122, 25059-25066.	1.5	16
569	White Organic Light-Emitting Diodes with Thermally Activated Delayed Fluorescence Emitters. , 0, , .		1
570	PbS Capped CsPbI ₃ Nanocrystals for Efficient and Stable Light-Emitting Devices Using <i>p</i> – <i>i</i> – <i>n</i> Structures. ACS Central Science, 2018, 4, 1352-1359.	5.3	141
571	Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 2018, 562, 245-248.	13.7	2,589
572	Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562, 249-253.	13.7	1,555
573	A detailed investigation of electronic and optical properties of single exciton in <i>GaAs/Al_xGa_{1-x}As/GaAs/Al_yGa_{1-y}As</i> multi-shell quantum dot. Philosophical Magazine, 2018, 98, 3109-3125.	0.7	7
574	Unraveling the Origin of Operational Instability of Quantum Dot Based Light-Emitting Diodes. ACS Nano, 2018, 12, 10231-10239.	7.3	123
575	Lateral Polymer Photodetectors Using Silver Nanoparticles Promoted PffBT4T-2OD:PC61BM Composite. ACS Photonics, 2018, 5, 4650-4659.	3.2	20
576	Highly Efficient Trilayered White Quantum Dot Light Emitting Diodes Based on Organic Buffer Layers. IEEE Electron Device Letters, 2018, 39, 1692-1695.	2.2	8
577	Electroluminescent synaptic devices with logic functions. Nano Energy, 2018, 54, 383-389.	8.2	80
578	A Layer-by-Layer Growth Strategy for Large-Size InP/ZnSe/ZnS Core–Shell Quantum Dots Enabling High-Efficiency Light-Emitting Diodes. Chemistry of Materials, 2018, 30, 8002-8007.	3.2	159
579	Inverted Device Architecture for Enhanced Performance of Flexible Silicon Quantum Dot Light-Emitting Diode. Journal of Physical Chemistry Letters, 2018, 9, 5400-5407.	2.1	32
580	Blue quantum dot light emitting diodes with polyvinylpyrrolidone-doped electron transport layer. Organic Electronics, 2018, 63, 65-70.	1.4	28
581	Optical Signatures of Transiently Disordered Semiconductor Nanocrystals. ACS Nano, 2018, 12, 10008-10015.	7.3	9
582	Balanced carrier injection of quantum dots light-emitting diodes: the case of interface barrier of bilayer ZnO electron transport layer. Nanotechnology, 2018, 29, 485203.	1.3	7
583	Uncovering the Mechanism for the Formation of Copper Thioantimonate (Sb ^V) Nanoparticles and Its Transition to Thioantimonide (Sb ^{III}). Crystal Growth and Design, 2018, 18, 6521-6527.	1.4	10

#	Article	IF	CITATIONS
584	Rapid, Wet Chemical Fabrication of Radial Junction Electroluminescent Wires. ACS Applied Materials & Interfaces, 2018, 10, 35344-35353.	4.0	2
585	High-Efficiency Light-Emitting Diodes Based on Formamidinium Lead Bromide Nanocrystals and Solution Processed Transport Layers. Chemistry of Materials, 2018, 30, 6231-6235.	3.2	29
586	Thin-shell CdSe/ZnCdS core/shell quantum dots and their electroluminescent device application. Journal of Materials Chemistry C, 2018, 6, 11104-11110.	2.7	12
587	High efficiency and highly saturated red emitting inverted quantum dot devices (QLEDs): optimisation of their efficiencies with low temperature annealed sol–gel derived ZnO as the electron transporter and a novel high mobility hole transporter and thermal annealing of the devices. Journal of Materials Chemistry C. 2018. 6. 11622-11644.	2.7	12
588	Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology. Applied Sciences (Switzerland), 2018, 8, 1557.	1.3	498
589	Effects of Local Dielectric Environment on Single-Molecule Spectroscopy of a CdSe/CdS Core/Shell Quantum Dot. ACS Photonics, 2018, 5, 4139-4146.	3.2	15
590	Reduced Graphene Oxide as Efficient Hole Injection Layer for Quantumâ€Dot Lightâ€Emitting Diodes. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800517.	0.8	6
591	Droop-Free Colloidal Quantum Dot Light-Emitting Diodes. Nano Letters, 2018, 18, 6645-6653.	4.5	193
592	Perovskites for Light Emission. Advanced Materials, 2018, 30, e1801996.	11.1	417
593	Correlating Photoluminescence and Structural Properties of Uncapped and GaAs-Capped Epitaxial InGaAs Quantum Dots. Scientific Reports, 2018, 8, 7514.	1.6	11
594	Highâ€Performance, Solutionâ€Processed, and Insulating‣ayerâ€Free Lightâ€Emitting Diodes Based on Colloidal Quantum Dots. Advanced Materials, 2018, 30, e1801387.	11.1	151
595	Bottomâ€Up Synthesis of Carbon Quantum Dots With High Performance Photo―and Electroluminescence. Particle and Particle Systems Characterization, 2018, 35, 1800080.	1.2	23
596	Over 800% efficiency enhancement of all-inorganic quantum-dot light emitting diodes with an ultrathin alumina passivating layer. Nanoscale, 2018, 10, 11103-11109.	2.8	36
597	Tetra-Au(I) Complexes Bearing a Pyrene Tetraalkynyl Connector Behave as Fluorescence Torches. Organometallics, 2018, 37, 1795-1800.	1.1	15
598	Carbon dot-based white and yellow electroluminescent light emitting diodes with a record-breaking brightness. Nanoscale, 2018, 10, 11211-11221.	2.8	67
599	Highly Enhanced Luminescence Performance of LEDs via Controllable Layerâ€ S tructured 3D Photonic Crystals and Photonic Crystal Beads. Small Methods, 2018, 2, 1800104.	4.6	32
600	Immobilization Strategies for Organic Semiconducting Conjugated Polymers. Chemical Reviews, 2018, 118, 5598-5689.	23.0	119
601	Digital encoding based molecular imprinting suspension array for multiplexed label-free sensing of phenol derivatives. Sensors and Actuators B: Chemical, 2018, 271, 367-373.	4.0	13

#	Article	IF	CITATIONS
602	73â€4: Tandem Red Quantumâ€Dot Lightâ€Emitting Diodes with External Quantum Efficiency over 34 %. Digest of Technical Papers SID International Symposium, 2018, 49, 977-980.	0.1	4
603	Enhanced light out-coupling efficiency of quantum dot light emitting diodes by nanoimprint lithography. Nanoscale, 2018, 10, 11651-11656.	2.8	40
604	73â€3: <i>Distinguished Student Paper:</i> Full Color Quantum Dot Lightâ€Emitting Diodes Patterned by Photolithography Technology. Digest of Technical Papers SID International Symposium, 2018, 49, 973-976.	0.1	0
605	73â€2: <i>Invited Paper:</i> Highâ€Performance Quantum Dot Light Emitting Diodes and their Challenges. Digest of Technical Papers SID International Symposium, 2018, 49, 969-972.	0.1	9
606	Pâ€112: A Study on the Effect of Electrical Characteristics of HTL on Electrical Properties of QLED and its Efficiency. Digest of Technical Papers SID International Symposium, 2018, 49, 1632-1635.	0.1	3
607	Pâ€113: Improving the Carrier Balance with Hybrid Hole Transporting Layer and Electron Blocking Layer in Quantum Dot Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2018, 49, 1636-1639.	0.1	2
608	Pâ€114: Green Quantum Dot Lightâ€Emitting Diodes with High Color Purity and Their Efficiency Improvement. Digest of Technical Papers SID International Symposium, 2018, 49, 1640-1642.	0.1	0
609	Ultrastable, highly luminescent quantum dot composites based on advanced surface manipulation strategy for flexible lighting-emitting. Nanotechnology, 2018, 29, 315203.	1.3	25
610	24.1% External Quantum Efficiency of Flexible Quantum Dot Lightâ€Emitting Diodes by Light Extraction of Silver Nanowire Transparent Electrodes. Advanced Optical Materials, 2018, 6, 1800347.	3.6	51
611	71â€1: <i>Invited Paper:</i> A Color Conversion Film with High Quantum Yield and Operational Stability. Digest of Technical Papers SID International Symposium, 2018, 49, 946-948.	0.1	1
612	4â€4: High Stability Green Luminescent Microspheres based on Quantum Dot. Digest of Technical Papers SID International Symposium, 2018, 49, 32-35.	0.1	3
613	Simultaneous Improvement of Efficiency and Lifetime of Quantum Dot Light-Emitting Diodes with a Bilayer Hole Injection Layer Consisting of PEDOT:PSS and Solution-Processed WO ₃ . ACS Applied Materials & Interfaces, 2018, 10, 24232-24241.	4.0	17
614	In Situ Fabricated Perovskite Nanocrystals: A Revolution in Optical Materials. Advanced Optical Materials, 2018, 6, 1800380.	3.6	176
615	On-Surface Reactions in the Growth of High-Quality CdSe Nanocrystals in Nonpolar Solutions. Journal of the American Chemical Society, 2018, 140, 9174-9183.	6.6	33
616	Efficient and Color Stable White Quantumâ€Dot Lightâ€Emitting Diodes with External Quantum Efficiency Over 23%. Advanced Optical Materials, 2018, 6, 1800354.	3.6	42
617	Origin of Positive Aging in Quantumâ€Dot Lightâ€Emitting Diodes. Advanced Science, 2018, 5, 1800549.	5.6	69
618	Optoelectronic Properties in Nearâ€Infrared Colloidal Heterostructured Pyramidal "Giant―Core/Shell Quantum Dots. Advanced Science, 2018, 5, 1800656.	5.6	63
619	Bright inverted quantum-dot light-emitting diodes by all-solution processing. Journal of Materials Chemistry C, 2018, 6, 7487-7492.	2.7	24

#	Article	IF	CITATIONS
620	Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nature Communications, 2018, 9, 2608.	5.8	268
621	Real-time beam shaping without additional optical elements. Light: Science and Applications, 2018, 7, 18.	7.7	14
622	Metal Halide Perovskites: From Crystal Formations to Lightâ€Emittingâ€Diode Applications. Small Methods, 2018, 2, 1800093.	4.6	36
623	Integration of green CuInS_2/ZnS quantum dots for high-efficiency light-emitting diodes and high-responsivity photodetectors. Optical Materials Express, 2018, 8, 314.	1.6	22
624	ZnMgO:ZnO composite films for fast electron transport and high charge balance in quantum dot light emitting diodes. Optical Materials Express, 2018, 8, 909.	1.6	30
625	Stretchable silica gel-ZnSe:Mn/ZnS quantum dots for encoding. Optical Materials Express, 2018, 8, 1154.	1.6	5
626	Highâ€Efficiency, Solutionâ€Processed White Quantum Dot Lightâ€Emitting Diodes with Serially Stacked Red/Green/Blue Units. Advanced Optical Materials, 2018, 6, 1800652.	3.6	48
627	Photonic crystals for optimal color conversion in light-emitting diodes: a semi-analytical approach. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 1105.	0.9	4
628	All-Solution-Processed Quantum Dot Light Emitting Diodes Based on Double Hole Transport Layers by Hot Spin-Coating with Highly Efficient and Low Turn-On Voltage. ACS Applied Materials & Interfaces, 2018, 10, 29076-29082.	4.0	73
629	A ratiometric electrochemiluminescent biosensor for Con A detecting based on competition of dissolved oxygen. Biosensors and Bioelectronics, 2018, 120, 40-46.	5.3	29
630	Improved photomultiplication in inverted-structure organic photodetectors via interfacial engineering. Applied Physics Letters, 2018, 113, .	1.5	19
631	Synthesis of Nanoparticles. , 2018, , 392-429.		15
632	Light-emitting diodes based on colloidal silicon quantum dots. Journal of Semiconductors, 2018, 39, 061008.	2.0	17
633	Microwave-Assisted Heating Method toward Multicolor Quantum Dot-Based Phosphors with Much Improved Luminescence. ACS Applied Materials & Interfaces, 2018, 10, 27160-27170.	4.0	21
634	Catalytic metal-induced crystallization of sol–gel metal oxides for high-efficiency flexible perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 16450-16457.	5.2	18
635	Understanding quantum confinement and ligand removal in solution-based ZnO thin films from highly stable nanocrystal ink. Journal of Materials Chemistry C, 2018, 6, 9181-9190.	2.7	7
636	Multicolour light-emitting diodes based on CsPbX3 (X = Br, I) quantum dots glasses solid materials. Materials Letters, 2018, 229, 290-292.	1.3	21
637	Emergence of White Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence. Applied Sciences (Switzerland), 2018, 8, 299.	1.3	34

#	Article	IF	CITATIONS
638	Chloride-Passivated Mg-Doped ZnO Nanoparticles for Improving Performance of Cadmium-Free, Quantum-Dot Light-Emitting Diodes. ACS Photonics, 2018, 5, 3704-3711.	3.2	45
639	Efficient OLEDs Fabricated by Solution Process Based on Carbazole and Thienopyrrolediones Derivatives. Molecules, 2018, 23, 280.	1.7	11
640	Recent Advances in Group III–V Nanowire Infrared Detectors. Advanced Optical Materials, 2018, 6, 1800256.	3.6	43
641	A highly efficient white quantum dot light-emitting diode employing magnesium doped zinc oxide as the electron transport layer based on bilayered quantum dot layers. Journal of Materials Chemistry C, 2018, 6, 8099-8104.	2.7	47
642	Highly Efficient and Fully Solution-Processed Inverted Light-Emitting Diodes with Charge Control Interlayers. ACS Applied Materials & Interfaces, 2018, 10, 17295-17300.	4.0	102
643	Surfaceâ€Passivated Cesium Lead Halide Perovskite Quantum Dots: Toward Efficient Lightâ€Emitting Diodes with an Inverted Sandwich Structure. Advanced Optical Materials, 2018, 6, 1800007.	3.6	44
644	High-Performance Quantum Dot Light-Emitting Diodes Based on Al-Doped ZnO Nanoparticles Electron Transport Layer. ACS Applied Materials & Interfaces, 2018, 10, 18902-18909.	4.0	82
645	Highly efficient red fluorescent organic light-emitting diodes by sorbitol-doped PEDOT:PSS. Journal Physics D: Applied Physics, 2018, 51, 225302.	1.3	9
646	Room-temperature film formation of metal halide perovskites on n-type metal oxides: the catalysis of ZnO on perovskite crystallization. Chemical Communications, 2018, 54, 6887-6890.	2.2	11
647	Progress in the Development of Heavy Metal-Free Quantum Dots for Electroluminescent Displays. , 2018, , .		0
648	Highly efficient, all-solution-processed, flexible white quantum dot light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 9642-9648.	2.7	38
649	Allâ€Solutionâ€Processed Pure Formamidiniumâ€Based Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2018, 30, e1804137.	11.1	77
650	An efficient solution-processed hole injection layer with phosphomolybdic acid in quantum dot light-emitting diodes. Organic Electronics, 2018, 62, 320-326.	1.4	11
651	Boosted electroluminescence of perovskite light-emitting diodes by pinhole passivation with insulating polymer. Journal Physics D: Applied Physics, 2018, 51, 405103.	1.3	8
652	High Efficiency Inverted Quantum-dot LED. , 2018, , .		0
653	Recent Advances of Exciplex-Based White Organic Light-Emitting Diodes. Applied Sciences (Switzerland), 2018, 8, 1449.	1.3	37
654	Near-infrared-triggered photon upconversion tuning in all-inorganic cesium lead halide perovskite quantum dots. Nature Communications, 2018, 9, 3462.	5.8	222
655	Enhancing the Performance of Blue Quantum Dots Lightâ€Emitting Diodes through Interface Engineering with Deoxyribonucleic Acid. Advanced Optical Materials, 2018, 6, 1800578.	3.6	25

#	Article	IF	Citations
656	Emergence of Nanoplatelet Light-Emitting Diodes. Materials, 2018, 11, 1376.	1.3	37
657	Enhanced Lifetime and Efficiency of Red Quantum Dot Lightâ€Emitting Diodes with Yâ€Đoped ZnO Sol–Gel Electronâ€Transport Layers by Reducing Excess Electron Injection. Advanced Quantum Technologies, 2018, 1, 1700006.	1.8	38
658	Surface Ligand Engineering for Near-Unity Quantum Yield Inorganic Halide Perovskite QDs and High-Performance QLEDs. Chemistry of Materials, 2018, 30, 6099-6107.	3.2	217
659	Surface Engineering of Quantum Dots for Remarkably High Detectivity Photodetectors. Journal of Physical Chemistry Letters, 2018, 9, 3285-3294.	2.1	31
660	Suppressed Interfacial Charge Recombination of PbS Quantum Dot Photovoltaics by Graphene Incorporated into ZnO Nanoparticles. ACS Applied Materials & Interfaces, 2018, 10, 25311-25320.	4.0	24
661	4â€3: Solution Synthesis of Highâ€Quality Indiumâ€Nitride Quantum Dots. Digest of Technical Papers SID International Symposium, 2018, 49, 28-31.	0.1	2
662	Advances and prospects of lasers developed from colloidal semiconductor nanostructures. Progress in Quantum Electronics, 2018, 60, 1-29.	3.5	41
663	Structural control of InP/ZnS core/shell quantum dots enables high-quality white LEDs. Nanotechnology, 2018, 29, 345605.	1.3	30
664	Ligand-Asymmetric Janus Quantum Dots for Efficient Blue-Quantum Dot Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 22453-22459.	4.0	30
665	Highâ€Efficiency Pure olor Inorganic Halide Perovskite Emitters for Ultrahighâ€Đefinition Displays: Progress for Backlighting Displays and Electrically Driven Devices. Small Methods, 2018, 2, 1700382.	4.6	47
666	Integration of Sulfides Enables Enhanced Full-Spectrum Solar Energy Absorption and Efficient Charge Separation. Springer Theses, 2018, , 95-111.	0.0	0
667	Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nature Communications, 2018, 9, 2249.	5.8	676
668	Roomâ€Temperature Tripleâ€Ligand Surface Engineering Synergistically Boosts Ink Stability, Recombination Dynamics, and Charge Injection toward EQEâ€11.6% Perovskite QLEDs. Advanced Materials, 2018, 30, e1800764.	11.1	431
669	Enhanced Electron Injection and Exciton Confinement for Pure Blue Quantum-Dot Light-Emitting Diodes by Introducing Partially Oxidized Aluminum Cathode. Journal of Visualized Experiments, 2018, , .	0.2	1
670	Fully Solution-Processed Tandem White Quantum-Dot Light-Emitting Diode with an External Quantum Efficiency Exceeding 25%. ACS Nano, 2018, 12, 6040-6049.	7.3	82
671	Ultrasmooth Quantum Dot Micropatterns by a Facile Controllable Liquid-Transfer Approach: Low-Cost Fabrication of High-Performance QLED. Journal of the American Chemical Society, 2018, 140, 8690-8695.	6.6	80
672	Spontaneous Silver Doping and Surface Passivation of CsPbI ₃ Perovskite Active Layer Enable Light-Emitting Devices with an External Quantum Efficiency of 11.2%. ACS Energy Letters, 2018, 3, 1571-1577.	8.8	205
673	Enhancing the Performance of Quantum-Dot Light-Emitting Diodes by Postmetallization Annealing. ACS Applied Materials & Interfaces, 2018, 10, 23218-23224.	4.0	28

#	Article	IF	Citations
674	The influence of the hole transport layers on the performance of blue and color tunable quantum dot lightâ€emitting diodes. Journal of the Society for Information Display, 2018, 26, 470-476.	0.8	16
675	Hydrofluoroethers as orthogonal solvents for all-solution processed perovskite quantum-dot light-emitting diodes. Nano Energy, 2018, 51, 358-365.	8.2	40
676	Engineering conformal nanoporous polyaniline via oxidative chemical vapor deposition and its potential application in supercapacitors. Chemical Engineering Science, 2019, 194, 156-164.	1.9	34
677	Quantum Dot Light Emitting Diodes. , 2019, , 35-56.		1
678	Reflux pretreatment-mediated sonication: A new universal route to obtain 2D quantum dots. Materials Today, 2019, 22, 17-24.	8.3	12
679	Stable and bright formamidinium-based perovskite light-emitting diodes with high energy conversion efficiency. Nature Communications, 2019, 10, 3624.	5.8	104
680	All-solution processed inverted green quantum dot light-emitting diodes with concurrent high efficiency and long lifetime. Materials Horizons, 2019, 6, 2009-2015.	6.4	66
681	Progress on Transition Metal-Doped ZnO Nanoparticles and Its Application. Industrial & Engineering Chemistry Research, 2019, 58, 17130-17163.	1.8	141
682	Carbonized Polymer Dots: A Brand New Perspective to Recognize Luminescent Carbon-Based Nanomaterials. Journal of Physical Chemistry Letters, 2019, 10, 5182-5188.	2.1	197
683	Energetics of Nonradiative Surface Trap States in Nanoparticles Monitored by Time-of-Flight Photoconduction Measurements on Nanoparticle–Polymer Blends. ACS Applied Materials & Interfaces, 2019, 11, 37184-37192.	4.0	4
684	Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nature Photonics, 2019, 13, 760-764.	15.6	483
685	High-performance solution-processed colloidal quantum dots-based tandem broadband photodetectors with dielectric interlayer. Nanotechnology, 2019, 30, 465203.	1.3	30
686	Recent progress in the device architecture of white quantum-dot light-emitting diodes. Journal of Information Display, 2019, 20, 169-180.	2.1	14
687	Sodium Ion Modifying In Situ Fabricated CsPbBr ₃ Nanoparticles for Efficient Perovskite Light Emitting Diodes. Advanced Optical Materials, 2019, 7, 1900747.	3.6	59
688	Double-layer structured hole injection layer to enhance quantum-dot light-emitting diodes. Thin Solid Films, 2019, 687, 137444.	0.8	2
689	All-solution-processed quantum-dot light emitting diodes with nickel oxide nanoparticles as a hole injection layer. Molecular Crystals and Liquid Crystals, 2019, 678, 33-42.	0.4	5
690	Lightâ€Emitting Diodes with Cuâ€Doped Colloidal Quantum Wells: From Ultrapure Green, Tunable Dualâ€Emission to White Light. Small, 2019, 15, 1901983.	5.2	45
691	Enhanced Efficiency of InP-Based Red Quantum Dot Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2019, 11, 34067-34075.	4.0	44

#	Article	IF	CITATIONS
692	Anisotropic Arm Growth in Unconventional Semiconductor CdSe/CdS Nanotetrapod Synthesis Using Core/Shell CdSe/CdS as Seeds. Journal of Physical Chemistry C, 2019, 123, 19238-19245.	1.5	13
693	Asymmetric Wettability Interfaces Induced a Large-Area Quantum Dot Microstructure toward High-Resolution Quantum Dot Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2019, 11, 28520-28526.	4.0	12
694	Reduced Efficiency Rollâ€Off and Improved Stability of Mixed 2D/3D Perovskite Light Emitting Diodes by Balancing Charge Injection. Advanced Functional Materials, 2019, 29, 1904101.	7.8	93
695	Optical and Electrical Analysis of Annealing Temperature of High-Molecular Weight Hole Transport Layer for Quantum-dot Light-emitting Diodes. Scientific Reports, 2019, 9, 10385.	1.6	15
696	High-Performance, All-Inkjet-Printed Light-Emitting Diodes Based on Quantum Dots. , 2019, , .		0
697	Confined Growth of Quantum Dots in Silica Spheres by Ion Exchange of "Trapped NH4+―for White-Light Emission. CheM, 2019, 5, 2195-2214.	5.8	26
698	Bi-inorganic-ligand coordinated colloidal quantum dot ink. Chemical Communications, 2019, 55, 9483-9486.	2.2	11
699	CsPbBr3/CdS Core/Shell Structure Quantum Dots for Inverted Light-Emitting Diodes Application. Frontiers in Chemistry, 2019, 7, 499.	1.8	32
700	Benzocyclobutene-functional double-decker silsesquioxane: self-assembled hybrid resin for high-performance dielectrics and LED encapsulants. Polymer Chemistry, 2019, 10, 4551-4560.	1.9	17
701	Device Engineering for All-Inorganic Perovskite Light-Emitting Diodes. Nanomaterials, 2019, 9, 1007.	1.9	31
702	The Future Is Blue (LEDs): Why Chemistry Is the Key to Perovskite Displays. Chemistry of Materials, 2019, 31, 6003-6032.	3.2	91
703	Preparation of heterostructure quantum dots towards wide-colour-gamut display. Materials Letters, 2019, 254, 171-174.	1.3	9
704	Overcoming the Electroluminescence Efficiency Limitations in Quantumâ€Dot Lightâ€Emitting Diodes. Advanced Optical Materials, 2019, 7, 1900695.	3.6	26
705	Charge carrier injection and transport in QLED layer with dynamic equilibrium of trapping/de-trapping carriers. Journal of Applied Physics, 2019, 126, .	1.1	21
706	Directed Self-Assembly of Colloidal Quantum Dots Using Well-Ordered Nanoporous Templates for Three-Colored Nanopixel Light-Emitting Diodes. ACS Applied Electronic Materials, 2019, 1, 1626-1632.	2.0	4
707	Remarkable lifetime improvement of quantum-dot light emitting diodes by incorporating rubidium carbonate in metal-oxide electron transport layers. Journal of Materials Chemistry C, 2019, 7, 10082-10091.	2.7	16
708	Enhanced Charge Transport and Excited-State Charge-Transfer Dynamics in a Colloidal Mixture of CdTe and Graphene Quantum Dots. Journal of Physical Chemistry C, 2019, 123, 20512-20521.	1.5	14
709	Monochromatic LEDs based on perovskite quantum dots: Opportunities and challenges. Journal of the Society for Information Display, 2019, 27, 667-678.	0.8	7

#	Article	IF	CITATIONS
710	Improved performance of quantum dot light-emitting diodes by hybrid electron transport layer comprised of ZnO nanoparticles doped organic small molecule. Organic Electronics, 2019, 74, 144-151.	1.4	18
711	White Emissive Carbon Dots Actuated by the H-//-Aggregates and Förster Resonance Energy Transfer. Journal of Physical Chemistry Letters, 2019, 10, 3849-3857.	2.1	53
712	A novel cucurbit[6]uril-based supramolecular coordination assembly as a multi-responsive luminescent sensor for Fe ³⁺ , Cr ₂ O ₇ ^{2â^'} and isoquinoline antibiotics in aqueous medium. Journal of Materials Chemistry C, 2019, 7, 8992-8999.	2.7	45
713	Lattice restraint induced ultra-large bandgap widening of ZnO nanoparticles. Journal of Materials Chemistry C, 2019, 7, 8969-8974.	2.7	8
714	Efficient Hole Injection of MoO _x -Doped Organic Layer for Printable Red Quantum Dot Light-Emitting Diodes. IEEE Electron Device Letters, 2019, 40, 1147-1150.	2.2	10
715	Formation of Size-Tunable and Nearly Monodisperse InP Nanocrystals: Chemical Reactions and Controlled Synthesis. Chemistry of Materials, 2019, 31, 5331-5341.	3.2	62
716	Origin of Subthreshold Turn-On in Quantum-Dot Light-Emitting Diodes. ACS Nano, 2019, 13, 8229-8236.	7.3	46
717	Solution-Processable Superatomic Thin-Films. Journal of the American Chemical Society, 2019, 141, 10967-10971.	6.6	11
718	High-efficiency blue and white electroluminescent devices based on non-Cd Iâ^'IIIâ^'VI quantum dots. Nano Energy, 2019, 63, 103869.	8.2	36
719	Low-Temperature Synthesis of Highly Efficient, Deep-Red Zn-Cu-In-Se/ZnSe Fluorescence Quantum Dots. Nano, 2019, 14, 1950070.	0.5	0
720	The Coâ€Assembly of Polyoxometalates and Quantum Dots for Hybrid Coreâ€Shell Nanoparticles. European Journal of Inorganic Chemistry, 2019, 2019, 3734-3739.	1.0	1
721	Temperature-dependent photoluminescence of cesium lead halide perovskite (CsPbX ₃ , X =) Tj ETQq2	L 1 0.7843 0.8	314 rgBT /○\ 14
722	Direct fabrication of Cd–In–S alloy quantum dots thin films. Materials Research Express, 2019, 6, 115083.	0.8	3
723	Highly Efficient Quantum Dot Lightâ€Emitting Diodes by Inserting Multiple Poly(methyl methacrylate) as Electronâ€Blocking Layers. Advanced Functional Materials, 2019, 29, 1906742.	7.8	23
724	Narrowband Organic Lightâ€Emitting Diodes for Fluorescence Microscopy and Calcium Imaging. Advanced Materials, 2019, 31, 1903599.	11.1	20
725	Direct Deposited Angstromâ€Scale Nanogap Electrodes with Macroscopically Measurable and Materialâ€Independent Capabilities for Various Applications. Advanced Materials Technologies, 2019, 4, 1900641.	3.0	3
726	Fabrication of Pixelated Organic Lightâ€Emitting Transistor (OLET) with a Pure Redâ€Emitting Organic Semiconductor. Advanced Optical Materials, 2019, 7, 1901274.	3.6	19
727	Oneâ€Pot Exfoliation of Graphitic C ₃ N ₄ Quantum Dots for Blue QLEDs by Methylamine Intercalation. Small, 2019, 15, e1902735.	5.2	26

#	Article	IF	CITATIONS
728	Energy-Band Alignment and Charge Balance of Electron Transport Layer With Quinary Zn–Mg–Ga–Cl–O Nanoparticles in InP-Based Quantum Dot Light Emitting Diodes. IEEE Electron Device Letters, 2019, 40, 1872-1875.	2.2	5
729	Interfacialâ€Tunnelingâ€Effectâ€Enhanced CsPbBr ₃ Photodetectors Featuring High Detectivity and Stability. Advanced Functional Materials, 2019, 29, 1904461.	7.8	70
730	Rapid Synthesis of Sulfur Nanodots by One-Step Hydrothermal Reaction for Luminescence-Based Applications. ACS Applied Nano Materials, 2019, 2, 6622-6628.	2.4	76
731	Performance Enhancement of All-Inorganic Quantum Dot Light-Emitting Diodes via Surface Modification of Nickel Oxide Nanoparticles Hole Transport Layer. ACS Applied Electronic Materials, 2019, 1, 2096-2102.	2.0	9
732	"Positive Incentive―Approach To Enhance the Operational Stability of Quantum Dot-Based Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2019, 11, 40252-40259.	4.0	20
733	Efficient and Stable Inverted Quantum Dot Light-Emitting Diodes Enabled by An Inorganic Copper-Doped Tungsten Phosphate Hole-Injection Layer. ACS Applied Materials & Interfaces, 2019, 11, 40267-40273.	4.0	22
734	Direct Wavelength-Selective Optical and Electron-Beam Lithography of Functional Inorganic Nanomaterials. ACS Nano, 2019, 13, 13917-13931.	7.3	77
735	44.4: <i>Invited Paper:</i> Study on the Degradation Mechanisms of Quantumâ€Dot Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2019, 50, 491-491.	0.1	0
736	A Tailored Nickel Oxide Holeâ€Transporting Layer to Improve the Longâ€Term Thermal Stability of Inorganic Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900346.	3.1	30
737	Enhanced Far-Field Directional Luminescence Emission by a Hybrid Structure Consisting of Silver Channel and Microlens. IEEE Photonics Journal, 2019, 11, 1-8.	1.0	2
738	Dopantâ€Free Squaraineâ€Based Polymeric Holeâ€Transporting Materials with Comprehensive Passivation Effects for Efficient Allâ€Inorganic Perovskite Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 17724-17730.	7.2	118
739	Pâ€5.1: Enhanced Nickel Oxide Hole Injection Layer via the rGO Combustion Method for Perovskite QDs Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2019, 50, 724-727.	0.1	0
740	Control of carrier injection and transport in quantum dot light emitting diodes (QLEDs) via modulating Schottky injection barrier and carrier mobility. Journal of Applied Physics, 2019, 126, .	1.1	27
741	Perovskite light-emitting diodes for uniform eight-segment displays. Applied Physics Letters, 2019, 115, .	1.5	4
742	Near-infrared lead chalcogenide quantum dots: Synthesis and applications in light emitting diodes*. Chinese Physics B, 2019, 28, 128504.	0.7	14
743	Correlation between the Morphology of ZnO Layers and the Electroluminescence of Quantum Dot Light-Emitting Diodes. Applied Sciences (Switzerland), 2019, 9, 4539.	1.3	8
744	Luminescence of perovskite light-emitting diodes with quasi-core/shell structure enhanced by Al–TiO2–Ag Bimetallic Nanoparticle. Superlattices and Microstructures, 2019, 136, 106323.	1.4	7
745	Efficient Top-emitting Quantum Dot Light Emitting Diodes via Inkjet Printing. , 2019, , .		1

#	Article	IF	CITATIONS
746	CsPbBr ₃ –Cs ₄ PbBr ₆ composite nanocrystals for highly efficient pure green light emission. Nanoscale, 2019, 11, 22899-22906.	2.8	35
747	Continuous and Controllable Liquid Transfer Guided by a Fibrous Liquid Bridge: Toward Highâ€Performance QLEDs. Advanced Materials, 2019, 31, e1904610.	11.1	24
748	Controlled Surface for Enhanced Luminescence Quantum Yields of Silicon Nanocrystals. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2019, 66, 145-157.	0.1	1
749	44.2: <i>Invited Paper:</i> Quantum Dot Lightâ€Emitting Diodes for Lighting. Digest of Technical Papers SID International Symposium, 2019, 50, 489-489.	0.1	Ο
750	Pâ€9.6: Highly Luminescent Blue Quantum Dots Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2019, 50, 871-874.	0.1	0
751	Improving the charge balance and performance of CdSe/ZnS quantum-dot light-emitting diodes with a sputtered zinc-tin-oxide electron-transport layer and a thermally evaporated tungsten-oxide charge-restricting layer. Japanese Journal of Applied Physics, 2019, 58, 106502.	0.8	12
752	Wet-Chemical Synthesis and Applications of Semiconductor Nanomaterial-Based Epitaxial Heterostructures. Nano-Micro Letters, 2019, 11, 86.	14.4	37
753	Flexible Honeycombed Nanoporous/Glassy Hybrid for Efficient Electrocatalytic Hydrogen Generation. Advanced Materials, 2019, 31, e1904989.	11.1	80
754	Nanostructured colloidal quantum dots for efficient electroluminescence devices. Korean Journal of Chemical Engineering, 2019, 36, 173-185.	1.2	23
755	Brazeability evaluation of Ti-Zr-Cu-Ni-Co-Mo filler for vacuum brazing TiAl-based alloy. Transactions of Nonferrous Metals Society of China, 2019, 29, 754-763.	1.7	11
756	Dual-Emitting Dot-in-Bulk CdSe/CdS Nanocrystals with Highly Emissive Core- and Shell-Based Trions Sharing the Same Resident Electron. Nano Letters, 2019, 19, 8846-8854.	4.5	6
757	A facile route to synthesize CdSe/ZnS thick-shell quantum dots with precisely controlled green emission properties: towards QDs based LED applications. Scientific Reports, 2019, 9, 12048.	1.6	47
758	Femtosecond Laser-Assisted Synthesis of ZnO Nanoparticles in Solvent with Visible Emission for Temperature Sensing. Nano, 2019, 14, 1950054.	0.5	2
759	Many-electron effective potential in low-dimensional nanostructures: Towards understanding the Wigner crystallization. Physical Review B, 2019, 100, .	1.1	4
760	Solvent treatment induced interface dipole and defect passivation for efficient and bright red quantum dot light-emitting diodes. Organic Electronics, 2019, 75, 105412.	1.4	8
761	Engineering of perovskite light-emitting diodes based on quasi-2D perovskites formed by diamine cations. Organic Electronics, 2019, 75, 105400.	1.4	27
762	Boosting the performance of quantum dot light-emitting diodes with Mg and PVP Co-doped ZnO as electron transport layer. Organic Electronics, 2019, 75, 105411.	1.4	14
763	Lamps, Gear and Drivers. , 2019, , 263-314.		0

		CITATION REPORT	
#	Article	IF	CITATIONS
764	Metallic Conductive Luminescent Film. ACS Nano, 2019, 13, 10826-10834.	7.3	6
765	Investigation on Thermally Induced Efficiency Roll-Off: Toward Efficient and Ultrabright Quantum-Dot Light-Emitting Diodes. ACS Nano, 2019, 13, 11433-11442.	7.3	105
766	Hybrid Quantum Dot Light-Emitting Diodes for White Emission Using Blue Phosphorescent Organi Molecules and Red Quantum Dots. Micromachines, 2019, 10, 609.	c 1.4	2
767	Efficient Cadmium-Free Inverted Red Quantum Dot Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2019, 11, 36917-36924.	amp; 4.0	34
768	Understanding the Linkages: A Dynamic Sustainability Assessment Method and Decision Making ir Manufacturing Systems. Procedia CIRP, 2019, 80, 233-238.	1.0	8
769	A feasible strategy to prepare quantum dot-incorporated carbon nanofibers as free-standing platforms. Nanoscale Advances, 2019, 1, 3948-3956.	2.2	1
770	Highly luminescent double-heterojunction nanorods. Journal of Chemical Physics, 2019, 151, 1347	706. 1.2	6
771	High efficient light-emitting diodes with improved the balance of electron and hole transfer via optimizing quantum dot structure. Optical Materials Express, 2019, 9, 3089.	1.6	6
772	Solution-processed QD-LEDs in visible range: Modulation bandwidth enhancement. Physica B: Condensed Matter, 2019, 574, 411667.	1.3	8
773	Perovskite quantum dots for light-emitting devices. Nanoscale, 2019, 11, 19119-19139.	2.8	97
774	Ultraefficient Green LEDs Using Quantum Dots in Liquid Matrix. IEEE Transactions on Electron Devices, 2019, 66, 4784-4789.	1.6	7
775	High-Performance Quantum-Dot Light-Emitting Transistors Based on Vertical Organic Thin-Film Transistors. ACS Applied Materials & Interfaces, 2019, 11, 35888-35895.	4.0	27
776	Synthesis of Colloidal Blue-Emitting InP/ZnS Core/Shell Quantum Dots with the Assistance of Copp Cations. Journal of Physical Chemistry Letters, 2019, 10, 6720-6726.	per 2.1	26
777	CdSe/ZnS Quantum-Dot Light-Emitting Diodes With Spiro-OMeTAD as Buffer Layer. IEEE Transaction Electron Devices, 2019, 66, 4901-4906.	ons on 1.6	8
778	A low-temperature-annealed and UV-ozone-enhanced combustion derived nickel oxide hole injection layer for flexible quantum dot light-emitting diodes. Nanoscale, 2019, 11, 1021-1028.	on 2.8	42
779	Plasmonic resonance instigated enhanced photoluminescence in quantum dot dispersed nematic liquid crystal. Liquid Crystals, 2019, 46, 1224-1230.	0.9	10
780	Carbon dots produced <i>via</i> space-confined vacuum heating: maintaining efficient luminescer in both dispersed and aggregated states. Nanoscale Horizons, 2019, 4, 388-395.	nce 4.1	82
781	Efficient and Tunable Electroluminescence from In Situ Synthesized Perovskite Quantum Dots. Sm 2019, 15, e1804947.	all, 5.2	23

#	Article	IF	CITATIONS
782	Beyond OLED: Efficient Quantum Dot Lightâ€Emitting Diodes for Display and Lighting Application. Chemical Record, 2019, 19, 1729-1752.	2.9	95
783	Enhanced brightness of methylammonium lead tribromide perovskite microcrystal-based green light-emitting diodes by adding hydrophilic polyvinylpyrrolidone with oleic acid-modified ZnO quantum dot electron transporting layer. Journal of Alloys and Compounds, 2019, 786, 11-17.	2.8	18
784	Se/S Ratio-Dependent Properties and Application of Gradient-Alloyed CdSe _{1–<i>x</i>} S <i>_x</i> Quantum Dots: Shell-free Structure, Non-blinking Photoluminescence with Single-Exponential Decay, and Efficient QLEDs. ACS Applied Materials & Interfaces, 2019, 11, 6238-6247.	4.0	16
785	Room-Temperature Synthesis of Two-Dimensional Hexagonal Boron Nitride Nanosheet-Stabilized CsPbBr ₃ Perovskite Quantum Dots. ACS Applied Materials & Interfaces, 2019, 11, 8242-8249.	4.0	50
786	One-step Aqueous Synthesis of Zn-based Quantum Dots as Potential Generators of Reactive Oxygen Species. MRS Advances, 2019, 4, 399-404.	0.5	0
787	An ZnMgO:PVP inorganic–organic hybrid electron transport layer: towards efficient bottom-emission and transparent quantum dot light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 2291-2298.	2.7	42
788	Improved thermal stability of CsPbBr ₃ quantum dots by ligand exchange and their application to light-emitting diodes. Applied Physics Express, 2019, 12, 035004.	1.1	17
789	Partially pyridine-functionalized quantum dots for efficient red, green, and blue light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 3429-3435.	2.7	17
790	Enhanced hole injection by introducing an electron-withdrawing layer in inverted quantum dot light-emitting diodes. Organic Electronics, 2019, 68, 22-27.	1.4	12
791	In Situ Construction of One-Dimensional Component-Interchange Organic Core/Shell Microrods for Multicolor Continuous-Variable Optical Waveguide. ACS Applied Materials & Interfaces, 2019, 11, 5298-5305.	4.0	32
792	All-inorganic cesium lead halide perovskite nanocrystals: synthesis, surface engineering and applications. Journal of Materials Chemistry C, 2019, 7, 757-789.	2.7	193
793	Inorganic antimony halide hybrids with broad yellow emissions. Science Bulletin, 2019, 64, 904-909.	4.3	31
794	Enhanced efficiency and high temperature stability of hybrid quantum dot light-emitting diodes using molybdenum oxide doped hole transport layer. RSC Advances, 2019, 9, 16252-16257.	1.7	14
795	Ultrahigh Hot Carrier Transient Photocurrent in Nanocrystal Arrays by Auger Recombination. Nano Letters, 2019, 19, 4804-4810.	4.5	16
796	Lead Selenide (PbSe) Colloidal Quantum Dot Solar Cells with >10% Efficiency. Advanced Materials, 2019, 31, e1900593.	11.1	80
797	Compositional engineering of multinary Cu–In–Zn-based semiconductor nanocrystals for efficient and solution-processed red-emitting quantum-dot light-emitting diodes. Organic Electronics, 2019, 74, 46-51.	1.4	12
798	Monodisperse Bismuth-Halide Double Perovskite Nanocrystals Confined in Mesoporous Silica Templates. Inorganic Chemistry, 2019, 58, 8500-8505.	1.9	16
799	Linkage induced enhancement of fluorescence in metal–carbene bond directed metallacycles and metallacages. Chemical Communications, 2019, 55, 8309-8312.	2.2	25

#	Article	IF	Citations
800	Inverted quantum dot light-emitting diodes with defect-passivated ZnO as an electron transport layer. Semiconductor Science and Technology, 2019, 34, 085002.	1.0	5
801	Suppression of electron trapping by quantum dot emitters using a grafted polystyrene shell. Materials Horizons, 2019, 6, 2024-2031.	6.4	8
802	An evaluation of fluorinated titanium oxide nanocrystals with UV exposure treatment for oxygen vacancy control. Applied Surface Science, 2019, 489, 824-830.	3.1	2
803	Efficient perovskite nanocrystal light-emitting diodes using a benzimidazole-substituted anthracene derivative as the electron transport material. Journal of Materials Chemistry C, 2019, 7, 8938-8945.	2.7	12
804	Pressure-Induced Emission Enhancements and Ripening of Zinc Blende Cadmium Selenide Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 15339-15344.	1.5	13
805	Bridging Two Worlds: Colloidal versus Epitaxial Quantum Dots. Annalen Der Physik, 2019, 531, 1900039.	0.9	34
806	25â€3: Highly Efficient, Allâ€Inkjetâ€Printed, Deep Red Quantum Dot Light Emitting Diodes from Positive Aging. Digest of Technical Papers SID International Symposium, 2019, 50, 346-348.	0.1	1
807	54â€1: Invited Paper: Development of Electroluminescent QDâ€LED Displays. Digest of Technical Papers SID International Symposium, 2019, 50, 742-745.	0.1	12
808	Sacrificial oxidation of a self-metal source for the rapid growth of metal oxides on quantum dots towards improving photostability. Chemical Science, 2019, 10, 6683-6688.	3.7	9
809	Pâ€110: Efficient Quantum Dot Lightâ€Emitting Diodes by Reducing Oxygen Vacancies of ZnO Nanoparticles with Recycling Process. Digest of Technical Papers SID International Symposium, 2019, 50, 1666-1668.	0.1	1
810	Pâ€114: White and Topâ€Emitting Quantumâ€Dot Lightâ€Emitting Diodes with Indiumâ€Tinâ€Oxide Top Electro Digest of Technical Papers SID International Symposium, 2019, 50, 1677-1680.	odes. 0.1	0
811	Pâ€118: Efficient Quantum Dots Lightâ€Emitting Diodes with a thiocyanate hole injection layer. Digest of Technical Papers SID International Symposium, 2019, 50, 1693-1695.	0.1	0
812	Pâ€129: Theoretical Analysis of Carrierâ€Injection Behavior for QLEDs. Digest of Technical Papers SID International Symposium, 2019, 50, 1728-1730.	0.1	1
813	Developing near-infrared quantum-dot light-emitting diodes to mimic synaptic plasticity. Science China Materials, 2019, 62, 1470-1478.	3.5	31
814	Effect of ethanolamine passivation of ZnO nanoparticles in quantum dot light emitting diode structure. Current Applied Physics, 2019, 19, 998-1005.	1.1	17
815	Inkjet-printed unclonable quantum dot fluorescent anti-counterfeiting labels with artificial intelligence authentication. Nature Communications, 2019, 10, 2409.	5.8	293
816	Study on the Thermal and Optical Performance of Quantum Dot White Light-Emitting Diodes Using Metal-Based Inverted Packaging Structure. IEEE Transactions on Electron Devices, 2019, 66, 3020-3027.	1.6	35
817	Precursor reaction kinetics control compositional grading and size of CdSe _{1â^x} S _x nanocrystal heterostructures. Chemical Science, 2019, 10, 6539-6552.	3.7	18

\sim			n
C1	TAT	ION	Report

#	Article	IF	CITATIONS
818	Electrically Pumped Whiteâ€Lightâ€Emitting Diodes Based on Histidineâ€Doped MoS ₂ Quantum Dots. Small, 2019, 15, e1901908.	5.2	26
819	Partitioning surface ligands on nanocrystals for maximal solubility. Nature Communications, 2019, 10, 2454.	5.8	74
820	Red carbon dots: Optical property regulations and applications. Materials Today, 2019, 30, 52-79.	8.3	221
821	Stepwise Bi-Layer Hole-Transport Interlayers With Deep Highest Occupied Molecular Orbital Level for Efficient Green Quantum Dot Light-Emitting Diodes. IEEE Electron Device Letters, 2019, 40, 1139-1142.	2.2	10
822	High-efficiency CdSe/CdS nanorod–based red light–emitting diodes. Optics Express, 2019, 27, 7935.	1.7	42
823	Realizing 17.0% external quantum efficiency in red quantum dot light-emitting diodes by pursuing the ideal inkjet-printed film and interface. Organic Electronics, 2019, 73, 247-254.	1.4	40
824	Quantum-confined stark effect in the ensemble of phase-pure CdSe/CdS quantum dots. Nanoscale, 2019, 11, 12619-12625.	2.8	24
825	A highly sensitive photoelectrochemical VEGF ₁₆₅ biosensor with a dual signal amplification strategy by using AgVO ₃ as a photoactive material. Chemical Communications, 2019, 55, 8076-8078.	2.2	18
826	Highly-efficient and all-solution-processed red-emitting InP/ZnS-based quantum-dot light-emitting diodes enabled by compositional engineering of electron transport layers. Journal of Materials Chemistry C, 2019, 7, 7636-7642.	2.7	17
827	Engineering Color-Stable Blue Light-Emitting Diodes with Lead Halide Perovskite Nanocrystals. ACS Applied Materials & Interfaces, 2019, 11, 21655-21660.	4.0	98
828	Pure Bromideâ€Based Perovskite Nanoplatelets for Blue Lightâ€Emitting Diodes. Small Methods, 2019, 3, 1900196.	4.6	34
829	Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays. Nano Research, 2019, 12, 1669-1674.	5.8	107
830	Mixture of quantum dots and ZnS nanoparticles as emissive layer for improved quantum dots light emitting diodes. RSC Advances, 2019, 9, 15177-15183.	1.7	6
831	Over 30% External Quantum Efficiency Lightâ€Emitting Diodes by Engineering Quantum Dotâ€Assisted Energy Level Match for Hole Transport Layer. Advanced Functional Materials, 2019, 29, 1808377.	7.8	240
832	Biogenic Quantum Dots for Sensitive, Label-Free Detection of Mercury Ions. ACS Applied Bio Materials, 2019, 2, 2661-2667.	2.3	16
833	Improving Charge-Imbalanced Problem of Quantum Dot Light-Emitting Diodes with TPBi/ZnO Electron Transport Layer. Journal of Nanoscience and Nanotechnology, 2019, 19, 6152-6157.	0.9	1
834	Synthesis, Characterization, and Properties of Tetraphenylethyleneâ€Based Tetrakisâ€NHC Ligands and Their Metal Complexes. Chemistry - A European Journal, 2019, 25, 9764-9770.	1.7	21
835	Plasmon-Assisted Suppression of Surface Trap States and Enhanced Band-Edge Emission in a Bare CdTe Quantum Dot. Journal of Physical Chemistry Letters, 2019, 10, 2874-2878.	2.1	18

#	Article	IF	CITATIONS
836	Advancement in science and technology of carbon dot-polymer hybrid composites: a review. Functional Composites and Structures, 2019, 1, 022001.	1.6	99
837	A Facile Approach to Solid-State White Emissive Carbon Dots and Their Application in UV-Excitable and Single-Component-Based White LEDs. Nanomaterials, 2019, 9, 725.	1.9	25
838	Transparent Conducting Electrodes for Quantum Dots Light Emitting Diodes. Israel Journal of Chemistry, 2019, 59, 729-746.	1.0	8
839	Ligand cleavage enables formation of 1,2-ethanedithiol capped colloidal quantum dot solids. Nanoscale, 2019, 11, 10774-10781.	2.8	14
841	Ligand-assisted synthesis of monodispersed and small-sized ZnO nanoparticles and their application in electroluminescence device. Materials Research Express, 2019, 6, 085060.	0.8	2
842	Silicon Quantum Dot Light Emitting Diode at 620 nm. Micromachines, 2019, 10, 318.	1.4	10
843	Environmentally benign nanocrystals: challenges and future directions. Journal of Information Display, 2019, 20, 61-72.	2.1	15
844	Inorganic and Layered Perovskites for Optoelectronic Devices. Advanced Materials, 2019, 31, e1807095.	11.1	94
845	A General Layerâ€byâ€Layer Printing Method for Scalable Highâ€Resolution Fullâ€Color Flexible Luminescent Patterns. Advanced Optical Materials, 2019, 7, 1900127.	3.6	13
846	Pushing the Efficiency Envelope for Semiconductor Nanocrystal-Based Electroluminescence Devices Using Anisotropic Nanocrystals. Chemistry of Materials, 2019, 31, 3066-3082.	3.2	51
847	Charge balance control of quantum dot light emitting diodes with atomic layer deposited aluminum oxide interlayers. RSC Advances, 2019, 9, 11634-11640.	1.7	32
848	Largely Enhancing Luminous Efficacy, Color-Conversion Efficiency, and Stability for Quantum-Dot White LEDs Using the Two-Dimensional Hexagonal Pore Structure of SBA-15 Mesoporous Particles. ACS Applied Materials & Interfaces, 2019, 11, 18808-18816.	4.0	47
849	Prevailing Strategies to Tune Emission Color of Lanthanideâ€Activated Phosphors for WLED Applications. Advanced Optical Materials, 2019, 7, 1900319.	3.6	174
850	Highly efficient white electroluminescent devices with hybrid double emitting layers of quantum dots and phosphorescent molecules. Nanoscale, 2019, 11, 9276-9280.	2.8	14
851	Interfacial electronic structure between a W-doped In2O3 transparent electrode and a V2O5 hole injection layer for inorganic quantum-dot light-emitting diodes. RSC Advances, 2019, 9, 11996-12000.	1.7	10
852	Enhanced-performance of self-powered flexible quantum dot photodetectors by a double hole transport layer structure. Nanoscale, 2019, 11, 9626-9632.	2.8	18
853	High-Performance Quantum Dots with Synergistic Doping and Oxide Shell Protection Synthesized by Cation Exchange Conversion of Ternary-Composition Nanoparticles. Journal of Physical Chemistry Letters, 2019, 10, 2606-2615.	2.1	17
854	Electroluminescent Warm White Lightâ€Emitting Diodes Based on Passivation Enabled Bright Red Bandgap Emission Carbon Quantum Dots. Advanced Science, 2019, 6, 1900397.	5.6	174

# 855	ARTICLE Bulk- and Nanocrystalline-Halide Perovskite Light-Emitting Diodes. , 2019, , 305-341.	IF	CITATIONS 3
856	Highly efficient full color light-emitting diodes based on quantum dots surface passivation engineering. Organic Electronics, 2019, 70, 140-148.	1.4	7
857	The role of excitons within the hole transporting layer in quantum dot light emitting device degradation. Nanoscale, 2019, 11, 8310-8318.	2.8	17
858	Perovskites for Next-Generation Optical Sources. Chemical Reviews, 2019, 119, 7444-7477.	23.0	640
859	Al atomistic surface modulation on colloidal gradient quantum dots for high-brightness and stable light-emitting devices. Scientific Reports, 2019, 9, 6357.	1.6	6
860	Thickness dependent correlation between structural and optical properties of textured CdSe thin film. AIP Advances, 2019, 9, .	0.6	47
861	All-solution-processed high-performance quantum dot light emitting devices employing an inorganic thiocyanate as hole injection layer. Organic Electronics, 2019, 70, 279-285.	1.4	16
862	Inkjetâ€Printed Highâ€Efficiency Multilayer QLEDs Based on a Novel Crosslinkable Smallâ€Molecule Hole Transport Material. Small, 2019, 15, e1900111.	5.2	50
863	Multiâ€Ðimensional Quantum Nanostructures with Polarization Properties for Display Applications. Israel Journal of Chemistry, 2019, 59, 639-648.	1.0	13
864	Micronâ€5cale Patterning of High Quantum Yield Quantum Dot LEDs. Advanced Materials Technologies, 2019, 4, 1800727.	3.0	33
865	Manipulating the Transition Dipole Moment of CsPbBr ₃ Perovskite Nanocrystals for Superior Optical Properties. Nano Letters, 2019, 19, 2489-2496.	4.5	60
866	A Novel Fluorescence and SPE Adsorption Nanomaterials of Molecularly Imprinted Polymers Based on Quantum Dot-Grafted Covalent Organic Frameworks for the High Selectivity and Sensitivity Detection of Ferulic Acid. Nanomaterials, 2019, 9, 305.	1.9	23
867	Light-Emitting Devices Based on Type-II InP/ZnO Quantum Dots. ACS Photonics, 2019, 6, 939-946.	3.2	35
868	Colloidal quantum dot-based surface acoustic wave sensors for NO2-sensing behavior. Sensors and Actuators B: Chemical, 2019, 287, 241-249.	4.0	59
869	Preparation of Double-Shelled Fluorescent Silicon Nanocrystals and Fabrication of Its Thin Layer by Electrophoretic Deposition Process. Materials Transactions, 2019, 60, 49-54.	0.4	0
870	Tunable Halide Perovskites for Miniaturized Solidâ€State Laser Applications. Advanced Optical Materials, 2019, 7, 1900099.	3.6	47
871	Low-temperature and solution-processable inorganic hole injection layer for flexible quantum-dot light-emitting diodes. Current Applied Physics, 2019, 19, 657-662.	1.1	9
872	Bright Quantum Dot Light-Emitting Diodes Enabled by Imprinted Speckle Image Holography Nanostructures. Journal of Physical Chemistry Letters, 2019, 10, 2196-2201.	2.1	18

ARTICLE IF CITATIONS # Rational molecular passivation for high-performance perovskite light-emitting diodes. Nature 873 15.6 970 Photonics, 2019, 13, 418-424. Cd–Cu–Fe–S quaternary nanocrystals exhibiting excellent optical/optoelectronic properties. 874 2.8 Nanoscale, 2019, 11, 6533-6537. Suppressing defect states in CsPbBr₃ perovskite <i>via</i> magnesium substitution for 875 4.1 34 efficient all-inorganic light-emitting diodes. Nanoscale Horizons, 2019, 4, 924-932. Recent progress of infrared photodetectors based on lead chalcogenide colloidal quantum dots. Chinese Physics B, 2019, 28, 020701. The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. Chemical 877 23.0 709 Reviews, 2019, 119, 4819-4880. Surface Halogen Compensation for Robust Performance Enhancements of CsPbX₃Perovskite Quantum Dots. Advanced Optical Materials, 2019, 7, 1900276. 3.6 138 Opto-electronics properties of starch capped CdSe nanoparticles. Journal of Materials Science: 879 1.1 1 Materials in Electronics, 2019, 30, 8428-8436. Efficient blue-LEDs with a MgO layer as interfacial modification layer. Journal of Alloys and 880 2.8 Compounds, 2019, 789, 567-572. Characterization of the Ligand Exchange Reactions on CdSe/ZnS QDs by Capillary Electrophoresis. 881 9 1.6 Langmuir, 2019, 35, 4806-4812. Preparation of rGO/AgCl QDs and its enhanced photoelectrocatalytic performance for the degradation of Tetracycline. Journal of the American Ceramic Society, 2019, 102, 5342-5352. Investigation on Na Acceptor Level in p-Type Na-Doped ZnMgO Thin Films Prepared by Pulsed Laser 883 2 1.0 Deposition. Journal of Electronic Materials, 2019, 48, 3554-3561. DNA-Based Assembly of Quantum Dots into Dimers and Helices. Nanomaterials, 2019, 9, 339. 884 Facile Roomâ€Temperature Anion Exchange Reactions of Inorganic Perovskite Quantum Dots Enabled by a 885 7.8 84 Modular Microfluidic Platform. Advanced Functional Materials, 2019, 29, 1900712. All-Inorganic Quantum-Dot Light-Emitting Diodes with Reduced Exciton Quenching by a MgO Decorated Inorganic Hole Transport Layer. ACS Applied Materials & amp; Interfaces, 2019, 11, 11119-11124. 4.0 Effect of Cd precursors on luminescence of CdTe quantum dots and their luminescent temperature 887 1.5 4 action. Journal of Luminescence, 2019, 211, 394-400. Chemical Vapor Deposition Method Grown All-Inorganic Perovskite Microcrystals for Self-Powered 888 66 Photodetectors. ACS Applied Materials & amp; Interfaces, 2019, 11, 15804-15812. Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and 889 6.6 282 Electroluminescence. Journal of the American Chemical Society, 2019, 141, 6448-6452. Oxygen annealing of the ZnO nanoparticle layer for the high-performance PbS colloidal quantum-dot 890 photovoltaics. Journal of Power Sources, 2019, 421, 124-131.

#	Article	IF	CITATIONS
891	Î ³ -Radiation Enhanced Luminescence of Thiol-Capped Quantum Dots in Aqueous Solution. Nanomaterials, 2019, 9, 506.	1.9	12
892	Substrate Metabolism-Driven Assembly of High-Quality CdS _{<i>x</i>} Se _{1–<i>x</i>} Quantum Dots in <i>Escherichia coli</i> : Molecular Mechanisms and Bioimaging Application. ACS Nano, 2019, 13, 5841-5851.	7.3	45
893	Preparation of efficient quantum dot light-emitting diodes by balancing charge injection and sensitizing emitting layer with phosphorescent dye. Journal of Materials Chemistry C, 2019, 7, 5755-5763.	2.7	43
894	QLED goes to be both bright and efficient. Science Bulletin, 2019, 64, 464-465.	4.3	5
895	Halide Ligands To Release Strain in Cadmium Chalcogenide Nanoplatelets and Achieve High Brightness. ACS Nano, 2019, 13, 5326-5334.	7.3	71
896	The Dominant Energy Transport Pathway in Halide Perovskites: Photon Recycling or Carrier Diffusion?. Advanced Energy Materials, 2019, 9, 1900185.	10.2	85
897	Effects of strontium doping on the morphological, structural, and photophysical properties of FASnI3 perovskite thin films. APL Materials, 2019, 7, .	2.2	18
898	Design of BCP buffer layer for inverted perovskite solar cells using ideal factor. APL Materials, 2019, 7,	2.2	44
899	A review of stability-enhanced luminescent materials: fabrication and optoelectronic applications. Journal of Materials Chemistry C, 2019, 7, 4934-4955.	2.7	37
900	Design Principle for Bright, Robust, and Color-Pure InP/ZnSe <i>_x</i> S _{1–<i>x</i>} /ZnS Heterostructures. Chemistry of Materials, 2019, 31, 3476-3484.	3.2	112
901	Improving blue quantum dot light-emitting diodes by a lithium fluoride interfacial layer. Applied Physics Letters, 2019, 114, .	1.5	32
902	Emergence of Flexible White Organic Light-Emitting Diodes. Polymers, 2019, 11, 384.	2.0	42
903	Highly flexible light emitting diodes based on a quantum dots-polymer composite emitting layer. Vacuum, 2019, 163, 282-286.	1.6	12
904	Interface and Defect Engineering for Metal Halide Perovskite Optoelectronic Devices. Advanced Materials, 2019, 31, e1803515.	11.1	315
905	Progress of Leadâ€Free Halide Double Perovskites. Advanced Energy Materials, 2019, 9, 1803150.	10.2	322
906	Degradability and Clearance of Inorganic Nanoparticles for Biomedical Applications. Advanced Materials, 2019, 31, e1805730.	11.1	267
907	Progress of display performances: AR, VR, QLED, OLED, and TFT. Journal of Information Display, 2019, 20, 1-8.	2.1	92
908	A consolidated account of electrochemical determination of band structure parameters in II–VI semiconductor quantum dots: a tutorial review. Physical Chemistry Chemical Physics, 2019, 21, 4695-4716.	1.3	17

#	Article	IF	CITATIONS
909	Recent progress toward perovskite light-emitting diodes with enhanced spectral and operational stability. Materials Today Nano, 2019, 5, 100028.	2.3	86
910	Achieving Balanced Charge Injection of Blue Quantum Dot Light-Emitting Diodes through Transport Layer Doping Strategies. Journal of Physical Chemistry Letters, 2019, 10, 960-965.	2.1	84
911	Blue quantum dot light-emitting diodes with high luminance by improving the charge transfer balance. Chemical Communications, 2019, 55, 3501-3504.	2.2	49
912	Alternating-current driven quantum-dot light-emitting diodes with high brightness. Nanoscale, 2019, 11, 5231-5239.	2.8	17
913	Hybrid Growth Modes of PbSe Nanocrystals with Oriented Attachment and Grain Boundary Migration. Advanced Science, 2019, 6, 1802202.	5.6	26
915	Metal chalcogenide quantum dot-sensitized 1D-based semiconducting heterostructures for optical-related applications. Energy and Environmental Science, 2019, 12, 1454-1494.	15.6	19
916	Suppression of non-radiative recombination toward high efficiency perovskite light-emitting diodes. APL Materials, 2019, 7, .	2.2	31
917	Highâ€Performance Blue Quantum Dot Lightâ€Emitting Diodes with Balanced Charge Injection. Advanced Electronic Materials, 2019, 5, 1800794.	2.6	34
918	Quantum Dot Light-Emitting Diodes Employing Phosphorescent Organic Molecules as Double Emission Layers. Electronic Materials Letters, 2019, 15, 363-367.	1.0	2
919	Inverted quantum dot light-emitting diodes with conductive interlayers of zirconium acetylacetonate. Journal of Materials Chemistry C, 2019, 7, 3154-3159.	2.7	9
919 920	Inverted quantum dot light-emitting diodes with conductive interlayers of zirconium acetylacetonate. Journal of Materials Chemistry C, 2019, 7, 3154-3159. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nature Photonics, 2019, 13, 192-197.	2.7 15.6	9 596
	acetylacetonate. Journal of Materials Chemistry C, 2019, 7, 3154-3159. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nature		
920	acetylacetonate. Journal of Materials Chemistry C, 2019, 7, 3154-3159. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nature Photonics, 2019, 13, 192-197. High-Efficiency Red Light-Emitting Diodes Based on Multiple Quantum Wells of	15.6	596
920 921	 acetylacetonate. Journal of Materials Chemistry C, 2019, 7, 3154-3159. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nature Photonics, 2019, 13, 192-197. High-Efficiency Red Light-Emitting Diodes Based on Multiple Quantum Wells of Phenylbutylammonium-Cesium Lead Iodide Perovskites. ACS Photonics, 2019, 6, 587-594. Interfacial Synthesis of Monodisperse CsPbBr₃ Nanorods with Tunable Aspect Ratio and Clean Surface for Efficient Light-Emitting Diode Applications. Chemistry of Materials, 2019, 31, 	15.6 3.2	596 69
920 921 922	 acetylacetonate. Journal of Materials Chemistry C, 2019, 7, 3154-3159. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nature Photonics, 2019, 13, 192-197. High-Efficiency Red Light-Emitting Diodes Based on Multiple Quantum Wells of Phenylbutylammonium-Cesium Lead Iodide Perovskites. ACS Photonics, 2019, 6, 587-594. Interfacial Synthesis of Monodisperse CsPbBr₃ Nanorods with Tunable Aspect Ratio and Clean Surface for Efficient Light-Emitting Diode Applications. Chemistry of Materials, 2019, 31, 1575-1583. Insertion of an Inorganic Barrier Layer as a Method of Improving the Performance of Quantum Dot 	15.6 3.2 3.2	596 69 78
920 921 922 923	 acetylacetonate. Journal of Materials Chemistry C, 2019, 7, 3154-3159. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nature Photonics, 2019, 13, 192-197. High-Efficiency Red Light-Emitting Diodes Based on Multiple Quantum Wells of Phenylbutylammonium-Cesium Lead Iodide Perovskites. ACS Photonics, 2019, 6, 587-594. Interfacial Synthesis of Monodisperse CsPbBr₃ Nanorods with Tunable Aspect Ratio and Clean Surface for Efficient Light-Emitting Diode Applications. Chemistry of Materials, 2019, 31, 1575-1583. Insertion of an Inorganic Barrier Layer as a Method of Improving the Performance of Quantum Dot Light-Emitting Diodes. ACS Photonics, 2019, 6, 743-748. On the degradation mechanisms of quantum-dot light-emitting diodes. Nature Communications, 2019, 6 	15.6 3.2 3.2 3.2	596 69 78 23
920 921 922 923 923	 acetylacetonate. Journal of Materials Chemistry C, 2019, 7, 3154-3159. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nature Photonics, 2019, 13, 192-197. High-Efficiency Red Light-Emitting Diodes Based on Multiple Quantum Wells of Phenylbutylammonium-Cesium Lead Iodide Perovskites. ACS Photonics, 2019, 6, 587-594. Interfacial Synthesis of Monodisperse CsPbBr₃ Nanorods with Tunable Aspect Ratio and Clean Surface for Efficient Light-Emitting Diode Applications. Chemistry of Materials, 2019, 31, 1575-1583. Insertion of an Inorganic Barrier Layer as a Method of Improving the Performance of Quantum Dot Light-Emitting Diodes. ACS Photonics, 2019, 6, 743-748. On the degradation mechanisms of quantum-dot light-emitting diodes. Nature Communications, 2019, 10, 765. Understanding the Ligand Effects on Photophysical, Optical, and Electroluminescent Characteristics of Hybrid Lead Halide Perovskite Nanocrystal Solids. Journal of Physical Chemistry Letters, 2019, 10, 	15.6 3.2 3.2 3.2 5.8	 596 69 78 23 167

#	Article	IF	CITATIONS
928	Photophysics and electroluminescence of red quantum dots diluted in a thermally activated delayed fluorescence host. Journal of Materials Chemistry C, 2019, 7, 13218-13223.	2.7	11
929	Highly stable CdTe quantum dots hosted in gypsum <i>via</i> a flocculation–precipitation method. Journal of Materials Chemistry C, 2019, 7, 12336-12342.	2.7	2
930	Synthesis and electroluminescence of novel white fluorescence quantum dots based on a Zn–Ga–S host. Chemical Communications, 2019, 55, 14206-14209.	2.2	8
931	Understanding photophysical properties of iridium complexes with N-(5-phenyl-1,3,4-oxadiazol-2-yl)-diphenylphosphinic amide as the ancillary ligand. New Journal of Chemistry, 2019, 43, 16975-16980.	1.4	0
932	Emerging alkali metal ion (Li ⁺ , Na ⁺ , K ⁺ and Rb ⁺) doped perovskite films for efficient solar cells: recent advances and prospects. Journal of Materials Chemistry A, 2019, 7, 24150-24163.	5.2	116
933	Controllable synthesis of barnyardgrass-like CuO/Cu ₂ 0 heterostructure nanowires for highly sensitive non-enzymatic glucose sensors. Journal of Materials Chemistry C, 2019, 7, 14874-14880.	2.7	32
934	Colloidal CdSe Quantum Wells with Graded Shell Composition for Low-Threshold Amplified Spontaneous Emission and Highly Efficient Electroluminescence. ACS Nano, 2019, 13, 13899-13909.	7.3	64
935	Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature, 2019, 575, 634-638.	13.7	802
936	Surface- and Strain-Mediated Reversible Phase Transformation in Quantum-Confined ZnO Nanowires. Physical Review Letters, 2019, 123, 216101.	2.9	19
937	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mi mathvariant="normal">Ga<mml:mi>x</mml:mi></mml:mi </mml:msub> <mml:msub><mml:mi mathvariant="normal">In<mml:mrow><mml:mn>1</mml:mn><mml:mo>â[^]</mml:mo><mml:mi>xmathvariant="normal">P</mml:mi> ouantum dots: Insights from time-dependent density</mml:mrow></mml:mi </mml:msub>	nml:mi> </td <td>mml:mrow></td>	mm l: mrow>
938	functional theory. Physical Review B, 2019, 100, . Pumped Stimulated Vertical Cavity Surface Emitting Laser by Solution-processed Method. , 2019, , .		0
939	Optimized Quantum Dot Light-emitting-device with Insulating Layer. , 2019, , .		0
940	Optimization of Hole Injection and Transport Layers for High-Performance Quantum-Dot Light-Emitting Diodes. Journal of the Korean Physical Society, 2019, 75, 1033-1037.	0.3	1
941	Effects of embedded SiO2 nanoparticles on the moisture barrier performance of inorganic/organic laminates. Journal of Materials Science: Materials in Electronics, 2019, 30, 21089-21095.	1.1	4
942	Flexible and stretchable photodetectors and gas sensors for wearable healthcare based on solution-processable metal chalcogenides. Journal of Semiconductors, 2019, 40, 111604.	2.0	13
943	Effects of interface-potential smoothness and wavefunction delocalization on Auger recombination in colloidal CdSe-based core/shell quantum dots. Journal of Chemical Physics, 2019, 151, 234703.	1.2	21
944	Hybrid Color-Tunable Polymer Light-Emitting Diodes Using Electrospraying. ACS Omega, 2019, 4, 19287-19292.	1.6	2
945	Tetrahedral amorphous carbon prepared filter cathodic vacuum arc for hole transport layers in perovskite solar cells and quantum dots LEDs. Science and Technology of Advanced Materials, 2019, 20, 1118-1130.	2.8	5

#	Article	IF	CITATIONS
946	Composition-tailored ZnMgO nanoparticles for electron transport layers of highly efficient and bright InP-based quantum dot light emitting diodes. Chemical Communications, 2019, 55, 13299-13302.	2.2	69
947	Improved photoelectric performance of all-inorganic perovskite through different additives for green light-emitting diodes. RSC Advances, 2019, 9, 34506-34511.	1.7	15
948	Optimization of the electron transport in quantum dot light-emitting diodes by codoping ZnO with gallium (Ga) and magnesium (Mg). RSC Advances, 2019, 9, 32066-32071.	1.7	20
949	Effects of 1,2-ethanedithiol concentration on performance improvement of quantum-dot LEDs. RSC Advances, 2019, 9, 38464-38468.	1.7	11
950	High-efficiency soluble thermally activated delayed fluorescent OLED with multilayer hole transport layers. , 2019, , .		0
951	Highly bright and low turn-on voltage CsPbBr3 quantum dot LEDs via conjugation molecular ligand exchange. Nano Research, 2019, 12, 109-114.	5.8	48
952	Strategies to Improve Luminescence Efficiency of Metalâ€Halide Perovskites and Lightâ€Emitting Diodes. Advanced Materials, 2019, 31, e1804595.	11.1	102
953	Chemical Synthesis and Applications of Colloidal Metal Phosphide Nanocrystals. Frontiers in Chemistry, 2018, 6, 652.	1.8	21
954	Efficient CulnS ₂ /ZnS Quantum Dots Lightâ€Emitting Diodes in Deep Red Region Using PEIE Modified ZnO Electron Transport Layer. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800575.	1.2	24
955	Defect Passivation for Red Perovskite Light-Emitting Diodes with Improved Brightness and Stability. Journal of Physical Chemistry Letters, 2019, 10, 380-385.	2.1	55
956	Alternative Type Two-Dimensional–Three-Dimensional Lead Halide Perovskite with Inorganic Sodium Ions as a Spacer for High-Performance Light-Emitting Diodes. ACS Nano, 2019, 13, 1645-1654.	7.3	43
957	Nanorod Array of SnO ₂ Quantum Dot Interspersed Multiphase TiO ₂ Heterojunctions with Highly Photocatalytic Water Splitting and Self-Rechargeable Battery-Like Applications. ACS Applied Materials & Interfaces, 2019, 11, 2071-2081.	4.0	48
958	Solution-Processed Double-Junction Quantum-Dot Light-Emitting Diodes with an EQE of Over 40%. ACS Applied Materials & Interfaces, 2019, 11, 1065-1070.	4.0	44
959	Electron transport phenomena at the interface of Al electrode and heavily doped degenerate ZnO nanoparticles in quantum dot light emitting diode. Nanotechnology, 2019, 30, 035207.	1.3	4
960	High Efficiency Blue and Green Light-Emitting Diodes Using Ruddlesden–Popper Inorganic Mixed Halide Perovskites with Butylammonium Interlayers. Chemistry of Materials, 2019, 31, 83-89.	3.2	250
961	Aqueous solution-processed molybdenum oxide as an efficient hole injection layer for flexible quantum dot light emitting diodes. Thin Solid Films, 2019, 669, 387-391.	0.8	15
962	Near-Infrared Emitting Type-II CdTe/CdSe Core/Shell Nanocrystals: Synthesis and Optical Properties. Lecture Notes in Networks and Systems, 2019, , 398-407.	0.5	1
963	Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Lightâ€Emitting Diodes for Display Applications. Advanced Materials, 2019, 31, e1804294.	11.1	445

	C	CITATION REPORT		
#	Article		IF	CITATIONS
964	Infrared Quantum Dots: Progress, Challenges, and Opportunities. ACS Nano, 2019, 13, 939-953.		7.3	153
965	Efficiency enhancement in quantum dot light-emitting devices employing trapping-type electron buff layer. Organic Electronics, 2019, 66, 211-215.	er	1.4	3
966	Hole transport layer-free and full-solution processed all-inorganic quantum dot light emitting diodes with low turn-on voltage. Materials Research Express, 2019, 6, 046305.		0.8	4
967	High Thermal Performance and Reliability of Quantum-Dot-Based Light-Emitting Diodes With Watt-Level Injection Power. IEEE Transactions on Device and Materials Reliability, 2019, 19, 120-125.		1.5	11
968	Interfacial charge transfer in 0D/2D defect-rich heterostructures for efficient solar-driven CO2 reduction. Applied Catalysis B: Environmental, 2019, 245, 760-769.		10.8	118
969	Aggregation-Induced Emission on Supramolecular Coordination Complexes Platforms. , 2019, , 163-1	94.		1
970	Formation and photoluminescence properties of colloidal ZnCuIn(SexS1 â^' x)2/ZnS nanocr gradient composition. Journal of Materials Science, 2019, 54, 2037-2048.	/stals with	1.7	9
971	Hole-transporting polymer dilution driven high performance organic transistor-based NO2 gas sensor. Materials Letters, 2019, 236, 285-288.		1.3	14
972	Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy, 2019, 55, 516-525.		8.2	331
973	Inverted polymer/quantum-dots hybrid white light emitting diodes. Thin Solid Films, 2019, 669, 34-4		0.8	4
974	Recent advances in quantum dot-based light-emitting devices: Challenges and possible solutions. Materials Today, 2019, 24, 69-93.		8.3	213
975	An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chemical Society Reviews, 2019, 48, 310-350.		18.7	845
976	Color Converted White Light-Emitting Diodes With 637.6 MHz Modulation Bandwidth. IEEE Electron Device Letters, 2019, 40, 267-270.		2.2	42
977	High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level. Nature Nanotechnology, 2019, 14, 72-79.		15.6	180
978	Mixing Entropy-Induced Layering Polydispersity Enabling Efficient and Stable Perovskite Nanocrystal Light-Emitting Diodes. ACS Energy Letters, 2019, 4, 118-125.		8.8	24
979	High quality quantum dots polymeric films as color converters for smart phone display technology. Materials Research Express, 2019, 6, 035015.		0.8	13
980	Enhanced performances of quantum dot light-emitting diodes with PFN-adding emitting layer. Organ Electronics, 2019, 66, 110-115.	ic	1.4	9
981	Enhancing the efficiency and the luminance of quantum dot light-emitting diodes by inserting a leake electron harvesting layer with thermal-activated delayed fluorescence material. Organic Electronics, 2019, 65, 357-362.	d	1.4	16

#	Article	IF	CITATIONS
982	Control of Barrier Width in Perovskite Multiple Quantum Wells for High Performance Green Light–Emitting Diodes. Advanced Optical Materials, 2019, 7, 1801575.	3.6	55
983	Highly luminescent and stable green-emitting In(Zn,Ca)P/ZnSeS/ZnS small-core/thick-multishell quantum dots. Journal of Luminescence, 2019, 205, 555-559.	1.5	14
984	Recent Advances in Flexible Inorganic Light Emitting Diodes: From Materials Design to Integrated Optoelectronic Platforms. Advanced Optical Materials, 2019, 7, 1800936.	3.6	75
985	Effect of amine type on the structure and luminescent properties of CdSe quantum dots. Optik, 2019, 178, 1-7.	1.4	1
986	Magnetic Circular Dichroism in Nanomaterials: New Opportunity in Understanding and Modulation of Excitonic and Plasmonic Resonances. Advanced Materials, 2020, 32, e1801491.	11.1	78
987	Selfâ€Limiting Assembly Approaches for Nanoadditive Manufacturing of Electronic Thin Films and Devices. Advanced Materials, 2020, 32, e1806480.	11.1	23
988	Investigation on light-induced storage of charges with capacitance/conductance-voltage and its frequency characteristics. Organic Electronics, 2020, 76, 105425.	1.4	6
989	Emerging Selfâ€Emissive Technologies for Flexible Displays. Advanced Materials, 2020, 32, e1902391.	11.1	131
990	AgNWs/AZO composite electrode for transparent inverted ZnCdSeS/ZnS quantum dot light-emitting diodes. Nanotechnology, 2020, 31, 055201.	1.3	7
991	Organicâ€Inorganic Halide Perovskites: From Crystallization of Polycrystalline Films to Solar Cell Applications. Solar Rrl, 2020, 4, 1900200.	3.1	43
992	Metal-enhanced fluorescence of interlaminar composite film with self-assembled quantum Dots/Au@SiO2 microarchitecture. Organic Electronics, 2020, 77, 105540.	1.4	9
993	Efficient Nearâ€Infrared Lightâ€Emitting Diodes based on In(Zn)As–In(Zn)P–GaP–ZnS Quantum Dots. Advanced Functional Materials, 2020, 30, 1906483.	7.8	28
994	Highâ€Resolution Inkjet Printing of Quantum Dot Lightâ€Emitting Microdiode Arrays. Advanced Optical Materials, 2020, 8, 1901429.	3.6	145
995	All-solution processed inverted QLEDs with double hole transport layers and thermal activated delay fluorescent dopant as energy transfer medium. Organic Electronics, 2020, 77, 105544.	1.4	11
996	Two-Dimensional CdSe-Based Nanoplatelets: Their Heterostructures, Doping, Photophysical Properties, and Applications. Proceedings of the IEEE, 2020, 108, 655-675.	16.4	39
997	Review—Progress in High Performance III-Nitride Micro-Light-Emitting Diodes. ECS Journal of Solid State Science and Technology, 2020, 9, 015012.	0.9	110
998	Quantumâ€Dot Lightâ€Emitting Diodes for Outdoor Displays with High Stability at High Brightness. Advanced Optical Materials, 2020, 8, 1901145.	3.6	94
999	Colloidal metal oxides in electronics and optoelectronics. , 2020, , 203-246.		3

#	Article	IF	CITATIONS
1000	A novel approach to coat silica on quantum dots: Forcing decomposition of tetraethyl orthosilicate in toluene at high temperature. Journal of Alloys and Compounds, 2020, 817, 152698.	2.8	7
1001	Improvement in hole transporting ability and device performance of quantum dot light emitting diodes. Nanoscale Advances, 2020, 2, 401-407.	2.2	12
1002	Rational Design and Synthesis of Highly Luminescent Multinary Cuâ€Inâ€Znâ€S Semiconductor Nanocrystals with Tailored Nanostructures. Advanced Optical Materials, 2020, 8, 1901555.	3.6	14
1003	Turn-on fluorescence in a pyridine-decorated tetraphenylethylene: the cooperative effect of coordination-driven rigidification and silver ion induced aggregation. Dalton Transactions, 2020, 49, 1883-1890.	1.6	19
1004	Synthesis of Silver Sulfide Quantum Dots Via the Liquid–Liquid Interface Reaction in a Rotating Packed Bed Reactor. Transactions of Tianjin University, 2020, 26, 273-282.	3.3	10
1005	Stabilizing n-type hetero-junctions for NiO _x based inverted planar perovskite solar cells with an efficiency of 21.6%. Journal of Materials Chemistry A, 2020, 8, 1865-1874.	5.2	40
1006	Degradation of quantum dot light emitting diodes, the case under a low driving level. Journal of Materials Chemistry C, 2020, 8, 2014-2018.	2.7	31
1007	Improvement of the electron transport behavior in quantum-dot light-emitting diodes using a low-temperature processable ZnO. Current Applied Physics, 2020, 20, 366-370.	1.1	2
1008	Record High External Quantum Efficiency of 19.2% Achieved in Lightâ€Emitting Diodes of Colloidal Quantum Wells Enabled by Hotâ€Injection Shell Growth. Advanced Materials, 2020, 32, e1905824.	11.1	95
1009	Efficiency enhancement of quantum-dot light-emitting diodes via rapid post-treatment of intense pulsed light sintering technique. Chemical Physics Letters, 2020, 739, 137048.	1.2	2
1010	Highâ€Performance Quantumâ€Dot Lightâ€Emitting Diodes Using NiO <i>_x</i> Holeâ€Injection Layers with a High and Stable Work Function. Advanced Functional Materials, 2020, 30, 1907265.	7.8	48
1011	High color purity emission from quantum dots by optimizing the full width at half the maximum and optical density to blue light. Journal of the Society for Information Display, 2020, 28, 623-628.	0.8	0
1012	Enhancing performance of quantum-dot light-emitting diodes based on poly(indenofluorene-co-triphenylamine) copolymer as hole-transporting layer. Journal of Materials Science: Materials in Electronics, 2020, 31, 2551-2556.	1.1	5
1013	Perspective: Toward highly stable electroluminescent quantum dot light-emitting devices in the visible range. Applied Physics Letters, 2020, 116, .	1.5	37
1014	Multicolor carbon dots with concentration-tunable fluorescence and solvent-affected aggregation states for white light-emitting diodes. Nano Research, 2020, 13, 52-60.	5.8	126
1015	A universal strategy to separate hydrophilic hybrid-light carbon quantum dots using pure water as eluent. Applied Materials Today, 2020, 18, 100528.	2.3	10
1016	Bright high-colour-purity deep-blue carbon dot light-emitting diodes via efficient edge amination. Nature Photonics, 2020, 14, 171-176.	15.6	303
1017	Ultrasensitive Organicâ€Modulated CsPbBr 3 Quantum Dot Photodetectors via Fast Interfacial Charge Transfer. Advanced Materials Interfaces, 2020, 7, 1901741.	1.9	20

#	Article	IF	CITATIONS
1018	Efficient colloidal quantum dot light-emitting diodes operating in the second near-infrared biological window. Nature Photonics, 2020, 14, 50-56.	15.6	72
1019	Size-dependent exciton binding energy in semiconductor nanostructures. Journal Physics D: Applied Physics, 2020, 53, 125101.	1.3	8
1020	High-efficiency and stable quantum dot light-emitting diodes with staircase V2O5/PEDOT:PSS hole injection layer interface barrier. Organic Electronics, 2020, 78, 105589.	1.4	10
1021	A vertical structure photodetector based on allâ€inorganic perovskite quantum dots. Journal of the Society for Information Display, 2020, 28, 9-15.	0.8	22
1022	Ultrapure Green Light-Emitting Diodes Based on CdSe/CdS Core/Crown Nanoplatelets. IEEE Journal of Quantum Electronics, 2020, 56, 1-6.	1.0	14
1023	Composite Hole Transport Layer Consisting of High-Mobility Polymer and Small Molecule With Deep-Lying HOMO Level for Efficient Quantum Dot Light-Emitting Diodes. IEEE Electron Device Letters, 2020, 41, 80-83.	2.2	19
1024	Direct Writing Micropatterns with a Resolution up to 1 µm. Advanced Functional Materials, 2020, 30, 1907907.	7.8	7
1025	Ultra-sensitive solution-processed broadband photodetectors based on vertical field-effect transistor. Nanotechnology, 2020, 31, 105203.	1.3	30
1026	Quantumâ€Dots Photosensor with Wide Bandgap Pâ€Type and Nâ€Type Oxide Semiconductors for High Detectivity and Responsivity. Advanced Materials Technologies, 2020, 5, 1900857.	3.0	14
1027	Light-emitting devices. , 2020, , 175-197.		0
1028	Sensitization of SnO 2 Single Crystals with Multidentateâ€Ligandâ€Capped PbS Colloid Quantum Dots to Enhance the Photocurrent Stability. ChemNanoMat, 2020, 6, 461-469.	1.5	1
1029	Highly Conductive P-Type MAPbI3 Films and Crystals via Sodium Doping. Frontiers in Chemistry, 2020, 8, 754.	1.8	18
1030	Enhanced Performance of Perovskite Single-Crystal Photodiodes by Epitaxial Hole Blocking Layer. Frontiers in Chemistry, 2020, 8, 791.	1.8	11
1031	Operation mechanism and efficiency-limiting factors in solution-processed quantum-dots light-emitting diodes. Organic Electronics, 2020, 86, 105865.	1.4	6
1032	Machine Learning Tools to Predict Hot Injection Syntheses Outcomes for II–VI and IV–VI Quantum Dots. Journal of Physical Chemistry C, 2020, 124, 24298-24305.	1.5	18
1033	Improvement of Quantum Dot Light Emitting Device Characteristics by CdSe/ZnS Blended with HMDS (Hexamethyldisilazane). Applied Sciences (Switzerland), 2020, 10, 6081.	1.3	4
1034	51â€3: Efficient InP/ZnS Quantum Dot Lightâ€emitting Diodes with Improved Electron Confinement. Digest of Technical Papers SID International Symposium, 2020, 51, 754-757.	0.1	1
1035	Luminance compensation in top-emitting organic light-emitting diodes with high color purity as quantum dots using horizontal dipole orientation. Organic Electronics, 2020, 87, 105945.	1.4	3

#	Article	IF	CITATIONS
1036	Efficient All-Blade-Coated Quantum Dot Light-Emitting Diodes through Solvent Engineering. Journal of Physical Chemistry Letters, 2020, 11, 9019-9025.	2.1	10
1037	Efficient and stable blue quantum dot light-emitting diode. Nature, 2020, 586, 385-389.	13.7	380
1038	Influence of quantum dot concentration on the opto-electronic properties of colloidal quantum-dots LEDs. Optical Materials, 2020, 109, 110251.	1.7	12
1039	Improved Brightness and Color Tunability of Solution-Processed Silicon Quantum Dot Light-Emitting Diodes. Journal of Physical Chemistry C, 2020, 124, 23333-23342.	1.5	20
1040	Color-pure red light-emitting diodes based on two-dimensional lead-free perovskites. Science Advances, 2020, 6, .	4.7	135
1041	51â€1: Invited Paper: Charge Injection Control of Cadmiumâ€Free Quantum Dot Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2020, 51, 746-749.	0.1	3
1042	58â€3: Distinguished Paper: Highâ€Efficient Quantumâ€Dot Lightâ€Emitting Diodes with Blue Cadmiumâ€free Quantum Dots. Digest of Technical Papers SID International Symposium, 2020, 51, 866-869.	0.1	1
1043	65â€3: Green Topâ€emission Quantum Dot Lightâ€emitting Diodes (TEâ€QLED) with Normal and Inverted Structure. Digest of Technical Papers SID International Symposium, 2020, 51, 968-970.	0.1	0
1044	72â€1: <i>Invited Paper:</i> Realizing Long Lifetime Blue Quantum Dots Light Emitting Diodes (QLEDs) through Quantum Dot Structure Tailoring. Digest of Technical Papers SID International Symposium, 2020, 51, 1071-1074.	0.1	5
1045	Pâ€87: A Scheme to Manufacture High Color Purity Quantum Dot Display. Digest of Technical Papers SID International Symposium, 2020, 51, 1695-1698.	0.1	1
1046	Pâ€93: Compact Stable Quantum Dots via Amideâ€Mediated Synthesis of PMOâ€Based Multifunctional Ligand. Digest of Technical Papers SID International Symposium, 2020, 51, 1719-1722.	0.1	0
1047	Electrical resonant effects of ligands on the luminescent properties of InP/ZnSeS/ZnS quantum dots and devices configured therefrom. Organic Electronics, 2020, 87, 105955.	1.4	5
1048	A brief review of innovative strategies towards structure design of practical electronic display device. Journal of Central South University, 2020, 27, 1624-1644.	1.2	9
1049	Dual Functionalization of Electron Transport Layer <i>via</i> Tailoring Molecular Structure for High-Performance Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 37346-37353.	4.0	17
1050	Ultralow Threshold Cavity-Free Laser Induced by Total Internal Reflection. ACS Omega, 2020, 5, 18551-18556.	1.6	4
1051	Role of Alcohol in the Synthesis of CdS Quantum Dots. Chemistry of Materials, 2020, 32, 1430-1438.	3.2	16
1052	Electroluminescence from HgTe Nanocrystals and Its Use for Active Imaging. Nano Letters, 2020, 20, 6185-6190.	4.5	28
1053	Engineering Architecture of Quantum Dot-Based Light-Emitting Diode for High Device Performance with Double-Sided Emission Fabricated by Nonvacuum Technique. ACS Applied Electronic Materials, 2020, 2, 2383-2389.	2.0	11

#	Article	IF	CITATIONS
1054	Regulating the Fluorescence Emission of <scp>CdSe</scp> Quantum Dots Based on the Surface Ligand Exchange with <scp>MAA</scp> . Polymers for Advanced Technologies, 2020, 31, 2667-2675.	1.6	4
1055	Transfer of hydrophobic colloidal gold nanoparticles to aqueous phase using catecholamines. Journal of Molecular Liquids, 2020, 315, 113796.	2.3	15
1056	Highly Efficient, Bright, and Stable Colloidal Quantum Dot Shortâ€Wave Infrared Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 30, 2004445.	7.8	23
1057	Effect of Time-Dependent Characteristics of ZnO Nanoparticles Electron Transport Layer Improved by Intense-Pulsed Light Post-Treatment on Hole-Electron Injection Balance of Quantum-Dot Light-Emitting Diodes. Materials, 2020, 13, 5041.	1.3	5
1058	Solution-Processed Fabrication of Light-Emitting Diodes Using CsPbBr ₃ Perovskite Nanocrystals. ACS Applied Nano Materials, 2020, 3, 11801-11810.	2.4	8
1059	State-of-the-Art on the Preparation, Modification, and Application of Biomass-Derived Carbon Quantum Dots. Industrial & Engineering Chemistry Research, 2020, 59, 22017-22039.	1.8	67
1060	Colour tunability in a bimodal fluorescent hybrid nanostructure UCNPs@AuNPs@QDs. Current Applied Physics, 2020, 20, 1150-1155.	1.1	7
1061	Enhanced hole injection assisted by electric dipoles for efficient perovskite light-emitting diodes. Communications Materials, 2020, 1, .	2.9	33
1062	Tailoring the Electronic Landscape of Quantum Dot Light-Emitting Diodes for High Brightness and Stable Operation. ACS Nano, 2020, 14, 17496-17504.	7.3	33
1063	Semiconductor physics of organic–inorganic 2D halide perovskites. Nature Nanotechnology, 2020, 15, 969-985.	15.6	268
1064	Heterostructures in Two-Dimensional CdSe Nanoplatelets: Synthesis, Optical Properties, and Applications. Chemistry of Materials, 2020, 32, 9490-9507.	3.2	41
1065	Shelfâ€Stable Quantumâ€Dot Lightâ€Emitting Diodes with High Operational Performance. Advanced Materials, 2020, 32, e2006178.	11.1	68
1066	Identification of excess charge carriers in InP-based quantum-dot light-emitting diodes. Applied Physics Letters, 2020, 117, .	1.5	25
1067	Investigating the structure–function relationship in triple cation perovskite nanocrystals for light-emitting diode applications. Journal of Materials Chemistry C, 2020, 8, 11805-11821.	2.7	27
1068	Highâ€Resolution Pixelated Light Emitting Diodes Based on Electrohydrodynamic Printing and Coffeeâ€Ringâ€Free Quantum Dot Film. Advanced Materials Technologies, 2020, 5, 2000401.	3.0	44
1069	Cu–Cd–Zn–S/ZnS core/shell quantum dot/polyvinyl alcohol flexible films for white light-emitting diodes. RSC Advances, 2020, 10, 24425-24433.	1.7	3
1070	Hybrid Electroluminescence Devices with Solution-Processed Mixed Emitting Layers of Red Quantum Dots and Blue Small Molecules. Coatings, 2020, 10, 645.	1.2	2
1071	Structural deformation of elastic polythiophene with disiloxane moieties under stretching. Polymer Journal, 2020, 52, 1273-1278.	1.3	8

#	Article	IF	CITATIONS
1072	Inkâ€Based Additive Nanomanufacturing of Functional Materials for Humanâ€Integrated Smart Wearables. Advanced Intelligent Systems, 2020, 2, 2000117.	3.3	17
1073	Ligand-Induced Chirality in Asymmetric CdSe/CdS Nanostructures: A Close Look at Chiral Tadpoles. ACS Nano, 2020, 14, 10346-10358.	7.3	45
1074	Achieving Highly Efficient and Stable Quantum Dot Light-Emitting Diodes With Interface Modification. IEEE Electron Device Letters, 2020, 41, 1384-1387.	2.2	7
1075	Laminated low-melting-point-alloy electrodes for vacuum-free-processed quantum-dot light-emitting-diodes. Applied Physics Letters, 2020, 117, .	1.5	5
1076	Sequential Improvement from Cosolvents Ink Formulation to Vacuum Annealing for Ink-Jet Printed Quantum-Dot Light-Emitting Diodes. Materials, 2020, 13, 4754.	1.3	12
1077	Integrated Structure and Device Engineering for High Performance and Scalable Quantum Dot Infrared Photodetectors. Small, 2020, 16, e2003397.	5.2	67
1078	Recent Advancements in Near-Infrared Perovskite Light-Emitting Diodes. ACS Applied Electronic Materials, 2020, 2, 3470-3490.	2.0	40
1079	Ultrahighly Efficient White Quantum Dot Lightâ€Emitting Diodes Operating at Low Voltage. Advanced Optical Materials, 2020, 8, 2001479.	3.6	27
1080	58â€2: Distinguished Paper: Active Matrix QD‣ED with Top Emission Structure by UV Lithography for RGB Patterning. Digest of Technical Papers SID International Symposium, 2020, 51, 862-865.	0.1	1
1081	72â€4: Spectrum Narrowing and Efficiency Enhancement of Quantum Dot Lightâ€Emitting Diodes by Microcavity. Digest of Technical Papers SID International Symposium, 2020, 51, 1082-1085.	0.1	0
1082	Highly efficient photon detection systems for noble liquid detectors based on perovskite quantum dots. Scientific Reports, 2020, 10, 16932.	1.6	7
1083	Impact of the resistive switching effects in ZnMgO electron transport layer on the aging characteristics of quantum dot light-emitting diodes. Applied Physics Letters, 2020, 117, .	1.5	26
1084	Quantum Dots: A Review from Concept to Clinic. Biotechnology Journal, 2020, 15, e2000117.	1.8	103
1085	Construction and optoelectronic applications of organic core/shell micro/nanostructures. Materials Horizons, 2020, 7, 3161-3175.	6.4	17
1086	Influence of the Processing Environment on the Surface Composition and Electronic Structure of Size-Quantized CdSe Quantum Dots. Journal of Physical Chemistry C, 2020, 124, 21305-21318.	1.5	9
1087	Progress and Prospects of Solution-Processed Two-Dimensional Semiconductor Nanocrystals. Journal of Physical Chemistry C, 2020, 124, 21895-21908.	1.5	32
1088	Advances in Functional Nanomaterials Science. Annalen Der Physik, 2020, 532, 2000015.	0.9	12
1089	Effects of double heat treatment of NiO hole transport layer on the performance of QLEDs. Journal of Materials Science, 2020, 55, 17046-17060.	1.7	6

#	Article	IF	CITATIONS
1090	Stereoselective Câ^'C Oxidative Coupling Reactions Photocatalyzed by Zwitterionic Ligand Capped CsPbBr ₃ Perovskite Quantum Dots. Angewandte Chemie, 2020, 132, 22752-22758.	1.6	16
1091	Evolution from Tunneling to Hopping Mediated Triplet Energy Transfer from Quantum Dots to Molecules. Journal of the American Chemical Society, 2020, 142, 17581-17588.	6.6	28
1092	Optimizing the central steric hindrance of cross-linkable hole transport materials for achieving highly efficient RGB QLEDs. Materials Chemistry Frontiers, 2020, 4, 3368-3377.	3.2	18
1093	Toward Seeâ€Through Optoelectronics: Transparent Lightâ€Emitting Diodes and Solar Cells. Advanced Optical Materials, 2020, 8, 2001122.	3.6	35
1094	Electrochemical Charging Effect on the Optical Properties of InP/ZnSe/ZnS Quantum Dots. Small, 2020, 16, e2003542.	5.2	27
1095	Unique Cation Exchange in Nanocrystal Matrix via Surface Vacancy Engineering Overcoming Chemical Kinetic Energy Barriers. CheM, 2020, 6, 3086-3099.	5.8	18
1096	Enhancing the light-emitting performance and stability in CsPbBr ₃ perovskite quantum dots <i>via</i> simultaneous doping and surface passivation. Journal of Materials Chemistry C, 2020, 8, 14439-14445.	2.7	32
1097	Efficient green InP quantum dot light-emitting diodes using suitable organic electron-transporting materials. Applied Physics Letters, 2020, 117, .	1.5	15
1098	Spectrally Wide-Range-Tunable, Efficient, and Bright Colloidal Light-Emitting Diodes of Quasi-2D Nanoplatelets Enabled by Engineered Alloyed Heterostructures. Chemistry of Materials, 2020, 32, 7874-7883.	3.2	29
1099	Stereoselective Câ^'C Oxidative Coupling Reactions Photocatalyzed by Zwitterionic Ligand Capped CsPbBr ₃ Perovskite Quantum Dots. Angewandte Chemie - International Edition, 2020, 59, 22563-22569.	7.2	73
1100	Luminescent Sulfur Quantum Dots: Synthesis, Properties and Potential Applications. ChemPhotoChem, 2020, 4, 5235-5244.	1.5	49
1101	Perovskite light-emitting/detecting bifunctional fibres for wearable LiFi communication. Light: Science and Applications, 2020, 9, 163.	7.7	81
1102	Highly Efficient Deep Blue Cdâ€Free Quantum Dot Lightâ€Emitting Diodes by a pâ€Type Doped Emissive Layer. Small, 2020, 16, e2002109.	5.2	24
1103	Toward Bright Red-Emissive Carbon Dots through Controlling Interaction among Surface Emission Centers. Journal of Physical Chemistry Letters, 2020, 11, 8121-8127.	2.1	34
1104	Optimization of the electron transport layer in quantum dot light-emitting devices. NPG Asia Materials, 2020, 12, .	3.8	11
1105	Thermal-induced interface degradation in perovskite light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 15079-15085.	2.7	30
1106	Electroluminescence from band-edge-emitting AgInS2/GaSx core/shell quantum dots. Applied Physics Letters, 2020, 117, .	1.5	26
1107	Direct Photolithographic Patterning of Colloidal Quantum Dots Enabled by UV-Crosslinkable and Hole-Transporting Polymer Ligands. ACS Applied Materials & Interfaces, 2020, 12, 42153-42160.	4.0	38

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1108	Efficient All-Inorganic Perovskite Light-Emitting Diodes with Cesium Tungsten Bronze a Hole-Transporting Layer. Journal of Physical Chemistry Letters, 2020, 11, 7624-7629.	as a	2.1	12
1109	Photocross-Linkable Hole Transport Materials for Inkjet-Printed High-Efficient Quantum Light-Emitting Diodes. ACS Applied Materials & amp; Interfaces, 2020, 12, 58369-5837	n Dot 7.	4.0	21
1110	Role of Oxygen in Two-Step Thermal Annealing Processes for Enhancing the Performan Quantum Dot Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 57840-57	ice of Colloidal 7846.	4.0	7
1111	Quantum Dots Microstructural Metrology: From Timeâ€Resolved Spectroscopy to Spa Electron Microscopy. Particle and Particle Systems Characterization, 2020, 37, 200019	tially Resolved 92.	1.2	5
1112	Photostability and Photoinduced Processes in CuInS2/ZnS Quantum Dots and Their Hy with Multilayer Graphene Nanoribbons. Optics and Spectroscopy (English Translation o	vbrid Structures of Optika I) Tj ETQq0 0 0 r	gB D/ Øverl	loc b 10 Tf 50
1113	72â€2: Highly Efficient Cadmiumâ€Free Quantum Dot Lightâ€Emitting Diodes Employ Architecture. Digest of Technical Papers SID International Symposium, 2020, 51, 1075	ing Topâ€Emitting -1077.	0.1	3
1114	Boosting photoelectrochemical hydrogen generation on Cu-doped		52	18

1114	AgIn ₅ S ₈ /ZnS colloidal quantum dot sensitized photoanodes <i>via</i> shell-layer homojunction defect passivation. Journal of Materials Chemistry A, 2020, 8, 24655-24663.	5.2	18
1115	Efficiency Enhancement of Tris(dimethylamino)-phosphine-Based Red Indium Phosphide Quantum-Dot Light-Emitting Diodes via Chlorine-Doped ZnMgO Electron Transport Layers. Journal of Physical Chemistry C, 2020, 124, 25221-25228.	1.5	24
1116	Promoted Hole Transport Capability by Improving Lateral Current Spreading for Highâ€Efficiency Quantum Dot Lightâ€Emitting Diodes. Advanced Science, 2020, 7, 2001760.	5.6	30
1117	62â€3: Design of Highâ€Performance Tandem Blue Devices for Quantumâ€Dot OLED Display. Digest of Technical Papers SID International Symposium, 2020, 51, 929-932.	0.1	3
1118	Enhanced Operational Stability of Perovskite Lightâ€Emitting Electrochemical Cells Leveraging Ionic Additives. Advanced Optical Materials, 2020, 8, 2000226.	3.6	28
1119	Quantum Dots for Display Applications. Angewandte Chemie, 2020, 132, 22496-22507.	1.6	33
1120	Quantum Dots for Display Applications. Angewandte Chemie - International Edition, 2020, 59, 22312-22323.	7.2	168
1121	Improved device performance of solution-processed red-colored Cu–In–Zn–S-based quantum dot light-emitting diodes enabled by doping TCTA into the emitting layer. Organic Electronics, 2020, 84, 105790.	1.4	6
1122	Magnetron Sputtered SnO ₂ Constituting Double Electron Transport Layers for Efficient PbS Quantum Dot Solar Cells. Solar Rrl, 2020, 4, 2000218.	3.1	12
1123	Micro-light-emitting diodes with quantum dots in display technology. Light: Science and Applications, 2020, 9, 83.	7.7	394
1124	Deciphering exciton-generation processes in quantum-dot electroluminescence. Nature Communications, 2020, 11, 2309.	5.8	96
1125	Large Performance Enhancement in All-Solution-Processed, Full-Color, Inverted Quantum-Dot Light-Emitting Diodes Using Graphene Oxide Doped Hole Injection Layer. Journal of Physical Chemistry C, 2020, 124, 11617-11624.	1.5	11

#	Article	IF	CITATIONS
1126	Al-, Ga-, Mg-, or Li-doped zinc oxide nanoparticles as electron transport layers for quantum dot light-emitting diodes. Scientific Reports, 2020, 10, 7496.	1.6	69
1127	ZnSe:Te/ZnSeS/ZnS nanocrystals: an access to cadmium-free pure-blue quantum-dot light-emitting diodes. Nanoscale, 2020, 12, 11556-11561.	2.8	23
1128	Efficient multi-shell CuInS2/ZnS/ZnS quantum-dots based light-emitting diodes: Time-controlled synthesis of quantum-dots and carrier balance effects of PEI. Optical Materials, 2020, 106, 109926.	1.7	7
1129	Quantum Dots with Highly Efficient, Stable, and Multicolor Electrochemiluminescence. ACS Central Science, 2020, 6, 1129-1137.	5.3	107
1130	Colloidal quantum dot hybrids: an emerging class of materials for ambient lighting. Journal of Materials Chemistry C, 2020, 8, 10676-10695.	2.7	46
1131	Core/Shell Perovskite Nanocrystals: Synthesis of Highly Efficient and Environmentally Stable FAPbBr ₃ /CsPbBr ₃ for LED Applications. Advanced Functional Materials, 2020, 30, 1910582.	7.8	135
1132	Design of the Hole-Injection/Hole-Transport Interfaces for Stable Quantum-Dot Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2020, 11, 4649-4654.	2.1	34
1133	Solution-processed polarized light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 9147-9162.	2.7	5
1134	Study on the Photoluminescence Intensity, Thermal Performance, and Color Purity of Quantum Dot Light-Emitting Diodes Using a Pumping-Light Absorber. IEEE Transactions on Electron Devices, 2020, 67, 2418-2424.	1.6	2
1135	Light-Generating CdSe/CdS Colloidal Quantum Dot-Doped Plastic Optical Fibers. ACS Applied Nano Materials, 2020, 3, 6478-6488.	2.4	2
1136	Defect studies on short-wave infrared photovoltaic devices based on HgTe nanocrystals/TiO ₂ heterojunction. Nanotechnology, 2020, 31, 385701.	1.3	5
1137	Sequential Self-Assembly of Organic Heterostructured Architectures Composed of Low-Dimensional Microcrystals. , 2020, 2, 658-664.		24
1138	Recent Progress on Lightâ€Emitting Electrochemical Cells with Nonpolymeric Materials. Advanced Functional Materials, 2020, 30, 1908641.	7.8	33
1139	Bright infra-red quantum dot light-emitting diodes through efficient suppressing of electrons. Applied Physics Letters, 2020, 116, .	1.5	11
1140	Characterizing the Efficiency of Perovskite Solar Cells and Light-Emitting Diodes. Joule, 2020, 4, 1206-1235.	11.7	53
1141	Quantum-Sized SnO ₂ Nanoparticles with Upshifted Conduction Band: A Promising Electron Transportation Material for Quantum Dot Light-Emitting Diodes. Langmuir, 2020, 36, 6605-6609.	1.6	25
1142	Printing and <i>In Situ</i> Assembly of CdSe/CdS Nanoplatelets as Uniform Films with Unity In-Plane Transition Dipole Moment. Journal of Physical Chemistry Letters, 2020, 11, 4524-4529.	2.1	15
1143	Microcavity top-emission perovskite light-emitting diodes. Light: Science and Applications, 2020, 9, 89.	7.7	96

#	Article	IF	CITATIONS
1144	Enhanced Brightness and Device Lifetime of Quantum Dot Lightâ€Emitting Diodes by Atomic Layer Deposition. Advanced Materials Interfaces, 2020, 7, 2000343.	1.9	12
1145	Sublimation and related thermal stability of PbSe nanocrystals with effective size control evidenced by in situ transmission electron microscopy. Nano Energy, 2020, 75, 104816.	8.2	13
1146	Pomegranate-Inspired Silica Nanotags Enable Sensitive Dual-Modal Detection of Rabies Virus Nucleoprotein. Analytical Chemistry, 2020, 92, 8802-8809.	3.2	32
1147	Giant efficiency and color purity enhancement in multicolor inorganic perovskite light-emitting diodes via heating-assisted vacuum deposition. Journal of Semiconductors, 2020, 41, 052205.	2.0	19
1148	Ligand & band gap engineering: tailoring the protocol synthesis for achieving high-quality CsPbI ₃ quantum dots. Nanoscale, 2020, 12, 14194-14203.	2.8	48
1150	Efficient Quantum Dot Lightâ€Emitting Diodes Based on Wellâ€Type Thickâ€Shell Cd <i>_x</i> Zn _{1â^'} <i>_x</i> S/CdSe/Cd <i>_y</i> Zn _{1â^'Quantum Dots. Particle and Particle Systems Characterization, 2020, 37, 2000115.}	ub ı. 2i> <sı< td=""><td>ւbøy<</td></sı<>	ւbøy<
1151	Green perovskite light-emitting diodes with simultaneous high luminance and quantum efficiency through charge injection engineering. Science Bulletin, 2020, 65, 1832-1839.	4.3	24
1152	Quantum-dot and organic hybrid tandem light-emitting diodes with multi-functionality of full-color-tunability and white-light-emission. Nature Communications, 2020, 11, 2826.	5.8	115
1153	High performance top-emitting quantum dot light-emitting diodes with interfacial modification. AIP Advances, 2020, 10, .	0.6	5
1154	High-Performance Quantum Dot-Light-Emitting Diodes with a Polyethylenimine Ethoxylated-modified Emission layer. Thin Solid Films, 2020, 709, 138179.	0.8	6
1155	Thermodynamic-driven polychromatic quantum dot patterning for light-emitting diodes beyond eye-limiting resolution. Nature Communications, 2020, 11, 3040.	5.8	53
1156	Lead-Free Cs ₄ CuSb ₂ Cl ₁₂ Layered Double Perovskite Nanocrystals. Journal of the American Chemical Society, 2020, 142, 11927-11936.	6.6	131
1157	High-resolution patterning of colloidal quantum dots via non-destructive, light-driven ligand crosslinking. Nature Communications, 2020, 11, 2874.	5.8	114
1158	Highly Efficient Photo-Induced Charge Separation Enabled by Metal–Chalcogenide Interfaces in Quantum-Dot/Metal-Oxide Hybrid Phototransistors. ACS Applied Materials & Interfaces, 2020, 12, 16620-16629.	4.0	21
1159	Direct vs Delayed Triplet Energy Transfer from Organic Semiconductors to Quantum Dots and Implications for Luminescent Harvesting of Triplet Excitons. ACS Nano, 2020, 14, 4224-4234.	7.3	33
1160	Advances in carbon dots: from the perspective of traditional quantum dots. Materials Chemistry Frontiers, 2020, 4, 1586-1613.	3.2	208
1161	Significant Enhancement in Quantum Dot Light-Emitting Device Stability via a Cascading Hole Transport Layer. ACS Applied Materials & Interfaces, 2020, 12, 16782-16791.	4.0	29
1162	Preparation of textured and transparent BiVO ₄ photoelectrodes based on Mo-doped BiVO ₄ nanoparticles for constructing a stand-alone tandem water splitting device. Chemical Communications, 2020, 56, 4156-4159.	2.2	18

	CHAHON	REPORT	
#	Article	IF	CITATIONS
1163	Quantum dot light-emitting diodes with an Al-doped ZnO anode. Nanotechnology, 2020, 31, 255203.	1.3	7
1164	Synergistic effects of charge transport engineering and passivation enabling efficient inverted perovskite quantum-dot light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 5572-5579.	2.7	21
1165	Pressure-Induced Emission Enhancements of Mn ²⁺ -Doped Cesium Lead Chloride Perovskite Nanocrystals. , 2020, 2, 381-388.		33
1166	Facile Synthesis of Stable CsPbBr ₃ /SiO ₂ Solids Via 3-(Dimethoxymethylsilyl)propylamine: Coordination of Silica Encapsulation and Surface Passivation. ECS Journal of Solid State Science and Technology, 2020, 9, 036003.	0.9	3
1167	Suppressing Förster Resonance Energy Transfer in Closeâ€Packed Quantumâ€Dot Thin Film: Toward Efficient Quantumâ€Dot Lightâ€Emitting Diodes with External Quantum Efficiency over 21.6%. Advanced Optical Materials, 2020, 8, 1902092.	3.6	36
1168	Solvent Effects on the Interface and Film Integrity of Solution-Processed ZnO Electron Transfer Layers for Quantum Dot Light-Emitting Diodes. ACS Applied Electronic Materials, 2020, 2, 1074-1080.	2.0	10
1169	Bidirectional optical signal transmission between two identical devices using perovskite diodes. Nature Electronics, 2020, 3, 156-164.	13.1	126
1170	Environmentally Friendly InP-Based Quantum Dots for Efficient Wide Color Gamut Displays. ACS Energy Letters, 2020, 5, 1316-1327.	8.8	141
1171	InP/TiO2 heterojunction for photoelectrochemical water splitting under visible-light. International Journal of Hydrogen Energy, 2020, 45, 11615-11624.	3.8	18
1172	Efficient quantum-dot light-emitting diodes using ZnS–AgInS2 solid-solution quantum dots in combination with organic charge-transport materials. Applied Physics Letters, 2020, 116, .	1.5	14
1173	Interface Engineering of CsPbBr ₃ Nanocrystal Lightâ€Emitting Diodes via Atomic Layer Deposition. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000083.	1.2	18
1174	CsPbBr ₃ nanowire polarized light-emitting diodes through mechanical rubbing. Chemical Communications, 2020, 56, 5413-5416.	2.2	25
1175	Highly Stable Red Quantum Dot Light-Emitting Diodes with Long <i>T</i> ₉₅ Operation Lifetimes. Journal of Physical Chemistry Letters, 2020, 11, 3111-3115.	2.1	76
1176	Solution-processed upconversion photodetectors based on quantum dots. Nature Electronics, 2020, 3, 251-258.	13.1	135
1177	Performance Improvement of Gate-Tunable Organic Light-Emitting Diodes with Electron-Transport and Hole-Blocking Layers. ACS Applied Electronic Materials, 2020, 2, 885-890.	2.0	1
1178	Mg-Doped ZnO Nanoparticle Films as the Interlayer between the ZnO Electron Transport Layer and InP Quantum Dot Layer for Light-Emitting Diodes. Journal of Physical Chemistry C, 2020, 124, 8758-8765.	1.5	30
1179	Boosting Efficiency and Curtailing the Efficiency Roll-Off in Green Perovskite Light-Emitting Diodes via Incorporating Ytterbium as Cathode Interface Layer. ACS Applied Materials & Interfaces, 2020, 12, 18761-18768.	4.0	23
1180	Low Rollâ€Off Perovskite Quantum Dot Lightâ€Emitting Diodes Achieved by Augmenting Hole Mobility. Advanced Functional Materials, 2020, 30, 1910140.	7.8	42

#	Article	IF	CITATIONS
1181	Cation/Anion Exchange Reactions toward the Syntheses of Upgraded Nanostructures: Principles and Applications. Matter, 2020, 2, 554-586.	5.0	81
1182	Development of InP Quantum Dot-Based Light-Emitting Diodes. ACS Energy Letters, 2020, 5, 1095-1106.	8.8	115
1183	A ZnS/CaZnOS Heterojunction for Efficient Mechanicalâ€toâ€Optical Energy Conversion by Conduction Band Offset. Advanced Materials, 2020, 32, e1907747.	11.1	114
1184	Rational design of colloidal core/shell quantum dots for optoelectronic applications. Journal of Electronic Science and Technology, 2020, 18, 100018.	2.0	22
1185	ZnSe/ZnS Core/Shell Quantum Dots with Superior Optical Properties through Thermodynamic Shell Growth. Nano Letters, 2020, 20, 2387-2395.	4.5	81
1186	Novel Lewis Base Cyclam Self-Passivation of Perovskites without an Anti-Solvent Process for Efficient Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 14224-14232.	4.0	48
1187	Luminescent Materials in Lighting, Display, Solar Cell, Sensing, and Biomedical Applications. , 0, , .		4
1188	Enhancing the performance of blue quantum-dot light-emitting diodes through the incorporation of polyethylene glycol to passivate ZnO as an electron transport layer. RSC Advances, 2020, 10, 23121-23127.	1.7	18
1189	InP Quantum Dots: Synthesis and Lighting Applications. Small, 2020, 16, e2002454.	5.2	129
1190	Applications in OLED and QLED. , 2020, , 141-154.		1
1190 1191	Applications in OLED and QLED. , 2020, , 141-154. Positive Aging Effect of ZnO Nanoparticles Induced by Surface Stabilization. Journal of Physical Chemistry Letters, 2020, 11, 5863-5870.	2.1	1 34
	Positive Aging Effect of ZnO Nanoparticles Induced by Surface Stabilization. Journal of Physical	2.1	
1191	Positive Aging Effect of ZnO Nanoparticles Induced by Surface Stabilization. Journal of Physical Chemistry Letters, 2020, 11, 5863-5870. High-Efficiency Perovskite Light-Emitting Diodes with Improved Interfacial Contact. ACS Applied		34
1191 1192	Positive Aging Effect of ZnO Nanoparticles Induced by Surface Stabilization. Journal of Physical Chemistry Letters, 2020, 11, 5863-5870. High-Efficiency Perovskite Light-Emitting Diodes with Improved Interfacial Contact. ACS Applied Materials & amp; Interfaces, 2020, 12, 36681-36687. Enhanced hole transport by doping of a lewis acid to Poly(9-vinylcarbazole) for high efficient	4.0	34 35
1191 1192 1193	Positive Aging Effect of ZnO Nanoparticles Induced by Surface Stabilization. Journal of Physical Chemistry Letters, 2020, 11, 5863-5870. High-Efficiency Perovskite Light-Emitting Diodes with Improved Interfacial Contact. ACS Applied Materials & amp; Interfaces, 2020, 12, 36681-36687. Enhanced hole transport by doping of a lewis acid to Poly(9-vinylcarbazole) for high efficient quantum dot light-emitting diodes. Organic Electronics, 2020, 85, 105875.	4.0 1.4	34 35 8
1191 1192 1193 1194	Positive Aging Effect of ZnO Nanoparticles Induced by Surface Stabilization. Journal of Physical Chemistry Letters, 2020, 11, 5863-5870. High-Efficiency Perovskite Light-Emitting Diodes with Improved Interfacial Contact. ACS Applied Materials & amp; Interfaces, 2020, 12, 36681-36687. Enhanced hole transport by doping of a lewis acid to Poly(9-vinylcarbazole) for high efficient quantum dot light-emitting diodes. Organic Electronics, 2020, 85, 105875. Emergence of Impurity-Doped Nanocrystal Light-Emitting Diodes. Nanomaterials, 2020, 10, 1226. High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography	4.0 1.4 1.9	34 35 8 10
1191 1192 1193 1194 1195	Positive Aging Effect of ZnO Nanoparticles Induced by Surface Stabilization. Journal of Physical Chemistry Letters, 2020, 11, 5863-5870. High-Efficiency Perovskite Light-Emitting Diodes with Improved Interfacial Contact. ACS Applied Materials & amp; Interfaces, 2020, 12, 36681-36687. Enhanced hole transport by doping of a lewis acid to Poly(9-vinylcarbazole) for high efficient quantum dot light-emitting diodes. Organic Electronics, 2020, 85, 105875. Emergence of Impurity-Doped Nanocrystal Light-Emitting Diodes. Nanomaterials, 2020, 10, 1226. High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography approach. Nano Research, 2020, 13, 2485-2491. Improvement of electroluminescent characteristics in quantum dot light-emitting diodes using ZnInP/ZnSe/ZnS quantum dots by mixing an electron transport material into the light-emitting layer.	4.0 1.4 1.9 5.8	34 35 8 10 81

#	Article	IF	CITATIONS
1199	Toward one-hundred-watt-level applications of quantum dot converters in high-power light-emitting diode system using water-cooling remote structure. Applied Thermal Engineering, 2020, 179, 115666.	3.0	7
1200	Improvement of Quantum Dot Light-Emitting Device Efficiency by Using Multi-functional Bipyridine Ligands. Journal of the Korean Physical Society, 2020, 76, 1121-1126.	0.3	2
1201	Highly efficient and stable hybrid quantum-dot light-emitting field-effect transistors. Materials Horizons, 2020, 7, 2439-2449.	6.4	4
1202	Highly Transparent and Colorless Organic Lightâ€Emitting Diodes. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900707.	1.2	8
1203	Improved performance of inverted quantum dot light-emitting diodes by blending the small-molecule and polymer materials as hole transport layer. Organic Electronics, 2020, 80, 105618.	1.4	15
1204	Identically Sized <mml:math display="inline<br" xmlns:mml="http://www.w3.org/1998/Math/Math/ML">overflow="scroll"><mml:mi>Co</mml:mi></mml:math> Quantum Dots on Monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:msub><mml:mi>WS</mml:mi><mml:mn>2</mml:mn></mml:msub> Featuring Ohmic Contact, Physical Review Applied, 2020, 13.</mml:math 	1.5	4
1205	Blue quantum dot-based electroluminescent light-emitting diodes. Materials Chemistry Frontiers, 2020, 4, 1340-1365.	3.2	40
1206	Surface and intrinsic contributions to extinction properties of ZnSe quantum dots. Nano Research, 2020, 13, 824-831.	5.8	34
1207	Progress of display performances: AR, VR, QLED, and OLED. Journal of Information Display, 2020, 21, 1-9.	2.1	52
1208	Colloidal quantum dot light-emitting diodes employing solution-processable tin dioxide nanoparticles in an electron transport layer. RSC Advances, 2020, 10, 8261-8265.	1.7	14
1209	Tuning hole injection of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) to optimize a quantum dot light-emitting diode. Semiconductor Science and Technology, 2020, 35, 055036.	1.0	1
1210	Surface Engineered Colloidal Quantum Dots for Complete Green Process. ACS Applied Materials & Interfaces, 2020, 12, 10563-10570.	4.0	20
1211	Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots. Nature Communications, 2020, 11, 937.	5.8	184
1212	Lightâ€Emitting Electrochemical Cells Based on Colorâ€Tunable Inorganic Colloidal Quantum Dots. Advanced Functional Materials, 2020, 30, 1907349.	7.8	40
1213	Efficient Structure for InP/ZnS-Based Electroluminescence Device by Embedding the Emitters in the Electron-Dominating Interface. Journal of Physical Chemistry Letters, 2020, 11, 1835-1839.	2.1	24
1214	Interactive Colorâ€Changing Electronic Skin Based on Flexible and Piezoelectrically Tunable Quantum Dots Lightâ€Emitting Diodes. Advanced Optical Materials, 2020, 8, 1901715.	3.6	10
1215	MoS2 Nanosheets Sensitized with Quantum Dots for Room-Temperature Gas Sensors. Nano-Micro Letters, 2020, 12, 59.	14.4	69
1216	Magnetothermal microfluidic-directed synthesis of quantum dots. Journal of Materials Chemistry C, 2020, 8, 6358-6363.	2.7	10

#	Article	IF	CITATIONS
1217	Solution-processed blue quantum-dot light-emitting diodes based on double hole transport layers: Charge injection balance, solvent erosion control and performance improvement. Superlattices and Microstructures, 2020, 140, 106460.	1.4	15
1218	Realizing 22.3% EQE and 7-Fold Lifetime Enhancement in QLEDs via Blending Polymer TFB and Cross-Linkable Small Molecules for a Solvent-Resistant Hole Transport Layer. ACS Applied Materials & Interfaces, 2020, 12, 13087-13095.	4.0	62
1219	High Color Purity Leadâ€Free Perovskite Lightâ€Emitting Diodes via Sn Stabilization. Advanced Science, 2020, 7, 1903213.	5.6	146
1220	Improving Performance of Inverted Blue Quantumâ€Dot Lightâ€Emitting Diodes by Adopting Organic/Inorganic Double Electron Transport Layers. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900737.	1.2	8
1221	Development in the innovation of lead halide-based perovskite quantum dots from rare earth-doped garnet-based phosphors for light-emitting diodes. , 2020, , 21-56.		3
1222	Highly efficient and bright red quantum dot light-emitting diodes with balanced charge injection. Organic Electronics, 2020, 81, 105683.	1.4	13
1223	Balanced Carrier Injection and Charge Separation of CuInS ₂ Quantum Dots for Bifunctional Light-Emitting and Photodetection Devices. Journal of Physical Chemistry C, 2020, 124, 6554-6561.	1.5	12
1224	All-solution processed high performance inverted quantum dot light emitting diodes. Journal of Materials Chemistry C, 2020, 8, 4264-4270.	2.7	13
1225	Energy Level Modification with Carbon Dot Interlayers Enables Efficient Perovskite Solar Cells and Quantum Dot Based Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 30, 1910530.	7.8	72
1226	Microcavityâ€Enhanced Blue Organic Lightâ€Emitting Diode for Highâ€Quality Monochromatic Light Source with Nonquarterwave Structural Design. Advanced Optical Materials, 2020, 8, 1901421.	3.6	13
1227	Facile synthesis of ZnS quantum dots at room temperature for ultra-violet photodetector applications. Chemical Physics Letters, 2020, 742, 137127.	1.2	18
1228	Scalable Synthesis of Green Fluorescent Carbon Dot Powders with Unprecedented Efficiency. Advanced Optical Materials, 2020, 8, 1901938.	3.6	74
1229	Easily controlled 2D GO film as electronic barrier layer to realize charge transport equilibrium of QLED with greatly enhanced EQE. Organic Electronics, 2020, 83, 105761.	1.4	4
1230	Highâ€efficiency quantum dot lightâ€emitting diodes with blue cadmiumâ€free quantum dots. Journal of the Society for Information Display, 2020, 28, 401-409.	0.8	11
1231	High-performance perovskite solar cells based on passivating interfacial and intergranular defects. Solar Energy Materials and Solar Cells, 2020, 212, 110555.	3.0	36
1232	High-efficiency perovskite nanocrystal light-emitting diodes <i>via</i> decorating NiO _x on the nanocrystal surface. Nanoscale, 2020, 12, 8711-8719.	2.8	23
1233	Scattering Effect on Optical Performance of Quantum Dot White Light-Emitting Diodes Incorporating SiOâ,, Nanoparticles. IEEE Journal of Quantum Electronics, 2020, 56, 1-9.	1.0	12
1234	Highly Efficient Near-Infrared Light-Emitting Diodes Based on Chloride Treated CdTe/CdSe Type-II Quantum Dots. Frontiers in Chemistry, 2020, 8, 266.	1.8	10

#	Article	IF	CITATIONS
1235	Double Metal Oxide Electron Transport Layers for Colloidal Quantum Dot Light-Emitting Diodes. Nanomaterials, 2020, 10, 726.	1.9	22
1236	Organic and quantum-dot hybrid white LEDs using a narrow bandwidth blue TADF emitter. Journal of Materials Chemistry C, 2020, 8, 10831-10836.	2.7	5
1237	Red, Green, and Blue Microcavity Quantum Dot Light-Emitting Devices with Narrow Line Widths. ACS Applied Nano Materials, 2020, 3, 5301-5310.	2.4	18
1238	Improved Efficiency of All-Inorganic Quantum-Dot Light-Emitting Diodes via Interface Engineering. Frontiers in Chemistry, 2020, 8, 265.	1.8	12
1239	Radiometric characterisation of light sources used in analytical chemistry – A review. Analytica Chimica Acta, 2020, 1123, 113-127.	2.6	4
1240	Polymer Coated Semiconducting Nanoparticles for Hybrid Materials. Inorganics, 2020, 8, 20.	1.2	7
1241	More Than 9% Efficient ZnSeTe Quantum Dot-Based Blue Electroluminescent Devices. ACS Energy Letters, 2020, 5, 1568-1576.	8.8	68
1242	Surface Engineering of Allâ€Inorganic Perovskite Quantum Dots with Quasi Coreâ~'Shell Technique for Highâ€Performance Photodetectors. Advanced Materials Interfaces, 2020, 7, 2000360.	1.9	34
1243	Recent progress in phosphorescent Ir(III) complexes for nondoped organic light-emitting diodes. Coordination Chemistry Reviews, 2020, 413, 213283.	9.5	71
1244	Prominent Heat Dissipation in Perovskite Light-Emitting Diodes with Reduced Efficiency Droop for Silicon-Based Display. Journal of Physical Chemistry Letters, 2020, 11, 3689-3698.	2.1	37
1245	Nanoplatelet-Based Light-Emitting Diode and Its Use in All-Nanocrystal LiFi-like Communication. ACS Applied Materials & Interfaces, 2020, 12, 22058-22065.	4.0	23
1246	Acylselenoureato bis(chelates) of lead: synthesis, structural characterization and microwave-assisted formation of PbSe nano- and microstructures. New Journal of Chemistry, 2020, 44, 7719-7726.	1.4	6
1247	Light extraction from quantum dot light emitting diodes by multiscale nanostructures. Nanoscale Advances, 2020, 2, 1967-1972.	2.2	10
1248	Highâ€Performance Red Quantumâ€Dot Lightâ€Emitting Diodes Based on Organic Electron Transporting Layer. Advanced Functional Materials, 2021, 31, 2007686.	7.8	32
1249	Efficient Solutionâ€Processed Hyperfluorescent OLEDs with Spectrally Narrow Emission at 840Ânm. Advanced Functional Materials, 2021, 31, .	7.8	46
1250	Enhancing the efficiency of green perovskite-QDs-based light-emitting devices by controlling interfacial defects with diamine molecules. Chemical Engineering Journal, 2021, 403, 126339.	6.6	8
1251	Manganese doped eco-friendly CuInSe2 colloidal quantum dots for boosting near-infrared photodetection performance. Chemical Engineering Journal, 2021, 403, 126452.	6.6	27
1252	Facial synthesis of highly stable and bright CsPbX3 (X=Cl, Br, I) perovskite nanocrystals via an anion exchange at the water-oil interface. Science China Materials, 2021, 64, 158-168.	3.5	10

#	Article	IF	CITATIONS
1253	Recent Progress of Quantum Dotâ€Based Photonic Devices and Systems: A Comprehensive Review of Materials, Devices, and Applications. Small Structures, 2021, 2, 2000024.	6.9	55
1254	Effect and mechanism of encapsulation on aging characteristics of quantum-dot light-emitting diodes. Nano Research, 2021, 14, 320-327.	5.8	46
1255	Direct Writing Largeâ€Area Multi‣ayer Ultrasmooth Films by an Allâ€Solution Process: Toward Highâ€Performance QLEDs. Angewandte Chemie, 2021, 133, 690-694.	1.6	3
1256	Synthesis, crystal structure and photoluminescence properties of high-color-purity red-emitting SrLu2O4:Eu3+ phosphors with excellent thermal stability. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 404, 112908.	2.0	14
1257	Perovskite QLED with an external quantum efficiency of over 21% by modulating electronic transport. Science Bulletin, 2021, 66, 36-43.	4.3	162
1258	Design of experiments a powerful tool to improve the selectivity of copper antimony sulfide nanoparticles synthesis. CrystEngComm, 2021, 23, 397-403.	1.3	6
1259	Toward Full-Color Electroluminescent Quantum Dot Displays. Nano Letters, 2021, 21, 26-33.	4.5	103
1260	Performance Limits of an Alternating Current Electroluminescent Device. Advanced Materials, 2021, 33, e2005635.	11.1	11
1261	Binary Solvent Effects on Thermally Crosslinked Small Molecular Thin Films for Solution Processed Organic Light-Emitting Diodes. Electronic Materials Letters, 2021, 17, 74-86.	1.0	4
1262	Carrier transport regulation with hole transport trilayer for efficiency enhancement in quantum dot light-emitting devices. Journal of Luminescence, 2021, 231, 117785.	1.5	8
1263	Recent research on the luminous mechanism, synthetic strategies, and applications of CulnS ₂ quantum dots. Inorganic Chemistry Frontiers, 2021, 8, 880-897.	3.0	33
1264	Solutionâ€Processed All eramic Plasmonic Metamaterials for Efficient Solar–Thermal Conversion over 100–727Â ° C. Advanced Materials, 2021, 33, e2005074.	11.1	76
1265	Efficient larger size white quantum dots light emitting diodes using blade coating at ambient conditions. Organic Electronics, 2021, 88, 106021.	1.4	9
1266	Investigation of plasmonâ€induced extraction efficiency enhancement in a CdTeâ€based LED using FDTD simulation. Luminescence, 2021, 36, 860-864.	1.5	1
1267	Technology progress on quantum dot light-emitting diodes for next-generation displays. Nanoscale Horizons, 2021, 6, 68-77.	4.1	32
1268	Solution-Processed Efficient Perovskite Nanocrystal Light-Emitting Device Utilizing Doped Hole Transport Layer. Journal of Physical Chemistry Letters, 2021, 12, 94-100.	2.1	24
1269	Review on recent progress of lead-free halide perovskites in optoelectronic applications. Nano Energy, 2021, 80, 105526.	8.2	130
1270	CsPbI3 nanorods as the interfacial layer for high-performance, all-solution-processed self-powered photodetectors. Journal of Materials Science and Technology, 2021, 75, 196-204.	5.6	22

	Сітат	tion Report	
#	Article	IF	CITATIONS
1271	Highâ€Performance Perovskiteâ€Based Blue Lightâ€Emitting Diodes with Operational Stability by Using Organic Ammonium Cations as Passivating Agents. Advanced Functional Materials, 2021, 31, 2005553.	7.8	43
1272	Leadâ€Free Halide Double Perovskites: Structure, Luminescence, and Applications. Small Structures, 2021, 2, 2000071.	6.9	71
1273	Direct Writing Largeâ€Area Multi‣ayer Ultrasmooth Films by an Allâ€Solution Process: Toward Highâ€Performance QLEDs. Angewandte Chemie - International Edition, 2021, 60, 680-684.	7.2	13
1274	High-performance perovskite light-emitting diodes based on double hole transport layers. Journal of Materials Chemistry C, 2021, 9, 2115-2122.	2.7	25
1275	Development and Application of Inkjet Printing Quantum Dots. Lecture Notes in Electrical Engineering, 2021, , 321-328.	0.3	0
1276	Suppression of non-radiative recombination to improve performance of colloidal quantum-dot LEDs with a Cs ₂ CO ₃ solution treatment. Nanotechnology, 2021, 32, 155202.	1.3	8
1277	Advances in Perovskite Light-Emitting Diodes Possessing Improved Lifetime. Nanomaterials, 2021, 11, 10)3. 1.9	15
1278	Hybrid white quantum dot–organic light-emitting diodes with highly stable CIEx,y coordinates by the introduction of n-type modulation and multi-stacked hole transporting layer. Journal of Materials Chemistry C, 2021, 9, 12248-12254.	2.7	7
1279	Electronic effects of nano-confinement in functional organic and inorganic materials for optoelectronics. Chemical Society Reviews, 2021, 50, 3585-3628.	18.7	32
1280	Novel carbazole-acridine-based hole transport polymer for low turn-on voltage of green quantum dot light-emitting diodes. Polymer Chemistry, 2021, 12, 4714-4721.	1.9	3
1281	Efficient green indium phosphide quantum dots with tris(dimethylamino)-phosphine phosphorus precursor for electroluminescent devices. Journal of Materials Science: Materials in Electronics, 2021, 32, 4686-4694.	1.1	7
1282	Selective detection of mercury ions based on tin oxide quantum dots: performance and fluorescence enhancement model. Journal of Materials Chemistry C, 2021, 9, 8274-8284.	2.7	12
1283	A New Benchmark of Charges Storage in Single-Layer Organic Light-Emitting Diodes Based on Electrical and Optical Characteristics. Molecules, 2021, 26, 741.	1.7	4
1284	High-performance tricolored white lighting electroluminescent devices integrated with environmentally benign quantum dots. Nanoscale Horizons, 2021, 6, 168-176.	4.1	7
1285	Efficient all-inorganic perovskite light-emitting diodes enabled by manipulating the crystal orientation. Journal of Materials Chemistry A, 2021, 9, 11064-11072.	5.2	24
1286	Perovskite Quantum Dots Glasses Based Backlit Displays. ACS Energy Letters, 2021, 6, 519-528.	8.8	240
1287	Water-passivated ZnMgO nanoparticles for blue quantum dot light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 10381-10387.	2.7	13
1288	Origin of enhanced efficiency and stability in diblock copolymer-grafted Cd-free quantum dot-based light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 10398-10405.	2.7	9

#	Article	IF	Citations
1289	How the Magnetic Field Impacts the Chiroptical Activities of Helical Copper Enantiomers. New Journal of Chemistry, 0, , .	1.4	0
1290	[Paper] Green Electroluminescence Generated by Band-edge Transition in Ag-In-Ga-S/GaS _{<i>x</i>} Core/shell Quantum Dots. ITE Transactions on Media Technology and Applications, 2021, 9, 222-227.	0.3	5
1291	High efficiency blue light-emitting devices based on quantum dots with core-shell structure design and surface modification. RSC Advances, 2021, 11, 14047-14052.	1.7	9
1292	A low-temperature solution-processed indium incorporated zinc oxide electron transport layer for high-efficiency lead sulfide colloidal quantum dot solar cells. Nanoscale, 2021, 13, 12991-12999.	2.8	8
1293	Ternary l–Ill–VI quantum dots for light-emitting diode devices. , 2021, , 251-264.		1
1294	Hot Injection Method for Nanoparticle Synthesis: Basic Concepts, Examples and Applications. Indian Institute of Metals Series, 2021, , 383-434.	0.2	4
1295	Electroluminescence Devices with Colloidal Quantum Dots. Series in Display Science and Technology, 2021, , 251-270.	0.6	1
1296	Ultrathin polymethylmethacrylate interlayers boost performance of hybrid tin halide perovskite solar cells. Chemical Communications, 2021, 57, 5047-5050.	2.2	26
1297	Composition-tuned MAPbBr3 nanoparticles with addition of Cs+ cations for improved photoluminescence. RSC Advances, 2021, 11, 24137-24143.	1.7	3
1298	A review on the low external quantum efficiency and the remedies for GaN-based micro-LEDs. Journal Physics D: Applied Physics, 2021, 54, 153002.	1.3	42
1299	Structuring Possibilities. Springer Series in Solid-state Sciences, 2021, , 209-228.	0.3	0
1300	The influence of H2O and O2 on the optoelectronic properties of inverted quantum-dot light-emitting diodes. Nano Research, 2021, 14, 4140-4145.	5.8	9
1301	Enhanced detectivity of PbS quantum dots infrared photodetector by introducing the tunneling effect of PMMA. Nanotechnology, 2021, 32, 195502.	1.3	2
1302	Negative Trion Auger Recombination in Highly Luminescent InP/ZnSe/ZnS Quantum Dots. Nano Letters, 2021, 21, 2111-2116.	4.5	33
1303	Intrinsically stretchable organic light-emitting diodes. Science Advances, 2021, 7, .	4.7	76
1304	Pâ€4.7: Optical structure design of quantum dot color conversion Pixel and Its Display Applications. Digest of Technical Papers SID International Symposium, 2021, 52, 498-501.	0.1	0
1305	High performance inkjet-printed QLEDs with 18.3% EQE: improving interfacial contact by novel halogen-free binary solvent system. Nano Research, 2021, 14, 4125-4131.	5.8	42
1306	Fluorescent Carbon Dots: Fantastic Electroluminescent Materials for Lightâ€Emitting Diodes. Advanced Science, 2021, 8, 2001977.	5.6	141

#	Article	IF	CITATIONS
1307	30.1: <i>Invited Paper:</i> Strategies towards Enhancing Device Lifetime of Quantumâ€Dot Lightâ€Emitting Diodes (QLEDs). Digest of Technical Papers SID International Symposium, 2021, 52, 188-188.	0.1	0
1308	37.3: Suppressing the Trapâ€assisted Recombination for High Performance InP/ZnS Green Quantumâ€dot Lightâ€emitting Diodes. Digest of Technical Papers SID International Symposium, 2021, 52, 259-262.	0.1	0
1309	Photoelectrochemical investigation of charge injection efficiency for quantum dot light-emitting diode. Applied Physics Letters, 2021, 118, .	1.5	7
1310	23.3: Charge Injection Control of Cadmiumâ€Free Quantum Dot Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2021, 52, 147-150.	0.1	1
1311	Solventâ€Regulated Electronic Structure and Morphology of Inorganic Hole Injection Layers for Efficient Quantum Dot Lightâ€Emitting Diodes. Advanced Photonics Research, 2021, 2, 2000124.	1.7	5
1312	Intramolecularâ€Locked High Efficiency Ultrapure Violetâ€Blue (CIEâ€y <0.046) Thermally Activated Delayed Fluorescence Emitters Exhibiting Amplified Spontaneous Emission. Advanced Functional Materials, 2021, 31, 2009488.	7.8	88
1313	Colloidal quantum dot lasers. Nature Reviews Materials, 2021, 6, 382-401.	23.3	196
1314	Colloidal CdSe nanocrystals are inherently defective. Nature Communications, 2021, 12, 890.	5.8	22
1315	Stability of Quantum Dot Solar Cells: A Matter of (Life)Time. Advanced Energy Materials, 2021, 11, 2003457.	10.2	57
1316	Allâ€Inorganic Quantum Dot Lightâ€Emitting Diodes with Suppressed Luminance Quenching Enabled by Chloride Passivated Tungsten Phosphate Hole Transport Layers. Small, 2021, 17, e2100030.	5.2	33
1317	Enhanced Performance of Pixelated Quantum Dot Lightâ€Emitting Diodes by Inkjet Printing of Quantum Dot–Polymer Composites. Advanced Optical Materials, 2021, 9, 2002129.	3.6	39
1318	High-performance quasi-2D perovskite light-emitting diodes: from materials to devices. Light: Science and Applications, 2021, 10, 61.	7.7	235
1319	Flexible and tandem quantum-dot light-emitting diodes with individually addressable red/green/blue emission. Npj Flexible Electronics, 2021, 5, .	5.1	26
1320	InP-Based Quantum Dot Light-Emitting Diode with a Blended Emissive Layer. ACS Energy Letters, 0, , 1577-1585.	8.8	50
1321	A review on the electroluminescence properties of quantum-dot light-emitting diodes. Organic Electronics, 2021, 90, 106086.	1.4	67
1322	Enhancing the efficiency of solution-processed inverted quantum dot light-emitting diodes via ligand modification with 6-mercaptohexanol. Optics Letters, 2021, 46, 1434.	1.7	5
1323	Highly versatile near-infrared emitters based on an atomically defined HgS interlayer embedded into a CdSe/CdS quantum dot. Nature Nanotechnology, 2021, 16, 673-679.	15.6	37
1324	Highly Efficient and Super Stable Fullâ€Color Quantum Dots Lightâ€Emitting Diodes with Solutionâ€Processed Allâ€Inorganic Charge Transport Layers. Small, 2021, 17, e2007363.	5.2	32

#	Article	IF	CITATIONS
1325	To improve the performance of green light-emitting devices by enhancing hole injection efficiency. Chemical Engineering Journal Advances, 2021, 5, 100082.	2.4	3
1326	Performance of zinc oxide quantum dots coated paper and application of fluorescent anti-counterfeiting. Applied Optics, 2021, 60, 2304.	0.9	5
1327	Color revolution: toward ultra-wide color gamut displays. Journal Physics D: Applied Physics, 2021, 54, 213002.	1.3	9
1328	Interaction of Folic Acid with Mn2+ Doped CdTe/ZnS Quantum Dots: In Situ Detection of Folic Acid. Journal of Fluorescence, 2021, 31, 951-960.	1.3	9
1329	Highly Stable Waterborne Luminescent Inks Based on MAPbBr ₃ @PbBr(OH) Nanocrystals for LEDs and Anticounterfeit Applications. ACS Applied Materials & Interfaces, 2021, 13, 20622-20632.	4.0	42
1330	Roomâ€Temperature Diffusionâ€Induced Extraction for Perovskite Nanocrystals with High Luminescence and Stability. Small Methods, 2021, 5, 2001292.	4.6	2
1331	White-light emission from zinc chalcogenide alloy quantum dots with gradient compositions. Journal of Luminescence, 2021, 232, 117876.	1.5	1
1332	Highly Efficient CsPbBr ₃ Perovskite Nanocrystal Light-Emitting Diodes with Enhanced Stability via Colloidal Layer-by-Layer Deposition. ACS Applied Electronic Materials, 2021, 3, 2398-2406.	2.0	6
1333	Quantum dot light-emitting diodes with high efficiency at high brightness via shell engineering. Optics Express, 2021, 29, 12169.	1.7	13
1334	Near-Infrared-Light emitting diode driven white light Emission: Upconversion nanoparticles decorated Metal-Organic Frame-works thin film. Chemical Engineering Journal, 2021, 409, 128220.	6.6	14
1335	Light-Emitting Diodes with Manganese Halide Tetrahedron Embedded in Anti-Perovskites. ACS Energy Letters, 2021, 6, 1901-1911.	8.8	17
1336	Tailoring Nanostructures of Quantum Dots toward Efficient and Stable All-Solution Processed Quantum Dot Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 17861-17868.	4.0	12
1337	Narrow-band high-transmittance birefringent filter and its application in wide color gamut display*. Chinese Physics B, 2021, 30, 054207.	0.7	2
1338	Unraveling the Origin of Low Optical Efficiency for Quantum Dot White Light-Emitting Diodes From the Perspective of Aggregation-Induced Scattering Effect. IEEE Transactions on Electron Devices, 2021, 68, 1738-1745.	1.6	6
1339	Role of Methyl Acetate in Highly Reproducible Efficient CsPbI ₃ Perovskite Quantum Dot Solar Cells. Journal of Physical Chemistry C, 2021, 125, 8469-8478.	1.5	29
1340	Excitation Energy Dependence of Semiconductor Nanocrystal Emission Quantum Yields. Journal of Physical Chemistry Letters, 2021, 12, 4024-4031.	2.1	8
1341	Materials, photophysics and device engineering of perovskite light-emitting diodes. Reports on Progress in Physics, 2021, 84, 046401.	8.1	52
1342	Aminophosphine-Based InP Quantum Dots for the Detection of Zn ²⁺ and Cd ²⁺ Ions in Water. ACS Applied Nano Materials, 2021, 4, 3977-3988.	2.4	12

#	Article	IF	CITATIONS
1343	Stability study of all-inorganic perovskite CsPbBr3 QDs@SiO2/EVA film composites prepared by one-step. Journal of Crystal Growth, 2021, 560-561, 126045.	0.7	6
1344	Balanced charge transport and enhanced performance of blue quantum dot light-emitting diodes via electron transport layer doping. Nanotechnology, 2021, 32, 335203.	1.3	3
1345	64â€1: <i>Invited Paper:</i> Challenges for Realizing QDâ€LED Display. Digest of Technical Papers SID International Symposium, 2021, 52, 933-936.	0.1	1
1346	Enhanced crystallization of solution-processed perovskite using urea as an additive for large-grain MAPbl ₃ perovskite solar cells. Nanotechnology, 2021, 32, 30LT02.	1.3	8
1347	Graphitic Dots Combining Photophysical Characteristics of Organic Molecular Fluorophores and Inorganic Quantum Dots. Jacs Au, 2021, 1, 843-851.	3.6	14
1348	High Luminance and Stability of Perovskite Quantum Dot Light-Emitting Diodes via ZnBr ₂ Passivation and an Ultrathin Al ₂ O ₃ Barrier with Improved Carrier Balance and Ion Diffusive Inhibition. ACS Applied Electronic Materials, 2021, 3, 2362-2371.	2.0	19
1349	Enhanced Multiexciton Emission Property in Gradient Alloy Core/Shell CdZnSeS/ZnS Quantum Dots: Balance between Surface Passivation and Strain-Induced Lattice Defect. Journal of Physical Chemistry C, 2021, 125, 10759-10767.	1.5	11
1350	63â€1: <i>Invited Paper:</i> High Performance Top Emission Quantumâ€Dot Lightâ€Emitting Devices. Digest of Technical Papers SID International Symposium, 2021, 52, 920-922.	0.1	1
1351	Operationally Stable Perovskite Light Emitting Diodes with High Radiance. Advanced Optical Materials, 2021, 9, 2100586.	3.6	13
1352	Synthetic Mechanism Studies of Iron Selenides: An Emerging Class of Materials for Electrocatalysis. Catalysts, 2021, 11, 681.	1.6	5
1353	Emission Zone Profiling and Efficiency Improvement of QD-OLED. Journal of the Institute of Electrical Engineers of Japan, 2021, 141, 280-282.	0.0	0
1354	Pâ€114: Performance Improvement of Topâ€Emitting Blue Quantum Dot Lightâ€Emitting Diodes by an Organic Capping Layer. Digest of Technical Papers SID International Symposium, 2021, 52, 1312-1314.	0.1	2
1355	65â€2: Red Electroluminescence Quantum Dot Devices (ELâ€QD) with Improved Efficiency and Lifetime. Digest of Technical Papers SID International Symposium, 2021, 52, 949-952.	0.1	0
1356	Performance improvements in all-solution processed inverted QLEDs realized by inserting an electron blocking layer. Nanotechnology, 2021, 32, 335204.	1.3	4
1357	Importance of Surface Functionalization and Purification for Narrow FWHM and Bright Green-Emitting InP Core–Multishell Quantum Dots via a Two-Step Growth Process. Chemistry of Materials, 2021, 33, 4399-4407.	3.2	35
1358	Highly efficient and stable blue quantum-dot light-emitting diodes based on polyfluorenes with carbazole pendent groups as hole-transporting materials. Organic Electronics, 2021, 92, 106138.	1.4	10
1359	Evaluation of degradation behavior in quantum dot light-emitting diode with different hole transport materials via transient electroluminescence. Applied Physics Letters, 2021, 118, .	1.5	9
1360	Utilization of Nanoporous Nickel Oxide as the Hole Injection Layer for Quantum Dot Light-Emitting Diodes. ACS Omega, 2021, 6, 13447-13455.	1.6	12

#	Article	IF	CITATIONS
1361	65â€5: Improved Brightness and Efficiency of Green Quantumâ€Rodâ€Based Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2021, 52, 959-962.	0.1	0
1362	Pâ€113: Efficiency Enhancement of Quantum dot Lightâ€Emitting Diodes Via Ligand Exchange. Digest of Technical Papers SID International Symposium, 2021, 52, 1308-1311.	0.1	2
1363	Balanced Charge Carrier Transport Mediated by Quantum Dot Film Post-organization for Light-Emitting Diode Applications. ACS Applied Materials & Interfaces, 2021, 13, 26170-26179.	4.0	8
1364	Progress toward blue-emitting (460–475Ânm) nanomaterials in display applications. Nanophotonics, 2021, 10, 1801-1836.	2.9	20
1365	The Past, Present, and Future of Metal Halide Perovskite Lightâ€Emitting Diodes. Small Science, 2021, 1, 2000072.	5.8	37
1366	Enhanced efficiency of top-emission InP-based green quantum dot light-emitting diodes with optimized angular distribution. Nano Research, 2021, 14, 4243-4249.	5.8	18
1367	Enhanced performance through trap states passivation in quantum dot light emitting diode. Journal of Luminescence, 2021, 234, 117946.	1.5	8
1368	Efficient Nanocrystal Photovoltaics via Blade Coating Active Layer. Nanomaterials, 2021, 11, 1522.	1.9	2
1369	Precise theoretical model for quantum-dot color conversion. Optics Express, 2021, 29, 18654.	1.7	11
1370	Effects of UV Irradiation and Storage on the Performance of Inverted Red Quantum-Dot Light-Emitting Diodes. Nanomaterials, 2021, 11, 1606.	1.9	5
1371	Enhanced performance of inverted CsPbBr3 nanocrystal LEDs via Zn(II) doping. Organic Electronics, 2021, 96, 106253.	1.4	9
1372	Preparation and optical properties of nanostructure thin films. Applied Nanoscience (Switzerland), 2021, 11, 1967-1976.	1.6	0
1373	Triphenylamine-carbazole alternating copolymers bearing thermally activated delayed fluorescent emitting and host pendant groups for solution-processable OLEDs. Reactive and Functional Polymers, 2021, 163, 104898.	2.0	8
1375	Tuning hole transport layers and optimizing perovskite films thickness for high efficiency CsPbBr3 nanocrystals electroluminescence light-emitting diodes. Journal of Luminescence, 2021, 234, 117952.	1.5	14
1376	Efficient quantum-dot light-emitting diodes featuring the interfacial carrier relaxation and exciton recycling. Materials Today Energy, 2021, 20, 100649.	2.5	5
1377	Identifying the Surface Charges and their Impact on Carrier Dynamics in Quantumâ€Đot Lightâ€Emitting Diodes by Impedance Spectroscopy. Advanced Optical Materials, 2021, 9, 2100389.	3.6	16
1378	Bright Near-Infrared to Visible Upconversion Double Quantum Dots Based on a Type-II/Type-I Heterostructure. ACS Photonics, 2021, 8, 1909-1916.	3.2	12
1379	Manipulation of the Optical Properties of Colloidal 2D CdSe Nanoplatelets. Advanced Photonics Research, 2021, 2, 2100045.	1.7	10

#	Article	IF	Citations
1380	Continuously Graded Quantum Dots: Synthesis, Applications in Quantum Dot Light-Emitting Diodes, and Perspectives. Journal of Physical Chemistry Letters, 2021, 12, 5967-5978.	2.1	53
1381	Enhanced Direct White Light Emission Efficiency in Quantum Dot Lightâ€Emitting Diodes via Embedded Ferroelectric Islands Structure. Advanced Functional Materials, 2021, 31, 2104239.	7.8	18
1382	Comparative Study of Red/Green/Blue Quantum-Dot Light-Emitting Diodes by Time-Resolved Transient Electroluminescence. Journal of Physical Chemistry Letters, 2021, 12, 7019-7025.	2.1	17
1383	Cadmium-Free and Efficient Type-II InP/ZnO/ZnS Quantum Dots and Their Application for LEDs. ACS Applied Materials & Interfaces, 2021, 13, 32022-32030.	4.0	41
1384	Highly Efficient, Surface Ligand Modified Quantum Dot Lightâ€Emitting Diodes Driven by Typeâ€Controllable MoTe ₂ Thin Film Transistors via Electron Charge Enhancer. Advanced Electronic Materials, 2021, 7, 2100535.	2.6	9
1385	Photoluminescence Behavior of Zero-Dimensional Manganese Halide Tetrahedra Embedded in Conjugated Organic Matrices. Journal of Physical Chemistry Letters, 2021, 12, 7394-7399.	2.1	38
1386	Modelling charge transport and electro-optical characteristics of quantum dot light-emitting diodes. Npj Computational Materials, 2021, 7, .	3.5	19
1387	Sol-gel processed tungsten trioxide nanocrystals layer for efficient hole-injection in quantum dot light-emitting diodes. Thin Solid Films, 2021, 730, 138722.	0.8	3
1388	Light-Emitting Memristors for Optoelectronic Artificial Efferent Nerve. Nano Letters, 2021, 21, 6087-6094.	4.5	42
1389	An Efficient Hole Transporting Polymer for Quantum Dot Lightâ€Emitting Diodes. Advanced Materials Interfaces, 2021, 8, 2100731.	1.9	16
1390	GaAs quantum dot/TiO2 heterojunction for visible-light photocatalytic hydrogen evolution: promotion of oxygen vacancy. Advanced Composites and Hybrid Materials, 2022, 5, 450-460.	9.9	28
1391	Highly efficient all-solution processed blue quantum dot light-emitting diodes based on balanced charge injection achieved by double hole transport layers. Organic Electronics, 2021, 94, 106169.	1.4	12
1392	Construction of electron and grain boundary barrier in quantum dots light-emitting diodes: The role of NiO interface coating. Optical Materials, 2021, 117, 111204.	1.7	4
1393	The influence of charge carriers in the hole transport layer on stability of quantum dot light-emitting devices. , 2021, , .		0
1394	A facile and one-pot aqueous phase transfer of oleylamine capped Au NP with aminophenylboronic acid used as transfer and targeting ligand. Enzyme and Microbial Technology, 2021, 148, 109810.	1.6	12
1395	Temperature-dependent recombination dynamics and electroluminescence characteristics of colloidal CdSe/ZnS core/shell quantum dots. Applied Physics Letters, 2021, 119, .	1.5	10
1396	Investigation the effect of different surface ligand treatments on luminescence and performance of quantum dot LEDs. Journal of Materials Research, 2021, 36, 3309-3316.	1.2	9
1397	Hole injection of quantum dot light-emitting diodes facilitated by multilayered hole transport layer. Applied Surface Science, 2021, 558, 149944.	3.1	8

#	Article	IF	CITATIONS
1398	Synthesis of Group II-VI Semiconductor Nanocrystals via Phosphine Free Method and Their Application in Solution Processed Photovoltaic Devices. Nanomaterials, 2021, 11, 2071.	1.9	10
1399	Decoupling the Positive and Negative Aging Processes of Perovskite Light-Emitting Diodes Using a Thin Interlayer of Ionic Liquid. Journal of Physical Chemistry Letters, 2021, 12, 7783-7791.	2.1	8
1400	30.4: Lifetime Improvement of Cadmiumâ€Free Red Quantum Dot Lightâ€Emitting Diodes with Double Electron Transporting Layer. Digest of Technical Papers SID International Symposium, 2021, 52, 410-413.	0.1	1
1401	30.1: Invited Paper: Towards Highâ€Performance Solutionâ€Processed Lightâ€Emitting Didoes Based on Quantum Dots. Digest of Technical Papers SID International Symposium, 2021, 52, 407-407.	0.1	0
1402	Pâ€9.4: Photoluminescent characteristics of quantum dot color filter. Digest of Technical Papers SID International Symposium, 2021, 52, 950-950.	0.1	0
1403	Operational and Spectral Stability of Perovskite Light-Emitting Diodes. ACS Energy Letters, 2021, 6, 3114-3131.	8.8	46
1404	High-Resolution Colloidal Quantum Dot Film Photolithography via Atomic Layer Deposition of ZnO. ACS Applied Materials & Interfaces, 2021, 13, 43075-43084.	4.0	25
1405	Prospects and challenges of colloidal quantum dot laser diodes. Nature Photonics, 2021, 15, 643-655.	15.6	63
1406	Semiconductor quantum dots: Technological progress and future challenges. Science, 2021, 373, .	6.0	600
1407	Optimizing the PMMA Electron-Blocking Layer of Quantum Dot Light-Emitting Diodes. Nanomaterials, 2021, 11, 2014.	1.9	9
1408	Stability of electroluminescent perovskite quantum dots lightâ€emitting diode. Nano Select, 2022, 3, 505-530.	1.9	10
1409	Pâ€6.9: Patterning of Quantum Dots Lightâ€emitting Diodes Based on IGZO Films. Digest of Technical Papers SID International Symposium, 2021, 52, 868-871.	0.1	0
1410	Emerging light-emitting diodes for next-generation data communications. Nature Electronics, 2021, 4, 559-572.	13.1	102
1411	Colloidal quantum dot electronics. Nature Electronics, 2021, 4, 548-558.	13.1	192
1412	Current Stateâ€ofâ€ŧheâ€Art in the Interface/Surface Modification of Thermoelectric Materials. Advanced Energy Materials, 2021, 11, 2101877.	10.2	37
1413	Designing a solution-processable electron transport layer for transparent organic light-emitting diode. Organic Electronics, 2021, 96, 106252.	1.4	6
1414	High Performance Inkjetâ€Printed Quantumâ€Đot Lightâ€Emitting Diodes with High Operational Stability. Advanced Optical Materials, 2021, 9, 2101069.	3.6	36
1415	Surface state-induced barrierless carrier injection in quantum dot electroluminescent devices. Nature Communications, 2021, 12, 5669.	5.8	27

#	Article	IF	CITATIONS
1416	Enhancement in external quantum efficiency of light-emitting diode based on colloidal silicon nanocrystals. Nanotechnology, 2021, 32, 505611.	1.3	2
1417	The role of alkane chain in primary amine capped CdSe and CdS quantum dots from first-principles. Nanotechnology, 2021, 32, 475706.	1.3	2
1418	Highly Stable Inverted CdSe/ZnS-Based Light-Emitting Diodes by Nonvacuum Technique ZTO as the Electron-Transport Layer. Electronics (Switzerland), 2021, 10, 2290.	1.8	4
1419	Highly efficient and low turn-on voltage quantum-dot light-emitting diodes using a ZnMgO/ZnO double electron transport layer. Current Applied Physics, 2021, 29, 107-113.	1.1	13
1420	Highly efficient transparent quantum-dot light-emitting diodes based on inorganic double electron-transport layers. Photonics Research, 2021, 9, 1979.	3.4	8
1421	Organic-quantum dot hybrid interfaces and their role in photon fission/fusion applications. Chemical Physics Reviews, 2021, 2, 031305.	2.6	17
1422	Enhanced Photoluminescence Intensity of Quantum Dot Films With the Sandwich Column Array Structure by Uniform Electrical Induction. IEEE Transactions on Electron Devices, 2021, 68, 4522-4528.	1.6	2
1423	Thiol Modification Enables ZnO-Nanocrystal Films with Atmosphere-Independent Conductance. Journal of Physical Chemistry C, 2021, 125, 20022-20027.	1.5	9
1424	Nanomaterials: Applications in Electronics. International Journal of Advanced Engineering and Nano Technology, 2021, 4, 7-19.	0.4	2
1425	Dependence of conduction mechanism on bias and temperature in quantum-dot based electroluminescent devices. , 2021, , .		1
1426	Carrier Dynamics in Alloyed Chalcogenide Quantum Dots and Their Lightâ€Emitting Devices. Advanced Energy Materials, 2021, 11, 2101693.	10.2	29
1427	CsPbBr ₃ perovskite quantum-dot paper exhibiting a highest 3  dB bandwidth and realizing a flexible white-light system for visible-light communication. Photonics Research, 2021, 9, 2341.	3.4	30
1428	Overcoming Outcoupling Limit in Perovskite Light-Emitting Diodes with Enhanced Photon Recycling. Nano Letters, 2021, 21, 8426-8432.	4.5	9
1429	Highly-efficient OLED with cesium fluoride electron injection layer. Solid-State Electronics, 2021, 183, 108031.	0.8	7
1430	Color-Tunable Alternating-Current Quantum Dot Light-Emitting Devices. ACS Applied Materials & Interfaces, 2021, 13, 45815-45821.	4.0	12
1431	Optimization of carrier transport layer: A simple but effective approach toward achieving high efficiency all-solution processed InP quantum dot light emitting diodes. Organic Electronics, 2021, 96, 106256.	1.4	3
1432	Flexible PDMS/Al ₂ O ₃ Nanolaminates for the Encapsulation of Blue OLEDs. Advanced Materials Interfaces, 2021, 8, 2100872.	1.9	15
1433	Improved blue quantum dot light-emitting diodes via chlorine passivated ZnO nanoparticle layer*. Chinese Physics B, 2021, 30, 118503.	0.7	3

#	Article	IF	CITATIONS
1434	High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility. Communications Materials, 2021, 2, .	2.9	58
1435	Current status on synthesis, properties and applications of CsPbX ₃ (XÂ=ÂCl, Br, I) perovskite quantum dots/nanocrystals. Nanotechnology, 2021, 32, 502007.	1.3	13
1436	Single-step-fabricated disordered metasurfaces for enhanced light extraction from LEDs. Light: Science and Applications, 2021, 10, 180.	7.7	23
1437	Tuning energy transfer efficiency in quantum dots mixture by controlled ratio. Chinese Physics B, O, , .	0.7	1
1438	Three-dimensional foldable quantum dot light-emitting diodes. Nature Electronics, 2021, 4, 671-680.	13.1	43
1439	Improved performance of quantum dot light-emitting diodes by introducing WO ₃ hole injection layers. Molecular Crystals and Liquid Crystals, 2022, 735, 51-60.	0.4	1
1440	Research Progress of Intramolecular Ï€â€Stacked Small Molecules for Device Applications. Advanced Materials, 2022, 34, e2104125.	11.1	93
1441	Positive temperature dependence of the electroluminescent performance in a colloidal quantum dot light-emitting diode. Dyes and Pigments, 2021, 195, 109703.	2.0	6
1442	Flexible quantum dot light-emitting diodes without sacrificing optical and electrical performance. Applied Surface Science, 2021, 566, 150614.	3.1	9
1443	Electronic characteristics of PbS quantum dots passivated by halides on different surfaces. Applied Surface Science, 2021, 568, 150736.	3.1	2
1444	Enhanced device performance of quantum-dot light-emitting diodes via 2,2′-Bipyridyl ligand exchange. Organic Electronics, 2021, 99, 106326.	1.4	7
1445	Photoluminescent ionic metal halides based on s2 typed ions and aprotic ionic liquid cations. Coordination Chemistry Reviews, 2021, 448, 214185.	9.5	39
1446	Boosting the performance of solution-processed quantum dots light-emitting diodes by a hybrid emissive layer via doping small molecule hole transport materials into quantum dots. Organic Electronics, 2021, 99, 106344.	1.4	6
1447	Modified α-Al2O3 wafer: Enhance the stability of perovskite quantum dots with wide colour gamut for white light-emitting diodes. Applied Surface Science, 2021, 569, 150964.	3.1	7
1448	Water-driven CsPbBr3 nanocrystals and poly(methyl methacrylate)-CsPbBr3 nanocrystal films with bending-endurable photoluminescence. Chemical Engineering Journal, 2021, 425, 131456.	6.6	26
1449	Next-generation nanomaterials for environmental industries: Prospects and challenges. , 2022, , 399-415.		1
1450	Targeting cooling for quantum dots by 57.3°C with air-bubbles-assembled three-dimensional hexagonal boron nitride heat dissipation networks. Chemical Engineering Journal, 2022, 427, 130958.	6.6	16
1451	Study the electronic and magnetic properties of MnxZn1-xO supercell using first principle calculation. Materials Science in Semiconductor Processing, 2022, 137, 106179.	1.9	0

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1452	Progressive advancement of ZnS-based quantum dot LED. Optical and Quantum Electronics, 20	21, 53, 1.	1.5	3
1453	Metal Halide Perovskite/2D Material Heterostructures: Syntheses and Applications. Small Metho 2021, 5, e2000937.	ds,	4.6	24
1454	Quantum-dot and organic hybrid tandem light-emitting diodes with color-selecting intermediate electrodes for full-color displays. Nanoscale, 2021, 13, 16781-16789.	:	2.8	1
1455	Surface-Induced Deprotonation of Thiol Ligands Impacts the Optical Response of CdS Quantum Chemistry of Materials, 2021, 33, 892-901.	Dots.	3.2	20
1456	Large-area and efficient perovskite light-emitting diodes via low-temperature blade-coating. Nati Communications, 2021, 12, 147.	JLG	5.8	100
1457	Regulation of hole transport layer for perovskite quantum dot light-emitting diodes. E3S Web of Conferences, 2021, 245, 03021.		0.2	1
1458	A seed-mediated and double shell strategy to realize large-size ZnSe/ZnS/ZnS quantum dots for color purity blue light-emitting diodes. Nanoscale, 2021, 13, 4562-4568.	high	2.8	23
1459	Modulation of the optical properties of ZnS QD-embedded glass through aluminum and mangar doping. Journal of Materials Chemistry C, 2021, 9, 11261-11271.	iese	2.7	13
1460	Production of C, N Alternating 2D Materials Using Covalent Modification and Their Electroluminescence Performance. Small Science, 2021, 1, 2000042.		5.8	9
1461	Tailoring the lateral size of two-dimensional silicon nanomaterials to produce highly stable and efficient deep-blue emissive silicene-like quantum dots. Journal of Materials Chemistry C, 2021, 9 10065-10072.	9,	2.7	7
1462	Controllable patterning of nanoparticles <i>via</i> solution transfer processes. Materials Chemi Frontiers, 2021, 5, 5247-5256.	stry	3.2	11
1463	Organic–inorganic hybrid thin film light-emitting devices: interfacial engineering and device pl Journal of Materials Chemistry C, 2021, 9, 1484-1519.	nysics.	2.7	25
1464	Electronic Structure Insights into the Tunable Luminescence of CuAlxFe1–xS2/ZnS Nanocrysta Journal of Physical Chemistry C, 2021, 125, 2511-2518.	als.	1.5	6
1465	Filtering Strategy of Colloidal Quantum Dots for Improving Performance of Light-Emitting Diode Journal of Physical Chemistry C, 2021, 125, 2299-2305.	'S.	1.5	4
1466	Significant enhancement in quantum-dot light emitting device stability <i>via</i> a ZnO:polyethylenimine mixture in the electron transport layer. Nanoscale Advances, 2021, 3, 590)0-5907.	2.2	10
1468	Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes. Natur Communications, 2021, 12, 336.	e	5.8	237
1469	Direct Optical Patterning of Quantum Dot Lightâ€Emitting Diodes via In Situ Ligand Exchange. ⁄ Materials, 2020, 32, e2003805.	Advanced	11.1	62
1470	Active matrix QD‣ED with top emission structure by UV lithography for RGB patterning. Journ Society for Information Display, 2020, 28, 499-508.	al of the	0.8	14

#	Article	IF	CITATIONS
1471	Pâ€122: Red and Green Quantum Dots Lightâ€Emitting Diodes Fabricated by Inkjet Printing. Digest of Technical Papers SID International Symposium, 2017, 48, 1715-1718.	0.1	3
1472	Pâ€92: Lowâ€Power Perovskite Photodetector Based on ZnO/CsPbBr ₃ /TFB Heterojunction. Digest of Technical Papers SID International Symposium, 2020, 51, 1715-1718.	0.1	5
1473	Cesium Lead Halide Perovskite Quantum Dots in the Limelight: Dynamics and Applications. Lecture Notes in Nanoscale Science and Technology, 2020, , 175-205.	0.4	5
1474	The chemistry of colloidal semiconductor nanocrystals: From metal-chalcogenides to emerging perovskite. Coordination Chemistry Reviews, 2020, 418, 213333.	9.5	23
1476	Synthesis of Colloidal Quantum Dots with an Ultranarrow Photoluminescence Peak. Chemistry of Materials, 2021, 33, 1799-1810.	3.2	31
1477	Boosting Perovskite Light-Emitting Diode Performance via Tailoring Interfacial Contact. ACS Applied Materials & Interfaces, 2018, 10, 24320-24326.	4.0	96
1478	ZnO Nanoparticles for Quantum-Dot-Based Light-Emitting Diodes. ACS Applied Nano Materials, 2020, 3, 5203-5211.	2.4	60
1479	Molding hemispherical microlens arrays on flexible substrates for highly efficient inverted quantum dot light emitting diodes. Journal of Materials Chemistry C, 2017, 5, 6682-6687.	2.7	33
1480	Ligands as a universal molecular toolkit in synthesis and assembly of semiconductor nanocrystals. Chemical Science, 2020, 11, 2318-2329.	3.7	41
1481	Material and device engineering for high-performance blue quantum dot light-emitting diodes. Nanoscale, 2020, 12, 13186-13224.	2.8	57
1482	Langmuir–Blodgett fabrication of large-area black phosphorus-C ₆₀ thin films and heterojunction photodetectors. Nanoscale, 2020, 12, 19814-19823.	2.8	17
1483	Suppressed efficiency roll-off in blue light-emitting diodes by balancing the spatial charge distribution. Journal of Materials Chemistry C, 2020, 8, 12927-12934.	2.7	10
1484	Transfer mechanisms in semiconductor hybrids with colloidal core/shell quantum dots on ZnSe substrates. Nanotechnology, 2020, 31, 505714.	1.3	2
1485	Thermal transport in ZnO nanocrystal networks synthesized by nonthermal plasma. Physical Review Materials, 2020, 4, .	0.9	4
1486	Trade-Offs Between Illumination and Modulation Performances of Quantum-Dot LED. IEEE Photonics Technology Letters, 2020, 32, 726-729.	1.3	3
1487	Ethanedithiol treatment on zinc oxide films for highly efficient quantum dot light-emitting diodes by reducing exciton quenching. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 304.	0.9	9
1488	Interlayer doping with p-type dopant for charge balance in indium phosphide (InP)-based quantum dot light-emitting diodes. Optics Express, 2019, 27, A1287.	1.7	20
1489	Solution-processed double-layered hole transport layers for highly-efficient cadmium-free quantum-dot light-emitting diodes. Optics Express, 2020, 28, 6134.	1.7	7

#	Article	IF	CITATIONS
1490	Polyethylenimine-ethoxylated dual interfacial layers for highly efficient and all-solution-processed inverted quantum dot light-emitting diodes. Optics Express, 2020, 28, 33971.	1.7	10
1491	Factors influencing the working temperature of quantum dot light-emitting diodes. Optics Express, 2020, 28, 34167.	1.7	9
1492	Enhancing extraction efficiency of quantum dot light-emitting diodes introducing a highly wrinkled ZnO electron transport layer. Optics Letters, 2020, 45, 2243.	1.7	2
1493	Exploring the emission mechanism of dichromatic white-light quantum-dot light-emitting diodes using wavelength-resolved transient electroluminescence analysis. Optics Letters, 2020, 45, 6370.	1.7	3
1494	Phenethylamine ligand engineering of red InP quantum dots for improving the efficiency of quantum dot light-emitting diodes. Optics Letters, 2020, 45, 5800.	1.7	9
1495	Electroluminescence from two l–Ill–VI quantum dots of A–Ga–S (A=Cu, Ag). Optics Letters, 2018, 43, 5287.	1.7	9
1496	Bright and efficient quantum dot light-emitting diodes with double light-emitting layers. Optics Letters, 2018, 43, 5925.	1.7	6
1497	Investigation of stability and optical performance of quantum-dot-based LEDs with methyl-terminated-PDMS-based liquid-type packaging structure. Optics Letters, 2019, 44, 90.	1.7	16
1498	Fabrication of highly efficient pure blue-emitting electroluminescent devices using ZnSe/ZnSe _x S _{1-x} /ZnS QDs. Optical Materials Express, 2020, 10, 3372.	1.6	11
1499	High efficiency solid–liquid hybrid-state quantum dot light-emitting diodes. Photonics Research, 2018, 6, 1107.	3.4	22
1500	Tip-enhanced photoluminescence nano-spectroscopy and nano-imaging. Nanophotonics, 2020, 9, 3089-3110.	2.9	43
1501	Atomic layer deposition for quantum dots based devices. Opto-Electronic Advances, 2020, 3, 19004301-19004314.	6.4	29
1502	Controlling Spontaneous Emission from Perovskite Nanocrystals with Metal–Emitter–Metal Nanostructures. Crystals, 2021, 11, 1.	1.0	17
1503	Development of Colloidal Quantum Dots for Electrically Driven Light-Emitting Devices. Journal of the Korean Ceramic Society, 2017, 54, 449-469.	1.1	36
1504	Applications of organic additives in metal halide perovskite light-emitting diodes. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 158505.	0.2	5
1505	Perovskite light-emitting diodes based on solution-processed metal-doped nickel oxide hole injection layer. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 018101.	0.2	3
1506	Printing High-resolution Micro-patterns by Solution Processes. Chemical Research in Chinese Universities, 2021, 37, 1008-1018.	1.3	4
1507	Efficiency Improvement of Quantum Dot Light-Emitting Diodes via Thermal Damage Suppression with HATCN. ACS Applied Materials & amp; Interfaces, 2021, 13, 49058-49065.	4.0	1

	CITATION R	EPORT	
#	Article	IF	CITATIONS
1508	Optimizing the Performance of Perovskite Nanocrystal LEDs Utilizing Cobalt Doping on a ZnO Electron Transport Layer. Journal of Physical Chemistry Letters, 2021, 12, 10112-10119.	2.1	18
1509	Residual-Solvent-Induced Morphological Transformation by Intense Pulsed Light on Spin-Coated and Inkjet-Printed ZnO NP Films for Quantum-Dot Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 50111-50120.	4.0	6
1510	Achieving high efficiency by improving hole injection into quantum dots in colloidal quantum dot light-emitting devices with organic electron transport layer. Molecular Crystals and Liquid Crystals, 0, , 1-7.	0.4	0
1511	Highâ€&peed Fabrication of Allâ€Inkjetâ€Printed Organometallic Halide Perovskite Lightâ€Emitting Diodes on Elastic Substrates. Advanced Materials, 2021, 33, e2102095.	11.1	29
1512	Solutionâ€Processed Chemically Nonâ€Destructive Filter Transfer of Carbonâ€Nanotube Thin Films onto Arbitrary Materials. Advanced Materials Interfaces, 2021, 8, 2100953.	1.9	3
1513	Vertically Stacked Full Color Quantum Dots Phototransistor Arrays for Highâ€Resolution and Enhanced Colorâ€Selective Imaging. Advanced Materials, 2022, 34, e2106215.	11.1	23
1514	Patternedâ€Bankâ€Free Electroluminescent Quantum Dot Emitting Array for Passiveâ€Matrix QLED Display. Advanced Materials Technologies, 2022, 7, 2100889.	3.0	11
1515	Analyzing and modulating energy transfer in ternary-emissive system of quantum dot light-emitting diodes towards efficient emission. Optics Express, 2021, 29, 36964.	1.7	4
1516	Activation energy distribution in thermal quenching of exciton and defect-related photoluminescence of InP/ZnS quantum dots. Journal of Luminescence, 2022, 242, 118550.	1.5	6
1517	Thiolate-Assisted Route for Constructing Chalcogen Quantum Dots with Photoinduced Fluorescence Enhancement. ACS Applied Materials & Interfaces, 2021, 13, 48449-48456.	4.0	8
1518	Efficient light-emitting diodes based on oriented perovskite nanoplatelets. Science Advances, 2021, 7, eabg8458.	4.7	68
1519	Positive Sorption Behaviors in the Ligand Exchanges for Water-Soluble Quantum Dots and a Strategy for Specific Targeting. ACS Applied Materials & Interfaces, 2021, 13, 51746-51758.	4.0	10
1520	Influence of annealing temperature on the distribution of particle sizes of quantum dots doped glass. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 127302.	0.2	0
1521	White light emitting diode based on quantum dots and MEH-PPV. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 067301.	0.2	0
1522	Technology Development Trends of Cesium Lead Halide Based Light Emitting Diodes. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2016, 29, 737-749.	0.0	0
1523	Purcell enhanced Spontaneous Emission of Colloidal Perovskite Nanocrystals. , 2017, , .		0
1525	Si nanowires for evolutionary nanotechnology. Series in Materials Science and Engineering, 2017, , 515-536.	0.1	0
1526	Hybrid Quantum Dots /Photonic Crystal Color Tunable Light Emitting Diodes. , 2018, , .		Ο

ARTICLE IF CITATIONS Effect of Thickness of ZnCdSe/ZnS QDs Layer on Performance of QLEDs. Modern Physics, 2018, 08, 1527 0.1 0 271-276. Recent Developments in Synthesis of Colloidal Quantum Dots. Journal of Korean Powder Metallurgy 1528 0.2 Institute, 2018, 25, 346-354. 1529 Ultra-high responsivity graphene-CIS/ZnS QDs hybrid photodetector., 2019,,. 0 Color Purity Enhancement of Green Quantum Dot Light-Emitting Diodes Using the Blue Light Absorber Packaging Structure., 2019,,. The influence of the electron transport and emission layers on the morphological instability of 1531 0 QDLEDs., 2019,,. The Effect of Particle Size on the Optical and Electrical Characteristics of Quantum Dot Light-Emitting Diode using Zinc Oxide Nanoparticles. Proceedings of the International Display 0.1 Workshops, 2019, , 936. Doping B(C6F5)3 into poly[N,Nâ€~-bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine] for efficient quantum dot light-emitting diodes: balancing electron-hole injection and diminishing parasitic resistance. Optical Materials Express, 2020, 10, 1597. 1533 1.6 1 Ultrahigh Color Rendering in RGB Perovskite Microâ€Lightâ€Emitting Diode Arrays with Resonanceâ€Enhanced Photon Recycling for Next Generation Displays. Advanced Optical Materials, 2022, 1534 3.6 19 10, 2101642 Enhance the Light Extraction Efficiency of QLED with Surface Micro-Nanostructure. Journal of 1535 2 1.5 Nanomaterials, 2020, 2020, 1-11. Morphology, Structure, and Optical Properties of Nanocrystalline CdSe Films Doped with Copper. 0.1 Russian Journal of Physical Chemistry A, 2020, 94, 2441-2449. Surface Oxidation of Quantum Dots to Improve the Device Performance of Quantum Dot 1538 12 1.5 Light-Emitting Diodes. Journal of Physical Chemistry C, 2020, 124, 28424-28430. Insight into perovskite light-emitting diodes based on PVP buffer layer. Journal of Luminescence, 2022, 1.5 241, 118515. Polyethylenimine modified sol-gel ZnO electron-transporting layers for quantum-dot light-emitting 1540 1.4 9 diodes. Organic Electronics, 2022, 100, 106393. Systematic strategy for high-performance small molecular hybrid white OLED via blade coating at 1541 1.4 ambient condition. Organic Electronics, 2022, 100, 106366. Toward phosphorescent and delayed fluorescent carbon quantum dots for next-generation 1542 23 2.7 electroluminescent displays. Journal of Materials Chemistry C, 2022, 10, 2333-2348. Perovskite Quantum Dots Based Light-Emitting Diodes. Springer Series in Materials Science, 2020, , 1543 0.4 107-138. Fast-response, high-stability, and high-efficiency full-color quantum dot light-emitting diodes with 1544 3.58 charge storage layer. Science China Materials, 2022, 65, 1012-1019. Effect of inorganic interfacial modification layer on the performance of quantum-dots light-emitting 1545 diodes. Japanese Journal of Applied Physics, 2020, 59, 124002.

#	Article		CITATIONS
1546	Correlation between the structural morphology and device characteristics of quantum dot based emission layer blended with small molecular hole transport material. Applied Surface Science, 2021, , 151925.		0
1547	Bright CdSe/CdS Quantum Dot Light-Emitting Diodes with Modulated Carrier Dynamics via the Local Kirchhoff Law. ACS Applied Materials & Interfaces, 2021, 13, 56476-56484.	4.0	6
1548	Nanophotonics for current and future white light-emitting devices. Journal of Applied Physics, 2021, 130, .	1.1	8
1549	Tuning the Reactivity of Indium Alkanoates by Tertiary Organophosphines for the Synthesis of Indium-Based Quantum Dots. Chemistry of Materials, 2021, 33, 9348-9356.	3.2	10
1550	Enhancing hole injection by electric dipoles for efficient blue InP QLEDs. Applied Physics Letters, 2021, 119, .	1.5	13
1551	Improved performance of CdSe/ZnS quantum dot light-emitting diodes through doping with small molecule CBP. Optoelectronics Letters, 2021, 17, 656-660.	0.4	0
1552	Toward Stable and Efficient Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32, 2109495.	7.8	77
1553	Observation and Suppression of Stacking Interface States in Sandwich-Structured Quantum Dot Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 56630-56637.	4.0	5
1554	Dual Interface Protection for High Performance and Excellent Long-Term Stability of Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 57664-57672.	4.0	7
1555	Fabrication and electroluminescence properties of alloyed CdS _x Se _{1â~'x} quantum dots-based LEDs. Semiconductor Science and Technology, 2022, 37, 035009.	1.0	4
1556	Vacuum-evaporated lead halide perovskite LEDs [Invited]. Optical Materials Express, 2022, 12, 256.	1.6	6
1557	Selective Hydrothermal Synthesis of Water-Soluble CdTe and CdTe/CdS Colloidal Quantum Dots by Controlling the Te/Cd Molar Ratio of the Precursor Solution. Bulletin of the Chemical Society of Japan, 2021, 94, 2880-2885.	2.0	1
1558	Electrically Pumped QD Light Emission from LEDs to Lasers. Information Display, 2021, 37, 6-17.	0.1	2
1559	Perovskite White Light Emitting Diodes: Progress, Challenges, and Opportunities. ACS Nano, 2021, 15, 17150-17174.	7.3	101
1560	Ultrahigh Resolution Pixelated Topâ€Emitting Quantumâ€Dot Lightâ€Emitting Diodes Enabled by Colorâ€Converting Cavities. Small Methods, 2022, 6, e2101090.	4.6	20
1561	Efficient Tandem Quantumâ€Dot LEDs Enabled by An Inorganic Semiconductorâ€Metalâ€Dielectric Interconnecting Layer Stack. Advanced Materials, 2022, 34, e2108150.	11.1	53
1562	Gateway towards recent developments in quantum dot-based light-emitting diodes. Nanoscale, 2022, 14, 4042-4064.	2.8	14
1563	Operating Mechanism of Quantum-Dot Light-Emitting Diodes Under Alternating Current-Drive. IEEE Electron Device Letters, 2022, 43, 256-259.	2.2	4

#	Article		CITATIONS
1564	Grain Size-Engineering of PbS Colloidal Quantum Dots-Based NO ₂ Gas Sensor. IEEE Sensors Journal, 2022, 22, 3017-3023.	2.4	7
1565	Solution-Processed Quantum-Dots Light-Emitting Transistors With Equivalent Efficiency of Light-Emitting Diodes. IEEE Transactions on Electron Devices, 2022, 69, 521-524.	1.6	2
1566	Efficient and Stable Quantumâ€Dot Lightâ€Emitting Diodes Enabled by Tin Oxide Multifunctional Electron Transport Layer. Advanced Optical Materials, 2022, 10, 2102404.	3.6	16
1567	Bandgap engineering of lead-free ternary halide perovskites for photovoltaics and beyond: Recent progress and future prospects. Nano Energy, 2022, 92, 106710.	8.2	27
1568	One-step low-temperature solid-state synthesis of lead-free cesium copper halide Cs3Cu2Br5 phosphors with bright blue emissions. Materials Today Chemistry, 2022, 23, 100678.	1.7	5
1569	Dimension tailoring via antisolvent enables efficient perovskite light-emitting diodes. Materials Today Nano, 2022, 17, 100170.	2.3	5
1570	Degradation dynamics of quantum dots in white LED applications. Scientific Reports, 2021, 11, 24153.	1.6	4
1571	Wide color gamut white light-emitting diodes based on two-dimensional semiconductor nanoplatelets. Optics Express, 2022, 30, 3719.	1.7	4
1572	Tuning Precursor–Amine Interactions for Light-Emitting Lead Bromide Perovskites. Journal of Physical Chemistry Letters, 2022, 13, 704-710.	2.1	5
1573	Field-induced light emission from a close-packed Mn-doped ZnS quantum-dot layer in an alternate-current thin-film electroluminescent configuration. Journal of Applied Physics, 2022, 131, .	1.1	2
1574	Thermal assisted up-conversion electroluminescence in quantum dot light emitting diodes. Nature Communications, 2022, 13, 369.	5.8	49
1575	Enhanced Electroluminescence via a Nanohybrid Material Consisting of Aromatic Ligand-Modified InP Quantum Dots and an Electron-Blocking Polymer as the Single Active Layer in Quantum Dot–LEDs. Nanomaterials, 2022, 12, 408.	1.9	5
1576	ZnO-Based Electron-Transporting Layers for Perovskite Light-Emitting Diodes: Controlling the Interfacial Reactions. Journal of Physical Chemistry Letters, 2022, 13, 694-703.	2.1	19
1577	Plasmonic–perovskite solar cells, light emitters, and sensors. Microsystems and Nanoengineering, 2022, 8, 5.	3.4	41
1578	An efficient organic and inorganic hybrid interlayer for high performance inverted red cadmium-free quantum dot light-emitting diodes. Nanoscale Advances, 2022, 4, 904-910.	2.2	6
1579	Perspective on Metal Halides with Selfâ€Trapped Exciton toward White Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	3.6	14
1580	Solution-Processed Smooth Copper Thiocyanate Layer with Improved Hole Injection Ability for the Fabrication of Quantum Dot Light-Emitting Diodes. Nanomaterials, 2022, 12, 154.	1.9	1
1581	Blueâ€Light Emissive Type II ZnO@5â€Aminoâ€2â€Naphthalene Sulfonic Acid Core–Shell Quantum Dots. Advanced Photonics Research, 2022, 3, .	1.7	3

#	Article		CITATIONS
1582	Highly Efficient and Bright Quantumâ€Dot Lightâ€Emitting Diodes with Enhanced Charge Balance by Adjusting the Thickness of Zn _{0.9} Mg _{0.1} O Electron Transport Layer. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .		2
1583	Bifunctional Interfacial Regulation with 4â€(Trifluoromethyl) Benzoic Acid to Reduce the Photovoltage Deficit of MAPbI ₃ â€Based Perovskite Solar Cells. ChemNanoMat, 2022, 8, .	1.5	2
1584	Efficient Solution-Processed Green InP-Based Quantum Dot Light-Emitting Diodes With a Stepwise Hole Injection Layer. IEEE Electron Device Letters, 2022, 43, 410-413.	2.2	2
1585	Dynamic Covalent Bond Crossâ€Linked Luminescent Silicone Elastomer with Selfâ€Healing and Recyclable Properties. Macromolecular Rapid Communications, 2022, 43, e2100885.	2.0	26
1586	Contributions of exciton fine structure and hole trapping on the hole state filling effect in the transient absorption spectra of CdSe quantum dots. Journal of Chemical Physics, 2022, 156, 054704.	1.2	8
1587	Hole injection improvement in quantum-dot light-emitting diodes using bi-layered hole injection layer of PEDOT:PSS and V2O. Optics and Laser Technology, 2022, 149, 107864.	2.2	3
1588	Tripling Light Conversion Efficiency of μLED Displays by Light Recycling Black Matrix. IEEE Photonics Journal, 2022, 14, 1-7.	1.0	10
1589	Tailoring Colloidal Core–Shell Quantum Dots for Optoelectronics. RSC Nanoscience and Nanotechnology, 2022, , 492-517.	0.2	0
1590	Improved hole injection for CsPbI3 nanocrystals based light-emitting diodes via coevaporation of hole transport layer. Applied Physics Letters, 2022, 120, .	1.5	8
1591	Spectral-temporal luminescence properties of Colloidal CdSe/ZnS Quantum Dots in relevant polymer matrices for integration in low turn-on voltage AC-driven LEDs. Optics Express, 2022, 30, 10563.	1.7	2
1592	Localized Excitonic Electroluminescence from Carbon Nanodots. Journal of Physical Chemistry Letters, 2022, 13, 1587-1595.	2.1	18
1593	Light-Emitting Diodes Based on Two-Dimensional Nanoplatelets. Energy Material Advances, 2022, 2022, .	4.7	26
1594	Terahertz Field-Induced Reemergence of Quenched Photoluminescence in Quantum Dots. Nano Letters, 2022, , .	4.5	0
1595	Selfâ€Induced Solutal Marangoni Flows Realize Coffeeâ€Ringâ€Less Quantum Dot Microarrays with Extensive Geometric Tunability and Scalability. Advanced Science, 2022, 9, e2104519.	5.6	15
1596	Structural Engineering toward High Monochromaticity of Carbon Dots-Based Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2021, 12, 12107-12113.	2.1	8
1597	Highly Efficient Inverted Quantum Dot Light-Emitting Diodes Employing Sol-Gel Derived Li-Doped Zno as Electron Transport Layer. SSRN Electronic Journal, 0, , .	0.4	0
1598	Progress in the development of the display performance of AR, VR, QLED and OLED devices in recent years. Journal of Information Display, 2022, 23, 1-17.	2.1	80
1599	Highly Stable and RecoverableÂHumidity SensorÂUsingÂÂFluorescentÂQuantum Dot Film. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	Citations
1600	High-efficiency visible-light photocatalytic H ₂ O ₂ production using CdSe-based core/shell quantum dots. Catalysis Science and Technology, 2022, 12, 2865-2871.	2.1	2
1601	Al Reaction-Induced Conductive a-InGaZnO as Pixel Electrode for Active-Matrix Quantum-Dot LED Displays. IEEE Electron Device Letters, 2022, 43, 749-752.	2.2	3
1602	The mechanism of ligand-induced chiral transmission through a top-down selective domain etching process. Materials Chemistry Frontiers, 2022, 6, 1194-1208.	3.2	2
1603	Luminescent Nanomaterials for Energy-Efficient Display and Healthcare. ACS Energy Letters, 2022, 7, 1001-1020.	8.8	51
1604	Blue-Emitting InP/GaP/ZnS Quantum Dots with Enhanced Stability by Siloxane Capping: Implication for Electroluminescent Devices. ACS Applied Nano Materials, 2022, 5, 2801-2811.	2.4	9
1605	Enhanced emission directivity from asymmetrically strained colloidal quantum dots. Science Advances, 2022, 8, eabl8219.	4.7	10
1606	Excited-state regulation in eco-friendly ZnSeTe-based quantum dots by cooling engineering. Science China Materials, 2022, 65, 1569-1576.	3.5	8
1607	Warm white-light emission harvesting with enhanced color rendering index in conventional alloyed CdS _{0.7} Se _{0.3} quantum dots. Materials Research Letters, 2022, 10, 264-270.	4.1	3
1608	Ultrahigh-resolution quantum-dot light-emitting diodes. Nature Photonics, 2022, 16, 297-303.	15.6	97
1609	<i>Ab initio</i> nonadiabatic dynamics of semiconductor materials via surface hopping method. Chinese Journal of Chemical Physics, 2022, 35, 16-37.	0.6	1
1610	Pure-colored red, green, and blue quantum dot light-emitting diodes using emitting layers composed of cadmium-free quantum dots and organic electron-transporting materials. Japanese Journal of Applied Physics, 2022, 61, 052004.	0.8	4
1611	Patterning of quantum dot lightâ€emitting diodes based on IGZO films. Journal of the Society for Information Display, 2022, 30, 585-592.	0.8	0
1612	Balancing charge injection in quantum dot light-emitting diodes to achieve high efficienciy of over 21%. Science China Materials, 2022, 65, 1882-1889.	3.5	9
1613	Efficient Radiative Enhancement in Perovskite Lightâ€Emitting Devices through Involving a Novel Sandwich Localized Surface Plasmon Structure. Small Methods, 2022, 6, e2200163.	4.6	9
1614	Revealing a Zinc Oxide/Perovskite Luminescence Quenching Mechanism Targeting Low-Roll-off Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2022, 13, 3121-3129.	2.1	7
1615	Band Structure Engineering and Defect Passivation of Cu _{<i>x</i>} Ag _{1a€"<i>x</i>} InS ₂ /ZnS Quantum Dots to Enhance Photoelectrochemical Hydrogen Evolution. ACS Omega, 2022, 7, 9642-9651.	1.6	4
1616	Synergistic Effect of Halogen Ions and Shelling Temperature on Anion Exchange Induced Interfacial Restructuring for Highly Efficient Blue Emissive InP/ZnS Quantum Dots. Small, 2022, 18, e2108120.	5.2	23
1617	Strategies to Enhance Light Emission from Two-Dimensional Perovskite Light-Emitting Diodes: Challenges and Future Opportunities. ACS Applied Electronic Materials, 2022, 4, 1469-1484.	2.0	8

#	Article	IF	CITATIONS
1618	Electronic and Excitonic Processes in Quantum Dot Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2022, 13, 2878-2884.	2.1	21
1619	Alleviating Electron Over-Injection for Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes toward Deep-Blue Emission. ACS Photonics, 2022, 9, 1400-1408.	3.2	18
1621	Cadmiumâ€Doped Zinc Sulfide Shell as a Hole Injection Springboard for Red, Green, and Blue Quantum Dot Lightâ€Emitting Diodes. Advanced Science, 2022, 9, e2104488.	5.6	19
1622	Quantum-dot and organic hybrid light-emitting diodes employing a blue common layer for simple fabrication of full-color displays. Nano Research, 2022, 15, 6477-6482.	5.8	8
1623	Light-emitting field-effect transistors with EQE over 20% enabled by a dielectric-quantum dots-dielectric sandwich structure. Science Bulletin, 2022, 67, 529-536.	4.3	23
1624	Improved Charge Balance in Green Perovskite Light-Emitting Diodes with Atomic-Layer-Deposited Al ₂ O ₃ . ACS Applied Materials & Interfaces, 2022, 14, 34247-34252.	4.0	10
1625	Finely Controlled Synthesis of Zn _{1–<i>x</i>} Mg _{<i>x</i>} O Nanoparticles with Uniform Size Distribution Used as Electron Transport Materials for Red QLEDs. ACS Applied Electronic Materials, 2022, 4, 1875-1881.	2.0	8
1626	Beyond a Linker: The Role of Photochemistry of Crosslinkers in the Direct Optical Patterning of Colloidal Nanocrystals. Angewandte Chemie - International Edition, 2022, 61, .	7.2	24
1627	Beyond a Linker: The Role of Photochemistry of Crosslinkers in the Direct Optical Patterning of Colloidal Nanocrystals. Angewandte Chemie, 2022, 134, .	1.6	1
1628	Approaching high-performance light-emitting devices upon perovskite quantum dots: Advances and prospects. Nano Today, 2022, 43, 101449.	6.2	53
1629	Fabrication of inverted inorganic–organic quantum-dot light-emitting diodes with solution-processed n-type oxide electron injection layers and QD-polymer blend light-emitting layers. Japanese Journal of Applied Physics, 2022, 61, SE1018.	0.8	1
1630	Full-Color Quantum Dot Light-Emitting Diodes Based on Microcavities. IEEE Photonics Journal, 2022, 14, 1-9.	1.0	7
1631	Highly efficient inverted quantum dot light-emitting diodes employing sol-gel derived Li-doped ZnO as electron transport layer. Organic Electronics, 2022, 103, 106466.	1.4	12
1632	Quantum-dot light-emitting diodes with Fermi-level pinning at the hole-injection/hole-transporting interfaces. Nano Research, 2022, 15, 7453-7459.	5.8	5
1633	Single Conjugated Polymer with Four Stepwise HOMO Levels for Effective Hole Injection Across Large Barrier 1.4AeV to Core–Shell Quantum Dot Layer for Electroluminescence in Inverted QLED. Advanced Optical Materials, 2022, 10, .	3.6	13
1634	Improving hole injection ability using a newly proposed WO3/NiOx bilayer in solution processed quantum dot light-emitting diodes. Current Applied Physics, 2022, 38, 81-90.	1.1	1
1635	Linear cross-linkers enabling photothermally cured hole transport layer for high-performance quantum dots light-emitting diodes with ultralow efficiency roll-off. Chemical Engineering Journal, 2022, 439, 135702.	6.6	10
1636	Fabrication of Largeâ€Area Uniform Nanometerâ€Thick Functional Layers and Their Stacks for Flexible Quantum Dot Lightâ€Emitting Diodes. Small Methods, 2022, 6, e2101030.	4.6	3

#	Article		CITATIONS
1637	Unraveling the effect of shell thickness on charge injection in blue quantum-dot light-emitting diodes. Applied Physics Letters, 2021, 119, .		12
1638	Optimized Infrared LED and Its Use in an Allâ€HgTe Nanocrystalâ€Based Active Imaging Setup. Advanced Optical Materials, 2022, 10, .		16
1639	GO-induced effective interconnection layer for all solution-processed tandem quantum dot light-emitting diodes. Journal of Central South University, 2021, 28, 3737-3746.	1.2	5
1640	Ba-doped CsPbBr ₃ with high quantum efficiency for wide color gamut on white light-emitting diodes. Applied Physics Letters, 2021, 119, 251103.	1.5	0
1642	Deepâ€Redâ€Emitting Colloidal Quantum Well Lightâ€Emitting Diodes Enabled through a Complex Design of Core/Crown/Double Shell Heterostructure. Small, 2022, 18, e2106115.	5.2	15
1643	Blue-Emitting CdSe Nanoplatelets Enabled by Sulfur-Alloyed Heterostructures for Light-Emitting Diodes with Low Turn-on Voltage. ACS Applied Nano Materials, 2022, 5, 1367-1376.	2.4	14
1644	Perovskites: weaving a network of knowledge beyond photovoltaics. Journal of Materials Chemistry A, 2022, 10, 19046-19066.	5.2	5
1645	Ultra-stable narrowband green-emitting CsPbBr ₃ quantum dot-embedded glass ceramics for wide color gamut backlit displays. Journal of Materials Chemistry C, 2022, 10, 7263-7272.	2.7	14
1646	Pressure-stimulus-responsive behaviors of core–shell InP/ZnSe nanocrystals: remarkable piezochromic luminescence and structural assembly. Nanoscale, 2022, 14, 7530-7537.	2.8	2
1647	A Multifunctional Ionic Liquid Additive Enabling Stable and Efficient Perovskite Lightâ€Emitting Diodes. Small, 2022, 18, e2200498.	5.2	24
1648	Developments and challenges ahead in blue perovskite light-emitting devices. Journal of Energy Chemistry, 2022, 71, 418-433.	7.1	16
1649	Green CdSe/CdSeS Core/Alloyed rown Nanoplatelets Achieve Unity Photoluminescence Quantum Yield over a Broad Emission Range. Advanced Optical Materials, 2022, 10, .	3.6	11
1650	Solution-Processed Red, Green, and Blue Quantum Rod Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2022, 14, 18723-18735.	4.0	7
1651	Silk Fibroinâ€Based Flexible Organic Lightâ€Emitting Diode with High Light Extraction Efficiency. Advanced Optical Materials, 2022, 10, .	3.6	6
1652	Anisotropic nanocrystal superlattices overcoming intrinsic light outcoupling efficiency limit in perovskite quantum dot light-emitting diodes. Nature Communications, 2022, 13, 2106.	5.8	34
1653	Engineering organic–inorganic perovskite planar heterojunction for efficient carbon dots based light-emitting diodes. Applied Physics Reviews, 2022, 9, .	5.5	7
1658	Enhancing Hole Transport of Quantumâ€Dot Lightâ€Emitting Diodes by a Cruciform Oligothiophene for Effective pâ€Type Doping. Macromolecular Rapid Communications, 2022, , 2200187.	2.0	0
1659	Controlling electron transport towards efficient all-solution-processed quantum dot light emitting diodes. Journal of Materials Chemistry C, 2022, 10, 8373-8380.	2.7	4

#	Article	IF	CITATIONS
1660	Multifunctional AIEgen-based luminescent metal–organic frameworks with coordination-induced emission for chemical sensing. New Journal of Chemistry, 2022, 46, 9641-9649.	1.4	10
1661	Localized surface plasmon-enhanced blue electroluminescent device based on ZnSeTe quantum dots and AuAg nanoparticles. Inorganic Chemistry Frontiers, 2022, 9, 3138-3147.	3.0	5
1662	Boosting the efficiency and stability of green InP quantum dot light emitting diodes by interface dipole modulation. Journal of Materials Chemistry C, 2022, 10, 8192-8198.	2.7	12
1663	Exploring performance degradation of quantum-dot light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 8642-8649.	2.7	9
1664	Perovskite light-emitting diodes. Nature Electronics, 2022, 5, 203-216.	13.1	268
1665	Versatile Biogenic Electrolytes for Highly Performing and Selfâ€Stable Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2022, 32, .	7.8	8
1666	All inkjetâ€printed 6.95″ 217 ppi active matrix QDâ€LED display with RGB Cdâ€free QDs in the topâ€emis structure. Journal of the Society for Information Display, 2022, 30, 433-440.	ssion devid	^{ce} 9
1667	Highly Efficient Red Quantum Dot Light-Emitting Diodes by Balancing Charge Injection and Transport. ACS Applied Materials & Interfaces, 2022, 14, 21263-21269.	4.0	19
1668	Marked Efficiency Improvement of FAPb0.7Sn0.3Br3 Perovskite Light-Emitting Diodes by Optimization of the Light-Emitting Layer and Hole-Transport Layer. Nanomaterials, 2022, 12, 1454.	1.9	4
1669	Role of Atomic Structure on Exciton Dynamics and Photoluminescence in NIR Emissive InAs/InP/ZnSe Quantum Dots. Journal of Physical Chemistry C, 2022, 126, 7576-7587.	1.5	7
1670	Colloidal Quantum Dot Light Emitting Diodes at Telecom Wavelength with 18% Quantum Efficiency and Over 1ÂMHz Bandwidth. Advanced Science, 2022, 9, e2200637.	5.6	15
1671	Resonant defect recombination-localized surface plasmon energy transfer and exciton dominated fluorescence in ZnO–Au–ZnO multi-interfaced heteronanocrystals. Journal of Chemical Physics, 2022, 156, 174705.	1.2	1
1672	Band alignment engineering of semiconductor nanocrystal heterostructures towards emerging applications. Solar Rrl, 0, , .	3.1	1
1673	Highly Efficient (>9%) Leadâ€Free AgBiS ₂ Colloidal Nanocrystal/Organic Hybrid Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	22
1674	ZnF ₂ -Assisted Synthesis of Highly Luminescent InP/ZnSe/ZnS Quantum Dots for Efficient and Stable Electroluminescence. Nano Letters, 2022, 22, 4067-4073.	4.5	62
1675	Highly stable and recoverable humidity sensor using fluorescent quantum dot film. Optics Letters, 2022, 47, 2674.	1.7	2
1676	Novel and promising material (CuInSn3S8) for photovoltaic and optoelectronic applications. Surfaces and Interfaces, 2022, 31, 102037.	1.5	4
1677	Cs4PbBr6@PDMS film prepared by a facile two-step method for wide color gamut backlit display. Applied Surface Science, 2022, 596, 153568.	3.1	2

#	Article		CITATIONS
1678	Highâ€Performance Blue Quantumâ€Dot Lightâ€Emitting Diodes by Alleviating Electron Trapping. Advanced Optical Materials, 2022, 10, .		14
1679	TCNQ-based organic cocrystal integrated red emission and n-type charge transport. Frontiers of Optoelectronics, 2022, 15, .		5
1680	Highly photoluminescent water-soluble ZnSe/ZnS/ZnS quantum dots via successive shell growth approach. Journal of Materials Science: Materials in Electronics, 2022, 33, 13905-13912.	1.1	2
1681	Unravelling Alkaliâ€Metalâ€Assisted Domain Distribution of Quasiâ€2D Perovskites for Cascade Energy Transfer toward Efficient Blue Lightâ€Emitting Diodes. Advanced Science, 2022, 9, e2200393.		26
1682	Research Trend on Information Display Technology. Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers, 2019, 73, 318-329.		0
1683	A Thermally Activated Delayed Fluorescence Green OLED with 4500 h Lifetime and 20% External Quantum Efficiency by Optimizing the Emission Zone using a Singleâ€Emission Spectrum Technique. Advanced Materials, 2022, 34, e2201409.	11.1	18
1684	Double-type-I charge-injection heterostructure for quantum-dot light-emitting diodes. Materials Horizons, 2022, 9, 2147-2159.	6.4	5
1685	Quasiâ€Shellâ€Growth Strategy Achieves Stable and Efficient Green InP Quantum Dot Lightâ€Emitting Diodes. Advanced Science, 2022, 9, .	5.6	33
1686	Electrophoreticâ€Driven In Situ Polymerization Depositing Highâ€Quality Perovskite Films for Photodetectors. Advanced Optical Materials, 2022, 10, .		4
1687	Charge Balance in Red QLEDs for High Efficiency and Stability via Ionic Liquid Doping. Advanced Functional Materials, 2022, 32, .	7.8	17
1688	High Radiance of Perovskite Lightâ€Emitting Diodes Enabled by Perovskite Heterojunctions. Advanced Functional Materials, 2022, 32, .		11
1689	Tunable ultraviolet to deep blue light emission from sulfur nanodots fabricated by a controllable fission-aggregation strategy. Science China Materials, 0, , .	3.5	3
1690	Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nature Photonics, 2022, 16, 505-511.	15.6	152
1691	Colloidal Quantum-dot Light Emitting Diodes with Bias-tunable Color. Photonics Research, 0, , .	3.4	5
1692	Building One-Dimensional Hole Transport Channels in Cross-Linked Polymers to Enable Efficient Deep Blue Qled. SSRN Electronic Journal, 0, , .	0.4	0
1693	Improved Efficiency of Lightâ€Emitting Diodes by Plasmonic Nanopatterning of the Chargeâ€Transfer Layer. Advanced Optical Materials, 0, , 2200156.	3.6	1
1694	Efficient InP/ZnSe/ZnS quantum dot shelling and the effect of a bi-layered organic-inorganic electron-transport layer on the performance of quantum dot light-emitting diode devices. Organic Electronics, 2022, , 106569.	1.4	3
1695	Alkylamine-Doping Poly(3,4-ethylene dioxythiophene):Poly(styrene sulfonic acid)-Enhanced Operational Stability of Perovskite Light-Emitting Diodes: Chain Length Effect. ACS Applied Electronic Materials, 2022, 4, 2993-2999.	2.0	2

#	Article		CITATIONS
1696	Solvent-mediated surface ligand exchange to enhance the performance of quantum-dot light-emitting diodes. Organic Electronics, 2022, 108, 106561.	1.4	1
1697	Constructing Effective Hole Transport Channels in Cross‣inked Hole Transport Layer by Stacking Discotic Molecules for High Performance Deep Blue QLEDs. Advanced Science, 2022, 9, .	5.6	16
1698	On the accurate characterization of quantum-dot light-emitting diodes for display applications. Npj Flexible Electronics, 2022, 6, .	5.1	8
1699	Highly efficient blue quantum-dot light-emitting diodes based on a mixed composite of a carbazole donor and a triazine acceptor as the hole transport layer. Physical Chemistry Chemical Physics, 2022, 24, 16148-16155.	1.3	3
1700	Revealing the Negative Capacitance Effect in Silicon Quantum Dot Light-Emitting Diodes via Temperature-Dependent Capacitance-Voltage Characterization. IEEE Photonics Journal, 2022, 14, 1-9.	1.0	3
1701	A polymer/small-molecule binary-blend hole transport layer for enhancing charge balance in blue perovskite light emitting diodes. Journal of Materials Chemistry A, 2022, 10, 13928-13935.	5.2	15
1702	Over 32.5% Efficient Top-Emitting Quantum-Dot LEDs with Angular-Independent Emission. ACS Applied Materials & Interfaces, 2022, 14, 30039-30045.	4.0	21
1703	Narrow electroluminescence in bromide ligand-capped cadmium chalcogenide nanoplatelets. Applied Physics Letters, 2022, 120, .	1.5	4
1704	Highly Stable SnO ₂ -Based Quantum-Dot Light-Emitting Diodes with the Conventional Device Structure. ACS Nano, 2022, 16, 9631-9639.	7.3	14
1705	Highly luminescent air-stable AgInS2/ZnS core/shell nanocrystals for grow lights. Optical Materials, 2022, 130, 112564.	1.7	5
1706	Hot carriers assisted mixed-dimensional graphene/MoS2/p-GaN light emitting diode. Carbon, 2022, 197, 192-199.	5.4	9
1707	Charge carrier analysis via impedance spectroscopy and the achievement of high performance in CdSe/ZnS:di-[4-(N,N-di-p-tolyl-amino)-phenyl]cyclohexane hybrid quantum dot light-emitting diodes. Organic Electronics, 2022, 108, 106593.	1.4	8
1708	Red-emitting micro PeLEDs for UHD displays by using capillary force lithography. Chemical Engineering Journal, 2022, 448, 137727.	6.6	2
1709	Analysis of Low-Frequency Noise in Quantum Dot/Metal-Oxide Phototransistors With Metal Chalcogenide Interfaces. IEEE Electron Device Letters, 2022, 43, 1499-1502.	2.2	5
1710	Template-Based Controlled Synthesis and Bioapplication of AgInSe ₂ :Zn ²⁺ Near-Infrared Luminescent Quantum Dots [※] . Acta Chimica Sinica, 2022, 80, 625.	0.5	1
1711	Dielectric barrier discharge-accelerated one-pot synthesis of sulfur quantum dots for fluorescent sensing of lead ions and <scp>l</scp> -cysteine. Chemical Communications, 2022, 58, 8614-8617.	2.2	8
1712	Transient Dynamics of Charges and Excitons in Quantum Dot Lightâ \in Emitting Diodes. Small, 2022, 18, .	5.2	15
1713	Pâ€89: Highâ€Efficiency Red Quantum Dot Lightâ€Emitting Diodes with Acrylateâ€Treated ZnMgO as an Electron Transport Layer. Digest of Technical Papers SID International Symposium, 2022, 53, 1357-1360.	0.1	0

#	Article		CITATIONS
1714	Two-band optical gain and ultrabright electroluminescence from colloidal quantum dots at 1000 A cmâ^'2. Nature Communications, 2022, 13, .		22
1715	13â€1: <i>Invited Paper:</i> Optimizations for the Commercialization of Inkjetâ€Printed Quantumâ€Dot Lightâ€Emitting Diode Displays. Digest of Technical Papers SID International Symposium, 2022, 53, 132-135.	0.1	0
1716	Performance Enhancement of InP Quantum Dot Light-Emitting Diodes via a Surface-Functionalized ZnMgO Electron Transport Layer. ACS Energy Letters, 2022, 7, 2247-2255.	8.8	25
1717	Ultralow-voltage operation of light-emitting diodes. Nature Communications, 2022, 13, .	5.8	23
1718	High-Performance Deep Red Colloidal Quantum Well Light-Emitting Diodes Enabled by the Understanding of Charge Dynamics. ACS Nano, 2022, 16, 10840-10851.		21
1719	Nondestructive Direct Photolithography for Patterning Quantum Dot Films by Atomic Layer Deposition of ZnO. Advanced Materials Interfaces, 2022, 9, .	1.9	11
1720	Quantum dots / TiO2 hybrid photonic crystal: Fabrication and application for highly sensitive and visible region-responsive biosensor. Microelectronic Engineering, 2022, 263, 111842.		1
1721	High Performance InPâ€based Quantum Dot Lightâ€Emitting Diodes via the Suppression of Fieldâ€Enhanced Electron Delocalization. Advanced Functional Materials, 2022, 32, .	7.8	23
1722	Lecithin Capping Ligands Enable Ultrastable Perovskite-Phase CsPbl ₃ Quantum Dots for Rec. 2020 Bright-Red Light-Emitting Diodes. Journal of the American Chemical Society, 2022, 144, 13302-13310.	6.6	59
1723	Boosting electroluminescence performance of all solution processed InP based quantum dot light emitting diodes using bilayered inorganic hole injection layers. Photonics Research, 2022, 10, 2133.	3.4	5
1724	SnO ₂ Quantum Dots-Functionalized MoO ₃ Nanobelts for High-Selectivity Ethylene Sensing. ACS Applied Nano Materials, 2022, 5, 10485-10494.	2.4	11
1725	Highâ€Performance Inkjetâ€Printed Blue QLED Enabled by Crosslinked and Intertwined Hole Transport Layer. Advanced Optical Materials, 2022, 10, .	3.6	23
1726	Over 15% Efficiency PbS Quantumâ€Dot Solar Cells by Synergistic Effects of Three Interface Engineering: Reducing Nonradiative Recombination and Balancing Charge Carrier Extraction. Advanced Energy Materials, 2022, 12, .	10.2	54
1727	Nondestructive Photopatterning of Heavyâ€Metalâ€Free Quantum Dots. Advanced Materials, 2022, 34, .	11.1	22
1728	An electrical and infrared controllable color emission quantum dot light-emitting diode. AIP Advances, 2022, 12, .	0.6	2
1729	Taming quantum dots nucleation and growth enables stable and efficient blue light-emitting devices. Photonics Research, 0, , .	3.4	0
1731	Temperature-dependent transition of charge transport in core/shell structured colloidal quantum dot thin films: From Poole–Frenkel emission to variable-range hopping. Applied Physics Letters, 2022, 121, 063301.	1.5	1
1732	Molecular Design of Diazo Compound for Carbene-Mediated Cross-Linking of Hole-Transport Polymer in QLED with Reduced Energy Barrier and Improved Charge Balance. ACS Applied Materials & Interfaces, 2022, 14, 39149-39158.	4.0	13

#	Article		CITATIONS
1733	Optoelectronic system and device integration for quantum-dot light-emitting diode white lighting with computational design framework. Nature Communications, 2022, 13, .	5.8	10
1734	A roadmap for the commercialization of perovskite light emitters. Nature Reviews Materials, 2022, 7, 757-777.	23.3	96
1735	Highly-efficient thermoelectric-driven light-emitting diodes based on colloidal quantum dots. Nano Research, 2022, 15, 9402-9409.	5.8	8
1736	Enabling ultranarrow blue emission linewidths in colloidal alloy quantum dots by decreasing the exciton fine structure splitting and exciton-phonon coupling. Nano Research, 2023, 16, 1576-1585.	5.8	4
1737	High-Efficiency, Large-Area, Flexible Top-Emitting Quantum-Dot Light-Emitting Diode. ACS Photonics, 2023, 10, 2192-2200.	3.2	15
1738	Stability of Perovskite Lightâ€Emitting Diodes: Existing Issues and Mitigation Strategies Related to Both Material and Device Aspects. Advanced Materials, 2022, 34, .	11.1	65
1739	Tailored ZnO Functional Nanomaterials for Solutionâ€Processed Quantumâ€Đot Lightâ€Emitting Diodes. Advanced Photonics Research, 2022, 3, .	1.7	8
1740	Ultrahigh Stability of Perovskite Nanocrystals by Using Semiconducting Molecular Species for Displays. ACS Nano, 2022, 16, 12253-12261.	7.3	18
1741	Spectra Stable Quantum Dots Enabled by Band Engineering for Boosting Electroluminescence in Devices. Micromachines, 2022, 13, 1315.	1.4	0
1742	All Solutionâ€Processed High Performance Pureâ€Blue Perovskite Quantumâ€Dot Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32, .	7.8	42
1743	High-performance, high-resolution quantum dot light-emitting devices through photolithographic patterning. Organic Electronics, 2022, 108, 106609.	1.4	8
1744	Inkjet-printed blue InP/ZnS/ZnS quantum dot light-emitting diodes. Chemical Engineering Journal, 2022, 450, 138413.	6.6	18
1745	Building one-dimensional hole transport channels in cross-linked polymers to enable efficient deep blue QLED. Chemical Engineering Journal, 2023, 451, 138516.	6.6	8
1746	Investigation of quantum dots light emitting diodes with different transition metal oxide as charge injection layers. Organic Electronics, 2022, 110, 106646.	1.4	2
1747	Enhancing the stability of environmental resistance of alloyed CdZnSeS@ZnS quantum dots by doping Ti ions into shell layer. Nanotechnology, 2022, 33, 505602.	1.3	1
1748	Surface engineering of ZnO nanoparticles with diethylenetriamine for efficient red quantum-dot light-emitting diodes. IScience, 2022, 25, 105111.	1.9	8
1749	High-efficiency quantum-dot light-emitting diodes enabled by boosting the hole injection. Journal of Materials Chemistry C, 2022, 10, 15200-15206.	2.7	8
1750	A general approach for all-visible-light switching of diarylethenes through triplet sensitization using semiconducting nanocrystals. Journal of Materials Chemistry C, 2022, 10, 15833-15842.	2.7	3

		CITATION REPORT	
#	Article	IF	CITATIONS
1751	Macromatrices for nanoscale particles. Journal of Materials Chemistry C, 2022, 10, 11105-1111	8. 2.7	0
1752	Composition-tuned optical properties of CdSexS1â [^] x and CdSexS1â [^] x/ZnS QDs. Optoelectroni 2022, 18, 479-483.	cs Letters, 0.4	0
1753	Double-crowned 2D semiconductor nanoplatelets with bicolor power-tunable emission. Nature Communications, 2022, 13, .	5.8	8
1754	Efficient Inverted Quantum Light-emitting Diodes with Yttrium-doped ZnO. , 2022, , .		0
1756	Ultrasensitive Colloidal Quantum-Dot Upconverters for Extended Short-Wave Infrared. ACS App Materials & Interfaces, 2022, 14, 45553-45561.	lied 4.0	15
1757	Noninvasive and Direct Patterning of High-Resolution Full-Color Quantum Dot Arrays by Program Microwetting. ACS Nano, 2022, 16, 16598-16607.	nmed 7.3	4
1758	Metal halide perovskites-based white light-emitting diodes. JPhys Photonics, 2022, 4, 042001.	2.2	4
1760	CdSe/CdSeS Nanoplatelet Light-Emitting Diodes with Ultrapure Green Color and High External Quantum Efficiency. Journal of Physical Chemistry Letters, 2022, 13, 9051-9057.	2.1	7
1761	Trap state-assisted electron injection in blue quantum dot light-emitting diode. Applied Physics Letters, 2022, 121, 113507.	1.5	4
1762	Electronic Structural Insight into Highâ€Performance Quantum Dot Lightâ€Emitting Diodes. Ad Functional Materials, 2022, 32, .	vanced 7.8	8
1763	Quantum Dot to Nanorod Transition for Efficient White-Light-Emitting Diodes with Suppressed Absorption Losses. ACS Photonics, 2022, 9, 3268-3278.	3.2	7
1764	Electric dipole modulation for boosting carrier recombination in green InP QLEDs under strong electron injection. Nanoscale Advances, 2023, 5, 385-392.	2.2	3
1765	Freestanding High-Resolution Quantum Dot Color Converters with Small Pixel Sizes. ACS Applie Materials & Interfaces, 2022, 14, 48995-49002.	d 4.0	7
1766	Efficient green quantum dot light-emitting diodes enabled by high-quality alloyed gradient CdSeS/CdS/ZnS core/shell quantum dots. Journal of Materials Science: Materials in Electronics, 2 33, 26313-26321.	2022, 1.1	1
1767	Photonics Design Theory Enhancing Light Extraction Efficiency in Quantum Dot Light Emitting I JPhys Materials, 0, , .	Diodes. 1.8	2
1768	28.1: <i>Invited Paper:</i> Development of Lowâ€temperature Crossâ€linked Hole Transport La Efficient QLEDs. Digest of Technical Papers SID International Symposium, 2022, 53, 322-322.	yer for High 0.1	ο
1769	23.1: <i>Invited Paper:</i> Device physics and material chemistry of quantumâ€dot lightâ€emit Digest of Technical Papers SID International Symposium, 2022, 53, 264-264.	ting didoes. 0.1	0
1770	A Hierarchical Structure Perovskite Quantum Dots Film for Laserâ€Driven Projection Display. Ad Functional Materials, 2023, 33, .	vanced 7.8	52

#	Article	IF	Citations
1771	Influence of Light–Matter Interaction on Efficiency of Quantum-Dot Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2022, 13, 10312-10317.	2.1	4
1772	Flexible perovskite light-emitting diodes: Progress, challenges and perspective. Science China Materials, 2023, 66, 1-21.	3.5	15
1773	On the voltage sweep behavior of quantum dot light-emitting diode. Nano Research, 2023, 16, 5511-5516.	5.8	4
1774	Efficient InP Green Quantumâ€Đot Lightâ€Emitting Diodes Based on Organic Electron Transport Layer. Advanced Optical Materials, 2022, 10, .	3.6	3
1775	31.2: <i>Invited Paper:</i> Highâ€Efficiency Blue Cadmiumâ€Free Quantum Dot Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2022, 53, 346-346.	0.1	0
1776	4.2: <i>Invited Paper:</i> CsPbBr3 perovskite quantumâ€dot paper exhibiting highest 3â€dB bandwidthand realizing flexible whiteâ€light system for visibleâ€light communication. Digest of Technical Papers SID International Symposium, 2022, 53, 59-60.	0.1	0
1777	Ultraâ€Thin SnO _x Buffer Layer Enables Highâ€Efficiency Quantum Junction Photovoltaics. Advanced Science, 2022, 9, .	5.6	4
1778	Design Principles of Colloidal Nanorod Heterostructures. Chemical Reviews, 2023, 123, 3761-3789.	23.0	16
1779	Recent Developments of Microscopic Study for Lanthanide and Manganese Doped Luminescent Materials. Small, 2022, 18, .	5.2	6
1780	Pâ€9.4: Quantumâ€dot and organic hybrid tandem lightâ€emitting diodes. Digest of Technical Papers SID International Symposium, 2022, 53, 913-913.	0.1	0
1781	Pâ€9.1: Highly efficient top emitting Quantum‣ED with no viewing angle dependence. Digest of Technical Papers SID International Symposium, 2022, 53, 907-907.	0.1	0
1782	Organic low-dimensional heterojunctions toward future applications. Matter, 2022, 5, 3706-3739.	5.0	4
1783	Color-tunable quantum-dot light emitting diode and its integration with GaN-based blue LED for smart white-light emission. Optical Materials, 2022, 133, 113058.	1.7	1
1784	A dC/dV Measurement for Quantum-Dot Light-Emitting Diodes. Chinese Physics Letters, 2022, 39, 128401.	1.3	2
1785	Dipole Engineering through the Orientation of Interface Molecules for Efficient InP Quantum Dot Light-Emitting Diodes. Journal of the American Chemical Society, 2022, 144, 20923-20930.	6.6	6
1786	The efficient green light-emitting diodes based on low-toxicity Zr-Pb alloy perovskite quantum dots passivated by inorganic ligand. Applied Materials Today, 2022, 29, 101658.	2.3	4
1787	Grain boundaries induce significant decrease in lattice thermal conductivity of CdTe. Energy and AI, 2023, 11, 100210.	5.8	3
1788	Modulation in charge distribution via polyethylenimine-incorporation into ZnO electron transport layer and its impact on quantum-dots light emitting device stability. , 2022, , .		0

#	Article	IF	CITATIONS
1789	ZnSeTe blue top-emitting QLEDs with color saturation near Rec.2020 standards and efficiency over 18.16%. Nano Research, 2023, 16, 5517-5524.	5.8	7
1790	Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature, 2022, 611, 688-694.	13.7	307
1791	A Review on Quantum Dot Lightâ€Emitting Diodes: From Materials to Applications. Advanced Optical Materials, 2023, 11, .	3.6	19
1792	Significant Lifetime Enhancement in QLEDs by Reducing Interfacial Charge Accumulation via Fluorine Incorporation in the ZnO Electron Transport Layer. Nano-Micro Letters, 2022, 14, .	14.4	10
1793	Low-Temperature Edge-Fusing Phenomenon of Silver Microplates and Solution-Processed Low-Resistivity Top-Contact Electrodes. ACS Applied Electronic Materials, 2022, 4, 5538-5549.	2.0	0
1794	A Novel Strategy to Enhance the Photostability of InP/ZnSe/ZnS Quantum Dots with Zr Doping. Nanomaterials, 2022, 12, 4044.	1.9	0
1795	Interfacial Charge Modulation: An Efficient Strategy for Stable Blue Quantumâ€Dot Lightâ€Emitting Diodes. Advanced Optical Materials, 2023, 11, .	3.6	6
1796	Performance enhancement by sol-gel processed Ni-doped ZnO layer in InP-based quantum dot light-emitting diodes. Organic Electronics, 2023, 112, 106696.	1.4	4
1797	High-quality perovskite quantum dot light emitting diode. Optical Materials, 2023, 135, 113233.	1.7	1
1798	Review on the promising roles of alkali metals toward highly efficient perovskite light-emitting diodes. Journal of Materials Chemistry C, 2023, 11, 2011-2025.	2.7	3
1799	Metal halide perovskite nanocrystal with fluorescence enhancement in wet and acidic environment. Optical Materials, 2023, 135, 113356.	1.7	1
1800	Revivification of nickel oxide-perovskite interfaces via nickel nitrate to boost performance in perovskite solar cells. Nano Energy, 2023, 106, 108062.	8.2	12
1801	Achieving high performance InP quantum dot light-emitting devices by using inkjet printing. Organic Electronics, 2023, 113, 106705.	1.4	7
1802	Optoelectronic Properties of MAPbBr3 Perovskite Light-Emitting Diodes Using Anti-Solvent and PEDOT:PSS/PVK Double-Layer Hole Transport Layers. Micromachines, 2022, 13, 2122.	1.4	1
1803	Progress in the Development of Active-Matrix Quantum-Dot Light-Emitting Diodes Driven by Non-Si Thin-Film Transistors. Materials, 2022, 15, 8511.	1.3	2
1804	Ultra-stable, Solution-Processable CsPbBr ₃ -SiO ₂ Nanospheres for Highly Efficient Color Conversion in Micro Light-Emitting Diodes. ACS Energy Letters, 2023, 8, 151-158.	8.8	33
1805	Temperature-Dependent Photoluminescence of CdS/ZnS Core/Shell Quantum Dots for Temperature Sensors. Sensors, 2022, 22, 8993.	2.1	4
1806	Effect of Excess Carriers on the Degradation of InP-Based Quantum-Dot Light-Emitting Diodes. ACS Applied Electronic Materials, 2022, 4, 6229-6236.	2.0	3

#	Article	IF	CITATIONS
1808	Unraveling the Energy Transfer Mechanisms in Biâ€Color and Triâ€Color Quantum Dots: toward Efficient White Quantum Dot Lightâ€Emitting Diodes. Advanced Optical Materials, 2023, 11, .	3.6	4
1809	Efficient Red Light Emitting Diodes Based on a Zeroâ€Dimensional Organic Antimony Halide Hybrid. Advanced Materials, 2023, 35, .	11.1	26
1810	Strategies to Extend the Lifetime of Perovskite Downconversion Films for Display Applications. Advanced Materials, 2023, 35, .	11.1	7
1811	Fluoride ligand exchange for quantum dot light-emitting diodes with improved efficiency and stability. Applied Physics Letters, 2022, 121, .	1.5	1
1812	Improved Current Efficiency of Quantum Dot Lightâ€Emitting Diodes by Utilizing ZnO Nanoparticles and an Organic Ionic Interlayer. ChemNanoMat, 0, , .	1.5	0
1813	Highâ€Performance Cadmiumâ€Free Blue Quantum Dot Lightâ€Emitting Devices with Stepwise Double Holeâ€Transport Layers. Advanced Electronic Materials, 2023, 9, .	2.6	1
1814	Stable ZnS Electron Transport Layer for High-Performance Inverted Cadmium-Free Quantum Dot Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2022, 14, 55925-55932.	4.0	2
1815	Bromide Decorated Ecoâ€Friendly ZnSeTe/ZnSe/ZnS Quantum Dots for Efficient Blue Lightâ€Emitting Diodes. Advanced Materials Interfaces, 2023, 10, .	1.9	5
1816	Analysis of thermal performance and charge balance in all-inorganic quantum dot light-emitting devices. Journal of Nanophotonics, 2022, 16, .	0.4	1
1817	Charging and Charged Species in Quantum Dot Light-Emitting Diodes. Nano Letters, 2022, 22, 9500-9506.	4.5	8
1818	All–Inorganic Perovskite Quantum Dot–Based Blue Light–Emitting Diodes: Recent Advances and Strategies. Nanomaterials, 2022, 12, 4372.	1.9	5
1819	Efficient solution-processed InP quantum-dots light-emitting diodes enabled by suppressing hole injection loss. Nano Research, 2023, 16, 7511-7517.	5.8	3
1820	Advances, Challenges, and Perspectives for Heavyâ€Metalâ€Free Blueâ€Emitting Indium Phosphide Quantum Dot Lightâ€Emitting Diodes. Advanced Optical Materials, 2023, 11, .	3.6	11
1821	Ligands in Lead Halide Perovskite Nanocrystals: From Synthesis to Optoelectronic Applications. Small, 2023, 19, .	5.2	18
1822	Colloidal Approaches to Zinc Oxide Nanocrystals. Chemical Reviews, 2023, 123, 271-326.	23.0	26
1823	Ligand-assisted structure tailoring of highly luminescent Cu-In-Zn-S/ZnS//ZnS quantum dots for bright and stable light-emitting diodes. Frontiers in Chemistry, 0, 10, .	1.8	0
1824	Performance Improvement of Quantum Dot Light-Emitting Diodes Using a ZnMgO Electron Transport Layer with a Core/Shell Structure. Materials, 2023, 16, 600.	1.3	3
1826	Synthesis, Surface Chemistry, and Fluorescent Properties of InP Quantum Dots. Chemistry of Materials, 2023, 35, 822-836.	3.2	22

#	Article	IF	CITATIONS
1827	Surface passivation of intensely luminescent all-inorganic nanocrystals and their direct optical patterning. Nature Communications, 2023, 14, .	5.8	23
1828	Efficient Quantum-Dot Light-Emitting Diodes Based on Solvent-Annealed SnO ₂ Electron-Transport Layers. ACS Applied Electronic Materials, 2023, 5, 537-543.	2.0	3
1829	Enhanced film quality of PbS QD solid by eliminating the oxide traps through an <i>in situ</i> surface etching and passivation. Dalton Transactions, 2023, 52, 1441-1448.	1.6	3
1830	Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling. Nature Communications, 2023, 14, .	5.8	33
1831	Monodisperse colloidal silica with excellent batch-to-batch reproducibility by stoichiometric seeded growth strategy. Chemical Engineering Journal, 2023, 456, 141125.	6.6	2
1832	Efficient and bright green InP quantum dot light-emitting diodes enabled by a self-assembled dipole interface monolayer. Nanoscale, 2023, 15, 2837-2842.	2.8	5
1833	Polarized emission from unidirectionally oriented semiconductor nanorods in light-emitting devices. Applied Surface Science, 2023, 614, 156160.	3.1	1
1834	Highly stable quantum dot light-emitting diodes with improved interface contacting via violet irradiation. Applied Surface Science, 2023, 615, 156339.	3.1	1
1835	A Comparative Study of Water Dispersible Orange-Emitting Mn-Doped ZnSe/ZnS and CdTe/CdS Core/Shell Quantum Dots. Journal of Nanotechnology in Diagnosis and Treatment, 0, 7, 1-9.	0.7	0
1836	Colloidal Quantum Dots: Synthesis, Composition, Structure, and Emerging Optoelectronic Applications. Laser and Photonics Reviews, 2023, 17, .	4.4	14
1837	Enabling multiple intercavity polariton coherences by adding quantum confinement to cavity molecular polaritons. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	4
1838	Improving Performance of InP-Based Quantum Dot Light-Emitting Diodes by Controlling Defect States of the ZnO Electron Transport Layer. Journal of Physical Chemistry C, 2023, 127, 824-830.	1.5	5
1839	Visible and Infrared Nanocrystal-Based Light Modulator with CMOS Compatible Bias Operation. ACS Photonics, 2023, 10, 430-436.	3.2	2
1840	Recent progress in phosphor technology. , 2023, , 99-115.		0
1841	Universal Molecular Control Strategy for Scalable Fabrication of Perovskite Light-Emitting Diodes. Nano Letters, 2023, 23, 985-992.	4.5	15
1842	Applications of quantum dots in light-emitting devices. , 2023, , 305-333.		1
1843	Halide perovskite for light-emitting diodes. , 2023, , 267-300.		0
1844	Ultrahigh-resolution quantum dot patterning for advanced optoelectronic devices. Chemical Communications, 2023, 59, 2697-2710.	2.2	2

		CITATION REI	PORT	
# 1845	ARTICLE Synthesis, structural properties, and applications of cadmium sulfide quantum dots. , 2	023, , 235-266.	IF	CITATIONS 2
1846	Surface-Ligand-Modified CdSe/CdS Nanorods for High-Performance Light-Emitting Diod 2023, 8, 3762-3767.	les. ACS Omega,	1.6	4
1847	Electrochemically Stable Ligands of ZnO Electron-Transporting Layers for Quantum-Dot Light-Emitting Diodes. Nano Letters, 2023, 23, 1061-1067.	t	4.5	11
1848	It Is a Trap!: The Effect of Self-Healing of Surface Defects on the Excited States of CdSe Journal of Physical Chemistry Letters, 2023, 14, 1174-1181.	Nanocrystals.	2.1	3
1849	Improving the performance of quantum dot light-emitting diodes by tailoring QD emitt 2023, 15, 3585-3593.	ers. Nanoscale,	2.8	2
1850	Does interfacial exciton quenching exist in high-performance quantum dot light-emittir Nanoscale, 2023, 15, 3430-3437.	ng diodes?.	2.8	3
1851	Quantum dot materials, devices, and their applications in photomedicine. , 2023, , 155	-200.		1
1852	Controlled defects and trap-assisted mitigation in Li-intercalated zinc oxide ceramics. E Materials, 2023, 6, 315-320.	mergent	3.2	1
1853	Nanomaterial-Based Synaptic Optoelectronic Devices for In-Sensor Preprocessing of Im Omega, 2023, 8, 5209-5224.	age Data. ACS	1.6	8
1854	Quantum-Dot Light-Emitting Diodes Exhibiting Narrow-Spectrum Green Electrolumines Ag–In–Ga–S/GaS _{<i>x</i>} Quantum Dots. ACS Applied Materials &a 8336-8344.	cence by Using mp; Interfaces, 2023, 15,	4.0	13
1855	Water-soluble graphene quantum dotâ€based polymer nanoparticles with internal don heterojunctions for efficient and selective detection of cancer cells. Journal of Colloid a Interface Science, 2023, 637, 389-398.		5.0	4
1856	Quantum dots as photon down-conversion materials. , 2023, , 247-264.			1
1857	Anisotropic Heavy-Metal-Free Semiconductor Nanocrystals: Synthesis, Properties, and A Chemical Reviews, 2023, 123, 3625-3692.	Applications.	23.0	9
1858	Ionic Liquid-Assisted Ink for Inkjet-Printed Indium Tin Oxide Transparent and Conductive Langmuir, 2023, 39, 5107-5114.	e Thin Films.	1.6	3
1859	Patterning Quantum Dots via Photolithography: A Review. Advanced Materials, 2023, 3	35,.	11.1	14
1860	An efficient green-emitting quantum dot with near-unity quantum yield and suppressed recombination for high-performance light-emitting diodes. Chemical Engineering Journa 142027.	Auger al, 2023, 461,	6.6	4
1861	Recent developments of lead-free halide-perovskite nanocrystals: Synthesis strategies, challenges, and potential in optoelectronic applications. Materials Today Physics, 2023		2.9	8
1862	Flexible piezoelectric generator based on PLLA/ZnO oriented fibers for wearable self-po Composites Part A: Applied Science and Manufacturing, 2023, 169, 107518.	wered sensing.	3.8	5

#	Article	IF	CITATIONS
1863	Highly photoluminescent nitrogen-doped carbon quantum dots as a green fluorescence probe for determination of myricetin. Food Chemistry, 2023, 417, 135920.	4.2	4
1864	All organic transport materials (TMs) based QLEDs: Revisiting molecular electron TMs with mapping hole TMs via cross-linking strategy. Organic Electronics, 2023, 119, 106816.	1.4	1
1865	The fatigue effects in red emissive CdSe based QLED operated around turn-on voltage. Journal of Chemical Physics, 2023, 158, .	1.2	3
1866	How to minimize voltage and fill factor losses to achieve over 20% efficiency lead chalcogenide quantum dot solar cells: Strategies expected through numerical simulation. Applied Energy, 2023, 341, 121124.	5.1	1
1867	Recent Progress in Controlled Nanostructure of Colloidal Nanocrystal Powders for Efficient Light Emission. KONA Powder and Particle Journal, 2024, 41, 172-182.	0.9	0
1868	High stability temperature sensors by CdTe quantum dots encapsulated in SiO2/PVA hybrids for bearing rotating elements. Materials Today Communications, 2023, 34, 105456.	0.9	5
1869	Bioelectronic devices for light-based diagnostics and therapies. Biophysics Reviews, 2023, 4, .	1.0	2
1870	Versatile Use of 1,12-Diaminododecane as an Efficient Charge Balancer for High-Performance Quantum-Dot Light-Emitting Diodes. ACS Photonics, 2023, 10, 500-507.	3.2	3
1871	2D II–VI Semiconductor Nanoplatelets: From Material Synthesis to Optoelectronic Integration. Chemical Reviews, 2023, 123, 3543-3624.	23.0	48
1872	Perovskite super-particles for commercial displays. Cell Reports Physical Science, 2023, 4, 101275.	2.8	2
1873	Unraveling the Turn-On Limitation of Quantum-Dot Electroluminescence via a Stepwise-Increasing Voltage Measurement. Physical Review Applied, 2023, 19, .	1.5	4
1874	Materials and device engineering to achieve high-performance quantum dots light emitting diodes for display applications. Chinese Physics B, O, , .	0.7	0
1875	All-Solution-Processed Quantum Dot Light-Emitting Diode Using Phosphomolybdic Acid as Hole Injection Layer. Materials, 2023, 16, 1371.	1.3	2
1876	Control of the Reaction Kinetics of Monodispersed InP/ZnSeS _/ ZnS-Based Quantum Dots Using Organophosphorus Compounds for Electroluminescent Devices. Journal of Physical Chemistry Letters, 2023, 14, 1656-1662.	2.1	2
1877	Optimized TFB-based perovskite quantum dot light emitting diode. Solid State Communications, 2023, 363, 115102.	0.9	2
1878	Performance Enhancement of Cadmiumâ€Free Quantumâ€Dot Lightâ€Emitting Diodes via Clâ€Passivated Zn _{1â~'} <i>_x</i> Mg <i>_{a^'}</i> Sn <i>_x</i> Mg <i><sub Nanoparticles as Electron Transport Layers. Laser and Photonics Reviews, 2023, 17, .</sub </i>	> ук <i>4</i> sub><	:/i4O
1879	Review: Quantum Dot Light-Emitting Diodes. Chemical Reviews, 2023, 123, 4663-4692.	23.0	53
1880	Randomly Disassembled Nanostructure for Wide Angle Light Extraction of Topâ€Emitting Quantum Dot Lightâ€Emitting Diodes. Small, 2023, 19, .	5.2	3

#	Article	IF	CITATIONS
1881	One-Pot Synthesis of InP Multishell Quantum Dots for Narrow-Bandwidth Light-Emitting Devices. ACS Applied Nano Materials, 2023, 6, 3797-3802.	2.4	1
1882	Direct Photo-Patterning of Efficient and Stable Quantum Dot Light-Emitting Diodes via Light-Triggered, Carbocation-Enabled Ligand Stripping. Nano Letters, 2023, 23, 2000-2008.	4.5	8
1883	Thermodynamics of Ligand Exchange with Aromatic Ligands on the Surface of CdSe Quantum Dots. Chemistry of Materials, 2023, 35, 1868-1876.	3.2	6
1884	Recent Advances and Challenges of Colloidal Quantum Dot Lightâ€Emitting Diodes for Display Applications. Advanced Materials, 0, , .	11.1	19
1885	Anisotropic emission of orientation-controlled mixed-dimensional perovskites for light-emitting devices. Journal of Materiomics, 2023, 9, 762-767.	2.8	0
1886	Controllable chiral inversion <i>via</i> thioether bond-activated <i>J</i> and <i>H</i> aggregation transformation. Chemical Communications, 2023, 59, 3759-3762.	2.2	1
1887	In-situ growth of low-dimensional perovskite-based insular nanocrystals for highly efficient light emitting diodes. Light: Science and Applications, 2023, 12, .	7.7	17
1888	Effective growth strategy of colloidal quantum dots with low defects and high brightness. Optical Materials, 2023, 138, 113628.	1.7	2
1889	Flexible Quantum Dot Lightâ€Emitting Device for Emerging Multifunctional and Smart Applications. Advanced Materials, 2023, 35, .	11.1	13
1890	Modified Zinc Magnesium Oxide for Optimal Chargeâ€Injection Balance in InP Quantum Dot Lightâ€Emitting Diodes. Advanced Optical Materials, 2023, 11, .	3.6	0
1891	Identifying the dominant carrier of CdSe-based blue quantum dot light-emitting diode. Applied Physics Letters, 2023, 122, .	1.5	6
1892	Understanding Illumination Effect on Saturation Behavior of Thin Film Transistor. Photonics, 2023, 10, 309.	0.9	0
1893	Modeling charge transport mechanism in inorganic quantum dot light-emitting devices through transport layer modification strategies. Journal of Applied Physics, 2023, 133, .	1.1	3
1894	Bright and stable perovskite light-emitting diodes in the near-infrared range. Nature, 2023, 615, 830-835.	13.7	87
1895	In-Situ Interfacial Reaction Induced Amino-Rich Oxide Surface to Grow High-Quality FAPbBr ₃ Crystals for Efficient Inverted Light-Emitting Diodes. , 2023, 5, 1179-1187.		2
1896	CuInS2 Nanocrystals Embedded PMMA Composite Films: Adjustment of Polymer Molecule Weights and Application in Remote-Type White LEDs. Nanomaterials, 2023, 13, 1085.	1.9	2
1897	Suppression of Midâ€Gap Trap State in CsPbBr ₃ Nanocrystals with Brâ€Passivation for Selfâ€Powered Photodetector. Energy Technology, 2023, 11, .	1.8	5
1898	Highly efficient regulation strategy of fluorescence emission wavelength via designing the structure of carbon dots. Advanced Composites and Hybrid Materials, 2023, 6, .	9.9	11

#	Article	IF	CITATIONS
1899	On the Electroluminescence Turnâ€On Mechanism of Blue Quantumâ€Dot Lightâ€Emitting Diodes. Advanced Optical Materials, 2023, 11, .	3.6	1
1900	Approaching the theoretical efficiency limit of quantum-dot light-emitting diodes via synergistic optimization. Nano Research, 2023, 16, 10156-10163.	5.8	3
1901	Efficiency Improvement in a Powderâ€Based Flexible Electroluminescence Device using Ag Nanothinâ€Filmâ€Coated Transparent Electrodes. Advanced Photonics Research, 0, , .	1.7	0
1902	Hole-transport-layer-free CdSe/ZnS core/shell red quantum-dot light-emitting diodes sensitized by TADF polymers. Materials Chemistry Frontiers, 0, , .	3.2	0
1903	Highlyâ€Directional, Highlyâ€Efficient Solutionâ€Processed Lightâ€Emitting Diodes of Allâ€Faceâ€Down Oriented Colloidal Quantum Well Selfâ€Assembly. Small, 2023, 19, .	5.2	3
1904	Linear and nonlinear optical properties of CdSe/ZnTe core/shell nanostructures with screened modified Kratzer potential. European Physical Journal Plus, 2023, 138, .	1.2	6
1905	A Spectroscopic Evaluation of the Generation Process of Semiconductor Nanoparticles (ZnO) by DC Arc Plasma. J, 2023, 6, 207-219.	0.6	0
1906	Advantageous properties of halide perovskite quantum dots towards energy-efficient sustainable applications. Green Energy and Environment, 2023, , .	4.7	4
1907	ZnO/silica quasi core/shell nanoparticles as electron transport materials for high-performance quantum-dot light-emitting diodes. Ceramics International, 2023, 49, 22304-22312.	2.3	1
1908	Highly efficient quantum dot light-emitting diodes with the utilization of an organic emission layer. Nano Research, 2023, 16, 10545-10551.	5.8	1
1909	Ultrabright Blue Light-emitting Cesium Bromide Quantum Dots for White LEDs. Chemical Communications, 0, , .	2.2	0
1910	Effect of strontium (Sr) doping on the structural, electronic and optical properties of ZnO, by first-principles calculations. Physica B: Condensed Matter, 2023, 660, 414903.	1.3	4
1911	Fundamentals of ceramics for photonics applications. , 2023, , 365-394.		0
1912	Improved performance of InP-based quantum dot light-emitting diodes by employing a cascading hole injection/transport layer. , 2023, , .		Ο
1922	Design Principle for Tetrahedral Semiconductors and Their Functional Derivatives: Cation Stabilizing Charged Cluster Network. Nano Letters, 2023, 23, 4648-4653.	4.5	2
1928	Machine Learning Assisted Stability Analysis of Blue Quantum Dot Light-Emitting Diodes. Nano Letters, 2023, 23, 5738-5745.	4.5	4
1950	Triple Ligand Engineered Gold Nanoclusters with Enhanced Fluorescence and Device Compatibility for Efficient Electroluminescence Light-Emitting Diodes. Nano Letters, 2023, 23, 4423-4430.	4.5	1
1964	Ultrastable and High-Efficiency Deep Red QLEDs through Giant Continuously Graded Colloidal Quantum Dots with Shell Engineering. Nano Letters, 2023, 23, 6689-6697.	4.5	4

C_{1}	DEDODT
	Report

#	Article	IF	CITATIONS
1975	Light-Emitting Diodes Based on Upconversion Nanoparticles. Progress in Optical Science and Photonics, 2023, , 275-303.	0.3	0
1976	PEDOT:PSS materials for optoelectronics, thermoelectrics, and flexible and stretchable electronics. Journal of Materials Chemistry A, 2023, 11, 18561-18591.	5.2	7
1980	Classifications of Quantum Dots and Their Detection Principles in Sensing. , 2023, , 1-36.		0
1985	Cross-linking strategies for hole transport/emissive layers in quantum-dot light-emitting diodes. Materials Chemistry Frontiers, 2023, 7, 6130-6140.	3.2	2
1988	Surface engineering in CsPbX ₃ quantum dots: from materials to solar cells. Materials Chemistry Frontiers, 0, , .	3.2	0
2029	Advances in Colloidal Quantum Dot Laser Diodes. , 0, , .		0
2047	Controllable-Assembled Functional Monolayer for Optoelectronic Applications. Journal of Materials Chemistry C, 0, , .	2.7	1
2065	High transparency pixelated color converter based on luminescent europium(III) complex. , 2023, , .		0
2073	Metal oxides in quantum-dot-based LEDs and their applications. , 2024, , 409-442.		0
2076	ll–VI semiconductor metal chalcogenide nanomaterials and polymer composites: fundamentals, properties, and applications. , 2024, , 187-220.		0
2079	Phenethylammonium bromide interlayer for high-performance red quantum-dot light emitting diodes. Nanoscale Horizons, 2024, 9, 465-471.	4.1	0
2082	Metal oxide-based phosphors for white light-emitting diodes. , 2024, , 139-163.		0
2100	Vapour-deposited perovskite light-emitting diodes. Nature Reviews Materials, 2024, 9, 282-294.	23.3	0
2113	Light-Emitting Devices andÂSemiconductor Lasers. Graduate Texts in Physics, 2024, , 519-538.	0.1	0