Edgeâ€Oriented MoS₂ Nanoporous Films a Evolution Reactions and Supercapacitor Devices

Advanced Materials 26, 8163-8168 DOI: 10.1002/adma.201402847

Citation Report

#	Article	IF	CITATIONS
1	Metallic and ferromagnetic MoS2 nanobelts with vertically aligned edges. Nano Research, 2015, 8, 2946-2953.	5.8	30
2	Multifunctional Architectures Constructing of PANI Nanoneedle Arrays on MoS ₂ Thin Nanosheets for Highâ€Energy Supercapacitors. Small, 2015, 11, 4123-4129.	5.2	164
3	Co(OH) ₂ @PANI Hybrid Nanosheets with 3D Networks as Highâ€Performance Electrocatalysts for Hydrogen Evolution Reaction. Advanced Materials, 2015, 27, 7051-7057.	11.1	294
4	Highly Compressible and Allâ€5olidâ€5tate Supercapacitors Based on Nanostructured Composite Sponge. Advanced Materials, 2015, 27, 6002-6008.	11.1	217
5	Enhanced Electrochemical H ₂ Evolution by Few‣ayered Metallic WS _{2(1â^'<i>x</i>)} Se _{2<i>x</i>} Nanoribbons. Advanced Functional Materials, 2015, 25, 6077-6083.	7.8	111
6	Vertically Aligned WS ₂ Nanosheets for Water Splitting. Advanced Functional Materials, 2015, 25, 6199-6204.	7.8	108
7	Structural Engineering of Electrocatalysts for the Hydrogen Evolution Reaction: Order or Disorder?. ChemCatChem, 2015, 7, 2568-2580.	1.8	144
8	Pristine Basal―and Edgeâ€Planeâ€Oriented Molybdenite MoS ₂ Exhibiting Highly Anisotropic Properties. Chemistry - A European Journal, 2015, 21, 7170-7178.	1.7	133
9	When Cubic Cobalt Sulfide Meets Layered Molybdenum Disulfide: A Core–Shell System Toward Synergetic Electrocatalytic Water Splitting. Advanced Materials, 2015, 27, 4752-4759.	11.1	705
10	Towards free-standing MoS ₂ nanosheet electrocatalysts supported and enhanced by N-doped CNT–graphene foam for hydrogen evolution reaction. RSC Advances, 2015, 5, 55396-55400.	1.7	23
11	Molybdenum-doped few-layered SnS ₂ architectures with enhanced electrochemical supercapacitive performance. RSC Advances, 2015, 5, 105862-105868.	1.7	52
12	Carbon-Armored Co ₉ S ₈ Nanoparticles as All-pH Efficient and Durable H ₂ -Evolving Electrocatalysts. ACS Applied Materials & Interfaces, 2015, 7, 980-988.	4.0	335
13	Impact Electrochemistry of Layered Transition Metal Dichalcogenides. ACS Nano, 2015, 9, 8474-8483.	7.3	53
14	Perpendicularly oriented few-layer MoSe ₂ on SnO ₂ nanotubes for efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 16263-16271.	5.2	105
15	One-step hydrothermal synthesis of few-layered and edge-abundant MoS2/C nanocomposites with enhanced electrocatalytic performance for hydrogen evolution reaction. Advanced Powder Technology, 2015, 26, 1273-1280.	2.0	10
16	Supercapacitors based on patronite–reduced graphene oxide hybrids: experimental and theoretical insights. Journal of Materials Chemistry A, 2015, 3, 18874-18881.	5.2	67
17	Highly rate and cycling stable electrode materials constructed from polyaniline/cellulose nanoporous microspheres. Journal of Materials Chemistry A, 2015, 3, 16424-16429.	5.2	47
18	Facile and scalable fabrication of three-dimensional Cu(OH) ₂ nanoporous nanorods for solid-state supercapacitors. Journal of Materials Chemistry A, 2015, 3, 17385-17391.	5.2	100

	CITATION	CITATION REPORT	
# 19	ARTICLE Synthesis, properties and applications of 2D non-graphene materials. Nanotechnology, 2015, 26, 292001.	IF 1.3	Citations
20	Polypyrrole–polyoxometalate/reduced graphene oxide ternary nanohybrids for flexible, all-solid-state supercapacitors. Chemical Communications, 2015, 51, 12377-12380.	2.2	99
21	Incorporated oxygen in MoS ₂ ultrathin nanosheets for efficient ORR catalysis. Journal of Materials Chemistry A, 2015, 3, 16050-16056.	5.2	91
22	Flexible and porous catalyst electrodes constructed by Co nanoparticles@nitrogen-doped graphene films for highly efficient hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 15962-15968.	5.2	74
23	SDBS-assisted hydrothermal preparation and electrocatalytic properties of few-layer and edge-rich MoS2 nanospheres. Superlattices and Microstructures, 2015, 83, 112-120.	1.4	7
24	Porous Cobaltâ€Based Thin Film as a Bifunctional Catalyst for Hydrogen Generation and Oxygen Generation. Advanced Materials, 2015, 27, 3175-3180.	11.1	460
25	WC Nanocrystals Grown on Vertically Aligned Carbon Nanotubes: An Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction. ACS Nano, 2015, 9, 5125-5134.	7.3	228
26	Molybdenum sulfide nanosheet arrays supported on Ti plate: an efficient hydrogen-evolving cathode over the whole pH range. Electrochimica Acta, 2015, 168, 256-260.	2.6	25
27	Lateral Growth of Composition Graded Atomic Layer MoS _{2(1–<i>x</i>)} Se _{2<i>x</i>} Nanosheets. Journal of the American Chemical Society, 2015, 137, 5284-5287.	6.6	191
28	Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 2015, 44, 5148-5180.	18.7	4,776
29	Multi-layered MoS ₂ phototransistors as high performance photovoltaic cells and self-powered photodetectors. RSC Advances, 2015, 5, 45239-45248.	1.7	27
30	Fibrous and flexible supercapacitors comprising hierarchical nanostructures with carbon spheres and graphene oxide nanosheets. Journal of Materials Chemistry A, 2015, 3, 12761-12768.	5.2	41
31	Comparative Study of Potential Applications of Graphene, MoS ₂ , and Other Two-Dimensional Materials in Energy Devices, Sensors, and Related Areas. ACS Applied Materials & Interfaces, 2015, 7, 7809-7832.	4.0	362
32	3D macroporous MoS2 thin film: in situ hydrothermal preparation and application as a highly active hydrogen evolution electrocatalyst at all pH values. Electrochimica Acta, 2015, 168, 133-138.	2.6	147
33	MoS ₂ nanosheet-coated CoS ₂ nanowire arrays on carbon cloth as three-dimensional electrodes for efficient electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 22886-22891.	5.2	185
34	Al/C/MnO2 sandwich nanowalls with highly porous surface for electrochemical energy storage. Journal of Power Sources, 2015, 299, 408-416.	4.0	30
35	A CNT@MoSe ₂ hybrid catalyst for efficient and stable hydrogen evolution. Nanoscale, 2015, 7, 18595-18602.	2.8	162
36	Highly Enhanced Gas Adsorption Properties in Vertically Aligned MoS ₂ Layers. ACS Nano, 2015, 9, 9314-9321.	7.3	417

#	Article	IF	CITATIONS
37	Edge-rich MoS2 Naonosheets Rooting into Polyaniline Nanofibers as Effective Catalyst for Electrochemical Hydrogen Evolution. Electrochimica Acta, 2015, 180, 155-163.	2.6	82
38	C and N Hybrid Coordination Derived Co–C–N Complex as a Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2015, 137, 15070-15073.	6.6	377
39	Directly deposited MoS ₂ thin film electrodes for high performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 24049-24054.	5.2	140
40	Phaseâ€Transformation Engineering in Cobalt Diselenide Realizing Enhanced Catalytic Activity for Hydrogen Evolution in an Alkaline Medium. Advanced Materials, 2016, 28, 7527-7532.	11.1	307
41	Self‣upported Nanotube Arrays of Sulfurâ€Đoped TiO ₂ Enabling Ultrastable and Robust Sodium Storage. Advanced Materials, 2016, 28, 2259-2265.	11.1	457
42	Metal–Carbon Hybrid Electrocatalysts Derived from Ionâ€Exchange Resin Containing Heavy Metals for Efficient Hydrogen Evolution Reaction. Small, 2016, 12, 2768-2774.	5.2	37
43	Newborn 2D materials for flexible energy conversion and storage. Science China Materials, 2016, 59, 459-474.	3.5	57
44	Microwave Synthesized Three-dimensional Hierarchical Nanostructure CoS2/MoS2 Growth on Carbon Fiber Cloth: A Bifunctional Electrode for Hydrogen Evolution Reaction and Supercapacitor. Electrochimica Acta, 2016, 212, 941-949.	2.6	93
45	Engineering the Electronic Structure of 2D WS ₂ Nanosheets Using Co Incorporation as Co <i>_x</i> W ₍₁₋ <i>_x/i>₎S₂for Conspicuously Enhanced Hydrogen Generation. Small, 2016, 12, 3802-3809.</i>	5.2	60
46	Chemical vapor deposited MoS2/electrospun carbon nanofiber composite as anode material for high-performance sodium-ion batteries. Electrochimica Acta, 2016, 222, 1751-1760.	2.6	55
47	Controlled growth of MoS ₂ nanopetals and their hydrogen evolution performance. RSC Advances, 2016, 6, 18483-18489.	1.7	32
48	High-quality molybdenum disulfide nanosheets with 3D structure for electrochemical sensing. Applied Surface Science, 2016, 385, 63-71.	3.1	27
49	Net-like molybdenum selenide–acetylene black supported on Ni foam for high-performance supercapacitor electrodes and hydrogen evolution reaction. Chemical Engineering Journal, 2016, 302, 437-445.	6.6	159
50	Synthesis of large scale MoS ₂ for electronics and energy applications. Journal of Materials Research, 2016, 31, 824-831.	1.2	44
51	Fabrication of ultra-high energy and power asymmetric supercapacitors based on hybrid 2D MoS ₂ /graphene oxide composite electrodes: a binder-free approach. RSC Advances, 2016, 6, 43261-43271.	1.7	41
52	Active sites-enriched hierarchical MoS ₂ nanotubes: highly active and stable architecture for boosting hydrogen evolution and lithium storage. Journal of Materials Chemistry A, 2016, 4, 7565-7572.	5.2	44
53	Universal Transfer and Stacking of Chemical Vapor Deposition Grown Two-Dimensional Atomic Layers with Water-Soluble Polymer Mediator. ACS Nano, 2016, 10, 5237-5242.	7.3	70
54	Large-Area Buckled MoS ₂ Films on the Graphene Substrate. ACS Applied Materials & Interfaces, 2016, 8, 13512-13519.	4.0	38

#	Article	IF	CITATIONS
55	High rate lithium-ion batteries from hybrid hollow spheres with a few-layered MoS ₂ -entrapped carbon sheath synthesized by a space-confined reaction. Journal of Materials Chemistry A, 2016, 4, 10425-10434.	5.2	63
56	Electrocatalysts for hydrogen oxidation and evolution reactions. Science China Materials, 2016, 59, 217-238.	3.5	142
57	Graphene sheets wrapped carbon nanofibers as a highly conductive three-dimensional framework for perpendicularly anchoring of MoS 2 : Advanced electrocatalysts for hydrogen evolution reaction. Electrochimica Acta, 2016, 219, 604-613.	2.6	39
58	Ni ₂ P–CoP hybrid nanosheet arrays supported on carbon cloth as an efficient flexible cathode for hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 16992-16999.	5.2	148
59	A super high performance asymmetric supercapacitor based on Co ₃ S ₄ /NiS nanoplates electrodes. RSC Advances, 2016, 6, 97482-97490.	1.7	30
60	Cobalt-doped edge-rich MoS2/nitrogenated graphene composite as an electrocatalyst for hydrogen evolution reaction. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 212, 30-38.	1.7	46
61	Bridging of Ultrathin NiCo ₂ O ₄ Nanosheets and Graphene with Polyaniline: A Theoretical and Experimental Study. Chemistry of Materials, 2016, 28, 5855-5863.	3.2	116
62	Flexible Nanoporous WO _{3–<i>x</i>} Nonvolatile Memory Device. ACS Nano, 2016, 10, 7598-7603.	7.3	114
63	Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy, 2016, 28, 29-43.	8.2	603
64	Hydrothermal synthesis of selenium-doped graphene-like molybdenum disulfide/graphene hybrid as an efficient electrocatalyst for hydrogen evolution. Advanced Powder Technology, 2016, 27, 2153-2160.	2.0	6
65	FeNi3 nanoalloy decorated on 3D architecture composite of reduced graphene oxide/molybdenum disulfide giving excellent electromagnetic wave absorption properties. Journal of Alloys and Compounds, 2016, 689, 208-217.	2.8	72
66	Hierarchically nanostructured MoS ₂ with rich in-plane edges as a high-performance electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 14577-14585.	5.2	58
67	A Flexible Platform Containing Graphene Mesoporous Structure and Carbon Nanotube for Hydrogen Evolution. Advanced Science, 2016, 3, 1600208.	5.6	19
68	High-Performance Molybdenum Diselenide Electrodes Used in Dye-Sensitized Solar Cells and Supercapacitors. IEEE Journal of Photovoltaics, 2016, 6, 1196-1202.	1.5	24
69	Oxygen-Incorporated MoS ₂ Nanosheets with Expanded Interlayers for Hydrogen Evolution Reaction and Pseudocapacitor Applications. ACS Applied Materials & Interfaces, 2016, 8, 33681-33689.	4.0	94
70	Vertically aligned oxygen-doped molybdenum disulfide nanosheets grown on carbon cloth realizing robust hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2016, 3, 1160-1166.	3.0	55
71	Unraveling the different charge storage mechanism in T and H phases of MoS2. Electrochimica Acta, 2016, 217, 1-8.	2.6	37
72	In Situ Thermal Synthesis of Inlaid Ultrathin MoS ₂ /Graphene Nanosheets as Electrocatalysts for the Hydrogen Evolution Reaction. Chemistry of Materials, 2016, 28, 5733-5742.	3.2	166

ARTICLE IF CITATIONS # Hierarchical polypyrrole/Ni₃S₂@MoS₂ coreâ€"shell nanostructures on a nickel foam for high-performance supercapacitors. RSC Advances, 2016, 6, 73 1.7 32 68460-68467. 2D Materials Beyond Graphene for Highâ€Performance Energy Storage Applications. Advanced Energy 74 10.2 Materials, 2016, 6, 1600671. High-Performance One-Body Core/Shell Nanowire Supercapacitor Enabled by Conformal Growth of 75 7.3 209 Capacitive 2D WS₂ Layers. ACS Nano, 2016, 10, 10726-10735. Growth of vertically aligned Co₃S₄/CoMo₂S₄ ultrathin nanosheets on reduced graphene oxide as a high-performance supercapacitor electrode. Journal of Materials Chemistry A, 2016, 4, 18857-18867. 150 Pyrite FeS2 nanobelts as high-performance anode material for aqueous pseudocapacitor. 77 2.6 52 Electrochimica Acta, 2016, 222, 172-176. Oxidation-Sulfidation Approach for Vertically Growing MoS₂ Nanofilms Catalysts on Molybdenum Foils as Efficient HER Catalysts. Journal of Physical Chemistry C, 2016, 120, 25843-25850. 1.5 56 Highly Efficient Hydrogen Evolution from Edge-Oriented WS_{2(1–<i>x</i>)}Se<sub>2<i>x</i>/sub> Particles on Three-Dimensional Porous NiSe₂ Foam. Nano Letters, 2016, 16, 7604-7609. 79 4.5 121 Self-Templated Growth of Vertically Aligned 2H-1T MoS₂ for Efficient Electrocatalytic 4.0 Hydrogen Evolution. ACS Applied Materials & amp; Interfaces, 2016, 8, 31702-31708. Highâ€Performance Mesostructured Organic Hybrid Pseudocapacitor Electrodes. Advanced Functional 81 7.8 63 Materials, 2016, 26, 903-910. Solutionâ€Processed Twoâ€Dimensional Metal Dichalcogenideâ€Based Nanomaterials for Energy Storage 11.1 438 and Conversion. Advanced Materials, 2016, 28, 6167-6196. Edgeâ€Oriented Tungsten Disulfide Catalyst Produced from Mesoporous WO₃ for Highly 83 10.2 45 Efficient Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2016, 6, 1501814. Non-aqueous synthesis of ultrasmall NiO nanoparticle-intercalated graphene composite as active 39 electrode material for supercapacitors. Materials Research Bulletin, 2016, 83, 275-283. Neuron-Inspired Interpenetrative Network Composed of Cobaltâ€"Phosphorus-Derived Nanoparticles Embedded within Porous Carbon Nanotubes for Efficient Hydrogen Production. ACS Applied Materials 85 4.0 13 & Interfaces, 2016, 8, 17284-17291. Design, synthesis, and energy-related applications of metal sulfides. Materials Horizons, 2016, 3, 402-421. 6.4 243 Aromatic-Exfoliated Transition Metal Dichalcogenides: Implications for Inherent Electrochemistry 87 5.580 and Hydrogen Evolution. ACS Catalysis, 2016, 6, 4594-4607. Hierarchical MoS₂ Nanosheet@TiO₂ Nanotube Array Composites with 469 Enhanced Photocatalytic and Photocurrent Performances. Small, 2016, 12, 1527-1536. Facile synthesis of molybdenum disulfide/nitrogen-doped graphene composites for enhanced 89 5.4 56 electrocatalytic hydrogen evolution and electrochemical lithium storage. Carbon, 2016, 107, 711-722. Graphene-Coupled Flower-Like Ni3S2 for a Free-Standing 3D Aerogel with an Ultra-High 90 Electrochemical Capacity. Electrochimica Acta, 2016, 191, 705-715.

#	ARTICLE	IF	CITATIONS
91	Decoration of the inert basal plane of defect-rich MoS ₂ with Pd atoms for achieving Pt-similar HER activity. Journal of Materials Chemistry A, 2016, 4, 4025-4031.	5.2	122
92	Electroactive edge site-enriched nickel–cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy and Environmental Science, 2016, 9, 1299-1307.	15.6	623
93	PEG assisted hydrothermal synthesis of hierarchical MoS2 microspheres with excellent adsorption behavior. Materials Letters, 2016, 169, 241-245.	1.3	106
94	Amorphous nanostructured FeOOH and Co–Ni double hydroxides for high-performance aqueous asymmetric supercapacitors. Nano Energy, 2016, 21, 145-153.	8.2	254
95	Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production. Energy and Environmental Science, 2016, 9, 2240-2248.	15.6	174
96	Amorphous Molybdenum Sulfide on Graphene–Carbon Nanotube Hybrids as Highly Active Hydrogen Evolution Reaction Catalysts. ACS Applied Materials & Interfaces, 2016, 8, 5961-5971.	4.0	121
97	A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide. Nature Communications, 2016, 7, 10771.	5.8	418
98	Two-dimensional layered MoS ₂ : rational design, properties and electrochemical applications. Energy and Environmental Science, 2016, 9, 1190-1209.	15.6	532
99	Comparison of liquid exfoliated transition metal dichalcogenides reveals MoSe ₂ to be the most effective hydrogen evolution catalyst. Nanoscale, 2016, 8, 5737-5749.	2.8	127
100	Microwave-Assisted Hydrothermal Preparation of SnO ₂ /MoS ₂ Composites and their Electrochemical Performance. Nano, 2016, 11, 1650023.	0.5	13
101	Core–shell structured CeO ₂ @MoS ₂ nanocomposites for high performance symmetric supercapacitors. CrystEngComm, 2016, 18, 4158-4164.	1.3	51
102	Hollow Structured Micro/Nano MoS ₂ Spheres for High Electrocatalytic Activity Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2016, 8, 5517-5525.	4.0	190
103	Smart, stretchable and wearable supercapacitors: prospects and challenges. CrystEngComm, 2016, 18, 4218-4235.	1.3	75
104	Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chemical Society Reviews, 2016, 45, 2239-2262.	18.7	391
105	Hierarchical Manganese Dioxide/Poly(3,4-ethylenedioxythiophene) Core–Shell Nanoflakes on Ramie-Derived Carbon Fiber for High-Performance Flexible All-Solid-State Supercapacitor. ACS Sustainable Chemistry and Engineering, 2016, 4, 1201-1211.	3.2	81
106	Hierarchical spheres constructed by defect-rich MoS 2 /carbon nanosheets for efficient electrocatalytic hydrogen evolution. Nano Energy, 2016, 22, 490-498.	8.2	267
107	Highly Efficient Hydrogen Evolution Reaction Using Crystalline Layered Three-Dimensional Molybdenum Disulfides Grown on Graphene Film. Chemistry of Materials, 2016, 28, 549-555.	3.2	98
108	Synthesis and characterization of electrospun PAN/2D MoS 2 composite nanofibers. Journal of Industrial and Engineering Chemistry, 2016, 34, 61-65.	2.9	15

#	Article	IF	CITATIONS
109	Synthesis of large-scale 2-D MoS2 atomic layers by hydrogen-free and promoter-free chemical vapor deposition. Materials Letters, 2016, 168, 1-4.	1.3	13
110	Low-Temperature and Ultrafast Synthesis of Patternable Few-Layer Transition Metal Dichacogenides with Controllable Stacking Alignment by a Microwave-Assisted Selenization Process. Chemistry of Materials, 2016, 28, 1147-1154.	3.2	22
111	Designing two dimensional nanoarchitectured MoS2 sheets grown on Mo foil as a binder free electrode for supercapacitors. Electrochimica Acta, 2016, 190, 305-312.	2.6	159
112	MoS 2 -graphene hybrid nanosheets constructed 3D architectures with improved electrochemical performance for lithium-ion batteries and hydrogen evolution. Electrochimica Acta, 2016, 189, 224-230.	2.6	89
113	Atom-Thin SnS2–xSex with Adjustable Compositions by Direct Liquid Exfoliation from Single Crystals. ACS Nano, 2016, 10, 755-762.	7.3	39
114	Defect engineering of single- and few-layer MoS ₂ by swift heavy ion irradiation. 2D Materials, 2017, 4, 015034.	2.0	60
115	Design and fabrication of macroporous polyaniline nanorods@graphene-like MoS 2 nanocomposite with high electrochemical performance for supercapacitors. Journal of Alloys and Compounds, 2017, 699, 176-182.	2.8	31
116	Inorganic Porous Films for Renewable Energy Storage. ACS Energy Letters, 2017, 2, 373-390.	8.8	68
117	Threeâ€Dimensional MoS ₂ @CNT/RGO Network Composites for Highâ€Performance Flexible Supercapacitors. Chemistry - A European Journal, 2017, 23, 3438-3446.	1.7	166
118	One-pot synthesis of hierarchical Bi2S3-MoS2 nanosheet array with high electrochemical performance. Journal of Power Sources, 2017, 342, 921-928.	4.0	31
119	Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today, 2017, 20, 116-130.	8.3	1,852
120	Revelation of the Excellent Intrinsic Activity of MoS ₂ NiS MoO ₃ Nanowires for Hydrogen Evolution Reaction in Alkaline Medium. ACS Applied Materials & Interfaces, 2017, 9, 7084-7090.	4.0	94
121	Highâ€Mobility Multilayered MoS ₂ Flakes with Low Contact Resistance Grown by Chemical Vapor Deposition. Advanced Materials, 2017, 29, 1604540.	11.1	214
122	Materials Design and System Construction for Conventional and New oncept Supercapacitors. Advanced Science, 2017, 4, 1600382.	5.6	365
123	3D Porous Nanoarchitectures Derived from SnS/Sâ€Doped Graphene Hybrid Nanosheets for Flexible All‣olid‣tate Supercapacitors. Small, 2017, 13, 1603494.	5.2	55
124	Arrays of hierarchical nickel sulfides/MoS2 nanosheets supported on carbon nanotubes backbone as advanced anode materials for asymmetric supercapacitor. Journal of Power Sources, 2017, 343, 373-382.	4.0	162
125	Two dimensional MoS2/CNT hybrid ink for paper-based capacitive energy storage. Journal of Materials Science: Materials in Electronics, 2017, 28, 8452-8459.	1.1	33
126	Interlayer expanded molybdenum disulfide nanosheets assembly for electrochemical supercapacitor with enhanced performance. Materials Chemistry and Physics, 2017, 192, 100-107.	2.0	24

#	Article	IF	CITATIONS
127	Swollen Ammoniated MoS ₂ with 1T/2H Hybrid Phases for High-Rate Electrochemical Energy Storage. ACS Sustainable Chemistry and Engineering, 2017, 5, 2509-2515.	3.2	194
128	Electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 11053-11077.	3.8	613
129	Template-Free Vapor-Phase Growth of Patrónite by Atomic Layer Deposition. Chemistry of Materials, 2017, 29, 2864-2873.	3.2	37
130	Multi-node CdS hetero-nanowires grown with defect-rich oxygen-doped MoS2 ultrathin nanosheets for efficient visible-light photocatalytic H2 evolution. Nano Research, 2017, 10, 1377-1392.	5.8	104
131	Novel three-dimensional flower-like porous Al 2 O 3 nanosheets anchoring NiS 2 nanoparticles for high-efficiency hydrogen evolution. Journal of Power Sources, 2017, 348, 246-254.	4.0	31
132	Silver wrapped MoS2 hybrid electrode materials for high-performance supercapacitor. Journal of Alloys and Compounds, 2017, 708, 763-768.	2.8	29
133	Two-Dimensional (2D) Nanomaterials towards Electrochemical Nanoarchitectonics in Energy-Related Applications. Bulletin of the Chemical Society of Japan, 2017, 90, 627-648.	2.0	369
134	Asymmetric Supercapacitor Electrodes and Devices. Advanced Materials, 2017, 29, 1605336.	11.1	1,021
135	Vulcanizing time controlled synthesis of NiS microflowers and its application in asymmetric supercapacitors. Electrochimica Acta, 2017, 230, 428-437.	2.6	111
136	Few-layer MoS ₂ flakes as a hole-selective layer for solution-processed hybrid organic hydrogen-evolving photocathodes. Journal of Materials Chemistry A, 2017, 5, 4384-4396.	5.2	55
137	Defect-rich MoS2 nanowall catalyst for efficient hydrogen evolution reaction. Nano Research, 2017, 10, 1178-1188.	5.8	177
138	Monocrystalline hematite nanostructures: three-dimensionally oriented aggregation synthesis and their comparative visible-light photocatalytic activities. CrystEngComm, 2017, 19, 1926-1932.	1.3	6
139	Enabling Colloidal Synthesis of Edge-Oriented MoS ₂ with Expanded Interlayer Spacing for Enhanced HER Catalysis. Nano Letters, 2017, 17, 1963-1969.	4.5	225
140	Controllable nanoscale engineering of vertically aligned MoS2 ultrathin nanosheets by nitrogen doping of 3D graphene hydrogel for improved electrocatalytic hydrogen evolution. Carbon, 2017, 116, 223-231.	5.4	92
141	Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy, 2017, 36, 268-285.	8.2	1,035
142	Enhanced Catalytic Reduction of <i>p</i> -Nitrophenol on Ultrathin MoS ₂ Nanosheets Decorated with Noble Metal Nanoparticles. Crystal Growth and Design, 2017, 17, 3538-3547.	1.4	138
143	Strained W(Se _{<i>x</i>} S _{1–<i>x</i>}) ₂ Nanoporous Films for Highly Efficient Hydrogen Evolution. ACS Energy Letters, 2017, 2, 1315-1320.	8.8	64
144	Local Lattice Distortion Activate Metastable Metal Sulfide as Catalyst with Stable Full Discharge–Charge Capability for Li–O ₂ Batteries. Nano Letters, 2017, 17, 3518-3526.	4.5	68

#	Article	IF	CITATIONS
145	Hierarchical nanoflowers assembled from MoS 2 /polyaniline sandwiched nanosheets for high-performance supercapacitors. Electrochimica Acta, 2017, 243, 98-104.	2.6	56
146	Nitrogen doped MoS 2 nanosheets synthesized via a low-temperature process as electrocatalysts with enhanced activity for hydrogen evolution reaction. Journal of Power Sources, 2017, 356, 133-139.	4.0	183
147	Recent advances in MoS 2 nanostructured materials for energy and environmental applications – A review. Journal of Solid State Chemistry, 2017, 252, 43-71.	1.4	216
148	Oxidation of Molybdenum Disulfide Sheet in Water under in Situ Atomic Force Microscopy Observation. Journal of Physical Chemistry C, 2017, 121, 9938-9943.	1.5	102
149	Ultrafine Pt nanoparticles decorated MoS 2 nanosheets with significantly improved hydrogen evolution activity. Electrochimica Acta, 2017, 241, 316-322.	2.6	80
150	Synthesis of few-layer 1T′-MoTe ₂ ultrathin nanosheets for high-performance pseudocapacitors. Journal of Materials Chemistry A, 2017, 5, 1035-1042.	5.2	134
151	Foldable All-Solid-State Supercapacitors Integrated with Photodetectors. Advanced Functional Materials, 2017, 27, 1604639.	7.8	83
152	Fabrication of niobium-based oxides/oxynitrides/nitrides and their applications in dye-sensitized solar cells and anaerobic digestion. Journal of Power Sources, 2017, 340, 325-336.	4.0	94
153	Strongly coupled MoS ₂ nanoflake–carbon nanotube nanocomposite as an excellent electrocatalyst for hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 1558-1566.	5.2	117
154	Functional flexible and wearable supercapacitors. Journal Physics D: Applied Physics, 2017, 50, 273001.	1.3	31
155	Hexamine, PEG-400 effect on α-MoO3 nanoparticle synthesis for pseudo capacitance applications. Journal of Materials Science: Materials in Electronics, 2017, 28, 13780-13786.	1.1	3
156	K0.4TaO2.4F0.6 Nanocubes as Highly Efficient Noble Metal-Free Electrocatalysts for Hydrogen Evolution Reaction in Acidic Media. Electrochimica Acta, 2017, 245, 193-200.	2.6	6
157	Graphene-wrapped CNT@MoS ₂ hierarchical structure: synthesis, characterization and electrochemical application in supercapacitors. New Journal of Chemistry, 2017, 41, 7142-7150.	1.4	29
158	Nitrogen-Doped Nanoporous Carbon Membranes with Co/CoP Janus-Type Nanocrystals as Hydrogen Evolution Electrode in Both Acidic and Alkaline Environments. ACS Nano, 2017, 11, 4358-4364.	7.3	199
159	Directional Construction of Vertical Nitrogenâ€Doped 1Tâ€2H MoSe ₂ /Graphene Shell/Core Nanoflake Arrays for Efficient Hydrogen Evolution Reaction. Advanced Materials, 2017, 29, 1700748.	11.1	404
160	Oxygen-incorporated MoS 2 microspheres with tunable interiors as novel electrode materials for supercapacitors. Journal of Power Sources, 2017, 352, 135-142.	4.0	58
161	Enhanced electrocatalytic hydrogen evolution performance of MoS 2 ultrathin nanosheets via Sn doping. Applied Catalysis A: General, 2017, 538, 1-8.	2.2	45
162	Facile synthesis of three dimensional MoS 2 porous film with high electrochemical performance. Materials Letters, 2017, 195, 147-150.	1.3	9

#	Article	IF	CITATIONS
163	Edge-Enriched 2D MoS ₂ Thin Films Grown by Chemical Vapor Deposition for Enhanced Catalytic Performance. ACS Catalysis, 2017, 7, 877-886.	5.5	123
164	Ruthenium sulfide nanoparticles as a new pseudocapacitive material for supercapacitor. Electrochimica Acta, 2017, 227, 85-94.	2.6	175
165	Interlayer-expanded MoS 2. Materials Today, 2017, 20, 83-91.	8.3	276
166	Composition-Modulated Two-Dimensional Semiconductor Lateral Heterostructures <i>via</i> Layer-Selected Atomic Substitution. ACS Nano, 2017, 11, 961-967.	7.3	99
167	Engineering Co ₉ S ₈ /WS ₂ array films as bifunctional electrocatalysts for efficient water splitting. Journal of Materials Chemistry A, 2017, 5, 23361-23368.	5.2	117
168	Synthesis of Mesoporous CoS ₂ and Ni <i>_x</i> Co _{1–<i>x</i>} S ₂ with Superior Supercapacitive Performance Using a Facile Solid-Phase Sulfurization. ACS Applied Materials & Interfaces, 2017, 9, 36837-36848.	4.0	64
169	Integrated Quasiplane Heteronanostructures of MoSe ₂ /Bi ₂ Se ₃ Hexagonal Nanosheets: Synergetic Electrocatalytic Water Splitting and Enhanced Supercapacitor Performance. Advanced Functional Materials, 2017, 27, 1703864.	7.8	170
170	WX2(X=S, Se) Single Crystals: A Highly Stable Material for Supercapacitor Applications. Electrochimica Acta, 2017, 258, 71-79.	2.6	35
171	Molybdenum diselenide nanosheets wraping carbon aerogel nanospheres as an advanced material for supercapacitor and electrochemical sensing. Electrochimica Acta, 2017, 257, 301-310.	2.6	13
172	Precious metal-free approach to hydrogen electrocatalysis for energy conversion: From mechanism understanding to catalyst design. Nano Energy, 2017, 42, 69-89.	8.2	157
173	V ₂ O ₅ embedded in vertically aligned carbon nanotube arrays as free-standing electrodes for flexible supercapacitors. Journal of Materials Chemistry A, 2017, 5, 23727-23736.	5.2	73
174	The flexible SiC nanowire paper electrode as highly efficient photocathodes for photoelectrocatalytic water splitting. Journal of Electroanalytical Chemistry, 2017, 806, 61-67.	1.9	15
175	MoS ₂ Nanosheets Supported on Hollow Carbon Spheres as Efficient Catalysts for Electrochemical Hydrogen Evolution Reaction. ACS Omega, 2017, 2, 5087-5094.	1.6	38
176	Nanostructured binary and ternary metal sulfides: synthesis methods and their application in energy conversion and storage devices. Journal of Materials Chemistry A, 2017, 5, 22040-22094.	5.2	341
177	Layer Structured Materials for Advanced Energy Storage and Conversion. Small, 2017, 13, 1701649.	5.2	129
178	<i>Insitu</i> grown Ni ₉ S ₈ nanorod/O-MoS ₂ nanosheet nanocomposite on carbon cloth as a free binder supercapacitor electrode and hydrogen evolution catalyst. Nanotechnology, 2017, 28, 445407.	1.3	44
179	Highly Active 2D Layered MoS 2 -rGO Hybrids for Energy Conversion and Storage Applications. Scientific Reports, 2017, 7, 8378.	1.6	143
180	Effect of selenization parameters on hydrogen evolution reaction activity of WSe 2 electrodes. Applied Surface Science, 2017, 425, 622-627.	3.1	16

			_
#	ARTICLE	IF	CITATIONS
181	Facile and one-step synthesis of a free-standing 3D MoS ₂ –rGO/Mo binder-free electrode for efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 18081-18087.	5.2	39
182	Facile preparation of NiFe2O4/MoS2 composite material with synergistic effect for high performance supercapacitor. Journal of Alloys and Compounds, 2017, 726, 608-617.	2.8	83
183	Modifications of pure and Ag doped TiO2 by pre-sulphated and calcination temperature treatments. Research on Chemical Intermediates, 2017, 43, 6571-6588.	1.3	11
184	High-energy asymmetric supercapacitors based on free-standing hierarchical Co–Mo–S nanosheets with enhanced cycling stability. Nanoscale, 2017, 9, 13747-13759.	2.8	113
185	Design and electrosynthesis of monolayered MoS2 and BF4â^'-doped poly(3,4-ethylenedioxythiophene) nanocomposites for enhanced supercapacitive performance. Journal of Electroanalytical Chemistry, 2017, 801, 345-353.	1.9	29
186	Graphene/graphene nanoribbon aerogels as tunable three-dimensional framework for efficient hydrogen evolution reaction. Electrochimica Acta, 2017, 250, 91-98.	2.6	41
187	Towards well-defined MoS ₂ nanoribbons on a large scale. Chemical Communications, 2017, 53, 9757-9760.	2.2	18
188	Strain-Gradient Effect in Gas Sensors Based on Three-Dimensional Hollow Molybdenum Disulfide Nanoflakes. ACS Applied Materials & Interfaces, 2017, 9, 43799-43806.	4.0	22
189	Hierarchical CoS/MoS ₂ and Co ₃ S ₄ /MoS ₂ /Ni ₂ P nanotubes for efficient electrocatalytic hydrogen evolution in alkaline media. Journal of Materials Chemistry A, 2017, 5, 25410-25419.	5.2	66
190	Aligned and stable metallic MoS ₂ on plasma-treated mass transfer channels for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 25359-25367.	5.2	31
191	A novel electrochemical quercetin sensor based on Pd/MoS2-ionic liquid functionalized ordered mesoporous carbon. Electrochimica Acta, 2017, 247, 657-665.	2.6	33
192	Improving hydrogen evolution reaction for MoS 2 hollow spheres. Journal of Electroanalytical Chemistry, 2017, 799, 304-307.	1.9	17
193	Transparent 1T-MoS ₂ nanofilm robustly anchored on substrate by layer-by-layer self-assembly and its ultra-high cycling stability as supercapacitors. Nanotechnology, 2017, 28, 395401.	1.3	24
194	Synthesis of rambutan-like MoS2/mesoporous carbon spheres nanocomposites with excellent performance for supercapacitors. Applied Surface Science, 2017, 396, 994-999.	3.1	67
195	Fullereneâ€Like Nickel Oxysulfide Hollow Nanospheres as Bifunctional Electrocatalysts for Water Splitting. Small, 2017, 13, 1602637.	5.2	39
196	Facile Synthesis of MoS _x and MoS _x â€rGO Composite: Excellent Electrocatalyst for Hydrogen Evolution Reaction. ChemistrySelect, 2017, 2, 11590-11598.	0.7	11
197	Enlarged interlayer spaced molybdenum disulfide supported on nanocarbon hybrid network for efficient hydrogen evolution reaction. Electrochimica Acta, 2018, 264, 329-340.	2.6	32
198	Two-dimensional transition metal dichalcogenide hybrid materials for energy applications. Nano Today, 2018, 19, 16-40.	6.2	142

#	Article	IF	CITATIONS
199	Ultrathin NiCo ₂ S ₄ @graphene with a core–shell structure as a high performance positive electrode for hybrid supercapacitors. Journal of Materials Chemistry A, 2018, 6, 5856-5861.	5.2	164
200	Enhanced hydrogen evolution reaction activity of hydrogen-annealed vertical MoS ₂ nanosheets. RSC Advances, 2018, 8, 14369-14376.	1.7	36
201	Revealing the Doubleâ€Edged Sword Role of Graphene on Boosted Charge Transfer versus Active Site Control in TiO ₂ Nanotube Arrays@RGO/MoS ₂ Heterostructure. Small, 2018, 14, e1704531.	5.2	49
202	Mapping Catalytically Relevant Edge Electronic States of MoS ₂ . ACS Central Science, 2018, 4, 493-503.	5.3	39
203	Efficient Hydrogen Production on a 3D Flexible Heterojunction Material. Advanced Materials, 2018, 30, e1707082.	11.1	158
204	0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution. Applied Catalysis B: Environmental, 2018, 228, 64-74.	10.8	298
205	Highly anisotropic, multichannel wood carbon with optimized heteroatom doping for supercapacitor and oxygen reduction reaction. Carbon, 2018, 130, 532-543.	5.4	164
206	Recent Advances in Two-Dimensional Nanomaterials for Supercapacitor Electrode Applications. ACS Energy Letters, 2018, 3, 482-495.	8.8	618
207	Large Dendritic Monolayer MoS ₂ Grown by Atmospheric Pressure Chemical Vapor Deposition for Electrocatalysis. ACS Applied Materials & Interfaces, 2018, 10, 4630-4639.	4.0	88
208	Mace-like hierarchical MoS 2 /NiCo 2 S 4 composites supported by carbon fiber paper: An efficient electrocatalyst for the hydrogen evolution reaction. Journal of Power Sources, 2018, 377, 142-150.	4.0	94
209	Ni-Co-S/Co(OH)2 nanocomposite for high energy density all-solid-state asymmetric supercapacitors. Chemical Engineering Journal, 2018, 336, 602-611.	6.6	64
210	Ultrathin molybdenum disulfide/carbon nitride nanosheets with abundant active sites for enhanced hydrogen evolution. Nanoscale, 2018, 10, 1766-1773.	2.8	57
211	3D hierarchical CMF/MoSe2 composite foam as highly efficient electrocatalyst for hydrogen evolution. Electrochimica Acta, 2018, 263, 94-101.	2.6	30
212	An electrochemical anodization strategy towards high-activity porous MoS ₂ electrodes for the hydrogen evolution reaction. RSC Advances, 2018, 8, 15030-15035.	1.7	5
213	Molybdenum and tungsten disulfides-based nanocomposite films for energy storage and conversion: A review. Chemical Engineering Journal, 2018, 348, 908-928.	6.6	98
214	Directly deposited porous two-dimensional MoS 2 films as electrocatalysts for hydrogen evolution reactions. Materials Letters, 2018, 225, 65-68.	1.3	17
215	Few-layer tiny nanoflakes of molybdenum sulfide loaded on porous carbon as an efficient electrocatalyst for hydrogen generation. Journal of Alloys and Compounds, 2018, 750, 927-934.	2.8	6
216	Enhanced energy storage performance from Co-decorated MoS2 nanosheets as supercapacitor electrode materials. Ceramics International, 2018, 44, 13434-13438.	2.3	33

#	Article	IF	CITATIONS
217	Phosphorus and Aluminum Codoped Porous NiO Nanosheets as Highly Efficient Electrocatalysts for Overall Water Splitting. ACS Energy Letters, 2018, 3, 892-898.	8.8	130
218	<i>In situ</i> synthesis of MoS ₂ /graphene nanosheets as free-standing and flexible electrode paper for high-efficiency hydrogen evolution reaction. RSC Advances, 2018, 8, 10698-10705.	1.7	34
219	Ultrahigh-Rate Supercapacitors Based on 2-Dimensional, 1T MoS _{2<i>x</i>} Se _{2(1–<i>x</i>)} for AC Line-Filtering Applications. Journal of Physical Chemistry C, 2018, 122, 14186-14194.	1.5	29
220	Amorphous MoS2 nanosheets grown on copper@nickel-phosphorous dendritic structures for hydrogen evolution reaction. Applied Surface Science, 2018, 432, 183-189.	3.1	26
221	Controlled growth of MoS2 nanopetals on the silicon nanowire array using the chemical vapor deposition method. Journal of Crystal Growth, 2018, 481, 18-22.	0.7	4
222	High photoelectrochemical activity and stability of Au-WS2/silicon heterojunction photocathode. Solar Energy Materials and Solar Cells, 2018, 174, 300-306.	3.0	16
223	Advanced catalysts for sustainable hydrogen generation and storage via hydrogen evolution and carbon dioxide/nitrogen reduction reactions. Progress in Materials Science, 2018, 92, 64-111.	16.0	195
224	MoS ₂ /TiO ₂ heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution. Energy and Environmental Science, 2018, 11, 106-114.	15.6	326
225	Mn3O4 nanosheets decorated on flexible carbon fabric for high-performance supercapacitors electrode. Materials Letters, 2018, 210, 148-152.	1.3	10
226	Dreidimensionale Architekturen aus Übergangsmetallâ€Dichalkogenidâ€Nanomaterialien zur elektrochemischen Energiespeicherung und â€umwandlung. Angewandte Chemie, 2018, 130, 634-655.	1.6	37
227	Threeâ€Dimensional Architectures Constructed from Transitionâ€Metal Dichalcogenide Nanomaterials for Electrochemical Energy Storage and Conversion. Angewandte Chemie - International Edition, 2018, 57, 626-646.	7.2	398
228	Quasiâ€Emulsion Confined Synthesis of Edgeâ€Rich Ultrathin MoS ₂ Nanosheets/Graphene Hybrid for Enhanced Hydrogen Evolution. Chemistry - A European Journal, 2018, 24, 556-560.	1.7	55
229	Wearable high-performance supercapacitors based on Ni-coated cotton textile with low-crystalline Ni-Al layered double hydroxide nanoparticles. Journal of Colloid and Interface Science, 2018, 513, 342-348.	5.0	50
230	Facile construction of MoS2/RCF electrode for high-performance supercapacitor. Carbon, 2018, 127, 699-706.	5.4	114
231	3D Mesoporous van der Waals Heterostructures for Trifunctional Energy Electrocatalysis. Advanced Materials, 2018, 30, 1705110.	11.1	171
232	Mo2S3@Ni3S2 nanowries on nickel foam as a highly-stable supercapacitor material. Journal of Alloys and Compounds, 2018, 737, 809-814.	2.8	26
233	Temperature dependence of Ni3S2 nanostructures with high electrochemical performance. Applied Surface Science, 2018, 436, 42-49.	3.1	38
234	Simultaneous edge and electronic control of MoS ₂ nanosheets through Fe doping for an efficient oxygen evolution reaction. Nanoscale, 2018, 10, 20113-20119.	2.8	63

#	Article	IF	CITATIONS
235	Synthesis, stabilization and applications of 2-dimensional 1T metallic MoS ₂ . Journal of Materials Chemistry A, 2018, 6, 23932-23977.	5.2	250
236	Use of a diatomite template to prepare a MoS ₂ /amorphous carbon composite and exploration of its electrochemical properties as a supercapacitor. RSC Advances, 2018, 8, 35672-35680.	1.7	11
237	Ultrafine Rh nanoparticle decorated MoSe ₂ nanoflowers for efficient alkaline hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2018, 5, 2978-2984.	3.0	18
238	Effects of morphology and crystallinity of MoS2 nanocrystals on the catalytic reduction of p-nitrophenol. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	17
239	Controllable Sandwiching of Reduced Graphene Oxide in Hierarchical Defectâ€Rich MoS ₂ Ultrathin Nanosheets with Expanded Interlayer Spacing for Electrocatalytic Hydrogen Evolution Reaction. Advanced Materials Interfaces, 2018, 5, 1801093.	1.9	45
240	Active basal plane in ZT-phased MX2 (M = Mo, W; X = S, Se, Te) catalysts for the hydrogen evolution reaction: A theoretical study. International Journal of Hydrogen Energy, 2018, 43, 19432-19437.	3.8	15
241	Materials Mutualism through EDLC-Behaved MWCNTs with Pseudocapacitive MoTe ₂ Nanopebbles: Enhanced Supercapacitive Performance. ACS Sustainable Chemistry and Engineering, 2018, 6, 15072-15082.	3.2	66
242	Beyond Graphene Anode Materials for Emerging Metal Ion Batteries and Supercapacitors. Nano-Micro Letters, 2018, 10, 70.	14.4	95
243	Mechanochemical Coupling of MoS ₂ and Perovskites for Hydrogen Generation. ACS Applied Energy Materials, 2018, 1, 6409-6416.	2.5	33
244	Tunable Transformation Between SnS and SnO _x Nanostructures via Facile Anodization and Their Photoelectrochemical and Photocatalytic Performance. Solar Rrl, 2018, 2, 1800161.	3.1	13
245	3D core–shell MoS ₂ superspheres composed of oriented nanosheets with quasi molecular superlattices: mimicked embryo formation and Li-storage properties. Journal of Materials Chemistry A, 2018, 6, 18498-18507.	5.2	32
246	Morphological Evolution of Vertically Standing Molybdenum Disulfide Nanosheets by Chemical Vapor Deposition. Materials, 2018, 11, 631.	1.3	10
247	Metallic layered germanium phosphide GeP ₅ for high rate flexible all-solid-state supercapacitors. Journal of Materials Chemistry A, 2018, 6, 19409-19416.	5.2	31
248	Enhancement of photoluminescence and hole mobility in 1- to 5-layer InSe due to the top valence-band inversion: strain effect. Nanoscale, 2018, 10, 11441-11451.	2.8	58
249	Hierarchical CoP/Ni ₅ P ₄ /CoP microsheet arrays as a robust pH-universal electrocatalyst for efficient hydrogen generation. Energy and Environmental Science, 2018, 11, 2246-2252.	15.6	306
250	A comparison of temperature dependent photoluminescence and photo-catalytic properties of different MoS2 nanostructures. Applied Surface Science, 2018, 455, 379-391.	3.1	29
251	A general synthetic approach for hexagonal phase tungsten nitride composites and their application in the hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 10967-10975.	5.2	62
252	All-solid-state high-energy asymmetric supercapacitor based on natural tubular fibers. Journal of Materials Science, 2018, 53, 11659-11670.	1.7	15

#	Article	IF	CITATIONS
253	Coupling Interface Constructions of MoS ₂ /Fe ₅ Ni ₄ S ₈ Heterostructures for Efficient Electrochemical Water Splitting. Advanced Materials, 2018, 30, e1803151.	11.1	230
254	Physical properties and potential applications of two-dimensional metallic transition metal dichalcogenides. Coordination Chemistry Reviews, 2018, 376, 1-19.	9.5	49
255	Tunable MoS ₂ /SnO ₂ P–N Heterojunctions for an Efficient Trimethylamine Gas Sensor and 4-Nitrophenol Reduction Catalyst. ACS Sustainable Chemistry and Engineering, 2018, 6, 12375-12384.	3.2	151
257	Hierarchical NiMoS and NiFeS Nanosheets with Ultrahigh Energy Density for Flexible All Solid‣tate Supercapacitors. Advanced Functional Materials, 2018, 28, 1803287.	7.8	223
258	Synthesis of dense MoS ₂ nanosheet layers on hollow carbon spheres and their applications in supercapacitors and the electrochemical hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2018, 5, 2198-2204.	3.0	29
259	PbTe quantum dots as electron transfer intermediates for the enhanced hydrogen evolution reaction of amorphous MoS _x /TiO ₂ nanotube arrays. Nanoscale, 2018, 10, 10288-10295.	2.8	44
260	Fast supercapacitors based on vertically oriented MoS2 nanosheets on plasma pyrolyzed cellulose filter paper. Journal of Power Sources, 2018, 400, 277-283.	4.0	46
261	Electronic-dimensionality reduction of bulk MoS ₂ by hydrogen treatment. Physical Chemistry Chemical Physics, 2018, 20, 23007-23012.	1.3	6
262	Flower-like MoS2 on graphitic carbon nitride for enhanced photocatalytic and electrochemical hydrogen evolutions. Applied Catalysis B: Environmental, 2018, 239, 334-344.	10.8	154
263	Enhanced lithium-ion storage and hydrogen evolution reaction catalysis of MoS2/graphene nanoribbons hybrids with loose interlaced three-dimension structure. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	7
264	Transition Metal Induced the Contraction of Tungsten Carbide Lattice as Superior Hydrogen Evolution Reaction Catalyst. ACS Applied Materials & Interfaces, 2018, 10, 22094-22101.	4.0	64
265	Pseudocapacitive response of hydrothermally grown MoS2 crumpled nanosheet on carbon fiber. Materials Chemistry and Physics, 2018, 216, 413-420.	2.0	11
266	Cladding nanostructured AgNWs-MoS2 electrode material for high-rate and long-life transparent in-plane micro-supercapacitor. Energy Storage Materials, 2019, 16, 212-219.	9.5	99
267	Ultrasonic-assisted synthesis of two dimensional BiOCl/MoS2 with tunable band gap and fast charge separation for enhanced photocatalytic performance under visible light. Journal of Colloid and Interface Science, 2019, 533, 539-547.	5.0	75
268	Effect of heterogeneous particle size on nanostructure evolution: A phase-field study. Computational Materials Science, 2019, 169, 109115.	1.4	7
269	Smart in situ construction of NiS/MoS2 composite nanosheets with ultrahigh specific capacity for high-performance asymmetric supercapacitor. Journal of Alloys and Compounds, 2019, 811, 151915.	2.8	39
270	Engineering of MoS 2 Quantum Dots/PANI Aerogel for High Performance Supercapaciator. Macromolecular Symposia, 2019, 386, 1800242.	0.4	6
271	Electroactive Materials. SpringerBriefs in Materials, 2019, , 31-67.	0.1	0

#	Article	IF	CITATIONS
272	Self-Assembled Nanostructured MoS ₂ Quantum Dot Polyaniline Hybrid Gels for High Performance Solid State Flexible Supercapacitors. ACS Applied Energy Materials, 2019, 2, 6642-6654.	2.5	30
273	A critical review on two-dimensional quantum dots (2D QDs): From synthesis toward applications in energy and optoelectronics. Progress in Quantum Electronics, 2019, 68, 100226.	3.5	85
274	Microwave synthesis of MoS ₂ /MoO ₂ @CNT nanocomposites with excellent cycling stability for supercapacitor electrodes. Journal of Materials Chemistry C, 2019, 7, 9545-9555.	2.7	77
275	High performance asymmetric supercapacitor having novel 3D networked polypyrrole nanotube/N-doped graphene negative electrode and core-shelled MoO3/PPy supported MoS2 positive electrode. Electrochimica Acta, 2019, 320, 134533.	2.6	52
276	Recent Advances of Flexible Electrospun Nanofibers-based Electrodes for Electrochemical Supercapacitors: A Minireview. International Journal of Electrochemical Science, 2019, 14, 7811-7831.	0.5	14
277	Insight into the excellent catalytic activity of (CoMo)S2/graphene for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2019, 258, 118012.	10.8	44
278	Toward Flexible and Wearable Zn–Air Batteries from Cotton Textile Waste. ACS Omega, 2019, 4, 19341-19349.	1.6	21
279	MOF derived Co/C and Co3O4/C polyhedron for hydrogen evolution reaction. AIP Conference Proceedings, 2019, , .	0.3	2
280	Ultrathin molybdenum disulfide nanosheet-coated acetylene black: One-pot synthesis and electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 23547-23555.	3.8	10
281	MoN Supported on Graphene as a Bifunctional Interlayer for Advanced Liâ€ S Batteries. Advanced Energy Materials, 2019, 9, 1901940.	10.2	190
283	Sonication-Assisted Synthesis of Molybdenum Disulfide Aerogel for the Electrode Materials of Supercapacitors. Nano, 2019, 14, 1950055.	0.5	1
284	Three-dimensional MoS2/rGO nanocomposites with homogeneous network structure for supercapacitor electrodes. Journal of Materials Science, 2019, 54, 14845-14858.	1.7	24
285	Chemical Trend of Transition-Metal Doping in WSe2. Physical Review Applied, 2019, 12, .	1.5	16
286	MoP-protected Mo oxide nanotube arrays for long-term stable supercapacitors. Applied Materials Today, 2019, 17, 227-235.	2.3	17
287	Ultrastable Sodium Storage in MoO ₃ Nanotube Arrays Enabled by Surface Phosphorylation. ACS Applied Materials & Interfaces, 2019, 11, 37761-37767.	4.0	29
288	New sustainable and environmental friendly process of synthesis of highly porous Mo2S3 nanoflowers in cooking oil and their electrochemical properties. Electrochimica Acta, 2019, 300, 177-185.	2.6	11
289	A novel MoS2 quantum dots (QDs) decorated Z-scheme g-C3N4 nanosheet/N-doped carbon dots heterostructure photocatalyst for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 247, 124-132.	10.8	238
290	Novel Binder-Free Three-Dimensional MoS ₂ -Based Electrode for Efficient and Stable Electrocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2019, 2, 1102-1110.	2.5	42

#	Article	IF	CITATIONS
291	Hollow core–shell NiCo ₂ S ₄ @MoS ₂ dodecahedrons with enhanced performance for supercapacitors and hydrogen evolution reaction. New Journal of Chemistry, 2019, 43, 3601-3608.	1.4	70
292	Enhanced electrochemical biosensor and supercapacitor with 3D porous architectured graphene <i>via</i> salt impregnated inkjet maskless lithography. Nanoscale Horizons, 2019, 4, 735-746.	4.1	43
293	Metal-ion bridged high conductive RGO-M-MoS2 (M = Fe3+, Co2+, Ni2+, Cu2+ and Zn2+) composite electrocatalysts for photo-assisted hydrogen evolution. Applied Catalysis B: Environmental, 2019, 246, 129-139.	10.8	63
294	Ultrahigh energy density asymmetric electrochemical capacitors based on flower-like ZnO/Co ₃ O ₄ nanobundle arrays and stereotaxically constricted graphene. Journal of Materials Chemistry A, 2019, 7, 1273-1280.	5.2	45
295	Plasmonic improvement photoresponse of vertical-MoS2 nanostructure photodetector by Au nanoparticles. Applied Surface Science, 2019, 490, 165-171.	3.1	79
296	MWCNTs-ZnO-SiO2 mesoporous nano-hybrid materials for CO2 capture. Journal of Alloys and Compounds, 2019, 800, 279-285.	2.8	27
297	Covalent Connection of Polyaniline with MoS ₂ Nanosheets toward Ultrahigh Rate Capability Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 11540-11549.	3.2	66
298	Increasing the electrochemical activity of basal plane sites in porous 3D edge rich MoS2 thin films for the hydrogen evolution reaction. Materials Today Energy, 2019, 13, 134-144.	2.5	31
299	3D Ni3S2@Mn-Co-OH cross-linked nanosheets on Ni foam for high performance supercapacitor. lonics, 2019, 25, 5485-5494.	1.2	3
300	Expanding Interlayer Spacing in MoS ₂ for Realizing an Advanced Supercapacitor. ACS Energy Letters, 2019, 4, 1602-1609.	8.8	195
301	Carbon Cloth Modified with Metalâ€Organic Framework Derived CC@CoMoO ₄ â€Co(OH) ₂ Nanosheets Array as a Flexible Energyâ€Storage Material. ChemElectroChem, 2019, 6, 3355-3366.	1.7	14
302	Rosette-like MoS ₂ nanoflowers as highly active and stable electrodes for hydrogen evolution reactions and supercapacitors. RSC Advances, 2019, 9, 13820-13828.	1.7	34
303	Robust C–S bond integrated graphdiyne-MoS2 nanohybrids for enhanced lithium storage capability. Chemical Engineering Journal, 2019, 373, 660-667.	6.6	50
304	Recent advances of porous transition metal-based nanomaterials for electrochemical energy conversion and storage applications. Materials Today Energy, 2019, 13, 64-84.	2.5	64
305	N-Doped amorphous MoS _x for the hydrogen evolution reaction. Nanoscale, 2019, 11, 11217-11226.	2.8	43
306	MoS2 supported CoS2 on carbon cloth as a high-performance electrode for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 16566-16574.	3.8	57
307	The Holy Grail in Platinumâ€Free Electrocatalytic Hydrogen Evolution: Molybdenumâ€Based Catalysts and Recent Advances. ChemElectroChem, 2019, 6, 3570-3589.	1.7	72
308	Oxygen defect-ridden molybdenum oxide-coated carbon catalysts for Li-O2 battery cathodes. Applied Catalysis B: Environmental, 2019, 253, 317-322.	10.8	41

#	Article	IF	CITATIONS
309	Generation of Monolayer MoS ₂ with 1T Phase by Spatial onfinementâ€Induced Ultrathin PPy Anchoring for Highâ€Performance Supercapacitor. Advanced Materials Interfaces, 2019, 6, 1900162.	1.9	33
310	Engineering of molybdenum sulfide nanostructures towards efficient electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 15009-15016.	3.8	21
311	Decorating WSe ₂ nanosheets with ultrafine Ru nanoparticles for boosting electrocatalytic hydrogen evolution in alkaline electrolytes. Inorganic Chemistry Frontiers, 2019, 6, 1382-1387.	3.0	24
312	Identifying Catalytic Active Sites of Trimolybdenum Phosphide (Mo ₃ P) for Electrochemical Hydrogen Evolution. Advanced Energy Materials, 2019, 9, 1900516.	10.2	47
313	Liquid–Solid Interfacial Assemblies of Soft Materials for Functional Freestanding Layered Membrane–Based Devices toward Electrochemical Energy Systems. Advanced Energy Materials, 2019, 9, 1804005.	10.2	18
314	Self-supported nanotubular MoP electrode for highly efficient hydrogen evolution via water splitting. Catalysis Communications, 2019, 127, 1-4.	1.6	14
315	Graphene/graphene nanoribbon aerogels decorated with S-doped MoSe ₂ nanosheets as an efficient electrocatalyst for hydrogen evolution. Inorganic Chemistry Frontiers, 2019, 6, 1209-1216.	3.0	17
316	Flexible Molybdenum Disulfide (MoS ₂) Atomic Layers for Wearable Electronics and Optoelectronics. ACS Applied Materials & amp; Interfaces, 2019, 11, 11061-11105.	4.0	277
317	Facial surfactant-free hydrothermal synthesis of MoS2 microflower and its effect in electrochemical properties. Journal of Solid State Chemistry, 2019, 274, 58-63.	1.4	10
318	Electrochemical intercalation of MoO3-MoS2 composite electrodes: Charge storage mechanism of non-hydrated cations. Electrochimica Acta, 2019, 307, 176-187.	2.6	29
319	Self-reconstruction mechanism in NiSe2 nanoparticles/carbon fiber paper bifunctional electrocatalysts for water splitting. Electrochimica Acta, 2019, 305, 37-46.	2.6	46
320	Defect-rich MoS _{2(1â^'x)} Se _{2x} few-layer nanocomposites: a superior anode material for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 9837-9843.	5.2	35
321	Flexible all-solid-state asymmetric supercapacitor based on three-dimensional MoS2/Ketjen black nanoflower arrays. International Journal of Hydrogen Energy, 2019, 44, 13690-13699.	3.8	25
322	Three-dimensional porous carbon nanofiber loading MoS2 nanoflake-flowerballs as a high-performance anode material for Li-ion capacitor. Applied Surface Science, 2019, 484, 392-402.	3.1	38
323	One-pot hydrothermal synthesis of MoSe2 nanosheets spheres-reduced graphene oxide composites and application for high-performance supercapacitor. Journal of Materials Science: Materials in Electronics, 2019, 30, 8537-8545.	1.1	25
324	P doped MoS2 nanoplates embedded in nitrogen doped carbon nanofibers as an efficient catalyst for hydrogen evolution reaction. Journal of Colloid and Interface Science, 2019, 547, 291-298.	5.0	33
325	Ultrathin Ti3C2Tx (MXene) Nanosheet-Wrapped NiSe2 Octahedral Crystal for Enhanced Supercapacitor Performance and Synergetic Electrocatalytic Water Splitting. Nano-Micro Letters, 2019, 11, 31.	14.4	133
326	Porous aluminum electrodes with 3D channels and zig-zag edges for efficient hydrogen evolution. Chemical Communications, 2019, 55, 5447-5450.	2.2	7

#	Article	IF	CITATIONS
327	Enhanced high rate capability of Li intercalation in planar and edge defect-rich MoS ₂ nanosheets. Nanoscale, 2019, 11, 8882-8897.	2.8	24
328	Recent trends in transition metal dichalcogenide based supercapacitor electrodes. Nanoscale Horizons, 2019, 4, 840-858.	4.1	207
329	Efficient supercapacitor based on polymorphic structure of 1T′-Mo6Te6 nanoplates and few-atomic-layered 2H-MoTe2: A layer by layer study on nickel foam. Chemical Engineering Journal, 2019, 371, 182-192.	6.6	24
330	A 3D self-supported coralline-like CuCo ₂ S ₄ @NiCo ₂ S ₄ core–shell nanostructure composite for high-performance solid-state asymmetrical supercapacitors. Nanotechnology, 2019, 30, 255603.	1.3	41
331	PEDOT-engineered Bi ₂ O ₃ nanosheet arrays for flexible asymmetric supercapacitors with boosted energy density. Journal of Materials Chemistry A, 2019, 7, 5530-5538.	5.2	29
332	Sulfur-doped graphene/transition metal dichalcogenide heterostructured hybrids with electrocatalytic activity toward the hydrogen evolution reaction. Nanoscale Advances, 2019, 1, 1489-1496.	2.2	36
333	Marigold shaped N-rGO-MoS2-Ni(OH)2 nanocomposite as a bifunctional electrocatalyst for the promotion of overall water splitting in alkaline medium. Electrochimica Acta, 2019, 303, 257-267.	2.6	44
334	Two-dimensional transition metal dichalcogenides in supercapacitors and secondary batteries. Energy Storage Materials, 2019, 19, 408-423.	9.5	189
335	Nitrogen and sulfur-codoped porous carbon derived from a BSA/ionic liquid polymer complex: multifunctional electrode materials for water splitting and supercapacitors. RSC Advances, 2019, 9, 5189-5196.	1.7	8
336	Flower-like MoS2@Bi2Fe4O9 microspheres with hierarchical structure as electromagnetic wave absorber. Applied Surface Science, 2019, 479, 1226-1235.	3.1	98
337	Hierarchical Amorphous Carbon-Coated Co/Co ₉ S ₈ Nanoparticles on MoS ₂ toward Synergetic Electrocatalytic Water Splitting. Industrial & Engineering Chemistry Research, 2019, 58, 23093-23098.	1.8	12
338	Vertically MoS ₂ on Reduced Graphene Oxide with Superior Durability for Quasiâ€solidâ€state Supercapacitor. ChemistrySelect, 2019, 4, 12815-12823.	0.7	11
339	Carbonâ€Based Photocathode Materials for Solar Hydrogen Production. Advanced Materials, 2019, 31, e1801446.	11.1	83
340	Hierarchical "nanoroll―like MoS2/Ti3C2Tx hybrid with high electrocatalytic hydrogen evolution activity. Applied Catalysis B: Environmental, 2019, 241, 89-94.	10.8	214
341	Synthesis of Surface Grown Pt Nanoparticles on Edge-Enriched MoS ₂ Porous Thin Films for Enhancing Electrochemical Performance. Chemistry of Materials, 2019, 31, 387-397.	3.2	40
342	A Single Robust Hydrogel Film Based Integrated Flexible Supercapacitor. ACS Sustainable Chemistry and Engineering, 2019, 7, 165-173.	3.2	89
343	Phosphorusâ€Mediated MoS ₂ Nanowires as a Highâ€Performance Electrode Material for Quasiâ€Solidâ€State Sodiumâ€Ion Intercalation Supercapacitors. Small, 2019, 15, e1803984.	5.2	81
344	MoSe2/graphite composite with excellent hydrogen evolution reaction performance fabricated by rapid selenization method. Applied Surface Science, 2019, 471, 142-148.	3.1	16

	CITATION	Report	
#	Article	IF	Citations
345	Facile preparation and high capacitance performance of copper sulfide microspheres as supercapacitor electrode material. Composites Part B: Engineering, 2019, 163, 26-35.	5.9	30
346	Perforating Freestanding Molybdenum Disulfide Monolayers with Highly Charged Ions. Journal of Physical Chemistry Letters, 2019, 10, 904-910.	2.1	42
347	Thin-Film Electrode-Based Supercapacitors. Joule, 2019, 3, 338-360.	11.7	171
348	Uniform MoS2 nanolayer with sulfur vacancy on carbon nanotube networks as binder-free electrodes for asymmetrical supercapacitor. Applied Surface Science, 2019, 475, 793-802.	3.1	69
349	Highly Efficient Hydrogen Evolution from a Mesoporous Hybrid of Nickel Phosphide Nanoparticles Anchored on Cobalt Phosphosulfide/Phosphide Nanosheet Arrays. Small, 2019, 15, e1804272.	5.2	87
350	2D Transition Metal Dichalcogenide Thin Films Obtained by Chemical Gas Phase Deposition Techniques. Advanced Materials Interfaces, 2019, 6, 1800688.	1.9	21
351	2D carbide nanomeshes and their assembling into 3D microflowers for efficient water splitting. Applied Catalysis B: Environmental, 2019, 243, 678-685.	10.8	116
352	Ultrathin molybdenum phosphide films as high-efficiency electrocatalysts for hydrogen evolution reaction. Materials Research Express, 2019, 6, 016418.	0.8	8
353	Highâ€Voltage Supercapacitors Based on Aqueous Electrolytes. ChemElectroChem, 2019, 6, 976-988.	1.7	133
354	Centimeter-Scale Nanoporous 2D Membranes and Ion Transport: Porous MoS ₂ Monolayers in a Few-Layer Matrix. Nano Letters, 2019, 19, 392-399.	4.5	25
355	Electrochemical Pseudocapacitors Based on Ternary Nanocomposite of Conductive Polymer/Graphene/Metal Oxide: An Introduction and Review to it in Recent Studies. Chemical Record, 2019, 19, 908-926.	2.9	81
356	Selfâ€Supported Transitionâ€Metalâ€Based Electrocatalysts for Hydrogen and Oxygen Evolution. Advanced Materials, 2020, 32, e1806326.	11.1	986
357	Exfoliated colloidal MoS2 nanosheet with predominantly 1T phase for electrocatalytic hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 18645-18656.	3.8	13
358	Comparative analysis of Co9S8/S-doped rGO composites as high-performance electrodes via facile one-step anneal fabrication for supercapacitor application. Journal of Alloys and Compounds, 2020, 815, 152448.	2.8	13
359	Layered Transition Metal Dichalcogenideâ€Based Nanomaterials for Electrochemical Energy Storage. Advanced Materials, 2020, 32, e1903826.	11.1	329
360	Facile one-step synthesis of porous hybrid material fabricated by 2D nanosheets of molybdenum disulfide and reduced graphene oxide for efficient electrocatalytic hydrogen evolution. Journal of Porous Materials, 2020, 27, 123-131.	1.3	4
361	High performance supercapacitor based on 2D-MoS2 nanostructures. Materials Today: Proceedings, 2020, 26, 20-24.	0.9	40
362	Facile microwave approach towards high performance MoS2/graphene nanocomposite for hydrogen evolution reaction. Science China Materials, 2020, 63, 62-74.	3.5	38

#	Article	IF	CITATIONS
363	High performance supercapacitors based on MoS2 nanostructures with near commercial mass loading. Journal of Alloys and Compounds, 2020, 819, 152963.	2.8	46
364	Vanadiumâ€Incorporated Metallic (1â€ī) Molybdenum Sulfide Nanoroses for Highâ€Energyâ€Density Asymmetric Supercapacitors. ChemSusChem, 2020, 13, 221-229.	3.6	7
365	Boosting the electrochemical performance of MoS2 nanospheres-N-doped-GQDs-rGO three-dimensional nanostructure for energy storage and conversion applications. Applied Surface Science, 2020, 504, 144441.	3.1	38
366	Porous carbon coupled with an interlaced MoP–MoS2 heterojunction hybrid for efficient hydrogen evolution reaction. Journal of Energy Chemistry, 2020, 45, 45-51.	7.1	43
367	Structure Engineering of MoS ₂ via Simultaneous Oxygen and Phosphorus Incorporation for Improved Hydrogen Evolution. Small, 2020, 16, e1905738.	5.2	112
368	Voltage issue of aqueous rechargeable metal-ion batteries. Chemical Society Reviews, 2020, 49, 180-232.	18.7	522
369	Robust Hydrogen-Evolving Electrocatalyst from Heterogeneous Molybdenum Disulfide-Based Catalyst. ACS Catalysis, 2020, 10, 1511-1519.	5.5	88
370	Preparation of MoS2/graphene nanostructures and their supercapacitor and hydrogen evolution reaction (HER) performances. Journal Physics D: Applied Physics, 2020, 53, 065501.	1.3	7
371	Morphology/phase-dependent MoS2 nanostructures for high-efficiency electrochemical activity. Journal of Alloys and Compounds, 2020, 818, 152909.	2.8	20
372	Fabricating Molybdenum Disulfide Memristors. ACS Applied Electronic Materials, 2020, 2, 346-370.	2.0	27
373	Laser assisted self-assembly synthesis of porous hollow MoO3-x-doped MoS2 nanospheres sandwiched by graphene for flexible high-areal supercapacitors. Electrochimica Acta, 2020, 332, 135499.	2.6	23
374	3D Carbon Foam Supported Edgeâ€Rich Nâ€Doped MoS ₂ Nanoflakes for Enhanced Electrocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2020, 26, 4150-4156.	1.7	12
375	Engineering 2D Materials: A Viable Pathway for Improved Electrochemical Energy Storage. Advanced Energy Materials, 2020, 10, 2002621.	10.2	45
376	Pinning ultrasmall greigite nanoparticles on graphene for effective transition-metal-sulfide supercapacitors in an ionic liquid electrolyte. Journal of Materials Chemistry A, 2020, 8, 25716-25726.	5.2	14
377	Electronic structure and electrochemical performance of CoS2/MoS2 nanosheet composite: Simulation calculation and experimental investigation. Electrochimica Acta, 2020, 364, 137224.	2.6	30
378	ReS ₂ : A High-Rate Pseudocapacitive Energy Storage Material. ACS Applied Energy Materials, 2020, 3, 10261-10269.	2.5	15
379	Mn incorporated MoS2 nanoflowers: A high performance electrode material for symmetric supercapacitor. Electrochimica Acta, 2020, 338, 135815.	2.6	68
380	Increasing the active sites and intrinsic activity of transition metal chalcogenide electrocatalysts for enhanced water splitting. Journal of Materials Chemistry A, 2020, 8, 25465-25498.	5.2	112

#	Article	IF	CITATIONS
381	2H–MoS2 nanoflowers based high energy density solid state supercapacitor. Materials Chemistry and Physics, 2020, 255, 123551.	2.0	57
382	A computational evaluation of MoS ₂ -based materials for the electrocatalytic oxygen reduction reaction. New Journal of Chemistry, 2020, 44, 14189-14197.	1.4	14
383	Single-Step Chemical Vapor Deposition Growth of Platinum Nanocrystal: Monolayer MoS ₂ Dendrite Hybrid Materials for Efficient Electrocatalysis. Chemistry of Materials, 2020, 32, 8243-8256.	3.2	23
384	Phase Engineering of Nanomaterials for Clean Energy and Catalytic Applications. Advanced Energy Materials, 2020, 10, 2002019.	10.2	85
385	Three-Dimensional Architectures in Electrochemical Capacitor Applications – Insights, Opinions, and Perspectives. Frontiers in Energy Research, 2020, 8, .	1.2	10
386	Advancement of Platinum (Pt)-Free (Non-Pt Precious Metals) and/or Metal-Free (Non-Precious-Metals) Electrocatalysts in Energy Applications: A Review and Perspectives. Energy & Fuels, 2020, 34, 6634-6695.	2.5	100
387	Exceptional interfacial electrochemistry of few-layered 2D MoS ₂ quantum sheets for high performance flexible solid-state supercapacitors. Journal of Materials Chemistry A, 2020, 8, 13121-13131.	5.2	36
388	Structurally stable ultrathin 1T-2H MoS2 heterostructures coaxially aligned on carbon nanofibers toward superhigh-energy-density supercapacitor and enhanced electrocatalysis. Chemical Engineering Journal, 2020, 399, 125672.	6.6	63
389	3D flower-like molybdenum disulfide modified graphite felt as a positive material for vanadium redox flow batteries. RSC Advances, 2020, 10, 17235-17246.	1.7	6
390	Enhancement of friction performance of fluorinated graphene and molybdenum disulfide coating by microdimple arrays. Carbon, 2020, 167, 122-131.	5.4	32
391	Hierarchical Co(OH) ₂ @NiMoS ₄ nanocomposite on carbon cloth as electrode for high-performance asymmetric supercapacitors. RSC Advances, 2020, 10, 22606-22615.	1.7	20
392	Conversion of Intercalated MoO ₃ to Multiâ€Heteroatomsâ€Doped MoS ₂ with High Hydrogen Evolution Activity. Advanced Materials, 2020, 32, e2001167.	11.1	82
393	Two-Step Synthesis of CuS/C@PANI Nanocomposite as Advanced Electrode Materials for Supercapacitor Applications. Nanomaterials, 2020, 10, 1034.	1.9	33
394	Investigating 2D WS ₂ supercapacitor electrode performance by Kelvin probe force microscopy. Journal of Materials Chemistry A, 2020, 8, 12699-12704.	5.2	29
395	Interface guide: In-situ integrating MoS2 nanosheets into highly ordered polypyrrole film for high performance flexible supercapacitor electrodes. Composites Science and Technology, 2020, 197, 108263.	3.8	12
396	Soft Materials for Wearable/Flexible Electrochemical Energy Conversion, Storage, and Biosensor Devices. Materials, 2020, 13, 2733.	1.3	29
397	High-efficiency electrodeposition of polyindole nanocomposite using MoS2 nanosheets as electrolytes and their capacitive performance. Arabian Journal of Chemistry, 2020, 13, 6061-6071.	2.3	16
398	Flower-like carbon doped MoS2/Activated carbon composite electrode for superior performance of supercapacitors and hydrogen evolution reactions. Journal of Alloys and Compounds, 2020, 831, 154745.	2.8	25

#	Article	IF	CITATIONS
399	Hollow spheres constructed by ultrathin SnS sheets for enhanced lithium storage. Journal of Materials Science, 2020, 55, 7492-7501.	1.7	14
400	Design Strategies for Development of TMD-Based Heterostructures in Electrochemical Energy Systems. Matter, 2020, 2, 526-553.	5.0	312
401	Highly Robust Nonâ€Noble Alkaline Hydrogenâ€Evolving Electrocatalyst from Seâ€Doped Molybdenum Disulfide Particles on Interwoven CoSe ₂ Nanowire Arrays. Small, 2020, 16, e1906629.	5.2	70
402	Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chemical Reviews, 2020, 120, 6738-6782.	23.0	1,020
403	(P, W)-codoped MoO2 nanoflowers on nickel foam as an efficient bifunctional electrocatalyst for overall water splitting. Applied Surface Science, 2020, 529, 146987.	3.1	36
404	Vacancies and edges: Enhancing supercapacitive performance metrics of electrode materials. Journal of Energy Storage, 2020, 31, 101614.	3.9	25
405	Locally Engineering and Interrogating the Photoelectrochemical Behavior of Defects in Transition Metal Dichalcogenides. Journal of Physical Chemistry C, 2020, 124, 17141-17149.	1.5	24
406	Single layers of MoS2/Graphene nanosheets embedded in activated carbon nanofibers for high-performance supercapacitor. Journal of Alloys and Compounds, 2020, 829, 154557.	2.8	47
407	Edge-terminated MoS2 nanosheets with an expanded interlayer spacing on graphene to boost supercapacitive performance. Chemical Engineering Journal, 2020, 387, 124204.	6.6	63
408	Improvement of electrical performance by surface structure of Ni-material as a high-performance asymmetric supercapacitor electrode. Ceramics International, 2020, 46, 11189-11197.	2.3	15
409	Promoting the hydrogen evolution performance of 1T-MoSe2-Se: Optimizing the two-dimensional structure of MoSe2 by layered double hydroxide limited growth. Applied Surface Science, 2020, 509, 145364.	3.1	26
410	Aloe vera-peel derived porous carbon integrated Co/Mn-oxide based nano-hybrids: An efficient electrocatalyst in advanced photovoltaics. Journal of Power Sources, 2020, 451, 227731.	4.0	29
411	Advanced Electrode Materials Comprising of Structureâ€Engineered Quantum Dots for Highâ€Performance Asymmetric Microâ€Supercapacitors. Advanced Energy Materials, 2020, 10, 1903724.	10.2	36
412	Construction of Hierarchical 2D PANI/Ni ₃ S ₂ Nanosheet Arrays on Ni Foam for Highâ€Performance Asymmetric Supercapacitors. Batteries and Supercaps, 2020, 3, 370-375.	2.4	29
413	Atom removal on the basal plane of layered MoS2 leading to extraordinarily enhanced electrocatalytic performance. Electrochimica Acta, 2020, 336, 135740.	2.6	16
414	Coral-like {SiW10Mn2}-based Mn-MOFs: Facile fabrication with high electrochemical capacitor performance. Journal of Solid State Chemistry, 2020, 288, 121409.	1.4	35
415	Activated Functionalized Carbon Nanotubes and 2D Nanostructured MoS 2 Hybrid Electrode Material for Highâ€Performance Supercapacitor Applications. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900855.	0.8	9
416	Recent advancement made in the field of reduced graphene oxide-based nanocomposites used in the energy storage devices: A review. Journal of Energy Storage, 2021, 33, 102032.	3.9	57

		_	
#	Article	IF	CITATIONS
417	One-step construction of S-scheme heterojunctions of N-doped MoS2 and S-doped g-C3N4 for enhanced photocatalytic hydrogen evolution. Chemical Engineering Journal, 2021, 404, 126498.	6.6	214
418	Vertically aligned MoS2 films prepared by RF-magnetron sputtering method as electrocatalysts for hydrogen evolution reactions. Composite Interfaces, 2021, 28, 707-716.	1.3	10
419	Polymer gel electrolytes for flexible supercapacitors: Recent progress, challenges, and perspectives. Energy Storage Materials, 2021, 34, 320-355.	9.5	98
420	Battery-type phosphorus doped FeS2 grown on graphene as anode for hybrid supercapacitor with enhanced specific capacity. Journal of Alloys and Compounds, 2021, 854, 157114.	2.8	38
421	One-step synthesis of MoS2/Bi2S3 heterojunction with enhanced photocatalytic activity and high electrochemical performance. Journal of Materials Science: Materials in Electronics, 2021, 32, 1022-1032.	1.1	4
422	FeS2 bridging function to enhance charge transfer between MoS2 and g–C3N4 for efficient hydrogen evolution reaction. Chemical Engineering Journal, 2021, 421, 127804.	6.6	51
423	Exfoliated Molybdenum Disulfide-Wrapped CdS Nanoparticles as a Nano-Heterojunction for Photo-Electrochemical Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 438-448.	4.0	22
424	Hierarchical few-layer fluorine-free Ti ₃ C ₂ T _X (T = O,) Tj ETQq1 1 0.784314 Chemistry A, 2021, 9, 922-927.	ł rgBT /Ov 5.2	erlock 10 Tf 5 29
425	Interwoving polyaniline and a metal-organic framework grown in situ for enhanced supercapacitor behavior. Journal of Alloys and Compounds, 2021, 854, 157181.	2.8	45
426	Enhanced photoelectrochemical cathodic protection performance of MoS2/TiO2 nanocomposites for 304 stainless steel under visible light. Journal of Materials Science and Technology, 2021, 64, 21-28.	5.6	34
427	Facile synthesis of vacancy-induced 2H-MoS ₂ nanosheets and defect investigation for supercapacitor application. RSC Advances, 2021, 11, 26273-26283.	1.7	29
428	Facilitating electrocatalytic hydrogen evolution <i>via</i> multifunctional tungsten@tungsten disulfide core–shell nanospheres. Journal of Materials Chemistry A, 2021, 9, 9272-9280.	5.2	13
429	Ellipsometric Investigation of Thick Vertically Oriented MoS2 Films Grown on Mo Foil at High Temperatures. Journal of Physical Chemistry C, 2021, 125, 2005-2014.	1.5	1
430	Hierarchically Ordinated Two-Dimensional MoS2 Nanosheets on Three-Dimensional Reduced Graphene Oxide Aerogels as Highly Active and Stable Catalysts for Hydrogen Evolution Reaction. Catalysts, 2021, 11, 182.	1.6	14
431	Directly visualizing carrier transport and recombination at individual defects within 2D semiconductors. Chemical Science, 2021, 12, 5102-5112.	3.7	28
432	Chemical supercapacitors: a review focusing on metallic compounds and conducting polymers. Journal of Materials Chemistry A, 2021, 9, 1970-2017.	5.2	186
433	Luminescent MoS ₂ Quantum Dots with Tunable Operating Potential for Energy-Enhanced Aqueous Supercapacitors. ACS Omega, 2021, 6, 4542-4550.	1.6	18
434	One-Pot Hydrothermal Synthesis of Solution-Processable MoS ₂ /PEDOT:PSS Composites for High-Performance Supercapacitors. ACS Applied Materials & amp; Interfaces, 2021, 13, 7285-7296.	4.0	41

#	Article	IF	CITATIONS
435	Co-MoS2 nanoflower coated carbon fabric as a flexible electrode for supercapacitor. Materials Today: Proceedings, 2022, 50, 1-6.	0.9	8
436	Progress and challenges of ceramics for supercapacitors. Journal of Materiomics, 2021, 7, 1198-1224.	2.8	15
437	CoMn2O4 Nanoparticles Decorated on 2D MoS2 Frame: A Synergetic Energy Storage Composite Material for Practical Supercapacitor Applications. Journal of Energy Storage, 2021, 35, 102302.	3.9	39
438	Sulfurized Co-Mo Alloy Thin Films as Efficient Electrocatalysts for Hydrogen Evolution Reaction. Catalysis Letters, 2022, 152, 315-323.	1.4	2
439	Nickel-doped two-dimensional molybdenum disulfide for electrochemical hydrogen evolution reaction. Journal of Materials Research, 0, , 1.	1.2	2
440	Self-discharge and voltage-holding in symmetric supercapacitors for energy storage based on branch-like MoS2 nanomaterial electrodes. Ceramics International, 2021, 47, 11231-11239.	2.3	15
441	Three-Dimensional Self-Supporting Ti ₃ C ₂ with MoS ₂ and Cu ₂ O Nanocrystals for High-Performance Flexible Supercapacitors. ACS Applied Materials & Interfaces, 2021, 13, 22664-22675.	4.0	107
442	The fabrication of atomically thin-MoS2 based photoanodes for photoelectrochemical energy conversion and environment remediation: A review. Green Energy and Environment, 2022, 7, 372-393.	4.7	8
443	Co-electrodeposited porous poplar flower-like poly(hydroxymethyl-3,4-ethylenedioxythiophene)/PEG/WS2 hybrid material for high-performance supercapacitor. Journal of Electroanalytical Chemistry, 2021, 891, 115261.	1.9	4
444	Localization of edge states at triangular defects in periodic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:n mathvariant="normal">S<mml:mn>2</mml:mn></mml:n </mml:msub></mml:mrow> monolavers. Physical Review Materials. 2021. 5.</mml:math 	¹ⁱ 0.9	3
445	Fe and P Doped 1T-Phase Enriched WS23D-Dendritic Nanostructures for Efficient Overall Water Splitting. Applied Catalysis B: Environmental, 2021, 286, 119897.	10.8	88
446	Transition metal dichalcogenide (TMDs) electrodes for supercapacitors: a comprehensive review. Journal of Physics Condensed Matter, 2021, 33, 303002.	0.7	65
447	Exploring the impact of MoS2 on the performance of the planar solid micro-supercapacitor. Materials Chemistry and Physics, 2021, 265, 124490.	2.0	5
448	Oxygen Nucleation of MoS ₂ Nanosheet Thin Film Supercapacitor Electrodes for Enhanced Electrochemical Energy Storage. ChemSusChem, 2021, 14, 2882-2891.	3.6	3
449	A multifunctional TiN/Ni electrode for wearable supercapacitor and sensor with an insight into charge storage mechanism. Applied Surface Science, 2021, 555, 149718.	3.1	20
450	MoS2 nanosheets/silver nanoparticles anchored onto textile fabric as "dip catalyst―for synergistic p-nitrophenol hydrogenation. Environmental Science and Pollution Research, 2021, 28, 64674-64686.	2.7	13
451	Recent progress and future perspectives for the development of micro-supercapacitors for portable/wearable electronics applications. JPhys Energy, 2021, 3, 032017.	2.3	18
452	Magnetic assembly synthesis of high-efficiency recyclable flower-like MoS2@Fe3O4@Cu2O like-Z-scheme heterojunction towards efficient photodegradation of tetracycline. Applied Surface Science, 2021, 555, 149730.	3.1	54

#	Article	IF	CITATIONS
453	Colloidal synthesis of MoSe2, WSe2 and their hierarchical structures as bifunctional electrocatalysts. Microscopy and Microanalysis, 2021, 27, 670-672.	0.2	0
454	Monolayer 1T and 1T′ MoSO as Promising Electrocatalyst for Hydrogen Evolution based on First Principle Calculations. ChemPhysChem, 2021, 22, 2034-2041.	1.0	5
455	Spatial Mapping of Electrostatic Fields in 2D Heterostructures. Nano Letters, 2021, 21, 7131-7137.	4.5	2
456	Understanding the Synergistic Oxidation in Dichalcogenides through Electrochemiluminescence Blinking at Millisecond Resolution. Advanced Materials, 2021, 33, e2105039.	11.1	12
457	Novel carbon nitride@polydopamine/molybdenum disulfide nanoflame retardant improves fire performance of composite coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630, 127575.	2.3	18
458	Robust wrinkled MoS ₂ /N-C bifunctional electrocatalysts interfaced with single Fe atoms for wearable zinc-air batteries. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	122
459	Ultra-thin pine tree-like MoS2 nanosheets with maximally exposed active edges terminated at side surfaces on stainless steel fiber felt for hydrogen evolution reaction. Journal of Alloys and Compounds, 2021, 876, 160163.	2.8	9
460	Self-supporting transition metal chalcogenides on metal substrates for catalytic water splitting. Chemical Engineering Journal, 2021, 421, 129645.	6.6	62
461	Stabilization of Orthorhombic CoSe ₂ by 2D-rGO/MWCNT Heterostructures for Efficient Hydrogen Evolution Reaction and Flexible Energy Storage Device Applications. ACS Applied Energy Materials, 2021, 4, 11386-11399.	2.5	30
462	Preparation of highly active MoNi4 alloys in 3D porous nanostructures and their application as bifunctional electrocatalysts for overall water splitting. Catalysis Communications, 2021, 159, 106350.	1.6	12
463	Boosting the performance of flexible in-plane micro-supercapacitors by engineering MoS2 nanoparticles embedded in laser-induced graphene. Journal of Alloys and Compounds, 2021, 887, 161514.	2.8	26
464	Ni–Mo–S Ternary Chalcogenide Thin Film for Enhanced Hydrogen Evolution Reaction. Catalysis Letters, 2021, 151, 2228.	1.4	5
465	A 2H-MoS ₂ /carbon cloth composite for high-performance all-solid-state supercapacitors derived from a molybdenum dithiocarbamate complex. Dalton Transactions, 2021, 50, 11954-11964.	1.6	3
466	Design Principles and Synthesis of 3D Graphene-Analogous Materials and van der Waals Heterostructures. Springer Theses, 2021, , 119-137.	0.0	0
467	Low-operating temperature ammonia sensor based on Cu ₂ O nanoparticles decorated with p-type MoS ₂ nanosheets. Journal of Materials Chemistry C, 2021, 9, 4838-4846.	2.7	72
468	Few-layer FePS3 decorated with thin MoS2 nanosheets for efficient hydrogen evolution reaction in alkaline and acidic media. Applied Surface Science, 2020, 525, 146623.	3.1	32
469	Electroactive FeS2-modified MoS2 nanosheet for high-performance supercapacitor. Journal of Alloys and Compounds, 2020, 824, 153936.	2.8	65
470	Three-Dimensional MoS ₂ Nanodot-Impregnated Nickel Foam Electrodes for High-Performance Supercapacitor Applications. ACS Omega, 2020, 5, 11721-11729.	1.6	34

#	Article	IF	CITATIONS
471	Open-ended W ₁₈ O ₄₉ -filled tungsten dichalcogenide nanotubes grown on a W substrate to efficiently catalyze hydrogen evolution. Nanoscale Advances, 2021, 3, 6587-6595.	2.2	2
472	Sintered Ni metal as a matrix of robust self-supporting electrode for ultra-stable hydrogen evolution. Chemical Engineering Journal, 2022, 430, 133040.	6.6	14
473	Fabrication of direct Z-scheme MoO3/N–MoS2 photocatalyst for synergistically enhanced H2 production. International Journal of Hydrogen Energy, 2021, 46, 39822-39829.	3.8	17
474	Optimizing Fe2O3-based supercapacitor cathode with tunable surface pseudocapacitance via facile in situ vulcanization process. Journal of Electroanalytical Chemistry, 2021, 901, 115785.	1.9	14
476	The Synergetic Effect of MoSO ₂ /Graphite Nanosheets as Highly Efficient for Electrochemical Water Splitting in Acidic Media. Science of Advanced Materials, 2021, 13, 1574-1583.	0.1	0
477	Progress in additive manufacturing of MoS2-based structures for energy storage applications – A review. Materials Science in Semiconductor Processing, 2022, 139, 106331.	1.9	24
478	Gas Permeability and Selectivity of a Porous WS ₂ Monolayer. Journal of Physical Chemistry C, 2021, 125, 25055-25066.	1.5	11
479	Reversible structural transition of two-dimensional copper selenide on Cu(111). Nanotechnology, 2022, 33, 095704.	1.3	1
480	2D@3D MoS2@Ni/Co-S submicroboxes derived from prussian blue analogues for high performance supercapacitors. Journal of Alloys and Compounds, 2022, 901, 163558.	2.8	26
481	Heterostructured rGO/MoS2 nanocomposites toward enhancing lubrication function of industrial gear oils. Carbon, 2022, 191, 84-97.	5.4	39
482	Doping and interface engineering in a sandwich Ti ₃ C ₂ T _{<i>x</i>} /MoS _{2â^'<i>x</i>} P _{<i>x</i>} heterostructure for efficient hydrogen evolution. Journal of Materials Chemistry C, 2022, 10, 4140-4147.	2.7	26
483	Plasma Engineering of Basal Sulfur Sites on MoS ₂ @Ni ₃ S ₂ Nanorods for the Alkaline Hydrogen Evolution Reaction. Advanced Science, 2022, 9, e2104774.	5.6	26
484	Amorphous Molybdenum Sulfide and its Mo-S Motifs: Structural Characteristics, Synthetic Strategies, and Comprehensive Applications. SSRN Electronic Journal, 0, , .	0.4	0
485	Designed synthesis of a hierarchical MoSe ₂ @WSe ₂ hybrid nanostructure as a bifunctional electrocatalyst for total water-splitting. Sustainable Energy and Fuels, 2022, 6, 1708-1718.	2.5	7
486	<scp>Nonâ€modulated</scp> synthesis of <scp> cobaltâ€doped MoS ₂ </scp> for improved supercapacitor performance. International Journal of Energy Research, 2022, 46, 8908-8918.	2.2	21
488	SLM-processed MoS2/Mo2S3 nanocomposite for energy conversion/storage applications. Scientific Reports, 2022, 12, 5030.	1.6	9
489	Computational studies and experimental fabrication of DSSC device assembly on 2D-layered TiO2 and MoS2@TiO2 nanomaterials. Physica B: Condensed Matter, 2022, 633, 413770.	1.3	9
490	Improving intrinsic electrocatalytic activity of layered transition metal chalcogenides as electrocatalysts for water splitting. Current Opinion in Electrochemistry, 2022, 34, 100982.	2.5	7

#	Article	IF	CITATIONS
491	Remote Plasma-Induced Synthesis of Self-Assembled MoS2/Carbon Nanowall Nanocomposites and Their Application as High-Performance Active Materials for Supercapacitors. Nanomaterials, 2022, 12, 1338.	1.9	4
492	Two-dimensional MoS2/Mn-MOF/multi-walled carbon nanotubes composite material for high-performance supercapacitors. Microchemical Journal, 2022, 179, 107506.	2.3	25
493	Anti-Oriented-Attachment Growth of Layered Co0.85se Nanoarray with Highly Exposed Edges on Graphene Towards Superior Li-Ion Storage. SSRN Electronic Journal, 0, , .	0.4	0
496	Hierarchical carbon coated vertically aligned α-MoO3 nanoblades anode materials for supercapacitor application. Journal of Alloys and Compounds, 2022, 918, 165530.	2.8	6
497	Metallic nanosponges for energy storage and conversion applications. Journal of Materials Chemistry A, 2022, 10, 14221-14246.	5.2	8
498	Large-Area MoS ₂ Nanosheets with Triangular Nanopore Arrays as Active and Robust Electrocatalysts for Hydrogen Evolution. Journal of Physical Chemistry C, 2022, 126, 9696-9703.	1.5	16
499	Potential transition and post-transition metal sulfides as efficient electrodes for energy storage applications: review. RSC Advances, 2022, 12, 18041-18062.	1.7	27
500	Feather-like Few-layer WSe2 Nanosheets Grown on W Substrate:Excellent Electrocatalyst for Hydrogen Evolution Reaction. Nanoscale Advances, 0, , .	2.2	0
501	Recent Advances in Energy Storage and Photoelectric Conversion Films. Coatings, 2022, 12, 788.	1.2	0
502	A Brief Review of the Chemical Structure and Raman Spectrum of Mono- and Multilayer Molybdenum- and Tungsten-Based Transition Metal Dichalcogenides. Journal of Electronic Materials, 2022, 51, 4808-4815.	1.0	1
503	Anti-Oriented-Attachment Growth of Layered Co0.85Se Nanoarray with Highly Exposed Edges on Graphene towards Superior Li-Ion Storage. Journal of Alloys and Compounds, 2022, , 166294.	2.8	1
504	In-situ surface structural reconstruction of NiMoO4 for efficient overall water splitting. Applied Surface Science, 2022, 602, 154314.	3.1	22
505	Amorphous molybdenum sulfide and its Mo-S motifs: Structural characteristics, synthetic strategies, and comprehensive applications. Nano Research, 2022, 15, 8613-8635.	5.8	28
506	A review of heteroatomic doped two-dimensional materials as electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 29698-29729.	3.8	14
507	Screen printing preparation of high-performance flexible planar micro-supercapacitors based on MoS2 nanoparticles decorated electrochemically exfoliated graphene. Electrochimica Acta, 2022, 429, 141041.	2.6	7
508	Liquid phase exfoliated ReS2 nanocrystals on paper based electrodes for hydrogen evolution and supercapacitor applications. Surfaces and Interfaces, 2022, 34, 102318.	1.5	13
509	High-frequency and rapid response tungsten sulfide nano onion-based electrochemical actuators. Nanoscale, 2022, 14, 13651-13660.	2.8	1
510	Edgeâ€oriented Nâ€Doped WS ₂ Nanoparticles on Porous Co ₃ N Nanosheets for Efficient Alkaline Hydrogen Evolution and Nitrogenous Nucleophile Electrooxidation. Small, 2022, 18,	5.2	32

#	Article	IF	CITATIONS
511	Refractoryâ€Metalâ€Based Chalcogenides for Energy. Advanced Functional Materials, 2022, 32, .	7.8	4
513	<scp>2Dâ€TMDs</scp> based electrode material for supercapacitor applications. International Journal of Energy Research, 2022, 46, 22336-22364.	2.2	37
514	Modelling the Defect Processes of Materials for Energy Applications. Applied Sciences (Switzerland), 2022, 12, 9872.	1.3	1
515	Advances in 2D Molybdenum Disulfideâ€Based Functional Materials for Supercapacitor Applications. ChemistrySelect, 2022, 7, .	0.7	3
516	Energy-saving hydrogen production by water splitting coupling urea decomposition and oxidation reactions. Journal of Materials Chemistry A, 2022, 11, 259-267.	5.2	12
517	An unprecedented hybrid polyoxometalate based on niobium oligomers: A notable application as redox supercapacitor electrode. Chemical Engineering Journal, 2023, 455, 140511.	6.6	7
518	Processing of Composite Electrodes of Carbon Nanotube Fabrics and Inorganic Matrices via Rapid Joule Heating. ACS Applied Materials & Interfaces, 2023, 15, 5590-5599.	4.0	7
519	Progress in transition metal chalcogenides-based counter electrode materials for dye-sensitized solar cells. Materials Science in Semiconductor Processing, 2023, 156, 107273.	1.9	13
520	Novel ternary compound transition metal dichalcogenide TiNbS4 as promising anodes materials for Li-ion batteries: A DFT study. Applied Surface Science, 2023, 615, 156322.	3.1	5
521	Enhancing hydrogen evolution reaction (HER) performance by loading MoS2 nanoflowers into three-dimensional graphene aerogel skeleton. Materials Letters, 2023, 337, 133969.	1.3	1
522	Enhanced energy density and power density of asymmetric supercapacitor by induced defects on the surface of MoS2 with strontium atoms. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	0
523	Nanoarchitectonics of Layered Metal Chalcogenides-Based Ternary Electrocatalyst for Water Splitting. Energies, 2023, 16, 1669.	1.6	3
524	Scalable Edge-Oriented Metallic Two-Dimensional Layered Cu ₂ Te Arrays for Electrocatalytic CO ₂ Methanation. ACS Nano, 2023, 17, 4790-4799.	7.3	14
525	Hybrid polymer gels for energy applications. Journal of Materials Chemistry A, 2023, 11, 12593-12642.	5.2	10
526	Synthesis of Co ₉ S ₈ nanoflakes by a one-step solvent-free solid-state method for multiple electrocatalytic reactions. Inorganic Chemistry Frontiers, 0, , .	3.0	1
527	Transition metal oxide ceramic nanocomposites for flexible supercapacitors. , 2023, , 277-298.		0
528	Engineering Multifunctionality in MoSe ₂ Nanostructures Via Strategic Mn Doping for Electrochemical Energy Storage and Photosensing. ACS Applied Nano Materials, 2023, 6, 5479-5492.	2.4	4
529	A molybdenum disulfide/nickel ferrite-modified voltammetric sensing platform for ultra-sensitive determination of clenbuterol under the presence of an external magnetic field. RSC Advances, 2023, 13, 10577-10591.	1.7	5

#	Article	IF	CITATIONS
530	Recent advances in zinc–air batteries: self-standing inorganic nanoporous metal films as air cathodes. Chemical Communications, 2023, 59, 5823-5838.	2.2	1
531	Ceramics for supercapacitors. , 2023, , 157-183.		0
534	Emerging transition metal and carbon nanomaterial hybrids as electrocatalysts for water splitting: a brief review. Materials Horizons, 2023, 10, 2764-2799.	6.4	5