Thermally Activated Delayed Fluorescence Materials To Organoelectronics

Advanced Materials 26, 7931-7958 DOI: 10.1002/adma.201402532

Citation Report

#	Article	IF	CITATIONS
2	Highly Efficient Nearâ€Infrared Delayed Fluorescence Organic Light Emitting Diodes Using a Phenanthreneâ€Based Chargeâ€Transfer Compound. Angewandte Chemie - International Edition, 2015, 54, 13068-13072.	7.2	500
3	Thermochromism of Cu ^I Tetrakisguanidine Complexes: Reversible Activation of Metalâ€toâ€Ligand Chargeâ€Transfer Bands. Chemistry - A European Journal, 2015, 21, 16494-16503.	1.7	22
4	Luminescent Thermochromism in a Gold(I)-Copper(I) Phosphine-Pyridine Complex. European Journal of Inorganic Chemistry, 2015, 2015, 5254-5261.	1.0	14
6	Remanagement of Singlet and Triplet Excitons in Singleâ€Emissiveâ€Layer Hybrid White Organic Lightâ€Emitting Devices Using Thermally Activated Delayed Fluorescent Blue Exciplex. Advanced Materials, 2015, 27, 7079-7085.	11.1	255
7	Light: A Very Peculiar Reactant and Product. Angewandte Chemie - International Edition, 2015, 54, 11320-11337.	7.2	106
8	Kinetics of thermal-assisted delayed fluorescence in blue organic emitters with large singlet–triplet energy gap. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140447.	1.6	48
9	Highly efficient and stable organic light-emitting diodes with a greatly reduced amount of phosphorescent emitter. Scientific Reports, 2015, 5, 9855.	1.6	62
10	Simple structured hybrid WOLEDs based on incomplete energy transfer mechanism: from blue exciplex to orange dopant. Scientific Reports, 2015, 5, 10234.	1.6	62
11	Exciton diffusion in organic semiconductors. Energy and Environmental Science, 2015, 8, 1867-1888.	15.6	670
12	Simultaneous harvesting of triplet excitons in OLEDs by both guest and host materials with an intramolecular charge-transfer feature via triplet–triplet annihilation. Journal of Materials Chemistry C, 2015, 3, 6970-6978.	2.7	20
14	Thermally activated delayed fluorescence of N-phenylcarbazole and triphenylamine functionalised tris(aryl)triazines. Dyes and Pigments, 2015, 117, 141-148.	2.0	33
15	Theoretical Rationalization of the Singlet–Triplet Gap in OLEDs Materials: Impact of Charge-Transfer Character. Journal of Chemical Theory and Computation, 2015, 11, 168-177.	2.3	108
16	Nearly 100% Triplet Harvesting in Conventional Fluorescent Dopantâ€Based Organic Lightâ€Emitting Devices Through Energy Transfer from Exciplex. Advanced Materials, 2015, 27, 2025-2030.	11.1	225
17	Nearly 100% Internal Quantum Efficiency in Undoped Electroluminescent Devices Employing Pure Organic Emitters. Advanced Materials, 2015, 27, 2096-2100.	11.1	495
18	Prediction and Design of Efficient Exciplex Emitters for Highâ€Efficiency, Thermally Activated Delayedâ€Fluorescence Organic Lightâ€Emitting Diodes. Advanced Materials, 2015, 27, 2378-2383.	11.1	299
19	Carbazole Dendrimers as Solutionâ€Processable Thermally Activated Delayedâ€Fluorescence Materials. Angewandte Chemie - International Edition, 2015, 54, 5677-5682.	7.2	281
20	Light blue and green thermally activated delayed fluorescence from 10H-phenoxaborin-derivatives and their application to organic light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 9122-9130.	2.7	122
21	Understanding the Control of Singlet-Triplet Splitting for Organic Exciton Manipulating: A Combined Theoretical and Experimental Approach. Scientific Reports, 2015, 5, 10923.	1.6	151

#	Article	IF	CITATIONS
22	Essential electro-optical differences of exciplex type OLEDs based on a starburst carbazole derivative prepared by layer-by-layer and codeposition processes. Synthetic Metals, 2015, 209, 173-177.	2.1	4
23	Ternary donor–acceptor phosphine oxide hosts with peculiar high energy gap for efficient blue electroluminescence. Journal of Materials Chemistry C, 2015, 3, 9469-9478.	2.7	18
24	Tailoring Excited-State Properties and Electroluminescence Performance of Donor–Acceptor Molecules through Tuning the Energy Level of the Charge-Transfer State. Journal of Physical Chemistry C, 2015, 119, 17800-17808.	1.5	76
25	Dibenzothiophene-Based Phosphine Oxide Host and Electron-Transporting Materials for Efficient Blue Thermally Activated Delayed Fluorescence Diodes through Compatibility Optimization. Chemistry of Materials, 2015, 27, 5131-5140.	3.2	89
26	FRET-Activated Delayed Fluorescence in Densely Packed PbS Quantum-Dot Ensembles. Journal of Physical Chemistry C, 2015, 119, 17016-17022.	1.5	18
27	Transformation of photophysical properties from solution to solid state in alkoxy-cyano-diphenylacetylene molecules. Physical Chemistry Chemical Physics, 2015, 17, 18768-18779.	1.3	5
28	Achieving high power efficiency and low roll-off OLEDs based on energy transfer from thermally activated delayed excitons to fluorescent dopants. Chemical Communications, 2015, 51, 11972-11975.	2.2	95
29	Theoretical investigation of dihydroacridine and diphenylsulphone derivatives as thermally activated delayed fluorescence emitters for organic light-emitting diodes. RSC Advances, 2015, 5, 51586-51591.	1.7	17
30	Diversity of Copper(I) Complexes Showing Thermally Activated Delayed Fluorescence: Basic Photophysical Analysis. Inorganic Chemistry, 2015, 54, 4322-4327.	1.9	168
31	2,4-Bis(4-aryl-1,2,3-triazol-1-yl)pyrrolo[2,3-d]pyrimidines: synthesis and tuning of optical properties by polar substituents. RSC Advances, 2015, 5, 38610-38622.	1.7	14
32	Effective Host Materials for Blue/White Organic Lightâ€Emitting Diodes by Utilizing the Twisted Conjugation Structure in 10â€Phenylâ€9,10â€Dihydroacridine Block. Chemistry - an Asian Journal, 2015, 10, 1402-1409.	1.7	31
33	Synthesis and luminescence modulation of pyrazine-based gold(<scp>iii</scp>) pincer complexes. Chemical Communications, 2015, 51, 16629-16632.	2.2	79
34	Spatially optimized quaternary phosphine oxide host materials for high-efficiency blue phosphorescence and thermally activated delayed fluorescence organic light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 11385-11396.	2.7	26
35	Purely organic optoelectronic materials with ultralong-lived excited states under ambient conditions. Science Bulletin, 2015, 60, 1631-1637.	4.3	20
36	Efficient Organic Light-Emitting Diode through Triplet Exciton Reharvesting by Employing Blended Electron Donor and Acceptor as the Emissive Layer. ACS Applied Materials & Interfaces, 2015, 7, 24983-24986.	4.0	35
37	Series of Carbazole–Pyrimidine Conjugates: Syntheses and Electronic, Photophysical, and Electrochemical Properties. Journal of Organic Chemistry, 2015, 80, 9076-9090.	1.7	67
38	Developing Quinoidal Fluorophores with Unusually Strong Red/Near-Infrared Emission. Journal of the American Chemical Society, 2015, 137, 11294-11302.	6.6	47
39	Excited State Features and Dynamics in a Distyrylbenzene-Based Mixed Stack Donor–Acceptor Cocrystal with Luminescent Charge Transfer Characteristics. Journal of Physical Chemistry Letters, 2015, 6, 3682-3687.	2.1	44

#	Article	IF	CITATIONS
40	Novel Carbazol-Pyridine-Carbonitrile Derivative as Excellent Blue Thermally Activated Delayed Fluorescence Emitter for Highly Efficient Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 2015, 7, 18930-18936.	4.0	111
41	A sky-blue fluorescent small molecule for non-doped OLED using solution-processing. RSC Advances, 2015, 5, 71419-71424.	1.7	27
42	Blue-emitting organic electrofluorescence materials: progress and prospective. Journal of Materials Chemistry C, 2015, 3, 10957-10963.	2.7	153
43	Thermally Activated Delayed Fluorescence Materials Based on Homoconjugation Effect of Donor–Acceptor Triptycenes. Journal of the American Chemical Society, 2015, 137, 11908-11911.	6.6	331
44	Light-Emitting Electrochemical Cells and Solution-Processed Organic Light-Emitting Diodes Using Small Molecule Organic Thermally Activated Delayed Fluorescence Emitters. Chemistry of Materials, 2015, 27, 6535-6542.	3.2	110
45	Blue thermally activated delayed fluorescence materials based on bis(phenylsulfonyl)benzene derivatives. Chemical Communications, 2015, 51, 16353-16356.	2.2	112
46	The effect of meta coupling on colour purity, quantum yield, and exciton utilizing efficiency in deep-blue emitters from phenanthroimidazole isomers. Physical Chemistry Chemical Physics, 2015, 17, 31894-31901.	1.3	15
47	Structure–property studies of P-triarylamine-substituted dithieno[3,2-b:2′,3′-d]phospholes. RSC Advances, 2015, 5, 93797-93807.	1.7	11
48	Designing the Next Generation of Light-Emitting Electrochemical Cells. , 2016, , .		0
49	First-Principles Investigation on Triazine Based Thermally Activated Delayed Fluorescence Emitters. Chinese Journal of Chemical Physics, 2016, 29, 291-296.	0.6	25
50	A Significantly Twisted Spirocyclic Phosphine Oxide as a Universal Host for High-Efficiency Full-Color Thermally Activated Delayed Fluorescence Diodes. Advanced Materials, 2016, 28, 3122-3130.	11.1	204
51	Skyâ€Blue Organic Light Emitting Diode with 37% External Quantum Efficiency Using Thermally Activated Delayed Fluorescence from Spiroacridine‶riazine Hybrid. Advanced Materials, 2016, 28, 6976-6983.	11.1	899
52	Rational Design of TADF Polymers Using a Donor–Acceptor Monomer with Enhanced TADF Efficiency Induced by the Energy Alignment of Charge Transfer and Local Triplet Excited States. Advanced Optical Materials, 2016, 4, 597-607.	3.6	235
53	Optimizing Optoelectronic Properties of Pyrimidineâ€Based TADF Emitters by Changing the Substituent for Organic Lightâ€Emitting Diodes with External Quantum Efficiency Close to 25 % and Slow Efficiency Rollâ€Off. Chemistry - A European Journal, 2016, 22, 10860-10866.	1.7	111
54	Balanced Dual Emissions from Tridentate Phosphineâ€Coordinate Copper(I) Complexes toward Highly Efficient Yellow OLEDs. Advanced Materials, 2016, 28, 5975-5979.	11.1	94
55	Novel Strategy to Develop Exciplex Emitters for Highâ€Performance OLEDs by Employing Thermally Activated Delayed Fluorescence Materials. Advanced Functional Materials, 2016, 26, 2002-2008.	7.8	181
56	Full olor Delayed Fluorescence Materials Based on Wedgeâ€Shaped Phthalonitriles and Dicyanopyrazines: Systematic Design, Tunable Photophysical Properties, and OLED Performance. Advanced Functional Materials, 2016, 26, 1813-1821.	7.8	236
57	Thermally Activated Delayed Fluorescence Polymers for Efficient Solutionâ€Processed Organic Lightâ€Emitting Diodes. Advanced Materials, 2016, 28, 4019-4024.	11.1	251

#	Article	IF	CITATIONS
58	Bisâ€Tridentate Ir(III) Complexes with Nearly Unitary RGB Phosphorescence and Organic Lightâ€Emitting Diodes with External Quantum Efficiency Exceeding 31%. Advanced Materials, 2016, 28, 2795-2800.	11.1	247
59	A "Si‣ocked―Phosphine Oxide Host with Suppressed Structural Relaxation for Highly Efficient Deepâ€Blue TADF Diodes. Advanced Optical Materials, 2016, 4, 522-528.	3.6	38
60	Recent advances in white organic light-emitting diodes. Materials Science and Engineering Reports, 2016, 107, 1-42.	14.8	181
61	Effect of cyano-substitution in distyrylbenzene derivatives on their fluorescence and electroluminescence properties. Journal of Materials Chemistry C, 2016, 4, 7478-7484.	2.7	40
62	Tailoring Optoelectronic Properties of Phenanthrolineâ€Based Thermally Activated Delayed Fluorescence Emitters through Isomer Engineering. Advanced Optical Materials, 2016, 4, 1558-1566.	3.6	53
63	Synthesis, Structure, and Characterization of Emissive Neutral Dinuclear Cul Complexes with a Tetraphosphane Bridging Ligand. European Journal of Inorganic Chemistry, 2016, 2016, 3036-3041.	1.0	11
65	Electroluminescence from completely horizontally oriented dye molecules. Applied Physics Letters, 2016, 108, .	1.5	73
66	An efficient blue thermally activated delayed fluorescence material based on 4-fluorocyanobenzene derivative for organic light-emitting diodes. Tetrahedron Letters, 2016, 57, 2044-2048.	0.7	20
67	Blue-shifted emission and enhanced quantum efficiency via π-bridge elongation in carbazole–carborane dyads. Physical Chemistry Chemical Physics, 2016, 18, 15719-15726.	1.3	41
68	Improving the electroluminescence performance of donor–acceptor molecules by fine-tuning the torsion angle and distance between donor and acceptor moieties. Journal of Materials Chemistry C, 2016, 4, 5988-5995.	2.7	22
69	Designing NHC–Copper(I) Dipyridylamine Complexes for Blue Light-Emitting Electrochemical Cells. ACS Applied Materials & Interfaces, 2016, 8, 14678-14691.	4.0	113
70	Photoluminescent Carbon Nanostructures. Chemistry of Materials, 2016, 28, 4085-4128.	3.2	186
71	High-performance bipolar host materials for blue TADF devices with excellent external quantum efficiencies. Journal of Materials Chemistry C, 2016, 4, 4512-4520.	2.7	63
72	Decreasing the singlet–triplet gap for thermally activated delayed fluorescence molecules by structural modification on the donor fragment: First-principles study. Chemical Physics Letters, 2016, 652, 16-21.	1.2	43
73	Superior upconversion fluorescence dopants for highly efficient deep-blue electroluminescent devices. Chemical Science, 2016, 7, 4044-4051.	3.7	76
74	Metal–Organic and Organic TADF-Materials: Status, Challenges and Characterization. Topics in Current Chemistry, 2016, 374, 22.	3.0	54
75	Dimesitylarylborane-based luminescent emitters exhibiting highly-efficient thermally activated delayed fluorescence for organic light-emitting diodes. Organic Electronics, 2016, 34, 208-217.	1.4	77
76	Tuning the singlet-triplet energy splitting by fluorination at 3,6 positions of the 1,4-biscarbazoylbenzene. Dyes and Pigments, 2016, 132, 1-6.	2.0	13

#	Article	IF	CITATIONS
77	Spectral properties of 1H-pyrazolo[3,4-b]quinoline substituted with N,N-diethylamine moiety. Optical Materials, 2016, 57, 102-106.	1.7	5
78	Boosting reverse intersystem crossing by increasing donors in triarylboron/phenoxazine hybrids: TADF emitters for high-performance solution-processed OLEDs. Journal of Materials Chemistry C, 2016, 4, 4402-4407.	2.7	136
79	Origin of a counterintuitive yellow light-emitting electrochemical cell based on a blue-emitting heteroleptic copper(<scp>i</scp>) complex. Dalton Transactions, 2016, 45, 8984-8993.	1.6	93
80	Efficient and Tunable Thermally Activated Delayed Fluorescence Emitters Having Orientationâ€Adjustable CNâ€Substituted Pyridine and Pyrimidine Acceptor Units. Advanced Functional Materials, 2016, 26, 7560-7571.	7.8	215
81	Bifunctional Heterocyclic Spiro Derivatives for Organic Optoelectronic Devices. ACS Applied Materials & Interfaces, 2016, 8, 24782-24792.	4.0	32
82	Design and synthesis of efficient blue thermally activated delayed fluorescence molecules bearing triarylborane and 10,10-dimethyl-5,10-dihydrophenazasiline moieties. Tetrahedron Letters, 2016, 57, 4914-4917.	0.7	29
83	Dibenzothiophene Sulfone-Based Phosphine Oxide Electron Transporters with Unique Asymmetry for High-Efficiency Blue Thermally Activated Delayed Fluorescence Diodes. ACS Applied Materials & Interfaces, 2016, 8, 27383-27393.	4.0	35
84	Blue Thermally Activated Delayed Fluorescence Molecule Having Acridane and Cyanobenzene Units. Chemistry Letters, 2016, 45, 1463-1466.	0.7	14
85	Reduction of the singlet–triplet energy gap of a thermally activated delayed fluorescence emitter by molecular interaction between the host and the emitter. Journal of Materials Chemistry C, 2016, 4, 10776-10780.	2.7	20
86	Managing Excitons and Charges for High-Performance Fluorescent White Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2016, 8, 28780-28788.	4.0	57
87	High-performance red organic light-emitting devices based on an exciplex system with thermally activated delayed fluorescence characteristic. Organic Electronics, 2016, 39, 10-15.	1.4	21
88	Dual Encapsulation of Electron Transporting Materials To Simplify High-Efficiency Blue Thermally Activated Delayed Fluorescence Devices. Chemistry of Materials, 2016, 28, 7145-7157.	3.2	17
89	A Method for Reducing the Singlet–Triplet Energy Gaps of TADF Materials for Improving the Blue OLED Efficiency. ACS Applied Materials & Interfaces, 2016, 8, 27026-27034.	4.0	87
90	Asymmetric-triazine-cored triads as thermally activated delayed fluorescence emitters for high-efficiency yellow OLEDs with slow efficiency roll-off. Journal of Materials Chemistry C, 2016, 4, 9998-10004.	2.7	50
91	Organic Light-Emitting Diodes (OLEDs): Working Principles and Device Technology. Lecture Notes in Quantum Chemistry II, 2016, , 145-196.	0.3	13
92	Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nature Materials, 2016, 15, 1120-1127.	13.3	708
93	Palladium atalyzed Nâ€Arylation of Iminodibenzyls and Iminostilbenes with Aryl―and Heteroaryl Halides. Chemistry - A European Journal, 2016, 22, 14186-14189.	1.7	26
94	Thermally activated delayed-fluorescence organic light-emitting diodes based on exciplex emitter with high efficiency and low roll-off. Organic Electronics, 2016, 38, 69-73.	1.4	19

ARTICLE IF CITATIONS # Novel Hole-Transporting Materials with High Triplet Energy for Highly Efficient and Stable Organic 1.5 46 95 Light-Emitting Diodes. Journal of Physical Chemistry C, 2016, 120, 18748-18755. Evolution of emission manners of organic light-emitting diodes: From emission of singlet exciton to emission of doublet exciton. Chinese Chemical Letters, 2016, 27, 1345-1349. 4.8 Theoretical predication for transition energies of thermally activated delayed fluorescence 97 4.8 37 molecules. Chinese Chemical Letters, 2016, 27, 1445-1452. Synthesis, aggregation-induced emission and electroluminescence properties of two new 98 tetraphenylethene derivatives. Tetrahedron Letters, 2016, 57, 4428-4434. Highly efficient blue–green neutral dinuclear copper(I) halide complexes containing bidentate 99 1.5 45 phosphine ligands. Journal of Luminescence, 2016, 180, 64-72. A solid state highly emissive Cu(<scp>i</scp>) metallacycle: promotion of cuprophilic interactions at the excited states. Chemical Communications, 2016, 52, 11370-11373. 100 2.2 Supramolecular Structure-Dependent Thermally-Activated Delayed Fluorescence (TADF) Properties of 101 1.5 60 Organic Polymorphs. Journal of Physical Chemistry C, 2016, 120, 19759-19767. Understanding the Fluorescence of TADF Light-Emitting Dyes. Journal of Physical Chemistry A, 2016, 1.1 26 120, 6944-6955. A phenothiazine/dimesitylborane hybrid material as a bipolar transport host of red phosphor. Journal 103 2.7 18 of Materials Chemistry Ć, 2016, 4, 9499-9508. Quinacridone-based π-conjugated electronic materials. Journal of Materials Chemistry C, 2016, 4, 104 2.7 9918-9936. Efficient modulation of optical and electrical properties of X-shaped thermally activated delayed 105 2 0.8 fluorescence emitters by substitution. Journal of Molecular Modeling, 2016, 22, 173. Pendant Homopolymer and Copolymers as Solution-Processable Thermally Activated Delayed 2.2 145 Fluorescence Matérials for Organić Light-Emitting Diodes. Macromoleculés, 2016, 49, 5452-5460. Efficient deep-blue non-doped organic light-emitting diode with improved roll-off of efficiency based 107 1.7 44 on hybrid local and charge-transfer excited state. RSC Advances, 2016, 6, 70085-70090. Polysiloxanes for optoelectronic applications. Progress in Materials Science, 2016, 83, 383-416. 16.0 76 Multi-dipolar Chromophores Featuring Phosphine Oxide as Joint Acceptor: A New Strategy toward High-Efficiency Blue Thermally Activated Delayed Fluorescence Dyes. Chemistry of Materials, 2016, 28, 109 3.2 131 5667-5679. The Role of Local Triplet Excited States and Dâ€A Relative Orientation in Thermally Activated Delayed 403 Fluorescence: Photophysics and Devices. Advanced Science, 2016, 3, 1600080. Utilizing 9,10-dihydroacridine and pyrazine-containing donor–acceptor host materials for highly efficient red phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2016, 4, 111 2.7 22 7869-7874. Achieving Optimal Self-Adaptivity for Dynamic Tuning of Organic Semiconductors through Resonance 6.6 Engineering. Journal of the American Chemical Society, 2016, 138, 9655-9662.

#	Article	IF	CITATIONS
113	Circularly Polarized Phosphorescent Electroluminescence with a High Dissymmetry Factor from PHOLEDs Based on a Platinahelicene. Journal of the American Chemical Society, 2016, 138, 9743-9746.	6.6	387
114	Structure–Property Relationships in Clickâ€Derived Donor–Triazole–Acceptor Materials. Chemistry - A European Journal, 2016, 22, 18887-18898.	1.7	22
115	High Performance All Fluorescence White Organic Light Emitting Devices with a Highly Simplified Structure Based on Thermally Activated Delayed Fluorescence Dopants and Host. ACS Applied Materials & Interfaces, 2016, 8, 32984-32991.	4.0	53
116	Enhanced spin-orbit coupling driven by state mixing in organic molecules for OLED applications. Organic Electronics, 2016, 39, 311-317.	1.4	11
117	Optimizing the Intralayer and Interlayer Compatibility for High-Efficiency Blue Thermally Activated Delayed Fluorescence Diodes. Scientific Reports, 2016, 6, 19904.	1.6	18
118	Pure hydrocarbon host materials based on spirofluorene with excellent performances for green phosphorescent light-emitting devices. New Journal of Chemistry, 2016, 40, 9500-9506.	1.4	7
119	Modulation of Exciton Generation in Organic Active Planar pn Heterojunction: Toward Low Driving Voltage and Highâ&Efficiency OLEDs Employing Conventional and Thermally Activated Delayed Fluorescent Emitters. Advanced Materials, 2016, 28, 6758-6765.	11.1	77
120	Benzimidazobenzothiazoleâ€Based Bipolar Hosts to Harvest Nearly All of the Excitons from Blue Delayed Fluorescence and Phosphorescent Organic Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2016, 55, 6864-6868.	7.2	123
121	Multiphosphineâ€Oxide Hosts for Ultralowâ€Voltageâ€Driven Trueâ€Blue Thermally Activated Delayed Fluorescence Diodes with External Quantum Efficiency beyond 20%. Advanced Materials, 2016, 28, 479-485.	11.1	151
122	Pyridyl Pyrrolide Boron Complexes: The Facile Generation of Thermally Activated Delayed Fluorescence and Preparation of Organic Lightâ€Emitting Diodes. Angewandte Chemie, 2016, 128, 3069-3073.	1.6	32
123	Triplet fusion delayed fluorescence materials for OLEDs. Chinese Chemical Letters, 2016, 27, 1223-1230.	4.8	37
124	Highly luminescent palladium(<scp>ii</scp>) complexes with sub-millisecond blue to green phosphorescent excited states. Photocatalysis and highly efficient PSF-OLEDs. Chemical Science, 2016, 7, 6083-6098.	3.7	112
125	Thermally activated delayed fluorescence materials based on benzophenone derivative as emitter for efficient solution-processed non-doped green OLED. Dyes and Pigments, 2016, 133, 380-386.	2.0	44
126	Solution-processed OLEDs based on phosphorescent PtAu ₂ complexes with phenothiazine-functionalized acetylides. Journal of Materials Chemistry C, 2016, 4, 6096-6103.	2.7	39
127	Triarylborane π -electron systems with intramolecular charge-transfer transitions. Chinese Chemical Letters, 2016, 27, 1131-1138.	4.8	37
128	High-efficiency phosphorescent organic light-emitting devices with low efficiency roll-off using a thermally activated delayed fluorescence material as host. Organic Electronics, 2016, 36, 185-191.	1.4	16
129	Theoretical Characterizations on Charge Transfer Excitations in Solution by Timeâ€Dependent Density Functional Theory A Case Study. Journal of the Chinese Chemical Society, 2016, 63, 465-471.	0.8	4
130	Highly efficient inverted organic light-emitting diodes based on thermally activated delayed fluorescence. Science China Materials, 2016, 59, 421-426.	3.5	14

#	Article	IF	Citations
131	Highâ€Performance Hybrid White Organic Lightâ€Emitting Diodes with Superior Efficiency/Color Rendering Index/Color Stability and Low Efficiency Rollâ€Off Based on a Blue Thermally Activated Delayed Fluorescent Emitter. Advanced Functional Materials, 2016, 26, 3306-3313.	7.8	154
132	Highâ€Efficiency Blue Organic Lightâ€Emitting Diodes Based on Thermally Activated Delayed Fluorescence from Phenoxaphosphine and Phenoxathiin Derivatives. Advanced Materials, 2016, 28, 4626-4631.	11.1	179
133	Dibenzo[<i>a,j</i>]phenazineâ€Cored Donor–Acceptor–Donor Compounds as Greenâ€ŧoâ€Red/NIR Thermal Activated Delayed Fluorescence Organic Light Emitters. Angewandte Chemie, 2016, 128, 5833-5838.	y _{1.6}	70
134	Benzimidazobenzothiazoleâ€Based Bipolar Hosts to Harvest Nearly All of the Excitons from Blue Delayed Fluorescence and Phosphorescent Organic Lightâ€Emitting Diodes. Angewandte Chemie, 2016, 128, 6978-6982.	1.6	27
135	Pyridyl Pyrrolide Boron Complexes: The Facile Generation of Thermally Activated Delayed Fluorescence and Preparation of Organic Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2016, 55, 3017-3021.	7.2	166
136	Dibenzo[<i>a,j</i>]phenazineâ€Cored Donor–Acceptor–Donor Compounds as Greenâ€ŧoâ€Red/NIR Thermal Activated Delayed Fluorescence Organic Light Emitters. Angewandte Chemie - International Edition, 2016, 55, 5739-5744.	ly 7.2	303
137	Iridium-Based High-Sensitivity Oxygen Sensors and Photosensitizers with Ultralong Triplet Lifetimes. ACS Applied Materials & Interfaces, 2016, 8, 3591-3600.	4.0	63
138	Extremely condensing triplet states of DPEPO-type hosts through constitutional isomerization for high-efficiency deep-blue thermally activated delayed fluorescence diodes. Chemical Science, 2016, 7, 2870-2882.	3.7	92
139	"Rate-limited effect―of reverse intersystem crossing process: the key for tuning thermally activated delayed fluorescence lifetime and efficiency roll-off of organic light emitting diodes. Chemical Science, 2016, 7, 4264-4275.	3.7	212
140	Computational study on thermally activated delayed fluorescence of donor–linker–acceptor network molecules. RSC Advances, 2016, 6, 37203-37211.	1.7	19
141	Structure–Performance Investigation of Thioxanthone Derivatives for Developing Color Tunable Highly Efficient Thermally Activated Delayed Fluorescence Emitters. ACS Applied Materials & Interfaces, 2016, 8, 8627-8636.	4.0	89
142	Highly efficient blue thermally activated delayed fluorescent OLEDs with record-low driving voltages utilizing high triplet energy hosts with small singlet–triplet splittings. Chemical Science, 2016, 7, 3355-3363.	3.7	195
143	Unparalleled Ease of Access to a Library of Biheteroaryl Fluorophores via Oxidative Cross-Coupling Reactions: Discovery of Photostable NIR Probe for Mitochondria. Journal of the American Chemical Society, 2016, 138, 4730-4738.	6.6	181
144	Computational design of benzo [1,2-b:4,5-bâ€2] dithiophene based thermally activated delayed fluorescent materials. Dyes and Pigments, 2016, 127, 189-196.	2.0	9
145	Molecular engineering of donor moiety of donor–acceptor structure for management of photophysical properties and device performances. Dyes and Pigments, 2016, 128, 201-208.	2.0	19
146	Towards highly efficient red thermally activated delayed fluorescence materials by the control of intra-molecular <i>π</i> – <i>π</i> stacking interactions. Nanotechnology, 2016, 27, 094001.	1.3	51
147	Multi-carbazole encapsulation as a simple strategy for the construction of solution-processed, non-doped thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2016, 4, 2442-2446.	2.7	150
148	Organophosphorus derivatives for electronic devices. Journal of Materials Chemistry C, 2016, 4, 3686-3698.	2.7	149

#	Article	IF	CITATIONS
149	Design and Synthesis of New Circularly Polarized Thermally Activated Delayed Fluorescence Emitters. Journal of the American Chemical Society, 2016, 138, 3990-3993.	6.6	269
150	A thermally activated delayed blue fluorescent emitter with reversible externally tunable emission. Journal of Materials Chemistry C, 2016, 4, 900-904.	2.7	52
151	Creating a thermally activated delayed fluorescence channel in a single polymer system to enhance exciton utilization efficiency for bluish-green electroluminescence. Chemical Communications, 2016, 52, 2292-2295.	2.2	160
152	Acid-Promoted Cross-Dehydrative Aromatization for the Synthesis of Tetraaryl-Substituted Pyrroles. Organic Letters, 2016, 18, 56-59.	2.4	35
153	Aggregation-induced emission type thermally activated delayed fluorescent materials for high efficiency in non-doped organic light-emitting diodes. Organic Electronics, 2016, 29, 22-26.	1.4	66
154	New Benzimidazole-Based Bipolar Hosts: Highly Efficient Phosphorescent and Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes Employing the Same Device Structure. ACS Applied Materials & Interfaces, 2016, 8, 2635-2643.	4.0	99
155	Achieving remarkable mechanochromism and white-light emission with thermally activated delayed fluorescence through the molecular heredity principle. Chemical Science, 2016, 7, 2201-2206.	3.7	210
156	The interplay of thermally activated delayed fluorescence (TADF) and room temperature organic phosphorescence in sterically-constrained donor–acceptor charge-transfer molecules. Chemical Communications, 2016, 52, 2612-2615.	2.2	217
157	High-efficiency solution-processed OLEDs based on cationic Ag ₆ Cu heteroheptanuclear cluster complexes with aromatic acetylides. Journal of Materials Chemistry C, 2016, 4, 1787-1794.	2.7	46
158	Cuprophilic interactions in highly luminescent dicopper(<scp>i</scp>)–NHC–picolyl complexes – fast phosphorescence or TADF?. Chemical Communications, 2016, 52, 2932-2935.	2.2	106
159	Sterically shielded blue thermally activated delayed fluorescence emitters with improved efficiency and stability. Materials Horizons, 2016, 3, 145-151.	6.4	430
160	Relationship between Metallophilic Interactions and Luminescent Properties in Pt(II) Complexes: TD-DFT Guide for the Molecular Design of Light-Responsive Materials. Journal of Physical Chemistry C, 2016, 120, 2002-2012.	1.5	23
161	A New Molecular Design Based on Thermally Activated Delayed Fluorescence for Highly Efficient Organic Light Emitting Diodes. Journal of the American Chemical Society, 2016, 138, 628-634.	6.6	365
162	Cu(I) hybrid inorganic–organic materials with intriguing stimuli responsive and optoelectronic properties. Coordination Chemistry Reviews, 2016, 306, 566-614.	9.5	337
163	Deep-blue thermally activated delayed fluorescence (TADF) emitters for light-emitting electrochemical cells (LEECs). Journal of Materials Chemistry C, 2017, 5, 1699-1705.	2.7	54
164	Molecular Design of Highly Efficient Thermally Activated Delayed Fluorescence Hosts for Blue Phosphorescent and Fluorescent Organic Light-Emitting Diodes. Chemistry of Materials, 2017, 29, 1527-1537.	3.2	85
165	Benchmark of Bethe-Salpeter for Triplet Excited-States. Journal of Chemical Theory and Computation, 2017, 13, 767-783.	2.3	65
166	Hybrid host materials for highly efficient electrophosphorescence and thermally activated delayed fluorescence independent of the linkage mode. Physical Chemistry Chemical Physics, 2017, 19, 5177-5184.	1.3	12

#	Article	IF	CITATIONS
167	Recent advances in organic thermally activated delayed fluorescence materials. Chemical Society Reviews, 2017, 46, 915-1016.	18.7	1,815
168	Inheriting the Characteristics of TADF Small Molecule by Sideâ€Chain Engineering Strategy to Enable Bluishâ€Green Polymers with High PLQYs up to 74% and External Quantum Efficiency over 16% in Lightâ€Emitting Diodes. Advanced Materials, 2017, 29, 1604223.	11.1	207
169	Thieno[3,4-c]pyrrole-4,6-dione as novel building block for host materials for red PhOLEDs. Journal of Materials Chemistry C, 2017, 5, 1997-2004.	2.7	10
170	Thermally activated delayed fluorescence OLEDs with fully solution processed organic layers exhibiting nearly 10% external quantum efficiency. Chemical Communications, 2017, 53, 2439-2442.	2.2	96
171	Thermally activated delayed fluorescent phenothiazine–dibenzo[a,j]phenazine–phenothiazine triads exhibiting tricolor-changing mechanochromic luminescence. Chemical Science, 2017, 8, 2677-2686.	3.7	356
172	Efficient thermally activated delayed fluorescence of functional phenylpyridinato boron complexes and high performance organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 1452-1462.	2.7	65
173	Unexpected Sole Enolâ€Form Emission of 2â€(2′â€Hydroxyphenyl)oxazoles for Highly Efficient Deepâ€Blueâ€Emitting Organic Electroluminescent Devices. Advanced Functional Materials, 2017, 27, 1605245.	7.8	72
174	Teaching an old acceptor new tricks: rationally employing 2,1,3-benzothiadiazole as input to design a highly efficient red thermally activated delayed fluorescence emitter. Journal of Materials Chemistry C, 2017, 5, 1363-1368.	2.7	116
175	Synthesis and characterization of diphenylamine derivative containing malononitrile for thermally activated delayed fluorescent emitter. Dyes and Pigments, 2017, 140, 14-21.	2.0	22
176	Electrochemical Generation of Excited Intramolecular Chargeâ€Transfer States. ChemElectroChem, 2017, 4, 1604-1638.	1.7	17
177	Boron-based TADF emitters with improved OLED device efficiency roll-off and long lifetime. Dyes and Pigments, 2017, 141, 83-92.	2.0	56
178	Tunable Full-Color Electroluminescence from All-Organic Optical Upconversion Devices by Near-Infrared Sensing. ACS Photonics, 2017, 4, 223-227.	3.2	61
179	Effect of increasing electron donor units for high-efficiency blue thermally activated delayed fluorescence. Dyes and Pigments, 2017, 140, 399-406.	2.0	12
180	Achieving efficient violet-blue electroluminescence with CIE _y <0.06 and EQE >6% from naphthyl-linked phenanthroimidazole–carbazole hybrid fluorophores. Chemical Science, 2017, 8, 3599-3608.	3.7	145
181	Functional organic click-materials: application in phosphorescent organic light emitting diodes. RSC Advances, 2017, 7, 12150-12160.	1.7	9
182	Thermally activated delayed fluorescence emitters with a m,m-di-tert-butyl-carbazolyl benzoylpyridine core achieving extremely high blue electroluminescence efficiencies. Journal of Materials Chemistry C, 2017, 5, 2919-2926.	2.7	48
183	Recent Progress in Highâ€Efficiency Blueâ€Lightâ€Emitting Materials for Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2017, 27, 1603007.	7.8	465
184	Furan Is Superior to Thiophene: A Furanâ€Cored AlEgen with Remarkable Chromism and OLED Performance. Advanced Science, 2017, 4, 1700005.	5.6	94

#	Article	IF	CITATIONS
185	Tuning the twist angle of thermally activated delayed fluorescence molecules via a dendronization strategy: high-efficiency solution-processed non-doped OLEDs. Journal of Materials Chemistry C, 2017, 5, 3480-3487.	2.7	44
186	Photophysics of thermally activated delayed fluorescence molecules. Methods and Applications in Fluorescence, 2017, 5, 012001.	1.1	394
187	Photophysical properties of 6- N,N -dimethylpyrazolo[3,4- b]quinoline substituted with pyridyl in the 3-position. Optical Materials, 2017, 66, 527-533.	1.7	7
188	Combined Inter―and Intramolecular Chargeâ€Transfer Processes for Highly Efficient Fluorescent Organic Lightâ€Emitting Diodes with Reduced Triplet Exciton Quenching. Advanced Materials, 2017, 29, 1606448.	11.1	131
189	Dialectics of nature: Temporal and spatial regulation in material sciences. Nano Research, 2017, 10, 1115-1124.	5.8	3
190	Highly Efficient Long-Wavelength Thermally Activated Delayed Fluorescence OLEDs Based on Dicyanopyrazino Phenanthrene Derivatives. ACS Applied Materials & Interfaces, 2017, 9, 9892-9901.	4.0	168
191	Deep-blue thermally activated delayed fluorescence dendrimers withÂreduced singlet-triplet energy gap for low roll-off non-doped solution-processed organic light-emitting diodes. Dyes and Pigments, 2017, 140, 79-86.	2.0	42
192	Elucidating the Spatial Arrangement of Emitter Molecules in Organic Lightâ€Emitting Diode Films. Angewandte Chemie - International Edition, 2017, 56, 8402-8406.	7.2	40
193	Mulifunctional Dendritic Emitter: Aggregation-Induced Emission Enhanced, Thermally Activated Delayed Fluorescent Material for Solution-Processed Multilayered Organic Light-Emitting Diodes. Scientific Reports, 2017, 7, 41780.	1.6	67
194	Achieving Highâ€Performance Nondoped OLEDs with Extremely Small Efficiency Rollâ€Off by Combining Aggregationâ€Induced Emission and Thermally Activated Delayed Fluorescence. Advanced Functional Materials, 2017, 27, 1606458.	7.8	386
195	Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Lightâ€Emitting Diodes. Advanced Materials, 2017, 29, 1605444.	11.1	1,490
196	π–π stacking: a strategy to improve the electron mobilities of bipolar hosts for TADF and phosphorescent devices with low efficiency roll-off. Journal of Materials Chemistry C, 2017, 5, 3372-3381.	2.7	28
197	Elucidating the Spatial Arrangement of Emitter Molecules in Organic Lightâ€Emitting Diode Films. Angewandte Chemie, 2017, 129, 8522-8526.	1.6	1
198	Ïf-Hammett parameter: a strategy to enhance both photo- and electro-luminescence features of heteroleptic copper(<scp>i</scp>) complexes. Dalton Transactions, 2017, 46, 6312-6323.	1.6	51
199	Pt(II) Complexes with Azolate-containing Bidentate Chelate: Design, Photophysics, and Application. Journal of the Chinese Chemical Society, 2017, 64, 574-588.	0.8	14
200	Control of the Singlet–Triplet Energy Gap in a Thermally Activated Delayed Fluorescence Emitter by Using a Polar Host Matrix. Nanoscale Research Letters, 2017, 12, 268.	3.1	23
201	Tuning the electronic and optical properties of diphenylsulphone based thermally activated delayed fluorescent materials via structural modification: A theoretical study. Dyes and Pigments, 2017, 143, 42-47.	2.0	10
202	Evidence and mechanism of efficient thermally activated delayed fluorescence promoted by delocalized excited states. Science Advances, 2017, 3, e1603282.	4.7	263

ARTICLE IF CITATIONS # Assessing the role of Hartree-Fock exchange, correlation energy and long range corrections in 203 evaluating ionization potential, and electron affinity in density functional theory. Journal of 13 1.5 Computational Chemistry, 2017, 38, 1844-1852. Activating Room Temperature Long Afterglow of Carbon Dots via Covalent Fixation. Chemistry of 204 3.2 190 Materials, 2017, 29, 4866-4873. Multifunctional Materials for High-Performance Double-Layer Organic Light-Emitting Diodes: Comparison of Isomers with and without Thermally Activated Delayed Fluorescence. ACS Applied 205 4.0 16 Materials & amp; Interfaces, 2017, 9, 17279-17289. Efficient solution-processed red all-fluorescent organic light-emitting diodes employing thermally activated delayed fluorescence materials as assistant hosts: molecular design strategy and exciton dynamic analysis. Journal of Materials Chemistry C, 2017, 5, 5223-5231. Thermally Activated Delayed Fluorescence Organic Dots (TADF Odots) for Timeâ€Resolved and Confocal 207 5.6 99 Fluorescence Imaging in Living Cells and In Vivo. Advanced Science, 2017, 4, 1600166. A Cyclic Alkyl(amino)carbene as Twoâ€Atom Ï€â€Chromophore Leading to the First Phosphorescent Linear 208 1.7 109 Cu^I Complexes. Chemistry - A European Journal, 2017, 23, 2206-2216. Azasiline-based thermally activated delayed fluorescence emitters for blue organic light emitting 209 2.7 46 diodes. Journal of Materials Chemistry C, 2017, 5, 1027-1032. Efficient Cyclometalated Platinum(II) Complex with Superior Operational Stability. Advanced 210 11.1 80 Materials, 2017, 29, 1605002. Poly(3,4â€Ethylenedioxythiophene): Methylnaphthalene Sulfonate Formaldehyde Condensate: The Effect 211 of Work Function and Structural Homogeneity on Hole Injection/Extraction Properties. Advanced 10.2 50 Energy Materials, 2017, 7, 1601499. Efficient synthesis and structural effects of ambipolar carbazole derivatives. Synthetic Metals, 2017, 2.1 223, 1-11. Thermally Activated Delayed Fluorescence Properties of Regioisomeric Xanthone-Based Twisted Intramolecular Charge-Transfer Luminophores. Bulletin of the Chemical Society of Japan, 2017, 90, 213 2.0 14 231-236. Thermally activated delayed fluorescence of co-deposited copper(<scp>i</scp>) complexes: cost-effective emitters for highly efficient organic light-emitting diodes. Journal of Materials 2.7 Chemistry C, 2017, 5, 6982-6988. Near-infrared thermally activated delayed fluorescent dendrimers for the efficient non-doped 215 1.4 46 solution-processed organic light-emitting diodes. Organic Electronics, 2017, 48, 389-396. Efficient blue organic light-emittng diodes based on pyrene phenanthrimidazole and D-Ï€-A chromophore. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346, 296-310. Carbazole-dendrite-encapsulated electron acceptor core for constructing thermally activated 217 delayed fluorescence emitters used in nondoped solution-processed organic light-emitting diodes. 20 1.4 Organic Electronics, 2017, 48, 262-270. Operational lifetimes of organic light-emitting diodes dominated by Förster resonance energy 59 transfer. Scientific Reports, 2017, 7, 1735. Isomeric Nâ€Linked Benzoimidazole Containing New Electron Acceptors for Exciplex Forming Hosts in 219 3.6 21 Highly Efficient Blue Phosphorescent OLEDs. Advanced Optical Materials, 2017, 5, 1700036. Triplet Harvesting with a Simple Aromatic Carbonyl. ChemPhysChem, 2017, 18, 2314-2317.

#	Article	IF	CITATIONS
221	Manipulation of Thermally Activated Delayed Fluorescence of Blue Exciplex Emission: Fully Utilizing Exciton Energy for Highly Efficient Organic Light Emitting Diodes with Low Roll-Off. ACS Applied Materials & Interfaces, 2017, 9, 21346-21354.	4.0	29
222	Donorâ^ïJf–Acceptor Molecules for Green Thermally Activated Delayed Fluorescence by Spatially Approaching Spiro Conformation. Organic Letters, 2017, 19, 3155-3158.	2.4	51
223	Tuning Thermally Activated Delayed Fluorescence Emitter Photophysics through Solvation in the Solid State. ACS Energy Letters, 2017, 2, 1526-1533.	8.8	49
224	The contributions of molecular vibrations and higher triplet levels to the intersystem crossing mechanism in metal-free organic emitters. Journal of Materials Chemistry C, 2017, 5, 6269-6280.	2.7	83
225	A Red Fluorescent Emitter with a Simultaneous Hybrid Local and Charge Transfer Excited State and Aggregationâ€Induced Emission for Highâ€Efficiency, Low Efficiency Rollâ€Off OLEDs. Advanced Optical Materials, 2017, 5, 1700145.	3.6	51
226	Fluorescence and Phosphorescence Anisotropy from Oriented Films of Thermally Activated Delayed Fluorescence Emitters. Journal of Physical Chemistry Letters, 2017, 8, 2930-2935.	2.1	7
227	Carbon dots in zeolites: A new class of thermally activated delayed fluorescence materials with ultralong lifetimes. Science Advances, 2017, 3, e1603171.	4.7	286
228	Aromaticâ€Imideâ€Based Thermally Activated Delayed Fluorescence Materials for Highly Efficient Organic Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2017, 56, 8818-8822.	7.2	118
229	Theoretical Study of Conversion and Decay Processes of Excited Triplet and Singlet States in a Thermally Activated Delayed Fluorescence Molecule. Journal of Physical Chemistry C, 2017, 121, 13448-13456.	1.5	134
230	Aromaticâ€lmideâ€Based Thermally Activated Delayed Fluorescence Materials for Highly Efficient Organic Lightâ€Emitting Diodes. Angewandte Chemie, 2017, 129, 8944-8948.	1.6	20
231	Blueâ€toâ€Green Delayed Fluorescence of 2â€Aminoisophthalic Acid Diesters Dispersed in Polymer Film. European Journal of Organic Chemistry, 2017, 2017, 4695-4702.	1.2	4
232	Robust Luminescent Materials with Prominent Aggregation-Induced Emission and Thermally Activated Delayed Fluorescence for High-Performance Organic Light-Emitting Diodes. Chemistry of Materials, 2017, 29, 3623-3631.	3.2	215
233	Organocatalyzed Atom Transfer Radical Polymerization: Perspectives on Catalyst Design and Performance. Macromolecular Rapid Communications, 2017, 38, 1700040.	2.0	121
234	Carbazole/oligofluorene end-capped hexanes: solution-processable host materials for phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 4442-4447.	2.7	13
235	Triplet harvesting in luminescent Cu(<scp>i</scp>) complexes by the thermally activated luminescence transition mechanism: impact of the molecular structure. Journal of Materials Chemistry C, 2017, 5, 4488-4494.	2.7	16
236	Designing Highly Efficient Cu ^I Photosensitizers for Photocatalytic H ₂ Evolution from Water. ChemSusChem, 2017, 10, 1883-1886.	3.6	50
237	Simple aggregation–induced delayed fluorescence materials based on anthraquinone derivatives for highly efficient solution–processed red OLEDs. Journal of Luminescence, 2017, 187, 414-420.	1.5	55
238	Suppression of Efficiency Roll-Off in Fluorescent Organic Light-Emitting Devices Through Charge Carriers and Excitons Management. IEEE Transactions on Electron Devices, 2017, 64, 2330-2337.	1.6	1

#	Article	IF	CITATIONS
239	3,5-Diarylimidazo[1,2- <i>a</i>]pyridines as Color-Tunable Fluorophores. Journal of Organic Chemistry, 2017, 82, 4352-4361.	1.7	30
240	Triplet–Triplet Annihilation in 9,10-Diphenylanthracene Derivatives: The Role of Intersystem Crossing and Exciton Diffusion. Journal of Physical Chemistry C, 2017, 121, 8515-8524.	1.5	47
241	High-performance light-emitting diodes based on carbene-metal-amides. Science, 2017, 356, 159-163.	6.0	444
242	Guest concentration, bias current, and temperature-dependent sign inversion of magneto-electroluminescence in thermally activated delayed fluorescence devices. Scientific Reports, 2017, 7, 44396.	1.6	28
243	Syntheses, Photoluminescence, and Electroluminescence of a Series of Sublimable Bipolar Cationic Cuprous Complexes with Thermally Activated Delayed Fluorescence. Inorganic Chemistry, 2017, 56, 3742-3753.	1.9	67
244	Stable and efficient sky-blue organic light emitting diodes employing a tetradentate platinum complex. Applied Physics Letters, 2017, 110, .	1.5	34
245	CuCl-Catalyzed Ullmann-Type C–N Cross-Coupling Reaction of Carbazoles and 2-Bromopyridine Derivatives. Journal of Organic Chemistry, 2017, 82, 1024-1033.	1.7	36
246	Greenâ€Lightâ€Emitting Diodes based on Tetrabromide Manganese(II) Complex through Solution Process. Advanced Materials, 2017, 29, 1605739.	11.1	177
247	Highly efficient and color tunable thermally activated delayed fluorescent emitters and their applications for the solution-processed OLEDs. Dyes and Pigments, 2017, 139, 326-333.	2.0	15
248	Enhanced Thermally Activated Delayed Fluorescence in New Fluorescein Derivatives By Introducing Aromatic Carbonyl Groups. ChemPhotoChem, 2017, 1, 79-83.	1.5	29
249	Tuning emissive characteristics and singlet-triplet energy splitting of fluorescent emitters by encapsulation group modification: Yellow TADF emitter for solution-processed OLEDs with high luminance and ultraslow efficiency roll-off. Dyes and Pigments, 2017, 139, 593-600.	2.0	18
250	AlEgen with Fluorescence–Phosphorescence Dual Mechanoluminescence at Room Temperature. Angewandte Chemie - International Edition, 2017, 56, 880-884.	7.2	250
251	AlEgen with Fluorescence–Phosphorescence Dual Mechanoluminescence at Room Temperature. Angewandte Chemie, 2017, 129, 898-902.	1.6	90
252	Harvesting Triplet Excitons with Exciplex Thermally Activated Delayed Fluorescence Emitters toward High Performance Heterostructured Organic Light-Emitting Field Effect Transistors. ACS Applied Materials & Interfaces, 2017, 9, 2711-2719.	4.0	48
253	Conjugationâ€Induced Thermally Activated Delayed Fluorescence (TADF): From Conventional Nonâ€TADF Units to TADFâ€Active Polymers. Advanced Functional Materials, 2017, 27, 1605051.	7.8	109
254	Thermally Activated Delayed Fluorescent Polymers. Journal of Polymer Science Part A, 2017, 55, 575-584.	2.5	62
255	Dynamic nature of excited states of donor–acceptor TADF materials for OLEDs: how theory can reveal structure–property relationships. Journal of Materials Chemistry C, 2017, 5, 5718-5729.	2.7	97
256	Kinetic Criteria for Optimal Thermally Activated Delayed Fluorescence in Photoluminescence and in Electroluminescence. Journal of Physical Chemistry C, 2017, 121, 701-708.	1.5	11

#	Article	IF	CITATIONS
257	Intramolecular Charge Transfer and Ion Pairing in <i>N,N</i> -Diaryl Dihydrophenazine Photoredox Catalysts for Efficient Organocatalyzed Atom Transfer Radical Polymerization. Journal of the American Chemical Society, 2017, 139, 348-355.	6.6	207
258	Excited state dynamics for hybridized local and charge transfer state fluorescent emitters with aggregation-induced emission in the solid phase: a QM/MM study. Physical Chemistry Chemical Physics, 2017, 19, 29872-29879.	1.3	36
259	Triplet decay-induced negative temperature dependence of the transient photoluminescence decay of thermally activated delayed fluorescence emitter. Journal of Materials Chemistry C, 2017, 5, 12077-12084.	2.7	48
260	Engineering the excited-state properties of purely organic intramolecular and intermolecular charge transfer emitters towards high-performance fluorescent OLEDs. Journal of Materials Chemistry C, 2017, 5, 10991-11000.	2.7	14
261	Horizontally Orientated Sticklike Emitters: Enhancement of Intrinsic Out-Coupling Factor and Electroluminescence Performance. Chemistry of Materials, 2017, 29, 8630-8636.	3.2	164
262	Unconventional Molecular Design Approach of High-Efficiency Deep Blue Thermally Activated Delayed Fluorescent Emitters Using Indolocarbazole as an Acceptor. ACS Applied Materials & Interfaces, 2017, 9, 37864-37872.	4.0	68
263	Electron-Deficient Near-Infrared Pt(II) and Pd(II) Benzoporphyrins with Dual Phosphorescence and Unusually Efficient Thermally Activated Delayed Fluorescence: First Demonstration of Simultaneous Oxygen and Temperature Sensing with a Single Emitter. ACS Applied Materials & amp; Interfaces, 2017, 9, 38008-38023.	4.0	53
264	A New Design Strategy for Efficient Thermally Activated Delayed Fluorescence Organic Emitters: From Twisted to Planar Structures. Advanced Materials, 2017, 29, 1702767.	11.1	215
265	Sulfone-Based Deep Blue Thermally Activated Delayed Fluorescence Emitters: Solution-Processed Organic Light-Emitting Diodes with High Efficiency and Brightness. Chemistry of Materials, 2017, 29, 9154-9161.	3.2	69
266	Precise Exciton Allocation for Highly Efficient White Organic Lightâ€Emitting Diodes with Low Efficiency Rollâ€Off Based on Blue Thermally Activated Delayed Fluorescent Exciplex Emission. Advanced Optical Materials, 2017, 5, 1700415.	3.6	95
267	Highly Efficient Nondoped OLEDs with Negligible Efficiency Rollâ€Off Fabricated from Aggregationâ€Induced Delayed Fluorescence Luminogens. Angewandte Chemie, 2017, 129, 13151-13156.	1.6	62
268	A Phosphanthrene Oxide Host with Close Sphere Packing for Ultralowâ€Voltageâ€Driven Efficient Blue Thermally Activated Delayed Fluorescence Diodes. Advanced Materials, 2017, 29, 1700553.	11.1	79
269	A light-up endoplasmic reticulum probe based on a rational design of red-emissive fluorogens with aggregation-induced emission. Chemical Communications, 2017, 53, 10792-10795.	2.2	31
270	Highly Efficient Nondoped OLEDs with Negligible Efficiency Rollâ€Off Fabricated from Aggregationâ€Induced Delayed Fluorescence Luminogens. Angewandte Chemie - International Edition, 2017, 56, 12971-12976.	7.2	320
271	Rational design of isophthalonitrile-based thermally activated delayed fluorescence emitters for OLEDs with high efficiency and slow efficiency roll-off. Dyes and Pigments, 2017, 147, 350-356.	2.0	11
272	Isobenzofuranone- and Chromone-Based Blue Delayed Fluorescence Emitters with Low Efficiency Roll-Off in Organic Light-Emitting Diodes. Chemistry of Materials, 2017, 29, 8012-8020.	3.2	68
273	Organic Afterglow Phosphors. SpringerBriefs in Materials, 2017, , 117-151.	0.1	0
274	Role of Voluminous Substituents in Controlling the Optical Properties of Disc/Planar-Like Small Organic Molecules: Toward Molecular Emission in Solid State. ACS Omega, 2017, 2, 5348-5356.	1.6	7

#	Article	IF	CITATIONS
275	Theoretical studying of basic photophysical processes in a thermally activated delayed fluorescence copper(I) complex: Determination of reverse intersystem crossing and radiative rate constants. Organic Electronics, 2017, 51, 207-219.	1.4	15
276	Allochroic thermally activated delayed fluorescence diodes through field-induced solvatochromic effect. Science Advances, 2017, 3, e1700904.	4.7	51
277	Shorter Exciton Lifetimes via an External Heavyâ€Atom Effect: Alleviating the Effects of Bimolecular Processes in Organic Lightâ€Emitting Diodes. Advanced Materials, 2017, 29, 1701987.	11.1	90
278	Highly efficient organic light-emitting devices employing an ultrathin non-doped phosphorescence emitter within a thermally activated delayed fluorescence interface exciplex. Journal of Luminescence, 2017, 192, 1242-1249.	1.5	5
279	Dipole orientation analysis without optical simulation: application to thermally activated delayed fluorescence emitters doped in host matrix. Scientific Reports, 2017, 7, 8405.	1.6	10
280	Role of the Bridging Group in Bisâ€Pyridyl Ligands: Enhancing Both the Photo―and Electroluminescent Features of Cationic (IPr)Cu ^I Complexes. Chemistry - A European Journal, 2017, 23, 16328-16337.	1.7	36
281	Versatile Donorâ~'π–Acceptor-Type Aggregation-Enhanced Emission Active Fluorophores as Both Highly Efficient Nondoped Emitter and Excellent Host. ACS Applied Materials & Interfaces, 2017, 9, 32946-32956.	4.0	40
282	Synthesis, Characterization and Luminescent Properties of Copper(I) Halide Complexes Containing 1-(Diphenylphosphino)naphthalene. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 101-109.	1.9	5
283	Iptycene-Containing Azaacenes with Tunable Luminescence. Synlett, 2017, 28, 2783-2789.	1.0	6
284	Thermally activated delayed fluorescenceâ€based tandem OLEDs with very high external quantum efficiency. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700240.	0.8	10
285	Excited state properties of non-doped thermally activated delayed fluorescence emitters with aggregation-induced emission: a QM/MM study. Journal of Materials Chemistry C, 2017, 5, 8390-8399.	2.7	91
286	"Roller-Wheel―Type Pt-Containing Small Molecules and the Impact of "Rollers―on Material Crystallinity, Electronic Properties, and Solar Cell Performance. Journal of the American Chemical Society, 2017, 139, 14109-14119.	6.6	20
287	Introduction of Twisted Backbone: A New Strategy to Achieve Efficient Blue Fluorescence Emitter with Delayed Emission. Advanced Optical Materials, 2017, 5, 1700334.	3.6	23
288	Synthesis, Structures, and Photophysical Properties of a Series of Rare Near-IR Emitting Copper(I) Complexes. Inorganic Chemistry, 2017, 56, 8996-9008.	1.9	62
289	Deepâ€Red to Nearâ€Infrared Thermally Activated Delayed Fluorescence in Organic Solid Films and Electroluminescent Devices. Angewandte Chemie - International Edition, 2017, 56, 11525-11529.	7.2	293
290	A high performance deep-blue emitter with an anti-parallel dipole design. Dyes and Pigments, 2017, 146, 219-225.	2.0	17
291	Purely Organic Dyes with Thermally Activated Delayed Fluorescence—A Versatile Class of Indicators for Optical Temperature Sensing. Advanced Optical Materials, 2017, 5, 1700372.	3.6	84
292	Tailoring Excited State Properties and Energy Levels Arrangement via Subtle Structural Design on Dâ€ï€â€A Materials. Chinese Journal of Chemistry, 2017, 35, 1559-1568.	2.6	18

#	Article	IF	CITATIONS
293	Deepâ€Red to Nearâ€Infrared Thermally Activated Delayed Fluorescence in Organic Solid Films and Electroluminescent Devices. Angewandte Chemie, 2017, 129, 11683-11687.	1.6	47
294	Singlet Exciton Fraction in Electroluminescence from Conjugated Polymer. Scientific Reports, 2017, 7, 2889.	1.6	2
295	Promoting Singlet/triplet Exciton Transformation in Organic Optoelectronic Molecules: Role of Excited State Transition Configuration. Scientific Reports, 2017, 7, 6225.	1.6	92
296	Highly twisted organic molecules with ortho linkage as the efficient bipolar hosts for sky-blue thermally activated delayed fluorescence emitter in OLEDs. Organic Electronics, 2017, 50, 153-160.	1.4	12
297	Recent Advances in Polymer Organic Light-Emitting Diodes (PLED) Using Non-conjugated Polymers as the Emitting Layer and Contrasting Them with Conjugated Counterparts. Journal of Electronic Materials, 2017, 46, 6246-6281.	1.0	51
298	Photoluminescence properties of TADF-emitting three-coordinate silver(<scp>i</scp>) halide complexes with diphosphine ligands: a comparison study with copper(<scp>i</scp>) complexes. Dalton Transactions, 2017, 46, 12446-12455.	1.6	37
299	Thermally Activated Delayed Fluorescence Emitters in Light-Emitting Electrochemical Cells. , 2017, , 237-266.		6
300	Synthesis, characterization and luminescent properties of copper(I) halide complexes containing biphenyl bidentate phosphine ligand. Journal of Coordination Chemistry, 2017, 70, 3907-3919.	0.8	8
301	A red thermally activated delayed fluorescence material as a triplet sensitizer for triplet–triplet annihilation up-conversion with high efficiency and low energy loss. Journal of Materials Chemistry C, 2017, 5, 12674-12677.	2.7	34
302	Blue Thermally Activated Delayed Fluorescence Polymers with Nonconjugated Backbone and Through-Space Charge Transfer Effect. Journal of the American Chemical Society, 2017, 139, 17739-17742.	6.6	311
303	Manipulating organic triplet harvesting in regioisomeric microcrystals. Journal of Materials Chemistry C, 2017, 5, 12547-12552.	2.7	24
304	Effects of acceptor on the performance of exciplex-based OLED. Synthetic Metals, 2017, 234, 95-99.	2.1	13
305	Avoiding Energy Loss on TADF Emitters: Controlling the Dual Conformations of D–A Structure Molecules Based on the Pseudoplanar Segments. Advanced Materials, 2017, 29, 1701476.	11.1	199
306	Halogen-induced internal heavy-atom effect shortening the emissive lifetime and improving the fluorescence efficiency of thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2017, 5, 12204-12210.	2.7	79
307	Bicolour electroluminescence of 2-(carbazol-9-yl)anthraquinone based on a solution process. Journal of Materials Chemistry C, 2017, 5, 12031-12034.	2.7	34
308	Ethyne-Linked Push–Pull Chromophores: Implications of Crystal Structure and Molecular Electronics on the Quadric Nonlinear Activity. Crystal Growth and Design, 2017, 17, 4124-4136.	1.4	5
309	Optically Activated Delayed Fluorescence. Journal of Physical Chemistry Letters, 2017, 8, 3536-3543.	2.1	36
310	Perspective on carbazole-based organic compounds as emitters and hosts in TADF applications. Journal of Materials Chemistry C, 2017, 5, 8622-8653.	2.7	262

#	Article	IF	CITATIONS
311	CN-Containing donor–acceptor-type small-molecule materials for thermally activated delayed fluorescence OLEDs. Journal of Materials Chemistry C, 2017, 5, 7699-7714.	2.7	154
312	Aromatically C6- and C9-Substituted Phenanthro[9,10- <i>d</i>]imidazole Blue Fluorophores: Structure–Property Relationship and Electroluminescent Application. ACS Applied Materials & Interfaces, 2017, 9, 26268-26278.	4.0	69
313	Rigidity-Induced Delayed Fluorescence by Ortho Donor-Appended Triarylboron Compounds: Record-High Efficiency in Pure Blue Fluorescent Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2017, 9, 24035-24042.	4.0	131
314	Charge-transfer states in triazole linked donor–acceptor materials: strong effects of chemical modification and solvation. Physical Chemistry Chemical Physics, 2017, 19, 18055-18067.	1.3	19
315	The effects of temperature on the formation and stability of bipolarons in conjugated polymers. European Physical Journal B, 2017, 90, 1.	0.6	3
316	Magnetic Anisotropy from Main-Group Elements: Halides versus Group 14 Elements. Inorganic Chemistry, 2017, 56, 8195-8202.	1.9	19
317	Simple-structure organic light emitting diodes: Exploring the use of thermally activated delayed fluorescence host and guest materials. Organic Electronics, 2017, 41, 237-244.	1.4	16
318	Phosphorescent Pt(II) and Pd(II) Complexes for Efficient, Highâ€Colorâ€Quality, and Stable OLEDs. Advanced Materials, 2017, 29, 1601861.	11.1	280
319	Linkage modes on phthaloyl/triphenylamine hybrid compounds: Multi-functional AIE luminogens, non-doped emitters and organic hosts for highly efficient solution-processed delayed fluorescence OLEDs. Dyes and Pigments, 2017, 137, 480-489.	2.0	51
320	Benchmarking singlet and triplet excitation energies of molecular semiconductors for singlet fission: Tuning the amount of HF exchange and adjusting local correlation to obtain accurate functionals for singlet–triplet gaps. Chemical Physics, 2017, 482, 319-338.	0.9	44
321	Stable green phosphorescence organic light-emitting diodes with low efficiency roll-off using a novel bipolar thermally activated delayed fluorescence material as host. Chemical Science, 2017, 8, 1259-1268.	3.7	77
322	Easy accessible blue luminescent carbazole-based materials for organic light-emitting diodes. Dyes and Pigments, 2017, 137, 24-35.	2.0	41
323	Novel spirofluorene/indole/carbazole-based hole transport materials with high triplet energy for efficient green phosphorescent organic light-emitting diodes. Dyes and Pigments, 2017, 137, 84-90.	2.0	31
324	Nonconventional macromolecular luminogens with aggregationâ€induced emission characteristics. Journal of Polymer Science Part A, 2017, 55, 560-574.	2.5	211
325	Preparations and photophysical properties of thermally activated delayed fluorescence materials based on N -phenyl-phenothiazine- S , S -dioxide. Tetrahedron, 2017, 73, 21-29.	1.0	8
326	Improving electroluminescent efficiency and ultraviolet detectivity of optoelectronic integrated devices by doping a thermally activated delayed fluorescent material in an aggregation-induced emission material as an active layer. Optical Materials Express, 2017, 7, 3538.	1.6	7
327	Synthesis, Crystal Structure, and Photoluminescent Properties of 3,3′,4,4′-Tetraethyl-5,5′-divinyl-2,2′-bipyrrole Derivatives. Molecules, 2017, 22, 1816.	1.7	4
328	Strategies to Achieve High-Performance White Organic Light-Emitting Diodes. Materials, 2017, 10, 1378.	1.3	43

#	Article	IF	CITATIONS
329	Solution-processed thermally activated delayed fluorescence organic light-emitting diodes using a new polymeric emitter containing non-conjugated cyclohexane units. Polymer Chemistry, 2018, 9, 1318-1326.	1.9	73
330	Boosting the Efficiency of Nearâ€Infrared Fluorescent OLEDs with an Electroluminescent Peak of Nearly 800 nm by Sensitizerâ€Based Cascade Energy Transfer. Advanced Functional Materials, 2018, 28, 1706088.	7.8	50
331	Structure–Property Relationships for Tailoring Phenoxazines as Reducing Photoredox Catalysts. Journal of the American Chemical Society, 2018, 140, 5088-5101.	6.6	202
332	Rationalizing Fabrication and Design Toward Highly Efficient and Stable Blue Lightâ€Emitting Electrochemical Cells Based on NHC Copper(I) Complexes. Advanced Functional Materials, 2018, 28, 1707423.	7.8	61
333	High efficiency non-doped white organic light-emitting diodes based on blue exciplex emission. Organic Electronics, 2018, 56, 216-220.	1.4	15
334	Highly efficient white light-emitting diodes with a bi-component emitting layer based on blue and yellow thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2018, 6, 2951-2956.	2.7	26
335	Novel Blue Bipolar Thermally Activated Delayed Fluorescence Material as Host Emitter for Highâ€Efficiency Hybrid Warmâ€White OLEDs with Stable High Colorâ€Rendering Index. Advanced Functional Materials, 2018, 28, 1707002.	7.8	81
336	Highly Efficient Circularly Polarized Electroluminescence from Aggregationâ€Induced Emission Luminogens with Amplified Chirality and Delayed Fluorescence. Advanced Functional Materials, 2018, 28, 1800051.	7.8	302
337	The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nature Communications, 2018, 9, 840.	5.8	764
338	A Methodological Study on Tuning the Thermally Activated Delayed Fluorescent Performance by Molecular Constitution in Acridine–Benzophenone Derivatives. Chemistry - an Asian Journal, 2018, 13, 1187-1191.	1.7	12
339	Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off. Nature Photonics, 2018, 12, 235-240.	15.6	669
340	Realizing performance improvement of blue thermally activated delayed fluorescence molecule DABNA by introducing substituents on the para-position of boron atom. Chemical Physics Letters, 2018, 701, 98-102.	1.2	17
341	Structure-property relationship of phosphine oxide based thermally activated delayed fluorescence molecules: First-principles study. Organic Electronics, 2018, 59, 7-14.	1.4	6
342	Nanophotonics of Derivatives of PEN for High Efficiency OLED: A Theoretical Study. Materials Today: Proceedings, 2018, 5, 9138-9143.	0.9	2
343	Recent progress in solution processable TADF materials for organic light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 5577-5596.	2.7	370
344	Magnetic field effects on the quenching of triplet excitons in exciplex-based organic light emitting diodes. Journal of Materials Chemistry C, 2018, 6, 5721-5726.	2.7	31
345	Aggregationâ€Enhanced Emission and Thermally Activated Delayed Fluorescence of Derivatives of 9â€Phenylâ€9 <i>H</i> â€Carbazole: Effects of Methoxy and <i>tert</i> â€Butyl Substituents. Chemistry - A European Journal, 2018, 24, 9581-9591.	1.7	52
346	Incorporation of Designed Donor–Acceptor–Donor Segments in a Host Polymer for Strong Near-Infrared Emission from a Large-Area Light-Emitting Electrochemical Cell. ACS Applied Energy Materials, 2018, 1, 1753-1761.	2.5	23

#	Article	IF	CITATIONS
347	Blue Thermally Activated Delayed Fluorescenceâ€Emitting Phosphine Oxide Hosts for Ultrasimple and Highly Efficient White Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2018, 6, 1800020.	3.6	67
348	Using Ring-Opening Metathesis Polymerization of Norbornene To Construct Thermally Activated Delayed Fluorescence Polymers: High-Efficiency Blue Polymer Light-Emitting Diodes. Macromolecules, 2018, 51, 1598-1604.	2.2	76
349	Novel efficient blue and bluish-green light-emitting polymers with delayed fluorescence. Journal of Materials Chemistry C, 2018, 6, 2690-2695.	2.7	69
350	Carbazole-dendronized thermally activated delayed fluorescent molecules with small singlet-triplet gaps for solution-processed organic light-emitting diodes. Dyes and Pigments, 2018, 153, 92-98.	2.0	16
351	Optical and electroluminescent performances of dihydrobenzodioxin phenanthroimidazoles based blue-emitting materials. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 357, 11-19.	2.0	4
352	Molecular Design of Deep Blue Thermally Activated Delayed Fluorescence Materials Employing a Homoconjugative Triptycene Scaffold and Dihedral Angle Tuning. Chemistry of Materials, 2018, 30, 1462-1466.	3.2	71
353	Synthesis and green phosphorescent OLED device performance of cyanofluorene-linked phenylcarbazoles as host material. New Journal of Chemistry, 2018, 42, 5059-5065.	1.4	14
354	Stable Enantiomers Displaying Thermally Activated Delayed Fluorescence: Efficient OLEDs with Circularly Polarized Electroluminescence. Angewandte Chemie, 2018, 130, 2939-2943.	1.6	57
355	Zigâ€Zag Acridine/Sulfone Derivative with Aggregationâ€Induced Emission and Enhanced Thermally Activated Delayed Fluorescence in Amorphous Phase for Highly Efficient Nondoped Blue Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2018, 6, 1701256.	3.6	60
356	Long-Lived Emissive Probes for Time-Resolved Photoluminescence Bioimaging and Biosensing. Chemical Reviews, 2018, 118, 1770-1839.	23.0	644
357	Highly Efficient, Solution-Processed Organic Light-Emitting Diodes Based on Thermally Activated Delayed-Fluorescence Emitter with a Mixed Polymer Interlayer. ACS Applied Energy Materials, 2018, 1, 543-551.	2.5	29
358	Versatile functionalization of trifluoromethyl based deep blue thermally activated delayed fluorescence materials for organic light emitting diodes. New Journal of Chemistry, 2018, 42, 4317-4323.	1.4	32
359	Basic photophysical analysis of a thermally activated delayed fluorescence copper(i) complex in the solid state: theoretical estimations from a polarizable continuum model (PCM)-tuned range-separated density functional approach. Physical Chemistry Chemical Physics, 2018, 20, 6548-6561.	1.3	11
360	Thermally Activated Delayed Fluorescence Conjugated Polymers with Backboneâ€Donor/Pendantâ€Acceptor Architecture for Nondoped OLEDs with High External Quantum Efficiency and Low Rollâ€Off. Advanced Functional Materials, 2018, 28, 1706916.	7.8	113
361	Highly Efficient Red–Orange Delayed Fluorescence Emitters Based on Strong Ï€â€Accepting Dibenzophenazine and Dibenzoquinoxaline Cores: toward a Rational Pureâ€Red OLED Design. Advanced Optical Materials, 2018, 6, 1701147.	3.6	169
362	Tilted Spiroâ€Type Thermally Activated Delayed Fluorescence Host for â‰^100% Exciton Harvesting in Red Phosphorescent Electronics with Ultralow Doping Ratio. Advanced Functional Materials, 2018, 28, 1706228.	7.8	62
363	Molecular Design Strategy for a Two-Component Gel Based on a Thermally Activated Delayed Fluorescence Emitter. ACS Applied Energy Materials, 2018, 1, 649-654.	2.5	15
364	Stable Enantiomers Displaying Thermally Activated Delayed Fluorescence: Efficient OLEDs with Circularly Polarized Electroluminescence. Angewandte Chemie - International Edition, 2018, 57, 2889-2893	7.2	350

#	Article	IF	CITATIONS
365	Molecular engineering of phosphacycle-based thermally activated delayed fluorescence materials for deep-blue OLEDs. Journal of Materials Chemistry C, 2018, 6, 3578-3583.	2.7	32
366	[1,2,4]Triazolo[1,5- <i>a</i>]pyridine as Building Blocks for Universal Host Materials for High-Performance Red, Green, Blue and White Phosphorescent Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 2018, 10, 5714-5722.	4.0	84
367	Blocking Energy‣oss Pathways for Ideal Fluorescent Organic Lightâ€Emitting Diodes with Thermally Activated Delayed Fluorescent Sensitizers. Advanced Materials, 2018, 30, 1705250.	11.1	177
368	Highly-efficient blue neutral mononuclear copper(I) halide complexes containing bi- and mono-dentate phosphine ligands. Journal of Luminescence, 2018, 196, 425-430.	1.5	18
369	X-ray Generated Recombination Exciplexes of Substituted Diphenylacetylenes with Tertiary Amines: A Versatile Experimental Vehicle for Targeted Creation of Deep-Blue Electroluminescent Systems. Journal of Physical Chemistry A, 2018, 122, 1235-1252.	1.1	6
370	Synthesis, aggregation-induced emission and thermally activated delayed fluorescence properties of two new compounds based on phenylethene, carbazole and 9,9′,10,10′-tetraoxidethianthrene. Tetrahedron, 2018, 74, 497-505.	1.0	18
371	Tuning electrical properties of phenanthroimidazole derivatives to construct multifunctional deep-blue electroluminescent materials. Journal of Materials Chemistry C, 2018, 6, 3584-3592.	2.7	57
373	Synthesis, structures and photophysical properties of two regioisomeric phenalenocarbazoles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 194, 111-116.	2.0	5
374	Versatile Indolocarbazoleâ€Isomer Derivatives as Highly Emissive Emitters and Ideal Hosts for Thermally Activated Delayed Fluorescent OLEDs with Alleviated Efficiency Rollâ€Off. Advanced Materials, 2018, 30, 1705406.	11.1	217
375	Excited State Properties of a Thermally Activated Delayed Fluorescence Molecule in Solid Phase Studied by Quantum Mechanics/Molecular Mechanics Method. Journal of Physical Chemistry C, 2018, 122, 2358-2366.	1.5	68
376	Highâ€Performance Allâ€Aryl Phenazasilines via Metalâ€Free Radicalâ€Mediated CH Silylation for Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2018, 6, 1701105.	3.6	12
377	Efficient near-infrared organic light-emitting diodes based on a bipolar host. Journal of Materials Chemistry C, 2018, 6, 1407-1412.	2.7	9
378	Reduced efficiency roll-off and enhanced excition confinement in exciplex-type host: Electron transport materials based on benzimidazole units. Dyes and Pigments, 2018, 151, 35-44.	2.0	7
379	Heavy Atom Effect of Bromine Significantly Enhances Exciton Utilization of Delayed Fluorescence Luminogens. ACS Applied Materials & Interfaces, 2018, 10, 17327-17334.	4.0	91
380	Realizing efficient red thermally activated delayed fluorescence organic light-emitting diodes using phenoxazine/phenothiazine-phenanthrene hybrids. Organic Electronics, 2018, 59, 32-38.	1.4	35
381	Reversible switching between normal and thermally activated delayed fluorescence towards "smart― and single compound white-light luminescence via controllable conformational distribution. Science China Chemistry, 2018, 61, 677-686.	4.2	37
382	Cyanopyrimidine–Carbazole Hybrid Host Materials for High-Efficiency and Low-Efficiency Roll-Off TADF OLEDs. ACS Applied Materials & Interfaces, 2018, 10, 12930-12936.	4.0	62
383	A unique tetranuclear Ag(<scp>i</scp>) complex emitting efficient thermally activated delayed fluorescence with a remarkably short decay time. Dalton Transactions, 2018, 47, 5956-5960.	1.6	30

#	Article	IF	CITATIONS
384	Carbene–Metal–Amide Bond Deformation, Rather Than Ligand Rotation, Drives Delayed Fluorescence. Journal of Physical Chemistry Letters, 2018, 9, 1620-1626.	2.1	57
385	Effects of Ortho-Phenyl Substitution on the rISC Rate of D–A Type TADF Molecules. Journal of Physical Chemistry C, 2018, 122, 7627-7634.	1.5	48
386	Bright monolayer tungsten disulfide <i>via</i> exciton and trion chemical modulations. Nanoscale, 2018, 10, 6294-6299.	2.8	18
387	Three zinc iodide complexes based on phosphane ligands: syntheses, structures, optical properties and TD–DFT calculations. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 342-350.	0.2	3
388	Efficient non-doped fluorescent OLEDs with nearly 6% external quantum efficiency and deep-blue emission approaching the blue standard enabled by quaterphenyl-based emitters. Journal of Materials Chemistry C, 2018, 6, 4479-4484.	2.7	20
389	Simple phenyl bridge between cyano and pyridine units to weaken the electron-withdrawing property for blue-shifted emission in efficient blue TADF OLEDs. Organic Electronics, 2018, 57, 247-254.	1.4	17
390	A universal solution-processable bipolar host based on triphenylamine and pyridine for efficient phosphorescent and thermally activated delayed fluorescence OLEDs. Journal of Luminescence, 2018, 199, 465-474.	1.5	22
391	Novel thioxanthone host material with thermally activated delayed fluorescence for reduced efficiency roll-off of phosphorescent OLEDs. Chinese Chemical Letters, 2018, 29, 471-474.	4.8	14
392	New carbazole-based bipolar hosts for efficient blue phosphorescent organic light-emitting diodes. Organic Electronics, 2018, 52, 138-145.	1.4	19
393	Systematically tuning of optoelectronic properties from electron donating to accepting substituents on bicarbazole/cyanobenzene hybrids: Host to dopant materials for phosphorescent and delayed fluorescence OLEDs. Organic Electronics, 2018, 52, 22-31.	1.4	13
394	Intersystem crossing mechanism of thermally activated delayed fluorescence copper(I) thiolate complex: The roles of exchange coupling and magnetic spin interactions. Organic Electronics, 2018, 52, 110-122.	1.4	9
395	Luminescent Chargeâ€Neutral Copper(I) Phenanthroline Complexes with Isocyanoborate Ligand. European Journal of Inorganic Chemistry, 2018, 2018, 897-903.	1.0	21
396	Molecular Modulation Based on the Terminal Substituent in Twistacenes for Organic Lightâ€Emitting Diodes. Asian Journal of Organic Chemistry, 2018, 7, 424-431.	1.3	4
397	Dual-emissive 2-(2â€2-hydroxyphenyl)oxazoles for high performance organic electroluminescent devices: discovery of a new equilibrium of excited state intramolecular proton transfer with a reverse intersystem crossing process. Chemical Science, 2018, 9, 1213-1220.	3.7	84
398	Excellent n-type light emitters based on AlE-active silole derivatives for efficient simplified organic light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 3690-3698.	2.7	62
399	Achieving Nearly 30% External Quantum Efficiency for Orange–Red Organic Light Emitting Diodes by Employing Thermally Activated Delayed Fluorescence Emitters Composed of 1,8â€Naphthalimideâ€Acridine Hybrids. Advanced Materials, 2018, 30, 1704961.	11.1	488
400	Nâ€doped cycloparaphenylenes: Tuning electronic properties for applications in thermally activated delayed fluorescence. International Journal of Quantum Chemistry, 2018, 118, e25562.	1.0	9
401	Facile Synthesis of Photoluminescent Graphitic Carbon Nitride Quantum Dots for Hg ²⁺ Detection and Room Temperature Phosphorescence. ACS Sustainable Chemistry and Engineering, 2018, 6, 1732-1743.	3.2	87

		N REPORT	
#	Article	IF	Citations
402	Thermally Activated Delayed Fluorescence in a Y ₃ N@C ₈₀ Endohedral Fullerene: Timeâ€Resolved Luminescence and EPR Studies. Angewandte Chemie, 2018, 130, 283-287.	1.6	2
403	Thermally Activated Delayed Fluorescence in a Y ₃ N@C ₈₀ Endohedral Fullerene: Timeâ€Resolved Luminescence and EPR Studies. Angewandte Chemie - International Edition, 2018, 57, 277-281.	7.2	12
404	Purely organic materials for extremely simple all-TADF white OLEDs: a new carbazole/oxadiazole hybrid material as a dual-role non-doped light blue emitter and highly efficient orange host. Journal of Materials Chemistry C, 2018, 6, 3675-3682.	2.7	67
405	New insight into the ultra-long lifetime of excitons in organic–inorganic perovskite: Reverse intersystem crossing. Journal of Energy Chemistry, 2018, 27, 1496-1500.	7.1	11
406	Marching Toward Highly Efficient, Pureâ€Blue, and Stable Thermally Activated Delayed Fluorescent Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2018, 28, 1802558.	7.8	489
407	Highly efficient non-doped OLEDs using aggregation-induced delayed fluorescence materials based on 10-phenyl-10 <i>H</i> -phenothiazine 5,5-dioxide derivatives. Journal of Materials Chemistry C, 2018, 6, 11436-11443.	2.7	59
408	Designing dual emitting cores for highly efficient thermally activated delayed fluorescent emitters. Journal of Materials Chemistry C, 2018, 6, 11615-11621.	2.7	24
409	Origin of High Efficiencies for Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes: Atomistic Insight into Molecular Orientation and Torsional Disorder. Journal of Physical Chemistry C, 2018, 122, 27191-27197.	1.5	48
410	Nonradiative Decay Channels for a Structurally-Distorted, Monostrapped BODIPY Derivative. Journal of Physical Chemistry A, 2018, 122, 9160-9170.	1.1	8
411	Spin–Orbit Charge Recombination Intersystem Crossing in Phenothiazine–Anthracene Compact Dyads: Effect of Molecular Conformation on Electronic Coupling, Electronic Transitions, and Electron Spin Polarizations of the Triplet States. Journal of Physical Chemistry C, 2018, 122, 27850-27865.	1.5	76
412	Theoretical Studies on Excited-State Properties of Au(III) Emitters with Thermally Activated Delayed Fluorescence. Journal of Physical Chemistry C, 2018, 122, 27608-27619.	1,5	33
413	Organic Upconversion Display with an over 100% Photon-to-photon Upconversion Efficiency and a Simple Pixelless Device Structure. Journal of Physical Chemistry Letters, 2018, 9, 6818-6824.	2.1	27
414	Experimental Evidence for "Hot Exciton―Thermally Activated Delayed Fluorescence Emitters. Advanced Optical Materials, 2019, 7, 1801190.	3.6	56
415	Decoration of Dibenzofuran Using Cyanocarbazole via 6â€Position as a Molecular Design Approach for Highâ€Tripletâ€Energy Bipolar Host Materials. Chemistry - an Asian Journal, 2019, 14, 313-321.	1.7	4
416	Importance of Chromophore Rigidity on the Efficiency of Blue Thermally Activated Delayed Fluorescence Emitters. Journal of Physical Chemistry C, 2018, 122, 28564-28575.	1.5	35
417	Cell-Penetrating Peptides Transport Noncovalently Linked Thermally Activated Delayed Fluorescence Nanoparticles for Time-Resolved Luminescence Imaging. Journal of the American Chemical Society, 2018, 140, 17484-17491.	6.6	132
419	Reversible Mechanochromic Delayed Fluorescence in 2D Metal–Organic Micro/Nanosheets: Switching Singlet–Triplet States through Transformation between Exciplex and Excimer. Advanced Science, 2018, 5, 1801187.	5.6	61
420	Molecular Design and Device Design to Improve Stabilities of Organic Light-Emitting Diodes. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2018, 31, 315-321.	0.1	8

#	Article	IF	CITATIONS
421	Thermally Activated Delayed Fluorescence Mediated through the Upper Triplet State Manifold in Non-Charge-Transfer Star-Shaped Triphenylamine–Carbazole Molecules. Journal of Physical Chemistry C, 2018, 122, 23934-23942.	1.5	22
422	Rational design of time-resolved turn-on fluorescence sensors: exploiting delayed fluorescence for hydrogen peroxide sensing. Chemical Communications, 2018, 54, 12069-12072.	2.2	25
423	White Organic Light-Emitting Diodes with Thermally Activated Delayed Fluorescence Emitters. , 0, , .		1
424	Metal ion coordination enhancing quantum efficiency of ligand phosphorescence in a double-stranded helical chain coordination polymer of Pb ²⁺ with nicotinic acid. Dalton Transactions, 2018, 47, 14636-14643.	1.6	11
425	Secondary Acceptor Optimization for Fullâ€Exciton Radiation: Toward Skyâ€Blue Thermally Activated Delayed Fluorescence Diodes with External Quantum Efficiency of â‰^ 30%. Advanced Materials, 2018, 30, e1804228.	11.1	122
430	Optimization on Molecular Restriction for Highly Efficient Thermally Activated Delayed Fluorescence Emitters. Advanced Optical Materials, 2018, 6, 1800935.	3.6	26
431	Incorporating Thermally Activated Delayed Fluorescence into Mechanochromic Luminescent Emitters: Highâ€Performance Solutionâ€Processed Yellow Organic Light Emitting Diodes. Advanced Optical Materials, 2018, 6, 1801071.	3.6	39
432	New Generation of High Efficient OLED Using Thermally Activated Delayed Fluorescent Materials. , 2018, , .		1
435	Four-coordinate Cu(I) complexes supported by N-heterocyclic carbene ligands bearing electron-donating/withdrawing groups: Synthesis, structures and photophysical properties. Journal of Luminescence, 2018, 204, 618-625.	1.5	15
436	Highly Efficient Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes with Fully Solution-Processed Organic Multilayered Architecture: Impact of Terminal Substitution on Carbazole–Benzophenone Dendrimer and Interfacial Engineering. ACS Applied Materials & Dendrimer and Interfaces Interfaces, 2018, 10, 33343-33352.	4.0	90
437	Efficient donor-acceptor-donor borylated compounds with extremely small ΔEST for thermally activated delayed fluorescence OLEDs. Organic Electronics, 2018, 63, 166-174.	1.4	30
438	Exciplex Cohosts Employing Nonconjugated Linked Dicarbazole Donors for Highly Efficient Thermally Activated Delayed Fluorescence-Based Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 34435-34442.	4.0	21
439	Room temperature phosphorescence <i>vs.</i> thermally activated delayed fluorescence in carbazole–pyrimidine cored compounds. Journal of Materials Chemistry C, 2018, 6, 11128-11136.	2.7	32
440	Intermolecular interactions in molecular crystals and their effect on thermally activated delayed fluorescence of helicene-based emitters. Journal of Materials Chemistry C, 2018, 6, 10557-10568.	2.7	20
441	Resonanceâ€Activated Spinâ€Flipping for Efficient Organic Ultralong Roomâ€Temperature Phosphorescence. Advanced Materials, 2018, 30, e1803856.	11.1	161
442	Laser speckle formed disordered micro-meander structures for light extraction enhancement of flexible organic light-emitting diodes. Optics Express, 2018, 26, 20420.	1.7	4
443	Controlling excimer formation in indolo[3,2,1- <i>jk</i>]carbazole/9 <i>H</i> -carbazole based host materials for RGB PhOLEDs. Journal of Materials Chemistry C, 2018, 6, 9914-9924.	2.7	18
444	Maximizing Aggregation of Organic Fluorophores to Prolong Fluorescence Lifetime for Twoâ€Photon Fluorescence Lifetime Imaging. Advanced Healthcare Materials, 2018, 7, e1800299.	3.9	44

#	Article	IF	CITATIONS
445	A ternary phosphine oxide host featuring thermally activated delayed fluorescence for blue PHOLEDs with >20% EQE and extremely low roll-offs. Journal of Materials Chemistry C, 2018, 6, 6747-6754.	2.7	22
446	Rational Molecular Design for Efficient Exciton Harvesting, and Deepâ€Blue OLED Application. Advanced Optical Materials, 2018, 6, 1800342.	3.6	80
447	Conformationally-flexible and moderately electron-donating units-installed D–A–D triad enabling multicolor-changing mechanochromic luminescence, TADF and room-temperature phosphorescence. Chemical Communications, 2018, 54, 6847-6850.	2.2	98
448	Revisiting Dual Intramolecular Charge-Transfer Fluorescence of Phenothiazine-triphenyltriazine Derivatives. Journal of Physical Chemistry C, 2018, 122, 12215-12221.	1.5	51
449	Emitters with a pyridine-3,5-dicarbonitrile core and short delayed fluorescence lifetimes of about 1.5 μs: orange-red TADF-based OLEDs with very slow efficiency roll-offs at high luminance. Journal of Materials Chemistry C, 2018, 6, 6543-6548.	2.7	56
450	High-Performance Exciplex-Type Host for Multicolor Phosphorescent Organic Light-Emitting Diodes with Low Turn-On Voltages. ACS Sustainable Chemistry and Engineering, 2018, 6, 8809-8815.	3.2	11
451	Câ^'H Borylation/Cross oupling Forms Twisted Donor–Acceptor Compounds Exhibiting Donorâ€Đependent Delayed Emission. Chemistry - A European Journal, 2018, 24, 10521-10530.	1.7	4
452	Near-saturated red emitters: four-coordinate copper(i) halide complexes containing 8-(diphenylphosphino)quinoline and 1-(diphenylphosphino)naphthalene ligands. Dalton Transactions, 2018, 47, 9294-9302.	1.6	25
453	Highâ€Performance Nonâ€doped OLEDs with Nearly 100 % Exciton Use and Negligible Efficiency Rollâ€Off. Angewandte Chemie - International Edition, 2018, 57, 9290-9294.	7.2	219
454	Red thermally activated delayed fluorescence polymers containing 9H-thioxanthen-9-one-10,10-dioxide acceptor group as pendant or incorporated in backbone. Organic Electronics, 2018, 59, 406-413.	1.4	24
455	A dibenzo[<i>a</i> , <i>c</i>]phenazine-11,12-dicarbonitrile (DBPzDCN) acceptor based thermally activated delayed fluorescent compound for efficient near-infrared electroluminescent devices. Journal of Materials Chemistry C, 2018, 6, 6698-6704.	2.7	62
456	Highâ€Performance Nonâ€doped OLEDs with Nearly 100 % Exciton Use and Negligible Efficiency Rollâ€Off. Angewandte Chemie, 2018, 130, 9434-9438.	1.6	34
457	Peripheral Amplification of Multiâ€Resonance Induced Thermally Activated Delayed Fluorescence for Highly Efficient OLEDs. Angewandte Chemie - International Edition, 2018, 57, 11316-11320.	7.2	314
458	Dipole-Dipole Interaction Management for Efficient Blue Thermally Activated Delayed Fluorescence Diodes. CheM, 2018, 4, 2154-2167.	5.8	106
459	[1,2,4]Triazolo[1,5- <i>a</i>]pyridine-Based Host Materials for Green Phosphorescent and Delayed-Fluorescence OLEDs with Low Efficiency Roll-Off. ACS Applied Materials & Interfaces, 2018, 10, 24689-24698.	4.0	46
460	Versatile Exciplex-Forming Co-Host for Improving Efficiency and Lifetime of Fluorescent and Phosphorescent Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 24090-24098.	4.0	55
461	Recent Progress of Highly Efficient Red and Nearâ€Infrared Thermally Activated Delayed Fluorescent Emitters. Advanced Optical Materials, 2018, 6, 1800255.	3.6	243
462	De Novo Design of Excited-State Intramolecular Proton Transfer Emitters via a Thermally Activated Delayed Fluorescence Channel. Journal of the American Chemical Society, 2018, 140, 8877-8886.	6.6	153

#	Article	IF	CITATIONS
463	Recent advances in copper complexes for electrical/light energy conversion. Coordination Chemistry Reviews, 2018, 375, 514-557.	9.5	159
464	Highâ€Performance Dibenzoheteraborinâ€Based Thermally Activated Delayed Fluorescence Emitters: Molecular Architectonics for Concurrently Achieving Narrowband Emission and Efficient Triplet–Singlet Spin Conversion. Advanced Functional Materials, 2018, 28, 1802031.	7.8	264
465	Highâ€Efficiency Sky Blue to Ultradeep Blue Thermally Activated Delayed Fluorescent Diodes Based on <i>Ortho</i> â€Carbazoleâ€Appended Triarylboron Emitters: Above 32% External Quantum Efficiency in Blue Devices. Advanced Optical Materials, 2018, 6, 1800385.	3.6	104
466	Peripheral Amplification of Multiâ€Resonance Induced Thermally Activated Delayed Fluorescence for Highly Efficient OLEDs. Angewandte Chemie, 2018, 130, 11486-11490.	1.6	77
467	Triphenylamine disubstituted naphthalene diimide: elucidation of excited states involved in TADF and application in near-infrared organic light emitting diodes. Journal of Materials Chemistry C, 2018, 6, 8219-8225.	2.7	40
468	Synthesis of 1,3-Azaphospholes with Pyrrolo[1,2- <i>a</i>]quinoline Skeleton and Their Optical Applications. Organic Letters, 2018, 20, 4103-4106.	2.4	24
469	Highly efficient and spectra stable warm white organic light-emitting diodes by the application of exciplex as the excitons adjustment layer. Organic Electronics, 2018, 62, 157-162.	1.4	9
470	New red-emitting Schiff base chelates: promising dyes for sensing and imaging of temperature and oxygen <i>via</i> phosphorescence decay time. Journal of Materials Chemistry C, 2018, 6, 8999-9009.	2.7	35
471	Probe exciplex structure of highly efficient thermally activated delayed fluorescence organic light emitting diodes. Nature Communications, 2018, 9, 3111.	5.8	112
472	Efficient Bipolar Blue AlEgens for Highâ€Performance Nondoped Blue OLEDs and Hybrid White OLEDs. Advanced Functional Materials, 2018, 28, 1803369.	7.8	130
473	Manipulation of Molecular Aggregation States to Realize Polymorphism, AIE, MCL, and TADF in a Single Molecule. Angewandte Chemie - International Edition, 2018, 57, 12473-12477.	7.2	171
474	Harvesting Triplet Excitons in OLED. , 2018, , 240-246.		Ο
475	Manipulation of Molecular Aggregation States to Realize Polymorphism, AIE, MCL, and TADF in a Single Molecule. Angewandte Chemie, 2018, 130, 12653-12657.	1.6	49
476	Energy Transfer Dynamics in Triplet–Triplet Annihilation Upconversion Using a Bichromophoric Heavy-Atom-Free Sensitizer. Journal of Physical Chemistry A, 2018, 122, 6673-6682.	1.1	40
477	Aggregation-induced emission and thermally activated delayed fluorescence of 2,6-diaminobenzophenones. Science China Chemistry, 2018, 61, 925-931.	4.2	12
478	Solution processable small molecule based TADF exciplex OLEDs. Organic Electronics, 2018, 62, 168-173.	1.4	14
479	Smallâ€Molecule Emitters with High Quantum Efficiency: Mechanisms, Structures, and Applications in OLED Devices. Advanced Optical Materials, 2018, 6, 1800512.	3.6	201
480	Thermally Activated Delayed Fluorescence in Polymer–Small-Molecule Exciplex Blends for Solution-Processed Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 28796-28802.	4.0	31

#	Article	IF	CITATIONS
481	Emergence of White Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence. Applied Sciences (Switzerland), 2018, 8, 299.	1.3	34
482	Excited state properties of two unusual thermally activated delayed fluorescence molecules: A theoretical investigation. Journal of Luminescence, 2018, 204, 312-318.	1.5	10
483	Carbazole/α-carboline hybrid bipolar compounds as electron acceptors in exciplex or non-exciplex mixed cohosts and exciplex-TADF emitters for high-efficiency OLEDs. Journal of Materials Chemistry C, 2018, 6, 8784-8792.	2.7	25
484	To improve the efficiency of thermally activated delayed fluorescence OLEDs by controlling the horizontal orientation through optimizing stereoscopic and linear structures of indolocarbazole isomers. Journal of Materials Chemistry C, 2018, 6, 5812-5820.	2.7	49
485	δ-Carboline-based bipolar host materials for deep blue thermally activated delayed fluorescence OLEDs with high efficiency and low roll-off characteristic. RSC Advances, 2018, 8, 17025-17033.	1.7	21
486	Extremely low-efficiency roll-off of phosphorescent organic light-emitting diodes at high brightness based on acridine heterocyclic derivatives. Journal of Materials Chemistry C, 2018, 6, 9713-9722.	2.7	13
487	Syntheses of Diverse Donor-Substituted Bisbenzofuro[2,3- <i>b</i> :3′,2′- <i>e</i>]pyridines (BBZFPys) via Pd Catalysis, and Their Photophysical Properties. Journal of Organic Chemistry, 2018, 83, 10289-10302.	1.7	9
488	Breaking the Efficiency Limit of Fluorescent OLEDs by Hybridized Local and Charge-Transfer Host Materials. Journal of Physical Chemistry Letters, 2018, 9, 5240-5245.	2.1	66
489	Recent Advances of Exciplex-Based White Organic Light-Emitting Diodes. Applied Sciences (Switzerland), 2018, 8, 1449.	1.3	37
490	Organic Lightâ€Emitting Diodes Based on Imidazole Semiconductors. Advanced Optical Materials, 2018, 6, 1800258.	3.6	110
491	High-performance hybrid white organic light-emitting diodes with simple emitting structures and low efficiency roll-off based on blue thermally activated delayed fluorescence emitters with bipolar transport characteristics. Journal of Materials Chemistry C, 2018, 6, 9510-9516.	2.7	27
492	Design Strategy for Solutionâ€Processable Thermally Activated Delayed Fluorescence Emitters and Their Applications in Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2018, 6, 1800568.	3.6	199
493	<i>Nido</i> â€Carboranes: Donors for Thermally Activated Delayed Fluorescence. Angewandte Chemie - International Edition, 2018, 57, 12483-12488.	7.2	70
494	<i>Nido</i> â€Carboranes: Donors for Thermally Activated Delayed Fluorescence. Angewandte Chemie, 2018, 130, 12663-12668.	1.6	24
495	Thermally activated delayed fluorescence processes for Cu(<scp>i</scp>) complexes in solid-state: a computational study using quantitative prediction. RSC Advances, 2018, 8, 28421-28432.	1.7	8
496	Synthesis and electroluminescent performance of thermally activated delayed fluorescenceâ€conjugated polymers with simple formylphenyl as pendant acceptor. Journal of Polymer Science Part A, 2018, 56, 1989-1996.	2.5	7
497	Purely Organic Materials with Aggregationâ€Induced Delayed Fluorescence for Efficient Nondoped OLEDs. Advanced Optical Materials, 2018, 6, 1800264.	3.6	156
498	Organic Flexible Electronics. Small Methods, 2018, 2, 1800070.	4.6	177

#	Article	IF	CITATIONS
499	Study on optoelectronic properties of Spiro-CN for developing an efficient OLED. AIP Conference Proceedings, 2018, , .	0.3	0
500	Optoelectronic properties of CC2TA towards a good TADF material. AIP Conference Proceedings, 2018,	0.3	Ο
501	Exciton energy transfer in organic light emitting diodes with thermally activated delayed fluorescence dopants. Journal of Materials Chemistry C, 2018, 6, 6860-6868.	2.7	12
502	The electron inductive effect of CF3 on penta-carbazole containing blue emitters: Trade-off between color purity and luminescent efficiency in TADF OLEDs. Dyes and Pigments, 2018, 159, 151-157.	2.0	27
503	Efficient Thermally Activated Delayed Fluorescence Conjugated Polymeric Emitters with Tunable Nature of Excited States Regulated via Carbazole Derivatives for Solution-Processed OLEDs. Macromolecules, 2018, 51, 4615-4623.	2.2	50
504	One-step synthesis of cyclic compounds towards easy room-temperature phosphorescence and deep blue thermally activated delayed fluorescence. Chemical Communications, 2018, 54, 7850-7853.	2.2	32
505	Polypyridyl ligands as a versatile platform for solid-state light-emitting devices. Chemical Society Reviews, 2019, 48, 5033-5139.	18.7	93
506	Thermally activated delayed fluorescence molecules and their new applications aside from OLEDs. Chinese Chemical Letters, 2019, 30, 1717-1730.	4.8	57
507	A dual-targeted theranostic photosensitizer based on a TADF fluorescein derivative. Journal of Controlled Release, 2019, 310, 1-10.	4.8	29
508	Syntheses and photoluminescence of copper(<scp>i</scp>) halide complexes containing dimethylthiophene bidentate phosphine ligands. New Journal of Chemistry, 2019, 43, 13408-13417.	1.4	24
509	High-efficiency pure blue thermally activated delayed fluorescence emitters with a preferentially horizontal emitting dipole orientation <i>via</i> a spiro-linked double D–A molecular architecture. Journal of Materials Chemistry C, 2019, 7, 10851-10859.	2.7	40
510	Novel oxacalix[2]arene[2]triazines with thermally activated delayed fluorescence and aggregation-induced emission properties. Chemical Communications, 2019, 55, 9559-9562.	2.2	16
511	Thermally Activated Delayed Fluorescence Polymer Emitters with Tunable Emission from Yellow to Warm White Regulated by Triphenylamine Derivatives. ACS Applied Polymer Materials, 2019, 1, 2204-2212.	2.0	11
512	Predicting intersystem crossing efficiencies of organic molecules for efficient thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2019, 7, 9523-9530.	2.7	52
513	Revealing resonance effects and intramolecular dipole interactions in the positional isomers of benzonitrile-core thermally activated delayed fluorescence materials. Journal of Materials Chemistry C, 2019, 7, 9184-9194.	2.7	42
514	Purely Organic Crystals Exhibit Bright Thermally Activated Delayed Fluorescence. Angewandte Chemie, 2019, 131, 13656-13665.	1.6	24
515	Effects of <i>N</i> ‣ubstitution on the Property of Acridone. ChemistrySelect, 2019, 4, 7797-7804.	0.7	13
516	Two-channel emission controlled by a conjugation valve for the color switching of thermally activated delayed fluorescence emission, Journal of Materials Chemistry C. 2019, 7, 9908-9916.	2.7	18

#	Article	IF	CITATIONS
517	Red/Nearâ€Infrared Thermally Activated Delayed Fluorescence OLEDs with Near 100 % Internal Quantum Efficiency. Angewandte Chemie, 2019, 131, 14802-14807.	1.6	40
518	Red/Nearâ€Infrared Thermally Activated Delayed Fluorescence OLEDs with Near 100 % Internal Quantum Efficiency. Angewandte Chemie - International Edition, 2019, 58, 14660-14665.	7.2	247
519	Magnetic Anisotropy in Heterobimetallic Complexes. Inorganic Chemistry, 2019, 58, 11893-11902.	1.9	19
520	Achieving Efficient Blue Delayed Electrofluorescence by Shielding Acceptors with Carbazole Units. ACS Applied Materials & Interfaces, 2019, 11, 28096-28105.	4.0	30
521	Purely Organic Crystals Exhibit Bright Thermally Activated Delayed Fluorescence. Angewandte Chemie - International Edition, 2019, 58, 13522-13531.	7.2	72
522	Towards boosting the exciton lifetime and efficiency of near-infrared aggregation induced emitters with hybridized local and charge transfer excited states: a multiscale study. Journal of Materials Chemistry C, 2019, 7, 8874-8887.	2.7	35
523	QM/MM studies on luminescence mechanism of dinuclear copper iodide complexes with thermally activated delayed fluorescence. RSC Advances, 2019, 9, 20786-20795.	1.7	15
524	Highâ€Efficiency Red Organic Lightâ€Emitting Diodes with External Quantum Efficiency Close to 30% Based on a Novel Thermally Activated Delayed Fluorescence Emitter. Advanced Materials, 2019, 31, e1902368.	11.1	238
525	Redâ€Emitting Delayed Fluorescence and Room Temperature Phosphorescence from Coreâ€Substituted Naphthalene Diimides. Chemistry - A European Journal, 2019, 25, 16007-16011.	1.7	34
526	Thermally Activated Delayed Fluorescent Properties of Ortho â€Carbazoleâ€Appended Triazine Compounds. Bulletin of the Korean Chemical Society, 2019, 40, 1112-1116.	1.0	1
527	White Lightâ€Emitting Electrochemical Cells Based on Deepâ€Red Cu(I) Complexes. Advanced Optical Materials, 2019, 7, 1900830.	3.6	50
528	Facile Generation of Thermally Activated Delayed Fluorescence and Fabrication of Highly Efficient Nonâ€Doped OLEDs Based on Triazine Derivatives. Chemistry - A European Journal, 2019, 25, 16699-16711.	1.7	21
529	Achieving Enhanced Thermally Activated Delayed Fluorescence Rates and Shortened Exciton Lifetimes by Constructing Intramolecular Hydrogen Bonding Channels. ACS Applied Materials & Interfaces, 2019, 11, 45999-46007.	4.0	43
530	The Effects of Side Chains on the Charge Mobilities and Functionalities of Semiconducting Conjugated Polymers beyond Solubilities. Advanced Materials, 2019, 31, e1903104.	11.1	153
531	A Computational Predictive Approach for Controlling the Morphology of Functional Molecular Aggregates on Substrates. Advanced Theory and Simulations, 2019, 2, 1900156.	1.3	7
532	Substitution Effect on Luminescence of 5 <i>H</i> â€Indeno[1,2â€ <i>b</i>]pyridinâ€5â€one Based Isomers. ChemistrySelect, 2019, 4, 9754-9761.	0.7	2
533	Aggregation-Induced Delayed Fluorescence Luminogens with Accelerated Reverse Intersystem Crossing for High-Performance OLEDs. , 2019, 1, 613-619.		51
534	Revealing the Cooperative Relationship between Spin, Energy, and Polarization Parameters toward Developing Highâ€Efficiency Exciplex Lightâ€Emitting Diodes. Advanced Materials, 2019, 31, e1904114.	11.1	49

#	Article	IF	CITATIONS
535	Aggregationâ€Induced and Polymorphismâ€Dependent Thermally Activated Delayed Fluorescence (TADF) Characteristics of an Oligothiophene: Applications in Timeâ€Dependent Live Cell Multicolour Imaging. Chemistry - an Asian Journal, 2019, 14, 4588-4593.	1.7	16
536	Highlights on Gold TADF Complexes. Inorganics, 2019, 7, 124.	1.2	16
537	Effect of a Pendant Acceptor on Thermally Activated Delayed Fluorescence Properties of Conjugated Polymers with Backboneâ€Ðonor/Pendantâ€Acceptor Architecture. Chemistry - an Asian Journal, 2019, 14, 574-581.	1.7	14
538	Photoinduced Organocatalyzed Atom Transfer Radical Polymerization Using Low ppm Catalyst Loading. Macromolecules, 2019, 52, 747-754.	2.2	65
539	Singlet–Triplet Inversion in Heptazine and in Polymeric Carbon Nitrides. Journal of Physical Chemistry A, 2019, 123, 8099-8108.	1.1	87
540	Recent advances of donor-acceptor type carbazole-based molecules for light emitting applications. Organic Electronics, 2019, 75, 105422.	1.4	109
541	Highly soluble fluorine containing Cu(<scp>i</scp>) AlkylPyrPhos TADF complexes. Dalton Transactions, 2019, 48, 15687-15698.	1.6	25
542	The Effect of Acceptor Structure on Emission Color Tuning in Organic Semiconductors with D–π–A–π–D Structures. Nanomaterials, 2019, 9, 1179.	1.9	7
543	Investigations of singlet and triplet diffusion in thermally activated delayed-fluorescence emitters: Implications for hyperfluorescence. Physical Review B, 2019, 100, .	1.1	15
544	Comprehensively understanding the steric hindrance effect on the coordination sphere of Pb ²⁺ ions and photophysical nature of two luminescent Pb(<scp>ii</scp>)-coordination polymers. Dalton Transactions, 2019, 48, 13841-13849.	1.6	16
545	Dendritic host materials with non-conjugated adamantane cores for efficient solution-processed blue thermally activated delayed fluorescence OLEDs. Journal of Materials Chemistry C, 2019, 7, 11845-11850.	2.7	23
546	Oxidation State-Dependent Electronic Properties of Sulfur-Containing Thermally Activated Delayed Fluorescence Molecules. Journal of Physical Chemistry A, 2019, 123, 8755-8765.	1.1	7
547	Theoretical Study of the Mechanism of Aggregation-Caused Quenching in Near-Infrared Thermally Activated Delayed Fluorescence Molecules: Hydrogen-Bond Effect. Journal of Physical Chemistry C, 2019, 123, 24705-24713.	1.5	89
548	Multifunctional applications of triazine/carbazole hybrid thermally activated delayed fluorescence emitters in organic light emitting diodes. Journal of Materials Chemistry C, 2019, 7, 12470-12481.	2.7	30
549	Phthalimide-based "D–N–A―emitters with thermally activated delayed fluorescence and isomer-dependent room-temperature phosphorescence properties. Chemical Communications, 2019, 55, 12172-12175.	2.2	21
550	Highly efficient electroluminescence from evaporation- and solution-processable orange–red thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2019, 7, 12321-12327.	2.7	31
551	Luminescent metal-organic frameworks and their composites: Potential future materials for organic light emitting displays. Coordination Chemistry Reviews, 2019, 401, 213077.	9.5	122
552	Design and synthesis of highly twisted phenanthroimidazole substituted blue-emitting truxene based fluorescent chromophores. New Journal of Chemistry, 2019, 43, 2278-2288.	1.4	8

#	Article	IF	CITATIONS
553	Deciphering the intersystem crossing in near-infrared BODIPY photosensitizers for highly efficient photodynamic therapy. Chemical Science, 2019, 10, 3096-3102.	3.7	113
554	Investigation of the Lewis acidic behaviour of an oxygen-bridged planarized triphenylborane toward amines and the properties of their Lewis acid–base adducts. Dalton Transactions, 2019, 48, 2118-2127.	1.6	18
555	A new strategy to synthesize three-coordinate mononuclear copper(<scp>i</scp>) halide complexes containing a bulky terphenyl bidentate phosphine ligand and their luminescent properties. New Journal of Chemistry, 2019, 43, 3390-3399.	1.4	23
556	Extraordinary magnetic field effects mediated by spin-pair interaction and electron mobility in thermally activated delayed fluorescence-based OLEDs with quantum-well structure. Journal of Materials Chemistry C, 2019, 7, 2421-2429.	2.7	14
557	Thermally Activated Delayed Fluorescent Materials Combining Intra- and Intermolecular Charge Transfers. ACS Applied Materials & Interfaces, 2019, 11, 7192-7198.	4.0	44
558	Efficient full-colour organic light-emitting diodes based on donor–acceptor electroluminescent materials with a reduced singlet–triplet splitting energy gap. RSC Advances, 2019, 9, 2948-2966.	1.7	11
559	High efficiency color-tunable organic light-emitting diodes with ultra-thin emissive layers in blue phosphor doped exciplex. Applied Physics Letters, 2019, 114, .	1.5	15
560	Highly Efficient Blue Fluorescent OLEDs Based on Upper Level Triplet–Singlet Intersystem Crossing. Advanced Materials, 2019, 31, e1807388.	11.1	288
561	Simultaneous enhancement of efficiency and stability of OLEDs with thermally activated delayed fluorescence materials by modifying carbazoles with peripheral groups. Science China Chemistry, 2019, 62, 393-402.	4.2	29
562	The roles of thermally activated delayed fluorescence sensitizers for efficient red fluorescent organic light-emitting diodes with D–A–A type emitters. Materials Chemistry Frontiers, 2019, 3, 161-167.	3.2	15
563	A universal host material with a simple structure for monochrome and white phosphorescent/TADF OLEDs. Journal of Materials Chemistry C, 2019, 7, 558-566.	2.7	39
564	Rational design of high efficiency green to deep red/near-infrared emitting materials based on isomeric donor–acceptor chromophores. Journal of Materials Chemistry C, 2019, 7, 1880-1887.	2.7	26
565	Novel 9,9-dimethylfluorene-bridged D–π–A-type fluorophores with a hybridized local and charge-transfer excited state for deep-blue electroluminescence with ClE _y â^¼ 0.05. Journal of Materials Chemistry C, 2019, 7, 592-600.	2.7	88
566	Absence of delayed fluorescence and triplet–triplet annihilation in organic light emitting diodes with spatially orthogonal bianthracenes. Journal of Materials Chemistry C, 2019, 7, 2541-2547.	2.7	26
567	Emission wavelength dependence on the rISC rate in TADF compounds with large conformational disorder. Chemical Communications, 2019, 55, 1975-1978.	2.2	31
568	Blue thermally activated delayed fluorescence emitters based on a constructing strategy with diversed donors and oxadiazole acceptor and their efficient electroluminescent devices. Optical Materials, 2019, 94, 103-112.	1.7	8
569	A red thermally activated delayed fluorescence emitter employing dipyridophenazine with a gradient multi-inductive effect to improve radiation efficiency. Journal of Materials Chemistry C, 2019, 7, 7525-7530.	2.7	54
570	Design and Synthesis of Donorâ~ïjf–ï€â€"ïf–Acceptor-Type Dispiro Molecules. Organic Letters, 2019, 21, 5281-5284.	2.4	7

#	Article	IF	Citations
571	Tetracyano-substituted spiro[fluorene-9,9′-xanthene] as electron acceptor for exciplex thermally activated delayed fluorescence. Journal of Molecular Structure, 2019, 1196, 132-138.	1.8	8
572	Circularly Polarized Electroluminescence of Thermally Activated Delayed Fluorescence-Active Chiral Binaphthyl-Based Luminogens. ACS Applied Materials & Interfaces, 2019, 11, 26165-26173.	4.0	90
573	Highly efficient yellow nondoped thermally activated delayed fluorescence OLEDs by utilizing energy transfer between dual conformations based on phenothiazine derivatives. Dyes and Pigments, 2019, 170, 107636.	2.0	35
574	Plastic scintillators based on thermally activated delayed fluorescence dyes. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 940, 185-198.	0.7	11
576	The influence of molecular geometry on the efficiency of thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2019, 7, 6672-6684.	2.7	53
577	Intramolecular Noncovalent Interactions Facilitate Thermally Activated Delayed Fluorescence (TADF). Journal of Physical Chemistry Letters, 2019, 10, 3260-3268.	2.1	68
578	Pâ€187: Development of Blue Emitting Materials for Thermally Activated Delayed Fluorescent Organic Lightâ€Emitting Diodes using An Auxillary Acceptor. Digest of Technical Papers SID International Symposium, 2019, 50, 1935-1938.	0.1	1
579	Spirobicyclic host material with pseudo-intramolecular charge transfer: Improving color purity of high-performance pure-blue and white thermally activated delayed fluorescence diodes. Chemical Engineering Journal, 2019, 374, 471-478.	6.6	42
580	Pâ€173: Engineering of Linker Unit for Blue Thermally Activated Delayed Fluorescent Organic Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2019, 50, 1886-1888.	0.1	0
581	A yellow organic emitter with novel D-A3 architecture and hidden delayed fluorescence for highly efficient monochromatic OLEDs. Organic Electronics, 2019, 73, 102-108.	1.4	1
582	Exciplex System with Increased Donor–Acceptor Distance as the Sensitizing Host for Conventional Fluorescent OLEDs with High Efficiency and Extremely Low Roll-Off. ACS Applied Materials & Interfaces, 2019, 11, 22595-22602.	4.0	40
583	Sulphur-containing nonaromatic polymers: clustering-triggered emission and luminescence regulation by oxidation. Polymer Chemistry, 2019, 10, 3639-3646.	1.9	65
584	Magnetic field effects on excited states, charge transport, and electrical polarization in organic semiconductors in spin and orbital regimes. Advances in Physics, 2019, 68, 49-121.	35.9	57
585	Pyridine-Carbonitrile–Carbazole-Based Delayed Fluorescence Materials with Highly Congested Structures and Excellent OLED Performance. ACS Applied Materials & Interfaces, 2019, 11, 21042-21048.	4.0	40
586	Tricomponent Exciplex Emitter Realizing over 20% External Quantum Efficiency in Organic Lightâ€Emitting Diode with Multiple Reverse Intersystem Crossing Channels. Advanced Science, 2019, 6, 1801938.	5.6	39
587	Template-Modulated Afterglow of Carbon Dots in Zeolites: Room-Temperature Phosphorescence and Thermally Activated Delayed Fluorescence. , 2019, 1, 58-63.		92
588	Modulation of Thermally Activated Delayed Fluorescence in Waterborne Polyurethanes via Chargeâ€Transfer Effect. Chemistry - an Asian Journal, 2019, 14, 2302-2308.	1.7	0
589	Exciplex-Based Electroluminescence: Over 21% External Quantum Efficiency and Approaching 100 lm/W Power Efficiency. Journal of Physical Chemistry Letters, 2019, 10, 2811-2816.	2.1	46

#	Article	IF	CITATIONS
590	Highly efficient and bright blue organic light-emitting devices based on solvent engineered, solution-processed thermally activated delayed fluorescent emission layer. Organic Electronics, 2019, 71, 1-6.	1.4	14
591	High-efficiency blue thermally activated delayed fluorescence from donor–acceptor–donor systems <i>via</i> the through-space conjugation effect. Chemical Science, 2019, 10, 5556-5567.	3.7	59
592	Thianthrene and acridan-substituted benzophenone or diphenylsulfone: Effect of triplet harvesting via TADF and phosphorescence on efficiency of all-organic OLEDS. Organic Electronics, 2019, 70, 227-239.	1.4	26
593	Cu–F Interactions between Cationic Linear N-Heterocyclic Carbene Copper(I) Pyridine Complexes and Their Counterions Greatly Enhance Blue Luminescence Efficiency. Inorganic Chemistry, 2019, 58, 5433-5445.	1.9	52
594	Impact of the dielectric constant on the first hyperpolarizabilities and the Singletâ^'Triplet gap in T- and V-Shaped donor-acceptor-donor molecules. Organic Electronics, 2019, 70, 193-204.	1.4	12
595	Isomeric Quinoxalinedicarbonitrile as Color-Managing Acceptors of Thermally Activated Delayed Fluorescent Emitters. ACS Applied Materials & Interfaces, 2019, 11, 17583-17591.	4.0	49
596	Integrating TADF luminogens with AIE characteristics using a novel acridine–carbazole hybrid as donor for high-performance and low efficiency roll-off OLEDs. Journal of Materials Chemistry C, 2019, 7, 9487-9495.	2.7	51
597	Facile color tuning of thermally activated delayed fluorescence by substituted ortho-carbazole-appended triarylboron emitters. Dyes and Pigments, 2019, 168, 273-280.	2.0	8
598	Exciplex Organic Light-Emitting Diodes with Nearly 20% External Quantum Efficiency: Effect of Intermolecular Steric Hindrance between the Donor and Acceptor Pair. ACS Applied Materials & Interfaces, 2019, 11, 19294-19300.	4.0	34
599	Theoretical investigations of the realization of sky-blue to blue TADF materials <i>via</i> CH/N and H/CN substitution at the diphenylsulphone acceptor. Journal of Materials Chemistry C, 2019, 7, 6685-6691.	2.7	13
600	Fourâ€Coordinate Boron Emitters with Tridentate Chelating Ligand for Efficient and Stable Thermally Activated Delayed Fluorescence Organic Lightâ€Emitting Devices. Angewandte Chemie, 2019, 131, 9186-9192.	1.6	12
601	A Twist on Nonlinear Optics: Understanding the Unique Response of π-Twisted Chromophores. Accounts of Chemical Research, 2019, 52, 1428-1438.	7.6	63
602	Fourâ€Coordinate Boron Emitters with Tridentate Chelating Ligand for Efficient and Stable Thermally Activated Delayed Fluorescence Organic Lightâ€Emitting Devices. Angewandte Chemie - International Edition, 2019, 58, 9088-9094.	7.2	84
603	Rationally designed organelle-specific thermally activated delayed fluorescence small molecule organic probes for time-resolved biological applications. Chemical Communications, 2019, 55, 5639-5642.	2.2	57
604	Syntheses, crystal structures, chirality and aggregation-induced phosphorescence of stacked binuclear platinum(<scp>ii</scp>) complexes with bridging Salen ligands. Materials Chemistry Frontiers, 2019, 3, 1199-1208.	3.2	22
605	Suppressing Efficiency Roll-Off of TADF Based OLEDs by Constructing Emitting Layer With Dual Delayed Fluorescence. Frontiers in Chemistry, 2019, 7, 302.	1.8	11
606	Degradation mechanism of blue thermally activated delayed fluorescent organic light-emitting diodes under electrical stress. Organic Electronics, 2019, 70, 286-291.	1.4	26
607	A quantitative description of photoluminescence efficiency of a carbazole-based thermally activated delayed fluorescence emitter. New Journal of Chemistry, 2019, 43, 6032-6039.	1.4	4

#	Article	IF	CITATIONS
608	Naphthyridine-based emitters simultaneously exhibiting thermally activated delayed fluorescence and aggregation-induced emission for highly efficient non-doped fluorescent OLEDs. Journal of Materials Chemistry C, 2019, 7, 6607-6615.	2.7	30
609	Design of Efficient Exciplex Emitters by Decreasing the Energy Gap Between the Local Excited Triplet (3LE) State of the Acceptor and the Charge Transfer (CT) States of the Exciplex. Frontiers in Chemistry, 2019, 7, 188.	1.8	7
610	Prediction of Oscillator Strength and Transition Dipole Moments with the Nuclear Ensemble Approach for Thermally Activated Delayed Fluorescence Emitters. Journal of Physical Chemistry C, 2019, 123, 10081-10086.	1.5	53
611	Polymorphism dependent triplet-involved emissions of a pure organic luminogen. Chinese Chemical Letters, 2019, 30, 933-936.	4.8	18
612	Naphthyridine-based thermally activated delayed fluorescence emitters for multi-color organic light-emitting diodes with low efficiency roll-off. Journal of Materials Chemistry C, 2019, 7, 4673-4680.	2.7	25
613	Development of Materials for Blue Organic Light Emitting Devices. Chemical Record, 2019, 19, 1667-1692.	2.9	23
614	lsomeric Bright Skyâ€Blue TADF Emitters Based on Bisacridine Decorated DBNA: Impact of Donor Locations on Luminescent and Electroluminescent Properties. Advanced Optical Materials, 2019, 7, 1900130.	3.6	82
615	Solventâ€Free Luminous Molecular Liquids. Advanced Optical Materials, 2019, 7, 1900176.	3.6	49
616	Achieving non-doped deep-blue OLEDs by applying bipolar imidazole derivatives. Organic Electronics, 2019, 69, 289-296.	1.4	16
617	Thermally activated delayed fluorescence <i>vs.</i> room temperature phosphorescence by conformation control of organic single molecules. Journal of Materials Chemistry C, 2019, 7, 6616-6621.	2.7	74
618	Solution-processible 1,3,4-oxadiazole/spiro[fluorene-9,9′- xanthene] hybrid as efficient host for green thermally activated delayed fluorescence devices. Dyes and Pigments, 2019, 166, 168-173.	2.0	16
619	Realizing 20% External Quantum Efficiency in Electroluminescence with Efficient Thermally Activated Delayed Fluorescence from an Exciplex. ACS Applied Materials & Interfaces, 2019, 11, 13460-13471.	4.0	84
620	Dibenzofuran/dibenzothiophene as the secondary electron-donors for highly efficient blue thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2019, 7, 4475-4483.	2.7	15
621	An Organic Emitter Displaying Dual Emissions and Efficient Delayed Fluorescence White OLEDs. Advanced Optical Materials, 2019, 7, 1801667.	3.6	28
622	Highly efficient blue thermally activated delayed fluorescence emitters based on symmetrical and rigid oxygen-bridged boron acceptors. Nature Photonics, 2019, 13, 540-546.	15.6	585
623	Direct population of triplet excited states through singlet–triplet transition for visible-light excitable organic afterglow. Chemical Science, 2019, 10, 5031-5038.	3.7	77
624	2D-σ-2A type cruciform host material with silane core for highly efficient solution-processable green thermally activated delayed fluorescence organic light emitting diodes. Dyes and Pigments, 2019, 167, 120-126.	2.0	13
625	Triggering Thermally Activated Delayed Fluorescence by Managing the Heteroatom in Donor Scaffolds: Intriguing Photophysical and Electroluminescence Properties. Chemistry - an Asian Journal, 2019, 14, 2251-2258.	1.7	17

#	ARTICLE	IF	Citations
626	Strategy for achieving efficient electroluminescence with reduced efficiency roll-off: enhancement of hot excitons spin mixing and restriction of internal conversion by twisted structure regulation using an anthracene derivative. Journal of Materials Chemistry C, 2019, 7, 5604-5614.	2.7	17
627	Toward an Accurate Description of Thermally Activated Delayed Fluorescence: Equal Importance of Electronic and Geometric Factors. Journal of Physical Chemistry C, 2019, 123, 13869-13876.	1.5	11
628	New Aggregation-Induced Delayed Fluorescence Luminogens With Through-Space Charge Transfer for Efficient Non-doped OLEDs. Frontiers in Chemistry, 2019, 7, 199.	1.8	48
629	Controlling Horizontal Dipole Orientation and Emission Spectrum of Ir Complexes by Chemical Design of Ancillary Ligands for Efficient Deepâ€Blue Organic Lightâ€Emitting Diodes. Advanced Materials, 2019, 31, e1808102.	11.1	105
630	Nitroreductase-Activatable Theranostic Molecules with High PDT Efficiency under Mild Hypoxia Based on a TADF Fluorescein Derivative. ACS Applied Materials & amp; Interfaces, 2019, 11, 15426-15435.	4.0	118
631	Photoluminescence Quenching Probes Spin Conversion and Exciton Dynamics in Thermally Activated Delayed Fluorescence Materials. Advanced Materials, 2019, 31, e1804490.	11.1	31
632	Recent Advancements in and the Future of Organic Emitters: TADF―and RTPâ€Active Multifunctional Organic Materials. Chemistry - an Asian Journal, 2019, 14, 1613-1636.	1.7	139
633	Investigation of Conversion and Decay Processes in Thermally Activated Delayed Fluorescence Copper(I) Molecular Crystal: Theoretical Estimations from an ONIOM Approach Combined with the Tuned Range-Separated Density Functional Theory. Journal of Physical Chemistry A, 2019, 123, 2080-2090.	1.1	13
634	Luminescent copper(I) coordination polymer with 1-methyl-1H-benzotriazole, iodide and acetonitrile as ligands. Inorganic Chemistry Communication, 2019, 102, 141-146.	1.8	13
635	Using ultra-fast spectroscopy to probe the excited state dynamics of a reported highly efficient thermally activated delayed fluorescence chromophore. Journal of Materials Chemistry C, 2019, 7, 4210-4221.	2.7	16
636	Nonaromatic Amine Containing Exciplex for Thermally Activated Delayed Fluorescent Electroluminescence. Advanced Optical Materials, 2019, 7, 1801554.	3.6	26
637	Bluishâ€Green Thermally Activated Delayed Fluorescence Material for Blueâ€Hazard Free Hybrid White Organic Lightâ€Emitting Device with High Color Quality and Low Efficiency Rollâ€Off. Advanced Optical Materials, 2019, 7, 1801718.	3.6	30
638	Stable High-Energy Excited States Observed in a Conjugated Molecule with Hindered Internal Conversion Processes. Journal of Physical Chemistry C, 2019, 123, 6190-6196.	1.5	11
639	Metal complex based delayed fluorescence materials. Organic Electronics, 2019, 69, 135-152.	1.4	65
640	Steric Switching for Thermally Activated Delayed Fluorescence by Controlling the Dihedral Angles between Donor and Acceptor in Organoboron Emitters. ACS Applied Materials & Interfaces, 2019, 11, 10768-10776.	4.0	49
641	Design, fabrication and studies on optical properties of new hybrid chitosan films doped with 1, 3, 4-oxadiazole derivatives for down conversion and photoluminescence applications. Optical Materials, 2019, 89, 80-91.	1.7	7
642	Thermally Activated Delayed Fluorescence Emitters for Light-Emitting Diodes and Sensing Applications. Springer Series on Fluorescence, 2019, , 269-292.	0.8	1
643	Improvement of the Electroluminescence Performance of Exciplexâ€Based OLEDs by Effective Utilization of Longâ€Range Coupled Electron–Hole Pairs. Advanced Optical Materials, 2019, 7, 1801648.	3.6	37

#	Article	IF	CITATIONS
644	A TADF compound with high-contrast mechano-responsive fluorescence on/off switching for both sequential and combinational logic gates. Journal of Materials Chemistry C, 2019, 7, 3522-3528.	2.7	19
645	Design of Efficient Emissive Materials. , 2021, , 466-502.		14
646	Balancing charge-transfer strength and triplet states for deep-blue thermally activated delayed fluorescence with an unconventional electron rich dibenzothiophene acceptor. Journal of Materials Chemistry C, 2019, 7, 13224-13234.	2.7	52
647	Efficient thermally activated delayed fluorescence based on carbonitrile-substituted pyridine and carbazole. Journal of Materials Chemistry C, 2019, 7, 13754-13758.	2.7	3
648	6 <i>H</i> -Benzo[4,5]thieno[2,3- <i>b</i>]indole as a novel donor for efficient thermally activated delayed fluorescence emitters with EQEs over 20%. Journal of Materials Chemistry C, 2019, 7, 13912-13919.	2.7	11
649	Fused twin-acridine scaffolds as electron donors for thermally activated delayed fluorescence emitters: controllable TADF behavior by methyl substitution. Chemical Communications, 2019, 55, 15125-15128.	2.2	16
650	Red Thermally Activated Delayed Fluorescence and the Intersystem Crossing Mechanisms in Compact Naphthalimide–Phenothiazine Electron Donor/Acceptor Dyads. Journal of Physical Chemistry C, 2019, 123, 30171-30186.	1.5	63
651	A Novel Design Strategy for Suppressing Efficiency Roll-Off of Blue Thermally Activated Delayed Fluorescence Molecules through Donor–Acceptor Interlocking by C–C Bonds. Nanomaterials, 2019, 9, 1735.	1.9	7
652	Simple construction of deep-red hexaazatrinaphthylene-based thermally activated delayed fluorescence emitters for efficient solution-processed OLEDs with a peak at 692 nm. Chemical Communications, 2019, 55, 14190-14193.	2.2	26
653	Achieving long-lived thermally activated delayed fluorescence in the atmospheric aqueous environment by nano-encapsulation. Chemical Communications, 2019, 55, 14522-14525.	2.2	21
654	Blue thermally activated delayed fluorescence emitters incorporating acridan analogues with heavy group 14 elements for high-efficiency doped and non-doped OLEDs. Chemical Science, 2019, 10, 10687-10697.	3.7	99
655	Thermally activated delayed fluorescence enantiomers for solution-processed circularly polarized electroluminescence. Journal of Materials Chemistry C, 2019, 7, 14511-14516.	2.7	50
656	High-efficiency soluble thermally activated delayed fluorescent OLED with multilayer hole transport layers. , 2019, , .		0
657	Perspective on Host Materials for Thermally Activated Delayed Fluorescence Organic Light Emitting Diodes. Advanced Optical Materials, 2019, 7, 1800565.	3.6	173
658	[1,2,4]Triazolo[1,5-a]pyridine based host materials for high-performance red PhOLEDs with external quantum efficiencies over 23%. Journal of Luminescence, 2019, 206, 386-392.	1.5	19
659	Improving performance of thermally activated delayed fluorescence emitter by extending its LUMO distribution. Science China Materials, 2019, 62, 719-728.	3.5	4
660	Efficient blue phosphorescent organic light emitting diodes based on exciplex and ultrathin Firpic sandwiched layer. Organic Electronics, 2019, 66, 195-205.	1.4	17
661	Solution-processed aggregation-induced delayed fluorescence (AIDF) emitters based on strong Ĩ€-accepting triazine cores for highly efficient nondoped OLEDs with low efficiency roll-off. Organic Electronics, 2019, 65, 170-178.	1.4	30

#	Article	IF	CITATIONS
662	Simply Structured Nearâ€Infrared Emitters with a Multicyano Linear Acceptor for Solutionâ€Processed Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2019, 25, 1010-1017.	1.7	36
663	Aggregationâ€Induced Delayed Fluorescence Luminogens for Efficient Organic Lightâ€Emitting Diodes. Chemistry - an Asian Journal, 2019, 14, 828-835.	1.7	31
664	Understanding Solid-State Solvation-Enhanced Thermally Activated Delayed Fluorescence Using a Descriptor-Tuned Screened Range-Separated Functional. Journal of Physical Chemistry C, 2019, 123, 4407-4416.	1.5	36
665	Non-doped phosphorescent organic light-emitting devices with an exciplex forming planar structure for efficiency enhancement. Dyes and Pigments, 2019, 164, 119-125.	2.0	18
666	Recent Developments in Tandem White Organic Light-Emitting Diodes. Molecules, 2019, 24, 151.	1.7	22
667	Highly Efficient Blue OLEDs Based on Metalâ€Assisted Delayed Fluorescence Pd(II) Complexes. Advanced Optical Materials, 2019, 7, 1801518.	3.6	43
668	Influence of the Length of the Donor–Acceptor Bridge on Thermally Activated Delayed Fluorescence. Journal of Physical Chemistry Letters, 2019, 10, 302-308.	2.1	12
669	Enhancing Reverse Intersystem Crossing via Secondary Acceptors: toward Sky-Blue Fluorescent Diodes with 10-Fold Improved External Quantum Efficiency. ACS Applied Materials & Interfaces, 2019, 11, 4185-4192.	4.0	23
670	Organic materials for optoelectronic applications: Overview. , 2019, , 3-42.		6
671	Circularly Polarized Luminescence from Chiral Conjugated Poly(carbazole- <i>ran</i> -acridine)s with Aggregation-Induced Emission and Delayed Fluorescence. ACS Applied Polymer Materials, 2019, 1, 221-229.	2.0	33
672	Thermally Activated Delayed Fluorescence Materials: Towards Realization of High Efficiency through Strategic Small Molecular Design. Chemistry - A European Journal, 2019, 25, 5623-5642.	1.7	168
673	Tetraphenylcyclopentadiene-Based Hyperbranched Polymers: Convenient Syntheses from One Pot "A ₄ + B ₂ ―Polymerization and High External Quantum Yields up to 9.74% in OLED Devices. Macromolecules, 2019, 52, 896-903.	2.2	19
674	Synthesis, structures, luminescence and terahertz time-domain spectroscopy of nine Cu(I) complexes with P^P ligands and 1,10-phenanthroline derivatives. Polyhedron, 2019, 157, 301-309.	1.0	16
675	Molecular Design Tactics for Highly Efficient Thermally Activated Delayed Fluorescence Emitters for Organic Light Emitting Diodes. Chemical Record, 2019, 19, 1499-1517.	2.9	33
676	Mechanoluminescence Materials with the Characteristic of Aggregation-Induced Emission (AIE). , 2019, , 141-162.		4
677	Strong Solidâ€state Luminescence Enhancement in Supramolecular Assemblies of Polyoxometalate and "Aggregationâ€Induced Emissionâ€â€active Phospholium. Chemistry - an Asian Journal, 2019, 14, 1642-1646.	1.7	15
678	High Performance Thermally Activated Delayed Fluorescence Sensitized Organic Lightâ€Emitting Diodes. Chemical Record, 2019, 19, 1611-1623.	2.9	49
679	Unveiling the Role of Langevin and Trap-Assisted Recombination in Long Lifespan OLEDs Employing Thermally Activated Delayed Fluorophores. ACS Applied Materials & Interfaces, 2019, 11, 1096-1108.	4.0	47

38

#	Article	IF	CITATIONS
680	Insights into the Efficient Intersystem Crossing of Bodipy-Anthracene Compact Dyads with Steady-State and Time-Resolved Optical/Magnetic Spectroscopies and Observation of the Delayed Fluorescence. Journal of Physical Chemistry C, 2019, 123, 265-274.	1.5	79
681	Eu ²⁺ /Eu ³⁺ -Based Smart Duplicate Responsive Stimuli and Time-gated Nanohybrid for Optical Recording and Encryption. ACS Applied Materials & Interfaces, 2019, 11, 1247-1253.	4.0	27
682	Dopingâ€Free White Organic Lightâ€Emitting Diodes. Chemical Record, 2019, 19, 1596-1610.	2.9	11
683	Hydrogenâ€Bonded Twoâ€Component Ionic Crystals Showing Enhanced Longâ€Lived Roomâ€Temperature Phosphorescence via TADFâ€Assisted Förster Resonance Energy Transfer. Advanced Functional Materials, 2019, 29, 1807599.	7.8	294
684	Recent Advances in Conjugated TADF Polymer Featuring in Backboneâ€Donor/Pendantâ€Acceptor Structure: Material and Device Perspectives. Chemical Record, 2019, 19, 1624-1643.	2.9	34
685	A theoretical investigation on the thermally activated delayed fluorescence characteristics of the isomers of DTCBPy. Journal of Molecular Graphics and Modelling, 2019, 86, 125-131.	1.3	5
686	Thermally Activated Delayed Fluorescent Polymers: Structures, Properties, and Applications in OLED Devices. Macromolecular Rapid Communications, 2019, 40, e1800570.	2.0	114
687	Lifetime extension in green thermally activated delayed fluorescent organic light-emitting diodes by increasing excited state bond dissociation energy. Journal of Industrial and Engineering Chemistry, 2019, 69, 364-369.	2.9	5
688	Persistent luminescence instead of phosphorescence: History, mechanism, and perspective. Journal of Luminescence, 2019, 205, 581-620.	1.5	425
689	Luminescent oligonuclear metal complexes and the use in organic light-emitting diodes. Coordination Chemistry Reviews, 2019, 378, 121-133.	9.5	84
690	Comparative study of multi-functional luminogens with 1,3,5-triazine as the core and phenothiazine or phenoxy donors as the peripheral moieties for non-doped/doped fluorescent and red phosphorescent OLEDs. Dyes and Pigments, 2020, 173, 107793.	2.0	16
691	Design and Development of Highly Efficient Lightâ€Emitting Layers in OLEDs with Dimesitylboranes: An Updated Review. Chemical Record, 2020, 20, 556-569.	2.9	16
692	CNâ€Modified Imidazopyridine as a New Electron Accepting Unit of Thermally Activated Delayed Fluorescent Emitters. Chemistry - A European Journal, 2020, 26, 845-852.	1.7	10
693	Multi-substituted dibenzo[a,c]phenazine derivatives as solution-processable thermally activated delayed fluorescence materials for orange–red organic light-emitting diodes. Dyes and Pigments, 2020, 173, 107957.	2.0	17
694	Excited-state engineering of universal ambipolar hosts for highly efficient blue phosphorescence and thermally activated delayed fluorescence organic light-emitting diodes. Chemical Engineering Journal, 2020, 382, 122485.	6.6	23
695	Differently substituted benzonitriles for non-doped OLEDs. Dyes and Pigments, 2020, 172, 107789.	2.0	15
696	Synthesis and properties of ipsilateral double substituted diphenylsulfone thermally activated delayed fluorescent materials. Dyes and Pigments, 2020, 174, 108028.	2.0	2
697	Bridging Small Molecules to Conjugated Polymers: Efficient Thermally Activated Delayed Fluorescence with a Methylâ€Substituted Phenylene Linker. Angewandte Chemie - International Edition, 2020, 59, 1320-1326.	7.2	66

#	Article	IF	CITATIONS
698	Polymorphâ€Dependent Thermally Activated Delayed Fluorescence Emitters: Understanding TADF from a Perspective of Aggregation State. Angewandte Chemie - International Edition, 2020, 59, 9972-9976.	7.2	82
699	New bipolar host materials using Phenanthro[9,10-d]oxazole moiety for highly efficient red phosphorescence. Dyes and Pigments, 2020, 174, 108038.	2.0	6
700	Intersystem Crossing Rate in Thermally Activated Delayed Fluorescence Emitters. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900616.	0.8	13
701	Nonlinear optoelectronic processes in organic optoelectronic devices: Triplet-triplet annihilation and singlet fission. Materials Science and Engineering Reports, 2020, 139, 100519.	14.8	50
702	Stimuliâ€Responsive Circularly Polarized Organic Ultralong Room Temperature Phosphorescence. Angewandte Chemie, 2020, 132, 4786-4792.	1.6	37
703	A novel design strategy for deeper blue and more stable thermally activated delayed fluorescent emitters. Organic Electronics, 2020, 78, 105610.	1.4	4
704	Evoking Synergetic Effect of Dual Thermally Activated Delayed Fluorescent Hosts for High-Efficiency Sensitized Fluorescent Organic Light-Emitting Diodes. Journal of Physical Chemistry C, 2020, 124, 1836-1843.	1.5	3
705	A simple and effective strategy to lock the quasi-equatorial conformation of acridine by H–H repulsion for highly efficient thermally activated delayed fluorescence emitters. Chemical Communications, 2020, 56, 2308-2311.	2.2	11
706	Molecular design featuring carbazole-decorated 15H-diindolo[2,3-b:1′,2′,3′-lm]carbazole for improved efficiency and lifetime of thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2020, 8, 2491-2499.	2.7	7
707	Donor–Acceptor-Appended Triarylboron Lewis Acids: Ratiometric or Time-Resolved Turn-On Fluorescence Response toward Fluoride Binding. Inorganic Chemistry, 2020, 59, 1414-1423.	1.9	11
708	2,3-Dimethylindole as a donor for novel thermally activated delayed fluorescence emitters. New Journal of Chemistry, 2020, 44, 2961-2965.	1.4	2
709	Thermally Activated Delayed Fluorescent Donor–Acceptor–Donor–Acceptor π-Conjugated Macrocycle for Organic Light-Emitting Diodes. Journal of the American Chemical Society, 2020, 142, 1482-1491.	6.6	114
710	Afterglow of carbon dots: mechanism, strategy and applications. Materials Chemistry Frontiers, 2020, 4, 386-399.	3.2	137
711	Room Temperature Phosphorescent (RTP) Nâ€Acetylphenothiazines. ChemPhotoChem, 2020, 4, 282-286.	1.5	10
712	Substitution effect on luminescent property of thermally activated delayed fluorescence molecule with aggregation induced emission: A QM/MM study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 229, 117964.	2.0	15
713	Ab Initio Many-Body Perturbation Theory Calculations of the Electronic and Optical Properties of Cyclometalated Ir(III) Complexes. Journal of Chemical Theory and Computation, 2020, 16, 1188-1199.	2.3	5
714	White organic light emitting diodes based on localized surface plasmon resonance of Au nanoparticles and neat thermally activated delayed fluorescence and phosphorescence emission layers. Journal of Luminescence, 2020, 220, 117022.	1.5	7
715	Chargeâ€Transfer Exciton Manipulation Based on Hydrogen Bond for Efficient White Thermally Activated Delayed Fluorescence. Advanced Functional Materials, 2020, 30, 1908568.	7.8	63

#	Article	IF	CITATIONS
716	Benzoylpyridine-based TADF emitters with AIE feature for efficient non-doped OLEDs by both evaporation and solution process. Dyes and Pigments, 2020, 176, 108179.	2.0	23
717	J-Aggregation Enhances the Electroluminescence Performance of a Sky-Blue Thermally Activated Delayed-Fluorescence Emitter in Nondoped Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 2717-2723.	4.0	52
718	Bridging Small Molecules to Conjugated Polymers: Efficient Thermally Activated Delayed Fluorescence with a Methylâ€6ubstituted Phenylene Linker. Angewandte Chemie, 2020, 132, 1336-1342.	1.6	14
719	Polymorphâ€Dependent Thermally Activated Delayed Fluorescence Emitters: Understanding TADF from a Perspective of Aggregation State. Angewandte Chemie, 2020, 132, 10058-10062.	1.6	51
720	Effects of the emission layer structure on the electroluminescence performance of the white organic light emitting diodes based on thermally activated delayed fluorescence emitters. Journal Physics D: Applied Physics, 2020, 53, 065106.	1.3	2
721	Donor–Acceptor Materials Exhibiting Thermally Activated Delayed Fluorescence Using a Planarized <i>N</i> -Phenylbenzimidazole Acceptor. Journal of Organic Chemistry, 2020, 85, 108-117.	1.7	24
722	Molecular Design Strategy of Thermally Activated Delayed Fluorescent Emitters Using CNâ€Substituted Imidazopyrazine as a New Electronâ€Accepting Unit. Chemistry - an Asian Journal, 2020, 15, 122-128.	1.7	5
723	Coordination-Induced Thermally Activated Delayed Fluorescence: From Non-TADF Donor–Acceptor-Type Ligand to TADF-Active Ag-Based Complexes. Chemistry of Materials, 2020, 32, 620-629.	3.2	29
724	Harnessing a New Co-Host System and Low Concentration of New TADF Emitters Equipped with Trifluoromethyl- and Cyano-Substituted Benzene as Core for High-Efficiency Blue OLEDs. ACS Applied Materials & Interfaces, 2020, 12, 2724-2732.	4.0	23
725	Cyclohexane-cored dendritic host materials with high triplet energy for efficient solution-processed blue thermally activated delayed fluorescence OLEDs. Dyes and Pigments, 2020, 174, 108097.	2.0	9
726	Silica nanoparticles with thermally activated delayed fluorescence for live cell imaging. Materials Science and Engineering C, 2020, 109, 110528.	3.8	23
727	Suppression of Concentration Quenching in Ortho ubstituted Thermally Activated Delayed Fluorescence Emitters. Advanced Theory and Simulations, 2020, 3, 1900185.	1.3	17
728	Pentacyclic Ladder-Heteraborin Emitters Exhibiting High-Efficiency Blue Thermally Activated Delayed Fluorescence with an Ultrashort Emission Lifetime. , 2020, 2, 28-34.		61
729	Through Space Charge Transfer for Efficient Skyâ€Blue Thermally Activated Delayed Fluorescence (TADF) Emitter with Unconjugated Connection. Advanced Optical Materials, 2020, 8, 1901150.	3.6	67
730	Structure Determination of Alkynylâ€Protected Gold Nanocluster Au ₂₂ (^t BuC≡C) ₁₈ and Its Thermochromic Luminescence. Angewandte Chemie - International Edition, 2020, 59, 2309-2312.	7.2	85
731	Highâ€Performance Nondoped Blue Delayed Fluorescence Organic Lightâ€Emitting Diodes Featuring Low Driving Voltage and High Brightness. Advanced Science, 2020, 7, 1902508.	5.6	60
732	Structure Determination of Alkynylâ€Protected Gold Nanocluster Au ₂₂ (^t BuCâ‰jC) ₁₈ and Its Thermochromic Luminescence. Angewandte Chemie, 2020, 132, 2329-2332.	1.6	22
733	Stimuliâ€Responsive Circularly Polarized Organic Ultralong Room Temperature Phosphorescence. Angewandte Chemie - International Edition, 2020, 59, 4756-4762.	7.2	198

#	Article	IF	CITATIONS
734	Pyrimidine-based bipolar host materials for high efficiency solution processed green thermally activated delayed fluorescence OLEDs. Journal of Materials Chemistry C, 2020, 8, 2196-2204.	2.7	15
735	Graphene and silicene quantum dots for nanomedical diagnostics. RSC Advances, 2020, 10, 801-811.	1.7	16
736	OBO-Fused Benzo[fg]tetracene as Acceptor With Potential for Thermally Activated Delayed Fluorescence Emitters. Frontiers in Chemistry, 2020, 8, 563411.	1.8	2
737	Pâ€179: Design and Synthesis of Blue Thermally Activated Delayed Fluorescent Emitter with Strong PyCN Acceptor and Multi Donors. Digest of Technical Papers SID International Symposium, 2020, 51, 2051-2053.	0.1	0
738	Tunable from Blue to Red Emissive Composites and Solids of Silver Diphosphane Systems with Higher Quantum Yields than the Diphosphane Ligands. Inorganic Chemistry, 2020, 59, 14447-14456.	1.9	9
739	Emerging circularly polarized thermally activated delayed fluorescence materials and devices. Applied Physics Letters, 2020, 117, .	1.5	44
740	Solvent Effects and Side Reactions in Organocatalyzed Atom Transfer Radical Polymerization for Enabling the Controlled Polymerization of Acrylates Catalyzed by Diaryl Dihydrophenazines. Macromolecules, 2020, 53, 9208-9219.	2.2	24
741	Revealing Topological Influence of Phenylenediamine Unit on Physicochemical Properties of Donorâ€Acceptorâ€Donorâ€Acceptor Thermally Activated Delayed Fluorescent Macrocycles. Chemistry - an Asian Journal, 2020, 15, 4098-4103.	1.7	3
742	Photoluminescent properties and molecular structures of dinuclear gold(i) complexes with bridged diphosphine ligands: near-unity phosphorescence from 3XMMCT/3MC. Dalton Transactions, 2020, 49, 15204-15212.	1.6	3
743	Resonance-driven dynamically bipolar organic semiconductors for high-performance optoelectronic applications. Materials Horizons, 2020, 7, 3298-3304.	6.4	20
744	Tris(triazolo)triazine-based emitters for solution-processed blue thermally activated delayed fluorescence organic light-emitting diodes. Materials Advances, 2020, 1, 2862-2871.	2.6	11
745	Design, Synthesis, and Temperature-Driven Molecular Conformation-Dependent Delayed Fluorescence Characteristics of Dianthrylboron-Based Donor–Acceptor Systems. Frontiers in Chemistry, 2020, 8, 541331.	1.8	3
746	Electrochemical and Spectroelectrochemical Comparative Study of Macrocyclic Thermally Activated Delayed Fluorescent Compounds: Molecular Charge Stability vs OLED EQE Rollâ€Off. Asian Journal of Organic Chemistry, 2020, 9, 2153-2161.	1.3	8
747	Recent advances in biomedical applications of organic fluorescence materials with reduced singlet–triplet energy gaps. Coordination Chemistry Reviews, 2020, 425, 213545.	9.5	68
748	Hyperfluorescence-Based Emission in Purely Organic Materials: Suppression of Energy-Loss Mechanisms via Alignment of Triplet Excited States. , 2020, 2, 1412-1418.		39
749	High-performing D–݀–A–݀–D benzothiadiazole-based hybrid local and charge-transfer emitters in solution-processed OLEDs. Journal of Materials Chemistry C, 2020, 8, 17009-17015.	2.7	19
750	The Hofmann reaction involving annulation of <i>o</i> -(pyridin-2-yl)aryl amides selectively and rapidly leads to potential photocatalytically active 6 <i>H</i> -pyrido[1,2- <i>c</i>]quinazolin-6-one derivatives. Green Chemistry, 2020, 22, 7955-7961.	4.6	11
751	Throughâ€Space Chargeâ€Transfer Polynorbornenes with Fixed and Controllable Spatial Alignment of Donor and Acceptor for Highâ€Efficiency Blue Thermally Activated Delayed Fluorescence. Angewandte Chemie - International Edition, 2020, 59, 20174-20182.	7.2	110

#	Article	IF	CITATIONS
752	Enhancing the thermally activated delayed fluorescence of nido-carborane-appended triarylboranes by steric modification of the phenylene linker. Inorganic Chemistry Frontiers, 2020, 7, 3456-3464.	3.0	13
753	Highly Efficient Deepâ€Red Nonâ€Doped Diodes Based on a Tâ€Shape Thermally Activated Delayed Fluorescence Emitter. Angewandte Chemie, 2020, 132, 19204-19209.	1.6	16
754	Highly Efficient Deepâ€Red Nonâ€Doped Diodes Based on a Tâ€Shape Thermally Activated Delayed Fluorescence Emitter. Angewandte Chemie - International Edition, 2020, 59, 19042-19047.	7.2	108
755	Identification of host–guest systems in green TADF-based OLEDs with energy level matching based on a machine-learning study. Physical Chemistry Chemical Physics, 2020, 22, 16378-16386.	1.3	17
756	Meta Junction Promoting Efficient Thermally Activated Delayed Fluorescence in Donorâ€Acceptor Conjugated Polymers. Angewandte Chemie - International Edition, 2020, 59, 17903-17909.	7.2	45
757	Utilization of Multi-Heterodonors in Thermally Activated Delayed Fluorescence Molecules and Their High Performance Bluish-Green Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 9498-9506.	4.0	18
758	Manipulation of the sterically hindering effect to realize AIE and TADF for high-performing nondoped solution-processed OLEDs with extremely low efficiency roll-off. Journal of Materials Chemistry C, 2020, 8, 11850-11859.	2.7	16
759	Chiral Platinumâ€Based Metallomesogens with Highly Efficient Circularly Polarized Electroluminescence in Solutionâ€Processed Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2020, 8, 2000775.	3.6	59
760	Pure-organic phosphine oxide luminescent materials. Journal of Information Display, 2020, 21, 149-172.	2.1	8
761	Transformation from Nonthermally Activated Delayed Fluorescence Molecules to Thermally Activated Delayed Fluorescence Molecules. Advanced Optical Materials, 2020, 8, 2001025.	3.6	17
762	Photophysics of TADF Guest–Host Systems: Introducing the Idea of Hosting Potential. ACS Applied Electronic Materials, 2020, 2, 2868-2881.	2.0	56
763	Throughâ€Space Chargeâ€Transfer Polynorbornenes with Fixed and Controllable Spatial Alignment of Donor and Acceptor for Highâ€Efficiency Blue Thermally Activated Delayed Fluorescence. Angewandte Chemie, 2020, 132, 20349-20357.	1.6	20
764	Allâ€Organic, Temporally Pure White Afterglow in Amorphous Films Using Complementary Blue and Greenishâ€Yellow Ultralong Room Temperature Phosphors. Advanced Functional Materials, 2020, 30, 2003693.	7.8	108
765	Blocking energy-loss pathways for phosphorescent organic light emitting devices with novel exciplex-forming host. Dyes and Pigments, 2020, 182, 108694.	2.0	3
766	Exploiting trifluoromethyl substituents for tuning orbital character of singlet and triplet states to increase the rate of thermally activated delayed fluorescence. Materials Chemistry Frontiers, 2020, 4, 3602-3615.	3.2	35
767	The electron inductive effect of dual non-conjugated trifluoromethyl acceptors for highly efficient thermally activated delayed fluorescence OLEDs. Dyes and Pigments, 2020, 183, 108705.	2.0	6
768	Mechanism evolution from normal fluorescence to thermally activated delayed fluorescence and color tuning over visible light range: Effect of intramolecular charge transfer strength. Dyes and Pigments, 2020, 183, 108732.	2.0	14
769	Nanoparticles of Organic Electronic Materials for Biomedical Applications. ACS Nano, 2020, 14, 9228-9242.	7.3	28

#	Article	IF	CITATIONS
770	Frustrated Lewis pairs with thermally activated delayed fluorescence properties: activation of formaldehyde. Dalton Transactions, 2020, 49, 13198-13201.	1.6	1
771	Meta Junction Promoting Efficient Thermally Activated Delayed Fluorescence in Donorâ€Acceptor Conjugated Polymers. Angewandte Chemie, 2020, 132, 18059-18065.	1.6	9
772	Luminescent Solar Collectors: Quo Vadis?. Advanced Energy Materials, 2020, 10, 2001907.	10.2	96
773	<i>S</i> -Vinyl Sulfide-Derived Pendant-Type Sulfone/Phenoxazine-Based Polymers Exhibiting Thermally Activated Delayed Fluorescence: Synthesis and Photophysical Property Characterization. ACS Applied Polymer Materials, 2020, 2, 3310-3318.	2.0	11
774	Molecular-Level Insight of Cu(I) Complexes with the 7,8-Bis(diphenylphosphino)-7,8-dicarba- <i>nido</i> -undecaborate Ligand as a Thermally Activated Delayed Fluorescence Emitter: Luminescent Mechanism and Design Strategy. Inorganic Chemistry, 2020, 59, 12039-12053.	1.9	18
775	Experimentally Observed Reverse Intersystem Crossingâ€Boosted Lasing. Angewandte Chemie, 2020, 132, 21861-21866.	1.6	31
776	Experimentally Observed Reverse Intersystem Crossingâ€Boosted Lasing. Angewandte Chemie - International Edition, 2020, 59, 21677-21682.	7.2	46
777	Unraveling the Origin of High-Efficiency Photoluminescence in Mixed-Stack Isostructural Crystals of Organic Charge-Transfer Complex: Fine-Tuning of Isometric Donor–Acceptor Pairs. Journal of Physical Chemistry C, 2020, 124, 20377-20387.	1.5	10
778	Organic Resonance Materials: Molecular Design, Photophysical Properties, and Optoelectronic Applications. Journal of Physical Chemistry Letters, 2020, 11, 7739-7754.	2.1	39
779	Enhancing the efficiency of red TADF OLED by optimizing the guest-host matrix and charge balance engineering. Synthetic Metals, 2020, 270, 116599.	2.1	8
780	Phosphine Oxide Linkage Manipulating Trinuclear Iridium(III) Complex for Highâ€Efficiency Bilayer Nondoped Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2020, 8, 2001105.	3.6	7
781	Highly Efficient, Red Delayed Fluorescent Emitters with Exothermic Reverse Intersystem Crossing via Hot Excited Triplet States. Journal of Physical Chemistry C, 2020, 124, 20816-20826.	1.5	14
782	Long-Lived Charge-Transfer State from B–N Frustrated Lewis Pairs Enchained in Supramolecular Copolymers. Journal of the American Chemical Society, 2020, 142, 16681-16689.	6.6	86
783	Solid-State Effect Induced Thermally Activated Delayed Fluorescence with Tunable Emission: A Multiscale Study. Journal of Physical Chemistry A, 2020, 124, 8540-8550.	1.1	18
784	Thermally Activated Delayed Fluorescence Sensitization for Highly Efficient Blue Fluorescent Emitters. Advanced Functional Materials, 2020, 30, 2005898.	7.8	25
785	Theoretical investigation on reverse intersystem crossing from upper triplet to lowest singlet: A "hot exciton―path for blue fluorescent OLEDs. International Journal of Quantum Chemistry, 2020, 120, e26399.	1.0	2
786	Delicate modulation of triplet energy levels for activating "hot excitons―channels in deep red AlEgens. Journal of Materials Chemistry C, 2020, 8, 14146-14154.	2.7	16
787	Recent Advances in Thermally Activated Delayed Fluorescent Polymer—Molecular Designing Strategies. Frontiers in Chemistry, 2020, 8, 725.	1.8	66

ARTICLE IF CITATIONS Highâ€Powerâ€Efficiency White Thermally Activated Delayed Fluorescence Diodes Based on Selectively 788 7.8 19 Optimized Intermolecular Interactions. Advanced Functional Materials, 2020, 30, 2005165. Resonance hosts for high efficiency solution-processed blue and white electrophosphorescent 789 4.2 devices. Science China Chemistry, 2020, 63, 1645-1651. Insights into Charge Transport in High-Efficiency Green Solution-Processed Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes with a Single Emitting Layer. Journal of Physical Chemistry C, 2020, 124, 21935-21947. 790 1.5 4 High triplet energy bipolar host materials with the combination of dibenzofuran and benziimidazobenzoimidazole moieties for blue thermally activated delayed fluorescence emitter. Journal of Materials Chemistry C, 2020, 8, 13811-13818. 791 Highly Efficient Aggregation-Induced Red-Emissive Organic Thermally Activated Delayed Fluorescence Materials with Prolonged Fluorescence Lifetime for Time-Resolved Luminescence Bioimaging, ACS 792 4.0 63 Applied Materials & amp; Interfaces, 2020, 12, 51293-51301. A Novel Bridgeâ€Ring Phosphine Oxide Host 5,10â€{1,2]Benzenophosphanthrene 5,10â€Dioxide for Ultralowâ€Voltageâ€Driven Blue Thermally Activated Delayed Fluorescence Diodes. Advanced Optical 793 3.6 Materials, 2020, 8, 2000052. Longâ€Lived Efficient Inverted Organic Lightâ€Emitting Diodes Developed by Controlling Carrier Injection 794 3.6 6 Barrier into Emitting Layer. Advanced Optical Materials, 2020, 8, 2000506. Mechanochromic Delayed Fluorescence Switching in Propellerâ€Shaped Carbazole–Isophthalonitrile Luminogens with Stimuliâ€Responsive Intramolecular Chargeâ€Transfer Excited States. Angewandte 795 7.2 64 Chemie - International Edition, 2020, 59, 13955-13961. A novel donor moiety 9,9,9â€29â€2-tetramethyl-9,9â€210,10â€2-tetrahydro-2,10â€2-biacridine <i>via</i> 796 arylation for TADF emitters and their application in highly efficient solution-processable OLEDs. 2.7 14 Journal of Materials Chemistry C, 2020, 8, 8971-8979. Mechanochromic Delayed Fluorescence Switching in Propellerâ€Shaped Carbazole–Isophthalonitrile 797 Luminogens with Stimuliâ€Responsive Intramolecular Chargeâ€Transfer Excited States. Angewandte 1.6 Chemie, 2020, 132, 14059-14065. Intrinsic Luminescence from Nonaromatic Biomolecules. ChemPlusChem, 2020, 85, 1065-1080. 798 1.3 60 Molecular Configuration Fixation with C–H·Â·Â-F Hydrogen Bonding for Thermally Activated Delayed 799 5.8 58 Fluorescence Acceleration. CheM, 2020, 6, 1998-2008. Highly emissive phosphorescence nanoparticles sensitized by a TADF polymer for time-resolved 800 3.2 13 luminescence imaging. Materials Chemistry Frontiers, 2020, 4, 2389-2397. Highly Emissive <i>ortho</i>-Donor–Acceptor Triarylboranes: Impact of Boryl Acceptors on Luminescence Properties. Organometallics, 2020, 39, 2235-2244. 1.1 The design of an extended multiple resonance TADF emitter based on a polycyclic amine/carbonyl 802 3.2 81 system. Materials Chemistry Frontiers, 2020, 4, 2018-2022. Facile access to isocoumarin-based D-A-D triad: A thermally activated delayed-fluorescence host for 1.4 efficient red phosphorescent OLEDs. Organic Electronics, 2020, 84, 105792. Carbon dot-based nanocomposite: Long-lived thermally activated delayed fluorescence for lifetime 805 2.018 thermal sensing. Dyes and Pigments, 2020, 181, 108576. Dual-Mode Detection of Bacterial 16S Ribosomal RNA in Tissues. ACS Sensors, 2020, 5, 1650-1656. 19

#	Article	IF	CITATIONS
807	Recent Advances in Solidâ€State Lighting Devices Using Transition Metal Complexes Exhibiting Thermally Activated Delayed Fluorescent Emission Mechanism. Advanced Optical Materials, 2020, 8, 2000260.	3.6	72
808	Solid-state effect on luminescent properties of thermally activated delayed fluorescence molecule with aggregation induced emission: A theoretical perspective. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 241, 118634.	2.0	11
809	Enhancing Intersystem Crossing to Achieve Thermally Activated Delayed Fluorescence in a Water-Soluble Fluorescein Derivative with a Flexible Propenyl Group. Journal of Physical Chemistry Letters, 2020, 11, 5692-5698.	2.1	18
810	Distinctly Diverse PLQY and Inverse Solidâ€&tate Luminescent Properties in Structureâ€&imilar Diphenyl Sulfone TADF Molecules: A Role of C─C. Advanced Theory and Simulations, 2020, 3, 2000037.	1.3	3
811	Dual Mode Radiative Transition from a Phenoselenazine Derivative and Electrical Switching of the Emission Mechanism. Journal of Physical Chemistry Letters, 2020, 11, 5591-5600.	2.1	26
812	Identifying Different Spin Mixing Channels Occurring in Charge-Transfer States. Journal of Physical Chemistry C, 2020, 124, 14832-14837.	1.5	6
813	Constructing Chargeâ€Transfer Excited States Based on Frontier Molecular Orbital Engineering: Narrowband Green Electroluminescence with High Color Purity and Efficiency. Angewandte Chemie, 2020, 132, 17595-17599.	1.6	54
814	Constructing Chargeâ€Transfer Excited States Based on Frontier Molecular Orbital Engineering: Narrowband Green Electroluminescence with High Color Purity and Efficiency. Angewandte Chemie - International Edition, 2020, 59, 17442-17446.	7.2	242
815	Acceptor-density engineering of push-pull typed carbazole derivatives for improving luminescent efficiency and mechanoresponsive luminescence. Journal of Luminescence, 2020, 226, 117453.	1.5	5
816	Electronic coupling and spin–orbit charge transfer intersystem crossing (SOCT-ISC) in compact BDP–carbazole dyads with different mutual orientations of the electron donor and acceptor. Journal of Chemical Physics, 2020, 152, 114701.	1.2	40
817	Pyrene[4,5- <i>d</i>]imidazole-Based Derivatives with Hybridized Local and Charge-Transfer State for Highly Efficient Blue and White Organic Light-Emitting Diodes with Low Efficiency Roll-Off. ACS Applied Materials & Interfaces, 2020, 12, 16715-16725.	4.0	70
818	Twisted acceptors in the design of deep-blue TADF emitters: crucial role of excited-state relaxation in the photophysics of methyl-substituted s-triphenyltriazine derivatives. Journal of Materials Chemistry C, 2020, 8, 6052-6062.	2.7	14
819	<i>tert</i> -Butyl substituted hetero-donor TADF compounds for efficient solution-processed non-doped blue OLEDs. Journal of Materials Chemistry C, 2020, 8, 5769-5776.	2.7	68
820	An ultralong room-temperature phosphorescent material based on the combination of small singlet–triplet splitting energy and H-aggregation. Chemical Communications, 2020, 56, 4296-4299.	2.2	22
822	New xanthone derivatives as host materials: Improvement of carriers balance for high-efficiency green phosphorescent OLEDs using two host materials. Dyes and Pigments, 2020, 178, 108333.	2.0	8
823	Managed carrier density and distribution in solution-processed emission layer to achieve highly efficient and bright blue organic light-emitting devices. Organic Electronics, 2020, 82, 105703.	1.4	5
824	Effects of Electron Affinity and Steric Hindrance of the Trifluoromethyl Group on the Ï€â€Bridge in Designing Blue Thermally Activated Delayed Fluorescence Emitters. Chemistry - A European Journal, 2020, 26, 6899-6909.	1.7	19
825	A Comparative Study via Photophysical and Electrical Characterizations on Interfacial and Bulk Exciplex-Forming Systems for Efficient Organic Light-Emitting Diodes. ACS Applied Electronic Materials, 2020, 2, 1011-1019.	2.0	34

#	Article	IF	CITATIONS
826	Rational Molecular Design of Highly Efficient Yellow-Red Thermally Activated Delayed Fluorescent Emitters: A Combined Effect of Auxiliary Fluorine and Rigidified Acceptor Unit. ACS Applied Materials & Interfaces, 2020, 12, 18730-18738.	4.0	48
827	TADF-Emitting Zn(II)-Benzoporphyrin: An Indicator for Simultaneous Sensing of Oxygen and Temperature. ACS Sensors, 2020, 5, 1020-1027.	4.0	32
828	From a blue to white to yellow emitter: a hexanuclear copper iodide nanocluster. Dalton Transactions, 2020, 49, 5859-5868.	1.6	30
829	Efficient and Stable Deepâ€Blue Fluorescent Organic Lightâ€Emitting Diodes Employing a Sensitizer with Fast Triplet Upconversion. Advanced Materials, 2020, 32, e1908355.	11.1	242
830	An Isonicotinonitrile-based Blue Thermally Activated Delayed Fluorescence Emitter. Chemistry Letters, 2020, 49, 210-213.	0.7	0
831	Naphthyridine-based thermally activated delayed fluorescence emitters for highly efficient blue OLEDs. Dyes and Pigments, 2020, 178, 108324.	2.0	17
832	Solid-State Fluorophore Based on π-Extended Heteroaromatic Acceptor: Polymorphism, Mechanochromic Luminescence, and Electroluminescence. Crystal Growth and Design, 2020, 20, 2454-2461.	1.4	13
833	Molecularâ€6tructure and Deviceâ€Configuration Optimizations toward Highly Efficient Green Electroluminescence with Narrowband Emission and High Color Purity. Advanced Optical Materials, 2020, 8, 1902142.	3.6	218
834	Selenium Substitution Enhances Reverse Intersystem Crossing in a Delayed Fluorescence Emitter. Journal of Physical Chemistry C, 2020, 124, 6364-6370.	1.5	22
835	Recent Developments on Multi-Functional Metal-Free Mechanochromic Luminescence and Thermally Activated Delayed Fluorescence Organic Materials. Frontiers in Chemistry, 2020, 8, 483.	1.8	45
836	Alchemy of donor–acceptor–donor multi-photofunctional organic materials: from construction of electron-deficient azaaromatics to exploration of functions. Chemical Communications, 2020, 56, 8884-8894.	2.2	35
837	Radiative and Nonradiative Recombinations in Organic Radical Emitters: The Effect of Guest–Host Interactions. Advanced Functional Materials, 2020, 30, 2002916.	7.8	23
838	An axially chiral thermally activated delayed fluorescent emitter with a dual emitting core for a highly efficient organic light-emitting diode. Chemical Communications, 2020, 56, 9380-9383.	2.2	44
839	A new mechanistic study of a second generation TADF material based on the path integral approach incorporating Herzberg–Teller and Duschinsky rotation effects. Journal of Materials Chemistry C, 2020, 8, 10369-10381.	2.7	13
840	Impact of Boron Acceptors on the TADF Properties of Ortho-Donor-Appended Triarylboron Emitters. Frontiers in Chemistry, 2020, 8, 538.	1.8	9
841	Asymmetrically phosphorylated carbazole host for highly efficient blue and white thermally activated delayed fluorescence diodes. Chemical Engineering Journal, 2020, 401, 126049.	6.6	14
842	Achieving Pure Green Electroluminescence with ClEy of 0.69 and EQE of 28.2% from an Azaâ€Fused Multiâ€Resonance Emitter. Angewandte Chemie, 2020, 132, 17652-17656.	1.6	72
843	Achieving Pure Green Electroluminescence with CIEy of 0.69 and EQE of 28.2% from an Azaâ€Fused Multiâ€Resonance Emitter. Angewandte Chemie - International Edition, 2020, 59, 17499-17503.	7.2	211

#	Article	IF	CITATIONS
844	Finding the optimal exchange–correlation functional to describe the excited state properties of push–pull organic dyes designed for thermally activated delayed fluorescence. Physical Chemistry Chemical Physics, 2020, 22, 16387-16399.	1.3	20
845	The design, synthesis and performance of thermally activated delayed fluorescence macromolecules. Polymer Chemistry, 2020, 11, 1555-1571.	1.9	58
846	5H-Benzo[d]Benzo[4,5]Imidazo[2,1-b][1,3]Thiazine as a Novel Electron-Acceptor Cored High Triplet Energy Bipolar Host Material for Efficient Solution-Processable Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes. Frontiers in Chemistry, 2020, 8, 61.	1.8	9
847	Asymmetric Thermally Activated Delayed Fluorescence Materials With Aggregation-Induced Emission for High-Efficiency Organic Light-Emitting Diodes. Frontiers in Chemistry, 2020, 8, 49.	1.8	3
848	Mechanism study of TADF and phosphorescence in dinuclear copper (I) molecular crystal using QM/MM combined with an optimally tuned range-separated hybrid functional. Organic Electronics, 2020, 81, 105667.	1.4	13
849	Planarized intramolecular charge transfer on triphenylamine-modified pyrazine and its application in organic light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 4754-4762.	2.7	21
850	Color-Tunable Delayed Fluorescence and Efficient Spin–Orbit Charge Transfer Intersystem Crossing in Compact Carbazole-Anthracene-Bodipy Triads Employing the Sequential Electron Transfer Approach. Journal of Physical Chemistry C, 2020, 124, 5944-5957.	1.5	31
851	Influence of Structural Isomerism on the Photophysical Properties of a Series of Donor–Acceptor 1-Naphthalenecarbonitrile Derivatives Possessing Amine Substituents. Journal of Physical Chemistry A, 2020, 124, 2113-2122.	1.1	1
852	Polyoxometalate-based room-temperature phosphorescent materials induced by anion–π interactions. Dalton Transactions, 2020, 49, 3408-3412.	1.6	23
853	A strategy to construct multifunctional TADF materials for deep blue and high efficiency yellow fluorescent devices. Journal of Materials Chemistry C, 2020, 8, 4818-4826.	2.7	8
854	Of Twists and Curves: Electronics, Photophysics, and Upcoming Applications of Nonâ€Planar Conjugated Organic Molecules. Chemistry - A European Journal, 2020, 26, 10653-10675.	1.7	41
855	Highly efficient oxygen photosensitization of carbon dots: the role of nitrogen doping. Nanoscale, 2020, 12, 5543-5553.	2.8	72
856	Triarylboron-based TADF emitters with perfluoro substituents: high-efficiency OLEDs with a power efficiency over 100 lm W ^{â^1} . Journal of Materials Chemistry C, 2020, 8, 4253-4263.	2.7	23
857	Effect of Branching on the Delayed Fluorescence and Phosphorescence of Simple Borylated Arylamines. Inorganic Chemistry, 2020, 59, 3142-3151.	1.9	12
858	Thermally activated triplet exciton release for highly efficient tri-mode organic afterglow. Nature Communications, 2020, 11, 842.	5.8	194
859	Recent advances in thermally activated delayed fluorescence for white OLEDs applications. Journal of Materials Science: Materials in Electronics, 2020, 31, 4444-4462.	1.1	20
860	Towards high-power-efficiency solution-processed OLEDs: Material and device perspectives. Materials Science and Engineering Reports, 2020, 140, 100547.	14.8	180
861	Benzimidazole–triazine based exciplex films as emitters and hosts to construct highly efficient OLEDs with a small efficiency roll-off. Journal of Materials Chemistry C, 2020, 8, 2700-2708.	2.7	27

#	Article	IF	CITATIONS
862	Lock-and-Key Exciplexes for Thermally Activated Delayed Fluorescence. Organic Materials, 2020, 02, 001-010.	1.0	7
863	Machine-Learning-Assisted De Novo Design of Organic Molecules and Polymers: Opportunities and Challenges. Polymers, 2020, 12, 163.	2.0	95
864	Mixed-Host Systems with a Simple Device Structure for Efficient Solution-Processed Organic Light-Emitting Diodes of a Red-Orange TADF Emitter. ACS Omega, 2020, 5, 2196-2204.	1.6	19
865	Luminescent solar concentrators based on thermally activated delayed fluorescence dyes. Journal of Materials Chemistry A, 2020, 8, 3708-3716.	5.2	27
866	Exciton Interactions, Excimer Formation, and [2Ï€+2Ï€] Photodimerization in Nonconjugated Curcuminoidâ€BF ₂ Dimers. Chemistry - A European Journal, 2020, 26, 3818-3828.	1.7	4
867	Phenothiazine dioxide-containing derivatives as efficient hosts for blue, green and yellow thermally activated delayed fluorescence OLEDs. Journal of Materials Chemistry C, 2020, 8, 3705-3714.	2.7	17
868	Stable and efficient phosphorescent organic light-emitting device utilizing a δ-carboline-containing host displaying thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2020, 8, 3800-3806.	2.7	10
869	Symmetrical spirobi[xanthene] based locally asymmetrical phosphine oxide host for low-voltage-driven highly efficient white thermally activated delayed fluorescence diodes. Chemical Engineering Journal, 2020, 392, 124870.	6.6	17
870	Molecular engineering by σ-Bond spacer enables solution-processable host materials for TADF emitter towards high-performance OLEDs. Chemical Engineering Journal, 2020, 396, 125276.	6.6	20
871	Rigid indolocarbazole donor moiety for highly efficient thermally activated delayed fluorescent device. Dyes and Pigments, 2020, 180, 108485.	2.0	12
872	Taking a snapshot of the triplet excited state of an OLED organometallic luminophore using X-rays. Nature Communications, 2020, 11, 2131.	5.8	24
873	Conformation-dependent degradation of thermally activated delayed fluorescence materials bearing cycloamino donors. Communications Chemistry, 2020, 3, .	2.0	7
874	Purine-based thermally activated delayed fluorescence emitters for efficient organic light-emitting diodes. Dyes and Pigments, 2020, 180, 108437.	2.0	9
875	Luminescent Cu(I) complex with bis(indazol-1-yl)phenylmethane as chelating ligand. Inorganic Chemistry Communication, 2020, 116, 107894.	1.8	8
876	Imidazo[1,2- <i>b</i>]pyridazine as Building Blocks for Host Materials for High-Performance Red-Phosphorescent Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 2020, 12, 19701-19709.	4.0	23
877	Each phenyl group performs its own functions on luminescence: phenyl substituted effect in tetraphenylpyrazine. Materials Chemistry Frontiers, 2020, 4, 1706-1713.	3.2	14
878	Color tuning of dibenzo[<i>a</i> , <i>c</i>]phenazine-2,7-dicarbonitrile-derived thermally activated delayed fluorescence emitters from yellow to deep-red. Journal of Materials Chemistry C, 2020, 8, 7059-7066.	2.7	21
879	Trap-Controlled White Electroluminescence From a Single Red-Emitting Thermally Activated Delayed Fluorescence Polymer. Frontiers in Chemistry, 2020, 8, 287.	1.8	2

#	Article	IF	CITATIONS
880	Saturated Red Electroluminescence From Thermally Activated Delayed Fluorescence Conjugated Polymers. Frontiers in Chemistry, 2020, 8, 332.	1.8	16
881	Three-dimensional organic cage with narrowband delayed fluorescence. Science China Chemistry, 2020, 63, 897-903.	4.2	8
882	Recent progress in phosphorescent Ir(III) complexes for nondoped organic light-emitting diodes. Coordination Chemistry Reviews, 2020, 413, 213283.	9.5	71
883	New Direct Approach for Determining the Reverse Intersystem Crossing Rate in Organic Thermally Activated Delayed Fluorescent (TADF) Emitters. Journal of the American Chemical Society, 2020, 142, 8074-8079.	6.6	52
884	Rotation-restricted thermally activated delayed fluorescence compounds for efficient solution-processed OLEDs with EQEs of up to 24.3% and small roll-off. Chemical Communications, 2020, 56, 5957-5960.	2.2	51
885	Fused tetracyclic tris[1,2,4]triazolo[1,3,5]triazine as a novel rigid electron acceptor for efficient thermally activated delayed fluorescence emitters. RSC Advances, 2020, 10, 15523-15529.	1.7	19
886	Nanosecond-time-scale delayed fluorescence molecule for deep-blue OLEDs with small efficiency rolloff. Nature Communications, 2020, 11, 1765.	5.8	287
887	Alkoxy encapsulation of carbazole-based thermally activated delayed fluorescent dendrimers for highly efficient solution-processed organic light-emitting diodes. Chinese Chemical Letters, 2021, 32, 703-707.	4.8	14
888	Malononitrile based ternary AIE-ML materials: Experimental proof for emission switch from non-TADF to TADF. Organic Electronics, 2021, 88, 106003.	1.4	7
889	Integrating molecular rigidity and chirality into thermally activated delayed fluorescence emitters for highly efficient sky-blue and orange circularly polarized electroluminescence. Materials Horizons, 2021, 8, 547-555.	6.4	76
890	Quinoline-based TADF emitters exhibiting aggregation-induced emission for efficient non-doped organic light-emitting diodes. Materials Chemistry Frontiers, 2021, 5, 834-842.	3.2	22
891	1,8-Naphthalimide-based hybrids for efficient red thermally activated delayed fluorescence organic light-emitting diodes. Organic Electronics, 2021, 88, 106012.	1.4	14
892	Efficient red fluorescent OLEDs based on aggregation-induced emission combined with hybridized local and charge transfer state. Dyes and Pigments, 2021, 184, 108770.	2.0	42
893	Thienyl/phenyl bay-substituted perylenebisimides: Intersystem crossing and application as heavy atom-free triplet photosensitizers. Dyes and Pigments, 2021, 184, 108708.	2.0	16
894	Photophysics of 9,9â€Dimethylacridanâ€Substituted Phenylstyrylpyrimidines Exhibiting Longâ€Lived Intramolecular Chargeâ€Transfer Fluorescence and Aggregationâ€Induced Emission Characteristics. Chemistry - A European Journal, 2021, 27, 1145-1159.	1.7	20
895	Highâ€Mobility Organic Lightâ€Emitting Semiconductors and Its Optoelectronic Devices. Small Structures, 2021, 2, 2000083.	6.9	47
896	Highly efficient exciplex-emission from spiro[fluorene-9,9′-xanthene] derivatives. Dyes and Pigments, 2021, 185, 108894.	2.0	9
897	Host engineering based on multiple phosphorylation for efficient blue and white TADF organic light-emitting diodes. Chemical Engineering Journal, 2021, 405, 126986.	6.6	23

щ		IF	CITATION
#	ARTICLE	IF	CITATIONS
898	Solution-processed multi-resonance organic light-emitting diodes with high efficiency and narrowband emission. Chinese Chemical Letters, 2021, 32, 1372-1376.	4.8	58
899	Using fluorene to lock electronically active moieties in thermally activated delayed fluorescence emitters for high-performance non-doped organic light-emitting diodes with suppressed roll-off. Chemical Science, 2021, 12, 1495-1502.	3.7	48
900	Recent progress in hot exciton materials for organic light-emitting diodes. Chemical Society Reviews, 2021, 50, 1030-1069.	18.7	353
901	Synthesis and Delayed Fluorescent Properties of pâ€Nido â€Carboraneâ€Triarylborane Conjugates with a Methylâ€&ubstituted Phenylene Linker. Bulletin of the Korean Chemical Society, 2021, 42, 43-47.	1.0	5
902	Highly fluorescent bisboron complexes in both solution and solid-state: Synthesis, photophysical properties and lipid droplet imaging in living cells. Dyes and Pigments, 2021, 186, 108999.	2.0	9
903	Ï€-Conjugated polymeric light emitting diodes with sky-blue emission by employing thermally activated delayed fluorescence mechanism. Chemical Engineering Journal, 2021, 417, 128089.	6.6	24
904	Design strategy for blue thermally activated delayed fluorescence: Position and methyl substitutions. Chemical Physics Letters, 2021, 764, 138260.	1.2	6
905	Highly Efficient Orangeâ€Red Thermally Activated Delayed Fluorescence Compounds Comprising Dual Dicyanoâ€5ubstituted Pyrazine/Quinoxaline Acceptors. ChemPlusChem, 2021, 86, 95-102.	1.3	2
906	Recent Advance in Carbon Dots: From Properties to Applications. Chinese Journal of Chemistry, 2021, 39, 1364-1388.	2.6	24
907	Highly efficient full-fluorescence organic light-emitting diodes with exciplex cohosts. Organic Electronics, 2021, 88, 106004.	1.4	4
908	Three-dimensional organic cage with aggregation-induced delayed fluorescence. Chinese Chemical Letters, 2021, 32, 1017-1019.	4.8	9
909	Orange-red thermally activated delay fluorescence emitters based on asymmetric difluoroboron chelated enaminone: Impact of donor position on luminescent properties. Dyes and Pigments, 2021, 184, 108810.	2.0	15
910	Thermally activated delayed fluorescence exciplex emitters for high-performance organic light-emitting diodes. Materials Horizons, 2021, 8, 401-425.	6.4	81
911	Novel anti-Kasha fluorophores exhibiting dual emission with thermally activated delayed fluorescence through detouring triplet manifolds. Journal of Materials Chemistry C, 2021, 9, 7083-7093.	2.7	18
912	Synthesis and photophysical properties of donor-substituted phenyl-phosphachromones as potential TADF materials. Organic Chemistry Frontiers, 2021, 8, 1747-1755.	2.3	1
913	Fast Delayed Emission in New Pyridazine-Based Compounds. Frontiers in Chemistry, 2020, 8, 572862.	1.8	7
914	Highly efficient and low efficiency roll-off organic light-emitting diodes with double-exciplex forming co-hosts. Journal of Materials Chemistry C, 2021, 9, 6062-6067.	2.7	9
915	TADF and Hyperfluorescence. Series in Display Science and Technology, 2021, , 39-65.	0.6	2

#	Article	IF	Citations
916	Triangular boron carbon nitrides: an unexplored family of chromophores with unique properties for photocatalysis and optoelectronics. Physical Chemistry Chemical Physics, 2021, 23, 12968-12975.	1.3	28
917	Revealing the internal heavy chalcogen atom effect on the photophysics of the dibenzo[<i>a,j</i>]phenazine-cored donor–acceptor–donor triad. Journal of Materials Chemistry C, 2021, 9, 13942-13953.	2.7	29
918	The role of dinuclearity in promoting thermally activated delayed fluorescence (TADF) in cyclometallated, N^C^N-coordinated platinum(<scp>ii</scp>) complexes. Journal of Materials Chemistry C, 2021, 9, 10276-10287.	2.7	26
919	Various Structural Design Modifications: <i>para</i> -Substituted Diphenylphosphinopyridine Bridged Cu(I) Complexes in Organic Light-Emitting Diodes. Inorganic Chemistry, 2021, 60, 2315-2332.	1.9	22
920	Spiral Donor Design Strategy for Blue Thermally Activated Delayed Fluorescence Emitters. ACS Applied Materials & Interfaces, 2021, 13, 5302-5311.	4.0	78
921	A methyl-shield strategy enables efficient blue thermally activated delayed fluorescence hosts for high-performance fluorescent OLEDs. Materials Horizons, 2021, 8, 2025-2031.	6.4	26
922	A universal thermally activated delayed fluorescent host with short triplet lifetime for highly efficient phosphorescent OLEDs with extremely low efficiency roll-off. Journal of Materials Chemistry C, 2021, 9, 7706-7712.	2.7	11
923	Exceptionally fast radiative decay of a dinuclear platinum complex through thermally activated delayed fluorescence. Chemical Science, 2021, 12, 6172-6180.	3.7	37
924	Bright bluish-green emitting Cu(i) complexes exhibiting efficient thermally activated delayed fluorescence. Dalton Transactions, 2021, 50, 5171-5176.	1.6	17
925	Highly efficient room-temperature organic afterglow achieved by collaboration of luminescent dimeric TADF dopants and rigid matrices. Journal of Materials Chemistry C, 2021, 9, 3939-3947.	2.7	31
926	Graphitic carbon nitride embedded-Ag nanoparticle decorated-ZnWO ₄ nanocomposite-based photoluminescence sensing of Hg ²⁺ . Materials Advances, 2021, 2, 4041-4057.	2.6	20
927	Switching between TADF and RTP: anion-regulated photoluminescence in organic salts and co-crystals. Materials Advances, 2021, 2, 5777-5784.	2.6	5
928	Origin of High-Efficiency Near-Infrared Organic Thermally Activated Delayed Fluorescence: The Role of Electronic Polarization. Journal of Physical Chemistry C, 2021, 125, 1249-1255.	1.5	11
929	Recent advances in persistent luminescence based on molecular hybrid materials. Chemical Society Reviews, 2021, 50, 5564-5589.	18.7	331
930	Influence of (de)protonation on the photophysical properties of phenol-substituted diazine chromophores: experimental and theoretical studies. New Journal of Chemistry, 2021, 45, 19132-19144.	1.4	2
931	Strategic molecular design of <i>closo-ortho</i> -carboranyl luminophores to manifest thermally activated delayed fluorescence. Chemical Science, 2021, 12, 8411-8423.	3.7	18
932	Positive impact of chromophore flexibility on the efficiency of red thermally activated delayed fluorescence materials. Materials Horizons, 2021, 8, 1297-1303.	6.4	41
933	Efficient white light-emitting polymers from dual thermally activated delayed fluorescence chromophores for non-doped solution processed white electroluminescent devices. Polymer Chemistry, 2021, 12, 1030-1039.	1.9	14

#	Article	IF	CITATIONS
934	State of the Art in the Preparation and Properties of Molecular Monomeric <i>s</i> -Heptazines: Syntheses, Characteristics, and Functional Applications. Chemical Reviews, 2021, 121, 2515-2544.	23.0	63
935	Detecting triplet states in opto-electronic and photovoltaic materials and devices by transient optically detected magnetic resonance. Materials Horizons, 2021, 8, 2569-2575.	6.4	3
936	Study of configuration differentia and highly efficient deep-red thermally activated delayed fluorescent organic light-emitting diodes based on phenanthro[4,5- <i>fgh</i>]quinoxaline derivatives. Journal of Materials Chemistry C, 2021, 9, 7392-7399.	2.7	17
937	Manipulating peripheral non-conjugated substituents in carbazole/oxadiazole hybrid TADF emitters towards high-efficiency OLEDs. Journal of Materials Chemistry C, 2021, 9, 13384-13391.	2.7	6
938	Synthesis, characterization, and photophysical properties of a new 2,5-di(aryl)phosphole derivative and their trigonal copper–phosphole complexes. Journal of Coordination Chemistry, 2021, 74, 563-574.	0.8	2
939	Spin―and Voltageâ€Dependent Emission from Intra―and Intermolecular TADF OLEDs. Advanced Electronic Materials, 2021, 7, 2000702.	2.6	7
940	Design, synthesis and application in biological imaging of a novel red fluorescent dye based on a rhodanine derivative. RSC Advances, 2021, 11, 160-163.	1.7	7
941	Metallofullerene photoswitches driven by photoinduced fullerene-to-metal electron transfer. Chemical Science, 2021, 12, 7818-7838.	3.7	7
942	Small-molecule based thermally activated delayed fluorescence materials with dual-emission characteristics. Science China Chemistry, 2021, 64, 534-546.	4.2	29
943	Novel ultrabright luminescent copper nanoclusters and application in light-emitting devices. Chemical Communications, 2021, 57, 9890-9893.	2.2	9
944	Quinazoline-based thermally activated delayed fluorescence emitters for high-performance organic light-emitting diodes with external quantum efficiencies about 28%. Journal of Materials Chemistry C, 2021, 9, 12633-12641.	2.7	4
945	Peptide-based novel small molecules and polymers: unexplored optoelectronic materials. Journal of Materials Chemistry C, 2021, 9, 12462-12488.	2.7	8
946	White fluorescence of polyaromatics derived from methanol conversion in Ca ²⁺ -exchanged small-pore zeolites. Materials Chemistry Frontiers, 2021, 5, 4634-4644.	3.2	3
947	Red to orange thermally activated delayed fluorescence polymers based on 2-(4-(diphenylamino)-phenyl)-9 <i>H</i> -thioxanthen-9-one-10,10-dioxide for efficient solution-processed OLEDs. RSC Advances, 2021, 11, 24794-24806.	1.7	12
948	Research Progress on Aggregation-Induced Delayed Fluorescence in Materials and Devices. Chinese Journal of Organic Chemistry, 2021, 41, 3050.	0.6	4
949	Novel thermally activated delayed fluorescence materials by high-throughput virtual screening: going beyond donor–acceptor design. Journal of Materials Chemistry C, 2021, 9, 3324-3333.	2.7	27
950	Highly efficient T-shaped deep-red thermally activated delayed fluorescence emitters: substitution position effect. Physical Chemistry Chemical Physics, 2021, 23, 21883-21892.	1.3	20
951	Phenylâ€ŧriggered photophysical switching between normal fluorescence and delayed fluorescence in phthalonitrileâ€based luminophores. Aggregate, 2021, 2, 145-150.	5.2	16

#	Article	IF	CITATIONS
952	Organic thermally activated delayed fluorescence (TADF) compounds used in photocatalysis. Chemical Society Reviews, 2021, 50, 7587-7680.	18.7	205
953	The study of intramolecular decay and intermolecular energy transfer for phosphorescent organic light-emitting devices. Physical Chemistry Chemical Physics, 2021, 23, 7495-7503.	1.3	4
954	Recent Advances in Substituent Effects of Blue Thermally Activated Delayed Fluorescence Small Molecules. Acta Chimica Sinica, 2021, 79, 557.	0.5	16
955	Manipulating Complementarity of Binary White Thermally Activated Delayed Fluorescence Systems for 100% Exciton Harvesting in OLEDs. Advanced Functional Materials, 2021, 31, 2011169.	7.8	25
956	Does Throughâ€&pace Charge Transfer in Bipolar Hosts Affect the Efficiency of Blue OLEDs?. Advanced Optical Materials, 2021, 9, 2002227.	3.6	7
957	<i>cis</i> â€Quinacridoneâ€Based Delayed Fluorescence Emitters: Seemingly Old but Renewed Functional Luminogens. Angewandte Chemie - International Edition, 2021, 60, 7643-7648.	7.2	74
958	Enhanced Upconversion of Triplet Excitons for Conjugated Polymeric Thermally Activated Delayed Fluorescence Emitters by Employing an Intramolecular Sensitization Strategy. ACS Applied Materials & Interfaces, 2021, 13, 8997-9005.	4.0	14
959	Impact of Δ <i>E</i> _{ST} on Delayed Fluorescence Rate, Lifetime, and Intensity Ratio of Tetrahedral Cu(I) Complexes: Theoretical Simulation in Solution and Solid Phases. Journal of Physical Chemistry Letters, 2021, 12, 2232-2244.	2.1	6
960	Harvesting triplet excitons for near-infrared electroluminescence via thermally activated delayed fluorescence channel. IScience, 2021, 24, 102123.	1.9	31
961	<i>cis</i> â€Quinacridoneâ€Based Delayed Fluorescence Emitters: Seemingly Old but Renewed Functional Luminogens. Angewandte Chemie, 2021, 133, 7721-7726.	1.6	16
962	Constructing Donor-Resonance-Donor Molecules for Acceptor-Free Bipolar Organic Semiconductors. Research, 2021, 2021, .	2.8	6
963	Exploring the Scope of Through-Space Charge-Transfer Thermally Activated Delayed Fluorescence in Acrylic Donor–Acceptor Copolymers. Macromolecules, 2021, 54, 2466-2476.	2.2	18
964	Highly Efficient Near-Infrared Thermally Activated Delayed Fluorescence Molecules via Acceptor Tuning: Theoretical Molecular Design and Experimental Verification. Journal of Physical Chemistry Letters, 2021, 12, 1893-1903.	2.1	48
965	Novel thermally activated delayed fluorescence nano-micelle for tumor imaging. Photodiagnosis and Photodynamic Therapy, 2021, 33, 102178.	1.3	2
966	Comprehensive study on operational lifetime of organic light-emitting diodes: effects of molecular structure and energy transfer. Japanese Journal of Applied Physics, 2021, 60, 040902.	0.8	2
967	Chiral Spiroâ€Axis Induced Blue Thermally Activated Delayed Fluorescence Material for Efficient Circularly Polarized OLEDs with Low Efficiency Rollâ€Off. Angewandte Chemie, 2021, 133, 8516-8521.	1.6	29
968	Click-To-Twist Strategy To Build Blue-to-Green Emitters: Bulky Triazoles for Electronically Tunable and Thermally Activated Delayed Fluorescence. ACS Applied Materials & Interfaces, 2021, 13, 12286-12295.	4.0	10
969	Elucidating the Electronic Structure of a Delayed Fluorescence Emitter via Orbital Interactions, Excitation Energy Components, Charge-Transfer Numbers, and Vibrational Reorganization Energies. Journal of Physical Chemistry Letters, 2021, 12, 2712-2720.	2.1	35

CIT		Report
	IAH	NEPUKI

#	Article	IF	CITATIONS
971	Largely Color-Tuning Prompt and Delayed Fluorescence: Dinuclear Cu(I) Halide Complexes with <i>tert</i> -Amines and Phosphines. Inorganic Chemistry, 2021, 60, 4841-4851.	1.9	22
972	Stericallyâ€Locked Donor–Acceptor Conjugated Polymers Showing Efficient Thermally Activated Delayed Fluorescence. Angewandte Chemie, 2021, 133, 9721-9727.	1.6	14
973	A TADF Emitter Featuring Linearly Arranged Spiroâ€Donor and Spiroâ€Acceptor Groups: Efficient Nondoped and Doped Deepâ€Blue OLEDs with CIE _{<i>y</i>} <0.1. Angewandte Chemie - International Edition, 2021, 60, 9598-9603.	7.2	106
974	Thermally Activated Delayed Fluorescence beyond Throughâ€Bond Charge Transfer for Highâ€Performance OLEDs. Advanced Optical Materials, 2021, 9, 2002204.	3.6	83
975	Vibrationally Assisted Direct Intersystem Crossing between the Same Charge-Transfer States for Thermally Activated Delayed Fluorescence: Analysis by Marcus–Hush Theory Including Reorganization Energy. Journal of Physical Chemistry B, 2021, 125, 2696-2706.	1.2	35
976	Chiral Spiroâ€Axis Induced Blue Thermally Activated Delayed Fluorescence Material for Efficient Circularly Polarized OLEDs with Low Efficiency Rollâ€Off. Angewandte Chemie - International Edition, 2021, 60, 8435-8440.	7.2	107
977	Packing Effect on Light Emission of Naphthyridine-Based Luminophor: Insights from Quantum Mechanics and Quantum Mechanics/Molecular Mechanics Calculations. Journal of Physical Chemistry B, 2021, 125, 3005-3013.	1.2	2
978	A TADF Emitter Featuring Linearly Arranged Spiroâ€Donor and Spiroâ€Acceptor Groups: Efficient Nondoped and Doped Deepâ€Blue OLEDs with CIE _{<i>y</i>} <0.1. Angewandte Chemie, 2021, 133, 9684-9689.	1.6	26
979	Boosting Wideâ€Range Tunable Longâ€Afterglow in 1D Metal–Organic Halide Micro/Nanocrystals for Space/Timeâ€Resolved Information Photonics. Advanced Materials, 2021, 33, e2007571.	11.1	138
980	Predicting Excited-State and Luminescence Properties of a Cyclometalated Iridium(III) Complex: Quantum Mechanics/Molecular Mechanics Study. Journal of Physical Chemistry C, 2021, 125, 5670-5677.	1.5	10
981	Aggregation-Enhanced Thermally Activated Delayed Fluorescence Efficiency for Two-Coordinate Carbene–Metal–Amide Complexes: A QM/MM Study. Journal of Physical Chemistry Letters, 2021, 12, 2944-2953.	2.1	44
982	Stericallyâ€Locked Donor–Acceptor Conjugated Polymers Showing Efficient Thermally Activated Delayed Fluorescence. Angewandte Chemie - International Edition, 2021, 60, 9635-9641.	7.2	61
983	Controlling Thermally Activated Delayed Photoluminescence in CdSe Quantum Dots through Triplet Acceptor Surface Coverage. Journal of Physical Chemistry Letters, 2021, 12, 3718-3723.	2.1	18
984	Luminescence in Crystalline Organic Materials: From Molecules to Molecular Solids. Advanced Optical Materials, 2021, 9, 2002251.	3.6	146
985	Unraveling the Mechanism of Near-Infrared Thermally Activated Delayed Fluorescence of TPA-Based Molecules: Effect of Hydrogen Bond Steric Hindrance. Journal of Physical Chemistry A, 2021, 125, 2905-2912.	1.1	9
986	Impact of boryl acceptors in para-acridine-appended triarylboron emitters on blue thermally activated delayed fluorescence OLEDs. Dyes and Pigments, 2021, 188, 109224.	2.0	9
987	Flexible all fluorescence white organic light emitting device with over 22% EQE by stepped reverse intersystem crossing channels based on ternary exciplex. Organic Electronics, 2021, 91, 106076.	1.4	7
988	Computational insight into newly anomalous delayed fluorescence emitters based on D-A-A structures. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 250, 119392.	2.0	0

#	Article	IF	CITATIONS
989	Luminescent heteroleptic copper(I) complexes with polydentate benzotriazolyl-based ligands. Transition Metal Chemistry, 2021, 46, 391-402.	0.7	10
990	Crystalline Metalâ€Organic Materials with Thermally Activated Delayed Fluorescence. Advanced Optical Materials, 2021, 9, 2100081.	3.6	30
991	Efficient Red Thermally Activated Delayed Fluorescence Emitters Based on a Dibenzonitrile-Substituted Dipyrido[3,2-a:2′,3′-c]phenazine Acceptor. Molecules, 2021, 26, 2427.	1.7	3
992	Ambient Room Temperature Phosphorescence and Thermally Activated Delayed Fluorescence from a Core-Substituted Pyromellitic Diimide Derivative. Journal of Physical Chemistry B, 2021, 125, 4520-4526.	1.2	21
993	Novel tetracoordinated organoboron emitters for thermally activated delayed fluorescence organic light-emitting diodes. Dyes and Pigments, 2021, 188, 109192.	2.0	3
994	High-power-efficiency thermally activated delayed fluorescence white organic light-emitting diodes based on asymmetrical host engineering. Nano Energy, 2021, 83, 105746.	8.2	12
995	Nematic Triphenyltriazine Triesters and the Induction of the Columnar Mesophase by Fluorine Substitution. Chemistry - A European Journal, 2021, 27, 9003-9010.	1.7	7
996	Optimizing Charge Transfer and Out oupling of A Quasiâ€Planar Deepâ€Red TADF Emitter: towards Rec.2020 Gamut and External Quantum Efficiency beyond 30 %. Angewandte Chemie - International Edition, 2021, 60, 14846-14851.	7.2	110
997	Achieving High Afterglow Brightness in Organic Dopantâ€Matrix Systems. Advanced Optical Materials, 2021, 9, 2100353.	3.6	54
998	Peripheral Decoration of Multiâ€Resonance Molecules as a Versatile Approach for Simultaneous Longâ€Wavelength and Narrowband Emission. Advanced Functional Materials, 2021, 31, 2102017.	7.8	157
999	Manipulating Chargeâ€Transfer Excitons by Exciplex Matrix: Toward Thermally Activated Delayed Fluorescence Diodes with Power Efficiency beyond 110ÂlmÂW ^{â~1} . Advanced Functional Materials, 2021, 31, 2102739.	7.8	13
1000	Crystallographic and Computational Investigations of Triphenylamine/Anthraquinone Hybrids. Journal of Chemical Crystallography, 2022, 52, 53-61.	0.5	1
1001	Alternating Donor–Acceptor Ï€â€Conjugated Macrocycle Exhibiting Efficient Thermally Activated Delayed Fluorescence and Spontaneous Horizontal Molecular Orientation. Advanced Photonics Research, 2021, 2, 2100021.	1.7	14
1002	Organic molecules with inverted gaps between first excited singlet and triplet states and appreciable fluorescence rates. Matter, 2021, 4, 1654-1682.	5.0	67
1003	Simplified and high-efficiency warm/cold phosphorescent white organic light-emitting diodes based on interfacial exciplex co-host. Organic Electronics, 2021, 92, 106123.	1.4	6
1004	Optimizing Charge Transfer and Out oupling of A Quasiâ€Planar Deepâ€Red TADF Emitter: towards Rec.2020 Gamut and External Quantum Efficiency beyond 30 %. Angewandte Chemie, 2021, 133, 14972-14977.	1.6	6
1005	TADFâ€īype Organic Afterglow. Angewandte Chemie - International Edition, 2021, 60, 17138-17147.	7.2	115
1006	Ladder-like energy-relaying exciplex enables 100% internal quantum efficiency of white TADF-based diades in a single emissive layer. Nature Communications, 2021, 12, 3640	5.8	46

#	Article	IF	CITATIONS
1007	3D Triptyceneâ€Fused Acridine Electron Donor Enables Highâ€Efficiency Nondoped Thermally Activated Delayed Fluorescent OLEDs. Advanced Optical Materials, 2021, 9, 2100273.	3.6	16
1008	Room-Temperature Observation for Reverse Intersystem Crossing in Exciplex-Based OLEDs with Balanced Charge Injection. ACS Applied Electronic Materials, 2021, 3, 3034-3043.	2.0	16
1009	Room-Temperature Phosphorescence and Thermally Activated Delayed Fluorescence in the Pd Complex: Mechanism and Dual Upconversion Channels. Journal of Physical Chemistry Letters, 2021, 12, 5944-5950.	2.1	33
1010	White Light Luminescence from a Homoâ€conjugated Molecule with Thermally Activated Delayed Fluorescence. Chemistry - an Asian Journal, 2021, 16, 1893-1896.	1.7	1
1011	TADFâ€ T ype Organic Afterglow. Angewandte Chemie, 2021, 133, 17275-17284.	1.6	17
1012	Thermally Activated Delayed Fluorescence and Phosphorescence Quenching in Iminophosphonamide Copper and Zinc Complexes. Chemistry - A European Journal, 2021, 27, 15110-15119.	1.7	14
1013	Acridone-amine D-A-D thermally activated delayed fluorescence emitters with narrow resolved electroluminescence and their electrochromic properties. Electrochimica Acta, 2021, 384, 138347.	2.6	10
1014	Highâ€Efficiency Nondoped White Organic Lightâ€Emitting Diodes Based on Allâ€Exciplex Emission. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100064.	0.8	2
1015	Twisted Phenanthro[9,10â€d]imidazole Derivatives as Nonâ€doped Emitters for Efficient Electroluminescent Devices with Ultraâ€Deep Blue Emission and High Exciton Utilization Efficiency. Chemistry - an Asian Journal, 2021, 16, 2328-2337.	1.7	16
1016	Are Heptazine-Based Organic Light-Emitting Diode Chromophores Thermally Activated Delayed Fluorescence or Inverted Singlet–Triplet Systems?. Journal of Physical Chemistry Letters, 2021, 12, 6852-6860.	2.1	45
1017	A novel molecular design featuring the conversion of inefficient TADF emitters into efficient TADF emitters for deep-blue organic light emitting diodes. Chemical Engineering Journal, 2021, 416, 129097.	6.6	40
1018	Solvent-Minimized Synthesis of 4CzIPN and Related Organic Fluorophores via Ball Milling. Journal of Organic Chemistry, 2021, 86, 14095-14101.	1.7	17
1019	Simple peripheral modification for color tuning of thermally activated delayed fluorescence emitters in OLEDs. Dyes and Pigments, 2021, 191, 109395.	2.0	7
1020	Approaching Efficient and Narrow RGB Electroluminescence from D–A-Type TADF Emitters Containing an Identical Multiple Resonance Backbone as the Acceptor. ACS Applied Materials & Interfaces, 2021, 13, 36089-36097.	4.0	64
1021	Computational Discovery of Transition-metal Complexes: From High-throughput Screening to Machine Learning. Chemical Reviews, 2021, 121, 9927-10000.	23.0	110
1022	Highâ€Efficiency Solutionâ€Processable OLEDs by Employing Thermally Activated Delayed Fluorescence Emitters with Multiple Conversion Channels of Triplet Excitons. Advanced Science, 2021, 8, e2101326.	5.6	43
1023	Phenoxazine-Dibenzothiophene Sulfoximine Emitters Featuring Both Thermally Activated Delayed Fluorescence and Aggregation Induced Emission. Molecules, 2021, 26, 5243.	1.7	4
1024	Efficient green OLEDs achieved by a terbium(III) complex with photoluminescent quantum yield close to 100%. Science China Chemistry, 2021, 64, 1504-1509.	4.2	8

#	Article	IF	CITATIONS
1025	Synthesis, Light Harvesting Efficiency, Photophysical and Nonlinear Optical Properties of 3-(5-(4-hydroxybenzylideneamino)naphthalen-1-yliminomethyl)phenol: Spectroscopic and Quantum chemical approach. Research on Chemical Intermediates, 2021, 47, 5249-5266.	1.3	7
1026	Diarylfluoreneâ€Based Organic Semiconductor Materials toward Optoelectronic Applications. Advanced Functional Materials, 2021, 31, 2105092.	7.8	21
1027	Fusedâ€Nonacyclic Multiâ€Resonance Delayed Fluorescence Emitter Based on Ladderâ€Thiaborin Exhibiting Narrowband Skyâ€Blue Emission with Accelerated Reverse Intersystem Crossing. Angewandte Chemie - International Edition, 2021, 60, 20280-20285.	7.2	144
1028	High efficiency blue organic light-emitting diodes with below-bandgap electroluminescence. Nature Communications, 2021, 12, 4868.	5.8	62
1029	Organic Light-Emitting Diodes Based on Luminescent Self-Assembled Materials of Copper(I). Energy & Fuels, 2021, 35, 18982-18999.	2.5	30
1030	Dicyanoâ€Imidazole: A Facile Generation of Pure Blue TADF Materials for OLEDs. Chemistry - A European Journal, 2021, 27, 12998-13008.	1.7	19
1031	Organic Persistent Luminescent Materials: Ultralong Room-Temperature Phosphorescence and Multicolor-Tunable Afterglow. ACS Applied Materials & Interfaces, 2021, 13, 41131-41139.	4.0	35
1032	Aggregationâ€induced emission: Red and nearâ€infrared organic lightâ€emitting diodes. SmartMat, 2021, 2, 326-346.	6.4	88
1033	Unified Framework for Photophysical Rate Calculations in TADF Molecules. Journal of Chemical Theory and Computation, 2021, 17, 5816-5824.	2.3	19
1034	Solution-processed deep-blue (yâ^¼0.06) fluorophores based on triphenylamine-imidazole (donor-acceptor) for OLEDs: computational and experimental exploration. Journal of Information Display, 2022, 23, 53-67.	2.1	14
1035	Bridging the Void: Halogen Bonding and Aromatic Interactions to Program Luminescence and Electronic Properties of I€-Conjugated Materials in the Solid State. Chemistry of Materials, 2021, 33, 6640-6661.	3.2	37
1036	Diversity of Luminescent Metal Complexes in OLEDs: Beyond Traditional Precious Metals. Chemistry - an Asian Journal, 2021, 16, 2817-2829.	1.7	41
1037	Fusedâ€Nonacyclic Multiâ€Resonance Delayed Fluorescence Emitter Based on Ladderâ€Thiaborin Exhibiting Narrowband Skyâ€Blue Emission with Accelerated Reverse Intersystem Crossing. Angewandte Chemie, 2021, 133, 20442-20447.	1.6	41
1038	Stacked Ensemble Machine Learning for Range-Separation Parameters. Journal of Physical Chemistry Letters, 2021, 12, 9516-9524.	2.1	9
1039	Intramolecular interchromophore singlet-singlet and triplet-singlet energy transfer in a metal-free donor-acceptor emitter. Journal of Luminescence, 2021, 237, 118183.	1.5	3
1041	Relief of excited-state antiaromaticity enables the smallest red emitter. Nature Communications, 2021, 12, 5409.	5.8	38
1042	Molecular Probes for Autofluorescence-Free Optical Imaging. Chemical Reviews, 2021, 121, 13086-13131.	23.0	166
1043	Efficiency Breakthrough of Fluorescence OLEDs by the Strategic Management of "Hot Excitons―at Highly Lying Excitation Triplet Energy Levels. Advanced Functional Materials, 2021, 31, 2106912.	7.8	75

#	Article	IF	CITATIONS
1044	Solution-Processable Chiral Boron Complexes for Circularly Polarized Red Thermally Activated Delayed Fluorescent Devices. ACS Applied Materials & amp; Interfaces, 2021, 13, 47826-47834.	4.0	33
1045	Wideâ€Range Color Tuning of Narrowband Emission in Multiâ€resonance Organoboron Delayed Fluorescence Materials through Rational Imine/Amine Functionalization. Angewandte Chemie, 2021, 133, 23326-23331.	1.6	35
1046	Thermally Activated Delayed Fluorescence Enabled by Reversed Conformational Distortion for Blue Emitters. Journal of Physical Chemistry Letters, 2021, 12, 9501-9507.	2.1	32
1047	Luminescent halogen clusters. Cell Reports Physical Science, 2022, 3, 100593.	2.8	11
1048	Sulfur atom manipulates geometric isomerism of diphosphinine oxides for efficient delayed fluorescence diodes. Chemical Engineering Journal, 2021, 420, 129912.	6.6	1
1049	Highâ€Performance Solutionâ€Processed Nondoped Circularly Polarized OLEDs with Chiral Triptycene Scaffoldâ€Based TADF Emitters Realizing Over 20% External Quantum Efficiency. Advanced Functional Materials, 2021, 31, 2106418.	7.8	52
1050	Blue TADF Emitters Based on <i>B</i> -Heterotriangulene Acceptors for Highly Efficient OLEDs with Reduced Efficiency Roll-Off. ACS Applied Materials & Interfaces, 2021, 13, 45778-45788.	4.0	22
1051	Green and Near-Infrared Dual-Mode Afterglow of Carbon Dots and Their Applications for Confidential Information Readout. Nano-Micro Letters, 2021, 13, 198.	14.4	53
1052	Wideâ€Range Color Tuning of Narrowband Emission in Multiâ€resonance Organoboron Delayed Fluorescence Materials through Rational Imine/Amine Functionalization. Angewandte Chemie - International Edition, 2021, 60, 23142-23147.	7.2	156
1053	Efficiency enhancement in orange red thermally activated delayed fluorescence OLEDs by using a rigid di-indolocarbazole donor moiety. Dyes and Pigments, 2021, 194, 109580.	2.0	11
1054	Realizing Recordâ€High Electroluminescence Efficiency of 31.5 % for Red Thermally Activated Delayed Fluorescence Molecules. Angewandte Chemie, 2021, 133, 23827-23832.	1.6	19
1055	Research Progress of Intramolecular Ï€â€&tacked Small Molecules for Device Applications. Advanced Materials, 2022, 34, e2104125.	11.1	93
1056	Realizing Recordâ€High Electroluminescence Efficiency of 31.5 % for Red Thermally Activated Delayed Fluorescence Molecules. Angewandte Chemie - International Edition, 2021, 60, 23635-23640.	7.2	147
1057	Low efficiency roll-off thermally activated delayed fluorescence emitters for non-doped OLEDs: Substitution effect of thioether and sulfone groups. Dyes and Pigments, 2021, 194, 109649.	2.0	8
1058	Achieving room temperature phosphorescence in aqueous phase through rigidifying the triplet state and information encryption. Applied Surface Science, 2021, 566, 150726.	3.1	18
1059	Emitting layer analysis of blue thermally activated delayed fluorescence devices using capacitance–voltage method. Current Applied Physics, 2021, 31, 46-51.	1.1	1
1060	Efficient orange-red thermally activated delayed fluorescence material containing a cyano group. Dyes and Pigments, 2021, 195, 109731.	2.0	3
1061	Multifunctional derivatives of pyrimidine-5-carbonitrile and differently substituted carbazoles for doping-free sky-blue OLEDs and luminescent sensors of oxygen. Journal of Advanced Research, 2021, 33, 41-51.	4.4	12

#	Article	IF	CITATIONS
1062	Managing local triplet excited states of boron-based TADF emitters for fast spin-flip process: Toward highly efficient TADF-OLEDs with low efficiency roll-off. Chemical Engineering Journal, 2021, 423, 130224.	6.6	35
1063	Novel aggregation-induced delayed fluorescence luminogens for vacuum-deposited and solution-processed OLEDs with very small efficiency roll-offs. Organic Electronics, 2021, 99, 106339.	1.4	4
1064	Visible-light excitable thermally activated delayed fluorescence in aqueous solution from F, N-doped carbon dots confined in silica nanoparticles. Chemical Engineering Journal, 2021, 426, 130728.	6.6	55
1065	"On-off―switch between red thermally activated delayed fluorescence and conventional fluorescence by isomeric regulation. Chemical Engineering Journal, 2021, 425, 131510.	6.6	10
1066	Novel D-D′-A structure thermally activated delayed fluorescence emitters realizing over 20% external quantum efficiencies in both evaporation- and solution-processed organic light-emitting diodes. Organic Electronics, 2021, 99, 106312.	1.4	1
1067	Achieving host-free near-ultraviolet electroluminescence via electronic state engineering with phosphine oxide. Chemical Engineering Journal, 2022, 429, 132327.	6.6	11
1068	Novel secondary acceptor based molecular design for superb lifetime in thermally activated delayed fluorescent organic light-emitting diodes through high bond energy and fast up-conversion. Chemical Engineering Journal, 2022, 427, 130988.	6.6	11
1069	A phosphorated spirobi[thioxanthene] host matrix enables high-efficiency simple white thermally activated delayed fluorescence diodes. Chemical Engineering Journal, 2022, 429, 132320.	6.6	8
1070	A new host material achieving above 75 cd A ^{â^'1} current efficiency with top-emitting deep-red phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 13247-13254.	2.7	5
1071	Insights from QM/MM-ONIOM calculations: the TADF phenomenon of phenanthro[9,10- <i>d</i>)d)imidazole-anthraquinone in the solid state. Physical Chemistry Chemical Physics, 2021, 23, 20218-20229.	1.3	9
1072	Fluorine-induced aggregate-interlocking for color-tunable organic afterglow with a simultaneously improved efficiency and lifetime. Chemical Science, 2021, 12, 3580-3586.	3.7	30
1073	Intermolecular locking design of red thermally activated delayed fluorescence molecules for high-performance solution-processed organic light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 2291-2297.	2.7	18
1074	Triazatruxene based star-shaped thermally activated delayed fluorescence emitters: modulating the performance of solution-processed non-doped OLEDs <i>via</i> side-group engineering. Journal of Materials Chemistry C, 2021, 9, 7363-7373.	2.7	16
1075	Aggregation-induced delayed fluorescence luminogens: the innovation of purely organic emitters for aqueous electrochemiluminescence. Chemical Science, 2021, 12, 13283-13291.	3.7	47
1076	Combinatorial donor engineering for highly efficient blue thermally activated delayed fluorescence emitters with low efficiency roll-off. Journal of Materials Chemistry C, 2021, 9, 15276-15283.	2.7	2
1077	45â€4: Approach for Attaining Short Exciton Lifetime in Thermally Activated Delayed Fluorescence Emitters. Digest of Technical Papers SID International Symposium, 2017, 48, 664-667.	0.1	4
1078	Through-space charge transfer blue polymers containing acridan donor and oxygen-bridged triphenylboron acceptor for highly efficient solution-processed organic light-emitting diodes. Science China Chemistry, 2020, 63, 1112-1120.	4.2	50
1079	Fluorine substituted triazine acceptor based thermally activated delayed fluorescent emitter as an assistant dopant of fluorescent emitter. Dyes and Pigments, 2020, 181, 108549.	2.0	9

ARTICLE IF CITATIONS Side Chain Regioisomers that Dictate Optical Properties and Mechanofluorochromism through 1080 3.2 18 Crystal Packing. Chemistry of Materials, 2020, 32, 5785-5801. Kinetic Modeling of Transient Electroluminescence Reveals TTA as an Efficiency-Limiting Process in 1.5 Exciplex-Based TADF OLEDs. Journal of Physical Chemistry C, 2020, 124, 25667-25674. Boron-containing D–A–A type TADF materials with tiny singlet–triplet energy splittings and high 1082 photoluminescence quantum yields for highly efficient OLEDs with low efficiency roll-offs. Journal 2.7 26 of Materials Chemistry C, 2020, 8, 3846-3854. Circularly polarized luminescence from AIEgens. Journal of Materials Chemistry C, 2020, 8, 3284-3301. 1083 141 Twisted donor–acceptor molecules for efficient deep blue electroluminescence with CIE_y 1084 2.7 18 â¹/₄ 0.06. Journal of Materials Chemistry C, 2020, 8, 9401-9409. Aggregation-state engineering and emission switching in $D\hat{a}\in A\hat{a}\in D\hat{a}\in A$ AlEgens featuring dual emission, MCL and white electroluminescence. Journal of Materials Chemistry C, 2020, 8, 8061-8068. 2.7 Stable and efficient blue and green organic light emitting diodes employing tetradentate Pt(II) 1086 1.5 13 complexes. Applied Physics Letters, 2020, 117, 253301. Recent progress of pyrimidine derivatives for high-performance organic light-emitting devices. 1087 0.8 70 Journal of Photonics for Energy, 2018, 8, 1. Optimizing energy transfer for highly efficient single-emissive-layer white thermally activated delayed 1088 1.7 11 fluorescence organic light-emitting diodes. Optics Letters, 2019, 44, 5727. A Quantum-Chemical Insight into the Role of Charge-Transfer States in Organic Emitters for 1089 4.6 Electroluminescence. CCS Chemistry, 2020, 2, 1256-1267. High-Efficiency Diphenylpyrimidine Derivatives Blue Thermally Activated Delayed Fluorescence Organic 1090 3 1.8 Light-Emitting Diodes. Frontiers in Chemistry, 2020, 8, 356. Towards Highly Efficient TADF Yellow-Red OLEDs Fabricated by Solution Deposition Methods: Critical 1091 Influence of the Active Layer Morphology. Nanomaterials, 2020, 10, 101. Utilizing Electroplex Emission to Achieve External Quantum Efficiency up to 18.1% in Nondoped Blue 1092 2.8 12 OLED. Research, 2020, 2020, 8649102. Exciton engineering based on star-shaped blue thermally activated delayed fluorescence emitters for 1093 2.7 efficient white organic light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 15221-15229. Sky-blue delayed fluorescence molecules based on pyridine-substituted acridone for efficient organic 1094 9 2.7 light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 15505-15510. Weaving host matrices with intermolecular hydrogen bonds for high-efficiency white thermally 1095 activated delayed fluorescence. Chemical Sciénce, 2021, 12, 14519-14530. Modulation of OLED efficiency <i>via</i> a combination of aromatic electrophilic directing and 1096 2.7 13 intramolecular charge transfer. Journal of Materials Chemistry C, 2021, 9, 15698-15706. Ni-catalyzed cascade coupling reactions: synthesis and thermally-activated delayed fluorescence 1097 1.4 characterization of quinazolinone derivatives. New Journal of Chemistry, 2021, 45, 20624-20628.

#	Article	IF	CITATIONS
1098	Constitutional isomers of carbazole–benzoyl-pyrimidine-based thermally activated delayed fluorescence emitters for efficient OLEDs. Journal of Materials Chemistry C, 2021, 9, 15900-15909.	2.7	6
1099	Novel V-Shaped Bipolar Host Materials for Solution-Processed Thermally Activated Delayed Fluorescence OLEDs. ACS Applied Materials & Interfaces, 2021, 13, 49076-49084.	4.0	21
1100	Aggregationâ€enhanced direct S ₀ –T <i>_n</i> transitions and roomâ€ŧemperature phosphorescence in gold(I)â€complex single crystals. Aggregate, 2022, 3, e125.	5.2	9
1101	Multiple charge transfer disk-like emitters with fast fluorescence radiation rate and high horizontal dipole orientation for pure blue organic light-emitting diodes. Chemical Engineering Journal, 2022, 430, 133030.	6.6	5
1102	Theoretical Insights into the Carrier Mobility Anisotropy of Organic–Inorganic Perovskite ABI3 (A =) Tj ETQq0 0	0 ₁ gBT /O	verlock 10 Ti
1103	Organic Triplet Photosensitizers for Triplet-Triplet Annihilation Upconversion. , 2022, , 71-105.		2
1104	Two-Channel Space Charge Transfer-Induced Thermally Activated Delayed Fluorescent Materials for Efficient OLEDs with Low Efficiency Roll-Off. ACS Applied Materials & Interfaces, 2021, 13, 49066-49075.	4.0	17
1105	Efficiency of Emitters Showing Thermally Activated Delayed Fluorescence Analyzed via a Rate Model for Recombination Processes and Intersystem Crossing. , 2016, , .		0
1106	Creation of Novel Functional Aza-Containing π-Conjugated Molecules Based on the Development of Novel Oxidative Transformations of Aromatic Amines. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2016, 74, 955-964.	0.0	0
1107	Research Trends of Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes. Ceramist, 2019, 22, 218-229.	0.0	0
1108	Multifunctional luminophores with dual emitting cores: TADF emitters with AIE properties for efficient solution- and evaporation-processed doped and non-doped OLEDs. Chemical Engineering Journal, 2022, 431, 133249.	6.6	14
1109	Thermally Activated Delayed Fluorescence Material: An Emerging Class of Metalâ€Free Luminophores for Biomedical Applications. Advanced Science, 2021, 8, e2102970.	5.6	104
1110	Hostâ€Dopant Interaction between Organic Thermally Activated Delayed Fluorescence Emitter and Host Material: Insight into the Excited State. Advanced Optical Materials, 2022, 10, 2101343.	3.6	16
1111	Red Thermally Activated Delayed Fluorescence in Dibenzopyridoquinoxaline-Based Nanoaggregates. Organic Materials, 2021, 3, 477-487.	1.0	11
1112	Recent Advances on Host–Guest Material Systems toward Organic Room Temperature Phosphorescence. Small, 2022, 18, e2104073.	5.2	170
1113	Synthesis of 2,7-dibromo-9H-carbazole and its N-alkylation under microwave activation conditions in a flow-type microwave reactor. Materials Today: Proceedings, 2022, 49, 2449-2454.	0.9	2
1114	Intermolecular interaction on excited-state properties of fluoro-substituted thermally activated delayed fluorescence molecules with aggregation-induced emission: a theoretical perspective. Molecular Physics, 2021, 119, e1862931.	0.8	3
1115	Effects of Secondary Acceptors on Excited-State Properties of Sky-Blue Thermally Activated Delayed Fluorescence Molecules: Luminescence Mechanism and Molecular Design. Journal of Physical Chemistry A, 2021, 125, 175-186.	1.1	12

#	Article	IF	Citations
1116	Syntheses and photophysical properties of axially chiral thiazolothiazoles: Multi-stimuli-responsive fluorescence and circularly polarized luminescence. Dyes and Pigments, 2022, 197, 109906.	2.0	8
1117	Realizing performance improvement of borylated TADF materials for OLEDs. Dyes and Pigments, 2022, 197, 109892.	2.0	5
1118	Molecular engineering by Ïf-linkers enables delayed fluorescence emitters for high-efficiency sky-blue solution-processed OLEDs. Chemical Engineering Journal, 2022, 430, 133078.	6.6	14
1119	Toward phosphorescent and delayed fluorescent carbon quantum dots for next-generation electroluminescent displays. Journal of Materials Chemistry C, 2022, 10, 2333-2348.	2.7	23
1120	Construction and Properties of Octahydrobinaphthol-based Chiral Luminescent Materials with Large Steric Hindrance. Acta Chimica Sinica, 2021, 79, 1401.	0.5	13
1121	Fractal models in analysis of energy transfer processes at intermolecular interaction. AIP Conference Proceedings, 2020, , .	0.3	0
1122	Ester-functionalized thermally activated delayed fluorescence materials. Journal of Materials Chemistry C, 2022, 10, 4574-4578.	2.7	1
1123	Creating Organic Functional Materials beyond Chemical Bond Synthesis by Organic Cocrystal Engineering. Journal of the American Chemical Society, 2021, 143, 19243-19256.	6.6	84
1124	Highly efficient blue electroluminescence based on TADF emitters with spiroacridine donors: methyl group effect on photophysical properties. Journal of Materials Chemistry C, 2022, 10, 4614-4619.	2.7	7
1125	Highly efficient blue all-solution-processed organic light-emitting diodes based on the strategy of constructing a thermally cross-linkable TADF dendrimer. Dyes and Pigments, 2022, 198, 109967.	2.0	6
1126	Effective Design Strategy for Aggregation-Induced Emission and Thermally Activated Delayed Fluorescence Emitters Achieving 18% External Quantum Efficiency Pure-Blue OLEDs with Extremely Low Roll-Off. ACS Applied Materials & Interfaces, 2021, 13, 57713-57724.	4.0	30
1127	Chiral Thermally Activated Delayed Fluorescence Emitters-Based Efficient Circularly Polarized Organic Light-Emitting Diodes Featuring Low Efficiency Roll-Off. ACS Applied Materials & Interfaces, 2021, 13, 56413-56419.	4.0	16
1128	Two-Component Design Strategy: Achieving Intense Organic Afterglow and Diverse Functions in Coronene-Matrix Systems. Journal of Physical Chemistry C, 2021, 125, 26986-26998.	1.5	30
1129	<i>Closo</i> - or <i>Nido</i> -Carborane Diphosphane as Responsible for Strong Thermochromism or Time Activated Delayed Fluorescence (TADF) in [Cu(N^N)(P^P)] ^{0/+} . Inorganic Chemistry, 2021, 60, 18521-18528.	1.9	17
1130	Metal–Organic Framework Based Thermally Activated Delayed Fluorescence Emitter with Oxygenâ€Insensitivity for Cell Imaging. Advanced Optical Materials, 2022, 10, .	3.6	5
1131	QM/MM Studies on Thermally Activated Delayed Fluorescence of a Dicopper Complex in the Solid State. Journal of Physical Chemistry C, 2021, 125, 27372-27380.	1.5	14
1132	The second-order NLO and TADF properties of a donor–acceptor dihydropyrene–cyclophanediene system: the impact of molecular architecture and polarizable environment. Journal of Materials Chemistry C, 2022, 10, 886-898.	2.7	10
1133	Ultrathin non-doped thermally activated delayed fluorescence emitting layer for highly efficient OLEDs. Chemical Communications, 2021, 57, 13728-13731.	2.2	7

#	Article	IF	CITATIONS
1134	Controlling the thermally activated delayed fluorescence of axially chiral organic emitters and their racemate for information encryption. Chemical Science, 2021, 12, 15556-15562.	3.7	21
1135	Asymmetric sky-blue thermally-activated delayed fluorescence emitters bearing tris(triazolo)triazine moiety for solution-processable organic light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 4837-4844.	2.7	5
1136	Thermally Activated Fluorescence vs Long Persistent Luminescence in ESIPT-Attributed Coordination Polymer. Journal of the American Chemical Society, 2022, 144, 2726-2734.	6.6	57
1137	Solution-processable orange-red thermally activated delayed fluorescence emitters with 3,6-disubstituted carbazole for highly efficient OLEDs with low efficiency roll-off. Journal of Materials Chemistry C, 2022, 10, 2034-2041.	2.7	9
1138	"Like–Likes–Like―strategy for the design of electron transport materials and emitters with facilitated interlayer electron transport and improved efficiency. Journal of Materials Chemistry C, 2022, 10, 3103-3113.	2.7	6
1139	Two-component design strategy: TADF-Type organic afterglow for time-gated chemodosimeters. Chemical Engineering Journal, 2022, 431, 134197.	6.6	25
1140	Light emission of organic luminogens: Generation, mechanism and application. Progress in Materials Science, 2022, 125, 100914.	16.0	69
1142	Multipath exciton harvesting in diazine-based luminescent materials and their applications for organic light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 17265-17286.	2.7	16
1143	Triplet harvesting aryl carbonyl-based luminescent materials: progress and prospective. Journal of Materials Chemistry C, 2021, 9, 17233-17264.	2.7	17
1144	Aggregation-induced delayed fluorescence molecules with mechanochromic behaviors for efficient blue organic light-emitting diodes. Cell Reports Physical Science, 2022, 3, 100733.	2.8	8
1145	Status and future outlook of TADF materials and OLEDs. , 2022, , 449-461.		0
1146	A deep blue thermally activated delayed fluorescence emitter: balance between charge transfer and color purity. Journal of Materials Chemistry C, 2022, 10, 4886-4893.	2.7	12
1147	Enhancement of thermally activated delayed fluorescence properties by substitution of ancillary halogen in a multiple resonance-like diplatinum(<scp>ii</scp>) complex. Journal of Materials Chemistry C, 2022, 10, 4851-4860.	2.7	11
1148	Efficient narrowband electroluminescence based on a hetero-bichromophore thermally activated delayed fluorescence dyad. Journal of Materials Chemistry C, 2022, 10, 4941-4946.	2.7	15
1149	A QM/MM study on through space charge transfer-based thermally activated delayed fluorescence molecules in the solid state. Journal of Materials Chemistry C, 2022, 10, 517-531.	2.7	30
1150	OLEDs using molecular TADF materials as hosts. , 2022, , 289-352.		0
1151	A New Entry to Purely Organic Thermally Activated Delayed Fluorescence Emitters Based on Pyrido[2,3â€ <i>b</i>]pyrazineâ€Dihydrophenazasilines Donorâ€Acceptor Dyad. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	7
1152	Dynamic Timing Control over Multicolor Molecular Emission by Temporal Chemical Locking. Angewandte Chemie, 2022, 134, .	1.6	9

#	Article	IF	CITATIONS
1153	Molecular Design Strategy for Orange Red Thermally Activated Delayed Fluorescence Emitters in Organic Lightâ€Emitting Diodes (OLEDs). Chemistry - A European Journal, 2022, 28, .	1.7	32
1154	Theoretically elucidating high photoluminescence performance of dimethylacridan-based blue-color thermally activated delayed fluorescent materials. New Journal of Chemistry, 2022, 46, 3464-3471.	1.4	7
1155	Ethynyl π-coordinated and non-coordinated mononuclear Cu(<scp>i</scp>) halide diphosphine complexes: synthesis and photophysical studies. New Journal of Chemistry, 2022, 46, 3236-3247.	1.4	1
1156	Theoretical Study on the Light-Emitting Mechanism of Multifunctional Thermally Activated Delayed Fluorescence Molecules. Journal of Physical Chemistry C, 2022, 126, 2437-2446.	1.5	10
1157	Boosting organic afterglow efficiency <i>via</i> triplet–triplet annihilation and thermally-activated delayed fluorescence. Journal of Materials Chemistry C, 2022, 10, 4795-4804.	2.7	7
1158	Highly efficient and stable blue thermally activated delayed fluorescent organic light-emitting diodes. , 2022, , 117-191.		1
1159	Orange, red, and near-infrared thermally activated delayed fluorescent emitters. , 2022, , 193-234.		0
1160	Dynamic Timing Control over Multicolor Molecular Emission by Temporal Chemical Locking. Angewandte Chemie - International Edition, 2022, 61, .	7.2	44
1161	Achieving Ultimate Narrowband and Ultrapure Blue Organic Lightâ€Emitting Diodes Based on Polycycloâ€Heteraborin Multiâ€Resonance Delayedâ€Fluorescence Emitters. Advanced Materials, 2022, 34, e2107951.	11.1	133
1162	Structure–property relationship study of blue thermally activated delayed fluorescence molecules with different donor and position substitutions: theoretical perspective and molecular design. Journal of Materials Chemistry C, 2022, 10, 4723-4736.	2.7	17
1163	Luminescent polymorphic crystals: mechanoresponsive and multicolor-emissive properties. CrystEngComm, 2022, 24, 1112-1126.	1.3	36
1164	Application of time-resolved electron paramagnetic resonance spectroscopy in the mechanistic study of thermally activated delayed fluorescence (TADF) materials. Journal of Materials Chemistry C, O, , .	2.7	8
1165	Purely Organic Emitters for Multiresonant Thermally Activated Delay Fluorescence: Design of Highly Efficient Sulfur and Selenium Derivatives. , 2022, 4, 440-447.		33
1166	Bridge control of photophysical properties in benzothiazole-phenoxazine emitters – from thermally activated delayed fluorescence to room temperature phosphorescence. Journal of Materials Chemistry C, 2022, 10, 4775-4784.	2.7	9
1167	Overcoming energy loss of thermally activated delayed fluorescence sensitized-OLEDs by developing a fluorescent dopant with a small singlet–triplet energy splitting. Journal of Materials Chemistry C, 2022, 10, 1681-1689.	2.7	7
1168	Intermolecular TADF: bulk and interface exciplexes. Journal of Materials Chemistry C, 2022, 10, 4521-4532.	2.7	25
1169	Ultrapure deep-blue aggregation-induced emission and thermally activated delayed fluorescence emitters for efficient OLEDs with CIE _{<i>y</i>} < 0.1 and low efficiency roll-offs. Journal of Materials Chemistry C, 2022, 10, 3163-3171.	2.7	22
1170	Monomeric carbazolylcyanobenzenes as thermally activated delayed fluorescence emitters: effect of substitution position on photoluminescent and electroluminescent properties. Molecular Crystals and Liquid Crystals, 0, , 1-7.	0.4	1

		15	6
#	ARTICLE Creation of a thermally cross-linkable encapsulated TADF molecule for highly efficient	IF	CITATIONS
1171	solution-processed hybrid white OLEDs. Organic Electronics, 2022, 102, 106442.	1.4	3
1172	Phenylpyridine and carbazole based host materials for highly efficient blue TADF OLEDs. Organic Electronics, 2022, 102, 106450.	1.4	9
1173	Novel benzonitrile- and benzo[d]imidazole-based bipolar hosts for green PhOLEDs with a low turn-on voltage. Dyes and Pigments, 2022, 200, 110041.	2.0	7
1174	A facile strategy for enhancing reverse intersystem crossing of red thermally activated delayed fluorescence emitters. Chemical Engineering Journal, 2022, 433, 134423.	6.6	13
1175	Photoluminescence and electrochemiluminescence of thermally activated delayed fluorescence (TADF) emitters containing diphenylphosphine chalcogenide-substituted carbazole donors. Journal of Materials Chemistry C, 2022, 10, 4646-4667.	2.7	20
1176	Making organic light-emitting diodes sustainable—from metal-free emitters to less energy-intensive processing. , 2022, , 229-280.		0
1177	Simple Phenazineâ€Based Compounds Realizing Superior Multicolored Emission. Advanced Optical Materials, 2022, 10, .	3.6	4
1178	A Calix[3]acridanâ€Based Host–Guest Cocrystal Exhibiting Efficient Thermally Activated Delayed Fluorescence. Angewandte Chemie - International Edition, 2022, 61, .	7.2	44
1179	Efficient Narrowband Red Electroluminescence from a Thermally Activated Delayed Fluorescence Polymer and Quantum Dot Hybrid. Chemical Engineering Journal, 2022, , 135221.	6.6	5
1180	A Calix[3]acridanâ€Based Host–Guest Cocrystal Exhibiting Efficient Thermally Activated Delayed Fluorescence. Angewandte Chemie, 2022, 134, .	1.6	13
1181	Molecular Engineering Enables TADF Emitters Well Suitable for Nonâ€Doped OLEDs with External Quantum Efficiency of Nearly 30%. Advanced Functional Materials, 2022, 32, .	7.8	32
1182	2,3-Dicyanopyrazino phenanthroline enhanced charge transfer for efficient near-infrared thermally activated delayed fluorescent diodes. Chemical Engineering Journal, 2022, 436, 135080.	6.6	23
1183	Diazine-based thermally activated delayed fluorescence chromophores. Dyes and Pigments, 2022, 200, 110157.	2.0	22
1184	Manipulation of Triplet Excited States for Longâ€Lived and Efficient Organic Afterglow. Advanced Optical Materials, 2022, 10, .	3.6	34
1185	Increase the Molecular Length to Boost Horizontal Dipole Orientation for High-Efficiency Oleds. SSRN Electronic Journal, 0, , .	0.4	0
1186	Combining intrinsic (blue) and exciplex (green and orange-red) emissions of the same material (OCT) in white organic light-emitting diodes to realize high color quality with a CRI of 97. Journal of Materials Chemistry C, 2022, 10, 6654-6664.	2.7	6
1187	A triphenylacrylonitrile phenanthroimidazole cored butterfly shaped AIE chromophore for blue and HLCT sensitized fluorescent OLEDs. Journal of Materials Chemistry C, 2022, 10, 4342-4354.	2.7	19
1188	Research Progress of Red Thermally Activated Delayed Fluorescent Materials Based on Quinoxaline. Acta Chimica Sinica, 2022, 80, 359.	0.5	5

#	Article	IF	CITATIONS
1189	Thermally activated delayed fluorescence in luminescent cationic copper(<scp>i</scp>) complexes. RSC Advances, 2022, 12, 10653-10674.	1.7	14
1190	A New PEDOT Derivative for Efficient Organic Solar Cell with a Fill Factor of 0.80. Advanced Energy Materials, 2022, 12, .	10.2	52
1191	Theoretical Studies on the Photophysical Properties of the Ag(I) Complex for Thermally Activated Delayed Fluorescence Based on TD-DFT and Path Integral Dynamic Approaches. ACS Omega, 2022, 7, 7380-7392.	1.6	8
1192	Modulating Nonâ€Radiative Deactivation via Acceptor Reconstruction to Expand Highâ€Efficient Red Thermally Activated Delayed Fluorescent Emitters. Advanced Optical Materials, 2022, 10, .	3.6	11
1193	Thermally Activated Delayed Fluorescent Gain Materials: Harvesting Triplet Excitons for Lasing. Advanced Science, 2022, 9, e2200525.	5.6	30
1194	Ambipolar Selfâ€Host Functionalization Accelerates Blue Multiâ€Resonance Thermally Activated Delayed Fluorescence with Internal Quantum Efficiency of 100%. Advanced Materials, 2022, 34, e2110547.	11.1	85
1195	Determining the Energy Gap between the S ₁ and T ₁ States of Thermally Activated Delayed Fluorescence Molecular Systems Using Transient Fluorescence Spectroscopy. Journal of Physical Chemistry Letters, 2022, 13, 2507-2515.	2.1	12
1196	TADF molecules with ï€-extended acceptors for simplified high-efficiency blue and white organic light-emitting diodes. CheM, 2022, 8, 1705-1719.	5.8	34
1197	Conformational Engineering of Two-Coordinate Gold(I) Complexes: Regulation of Excited-State Dynamics for Efficient Delayed Fluorescence. ACS Applied Materials & Interfaces, 2022, 14, 13539-13549.	4.0	20
1198	Thermally Activated Delayed Fluorescent Dendrimers that Underpin Highâ€Efficiency Hostâ€Free Solutionâ€Processed Organic Lightâ€Emitting Diodes. Advanced Materials, 2022, 34, e2110344.	11.1	30
1199	Achieving Record Efficiency and Luminance for TADF Light-Emitting Electrochemical Cells by Dopant Engineering. ACS Applied Materials & Interfaces, 2022, 14, 17698-17708.	4.0	10
1200	Achieving 37.1% Green Electroluminescent Efficiency and 0.09 eV Full Width at Half Maximum Based on a Ternary Boronâ€Oxygenâ€Nitrogen Embedded Polycyclic Aromatic System. Angewandte Chemie, 0, , .	1.6	23
1201	The Root Causes of the Limited Electroluminescence Stability of Solution-Coated Versus Vacuum-Deposited Small-Molecule OLEDs: A Mini-Review. Frontiers in Chemistry, 2022, 10, 857551.	1.8	8
1202	Solutionâ€processed AIEgen NIR OLEDs with EQE Approaching 15 %. Angewandte Chemie - International Edition, 2022, 61, .	7.2	43
1203	Achieving 37.1% Green Electroluminescent Efficiency and 0.09 eV Full Width at Half Maximum Based on a Ternary Boronâ€Oxygenâ€Nitrogen Embedded Polycyclic Aromatic System. Angewandte Chemie - International Edition, 2022, 61, .	7.2	85
1204	Exciton Up-Conversion by Well-Distributed Carbon Quantum Dots in Luminescent Materials for an Efficient Organic Light-Emitting Diode. Nanomaterials, 2022, 12, 1174.	1.9	1
1205	Solutionâ€processed AIEgen NIR OLEDs with EQE Approaching 15 %. Angewandte Chemie, 2022, 134, .	1.6	5
1206	Stable organic light-emitting diodes based on thioxanthone derivative with shortened photoluminescence delayed lifetime. Organic Electronics, 2022, 104, 106490.	1.4	2

#	Article	IF	CITATIONS
1207	Theoretical perspective of relationship between molecular structure and luminescence properties for circularly polarized thermally activated delayed fluorescence. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 275, 121164.	2.0	6
1208	Controlling the conjugation extension inside acceptors for enhancing reverse intersystem crossing of red thermally activated delayed fluorescence emitters. Chemical Engineering Journal, 2022, 440, 135775.	6.6	9
1209	Highly efficient hybridized local and Charge-transfer (HLCT) Deep-blue electroluminescence with excellent molecular horizontal orientation. Chemical Engineering Journal, 2022, 440, 135911.	6.6	52
1210	From para to ortho: Incarnating conventional TADF molecules into AIE-TADF molecules for highly-efficient non-doped OLEDs. Chemical Engineering Journal, 2022, 442, 136219.	6.6	10
1211	Exciton harvesting in quasi-2D perovskite light-emitting diodes with an encapsulated thermally activated delayed fluorescence. Applied Physics Letters, 2021, 119, .	1.5	3
1212	Highly Efficient TADFâ€Type Organic Afterglow of Long Emission Wavelengths. Advanced Functional Materials, 2022, 32, .	7.8	50
1213	Chiral Conjugated Thermally Activated Delayed Fluorescent Polymers for Highly Efficient Circularly Polarized Polymer Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2022, 14, 1578-1586.	4.0	26
1214	Organic fluorophores that emit ultraviolet light in the aggregated state. Aggregate, 2022, 3, .	5.2	18
1215	Intense Organic Afterglow Enabled by Molecular Engineering in Dopant-Matrix Systems. ACS Applied Materials & Interfaces, 2022, 14, 1587-1600.	4.0	26
1216	A scaffold of thermally activated delayed fluorescent polymer dots towards aqueous electrochemiluminescence and biosensing applications. Analyst, The, 2022, 147, 2442-2451.	1.7	9
1217	Novel deep-blue hot exciton material for high-efficiency nondoped organic light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 6596-6602.	2.7	11
1218	Probing emission of a DNA-stabilized silver nanocluster from the sub-nanosecond to millisecond timescale in a single measurement. Chemical Science, 2022, 13, 5582-5587.	3.7	11
1219	Donor manipulation for constructing a pH sensing thermally activated delayed fluorescent probe to detect alkaliphiles. Talanta, 2022, 246, 123493.	2.9	5
1236	Regiochemistry of Donor Dendrons Controls the Performance of Thermally Activated Delayed Fluorescence Dendrimer Emitters for High Efficiency Solutionâ€Processed Organic Lightâ€Emitting Diodes. Advanced Science, 2022, 9, e2201470.	5.6	19
1237	Exceptional class of thermally activated delayed fluorescent emitters that display pure blue, near-IR, circularly polarized luminescence and multifunctional behaviour for highly efficient and stable OLEDs. Journal of Materials Chemistry C, 2022, 10, 8536-8583.	2.7	17
1238	Modulation of triplet-mediated emission from selenoxanthen-9-one-based D–A–D type emitters through tuning the twist angle to realize electroluminescence efficiency over 25%. Journal of Materials Chemistry C, 2022, 10, 7437-7442.	2.7	9
1239	BINOL blocks as accessible triplet state modulators in BODIPY dyes. Chemical Communications, 2022, 58, 6385-6388.	2.2	4
1240	Aggregation-induced emission luminogens for organic light-emitting diodes. , 2022, , 315-372.		Ο

#	Article	IF	CITATIONS
1241	Transition-Based Constrained DFT for the Robust and Reliable Treatment of Excitations in Supramolecular Systems. Journal of Chemical Theory and Computation, 2022, 18, 3027-3038.	2.3	2
1242	Comparative study of thermally activated delayed fluorescent properties of donor–acceptor and donor–acceptor–donor architectures based on phenoxazine and dibenzo[<i>a,j</i>]phenazine. Beilstein Journal of Organic Chemistry, 2022, 18, 459-468.	1.3	2
1243	Modulating the Carbonization Degree of Carbon Dots for Multicolor Afterglow Emission. ACS Applied Materials & amp; Interfaces, 2022, 14, 22363-22371.	4.0	33
1244	Blue Thermally Activated Delayed Fluorescence with Subâ€Microsecond Short Exciton Lifetimes: Acceleration of Triplet–Singlet Spin Interconversion via Quadrupolar Chargeâ€Transfer States. Advanced Optical Materials, 2022, 10, .	3.6	11
1245	Constructing Organic Electroluminescent Material with Very High Color Purity and Efficiency Based on Polycyclization of the Multiple Resonance Parent Core. Angewandte Chemie - International Edition, 2022, 61, .	7.2	66
1246	The effect of carrier transport layer on the electroluminescent properties of solutionâ€processed thermally activated delayed fluorescent device based on 4CzPN. Physica Status Solidi (B): Basic Research, 0, , .	0.7	1
1247	Constructing Organic Electroluminescent Material with Very High Color Purity and Efficiency Based on Polycyclization of Multiple Resonance Parent Core. Angewandte Chemie, 0, , .	1.6	10
1248	Substituent effect on TADF properties of 2-modified 4,6-bis(3,6-di- <i>tert</i> -butyl-9-carbazolyl)-5-methylpyrimidines. Beilstein Journal of Organic Chemistry, 0, 18, 497-507.	1.3	2
1249	Small dose of phosphorescent dopant enabling high efficiency and bright solution-processed sky-blue organic light-emitting diodes. Optical Materials, 2022, 128, 112278.	1.7	1
1250	High efficiency, ultra-low roll-offs in orange phosphorescent organic light-emitting devices using a novel exciplex system. Organic Electronics, 2022, 106, 106536.	1.4	2
1251	Post-synthesis of Lewis acid-base adducts as thermally activated delayed fluorescence radical emitters for color-tunable displays and encryption via inkjet printing. Chemical Engineering Journal, 2022, 444, 136642.	6.6	5
1252	Structurally modified [1,2,4]triazolo[1,5‑a]pyridine derivatives as promising materials for highly efficient blue fluorescent organic light-emitting diodes. Chemical Engineering Journal, 2022, 445, 136813.	6.6	15
1253	Theoretical insights into molecular design of hot-exciton based thermally activated delayed fluorescence molecules. Materials Advances, 2022, 3, 4954-4963.	2.6	12
1254	Increase the molecular length and donor strength to boost horizontal dipole orientation for high-efficiency OLEDs. Journal of Materials Chemistry C, 2022, 10, 9241-9248.	2.7	3
1255	Ultrafast Triplet–Singlet Exciton Interconversion in Narrowband Blue Organoboron Emitters Doped with Heavy Chalcogens. Angewandte Chemie, 2022, 134, .	1.6	16
1256	Reverse intersystem crossing accelerating assistant dopant for high efficiency and long lifetime in red hyperfluorescence organic light-emitting diodes. Chemical Engineering Journal, 2022, 446, 137181.	6.6	10
1257	Efficient circularly polarized photoluminescence and electroluminescence of chiral spiro-skeleton based thermally activated delayed fluorescence molecules. Science China Chemistry, 2022, 65, 1347-1355.	4.2	23
1258	The optical spectra of DMACâ€based molecules for organic lightâ€emitting diodes: Hybridâ€exchange density functional theory study. Journal of Physical Organic Chemistry, 2022, 35, .	0.9	2

#	Article	IF	CITATIONS
1259	Ultrafast Triplet–Singlet Exciton Interconversion in Narrowband Blue Organoboron Emitters Doped with Heavy Chalcogens. Angewandte Chemie - International Edition, 2022, 61, .	7.2	80
1260	Novel Deep Red Thermally Activated Delayed Fluorescence Molecule with Aggregation-Induced Emission Enhancement: Theoretical Design and Experimental Validation. Journal of Physical Chemistry Letters, 2022, 13, 4711-4720.	2.1	16
1261	Donor modification of thermally activated delayed fluorescence photosensitizers for organocatalyzed atom transfer radical polymerization. Polymer Chemistry, 2022, 13, 3892-3903.	1.9	5
1262	Molecular Engineering of Blue Diphenylsulfone-Based Emitter with Aggregation-Induced Emission and Thermally Activated Delayed Fluorescence Characteristics: Impairing Intermolecular Electron-Exchange Interactions Using Steric Hindrance. SSRN Electronic Journal, 0, , .	0.4	0
1263	A theoretical perspective of the relationship between the structures and luminescence properties of red thermally activated delayed fluorescence molecules. Physical Chemistry Chemical Physics, 2022, 24, 17140-17154.	1.3	6
1264	Theoretical studies on <scp>excitedâ€state</scp> properties and luminescence mechanism of a <scp>Carbene–Metal–Amide</scp> Au(I) complex with thermally activated delayed fluorescence. Journal of the Chinese Chemical Society, 2023, 70, 680-688.	0.8	1
1265	Carbazole or carbazole-3-carbonitrile /pyridine host materials for efficient solution-processable blue phosphorescent and green TADF OLEDs. Optical Materials, 2022, , 112573.	1.7	0
1266	Apply a TADF emitter with twist configuration for high-performance green OLEDs. Applied Physics Express, 2022, 15, 071012.	1.1	1
1267	Room-Temperature Phosphorescence of Pure Axially Chiral Bicarbazoles. Journal of Physical Chemistry Letters, 2022, 13, 5838-5844.	2.1	18
1268	Synergetic Insulation and Induction Effects Selectively Optimize Multiresonance Thermally Activated Delayed Fluorescence. Research, 2022, 2022, .	2.8	4
1269	Multiplying the efficiency of red thermally activated delayed fluorescence emitter by introducing intramolecular hydrogen bond. Chemical Engineering Journal, 2022, 448, 137717.	6.6	12
1270	Constructing high-performance TADF polymers from non-TADF monomers: a computational investigation. Physical Chemistry Chemical Physics, 2022, 24, 17686-17694.	1.3	6
1271	Novel D–A chromophores with condensed 1,2,4-triazine system simultaneously display thermally activated delayed fluorescence and crystallization-induced phosphorescence. Physical Chemistry Chemical Physics, 2022, 24, 17770-17781.	1.3	6
1272	Organic radical emitters: nature of doublet excitons in emissive layers. Physical Chemistry Chemical Physics, 2022, 24, 16891-16899.	1.3	7
1273	Near-infrared thermally activated delayed fluorescence of D–π-A–π-D difluoroboron complex for efficient singlet oxygen generation in aqueous media. Inorganic Chemistry Frontiers, 2022, 9, 4281-4287.	3.0	10
1274	A dual rigid donor and acceptor enabling red thermally activated delayed fluorescence emitters for efficient OLEDs with low efficiency roll-off. Journal of Materials Chemistry C, 2022, 10, 10255-10261.	2.7	9
1275	Acceptor modulation for improving thermally activated delayed fluorescence emitter in through-space charge transfer on spiroskeletons. Chinese Chemical Letters, 2023, 34, 107634.	4.8	5
1276	Delayed Fluorescence by Triplet–Triplet Annihilation from Columnar Liquid Crystal Films. ACS Applied Electronic Materials, 2022, 4, 3486-3494.	2.0	2

#	Article	IF	CITATIONS
1277	Acceptor Interlocked Molecular Design for Solutionâ€Processed Stable Deepâ€Blue TADF and Hyper Fluorescence Organic LED Enabling Highâ€Efficiency. Advanced Optical Materials, 2022, 10, .	3.6	14
1278	Multipleâ€Resonance Extension and Spinâ€Vibronicâ€Couplingâ€Based Narrowband Blue Organic Fluorescence Emitters with Over 30% Quantum Efficiency. Advanced Materials, 2022, 34, .	11.1	51
1279	Excited State Properties of Aggregationâ€Induced Delayed Fluorescence Molecules: A Microscopic Insight. Advanced Optical Materials, 2022, 10, .	3.6	2
1280	Post-synthesis from Lewis acid–base interaction: an alternative way to generate light and harvest triplet excitons. Beilstein Journal of Organic Chemistry, 0, 18, 825-836.	1.3	1
1281	Interfacial Exciplex Host to Release Interfacial Accumulated Charges for Highly Efficient and Bright Solutionâ€Processed White Organic Lightâ€Emitting Diodes. Advanced Materials Interfaces, 2022, 9, .	1.9	2
1282	Novel <i>Ortho</i> â€Linkage Donorâ€Acceptor Type Host Materials for Efficiently Red Phosphorescence Organic Lightâ€Emitting Diodes. ChemistrySelect, 2022, 7, .	0.7	5
1283	Recent Progress of Novel Organic Nearâ€Infraredâ€Emitting Materials. Small Science, 2022, 2, .	5.8	15
1284	Timeâ€Resolved Luminescent Sensing and Imaging for Enzyme Catalytic Activity Based on Responsive Probes. Chemistry - an Asian Journal, 2022, 17, .	1.7	2
1285	Modeling of Multiresonant Thermally Activated Delayed Fluorescence Emitters─Properly Accounting for Electron Correlation Is Key!. Journal of Chemical Theory and Computation, 2022, 18, 4903-4918.	2.3	32
1286	Enhanced performance in solution-processed blue emission layer of organic light-emitting diodes with an alcohol soluble amphiphilic polymer as the hole modify layer. Synthetic Metals, 2022, 289, 117122.	2.1	4
1287	Mononuclear Cu(I) halide complexes with two thiophenyl rings triphosphine: Structure and photophysical properties. Journal of Luminescence, 2022, 250, 119098.	1.5	3
1288	Dual-Mode White Light Emissions from a Single Copolymer with an Ultralong Phosphorescence Lifetime. ACS Applied Polymer Materials, 2022, 4, 5638-5647.	2.0	6
1289	Benchmarking time-dependent density functional theory for singlet excited states of thermally activated delayed fluorescence chromophores. Physical Review Research, 2022, 4, .	1.3	10
1290	Thermally Activated Delayed Fluorescence of a Dinuclear Platinum(II) Compound: Mechanism and Roles of an Upper Triplet State. Chemistry - A European Journal, 2022, 28, .	1.7	7
1291	All-Visible (>500 nm)-Light-Induced Diarylethene Photochromism Based on Multiplicity Conversion via Intramolecular Energy Transfer. Journal of Physical Chemistry Letters, 2022, 13, 7429-7436.	2.1	6
1292	Distinctive Excited State Symmetry Breaking Dynamics in Typical Donor–Acceptor–Donor Fluorophore: Strong Photoluminescence and Ultrafast Charge Separation from a Partial Charge Transfer State. Journal of Physical Chemistry Letters, 2022, 13, 7547-7552.	2.1	4
1293	Ultrapure Blue Thermally Activated Delayed Fluorescence (TADF) Emitters Based on Rigid Sulfur/Oxygen-Bridged Triarylboron Acceptor: MR TADF and D–A TADF. Journal of Physical Chemistry Letters, 2022, 13, 7561-7567.	2.1	21
1294	Diabatic Decomposition Perspective on the Role of Charge Transfer and Local Excitations in Thermally Activated Delayed Fluorescence. Journal of Chemical Theory and Computation, 2022, 18, 5459-5470.	2.3	5

#	Article	IF	CITATIONS
1295	Carbon dots-based delayed fluorescent materials: Mechanism, structural regulation and application. IScience, 2022, 25, 104884.	1.9	17
1296	Dipyrido[3,2-a:2′,3′-c]phenazine acceptor based thermally activated delayed fluorescence emitters. Dyes and Pigments, 2022, 206, 110634.	2.0	2
1297	Solvent-induced polymorphism, thermally activated delayed fluorescence, and mechanochromic luminescence of a single compound. Dyes and Pigments, 2022, 206, 110605.	2.0	1
1298	Efficient deep-blue electroluminescent devices based on a novel β-diketone zinc complex. Inorganica Chimica Acta, 2022, 542, 121134.	1.2	2
1299	Molecular design of blue thermally activated delayed fluorescent emitters for high efficiency solution processable OLED via an intramolecular locking strategy. Chemical Engineering Journal, 2022, 450, 138459.	6.6	11
1300	Boron, sulfur-doped polycyclic aromatic hydrocarbon emitters with multiple-resonance-dominated lowest excited states for efficient narrowband deep-blue emission. Chemical Engineering Journal, 2023, 451, 138545.	6.6	15
1301	Lighting up Micro-/Nanorobots with Fluorescence. Chemical Reviews, 2023, 123, 3944-3975.	23.0	33
1302	Molecular engineering of blue diphenylsulfone-based emitter with aggregation-enhanced emission and thermally activated delayed fluorescence characteristics: impairing intermolecular electron-exchange interactions using steric hindrance. Chemical Engineering Journal, 2023, 452, 138957.	6.6	7
1303	Synthesis and excited state modulation of organic blue light emitters based on 2,4,6-triphenyl-1,3,5-triazine and carbazole derivatives through <i>ortho</i> -positioned linking models. New Journal of Chemistry, 2022, 46, 16121-16129.	1.4	2
1304	Thermochromic properties of acridine heterocyclic derivatives with a donor–acceptor configuration. New Journal of Chemistry, 2022, 46, 18815-18823.	1.4	2
1305	Construction and performance of OLED devices prepared from liquid-crystalline TADF materials. Physical Chemistry Chemical Physics, 2022, 24, 22115-22121.	1.3	2
1306	Visible-emitting Cu(<scp>i</scp>) complexes with <i>N</i> -functionalized benzotriazole-based ligands. New Journal of Chemistry, 2022, 46, 18938-18951.	1.4	3
1307	Mechanism of high photoluminescence quantum yield of melem. Physical Chemistry Chemical Physics, 2022, 24, 23602-23611.	1.3	4
1308	Probing disorder in 2CzPN using core and valence states. Physical Chemistry Chemical Physics, 2022, 24, 23329-23339.	1.3	1
1309	Recent progress in imidazole based efficient near ultraviolet/blue hybridized local charge transfer (HLCT) characteristic fluorophores for organic light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 16173-16217.	2.7	23
1310	Achieving highly efficient narrowband sky-blue electroluminescence with alleviated efficiency roll-off by molecular-structure regulation and device-configuration optimization. Journal of Materials Chemistry C, 2022, 10, 15408-15415.	2.7	14
1311	A novel thermally activated delayed fluorescence macrocycle. Chemical Communications, 0, , .	2.2	6
1312	Phenanthrene-based deep-blue fluorophores with balanced carrier transport ability for high-performance OLEDs with a CIE _{<i>y</i>} < 0.04. Journal of Materials Chemistry C, 2022, 10, 14711-14721.	2.7	9

#	Article	IF	CITATIONS
1313	A Simple Molecular Design Towards the Conversion of a MCL Backbone to a Multifunctional Emitter Exhibiting Polymorphism, AIE, TADF and MCL. SSRN Electronic Journal, 0, , .	0.4	0
1314	Green-/NIR-light-controlled rapid photochromism featuring reversible thermally activated delayed fluorescence and photoelectronic switching. Chemical Science, 2022, 13, 9381-9386.	3.7	26
1315	Turning conventional non-TADF units into high-lying reverse intersystem crossing TADF emitters: different symmetric D–A–D-type modified donor units. New Journal of Chemistry, 2022, 46, 15168-15174.	1.4	1
1316	Recent advances of NIR-TADF (<i>λ</i> maxPL/EL > 700 nm) emitters and their applications in OLEDs. Journal of Materials Chemistry C, 2022, 10, 15681-15707.	2.7	14
1317	Achieving over 36% EQE in blue OLEDs using rigid TADF emitters based on spiro-donor and spiro-B-heterotriangulene acceptors. Chemical Engineering Journal, 2023, 452, 139387.	6.6	16
1318	Assembly of a Heterotrimetallic Zn ₂ Dy ₂ Ir Pentanuclear Complex toward Multifunctional Molecular Materials. Inorganic Chemistry, 2022, 61, 14275-14281.	1.9	6
1319	Trigonal Copper(I) Complexes with Cyclic (Alkyl)(amino)carbene Ligands for Single-Photon Near-IR Triplet Emission. Inorganic Chemistry, 2022, 61, 14833-14844.	1.9	12
1320	Predicting and Designing Thermally Activated Delayed Fluorescence Molecules with Balanced Δ <i>E</i> _{ST} and Transition Dipole Moment. Advanced Theory and Simulations, 2022, 5, .	1.3	5
1321	Ag ₂₂ Nanoclusters with Thermally Activated Delayed Fluorescence Protected by Ag/Cyanurate/Phosphine Metallamacrocyclic Monolayers through Inâ€Situ Ligand Transesterification. Angewandte Chemie, 2022, 134, .	1.6	1
1322	Theoretical perspective for the relationship between molecular structures and circularly polarised thermally activated delayed fluorescence properties. Molecular Physics, 0, , .	0.8	0
1323	Ag ₂₂ Nanoclusters with Thermally Activated Delayed Fluorescence Protected by Ag/Cyanurate/Phosphine Metallamacrocyclic Monolayers through In‣itu Ligand Transesterification. Angewandte Chemie - International Edition, 2022, 61, .	7.2	21
1324	Thermally activated delayed fluorescence (TADF) emitters: sensing and boosting spin-flipping by aggregation. Beilstein Journal of Organic Chemistry, 0, 18, 1177-1187.	1.3	3
1325	A Highly Twisted Carbazoleâ€Fused DABNA Derivative as an Orangeâ€Red TADF Emitter for OLEDs with Nearly 40 % EQE. Angewandte Chemie - International Edition, 2022, 61, .	7.2	61
1326	A Highly Twisted Carbazoleâ€Fused DABNA Derivative as an Orangeâ€Red TADF Emitter for OLEDs with Nearly 40 % EQE. Angewandte Chemie, 2022, 134, .	1.6	9
1327	Narrowband Emissive Thermally Activated Delayed Fluorescence Materials. Advanced Optical Materials, 2022, 10, .	3.6	145
1328	Transient Absorption Spectroscopy of a Carbazole-Based Room-Temperature Phosphorescent Molecule: Real-Time Monitoring of Singlet–Triplet Transitions. Journal of Physical Chemistry Letters, 2022, 13, 9381-9389.	2.1	14
1329	Triplet–triplet sensitizing within pyrene-based COO-BODIPY: a breaking molecular platform for annihilating photon upconversion. Physical Chemistry Chemical Physics, 2022, 24, 27441-27448.	1.3	2
1330	New <i>m</i> -MTDATA skeleton-based hole transporting materials for multi-resonant TADF OLEDs. Physical Chemistry Chemical Physics, 2022, 24, 27847-27855.	1.3	6

#	Article	IF	CITATIONS
1331	Efficient deep red/near-infrared thermally activated delayed fluorescence emitters <i>via</i> molecular reconstruction: theoretical insights. Physical Chemistry Chemical Physics, 2022, 24, 26764-26775.	1.3	4
1332	Recent Advances in Structural Design of Efficient Nearâ€Infrared Lightâ€Emitting Organic Small Molecules. Advanced Functional Materials, 2023, 33, .	7.8	21
1333	Design of Thermally Activated Delayed Fluorescence Materials with High Intersystem Crossing Efficiencies by Machine Learning-Assisted Virtual Screening. Journal of Physical Chemistry Letters, 2022, 13, 9910-9918.	2.1	7
1334	Donor–Acceptor Type of Fused-Ring Thermally Activated Delayed Fluorescence Compounds Constructed through an Oxygen-Containing Six-Membered Ring. ACS Applied Materials & Interfaces, 2022, 14, 47971-47980.	4.0	5
1335	Modified Intramolecular‣ock Strategy Enables Efficient Thermally Activated Delayed Fluorescence Emitters for Nonâ€Đoped OLEDs. Angewandte Chemie, 2022, 134, .	1.6	2
1336	A Thermally Activated Delayed Fluorescence Emitter Investigated by Timeâ€Resolved Nearâ€Infrared Spectroscopy. Chemistry - A European Journal, 2023, 29, .	1.7	4
1337	A simple molecular design towards the conversion of a MCL backbone to a multifunctional emitter exhibiting polymorphism, AIE, TADF and MCL. Heliyon, 2022, 8, e11221.	1.4	2
1338	Carbonyl ontaining Thermally Activated Delayed Fluorescence Emitters for Narrowâ€Band Electroluminescence. Chemistry - A European Journal, 2023, 29, .	1.7	19
1339	Multiplying Phosphineâ€Oxide Orientation to Enable Ultralowâ€Voltageâ€Driving Simple White Thermally Activated Delayed Fluorescence Diodes with Power Efficiency over 100ÂlmÂW ^{â^'1} . Advanced Functional Materials, 2022, 32, .	7.8	7
1340	Modified Intramolecular‣ock Strategy Enables Efficient Thermally Activated Delayed Fluorescence Emitters for Nonâ€Doped OLEDs. Angewandte Chemie - International Edition, 2022, 61, .	7.2	22
1341	High-efficiency circularly polarized emission from liquid-crystalline platinum complexes. Chinese Chemical Letters, 2023, 34, 107934.	4.8	15
1342	Studies on Annihilation and Coreactant Electrochemiluminescence of Thermally Activated Delayed Fluorescent Molecules in Organic Medium. Molecules, 2022, 27, 7457.	1.7	5
1343	Precise Functionalization of a Multipleâ€Resonance Framework: Constructing Narrowband Organic Electroluminescent Materials with External Quantum Efficiency over 40%. Advanced Materials, 2023, 35, .	11.1	50
1344	Donor or Acceptor: Molecular Engineering Based on dibenzo[a,c]phenazine Backbone for Highly Efficient Thermallyâ€Activated Delayed Fluorescence Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2023, 11, .	3.6	8
1346	The effect of electron donor and acceptor conformations on thermally activated delayed fluorescence. Organic Electronics, 2022, 111, 106657.	1.4	3
1347	Construction of stable luminescent donor–acceptor neutral radicals: a theoretical study. Journal of Materials Chemistry C, 2022, 10, 18343-18350.	2.7	4
1348	Modulating up-conversion and non-radiative deactivation to achieve efficient red thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 0, , .	2.7	0
1349	Efficient TADF from carbonâ^'carbon bonded donorâ^'acceptor molecules based on boron-carbonyl hybrid acceptor. Dyes and Pigments, 2023, 209, 110937.	2.0	3

#	Article	IF	CITATIONS
1350	Double boron-embedded multiresonant thermally activated delayed fluorescent materials for organic light-emitting diodes. Communications Chemistry, 2022, 5, .	2.0	53
1351	Controllable construction of red thermally activated delayed fluorescence molecules based on a spiro-acridine donor. Physical Chemistry Chemical Physics, 2023, 25, 1032-1044.	1.3	5
1352	Modulating the peripheral large steric hindrance of iridium complexes for achieving narrowband emission and pure red OLEDs with an EQE up to 32.0%. Inorganic Chemistry Frontiers, 2023, 10, 1018-1026.	3.0	9
1353	Achieving long-lived room-temperature phosphorescence via charge transfer technology and dopant-matrix design strategy. Dyes and Pigments, 2023, 210, 110984.	2.0	4
1354	Theoretical study on thermally activated delayed fluorescent molecules based on space charge transfer. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 288, 122131.	2.0	1
1355	White Fluorescent Organic Light-Emitting Diodes with 100% Power Conversion. Research, 2022, 2022, .	2.8	1
1356	Polymer-Based TADF-Type Organic Afterglow. Journal of Physical Chemistry C, 2022, 126, 20728-20738.	1.5	5
1357	Asymmetric intramolecular charge transfer enables highly efficient red thermally activated delayed fluorescent emitters. Chemical Engineering Journal, 2023, 457, 141061.	6.6	6
1358	Contradictory Role of Locally-Excited Triplet States in Blue Thermally Activated Delayed Fluorescence of <i>s</i> -Triazine-Based Emitters. Journal of Physical Chemistry C, 2023, 127, 358-367.	1.5	1
1359	Switching the Luminescence between TADF and RTP for Organic Dâ€Aâ€D Emitters: The Role of Dâ€A Connection Modes. Advanced Theory and Simulations, 0, , 2200725.	1.3	1
1360	Oxygenâ€Insensitive Delayed Fluorescence Based on Singlet Manifold. Advanced Optical Materials, 0, , 2202413.	3.6	0
1361	Achieving Efficient Solutionâ€Processed Blue Narrowband Emitting OLEDs with Small Efficiency Rollâ€Off by Using a Bulky TADF Sensitizer with High Reverse Intersystem Crossing Rate. Advanced Optical Materials, 2023, 11, .	3.6	9
1362	Advanced charge transfer technology for highly efficient and long-lived TADF-type organic afterglow with near-infrared light-excitable property. Science China Chemistry, 2023, 66, 1120-1131.	4.2	18
1363	Solution processable carbazole-benzophenone derivatives as bipolar hosts enabling high-efficiency stable green TADF organic LEDs. Journal of Materials Chemistry C, 2023, 11, 1579-1592.	2.7	4
1364	Isomeric thermally activated delayed fluorescence emitters for highly efficient organic light-emitting diodes. Chemical Science, 2023, 14, 1551-1556.	3.7	12
1365	Theoretical insights on the luminescent mechanism of a highly efficient green-activated delayed fluorescence emitter using the QM/MM method. Molecular Physics, 2023, 121, .	0.8	2
1366	TADF Invariant of Host Polarity and Ultralong Fluorescence Lifetimes in a Donorâ€Acceptor Emitter Featuring a Hybrid Sulfoneâ€Triarylboron Acceptor**. Angewandte Chemie, 2023, 135, .	1.6	0
1367	Manipulation of Organic Afterglow in Fluorantheneâ€Containing Dopantâ€Matrix Systems: From Conventional Roomâ€Temperature Phosphorescence to Efficient Red TADFâ€Type Organic Afterglow. Chemistry - A European Journal, 2023, 29, .	1.7	7

#	Article	IF	CITATIONS
1368	TADF Invariant of Host Polarity and Ultralong Fluorescence Lifetimes in a Donorâ€Acceptor Emitter Featuring a Hybrid Sulfoneâ€Triarylboron Acceptor**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	13
1369	Macrocycleâ€Based Crystalline Supramolecular Assemblies Built with Intermolecular Chargeâ€Transfer Interactions. Angewandte Chemie - International Edition, 2023, 62, .	7.2	18
1370	Macrocycleâ€Based Crystalline Supramolecular Assemblies Built with Intermolecular Chargeâ€Transfer Interactions. Angewandte Chemie, 0, , .	1.6	4
1371	Interplay of molecular dynamics and radiative decay of a TADF emitter in a glass-forming liquid. Physical Chemistry Chemical Physics, 2023, 25, 3151-3159.	1.3	2
1372	Spiral donor-based host materials for highly efficient blue thermally activated delayed fluorescence OLEDs. Chemical Engineering Journal, 2023, 458, 141416.	6.6	2
1373	Efficient organic deep-red to near-infrared light emitters based on boron difluoride curcuminoid derivatives. Dyes and Pigments, 2023, 211, 111064.	2.0	0
1374	New Fields, New Opportunities and New Challenges: Circularly Polarized Multiple Resonance Thermally Activated Delayed Fluorescence Materials. Chemistry - A European Journal, 2023, 29, .	1.7	12
1375	Control of Fluorescence of Organic Dyes in the Solid-State by Supramolecular Interactions. Journal of Fluorescence, 2023, 33, 799-847.	1.3	7
1376	Theoretical Studies on Thermally Activated Delayed Fluorescence Mechanism of Au(III) Complexes in Films: Insights from Quantum Mechanics/Molecular Mechanics Simulations. Journal of Physical Chemistry C, 2023, 127, 672-681.	1.5	4
1377	Role of the Intramolecular‣ocking Strategy in the Construction of Organic Thermally Activated Delayed Fluorescence Emitters with Rotationâ€Restricted Acceptors. Advanced Optical Materials, 2023, 11, .	3.6	9
1378	Rational Molecular Design Strategy for High-Efficiency Ultrapure Blue TADF Emitters: Symmetrical and Rigid Sulfur-Bridged Boron-Based Acceptors. ACS Applied Materials & Interfaces, 2023, 15, 5529-5537.	4.0	7
1379	Locally Excited States Guided Enhancement in Reverse Intersystem Crossing Rate in Unconventional Acceptor-free Thermally Activated Delayed Emitters. Journal of Physical Chemistry C, 2023, 127, 2398-2406.	1.5	2
1380	Effect of void-carbon on blue-shifted luminescence in TADF molecules by theoretical simulations. Frontiers in Chemistry, 0, 11, .	1.8	1
1381	Enhanced tripletâ€triplet annihilation upconversion luminescence through conformational restriction based on donorâ€acceptorâ€heavy atom molecules. ChemPhotoChem, 0, , .	1.5	2
1382	Recent advances in n-type and ambipolar organic semiconductors and their multi-functional applications. Chemical Society Reviews, 2023, 52, 1331-1381.	18.7	49
1383	Efficient thermally activated delayed fluorescence emitters with regioisomeric effects for red/near-infrared organic light-emitting diodes. Materials Chemistry Frontiers, 2023, 7, 1633-1641.	3.2	5
1384	Dual stimuli-responsive phosphorescence of a Pb(<scp>ii</scp>) coordination polymer to acidic vapors and thermal treatment. Dalton Transactions, 2023, 52, 2209-2213.	1.6	2
1385	Halogenated Thermally Activated Delayed Fluorescence Materials for Efficient Scintillation. Research, 2023, 6, .	2.8	4

#	Article	IF	CITATIONS
1386	Multiple charge-transfer excited state induced efficient and stable thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2023, 11, 4210-4218.	2.7	1
1387	Thermally activated delayed fluorescence of a Ir(<scp>iii</scp>) complex: absorption and emission properties, nonradiative rates, and mechanism. Physical Chemistry Chemical Physics, 2023, 25, 6454-6460.	1.3	8
1388	Constructing an efficient deep-blue TADF emitter by host-guest interactions towards solution-processed OLEDs with narrowband emission. Science China Chemistry, 0, , .	4.2	2
1389	Design and Synthesis of Asymmetric Au(III) Complexes Exhibiting Bright Anisotropic Emission for Highâ€Performance Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 0, , 2202519.	3.6	1
1390	Axially chiral TADF-active materials with ï€-extended acceptors for highly efficient circularly polarized electroluminescence. Chemical Engineering Journal, 2023, 462, 142123.	6.6	9
1391	Phosphorescent organic light-emitting devices: Iridium based emitter materials – An overview. Coordination Chemistry Reviews, 2023, 483, 215100.	9.5	13
1392	A survey of the structure, fabrication, and characterization of advanced organic light emitting diodes. Microelectronics Reliability, 2023, 144, 114959.	0.9	8
1393	Substituent effect on anthracene-benzophenone triad system: Photophysical properties and application to OLEDs with "hot-exciton―characteristics. Dyes and Pigments, 2023, 213, 111171.	2.0	5
1394	Improved device efficiency and lifetime of green thermally activated delayed fluorescence materials with multiple donors and cyano substitution. Dyes and Pigments, 2023, 214, 111200.	2.0	5
1395	Thermally activated delayed fluorescent small molecule sensitized fluorescent polymers with reduced concentration-quenching for efficient electroluminescence. Frontiers of Optoelectronics, 2023, 16, .	1.9	1
1396	Highly efficient non-doped organic light-emitting diodes based on long-range coupling and efficient energy transfer. Organic Electronics, 2023, 116, 106774.	1.4	1
1397	The design of push-pull substituted coronene molecules for optoelectronic applications. Materials Chemistry and Physics, 2023, 301, 127631.	2.0	1
1398	Design, synthesis, and electroluminescence of red TADF dyes based on cyanophenanthrene. Dyes and Pigments, 2023, 212, 111125.	2.0	3
1399	Recent Developments on Understanding Charge Transfer in Molecular Electron Donorâ€Acceptor Systems. Angewandte Chemie - International Edition, 2023, 62, .	7.2	19
1400	Recent Developments on Understanding Charge Transfer in Molecular Electron Donorâ€Acceptor Systems. Angewandte Chemie, 2023, 135, .	1.6	3
1401	Derivatives of Pyridazine with Phenoxazine and 9,9-Dimethyl-9,10-dihydroacridine Donor Moieties Exhibiting Thermally Activated Delayed Fluorescence. Materials, 2023, 16, 1294.	1.3	Ο
1402	The photophysics of distorted nanographenes: Ultra-slow relaxation dynamics, memory effects, and delayed fluorescence. Carbon, 2023, 206, 45-52.	5.4	1
1403	Recent Advances in Triplet–Triplet Annihilation-Based Materials and Their Applications in Electroluminescence. , 2023, 5, 822-845.		19

#	Article	IF	CITATIONS
1404	Merging thermally activated delayed fluorescence and two-photon ionization mechanisms for highly efficient and ultralong-lived organic afterglow. Chemical Engineering Journal, 2023, 460, 141916.	6.6	7
1405	Extending Anisotropy Dynamics of Lightâ€Emitting Dipoles as Necessary Condition Toward Developing Highlyâ€Efficient OLEDs. Advanced Optical Materials, 2023, 11, .	3.6	8
1406	Improving the TADF in Corannuleneâ€Based Emitters via Tuning the Strength of Donor and Acceptor Groups. Advanced Theory and Simulations, 2023, 6, .	1.3	0
1407	Helically Chiral Donor–Acceptor Double Hetero[4]helicenes with Circularly Polarized Thermally Activated Delayed Fluorescence. Advanced Optical Materials, 2023, 11, .	3.6	9
1408	Thermally Activated Delayed Fluorescence Driven by Conformation Distortion-Coupled Intramolecular Charge Transfer of Anthraquinone Derivatives. Journal of Physical Chemistry C, 2023, 127, 4784-4791.	1.5	1
1409	Multiple Charge Transfer Processes Enable Blue Emitter for Highly Efficient OLEDs. Advanced Optical Materials, 2023, 11, .	3.6	8
1410	Integrating Asymmetric Oâ^'Bâ^'N Unit in Multiâ€Resonance Thermally Activated Delayed Fluorescence Emitters towards Highâ€Performance Deepâ€Blue Organic Lightâ€Emitting Diodes. Angewandte Chemie, 2023, 135, .	1.6	0
1411	Rational design of phenanthroimidazole derivatives with hybridized local and charge-transfer characteristics to achieve efficient blue emission in non-doped OLEDs. Journal of Materials Chemistry C, 2023, 11, 4456-4465.	2.7	5
1412	Integrating Asymmetric Oâ^'Bâ^'N Unit in Multiâ€Resonance Thermally Activated Delayed Fluorescence Emitters towards Highâ€Performance Deepâ€Blue Organic Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2023, 62, .	7.2	26
1413	Theoretical insights into luminescence mechanism of Naphthyridine-based thermally activated delayed fluorescence emitter with aggregation-induced emission. Chemical Physics Letters, 2023, 817, 140407.	1.2	3
1414	Narrowband emission: organic thermally-activated delayed fluorescence materials and underlying mechanisms. Materials Chemistry Frontiers, 2023, 7, 2809-2827.	3.2	12
1415	Unexpected Quasiâ€Axial Conformer in Thermally Activated Delayed Fluorescence DMACâ€TRZ, Pushing Green OLEDs to Blue. Advanced Functional Materials, 2023, 33, .	7.8	13
1416	Fine tuning of donorâ€acceptor structures in fusedâ€carbazole containing thermally activated delayed fluorescence materials towards highâ€efficiency <scp>OLEDs</scp> . Chinese Journal of Chemistry, 0, , .	2.6	0
1417	Regulating through space charge transfer in thermally activated delayed fluorescence molecules <i>via</i> donor architectures: theoretical perspective and molecular design. Physical Chemistry Chemical Physics, 2023, 25, 10977-10990.	1.3	3
1418	Luminescence and Palladium: The Odd Couple. Molecules, 2023, 28, 2663.	1.7	6
1419	Impact of ï€-Expanded Boron-Carbonyl Hybrid Acceptors on TADF Properties: Controlling Local Triplet Excited States and Unusual Emission Tuning. ACS Applied Materials & Interfaces, 2023, 15, 15758-15767.	4.0	3
1420	Long Persistent Luminescence from Metal–Organic Compounds: State of the Art. Advanced Functional Materials, 2023, 33, .	7.8	62
1421	An Effective Approach toward Yellowâ€toâ€Orange Multiâ€Resonance TADF Emitters by Integrating Strong Electron Donor into B/Nâ€Based Polycyclic Architecture: High Performance OLEDs with Nearly 40% EQE. Advanced Functional Materials, 2023, 33, .	7.8	27

#	Article	IF	CITATIONS
1422	Roles of Molecular Spatial Arrangement in Exciton Energy Transfer in Organic Light-Emitting Diodes: A Theoretical Study. Journal of Physical Chemistry C, 2023, 127, 5950-5957.	1.5	0
1423	Red-shift emission and rapid up-conversion of B,N-containing electroluminescent materials <i>via</i> tuning intramolecular charge transfer. Materials Chemistry Frontiers, 2023, 7, 2454-2463.	3.2	13
1424	Multiple resonance induced thermally activated delayed fluorescence: effect of chemical modification. Electronic Structure, 2023, 5, 014010.	1.0	1
1425	Design of Intramolecular Dihedral Angle between Electronic Donor and Acceptor in Thermally Activated Delayed Fluorescence Molecules. Journal of Physical Chemistry Letters, 2023, 14, 3335-3342.	2.1	1
1426	Through-Space Charge-Transfer Thermally Activated Delayed Fluorescence Alternating Donor–Acceptor Copolymers for Nondoped Solution-Processable OLEDs. Macromolecules, 2023, 56, 2686-2699.	2.2	2
1427	Solutionâ€processed highâ€performance organic lightâ€emitting diodes containing a greenâ€emitting multiresonant thermally activated delayed fluorescent dendrimer. Journal of the Society for Information Display, 0, , .	0.8	2
1428	Dibenzo[<i>b,d</i>]furan/thiophene-fused double boron-based multiresonance emitters with narrowband ultrapure green electroluminescence. Chemical Communications, 2023, 59, 5126-5129.	2.2	6
1429	Hole-transport-layer-free CdSe/ZnS core/shell red quantum-dot light-emitting diodes sensitized by TADF polymers. Materials Chemistry Frontiers, 0, , .	3.2	0
1430	Triazolotriazine-based mixed host for pure-red phosphorescent organic light-emitting diodes exhibiting ultra-low efficiency roll-off. Chemical Engineering Journal, 2023, 466, 142910.	6.6	4
1431	A binaphthalimide motif as a chiral scaffold for thermally activated delayed fluorescence with circularly polarized luminescence activity. Journal of Materials Chemistry C, 0, , .	2.7	1
1432	Molecular engineering of locked alkyl aryl carbonyl-based thermally activated delayed fluorescence emitters <i>via</i> a cascade C–H activation process. Chemical Science, 2023, 14, 5125-5131.	3.7	2
1433	Exploring the Influence of Engineering the Linker between the Donor and Acceptor Fragments on Thermally Activated Delayed Fluorescence Characteristics. ACS Omega, 2023, 8, 15638-15649.	1.6	2
1434	Stable Thermally Activated Delayed Fluorescence‣ensitized Red Fluorescent Devices through Physical Suppression of Dexter Energy Transfer. Advanced Materials Interfaces, 2023, 10, .	1.9	4
1454	Recent advances and prospects for organoboron-based thermally activated delayed fluorescence emitters. Materials Chemistry Frontiers, 2023, 7, 4420-4444.	3.2	5
1463	Thermally activated delayed fluorescence. , 2023, , 293-310.		0
1482	Integrating the atomically separated frontier molecular orbital distribution of two multiple resonance frameworks through a single bond for high-efficiency narrowband emission. Materials Horizons, 2023, 10, 4224-4231.	6.4	2
1483	Visible-light-excitable aqueous afterglow exhibiting long emission wavelength and ultralong afterglow lifetime of 7.64 s. Chemical Communications, 2023, 59, 10500-10503.	2.2	6
1514	Solution-processable host materials. , 2024, , 175-232.		0

0

#	Article	IF	CITATIONS
1533	Exciplex-forming Systems for High Efficiency OLEDs. , 2023, , .		0
1558	Acceptor–donor–acceptor based thermally activated delayed fluorescent materials: structure–property insights and electroluminescence performances. Materials Chemistry Frontiers, 0, , .	3.2	1
1569	Visualizing and characterizing excited states from time-dependent density functional theory. Physical Chemistry Chemical Physics, 2024, 26, 3755-3794.	1.3	2
1575	A fluorene-bridged double carbonyl/amine multiresonant thermally activated delayed fluorescence emitter for efficient green OLEDs. Chemical Communications, 2024, 60, 2489-2492.	2.2	0
1586	Heptagonal intramolecular-lock strategy enables high-performance thermally activated delayed fluorescence emitters. Science China Chemistry, 0, , .	4.2	0
1589	Recent advances in highly-efficient near infrared OLED emitters. Materials Chemistry Frontiers, 2024, 8, 1731-1766.	3.2	0

1612 Luminescent organic radicals toward breakthrough of organic optoelectronics. , 2024, , 183-209.