Breast cancer cells condition lymphatic endothelial cell promote metastasis

Nature Communications 5, 4715 DOI: 10.1038/ncomms5715

Citation Report

#	Article	IF	CITATIONS
1	The single N-glycan deletion mutant of soluble ErbB3 protein attenuates heregulin β1-induced tumor progression by blocking of the HIF-1 and Nrf2 pathway. Biochemical and Biophysical Research Communications, 2014, 454, 364-368.	1.0	7
2	Computational drug repositioning for peripheral arterial disease: prediction of anti-inflammatory and pro-angiogenic therapeutics. Frontiers in Pharmacology, 2015, 6, 179.	1.6	8
3	Crosstalk between cancer cells and blood endothelial and lymphatic endothelial cells in tumour and organ microenvironment. Expert Reviews in Molecular Medicine, 2015, 17, e3.	1.6	65
4	Analysis of gene expression of secreted factors associated with breast cancer metastases in breast cancer subtypes. Scientific Reports, 2015, 5, 12133.	1.6	36
5	Inhibition of breast cancer growth and metastasis by a biomimetic peptide. Scientific Reports, 2014, 4, 7139.	1.6	47
6	The lymph node pre-metastatic niche. Journal of Molecular Medicine, 2015, 93, 1173-1184.	1.7	108
7	Lack of a significant pharmacokinetic interaction between maraviroc and tacrolimus in allogeneic HSCT recipients. Journal of Antimicrobial Chemotherapy, 2015, 70, 2078-2083.	1.3	4
8	Challenges and opportunities for cell line secretomes in cancer proteomics. Proteomics - Clinical Applications, 2015, 9, 348-357.	0.8	15
9	CCL5 promotes VEGF-C production and induces lymphangiogenesis by suppressing miR-507 in human chondrosarcoma cells. Oncotarget, 2016, 7, 36896-36908.	0.8	31
10	Lymphatic endothelial cells actively regulate prostate cancer cell invasion. NMR in Biomedicine, 2016, 29, 904-911.	1.6	7
11	The Angiogenic Secretome in VEGF overexpressing Breast Cancer Xenografts. Scientific Reports, 2016, 6, 39460.	1.6	22
12	Leptin promotes VEGF-C production and induces lymphangiogenesis by suppressing miR-27b in human chondrosarcoma cells. Scientific Reports, 2016, 6, 28647.	1.6	38
13	Hypoxic control of metastasis. Science, 2016, 352, 175-180.	6.0	953
14	The dual role of tumor lymphatic vessels in dissemination of metastases and immune response development. Oncolmmunology, 2016, 5, e1182278.	2.1	31
15	Adiponectin promotes VEGF-C-dependent lymphangiogenesis by inhibiting miR-27b through a CaMKII/AMPK/p38 signaling pathway in human chondrosarcoma cells. Clinical Science, 2016, 130, 1523-1533.	1.8	29
16	Premetastatic Microenvironment. , 2016, , 349-378.		1
17	Characteristics and Significance of the Pre-metastatic Niche. Cancer Cell, 2016, 30, 668-681.	7.7	767
18	Pro-adhesive phenotype of normal endothelial cells responding to metastatic breast cancer cell conditioned medium is linked to NFI®B-mediated transcriptomic regulation. International Journal of Oncology, 2016, 49, 2173-2185	1.4	5

#	Article	IF	CITATIONS
19	Hypoxia: Signaling the Metastatic Cascade. Trends in Cancer, 2016, 2, 295-304.	3.8	155
20	Cancer Tills the Premetastatic Field: Mechanistic Basis and Clinical Implications. Clinical Cancer Research, 2016, 22, 3725-3733.	3.2	85
21	⁶⁴ Cu-Doped PdCu@Au Tripods: A Multifunctional Nanomaterial for Positron Emission Tomography and Image-Guided Photothermal Cancer Treatment. ACS Nano, 2016, 10, 3121-3131.	7.3	96
22	Biomimetic on-a-chip platforms for studying cancer metastasis. Current Opinion in Chemical Engineering, 2016, 11, 20-27.	3.8	47
23	The role of ELK3 to regulate peritumoral lymphangiogenesis and VEGF-C production in triple negative breast cancer cells. Biochemical and Biophysical Research Communications, 2017, 484, 896-902.	1.0	15
24	Chemokine Receptor Signaling and the Hallmarks of Cancer. International Review of Cell and Molecular Biology, 2017, 331, 181-244.	1.6	64
25	Engineering the pre-metastatic niche. Nature Biomedical Engineering, 2017, 1, .	11.6	100
26	The biological and clinical significance of stromal-epithelial interactions in breast cancer. Pathology, 2017, 49, 133-140.	0.3	29
27	CXCL12 enhances angiogenesis through CXCR7 activation in human umbilical vein endothelial cells. Scientific Reports, 2017, 7, 8289.	1.6	71
28	CD146 is required for VEGF-C-induced lymphatic sprouting during lymphangiogenesis. Scientific Reports, 2017, 7, 7442.	1.6	24
29	CXCL1 from tumor-associated lymphatic endothelial cells drives gastric cancer cell into lymphatic system via activating integrin β1/FAK/AKT signaling. Cancer Letters, 2017, 385, 28-38.	3.2	64
30	Recruited monocytic myeloid-derived suppressor cells promote the arrest of tumor cells in the premetastatic niche through an IL-1β-mediated increase in E-selectin expression. International Journal of Cancer, 2017, 140, 1370-1383.	2.3	71
31	An agent-based model of triple-negative breast cancer: the interplay between chemokine receptor CCR5 expression, cancer stem cells, and hypoxia. BMC Systems Biology, 2017, 11, 68.	3.0	49
32	The angiotensin receptor blocker, Losartan, inhibits mammary tumor development and progression to invasive carcinoma. Oncotarget, 2017, 8, 18640-18656.	0.8	66
33	Factors involved in cancer metastasis: a better understanding to "seed and soil―hypothesis. Molecular Cancer, 2017, 16, 176.	7.9	211
34	Baicalein reduces angiogenesis in the inflammatory microenvironment via inhibiting the expression of AP-1. Oncotarget, 2017, 8, 883-899.	0.8	23
35	Role of chemokines in metastatic niche: new insights along with a diagnostic and prognostic approach. Apmis, 2018, 126, 359-370.	0.9	19
36	The evolving role of lymphatics in cancer metastasis. Current Opinion in Immunology, 2018, 53, 64-73.	2.4	88

#	Article	IF	CITATIONS
37	Endothelial cells promote tripleâ€negative breast cancer cell metastasis <i>via</i> PAIâ€1 and CCL5 signaling. FASEB Journal, 2018, 32, 276-288.	0.2	71
38	Lymphatic Tissue Engineering and Regeneration. Journal of Biological Engineering, 2018, 12, 32.	2.0	54
39	Single-cell RNA sequencing reveals gene expression signatures of breast cancer-associated endothelial cells. Oncotarget, 2018, 9, 10945-10961.	0.8	45
40	Implantable pre-metastatic niches for the study of the microenvironmental regulation of disseminated human tumour cells. Nature Biomedical Engineering, 2018, 2, 915-929.	11.6	57
41	The role of hypoxic signalling in metastasis: towards translating knowledge of basic biology into novel anti-tumour strategies. Clinical and Experimental Metastasis, 2018, 35, 563-599.	1.7	25
42	Crosstalk between cancer cells and endothelial cells: implications for tumor progression and intervention. Archives of Pharmacal Research, 2018, 41, 711-724.	2.7	51
43	Comparative Secretome Profiling and Mutant Protein Identification in Metastatic Prostate Cancer Cells by Quantitative Mass Spectrometry-based Proteomics. Cancer Genomics and Proteomics, 2018, 15, 279-290.	1.0	19
44	Simultaneous blockade of IL-6 and CCL5 signaling for synergistic inhibition of triple-negative breast cancer growth and metastasis. Breast Cancer Research, 2018, 20, 54.	2.2	63
45	Docetaxel facilitates lymphatic-tumor crosstalk to promote lymphangiogenesis and cancer progression. BMC Cancer, 2018, 18, 718.	1.1	42
46	The release of tryptase from mast cells promote tumor cell metastasis via exosomes. BMC Cancer, 2019, 19, 1015.	1.1	34
47	CCL5 protein level: influence on breast cancer staging and lymph nodes commitment. Molecular Biology Reports, 2019, 46, 6165-6170.	1.0	11
48	Reduced RhoA expression enhances breast cancer metastasis with a concomitant increase in CCR5 and CXCR4 chemokines signaling. Scientific Reports, 2019, 9, 16351.	1.6	32
49	Reshaping Prostate Tumor Microenvironment To Suppress Metastasis <i>via</i> Cancer-Associated Fibroblast Inactivation with Peptide-Assembly-Based Nanosystem. ACS Nano, 2019, 13, 12357-12371.	7.3	107
50	The Interplay Between Lymphatic Vessels and Chemokines. Frontiers in Immunology, 2019, 10, 518.	2.2	52
51	STAT3 as a potential therapeutic target in triple negative breast cancer: a systematic review. Journal of Experimental and Clinical Cancer Research, 2019, 38, 195.	3.5	249
52	Perfluorocarbon Nanoemulsions for Combined Pulmonary siRNA Treatment of Lung Metastatic Osteosarcoma. Advanced Therapeutics, 2019, 2, 1900039.	1.6	10
53	Breast cancer, human immunodeficiency virus and highly active antiretroviral treatment; implications for a high-rate seropositive region. Oncology Reviews, 2019, 13, 376.	0.8	9
54	CCR5 blockage by maraviroc: a potential therapeutic option for metastatic breast cancer. Cellular Oncology (Dordrecht), 2019, 42, 93-106.	2.1	44

#	Article	IF	CITATIONS
55	Breast Cancer Metastasis: Are Cytokines Important Players During Its Development and Progression?. Journal of Interferon and Cytokine Research, 2019, 39, 39-55.	0.5	49
56	Differential osteopontin expression in human osteoblasts derived from iliac crest and alveolar bone and its role in early stages of angiogenesis. Journal of Bone and Mineral Metabolism, 2019, 37, 105-117.	1.3	12
57	Human Tumor‣ymphatic Microfluidic Model Reveals Differential Conditioning of Lymphatic Vessels by Breast Cancer Cells. Advanced Healthcare Materials, 2020, 9, e1900925.	3.9	45
58	CC Chemokines in a Tumor: A Review of Pro-Cancer and Anti-Cancer Properties of Receptors CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 Ligands. International Journal of Molecular Sciences, 2020, 21, 7619.	1.8	166
59	In vitro modeling of solid tumor interactions with perfused blood vessels. Scientific Reports, 2020, 10, 20142.	1.6	50
60	Cold atmospheric plasma jet applied for TiO2/carbon fiber composite biomaterial. Laser and Particle Beams, 2020, 38, 269-276.	0.4	2
61	CD146, from a melanoma cell adhesion molecule to a signaling receptor. Signal Transduction and Targeted Therapy, 2020, 5, 148.	7.1	83
62	Three-Dimensional Human Liver-Chip Emulating Premetastatic Niche Formation by Breast Cancer-Derived Extracellular Vesicles. ACS Nano, 2020, 14, 14971-14988.	7.3	63
63	Pro-Inflammatory Cytokines in the Formation of the Pre-Metastatic Niche. Cancers, 2020, 12, 3752.	1.7	43
64	ECM1 secreted by HER2-overexpressing breast cancer cells promotes formation of a vascular niche accelerating cancer cell migration and invasion. Laboratory Investigation, 2020, 100, 928-944.	1.7	26
65	Runx-mediated regulation of CCL5 via antagonizing two enhancers influences immune cell function and anti-tumor immunity. Nature Communications, 2020, 11, 1562.	5.8	50
66	Cytokines secreted by stromal cells in TNBC microenvironment as potential targets for cancer therapy. Cancer Biology and Therapy, 2020, 21, 560-569.	1.5	17
67	The CCL5/CCR5 Axis in Cancer Progression. Cancers, 2020, 12, 1765.	1.7	203
68	Hepatocellular carcinoma-derived exosomes in organotropic metastasis, recurrence and early diagnosis application. Cancer Letters, 2020, 477, 41-48.	3.2	46
69	Chemokines and their Receptors: Multifaceted Roles in Cancer Progression and Potential Value as Cancer Prognostic Markers. Cancers, 2020, 12, 287.	1.7	131
70	Mechanisms of Tumor-Lymphatic Interactions in Invasive Breast and Prostate Carcinoma. International Journal of Molecular Sciences, 2020, 21, 602.	1.8	15
71	CXCL5/CXCR2 axis in tumor microenvironment as potential diagnostic biomarker and therapeutic target. Cancer Communications, 2020, 40, 69-80.	3.7	119
72	LLY17, a novel small molecule STAT3 inhibitor induces apoptosis and suppresses cell migration and tumor growth in triple-negative breast cancer. Breast Cancer Research and Treatment, 2020, 181, 31-41.	1.1	13

#	Article	IF	CITATIONS
73	Induction of DNMT3B by PGE2 and IL6 at Distant Metastatic Sites Promotes Epigenetic Modification and Breast Cancer Colonization. Cancer Research, 2020, 80, 2612-2627.	0.4	28
74	The pleiotropic role of transcription factor STAT3 in oncogenesis and its targeting through natural products for cancer prevention and therapy. Medicinal Research Reviews, 2021, 41, 1291-1336.	5.0	68
75	Crosstalk between head and neck cancer cells and lymphatic endothelial cells promotes tumor metastasis via CXCL5 XCR2 signaling. FASEB Journal, 2021, 35, e21181.	0.2	14
76	Periostin ⁺ cancerâ€associated fibroblasts promote lymph node metastasis by impairing the lymphatic endothelial barriers in cervical squamous cell carcinoma. Molecular Oncology, 2021, 15, 210-227.	2.1	28
78	Characteristics of pre-metastatic niche: the landscape of molecular and cellular pathways. Molecular Biomedicine, 2021, 2, 3.	1.7	42
79	The cancer cell secretome drives cooperative manipulation of the tumour microenvironment to accelerate tumourigenesis. Faculty Reviews, 2021, 10, 4.	1.7	12
80	Microfluidic System to Analyze the Effects of Interleukin 6 on Lymphatic Breast Cancer Metastasis. Frontiers in Bioengineering and Biotechnology, 2020, 8, 611802.	2.0	17
81	Tumor Microenvironment in Metastatic Colorectal Cancer: The Arbitrator in Patients' Outcome. Cancers, 2021, 13, 1130.	1.7	15
82	The Role of Tumor Microenvironment in Cancer Metastasis: Molecular Mechanisms and Therapeutic Opportunities. Cancers, 2021, 13, 2053.	1.7	143
83	The Multifaceted Effects of Breast Cancer on Tumor-Draining Lymph Nodes. American Journal of Pathology, 2021, 191, 1353-1363.	1.9	15
84	Thorny ground, rocky soil: Tissue-specific mechanisms of tumor dormancy and relapse. Seminars in Cancer Biology, 2022, 78, 104-123.	4.3	17
85	Repurposing of Antimicrobial Agents for Cancer Therapy: What Do We Know?. Cancers, 2021, 13, 3193.	1.7	31
86	Comparing the frequency of CD33 ⁺ pSTAT3 ⁺ myeloidâ€derived suppressor cells and ILâ€17 ⁺ lymphocytes in patients with prostate cancer and benign prostatic hyperplasia. Cell Biology International, 2021, 45, 2086-2095.	1.4	5
87	Advances in the study of cancer metastasis and calcium signaling as potential therapeutic targets. Exploration of Targeted Anti-tumor Therapy, 0, , .	0.5	0
88	Blockade of Autocrine CCL5 Responses Inhibits Zika Virus Persistence and Spread in Human Brain Microvascular Endothelial Cells. MBio, 2021, 12, e0196221.	1.8	18
89	A bioengineered lymphatic vessel model for studying lymphatic endothelial cellâ€cell junction and barrier function. Microcirculation, 2021, 28, e12730.	1.0	27
90	Tumor-draining lymph nodes: At the crossroads of metastasis and immunity. Science Immunology, 2021, 6, eabg3551.	5.6	85
91	Cancer as a homeostatic challenge: the role of the hypothalamus. Trends in Neurosciences, 2021, 44, 903-914.	4.2	11

#	ARTICLE	IF	CITATIONS
92	Cancer as a tool for preclinical psychoneuroimmunology. Brain, Behavior, & Immunity - Health, 2021, 18, 100351.	1.3	5
93	Rapid multilayer microfabrication for modeling organotropic metastasis in breast cancer. Biofabrication, 2021, 13, 015002.	3.7	21
94	IL-6R/STAT3/miR-204 feedback loop contributes to cisplatin resistance of epithelial ovarian cancer cells. Oncotarget, 2017, 8, 39154-39166.	0.8	58
95	Crosstalk between stromal components and tumor cells of TNBC via secreted factors enhances tumor growth and metastasis. Oncotarget, 2017, 8, 60210-60222.	0.8	51
96	Stromal cells in breast cancer as a potential therapeutic target. Oncotarget, 2018, 9, 23761-23779.	0.8	30
97	BRG1 targeting STAT3/VEGFC signaling regulates lymphangiogenesis in colorectal cancer. Oncotarget, 2016, 7, 36501-36509.	0.8	11
98	Two Sides to the Same Coin—Cytotoxicity vs. Potential Metastatic Activity of AgNPs Relative to Triple-Negative Human Breast Cancer MDA-MB-436 Cells. Molecules, 2020, 25, 2375.	1.7	5
99	Premetastatic Microenvironment. , 2021, , 365-400.		0
102	Harnessing Biomaterials and the Lymphatic System for Immunomodulation. SSRN Electronic Journal, 0, , .	0.4	0
103	Heterogeneity of chemokine cell-surface receptor expression in triple-negative breast cancer. American Journal of Cancer Research, 2015, 5, 1295-307.	1.4	15
104	Modeling Tumor: Lymphatic Interactions in Lymphatic Metastasis of Triple Negative Breast Cancer. Cancers, 2021, 13, 6044.	1.7	1
105	Tumor metastasis: Mechanistic insights and therapeutic interventions. MedComm, 2021, 2, 587-617.	3.1	42
106	The Characteristics of Tumor Microenvironment in Triple Negative Breast Cancer. Cancer Management and Research, 2022, Volume 14, 1-17.	0.9	38
107	SOX2-OT induced by PAI-1 promotes triple-negative breast cancer cells metastasis by sponging miR-942-5p and activating PI3K/Akt signaling. Cellular and Molecular Life Sciences, 2022, 79, 59.	2.4	22
108	Lymphatics in Tumor Progression and Immunomodulation. International Journal of Molecular Sciences, 2022, 23, 2127.	1.8	8
109	Lymphatic Tissue and Organ Engineering for In Vitro Modeling and In Vivo Regeneration. Cold Spring Harbor Perspectives in Medicine, 2022, 12, a041169.	2.9	2
110	Platinum Chemotherapy Induces Lymphangiogenesis in Cancerous and Healthy Tissues That Can be Prevented With Adjuvant Anti-VEGFR3 Therapy. Frontiers in Oncology, 2022, 12, 801764.	1.3	4
111	Therapeutic Potential of Thymoquinone in Triple-Negative Breast Cancer Prevention and Progression through the Modulation of the Tumor Microenvironment. Nutrients, 2022, 14, 79.	1.7	15

#	Article	IF	Citations
112	Transcriptomic and Functional Evidence for Differential Effects of MCF-7 Breast Cancer Cell-Secretome on Vascular and Lymphatic Endothelial Cell Growth. International Journal of Molecular Sciences, 2022, 23, 7192.	1.8	5
113	Lymphatic vessels in cancer. Physiological Reviews, 2022, 102, 1837-1879.	13.1	38
114	Liquid Biopsy in Pre-Metastatic Niche: From Molecular Mechanism to Clinical Application. Frontiers in Immunology, 0, 13, .	2.2	3
115	Catulin reporter marks a heterogeneous population of invasive breast cancer cells with some demonstrating plasticity and participating in vascular mimicry. Scientific Reports, 2022, 12, .	1.6	2
116	Identification of a Prognostic Transcriptome Signature for Hepatocellular Carcinoma with Lymph Node Metastasis. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-40.	1.9	2
117	The cellular and molecular mediators of metastasis to the lung. Growth Factors, 2022, 40, 119-152.	0.5	5
118	Podoplanin is Responsible for the Distinct Blood and Lymphatic Capillaries. Cellular and Molecular Bioengineering, 2022, 15, 467-478.	1.0	4
119	Obesity: a perfect storm for carcinogenesis. Cancer and Metastasis Reviews, 2022, 41, 491-515.	2.7	19
120	Small extracellular vesicles: from promoting pre-metastatic niche formation to therapeutic strategies in breast cancer. Cell Communication and Signaling, 2022, 20, .	2.7	17
121	The pro-tumorigenic responses in metastatic niches: an immunological perspective. Clinical and Translational Oncology, 2023, 25, 333-344.	1.2	3
122	Immune Checkpoint Inhibitors and Other Immune Therapies in Breast Cancer: A New Paradigm for Prolonged Adjuvant Immunotherapy. Biomedicines, 2022, 10, 2511.	1.4	10
123	TRIB3 Interacts with STAT3 to Promote Cancer Angiogenesis. Current Medical Science, 2022, 42, 932-940.	0.7	3
124	Role of the Hypoxic-Secretome in Seed and Soil Metastatic Preparation. Cancers, 2022, 14, 5930.	1.7	2
125	Mechanisms and Strategies to Overcome PD-1/PD-L1 Blockade Resistance in Triple-Negative Breast Cancer. Cancers, 2023, 15, 104.	1.7	14
127	Single-Cell Transcriptomic Profiles of Lung Pre-Metastatic Niche Reveal Neutrophil and Lymphatic Endothelial Cell Roles in Breast Cancer. Cancers, 2023, 15, 176.	1.7	3
128	Transcriptomic and Functional Evidence That miRNA193a-3p Inhibits Lymphatic Endothelial Cell (LEC) and LEC + MCF-7 Spheroid Growth Directly and by Altering MCF-7 Secretome. Cells, 2023, 12, 389.	1.8	1
130	The tumor microenvironment and triple-negative breast cancer aggressiveness: shedding light on mechanisms and targeting. Expert Opinion on Therapeutic Targets, 2022, 26, 1041-1056.	1.5	3
131	Cancer Resistance to Immunotherapy: Comprehensive Insights with Future Perspectives. Pharmaceutics, 2023, 15, 1143.	2.0	13

		CITATION REPORT		
#	Article		IF	Citations
132	Immune determinants of the pre-metastatic niche. Cancer Cell, 2023, 41, 546-572.		7.7	19
137	Associations amongst genes, molecules, cells, and organs in breast cancer metastasis. Experimental Metastasis, 0, , .	Clinical and	1.7	1
142	CCL5/CCR5 Axis in Cancer. , 2023, , 219-240.			0